JP5507545B2 - 抵抗スイッチング特性を改善する表面処理方法 - Google Patents

抵抗スイッチング特性を改善する表面処理方法 Download PDF

Info

Publication number
JP5507545B2
JP5507545B2 JP2011507548A JP2011507548A JP5507545B2 JP 5507545 B2 JP5507545 B2 JP 5507545B2 JP 2011507548 A JP2011507548 A JP 2011507548A JP 2011507548 A JP2011507548 A JP 2011507548A JP 5507545 B2 JP5507545 B2 JP 5507545B2
Authority
JP
Japan
Prior art keywords
ions
oxide
layer
semiconductor layer
layer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011507548A
Other languages
English (en)
Other versions
JP2011520261A (ja
Inventor
チアン,トニー
パタク,プラシャント
チェン,シーイン
ミラー,マイケル
シュリッカー,エイプリル
クマール,タメイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intermolecular Inc
Original Assignee
Intermolecular Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intermolecular Inc filed Critical Intermolecular Inc
Publication of JP2011520261A publication Critical patent/JP2011520261A/ja
Application granted granted Critical
Publication of JP5507545B2 publication Critical patent/JP5507545B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/3115Doping the insulating layers
    • H01L21/31155Doping the insulating layers by ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8615Hi-lo semiconductor devices, e.g. memory devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/023Formation of the switching material, e.g. layer deposition by chemical vapor deposition, e.g. MOCVD, ALD
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of the switching material, e.g. layer deposition
    • H10N70/026Formation of the switching material, e.g. layer deposition by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of the switching material, e.g. post-treatment, doping
    • H10N70/043Modification of the switching material, e.g. post-treatment, doping by implantation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/25Multistable switching devices, e.g. memristors based on bulk electronic defects, e.g. trapping of electrons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/80Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Ceramic Engineering (AREA)
  • Semiconductor Memories (AREA)

Description

本書は、発明者Prashant B.Phatakと、Tony Chiangと、Pragati Kumarと、Michael Millerとによって2008年5月1日に提出された不揮発性抵抗スイッチングメモリに関する米国仮出願第61/049,752号の利益を主張し、これは参照によって本書に組み込まれる。本書はさらに、発明者Michael Millerと、Prashant Phatakと、Tony Chiangとによって2008年5月10日に提出された不揮発性抵抗スイッチングメモリに関する米国仮出願第61/052,174号の利益を主張し、これも参照によって本書に組み込まれる。
近年、フラッシュメモリは不揮発性メモリの最も一般的な形態になってきており、主としてこれは高密度のメモリセルを可能にし、低い製造コストを維持し、第2の記憶装置の形態として通常信頼できるからである。しかしながら、従来のフラッシュメモリは、しばしば再プログラムされるほど品質を下げる欠陥と、記憶密度が増加し続けるにつれてより目立つようになる欠点との影響を受ける。さらに、従来のフラッシュメモリはあまりにもゆっくり動作するので、ランダムアクセスメモリ(RAM)の汎用の代替品として用いることができない。
産業界はこのため他の不揮発性のフラッシュメモリの代替物を求めており、幾つかの提案されたデバイスは、これらの実効抵抗を変化するよう制御されるメモリセルに基づいており、これによって情報を格納する。これらのデバイスは一般にシリコン処理のバリエーションのためにまだ広く商品化されておらず、(a)それは適切にセットまたはリセットすることができないほど幾つかのセルを故障させ、(b)それは、故障していないセルについて、セルを形成(すなわち調整)し、セットし、リセットするのに必要とされる刺激で許容できないバリエーションを生成する。
必要なものは、これらの特性に関してより高い一貫性示す不揮発性デバイスと構造体と、これらのデバイスを作成する方法である。本発明はこれらのニーズを取り扱い、さらに関連する利点を提供する。
図1はメモリセル101の断面図であり、メモリセルは、頂部電極103と底部電極105を含み、その間に半導体素子層107を有し、全て基板109より上に取り付けられた。半導体素子層は第1領域111を含み、これはイオン注入によってドープされて様々な欠陥を生成し、メモリセルに関連する多安定特性を強化する。これらの欠陥は、入ってくる注入イオンとの原子衝突によって生成される原子空孔や、これらの原子空孔の生成によって生成される格子間欠陥や、原子格子に置き換わらなかった注入イオンによって、および/または通常格子内の原子の1つにより占有される場所に静止するようになったイオン(置換欠陥)によって生成された格子間欠陥とすることができる。 図2は、層を堆積するステップと、層内にイオンを押し込むステップと、層を調整するステップ(例えば層内のトラップまたは欠陥を少なくとも部分的に埋めるステップ)とによって半導体素子層を製造する方法201を示す機能ブロック図である。 図3は、一連の図面の第1図であり、図1の層107などの半導体素子層の製造を示すのに用いられる。図3は、基板303より上にそれぞれ堆積された電極305と半導体素子層307を示す図である。図3で示されないが、特定の実施で望まれるように、これらの層の何れかの間に付加的な「任意の」層がさらに堆積されてもよい。 図4は、一連の図面の第2図であり、半導体素子層の製造を示すのに用いられる。図4は、一連の矢印409を用いて、特定量のエネルギと共に堆積された半導体素子層の表面に向けられたイオンを示す。図4の左手側に正規分布形状411により示されるように、イオン注入プロセスは、慎重に制御された方法で(例えば所望の平均深さに関して確率的な方法で)半導体素子層内にイオンを配分するよう制御される。すなわち、線量とエネルギの双方を制御することによって、これは所望のレベルに欠陥の密度を調整してもよい。破線413は、少なくとも幾つかの実施形態では、層の上半分に欠陥(例えば空孔欠陥、格子間欠陥、および置換欠陥)を故意に生成する目的で、最初に半導体素子層の「上半分」にイオンが配分されてもよいことを示すのに用いられる。衝撃処理を用いてもよく、矢印415により表わされ、頁に垂直に及んで、半導体素子層の平面にこれらの欠陥の一貫した密度を確認するのを支援するためにてもよい。 図5は、一連の図面の第3図であり、半導体素子層の製造を示すのに用いられる。図5は、衝撃後の半導体素子層が第1領域509に効果的に分離されたことを示しており、第1領域509ではイオンが制御された方法で様々な欠陥と第2領域511とを効果的に生成しており、第2領域511では半導体物質が注入処理により実質的に不変のままである。 図6は、イオン衝撃を示すのに用いられる図であり、半導体素子層の第1領域613内に故意に欠陥611を生成する。 図7は、多くのメモリセル711を含むメモリアレイ701の図であり、それぞれ3つの端子(例えば、水平)設計に基づく。 図8は、多くのメモリセル811を含むメモリアレイ801の図であり、それぞれ2つの端子(例えば、垂直)設計に基づく。 図9は、形成(forming)電圧のプロット901を示す図であり、例えば抵抗性読み取り専用メモリ(「ReRAM」)を調整するのに用いられる電圧が累積分布関数(「CDF」)として表わされる。自然欠陥のみを有するメモリデバイスに関連する点が三角形903により表わされる一方、イオンと衝突させられて調整された個体数の欠陥を生成する類似デバイスに関連する点が円905により表わされる。図9は、この開示により説明された原理を用いた欠陥強化が、第1用途のデバイスを調整するのに必要な形成電圧を実質的に低減するのに役立つことを示している。 図10は、セット電圧/リセット電圧のサイクルの関数としてデバイス不良特性評価のプロット1001を示す。第1線1003は、自然欠陥のみを有する酸化ハフニウムサンプルのセット/リセットサイクルの関数として不良をプロットする一方、第2線1005は、付加欠陥を生成するイオンと衝突させられた酸化ハフニウムサンプルの不良をプロットする。図10は、よりむらがない欠陥を有するサンプルがより高い信頼性を実証し、不良は、それが発生する場合、遅れて生じる傾向があることを示している。 図11は、酸化ハフニウムサンプルに関連したメモリデバイスのセット電圧とリセット電圧の相対的な累積分布プロット1101を示す図である。特に、破線1103と1105は、注入されていない酸化ハフニウムに基づいたデバイスのセット電圧とリセット電圧にそれぞれ相当し、実線1107と1109は、注入された酸化ハフニウムに基づいたデバイスのセット電圧とリセット電圧にそれぞれ相当する。 図12は、3つのサンプルそれぞれについてオングストロームでの標的深さ対イオン密度のプロット1201を示す図であり、各サンプルは異なるイオン衝撃パラメータを用いて処理された。特に、第1曲線1205は、9keV(キロ電子ボルト)の注入エネルギを用いて処理されたサンプルに相当し、第2曲線1207は、22.5keVの注入エネルギを用いて処理されたサンプルに相当し、第3曲線1209は、55keVの注入エネルギを用いて処理されたサンプルに相当する。また2つの垂直線がプロットされており、標的深さ(すなわち半導体素子層の深さ)を表わす第1線1203と、その深さの半分を表わす第2線1211とを含む。図12は、特にイオンの密度(および関連する欠陥)とそれらの侵入の深さを調整するようにイオン衝撃パラメータをどのように変更するかを示す実施例を示すのに用いられる。 図13は、図12で見られるものと類似するプロット1301を示す図であるが、これはその代りに図12で最初に紹介された実施例の衝突効果を示している。すなわち、第1曲線、第2曲線および第3曲線(1305、1307および1309)は、図12のイオン分布1205、1207および1209に相当し、半導体素子層の厚さのおよそ前半にのみ故意に付加した欠陥を効果的に示している。 図14は、所定の注入量のイオンについて、酸化チタン(TiO)膜内の酸素イオンのイオン注入分布を示す相対的なグラフ1401である。特に、第1曲線1411が250オングストロームの厚さの半導体層の前半の厚みにのみイオンを分配するのに注入エネルギがどのように調整されるか示している一方、第2曲線1413が150オングストロームの厚さの層の前半の厚みにのみイオンを分配するのに、注入エネルギがどのように用いられるかを示している。 図15は、本書に記載されたメモリセルに用いられる幾つかの物質について、金属酸化物層の厚さと「オン」電流対「オフ」電流(Ion/Ioff)比率との関係を示すグラフである。本書で用いられる用語「オン」電流とは、2つの状態だけ存在することを厳密に要求するのではなく、ベース状態(例えば、電流が最低であり、最も強い抵抗状態であるベース状態)以外の状態に関連する電流のことをいう。図15に示されたデータは、少なくともある半導体物質について、Ion/Ioff比率は半導体素子層の厚さに線形ではなく、これにより抵抗スイッチングメカニズムは、(a)非金属である傾向があり、(b)恐らく異なる層間の界面に隣接して生成され、例えばこの開示によって提供される表面処理手順によってそれらが強化されるという考えを支持する。 図16は、多安定メモリセルのアレイ1601の成分を示す三次元図である。所望の場合、各セルは本書で記載された原理に従って製造されてもよい。 図17は、典型的な多安定メモリセルを示しており、図17で示される特定のセルは、第1領域および第2領域と、前記のように、1以上の欠陥アクセス層とを含む。 図18は、多安定メモリデバイスの電流対電圧特性をプロットするグラフ1801を示す。特に、図18は双安定メモリデバイスに関連する曲線1803と1807を示し、それぞれ高抵抗状態と低抵抗状態の各々を示す。 図19は、多安定メモリセルの電流対電圧特性を示すグラフ1901を提示する。図19は、オーミック反応1903を非線形の反応1907と比較するのに用いられる(後者は多安定メモリデバイスの動作に要求される)。 図20は、多くの曲線2003、2005、2007、2009、2011、2013および2015を示すグラフ2001であり、曲線は非金属物質として金属酸化物の挙動を効果的に示すのに用いられる。 図21は、多安定メモリデバイスの金属酸化物層の厚さと平均セット電圧との関係を示すグラフ2101を提示する。異なる種類の点は、異なる形状2103、2105、2107、2109および2111によって表わされる。各セットの点は、多安定メモリセルの半導体素子層に使用可能な異なる種類の金属酸化物に関係している。 図22は、多安定メモリデバイスの金属酸化物層の厚さと平均リセット電圧の関係を示すグラフ2201を提示する。異なる種類の点は、異なる形状2203、2205、2207、2209および2211によって表わされる。各セットの点は、多安定メモリセルの半導体素子層に使用可能な異なる種類の金属酸化物に関係している。また、このデータは双方とも抵抗スイッチングメカニズムが非金属であることを示し、これらの抵抗スイッチングメカニズムは、少なくとも部分的に半導体素子層(例えば金属酸化物層)と隣接層(例えば電極)との間の界面で根づいていると考えられる。
列挙された請求項によって規定される本発明は、以下の詳細な説明を参照することによってよく理解され、これは添付図面と共に解釈されるべきである。1以上の特定の実施形態の本記述は、請求項によって説明された1または複数の本発明の様々な実施の構築および使用を可能にするよう以下で述べられ、列挙された請求項を限定するのではなく、ある方法とデバイスのこれらのアプリケーションを例示するよう意図されている。以下で述べられる説明は、(i)半導体素子層、すなわちイオンドーピングと欠陥生成を使用してデバイス特性を改善したものを製造する方法と、(ii)この方法に基づいたデバイスであって、例えば抵抗状態を変化させ、これにより情報を格納するよう制御されるメモリデバイスとして実施されるデバイスを例示する。しかしながら、本発明はさらにその上他の方法とデバイスに適用されてもよい。
I.概要
添付図面によって例示されるように、本開示は制御された抵抗の変化に基づくメモリデバイスの用途に適切な改善された半導体素子層と、この層を作る方法とを提供する。より具体的には、表面処理工程を用いて予測可能で制御された方法で半導体素子層に様々な欠陥を生成する。これらの付加的な欠陥は次に、多安定抵抗メモリデバイスのセット電圧およびリセット電圧を形成する上でより良好でより厳格な制御を提供し、これによりより多くの歩留まりとより予測可能な動作に導く。すなわち、表面処理の目的は、イオンを用いて導電性金属フィラメントを形成するのではなく、むしろ半導体素子層内の欠陥の形成を制御して、抵抗状態の変化を発生させるメカニズムと関連するより厳格な許容範囲と、抵抗状態の変化を発生させるメカニズムと関連する欠陥の個体数、局在化および品質の変化との双方を達成することである。
以下で示され、図2−図6によって例示された1つの方法は、これらの欠陥を生成するために半導体素子層(例えば金属酸化物層)のイオン衝撃を含んでいる。半導体層は一般に、結晶質構造または非晶質構造となるよう形成され、これはやや予測不能で、不揃いで、二度とない分布の固有の欠陥を有するであろう。すなわち、これらの欠陥は抵抗状態の変化に関係し、これらの欠陥の予測不能な分布が、セットまたはリセットに失敗するメモリセルに幾分寄与したり、またはそれらのメモリセルを制御または読み出すのに必要な電流または電圧に望ましくない不安定性を有すると考えられる。欠陥分布と深さに対するよりよい制御によって、例えば、表面処理工程を用いて物質中に既に存在する自然欠陥に加えて、制御された方法で付加的な欠陥を生成することによって、より予測可能なメモリセル動作を達成することができると考えられる。
より具体的には、注入量と注入エネルギを変化させることによって、イオンで強化された欠陥の相対的な個体数を制御することができ、この欠陥の原始状態が、すなわち置換欠陥、空孔欠陥、および/または格子間欠陥であろうとなかろうと、格子内で静止するイオンによってもたらされ、置換欠陥、空孔欠陥、および格子間欠陥に対してそこを通過するイオンによって層の表面に生成される。他の方法では、注入量と注入エネルギの制御によって、これらの2つの個体数の欠陥の密度を所望のレベルに別々に調整してもよい。またさらに以下で論じられるように、イオン注入の化学種は注入される層の電気的性質を変更するよう選択されてもよく、例えば、本来の原子構造で表わされるものとは異なる原子価または伝導特性を有する原子を注入したり、または他の方法では分子構造または他のメカニズムの欠陥発生によって、帯電差を生成する。
理論に縛られることなく、(この開示の教示を用いて)メモリセルを形成する特定の半導体物質の選択肢は、まさに導入される欠陥に関連する非金属性パーコレーション(percolation)経路の形成を促進すると考えられる。むらがない分布と所望の深さプロファイルを有するよう欠陥発生を制御することによって、パーコレーション経路の形成を調整してもよい。これらの原理に基づいたメモリデバイスは、次に、(もし必要ならば第1用途のメモリデバイスを調整するために)より低い形成電圧と、セット電圧およびリセット電圧のより厳格な割り当てとを有するよう製造することができる。
この開示で用いられるように、セット電圧とリセット電圧とは、多安定物質または構造体を状態変化させる潜在力のあるアプリケーションのことをいう。物質または構造体は、この2つの状態、または2以上の状態を支持することができ、第1状態の「セット」とは第2状態からその状態に入ることをいい、「リセット」とは第2状態へスイッチバックすることをいう。概して言えば、抵抗状態の変化に基づく構造は相対的に低圧を用いてよく、現在の状態(状態を変化させない)と、特定の状態をセットするための第2の高電圧と、物質を前の状態へチェンジバックさせるための第3の更なる高電圧とを読み出したり、または検出する。これらの電圧間の典型的な相関関係は図18で観察することができる。
図1は、この開示によって提供される教示に基づく典型的なメモリセル101を示す。メモリセルは、頂部電極103、底部電極105、半導体素子層107および基板109を含む。半導体素子層は電極の間に挟まれ、電位差が電極間に印加されるとき、電流が半導体素子層を通って流れる。電圧はVとVの間の差によって図1で表わされ、実施形態に依存して一方の極性を反映してもよい。半導体素子層は、単一の不可欠な層として、または相対的に均一組成を有する一連の単層として最初に形成されてもよい。半導体素子層は異なった処理に晒され、第1領域111と第2領域113が層内に形成される。第1領域111はさらにドーピング層といってもよく、第2領域113は半導体層または絶縁体層といってもよく、しかしながら、用語「層」は、(a)複数の別個の層(例えば同一か異なる物質)が、異なる領域として堆積または製造される場合と、(b)物質または層が製造後に処理されて2つの領域を生成する場合との双方を含むよう用いられることを理解されたい。
図1の文字によって示されるように、一実施形態では、第1領域はイオン衝撃によって処理されて、理想としては深さと分布を制御された付加的な欠陥を生成するが、第2領域は実質的に未処理のままにする(これによりこの存在する範囲で自然欠陥によってのみ左右される)。所望の場合には、焼なましまたは他の処理がイオン衝撃に先立って用いられ、自然欠陥を抑制または強化してもよい。この抑制は、基礎をなす半導体物質が望ましくない自然欠陥特性を持つと考えられる場合に有用であろう。図1はさらに、1以上の電流ステアリング層または他の任意の層115の存在を示しており、これは特定の実施に望まれるであろう。この層またはこれらの層115は、それらの任意の特徴を示すために仮想線で示され、任意の層は実際には図1で示される他の様々な層の何れかの間に配置されてもよい(必ずしも図1に示されないが)。例えば、実施に依存して、平滑層、絶縁層、密着層、熱層、遮蔽層または考えられる限り任意の種類の層が、要求されるようにまたは適切に用いられてもよい。電流ステアリング素子を用いる場合には、任意の層が電気的な半導体デバイス(ダイオードまたはトランジスタなど)を形成するよう構成され、個々のメモリセル上の電気制御を容易にしてもよい。これらの付加層の存在または不在に関係なく、上記で参照されるように表面処理が利用されて、製造されるメモリセルの特性を強化する。例えば、制御されたイオン衝撃によって、相対的に低い形成電圧を必要とし、より予測可能な方法でセットおよびリセットするように図1に示されるメモリセルが形成されてもよい。
この開示の全ての実施形態のように、層の正確な順序は、処理に依存して、ある程度まで任意であることをさらに理解されたい。すなわち、例えば、第1領域は第2領域より上または下であって、第2領域より第1電極および基板に近くてもよいし、または上記で紹介された様々な層と比べて異なる順序でもよく、全てはこの開示の教示と一致する。さらに、互いに隣接するよう示される層は、全ても実施形態でそのように配置される必要はなく、それらの間に散在させた他の層があってもよい。例えば、第1領域111と頂部電極との間に別の半導体素子層(例えば金属酸化物層)を加えることができる。
II.製造プロセス
図2は、図1の中央に示される層など半導体素子層を形成する方法201を示す。半導体素子層(一般に金属酸化物)の基材は最初に基板より上に堆積される。本書で用いられる用語「より上」とは、基板より上であるが、半導体素子層より下に他の層、例えば底部電極、任意の層、またはこの双方がさらにあってもよいことを意味する。以下で論じられるように、様々な製造プロセスが半導体素子層を構築するのに用いられてよく、物理蒸着法(「PVD」)と、化学蒸着法(「CVD」)と、乾式または湿式処理と、含まれる物質に適切な他の従来の半導体製造プロセスとを含む。一旦半導体素子層が所望の厚さに形成されれば、上記で紹介された表面処理工程を用いて欠陥を生成する。図2によって示される実施例では、使用される表面処理工程はイオンを半導体素子層に押し込むことに関係しており、例えば、欠陥を生成し、格子構造を強化または変更し、または格子要素を異なる電気(例えば原子価または伝導)特性を有するイオンと置換する。押し込まれたイオンは、半導体素子層(例えば金属酸化物構造を有する)の分子と衝突して、自然構造(例えば必要に応じて構造内の結晶)を分裂させる。任意の従来のイオン衝撃処理を用いてもよく、例えば、電子に圧入ガスをイオン化させる処理や、標的に対してこれらのイオンを導く加速グリッドを用いる処理や、他の処理がさらに用いられてもよい。以下で説明されるように、イオン衝撃処理は一般に実験上のデータに基づいて予め調整され、全て図2の仮想線のブロック207によって示される特定の注入量、注入エネルギ、露出時間および類似パラメータを用いており、半導体素子層に押し込まれたイオンの分布と生成される欠陥の種類を制御する。注入の深さは、概して言えば、正規分布に従う実際の深さを持った確率現象である。層内の侵入の平均深さと欠陥個体数のバリエーションは、選択された注入エネルギの関数であり、分布の高さ(任意の特定の深さでのイオンの密度)は、注入量(すなわち、イオン密度と暴露時間)の関数である。図1の説明に関して上記で示唆されたように、一旦欠陥の個体数を変更したならば、次いで必要に応じて付加層を堆積してメモリセル(または他のデバイス)を完成してもよい。
デバイスを形成処理または他の調整イベントに晒して、第1用途の半導体デバイスを少なくとも部分的に調整してもよい。例えば、形成電圧を印加して、各メモリセ内で用いられ、抵抗状態の変化に関係するパーコレーション経路を効果的にセットしてもよい。空孔発生を重視する実施形態では、調整イベントを用いて、移動によって空孔を他の要素(例えば水素、酸素または他の化学種)と置換してもよい。様々なメカニズムを形成イベントまたは処理の一部として用いることができる。例えば、焼なましまたは他の物理的な変更処理(例えば高速な熱酸化(RTO)、フォーミングガスアニール等)を用いて、特定の設計に適切な場合に部分的にデバイスを準備してもよい。第1用途の構造、例えば抵抗スイッチングメモリを調整するのに電子的な処理も適用することができ、パーコレーション経路は欠陥と関連して形成すると考えられており、それゆえ形成電圧を用いてこれらの経路を形成することがしばしば望ましい。以下で論じられる実施形態の多くで、これらのパーコレーション経路が形成されて非金属の特性を示してもよく、例えば、伝導を変化させる処理によって非金属種に関連した挙動を示してもよい。この調整イベントの使用は、図2のブロック209によって表わされる。重要なことに、形成処理は、次の最終的な層堆積を含む製造の任意の段階、または堆積処理の中間のある時点で適用されてもよい。
図3−図5は、図2に関して記載されたイオン衝撃処理に関する付加的な詳細を提供するのに用いられる。
特に、図3は基板303と、底部電極305と、半導体層307とを有するデバイス301を示す。図3の実施例では、底部電極は、任意の従来の電極物質、例えば窒化チタン、銅、ニッケル、ケイ化物、ポリシリコンまたは別の従来の電極物質で形成されてもよい。電極305は図3に示されており、基板303と直接接触しており(例えば、この上に形成され)、さらに半導体素子層307と直接接触するが、そうである必要はない。図3によって示唆されるように、半導体素子層は、金属酸化物(酸化ハフニウム、HfOなど)で形成することができる。実施例を取り扱うこの開示の章に関して、様々な適切な物質が以下で論じられるであろう。
図4は、半導体素子層の表面に衝突させる表面処理工程の使用を示す。図4では、符号403、405および407が基板、底部電極および半導体素子層をそれぞれ参照する一方、デバイスは符号401によって通常表わされる。1セットの矢印409は、イオンが下方へ向けられ半導体物質の表面410に衝突し、イオンが物質内に(例えば酸化ハフニウム内に)ほぼ垂直に押し込まれることを示しているが、その軌道はやや(例えば83度の角度)に変更されて、純粋な垂直注入により発生する多くの悪影響を回避する。任意の角度を用いてもよく、注入角度は注入されるイオン、注入を受ける物質、注入設備および他の因子に依存してもよいことを理解されたい。重要なことは、前に述べられたように、イオン注入に関連したパラメータを変更して注入を調整し、特定種類または分布の欠陥を生成してもよい。このパラメータとこれらのバリエーションの実施例は、特に図12と図13に関してさらに以下で十分に記載される。図4の目的のため、このバリエーションは、図4の左側に示される正規分布曲線411によって象徴的に表わされており、半導体素子層内に注入されるイオンの数は、これらの分布において変更されることが好ましいことを表しており、すなわち、イオンが深さに関して配分されて分布曲線411によって表わされる正規分布を有する。仮想の水平線413は、この分布が線413より上に欠陥を形成する(すなわち第1領域を生成する)が、線413より下に付加的な欠陥を実質的に生成しないように選択されることを示す。特に、図4によって示される処理の1つの利点は、それがイオン注入(および関連する欠陥発生)に対して相対的に均一の断面分布を生成する処理に役立つということである。すなわち、矢印セット415によって表わされる(および図4の「頁内に」延在する)平面における分布は、相対的に均一となるよう作成することができ、これは基礎をなす半導体物質の自然欠陥について当てはまらないであろう。これにより、半導体素子層に渡って欠陥の均一性を適用するのにイオン注入プロセスを用いてもよい。
図5は、半導体素子層が表面処理されて2つの異なる領域を生成したデバイス501を示す。特に、デバイスは基板503、底部電極505、および半導体素子層507を含み、後者は第1領域509と第2領域511を含む。上述したように、表面処理工程(この実施形態のイオン衝撃)は、仮想線513によって表わされる金属酸化物の深さより上の第1領域のみに付加的な欠陥を生成および/または修飾し、この線より下の第2領域に任意の実質的な欠陥を生成しないよう構成される。本書で論じられる少なくとも1つの実施形態では、第1領域が半導体素子層507全体の約半分の厚さである。すなわち、イオン衝撃によって加えられた欠陥はこの特定の実施形態で生成され、半導体層の上半分にのみ存在する。例えば、150オングストロームの半導体素子層を用いる場合、欠陥は上部の75オングストロームのみにイオン衝撃によって加えることができる。他の実施形態では、第1領域は異なって構成することができ、例えば、半導体素子層の60%、40%、25%もしくは異なった部分、または特に所望の深さ(例えば40オングストローム)の侵入を含む。
図6は、イオン衝撃の物理的な効果を示しており、上述したイオン注入中に基板によって経験されるであろう。図6は、多くの原子603で構成される半導体素子層601を示す。上記で紹介されたように、半導体素子層に既に存在する任意の欠陥に加えて様々な欠陥を加えたり、または既存の欠陥を修飾するために、半導体素子層をイオン605と衝突させることが望ましい。イオン605は、半導体素子層の表面607に侵入し、その層を構成する原子603と衝突し、最終的に層内にある深さで静止する(参照符号609によって例示されるように)。上述したように、注入の深さは確率モデルに従い、注入の実際の深さは、衝撃処理で用いられるイオン注入エネルギと衝撃を与える分子の数とに基づいている。各イオン605が半導体層に侵入するとき、それは、少なくとも幾つかの実施形態について、上記で紹介された多安定抵抗特性を促進する空孔611と格子間619の背後に残る。符号613によって示されるように、イオン注入プロセスが制御されて、所定の深さまでのみ空孔欠陥、格子間欠陥または他の欠陥を実質的に加えてもよい。層に侵入するイオンは、実際にこの深さ以上に侵入するかもしれないが(例えば仮想線617より下に示されるイオン615によって表わされるように)、侵入の分布は実質的には全ての付加的な欠陥がこのレベルより上に存在するようになる。イオン615はさらに、故意に注入された置換欠陥または格子間欠陥を生成するのに用いられてもよい。イオン注入の深さおよび関連する衝突イベントと欠陥との関係についての更なる詳細は、図12と図13を参照することによって観察されるであろう。
前述されたように、個々のメモリセルはこれらの原理に基づいて形成されてもよいし、電流ステアリング層を含んでもよいし、または各メモリセルの動作を制御するデバイスを制御してもよい。図7および図8は2つの実施形態を示しており、これらはメモリセルのアレイの動作を制御するデバイスに依存する。図7の実施形態は各メモリセルのゲート制御するトランジスタに依存し、図8の実施形態は個々のメモリセルを制御するのに役立つダイオードに依存する。
特に、図7は個々のビット線703と705、カラム線707と709に基づいたアレイ701を示す。一意のビット線とカラム線の各組み合わせを用いて関連するトランジスタ713を作動させることによってメモリセル711にアクセスする。例えば、1つの特定のカラム線707に設けられる電圧は、カラムに関連したトランジスタを全て作動させ、次いで、ビット線703に同時に設けられた電圧は、線707と線703の一意の組み合わせによって規定されるメモリセルに関連づけられる。電圧の高さ(幾つかの実施形態ではさらに極性)は、関連するメモリセルがセットもしくはリセットされているか、またはメモリ内容を変化させずに読み出されるかどうか判定する。トランジスタの実施形態は、一般に構造がレイアウトされる方法を引用して、時に「水平」構造といわれ、すなわち、トランジスタは一般にメモリセル構造に隣接して設けられる(しかし前に紹介された電流ステアリング層によって表わされるように、さらに垂直方式でトランジスタをメモリセル構造または他の方法の構造と組み合わせることが可能である)。
図8はさらに、複数のビット線803と805、および複数のカラム線807と809に基づくアレイ801を示しており、線のそれぞれ一意の組み合わせがアクセスされる何れかのメモリセル811を制御する。図8の構成は、ダイオード813と同時に各メモリセル811を示しており、後者はセルを識別するのに役立ち、セルへのアクセスは(関連するビット線とカラム線との間の)関連する電圧降下がダイオードのショットキー障壁閾値を満たすかどうかに依存して要求される。図8に見られる実施形態は、時に「垂直」構造といわれており、これはダイオードが各メモリセル(例えば電流ステアリング層)上または各メモリセル内に複数に垂直に積み重ねられた層としてしばしば構成されるからである。もちろん水平方式でダイオードを構成したり、またはメモリデバイスから他の方法で除去することも可能である。
このように紹介された例示的なメモリデバイスの構成と製造では、動作と信頼性における表面処理の効果の付加的な詳細が図9−図11に関してここで論じられるであろう。この議論に続いて、図12−図14を参照して、どのように上述した処理を調整するかについてデータが示され、多安定動作を支持するために欠陥(空孔、格子間および/または置換)を生成する。最終的に、実施例は、用いられる物質の議論とと共に、図15−図22を参照して提示され、トレードオフと関連づけられる。
III.デバイスの動作と信頼性における効果
図9は、類似の物質(例えば酸化ハフニウム)に基づいた2つの異なるサンプルの形成電圧を比較するプロット901を示しており、1つのサンプルは、上記で論じられた原理に従って表面処理され、別のサンプルは表面処理されなかった。他の方法では、多くのメモリセルで構成されるサンプルについて、それぞれシリコン処理バリエーションを有しており、図9は、様々なメモリセルについて初期状態の変化を引き起こすのに必要な最大形成電圧の分布を示す。符号903と小さな三角形の記号は、金属酸化物層に表面処理のない酸化ハフニウムメモリセルに基づくデータを表わす一方、符号905と円の記号は、例えば図2−図6に関して上記で論じられたように金属酸化物層がイオン衝撃処理に晒され酸化ハフニウムメモリセルを表わす。例えば未処理の酸化ハフニウムメモリセルに関して、累積分布データが示すことは、約10パーセントのセルが第1状態の変化を引き起こすのに約12ボルトDCの形成電圧を必要とするということであるが、約80パーセントのメモリセルは、約18ボルトDCの電圧が印加される場合に成功裡に変化する初期状態を有しているということである。対照的に、欠陥を強化するためにイオン衝撃を用いたメモリセルはより小さな形成電圧を顕著に必要とし、図9は争点の10パーセント酸化ハフニウムメモリセルが3ボルトDC以下の電圧で成功裡にセットされる一方、80パーセントのメモリセルが9ボルトDC以下の電圧で成功裡にセットされることを示す。
形成電圧はしばしば抵抗スイッチングメモリに関連した重要なパラメータとなり得る。簡単に言えば、まさに最初に状態を変化するメモリセルを得るために最大電圧をしばしば印加しなければならない。なぜ相対的により高い電圧がこの初期状態の変化に必要かに関する1つの理論は、形成イベントが、例えば種の移動、電荷移動、または他のメカニズムを介して伝導に必要とされる経路の構築に関係するかもしれないということである。これらの欠陥またはトラップを埋めるメカニズムは完全には理解されていないが、それはイオンもしくは電子の移動度、原子(例えば酸素)の移動度に基づいたメカニズム、または別のメカニズムであるかもしれない。一旦状態が一度変化させられたならば、続いて電荷移動度に関連するパーコレーション経路を形成および破壊するのにより低い電圧が必要であり、このためセット電圧とリセット電圧が定常状態に落ち着く。高い電圧は潜在的にメモリセルを損傷しうる大電流を引き起こし、一般に最大電圧はまさに第1状態の変化用に印加される必要があるので、特に必要な電圧はシリコン処理のバリエーションと関連してセルからセルへ変化することができるので、形成電圧は一般に抵抗スイッチングメモリデバイスに対する関心事である。潜在的な損傷を最小化するために、最小限の形成電圧と、必要な形成電圧に変化がない程小さいことが通常望まれる。図9に示されるデータは、上記で論じられた表面処理工程の使用が形成電圧を低減する際に実質的な利点を提供することを示唆することが容易に観察されるはずである。
図10は、サイクルの関数として、故障したメモリセルの故障解析を示す。特に、プロット1001は動作のサイクル数に基づく故障したセルの累積的な故障データを示しており、仮想線1003は未処理の酸化ハフニウムに基づく故障したセルを表わし、実線1005はイオン衝突させられた酸化ハフニウムに基づく故障したセルを表わす。もはやセットおよびリセットすることができない場合セルは故障し、図10に示されるデータは、上記で論じた表面処理工程が故障を遅らせることを示唆し、すなわち故障する処理済みの酸化ハフニウムに基づくセルは通常多くのサイクル数の後に故障する。[すなわち、一般に形成電圧はメモリセルの初期セットまたはリセットを引き起こすのに用いられる最大電圧であるので、このデータは左手垂直軸に対して斜めになり、故障するセルはより大きな電流を必要とするためにより早く故障する傾向がある。]
デバイス幅に渡ってよりむらがない欠陥の分布を生成し、所望の侵入の深さを調整することによって、上記で論じた原理が形成電圧を低減するのに役立つと考えられ、これはデバイスの各状態に関連した抵抗がより断定できるようになるからである。抵抗がより予測できるので、多安定動作に関連したパーコレーション経路の形成および破壊するのに必要とされる電圧まわりと、これらの電圧を最小化する性能まわりにより良好な期待値があり、すなわち、これらの値まわりのより厳格な割り当てが過度の電圧と関連する電流を回避するのに役立つと考えられる。
図11は、処理済みおよび未処理の酸化ハフニウム型メモリセルのセット電圧とリセット電圧を比較するプロット1101を示す。特に、符号1103と1105は、未注入の酸化ハフニウム型メモリセルに基づくメモリセルのセット電圧とリセット電圧をそれぞれ示す一方、符号1107と1109は、イオン衝撃表面処理に晒された酸化ハフニウム型セルのセット電圧とリセット電圧を示す。データは、処理されたメモリセルについて実質的により厳格な分布を示しており、すなわち、イオン衝突された酸化ハフニウム型セルのセット電圧とリセット電圧の累積分布は双方とも「より垂直」であり、ほぼ共により隣接している。この結果はさらに、デバイスの信頼性と低電圧の使用が上記で論じられた製造方法を用いて強化されることを示している。
このように示されたイオン衝撃の利点の幾つかでは、イオン衝撃処理に影響する変数が図12−図14に関してここで論じられるであろう。
IV.注入量と注入エネルギの調整
図12と図13はそれぞれ、イオン注入エネルギがイオン注入の深さおよび対応する欠陥発生にどのように影響しうるかを示すデータを提示する。
特に、図12は350オングストロームの厚さの半導体素子層に関連したプロット1201を示す。この厚さは、イオン侵入の深さを表わす水平軸を有する垂直線1203によって示され、この線の右側の領域は、半導体素子層を通って隣接層内へのイオンの侵入の範囲を表わし、この線の左側の領域は、半導体素子層内のイオンの深さを表わす。3本の曲線がこのプロット上に重ねられ、それぞれは類似の注入量を表わす。第1曲線1205は、9KeVの注入エネルギに関連したデータを提供する一方、第2曲線1207と第3曲線1209はそれぞれ22.5KeVと55KeVの注入エネルギと関連したデータを提示する。第2垂直線1211はさらに半導体素子層内の中間の深さを識別するために提示される。図12によって示されるように、イオン注入の深さはほぼ専ら注入エネルギの関数であり、注入量は特定の深さでイオンを描写する密度または「強度」を決定する。特に、最初の2本の曲線1205と1207に関連したイオン注入はほぼ専ら半導体素子層の上半分に残存するよう制御される一方、第3曲線1209は最初に上半分のイオン注入を反映するが、さらに半導体素子層の下半分(すなわち第2領域)に注入されたイオンの実質的な数を反映する。イオンが半導体素子層内にのみ実質的に注入されるように、3つの衝撃処理のそれぞれが構成され、すなわち大部分のイオンが全くこの層を通過せず、電極などの隣接層内に入らない。上記で示された実施例のように、図12に示されるデータは、金属酸化物、すなわち酸化ハフニウム内に注入されたハフニウムイオンに基づいている。
特に、イオン注入は半導体素子層に既にある物質のイオン種に関係する必要はない。例えば、イオン衝撃はイオン種に関係して選択されてもよく、イオン種は欠陥発生の一部として原子価状態を変化させることが望ましい。イオン種の変化は、付加的な欠陥の特徴を変化させ、これにより最終製品の特性を変える。例えば、アルミニウムイオンまたはイットリウムイオンによる酸化ハフニウムの注入はハフニウムの代わりに置換される場合「1+の欠陥」を得られる一方、タンタルイオンまたはニオビウムイオンの注入はハフニウムの代わりに置換される場合「1−の欠陥」を得られるであろう。
図13は、このイオン注入から多くの衝突イベントの数のプロット1301を提示する。このデータは、空孔欠陥と格子間欠陥の生成の直接的な測定であり、半導体物質(例えば非結晶質、結晶質、または他の構造)内に進む各イオンは、多くの原子の衝突置換をもたらし、これはX軸上に示される半導体物質内への各距離でこのプロットのy軸上に示される。上記で示されたケースのように、垂直線1303は、半導体素子層の厚さを表わし、この線の右側の領域は隣接層(例えば電極)を表わし、この層の左側の領域は半導体素子層内(すなわち金属酸化物内)の衝突イベントの深さ(すなわち関連する欠陥の深さ)を表わす。示される曲線は、層のオングストローム厚さ当たりの衝突の数を表わす。3本の曲線が図13に示されており、第1実線曲線1305(最も小さな注入エネルギ、すなわち図12の曲線1205に対応する)と、第2破線曲線1307(図12の曲線1207に関連した22.5KeVの注入エネルギに対応する)と、第3一点鎖線曲線1309(図12の55KeVの曲線に対応する)とを含む。特に、層の中間の深さ1311まで通過するイオンをもたらす上記で論じられた最高注入エネルギでさえ、それにもかかわらず実質的に総ての欠陥(例えば90パーセント以上)が、半導体素子層の上半分(すなわち垂直線1311の左側)に存在する。このようにほぼ半導体素子層の半分の中に欠陥を生成することが望しいならば、図13は、半導体素子層の限界を越える実質的なイオンの侵入を回避するまで相対的により大きな注入エネルギを用いてもよいことを示している。重要なことには、適切な抵抗状態と抵抗状態間の識別を生成する欠陥発生を調整するために、当業者は注入量と注入エネルギを実験して争点の物質とメモリセル設計を与えてもよい。これらの2つのセットのプロットの値は、エネルギの増加によって、停止されたイオン(置換とイオン格子間)から発生する欠陥と比べて半導体空孔欠陥/格子間欠陥のペアの生成を増加することができるということである。すなわち、図12の3本の曲線下の面積は等しいが、図13の3本の曲線下の面積は根本的に異なり、注入エネルギと注入量の調整を可能にし、各種類の欠陥の特定の密度を達成する。
上記に示された実施例は、金属イオン、すなわち提示された実施例ではハフニウムを用いるイオン注入に焦点を合わせたが、上述のように、非金属イオンを含み、同様に他の種類のイオンを用いることができる。この性能は、多安定動作のメカニズムが導電性金属フィラメントに基づかないという上記で進められた理論を立証しており、すなわち、自身に導電性パスを形成するために金属イオンを注入するのではなく、イオン注入によって生成された欠陥は重要なものである。
図14は、サンプルのコンビネーショングラフ1401を示し、これは注入種として酸素イオンを用いる。特に、グラフ1401の上側部分は250オングストロームの厚さの酸化チタン(TiO)層の酸素注入のデータを示す一方(250オングストロームは垂直線1403によって表わされる)、グラフの下側部分は厚さ150オングストロームである酸化チタン層(符号1405によって表わされる)の酸素注入のデータを示す。上記で紹介された実施形態の幾つかに関して、注入エネルギは各半導体素子層の約半分までのみ延在する欠陥を生成するよう選択されており、それぞれ符号1407と1409によって表わされる。2本の曲線が示されており、250オングストロームの酸化チタンサンプルのイオン注入の深さを示す第1分布曲線1411と、150オングストロームのサンプルの注入深さを示す第2分布曲線1413とを含む。
V.実施例
物質とデバイスの概要では、デバイスの動作特性を強化するのに用いられる製造プロセスと方法がこのように提示され、特定のデバイスがここでより一層詳しく論じられるであろう。以下で提示される実施形態は、1以上のメモリセルのデバイスのベースを形成する特定物質、またはこのセルのアレイを特定する。後続する議論は2つの安定状態を有する抵抗スイッチングセルの製造に焦点を置いており、高い抵抗状態(それゆえこれに関連した相対的に低い電流「オフ」を有する)と、低い抵抗状態(それゆえこれに関連した相対的に高い電流「オン」を有する)とを含む。
特定のメモリ設計は、各メモリセルに関連した電気特性の検出可能な制御された状態変化に関係する。抵抗スイッチングの状態変化が電流の変化で表わされる場合、ReRAMはこの設計の1つの実施例である。変化は原子または分子レベルで発生し、1つの理論は構造的な欠陥が物理的に変更されて実効抵抗(そしてこれにより所定電圧のメモリセルを通って流れる電流)を変化させるということである。この議論は、例示と紹介の目的にのみ用いられ、すなわち理論によって縛られないが、欠陥が原子、分子、イオンまたは電子によって埋められるトラップを築き、これらは遊離しているか、または製造された物質内に発生する分子変化に関係すると考えられる。調整イベントを用いてこれらのトラップを処理し、関連するメモリセルがセットまたはリセットされるとき、反復可能なイベントを発生させてパーコレーション経路が形成され溶解される。
上記に提示されたデータは、酸化ハフニウムまたは酸化チタンで実質的に構成される150−350オングストロームの厚さの半導体素子層の堆積を表わすことが思い出されるであろう。他の厚さと物質も可能である。
これらの物質に関して完全な手段はないが、図15は多くの物質の「オン」電流対「オフ」電流(Ion/Ioff)の比率を特定するグラフ1501を提示しており、ニオビウム、ハフニウム、チタン、アルミニウムとタンタルの酸化物を含む。さらに以下で論じられるように、幾つかの実施形態では、ハフニウム、アルミニウムおよびタンタルの酸化物が特に特有の関心事であり、これは、これらがそれぞれより高いバンドギャップの物質を表わし、すなわちバンドギャップが少なくとも4電子ボルト(eV)であるからである。概して言えば、多安定メモリデバイスの「オフ」電流を最小化するだけでなく、デバイスの各状態に関連した電流間の差を最大化すること(すなわち、「オン」および「オフ」の抵抗間の良好な識別を提供すること)が望ましい。
図15のグラフは2つのものを示す。まず、より高いバンドギャップの物質について、層の厚さにつれてやや比率が増加しうるので、より高い比率のIon/Ioffを得ることができる。次に、図15に示されたデータはさらにデータ曲線の始点のない交差を示す(または、少なくともそのデータは薄い半導体素子層の厚さに非線形である)。このデータは次に、多安定特性がさらに導電性金属フィラメントの形成に根づいているのではなく、層界面とある相関関係を有することを示しており、簡単に言えば、図20に関して後述されるように、伝導機構が非金属であり、半導体物質層と隣接層(例えば、隣接電極)との間の界面にある欠陥によって少なくとも部分的に規定されると考えられる。これはスイッチング機構が表面形態によってのみ発生することを示唆するのではなく、すなわち、伝導特性は、体積効果と界面効果のある組み合わせに関係するであろう。
より高いバンドギャップの物質は、酸化ハフニウム、酸化アルミニウおよび酸化タンタルなどの物質によって例示され、図15のデータセット1503、1505および1507によって表わされる。酸化ハフニウムは、例えば、5.7eVのバンドギャップを有する一方、酸化アルミニウムと酸化タンタルは、それぞれ8.4と4.6eVのバンドギャップを有している。これらの物質は、酸化チタンと酸化ニオブのデータ1509と1511に関連した比率より実質的に良好な相対的に高いIon/Ioff比率を提供する(双方とも4.0eV以下のバンドギャップ、それぞれ3.0と3.4eVのバンドギャップを有する)。これにより、これは少なくとも4.0eVのバンドギャップを有する物質から半導体素子層を製造し、多安定デバイスの各状態に関連した電流間の識別を強化する幾つかの実施形態で好適であろう。酸化ジルコニウムとイットリウム酸化物はさらに高いバンドギャップの物質であると考えられており、この端部に用いられてもよい。特に、これらの物質とプロセスは例示的に過ぎず、全ての実施について望ましくなく、例えば、通常高いIon/Ioff比率を促進するが、高いバンドギャップの物質が最も適切な物質ではなく、他の電気特性が重視される。対照的に、より低いバンドギャップの物質(酸化チタンと酸化ニオブ)に明らかに関連したデータは線形傾向を示しており、これは金属酸化物層の厚さに依存せず、これは代わりに実質的に非金属伝導メカニズムを示す。
デバイスは、ReRAMセルのアレイとして製造されてもよい。図16は、このセル1603を多く有するアレイ1601を示す。アレイはそれ自身、集積回路の一部または別の種類のメモリデバイスでもよい(図16に示さず)。一般に図16に見られる各セル1603はMIM(「金属−絶縁体−金属」)スタックとして構成され、これは2つの金属電極間の1以上の金属酸化膜半導体素子層を含み、デバイスは多安定である(すなわち、それぞれ異なるインピーダンスを有する2以上の安定状態を示す)。エネルギは一般にこれらの状態を維持するように要求されず、これらの状態を用いて、電子機器アプリケーションの用途に電力がない状態でデジタルデータを格納する。読書回路(さらに図16を参照)は、個別の信号線1605および1603に連結されてもよく、これらの信号線はさらに時に「ワード」線と「ビット」線とそれぞれ呼ばれるか、または「ロー」線と「カラム」線と呼ばれる。これらの信号線1605と1603は、アレイ内の様々なセル1607からデータを読み出したり、そこにデータを書き出したりするのに用いられる。上述したように、さらに以下で記載されるように、各セル1607は1以上の層から形成されてもよく(符号1609によって例示されるように)、これらの1以上は、上記で紹介されたプロセスに従って金属酸化物を含むように特に製造された半導体素子層でもよい。図16に示されるアレイはさらに、三次元メモリアレイを作るために垂直方向で積み重ねられる。ここで紹介され、図16に示された構成は単なる例示である。
図17は様々な実施形態に従って積み重ねられた酸化物システムを用いたメモリセル1701を示す。セルは、2つの電極1703と1705と、半導体素子層とを含む(付加的な欠陥が生成される第1領域1707と第2領域1709とを含む)。第1領域は、4eVを超えるバンドギャップを有する遷移金属酸化物でもよく、本書で記載されたプロセスに従って製造された酸化ハフニウム、酸化アルミニウム、酸化チタン、酸化ニオブ、酸化タンタルまたは他の物質などである。第2領域は同一の物質、またはもし望まれれば異なる物質でもよく、酸化スカンジウム、酸化イットリウムまたは後述した他のドーピング物質の1つなどである。図示された3つの層構造は、イオン衝撃を土台として第1領域の層1707の欠陥の強化してもよく、欠陥アクセス層1711を用いて電極1703の有効仕事関数を増加してもよい。幾つかの実施形態では、同一の物質または複数の物質が、欠陥アクセス層1711と第2領域1709の双方で用いることができる。
図17のメモリセル1701は、相互に拡散された領域1713を含むよう製造されてもよい。相互に拡散された領域は、例えば、10秒(s)乃至4時間以上、摂氏300−1000度(C)で、メモリセルのアニーリングによって形成することができる。アニーリングは、結晶構造内で荷電された種の移動をもたらし、これによって欠陥とトラップを安定させ、これを用いてパーコレーション経路を形成することができる。
A.デバイス動作
図18は、図17のメモリセルの電流(I)対電圧(V)の対数のグラフ1801である。図18は、メモリセルの内容を変化させるのに依存するセット動作とリセット動作を示すのに役立つ。最初に、セルは高い抵抗状態でもよい(図18にラベル「HRS」によって表わされ、例えば論理値「0」を表わす)。この状態の電流と電圧の特性は第1曲線1803によって図18に表わされる。前に記載されたように、この高い抵抗状態は信号線(例えばカラムとロー線)を用いて読書回路によって検出されてもよい。例えば、読書回路はセル間に読み出し電圧Vreadを印加して、セルとその半導体素子層を通って流れる「オフ」電流Ioffを検出してもよい。論理値「1」を格納するのを望む場合、セルは、読書回路を用いて信号線間にセット電圧Vsetを印加することによってその低い抵抗状態に置くことができる。破線1805と頭文字「LRS」によって示されるように、セット電圧は一般に読み出し電圧以上であり、セルをその低い抵抗状態に移行させ、この状態の電圧と電流の特性は第2曲線1807によって表わされる。言及したように、抵抗状態の変化は、金属酸化物物質内のトラップの充填(すなわち「トラップの媒介」)によって有効にされてもよい。
高い抵抗状態のように、セルの低い抵抗状態「LRS」はさらに読書回路を用いて検出することができる。「読み出し」電圧Vreadがセルに印加される場合、読書回路は、相対的に低い抵抗を与え、「オフ」電流の大きさより高い電流の大きさを検出するであろう。この「オン」電流Ionの大きさは、セルがその低い抵抗状態にあることを示す。セルに論理値「0」を格納するのを望む場合、リセット電圧Vresetがセル間に設けられて破線1809によって示されるようにその抵抗状態を高い抵抗状態HRSに戻すよう変化させる。リセット電圧はさらに一般に「読み取り」電圧以上であり、少なくとも1つの実施形態では、セット電圧に関して異極性となるように作成されてもよい。適切な振幅と持続時間の電圧パルス(図17参照)は、ちょうど記載された動作のために用いることができる。
図19は、双安定メモリセルの電流(I)の対数に対する電圧(V)の対数のグラフ1901を示す。直線1903は、傾斜された電圧が印加される場合のオーミック物質の反応を表わす。状態変化(セットまたはリセット)が発生する個々の電圧はないので、オーミック反応は望ましくない。この変化は、1セットの2本の交差する破線1905によって図式で表わされ、電流反応に急激な変化が特定電圧で発生する。実際には、適切な反応は、参照符号1907によって示される曲線に続き、不連続部分(電流の迅速な増加)がセット電圧で発生し、双安定セルは高い抵抗状態から低い抵抗状態へ変わる。
まさに記載された多安定抵抗特性は、デジタルデータを格納するのに適切なメモリセルを作成する。記載された電圧の印加がない状態でデータが確実に保存されるので、セルは不揮発性であると考えられるであろう。上述したように、セルは「オフ」電流と「オン」電流との間の大きな差(例えば相対的に高いIon/Ioff比率)を有することが望ましく、これはより容易に検出可能なセルの状態を提供する。
下記の議論では、まさに記載された多安定物質に関する追加情報が示され、メカニズムは状態変化に関連すると考えられる。
1.スイッチングメカニズム
上記に示されたように、基本的なMIM構造は2つの電極とこの電極間に挟まれた半導体素子層とを含む。半導体素子層は一般に金属酸化物層を含み、これは少なくとも1つの金属の酸化物を含み、金属、金属酸化物および未知の潜在的に複雑な接合特性を有する酸素を一緒に混合する。本書で用いられる用語「MIM」は、潜在的に他の層を含み、金属−絶縁体−絶縁体−金属と、金属−絶縁体−絶縁体−絶縁体−金属と、金属−絶縁体−金属−絶縁体−金属と、他の類似構造を含み、それらの間の他の強化層を有する構造(例えば他の層の密着性を促進する)を含むことを理解されたい。
理論に縛られることなく、上述した多安定構造は金属酸化物層のバルク(大部分)で少なくとも部分的に媒介するスイッチングメカニズムを用いると考えられる。一実施形態では、スイッチングメカニズムは、フィラメント性または金属性の導電性パスではなく非金属性の導電性パスを用いる。通常、欠陥は堆積された金属酸化物内に形成されるか、または追加加工によって強化することができる。欠陥は、金属酸化物のバンドギャップ内のエネルギにより状態という形をとり、障壁への段階的な経路を電荷担体に提供することによってサンプルを通るより高い伝導率を可能にし、別の方法では絶縁層または半導体層によって示される。これらの欠陥はさらに、物質に依存して金属酸化物層とMIM構造内の別の層との境界で生成または強化されてもよい。上記で紹介された多安定構造に電圧を印加することによって、トラップなどの欠陥が埋められたり、または空にされたりして各セルの抵抗率を変更することができる。スイッチングメカニズムは、金属酸化物のバルクを通るパーコレーション経路を形成し、これはセット動作中に形成されたり、リセット動作中に破壊されるであろう。
例えば、多安定構造では、セット動作中にメモリセルが低い抵抗状態に変わる。トラップを埋めることによって形成されるパーコレーション経路は、金属酸化物の伝導率を増加し、これによって抵抗率を低減する(すなわち変化する)。この電圧では、トラップが埋められ、金属酸化物の抵抗率が減少するにつれて電流に大きな急増がある。
図15と共に上述したように、パーコレーション経路は非金属として記載することができる。金属物質では、より低い温度で抵抗率が低下する。本書で記載される多安定構造は、動作温度の低下、さらに図20に支持される結論と共に抵抗の上昇を実証する。
図20は、本書で記載されたメモリセルに用いられる金属酸化物の非金属性を示すグラフ2001を提供する。グラフ2001は、減少する温度と共に高いバンドギャップ(すなわち4eVを超える)の酸化物層の増加する抵抗率を示し、これは非金属物質の特徴である。グラフ2001は、x軸電圧に対するy軸電流の曲線を示す。図20に示されるように、300ケルビン(300K)レベルで取得された測定値2003は、最大電流出力と、これによる最低抵抗率とを示す。符号2005、2007、2009、2011、2013および2015によってそれぞれ表わされる250K、150K、100K、60K、35K、10Kで取得された測定値は、温度が低下するにつれて増加する抵抗率(すなわちより低い電流)を示す。このため、本書で記載された幾つかの実施形態は、非金属性スイッチングメカニズムを示す金属酸化物を含む。
2.スケーリングとバンドギャップ
図21と図22は、金属酸化物層の厚さと、得られるセット電圧およびリセット電圧との関係を示す。これらのグラフは、2つの電極を含むシステムと、中間に配置された金属酸化物の単層とのデータを表わす。図21は、オングストロームの金属酸化物、この場合ニオビウム(2103)、ハフニウム(2105)、チタン(2107)、アルミニウム(2109)およびタンタル(2111)の酸化物の厚さの関数として平均セット電圧を(ボルトで)特定するチャート2101を提供する。図21で理解できるように、酸化ハフニウム2105、酸化アルミニウム2109、および酸化タンタル2111については、セット電圧が厚さにより増加する(すなわち、厚さに依存するように見える)。幾つかの実施形態では、用いられる物質に依存して、セット電圧は、メモリセルの金属酸化物層の厚さ100オングストローム(Å)当たり少なくとも1ボルト(V)である。さらに幾つかの実施形態では、100Åの金属酸化物層の厚さの増加が、少なくとも1Vまでセット電圧を上昇する。同様に図22に示されるように、酸化ハフニウム2203、酸化アルミニウム2205、および酸化タンタル2207のリセット電圧はさらに厚さに依存する。図21と図22が、少なくとも一範囲の層の厚さに対して、セット電圧と厚さおよびリセット電圧と厚さの双方の間にほぼ直線関係を示し、この関係は次に金属酸化物のバルクのパーコレーション経路の形成を示すので、したがってこれらのデータはこれらの物質の体積に少なくとも部分的に依存するセット/リセットメカニズムを支持している。言い換えれば、より厚い物質については、トラップを埋めるためにさらに電圧が必要である。
図21と図22に関して前述され、さらに確証されたように、酸化ニオブと酸化チタンのセット電圧とリセット電圧は、層の厚さに依存しないように見える(例えば図21の符号2109と2111を参照)。これらの物質のそれぞれは、相対的に低いバンドギャップの物質であり、すなわち、4eV未満のバンドギャップを有する。このため、より高いバンドギャップ(すなわち4eVを超えるバンドギャップ)の金属酸化物は、スイッチングと計量可能なセット電圧とリセット電圧を示し、これは相対的に体積により依存する。言い換えれば、セット電圧とリセット電圧は、酸化ハフニウムなどの高いバンドギャップの金属酸化物の厚さの減少によって低下することができる。したがって、これらの物質に基づく小型デバイスについては、セット電圧とリセット電圧を低下することができる。
B.付加物質の検討
上記で論じられる構造について、多種多様の物質が、(a)半導体素子層(例えば金属酸化物層)か、(b)MIMスタックの一方の電極か、または(c)単層もしくは付加層またはMIMスタックで用いられる構造の用途に適切である。例えば、設計の検討材料は、単層(共堆積)または多層(積み重ね)に1以上の金属酸化物を用いるものと、異なる仕事関数を有する電極を用いるものと、少なくとも1つの貴金属電極を用いるものと、異なるバンドギャップを有する異なる金属酸化物を用いるものと、低い漏出量の物質を用いるものとを含む。
1.金属酸化物(1以上の層)
適切なスイッチングメカニズムを示す特定塩基の金属酸化物は、酸化ハフニウム、バナジウム酸化物、酸化スカンジウム、酸化アルミニウム、酸化タンタル、酸化ジルコニウム、および酸化イットリウムを含む。これらの金属酸化物は、4eVより大きいバンドギャップを有し、それらがさらに絶縁しており、このためより高い抵抗率を有することを示す。上記で説明されたように、高いバンドギャップ(すなわち4eVより大きい)の金属酸化物の使用はさらに、金属酸化物の厚さに関してセット電圧の少なくとも部分的なスケーリングを可能にする。
これらの様々な金属と金属酸化物はさらに互いにドープされる。他のドーパントは、酸素、シリコン、酸化シリコン、窒素、フッ素、クロムおよび酸化クロムを含み、同様にランタン、セリウム、プラセオジム、ネオジム、ガドリニウム、エルビウム、イッテルビウム、およびルテチウムなどの希土類金属、並びにこれらの酸化物を含み、この何れかが上記で示された教示につき、イオン衝撃プロセスに用いられてもよい。
ドーパントは、欠陥を生成する能力と共に有望な酸化状態を検討することによって選択することができる。例えば、ハフニウム原子は+4(Hf+4)の酸化状態を有し、アルミニウム原子は+3(Al+3)の酸化状態を有することができる。酸化アルミニウムは、酸化ハフニウム内にドープすることができ、置換欠陥を生成することによって帯電不均衡を生成し、アルミニウム原子がハフニウム原子(すなわちAlHf 1−)を、およびその逆を置換する(すなわちHfAl 1+)。これらの欠陥は、金属酸化物のバルクにパーコレーション経路の形成を可能にする。
ドーパントを選択する別の基準は、ドーパントの(例えばP型ドーパントの)価電子帯または(例えばN型ドーパントの)伝導帯と、金属酸化物の価電子帯または伝導帯との間の差とすることができる。幾つかの実施形態では、50meV以上である価電子帯間の差が深い準位のドーパントを提供することができ、これはバルク内により深くよりアクセス可能なトラップを形成することができる。
前に示された実施例に関して示唆されるように、ドーピングと衝撃は、ドーパントが注入される金属酸化物と同じ金属を用いて行うことができる。例えば、酸化ハフニウム層はハフニウムイオンでドープすることができる。ドーピングは、例えば注入を用いて行うことができる。注入エネルギは通常、注入されているイオンと、金属酸化物の厚さと、所望の欠陥発生とに依存して0.5keV乃至55.0keVの範囲としてもよい。このドーピングはメモリセルの歩留まりを改善することができる。これらの層はさらに、例えば高速熱アニール(RTA)、高速熱酸化(RTO)またはフォーミングガスアニールによって熱処理することができる。熱処理は、物質間の欠陥種の相互拡散や、欠陥の熱により誘導された界面応力の生成や、望まれない欠陥外のアニーリングや、および/または存在する欠陥とこれらの環境の修飾などの様々な効果によって欠陥を修飾することができ、トラップ状態として役立つことができる局地化した欠陥状態を生成する。代わりに上述したように、他の形態のイオンを用いることができ、酸素などの非金属イオンを含む。
もし特定の実施で望まれれば、金属酸化物は金属窒化物の電極に隣接して配置することができ、常金属を用いて双方の物質を形成する。例えば、メモリセルは、窒化チタン電極と、窒化チタン電極に隣接する酸化チタン層とを有するよう形成することができる。この構造は、例えば界面を安定させて、他の層の密着性を促進する役目をしてもよい。メモリセルはさらに、積み重ねられるか、または共堆積される方法で他の金属酸化物(例えば酸化アルミニウムまたは酸化ハフニウム)を含むことができる。
さらに更なる実施形態では、複合酸化物は、別個の層でともに組み合わせることができ、メモリセルの電流特性を調整する。1つの金属酸化物(または酸化物、酸化物もしくは金属の1つの組み合わせ)で主に構成される1つの層は、異なる組み合わせで形成された第2層より小さな「オン」電流を有するか、または異なる電流特性を有することができる。
2.電極
電極物質はシリコン、ケイ化物、窒化チタン(TiN)、ニッケル、白金、イリジウム、酸化イリジウム、ルテニウムと酸化ルテニウムを含んでもよい。幾つかの実施形態によれば、一方の電極はより高い仕事関数の物質でもよく、他方の電極はより低い仕事関数の物質でもよい。例えば、一実施形態では、少なくとも一方の電極は貴金属または準貴金属などの高い仕事関数の物質である(すなわち酸化物生成の低い絶対値の自由エネルギ変化(|ΔG|)を有する金属)。貴金属または準貴金属はイリジウム、イリジウム酸化物、白金、ルテニウムおよび酸化ルテニウムを含む。他方の電極は窒化チタンなどのより低い仕事関数の物質でもよいし、またはさらに貴金属または準貴金属でもよい。幾つかの実施形態では、より高い仕事関数を有する電極のリセット電圧は、正パルスとして印加されてもよい(すなわち、より高い仕事関数の電極がメモリセルの陽極である)。電極はさらに多層電極とすることができ、1以上の異なる物質を含むことができる。例えば、電極は、タングステン、炭窒化タングステン、もしくはタングステン炭素のキャッピング層と共に、ルテニウムと酸化ルテニウムの層またはイリジウム、イリジウム酸化物もしくは白金の層を含むことができる。多層電極は、幾つかの構成と実施形態のメモリセルの接着特性と性能を改善するのに用いることができる。
3.他の層
MIMスタックの絶縁体または半導体素子層はさらに複数の酸化層を用いて構成することができる。酸化物の組み合わせを用いてメモリセルに所望の特性を与えることができる。例えば後述するように欠陥アクセス層などの他の層をさらに用いてもよい。この層はそれぞれ任意であり、特定の実施に関係があってもなくてもよい。前述したように、スタックはさらに、埋め込まれたトランジスタまたはダイオード(以下では「電流ステアリングデバイス」という)などの別の電気デバイスを含んでもよい。これらのメモリセルの様々な層は、任意の適切な技術を用いて堆積することができ、乾式(CVD、ALD、PVD、PLD、蒸着)、湿式(例えばELD、ECDなどの液状薬品)技術を含む。これらの技術の組み合わせをさらに用いることができる。例えば、一方の層はPVDを用いて堆積することができ、別の層はALDを用いて堆積することができる。
複数の金属酸化物層を含むメモリセルの動作は通常単一金属酸化物層を有するセルについて上述したものと同じである。例えば、上述したセットパルスとリセットパルスおよびパーコレーション経路は、一様に単層金属酸化物の実施形態と多層金属酸化物の実施形態の双方に等しく適用する。概して言えば、酸化物スタックはメモリセルに所望の特性を与えるのに用いることができる。例えば、欠陥アクセス層は、隣接電極の有効な仕事関数を増加することができ、任意の条件によって電極がさらに高い仕事関数を有する。幾つかの実施例では、積み重ねる酸化物は、セット電圧とリセット電圧の分布を改善し、さらにより良好なメモリセルの歩留まりを促進することができる。
欠陥アクセス層は、一方の電極(通常陽極)と半導体素子層との間の層として構成することができる。欠陥アクセス層は、薄層(すなわち、半導体素子層の厚さの25%またはより薄い)であり、これは電極が欠陥に良好にアクセスするのを可能にする一方、幾つかの実施形態では欠陥アクセス層の増加された抵抗率のために電流を減少する。幾つかの実施形態では、一方の電極が他方の電極より高い仕事関数を有し、これらの実施形態では、欠陥アクセス層が高い仕事関数の電極に隣接して設けられてもよい。欠陥アクセス層は、隣接電極の有効な仕事関数を増加することができ、これによって少ない貴電極もしくは非貴電極の使用を可能にする。さらに、選択された物質に依存して、電極は基層の金属酸化物より欠陥アクセス層に良好な接着性を示すであろう。したがって、欠陥アクセス層は接着層として物質系に用いることができ、メモリセルの物理的な完全性を促進する。別の実施形態では、欠陥アクセス層は、酸化アルミニウムなどの薄い(例えば50Åまたは20Å以下)安定した酸化物とすることができ、より高い仕事関数の電極として非貴電極の使用を容易にする。
用いられる物質の更なる実施例を提供するために、一実施形態では、窒化チタン、シリコン、ケイ化物または貴金属が一方の電極に用いることができ、酸化ハフニウムが基層の主成分として用いることができ、酸化アルミニウムがドーピング層として用いることができ、白金、イリジウム、酸化イリジウム、ルテニウムまたは酸化ルテニウムなどの貴金属または準貴金属が、第2電極に用いることができる。このシステムでは、付加的な欠陥は前に記載されたイオン衝撃によって生成されてもよく、相互拡散または異種原子価のドーピングがさらにドーピング層を強化するために用いられてもよい。金属酸化物、例えばハフニウムの異なる酸化状態がスイッチングメカニズムを媒介するトラップを生成する。
第2の実施例では、基層は、4eV以上のバンドギャップと、100Åの厚さ当たり1V以上のセット電圧と、「オフ」状態の金属酸化物の20Å当たり0.5Vで40Amps/cm以下の漏れ電流密度とを有する任意の遷移金属酸化物とすることができる。実施例は、酸化ハフニウム、酸化アルミニウム、酸化タンタルおよび酸化ジルコニウムを含む。他の層はさらに酸化チタンもしくは酸化ニオブなどの遷移金属酸化物、または高い抵抗率もしくは他の望ましい特性を示す物質から形成することができる。幾つかの他の実施例は、(a)酸化チタン、酸化ハフニウムおよび酸化チタンの層か、(b)酸化ハフニウムおよび酸化イットリウムの層か、または(c)酸化イットリウムおよび酸化ハフニウムの層を混合するスタックを含む。
前で示唆したように、他の電気要素が各メモリセルにさらに連結してもよい。電流ステアリングデバイスは、例えば、ダイオード、p−i−nダイオード、シリコンダイオード、シリコンp−i−nダイオード、トランジスタ等を含んでもよい。電流ステアリングデバイスは、メモリセル内の任意の適切な位置に一列で連結されるか、またはメモリセルに隣接してもよく、上記で参照されるように、一方の電極と残りのセルもしくは酸化物のスタックとの間に含む。電流ステアリングデバイスは、アプリケーションに依存して、メモリセル(または他の半導体構造)の動作または制御を強化するのに用いられてもよい。
VI.結び
半導体素子層および関連するメモリセル構造を製造する方法が上述され、それぞれ多種多様な物質選択により使用可能である。表面処理工程を行うことによって半導体素子層に欠陥を生成し、欠陥の深さと密度が制御され(例えばイオン衝撃プロセスによって)、よりむらがない電気的パラメータを有する半導体素子層関連メモリセルを生成してもよい。例えば上記で開示された技術を用いて、上述した構造を調整および動作するのに必要とされる電圧と電流を低減してもよい。これにより、上記で提供される教示はより多くの歩留まり、信頼性およびより予測可能な動作を提供する。
上記で提示された実施形態は、層間の相互関係と特定物質を引用し、酸化ニオブ、酸化ハフニウム、酸化チタン、酸化アルミニウムおよび酸化タンタルなどの金属酸化物を含む。これらの酸化物は、例えば上述したように酸素イオンを用いて、金属性もしくは非金属性のイオンによって衝突させてもよい。酸化物層はさらに、衝突させられる金属酸化物によって表わされるのと同じ種の金属イオンによって衝突させてもよい。しかしながら、上述したように、これらの物質と相互関係は例示的であり、上述したように、半導体製造または物質工学の技能を有する者に疑いが発生しないように、多種多様な物質が上述した種の代わりに用いられてもよい。
したがって、前述の議論は例示に過ぎないよう意図されており、他の設計、使用、代替、変更および改良がさらに当業者に発生し、これはそれでもなお本開示の趣旨および範囲内であり、以下の請求項および均等物によってのみ限定および規定される。

Claims (11)

  1. 半導体デバイスを製造する方法であって、
    所定の深さを有するよう基板より上に半導体層物質を堆積するステップと、
    0でない深さまで前記半導体層物質内にイオンを押し込むステップであって、衝撃によって生成された欠陥の少なくとも90パーセントが前記半導体層物質の上面から1/2の厚さに存在するようイオン衝撃パラメータを選択する、ステップと、
    少なくとも2つの電極を形成するステップであって、前記半導体層物質が前記2つの電極間に配置される、ステップと、
    半導体を調整するステップであって、前記2つの電極間に形成電圧を印加して非金属性パーコレーション経路を形成するステップとを含むことを特徴とする方法。
  2. 請求項1に記載の方法において、前記半導体層物質内にイオンを押し込むステップが、所定の注入量と所定の注入エネルギを用いてイオンを注入するステップを含むことを特徴とする方法。
  3. 請求項2に記載の方法において
    前記半導体層物質内にイオンを注入し、半導体層の厚さの半分にのみイオン注入による欠陥を生成するよう所定の注入量と所定の注入エネルギが選択されることを特徴とする方法。
  4. 請求項1に記載の方法において、前記イオンを押し込むステップが、前記欠陥を生成するよう前記半導体層物質内に非金属イオンを押し込むステップを含むことを特徴とする方法。
  5. 請求項1に記載の方法において、前記イオンを押し込むステップが、前記半導体層物質と等原子価であるイオンを前記半導体層物質内に押し込むステップを含むことを特徴とする方法。
  6. 請求項1に記載の方法において、前記半導体層物質が金属酸化物を含み、前記イオンを押し込むステップが、前記金属酸化物で表されるものと同じ金属の金属イオンを押し込むステップを含むことを特徴とする方法。
  7. 請求項1に記載の方法が、前記電極がニッケル、白金、イリジウム、酸化イリジウム、ルテニウム、酸化ルテニウムまたは窒化チタンの少なくとも1つを含むことを特徴とする方法。
  8. 請求項1に記載の方法において、前記半導体層物質が酸化ハフニウムを含み、前記半導体層物質内にイオンを押し込むステップが前記欠陥を生成するよう前記酸化ハフニウム内に酸素イオンまたはハフニウムイオンを押し込むステップを含むことを特徴とする方法。
  9. 請求項1に記載の方法において、前記半導体層物質が、少なくとも4電子ボルトのバンドギャップを有する酸化物を含むことを特徴とする方法。
  10. 請求項1に記載の方法において、前記半導体層物質が、酸化ハフニウム、酸化タンタル、または酸化ジルコニウムの群から選択された酸化物を含むことを特徴とする方法。
  11. 請求項1に記載の方法において、
    前記半導体層物質が、金属酸化物を含み、
    前記イオンを押し込むステップが、前記半導体層物質の1/2の厚さにのみ欠陥を生成するようイオン衝撃パラメータを選択するステップを含み、
    前記イオンを押し込むステップが、前記金属酸化物に関連する金属種とは異なる原子価特性を有するイオンを用いるステップを含むことを特徴とする方法。
JP2011507548A 2008-05-01 2009-04-23 抵抗スイッチング特性を改善する表面処理方法 Active JP5507545B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US4975208P 2008-05-01 2008-05-01
US61/049,752 2008-05-01
US5217408P 2008-05-10 2008-05-10
US61/052,174 2008-05-10
US12/345,576 US8062918B2 (en) 2008-05-01 2008-12-29 Surface treatment to improve resistive-switching characteristics
US12/345,576 2008-12-29
PCT/US2009/041583 WO2009134678A2 (en) 2008-05-01 2009-04-23 Surface treatment to improved resistive-switching characteristics

Publications (2)

Publication Number Publication Date
JP2011520261A JP2011520261A (ja) 2011-07-14
JP5507545B2 true JP5507545B2 (ja) 2014-05-28

Family

ID=41255700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011507548A Active JP5507545B2 (ja) 2008-05-01 2009-04-23 抵抗スイッチング特性を改善する表面処理方法

Country Status (4)

Country Link
US (5) US8062918B2 (ja)
JP (1) JP5507545B2 (ja)
KR (1) KR101529361B1 (ja)
WO (1) WO2009134678A2 (ja)

Families Citing this family (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8975613B1 (en) 2007-05-09 2015-03-10 Intermolecular, Inc. Resistive-switching memory elements having improved switching characteristics
US7768812B2 (en) 2008-01-15 2010-08-03 Micron Technology, Inc. Memory cells, memory cell programming methods, memory cell reading methods, memory cell operating methods, and memory devices
US8183553B2 (en) * 2009-04-10 2012-05-22 Intermolecular, Inc. Resistive switching memory element including doped silicon electrode
US7960216B2 (en) * 2008-05-10 2011-06-14 Intermolecular, Inc. Confinement techniques for non-volatile resistive-switching memories
US8343813B2 (en) * 2009-04-10 2013-01-01 Intermolecular, Inc. Resistive-switching memory elements having improved switching characteristics
US8034655B2 (en) 2008-04-08 2011-10-11 Micron Technology, Inc. Non-volatile resistive oxide memory cells, non-volatile resistive oxide memory arrays, and methods of forming non-volatile resistive oxide memory cells and memory arrays
US8129704B2 (en) * 2008-05-01 2012-03-06 Intermolecular, Inc. Non-volatile resistive-switching memories
US8211743B2 (en) 2008-05-02 2012-07-03 Micron Technology, Inc. Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes
US7977152B2 (en) * 2008-05-10 2011-07-12 Intermolecular, Inc. Non-volatile resistive-switching memories formed using anodization
US8008096B2 (en) * 2008-06-05 2011-08-30 Intermolecular, Inc. ALD processing techniques for forming non-volatile resistive-switching memories
US8134137B2 (en) 2008-06-18 2012-03-13 Micron Technology, Inc. Memory device constructions, memory cell forming methods, and semiconductor construction forming methods
US9343665B2 (en) 2008-07-02 2016-05-17 Micron Technology, Inc. Methods of forming a non-volatile resistive oxide memory cell and methods of forming a non-volatile resistive oxide memory array
US8049305B1 (en) 2008-10-16 2011-11-01 Intermolecular, Inc. Stress-engineered resistance-change memory device
US8263420B2 (en) * 2008-11-12 2012-09-11 Sandisk 3D Llc Optimized electrodes for Re-RAM
KR101083643B1 (ko) * 2008-12-29 2011-11-16 주식회사 하이닉스반도체 저항성 메모리 소자 및 그 제조 방법
US8420478B2 (en) * 2009-03-31 2013-04-16 Intermolecular, Inc. Controlled localized defect paths for resistive memories
US9059402B2 (en) * 2009-06-25 2015-06-16 Nec Corporation Resistance-variable element and method for manufacturing the same
US20110002161A1 (en) * 2009-07-06 2011-01-06 Seagate Technology Llc Phase change memory cell with selecting element
JP2011066285A (ja) * 2009-09-18 2011-03-31 Toshiba Corp 不揮発性記憶素子および不揮発性記憶装置
US8278139B2 (en) 2009-09-25 2012-10-02 Applied Materials, Inc. Passivating glue layer to improve amorphous carbon to metal adhesion
US8289749B2 (en) * 2009-10-08 2012-10-16 Sandisk 3D Llc Soft forming reversible resistivity-switching element for bipolar switching
US8072795B1 (en) 2009-10-28 2011-12-06 Intermolecular, Inc. Biploar resistive-switching memory with a single diode per memory cell
SG10201408329SA (en) 2009-12-25 2015-02-27 Semiconductor Energy Lab Memory device, semiconductor device, and electronic device
US8223539B2 (en) 2010-01-26 2012-07-17 Micron Technology, Inc. GCIB-treated resistive device
US8848430B2 (en) * 2010-02-23 2014-09-30 Sandisk 3D Llc Step soft program for reversible resistivity-switching elements
US8487292B2 (en) * 2010-03-16 2013-07-16 Sandisk 3D Llc Resistance-switching memory cell with heavily doped metal oxide layer
WO2011114666A1 (ja) * 2010-03-18 2011-09-22 パナソニック株式会社 電流制御素子、記憶素子、記憶装置および電流制御素子の製造方法
US8411477B2 (en) 2010-04-22 2013-04-02 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8427859B2 (en) 2010-04-22 2013-04-23 Micron Technology, Inc. Arrays of vertically stacked tiers of non-volatile cross point memory cells, methods of forming arrays of vertically stacked tiers of non-volatile cross point memory cells, and methods of reading a data value stored by an array of vertically stacked tiers of non-volatile cross point memory cells
US8289763B2 (en) 2010-06-07 2012-10-16 Micron Technology, Inc. Memory arrays
US8946046B1 (en) 2012-05-02 2015-02-03 Crossbar, Inc. Guided path for forming a conductive filament in RRAM
CN102280465B (zh) * 2010-06-13 2013-05-29 北京大学 阻变随机访问存储器件及制造方法
US8884261B2 (en) 2010-08-23 2014-11-11 Crossbar, Inc. Device switching using layered device structure
US10531594B2 (en) 2010-07-28 2020-01-07 Wieland Microcool, Llc Method of producing a liquid cooled coldplate
US9795057B2 (en) 2010-07-28 2017-10-17 Wolverine Tube, Inc. Method of producing a liquid cooled coldplate
KR101744758B1 (ko) 2010-08-31 2017-06-09 삼성전자 주식회사 비휘발성 메모리요소 및 이를 포함하는 메모리소자
US8351242B2 (en) 2010-09-29 2013-01-08 Micron Technology, Inc. Electronic devices, memory devices and memory arrays
US8759809B2 (en) 2010-10-21 2014-06-24 Micron Technology, Inc. Integrated circuitry comprising nonvolatile memory cells having platelike electrode and ion conductive material layer
US8796661B2 (en) 2010-11-01 2014-08-05 Micron Technology, Inc. Nonvolatile memory cells and methods of forming nonvolatile memory cell
US8526213B2 (en) 2010-11-01 2013-09-03 Micron Technology, Inc. Memory cells, methods of programming memory cells, and methods of forming memory cells
US9454997B2 (en) 2010-12-02 2016-09-27 Micron Technology, Inc. Array of nonvolatile memory cells having at least five memory cells per unit cell, having a plurality of the unit cells which individually comprise three elevational regions of programmable material, and/or having a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells; array of vertically stacked tiers of nonvolatile memory cells
US8431458B2 (en) 2010-12-27 2013-04-30 Micron Technology, Inc. Methods of forming a nonvolatile memory cell and methods of forming an array of nonvolatile memory cells
US8791447B2 (en) 2011-01-20 2014-07-29 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
US8488365B2 (en) * 2011-02-24 2013-07-16 Micron Technology, Inc. Memory cells
US8537592B2 (en) 2011-04-15 2013-09-17 Micron Technology, Inc. Arrays of nonvolatile memory cells and methods of forming arrays of nonvolatile memory cells
KR20120139082A (ko) 2011-06-16 2012-12-27 삼성전자주식회사 멀티비트 메모리요소, 이를 포함하는 메모리소자 및 이들의 제조방법
US9627443B2 (en) * 2011-06-30 2017-04-18 Crossbar, Inc. Three-dimensional oblique two-terminal memory with enhanced electric field
US8866121B2 (en) * 2011-07-29 2014-10-21 Sandisk 3D Llc Current-limiting layer and a current-reducing layer in a memory device
US8288297B1 (en) * 2011-09-01 2012-10-16 Intermolecular, Inc. Atomic layer deposition of metal oxide materials for memory applications
US8659001B2 (en) 2011-09-01 2014-02-25 Sandisk 3D Llc Defect gradient to boost nonvolatile memory performance
US8637413B2 (en) 2011-12-02 2014-01-28 Sandisk 3D Llc Nonvolatile resistive memory element with a passivated switching layer
JP5480233B2 (ja) * 2011-12-20 2014-04-23 株式会社東芝 不揮発性記憶装置、及びその製造方法
US8698119B2 (en) 2012-01-19 2014-04-15 Sandisk 3D Llc Nonvolatile memory device using a tunnel oxide as a current limiter element
KR20130091146A (ko) 2012-02-07 2013-08-16 삼성전자주식회사 비휘발성 메모리 셀 및 이를 포함하는 비휘발성 메모리 장치
US8686386B2 (en) 2012-02-17 2014-04-01 Sandisk 3D Llc Nonvolatile memory device using a varistor as a current limiter element
US8445888B1 (en) * 2012-02-24 2013-05-21 National Taiwan University Of Science And Technology Resistive random access memory using rare earth scandate thin film as storage medium
US9685608B2 (en) 2012-04-13 2017-06-20 Crossbar, Inc. Reduced diffusion in metal electrode for two-terminal memory
KR20130118095A (ko) * 2012-04-19 2013-10-29 에스케이하이닉스 주식회사 가변 저항 메모리 장치 및 그 제조 방법
US10096653B2 (en) 2012-08-14 2018-10-09 Crossbar, Inc. Monolithically integrated resistive memory using integrated-circuit foundry compatible processes
KR20140035558A (ko) 2012-09-14 2014-03-24 삼성전자주식회사 가변 저항 메모리 장치 및 그 동작 방법
EP2711984A1 (en) * 2012-09-21 2014-03-26 Nxp B.V. Metal-insulator-metal capacitor formed within an interconnect metallisation layer of an integrated circuit and manufacturing method thereof
CN102881824B (zh) * 2012-09-25 2014-11-26 北京大学 阻变存储器及其制备方法
JP2014103271A (ja) * 2012-11-20 2014-06-05 Toshiba Corp 不揮発性記憶装置
US9627611B2 (en) * 2012-11-21 2017-04-18 Micron Technology, Inc. Methods for forming narrow vertical pillars and integrated circuit devices having the same
KR20140073919A (ko) * 2012-12-07 2014-06-17 에스케이하이닉스 주식회사 가변 저항 메모리 장치 및 그 제조 방법
US9001554B2 (en) * 2013-01-10 2015-04-07 Intermolecular, Inc. Resistive random access memory cell having three or more resistive states
US20140241031A1 (en) 2013-02-28 2014-08-28 Sandisk 3D Llc Dielectric-based memory cells having multi-level one-time programmable and bi-level rewriteable operating modes and methods of forming the same
US20140264224A1 (en) * 2013-03-14 2014-09-18 Intermolecular, Inc. Performance Enhancement of Forming-Free ReRAM Devices Using 3D Nanoparticles
KR102071710B1 (ko) * 2013-03-21 2020-01-30 한양대학교 산학협력단 양방향 스위칭 특성을 갖는 2-단자 스위칭 소자 및 이를 포함하는 저항성 메모리 소자 크로스-포인트 어레이
WO2014148872A1 (ko) * 2013-03-21 2014-09-25 한양대학교 산학협력단 양방향 스위칭 특성을 갖는 2-단자 스위칭 소자 및 이를 포함하는 저항성 메모리 소자 크로스-포인트 어레이, 및 이들의 제조방법
WO2014194069A2 (en) 2013-05-29 2014-12-04 Shih-Yuan Wang Resistive random-access memory formed without forming voltage
US9515262B2 (en) 2013-05-29 2016-12-06 Shih-Yuan Wang Resistive random-access memory with implanted and radiated channels
EP3016146A1 (en) * 2013-06-26 2016-05-04 The University of Electro-Communications Rectifying element
US8872161B1 (en) 2013-08-26 2014-10-28 Taiwan Semiconductor Manufacturing Company, Ltd. Integrate circuit with nanowires
US9559300B2 (en) * 2013-09-20 2017-01-31 Kabushiki Kaisha Toshiba Resistive random access memory device and manufacturing method thereof
US10290801B2 (en) 2014-02-07 2019-05-14 Crossbar, Inc. Scalable silicon based resistive memory device
US9306165B2 (en) 2014-03-27 2016-04-05 Micron Technology, Inc. Replacement materials processes for forming cross point memory
WO2016111724A1 (en) * 2015-01-05 2016-07-14 Shih-Yuan Wang Resistive random-access memory with implanted and radiated channels
US20160218286A1 (en) 2015-01-23 2016-07-28 Macronix International Co., Ltd. Capped contact structure with variable adhesion layer thickness
CN108029219B (zh) * 2015-05-15 2020-04-24 维兰德微酷有限责任公司 液体冷却的冷板及其制造方法
CN106328593B (zh) * 2015-06-24 2019-05-31 旺宏电子股份有限公司 以金属氧化物作为基底的存储器元件及其制造方法
KR101708642B1 (ko) * 2015-09-11 2017-02-21 엘지전자 주식회사 공기조화기의 쿨링리시버 및 공기조화기
US10579290B2 (en) * 2016-03-23 2020-03-03 Winbond Electronics Corp. Option code providing circuit and providing method thereof
US9893144B1 (en) * 2016-08-05 2018-02-13 International Business Machines Corporation Methods for fabricating metal-insulator-metal capacitors
FR3056017B1 (fr) * 2016-09-09 2018-11-09 Commissariat A L'energie Atomique Et Aux Energies Alternatives Cellule memoire non-volatile resistive a base d'oxyde et son procede de fabrication
CN109411602A (zh) * 2018-11-22 2019-03-01 上海华力微电子有限公司 氧化钽基阻变存储器及其制造方法
TWI724441B (zh) * 2019-07-01 2021-04-11 華邦電子股份有限公司 電阻式隨機存取記憶體結構及其製造方法
TWI810362B (zh) * 2019-09-09 2023-08-01 聯華電子股份有限公司 形成可變電阻式記憶體單元的方法
KR102533893B1 (ko) * 2020-10-29 2023-05-26 인제대학교 산학협력단 가돌리늄이 도핑된 이산화 하프늄 3x3 크로스바 멤리스터 어레이 제조 방법 및 이의 3x3 크로스바 멤리스터 어레이
US20230041405A1 (en) * 2021-08-03 2023-02-09 Applied Materials, Inc. Characterizing defects in semiconductor layers
GB2611033A (en) * 2021-09-21 2023-03-29 Ucl Business Plc Method for manufacturing a memory resistor device

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2951134B2 (ja) * 1992-12-18 1999-09-20 株式会社日立製作所 半導体スイッチング素子
US6794245B2 (en) * 2002-07-18 2004-09-21 Micron Technology, Inc. Methods of fabricating double-sided hemispherical silicon grain electrodes and capacitor modules
US7071008B2 (en) * 2002-08-02 2006-07-04 Unity Semiconductor Corporation Multi-resistive state material that uses dopants
US7326979B2 (en) * 2002-08-02 2008-02-05 Unity Semiconductor Corporation Resistive memory device with a treated interface
US7084078B2 (en) * 2002-08-29 2006-08-01 Micron Technology, Inc. Atomic layer deposited lanthanide doped TiOx dielectric films
US6803275B1 (en) * 2002-12-03 2004-10-12 Fasl, Llc ONO fabrication process for reducing oxygen vacancy content in bottom oxide layer in flash memory devices
US20060171200A1 (en) * 2004-02-06 2006-08-03 Unity Semiconductor Corporation Memory using mixed valence conductive oxides
US7112836B2 (en) * 2004-03-17 2006-09-26 Macronix International Co., Ltd. Method of forming a chalcogenide memory cell having a horizontal electrode and a memory cell produced by the method
DE102004046392A1 (de) * 2004-09-24 2006-04-06 Infineon Technologies Ag Halbleiterspeicher
DE102005012047A1 (de) * 2005-03-16 2006-09-28 Infineon Technologies Ag Festkörperelektrolyt-Speicherelement und Verfahren zur Herstellung eines solchen Speicherlements
KR100717768B1 (ko) * 2005-08-30 2007-05-11 주식회사 하이닉스반도체 반도체 소자의 캐패시터 및 그 형성방법과, 비휘발성메모리 소자 및 그 제조방법
JP5194410B2 (ja) * 2005-09-30 2013-05-08 大日本印刷株式会社 固体酸化物形燃料電池
JP4721863B2 (ja) * 2005-10-14 2011-07-13 株式会社山武 弁装置
JP2007180174A (ja) * 2005-12-27 2007-07-12 Fujitsu Ltd 抵抗変化型記憶素子
US7692178B2 (en) * 2006-03-08 2010-04-06 Panasonic Corporation Nonvolatile memory element, nonvolatile memory apparatus, and method of manufacture thereof
JP2007266474A (ja) * 2006-03-29 2007-10-11 Hitachi Ltd 半導体記憶装置
JP2007288016A (ja) * 2006-04-19 2007-11-01 Matsushita Electric Ind Co Ltd メモリ素子およびメモリ素子の製造方法
US7569459B2 (en) * 2006-06-30 2009-08-04 International Business Machines Corporation Nonvolatile programmable resistor memory cell
US20080011996A1 (en) * 2006-07-11 2008-01-17 Johannes Georg Bednorz Multi-layer device with switchable resistance
KR20080010623A (ko) * 2006-07-27 2008-01-31 삼성전자주식회사 비휘발성 반도체 메모리 소자 및 그 제조방법
US8766224B2 (en) * 2006-10-03 2014-07-01 Hewlett-Packard Development Company, L.P. Electrically actuated switch
JP4353332B2 (ja) * 2007-03-14 2009-10-28 エルピーダメモリ株式会社 半導体装置及び半導体装置の製造方法
JP2009027017A (ja) * 2007-07-20 2009-02-05 Elpida Memory Inc 絶縁体膜、キャパシタ素子、dram及び半導体装置
US8946020B2 (en) * 2007-09-06 2015-02-03 Spansion, Llc Method of forming controllably conductive oxide
JP5170107B2 (ja) * 2007-12-07 2013-03-27 富士通株式会社 抵抗変化型メモリ装置、不揮発性メモリ装置、およびその製造方法

Also Published As

Publication number Publication date
WO2009134678A2 (en) 2009-11-05
US20090272961A1 (en) 2009-11-05
US20120315725A1 (en) 2012-12-13
US8465996B2 (en) 2013-06-18
US20140001430A1 (en) 2014-01-02
US8872151B2 (en) 2014-10-28
US8274066B2 (en) 2012-09-25
KR101529361B1 (ko) 2015-06-16
US9178149B2 (en) 2015-11-03
US20120032133A1 (en) 2012-02-09
WO2009134678A9 (en) 2010-03-11
KR20110015000A (ko) 2011-02-14
US8062918B2 (en) 2011-11-22
WO2009134678A3 (en) 2010-02-04
JP2011520261A (ja) 2011-07-14
US20140322887A1 (en) 2014-10-30

Similar Documents

Publication Publication Date Title
JP5507545B2 (ja) 抵抗スイッチング特性を改善する表面処理方法
KR101612142B1 (ko) 반도체 장치들에서 형성 전압의 감소
JP5536039B2 (ja) 不揮発性抵抗スイッチングメモリ
US8999733B2 (en) Method of forming RRAM structure
JP5727996B2 (ja) 抵抗メモリのコントロールされた局在的欠陥パス
US7960216B2 (en) Confinement techniques for non-volatile resistive-switching memories
KR101382835B1 (ko) 저항 변화 메모리 소자 및 이의 제조방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131022

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140319

R150 Certificate of patent or registration of utility model

Ref document number: 5507545

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250