JP5484463B2 - 冷媒圧縮機及びヒートポンプ装置 - Google Patents

冷媒圧縮機及びヒートポンプ装置 Download PDF

Info

Publication number
JP5484463B2
JP5484463B2 JP2011518396A JP2011518396A JP5484463B2 JP 5484463 B2 JP5484463 B2 JP 5484463B2 JP 2011518396 A JP2011518396 A JP 2011518396A JP 2011518396 A JP2011518396 A JP 2011518396A JP 5484463 B2 JP5484463 B2 JP 5484463B2
Authority
JP
Japan
Prior art keywords
refrigerant
communication port
discharge
stage
discharge muffler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011518396A
Other languages
English (en)
Other versions
JPWO2010143523A1 (ja
Inventor
哲英 横山
雷人 河村
圭 佐々木
慎 関屋
太郎 加藤
谷  真男
篤義 深谷
毅 伏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011518396A priority Critical patent/JP5484463B2/ja
Publication of JPWO2010143523A1 publication Critical patent/JPWO2010143523A1/ja
Application granted granted Critical
Publication of JP5484463B2 publication Critical patent/JP5484463B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/068Silencing the silencing means being arranged inside the pump housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/12Vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/13Noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/14Pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/20Flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Compressor (AREA)

Description

本発明は、例えば、冷媒圧縮機及び冷媒圧縮機を用いたヒートポンプ装置に関する。
冷凍冷蔵庫、空気調和機、ヒートポンプ式給湯機等の冷凍空調装置には、回転式圧縮機を用いた蒸気圧縮式冷凍サイクルが用いられる。
地球温暖化防止を図る観点等から、蒸気圧縮式冷凍サイクルの省エネルギー化と効率化とが必要である。省エネルギー化と効率化とを図った蒸気圧縮式冷凍サイクルとして、二段圧縮機を用いたインジェクションサイクルがある。二段圧縮機を用いたインジェクションサイクルをより普及させるためには、コスト低減と、さらなる効率化とが必要である。
また、冷媒のGWP(地球温暖化係数)を抑制する規制も強化され、HC(イソブタン、プロパン)などの自然冷媒や、HFO1234fyなどの低GWP冷媒等を用いることが検討されている。
しかし、これらの冷媒は、従来のフロン冷媒に比べて低密度で動作するため、圧縮機で生じる圧力損失が大きくなる。そのため、これらの冷媒を用いた場合、圧縮機の効率が低下することや圧縮機の容積が増大することが課題となる。
従来の冷媒圧縮機では、圧縮部で圧縮された冷媒は、吐出口の開閉を制御する吐出弁が開くと、圧縮部のシリンダ室内から吐出口を通って吐出マフラ空間へ吐出される。吐出マフラ空間へ吐出された冷媒は、吐出マフラ空間で圧力脈動を低減した後、連通口から連通流路を通って密閉シェルの内部空間へ流入する。
ここで、シリンダ室内から吐出されてから密閉シェルの内部空間へ流入するまでの間に生じる圧力損失と、シリンダ室内の容積変化とバルブ開閉との位相ずれによる圧力脈動とが原因となりシリンダ室内で過圧縮(オーバシュート)損失が生じる。
さらに、二段圧縮機では、低段圧縮部で圧縮された冷媒は、低段吐出マフラ空間へ吐出され、低段吐出マフラ空間へ吐出された冷媒は、低段吐出マフラ空間で圧力脈動を低減した後、中間連結流路を通って高段圧縮部へ流入する。つまり、二段圧縮機では、一般的に、低段吐出マフラ空間や中間連結流路などの中間連結部により、低段圧縮部と高段圧縮部とが直列に連結される。
このときに、従来の二段圧縮機では、以下(1)(2)(3)のような特有の損失原因が加わって、大きな中間圧力脈動損失が発生する。中間圧力脈動損失とは、低段圧縮部のシリンダ室内で生じる過圧縮(オーバシュート)損失と高段圧縮部のシリンダ吸入部で生じる不足膨張(アンダーシュート)損失との総和に相当する。
(1)低段圧縮部が冷媒を吐出するタイミングと、高段圧縮部が冷媒を吸入するタイミングとのずれによって、中間連結部に圧力脈動が発生し、この影響によってシリンダ圧縮室での圧力脈動による損失が増加する。
(2)低段圧縮部が冷媒を吐出するタイミングと、高段圧縮部が冷媒を吸入するタイミングとのずれによって、低段圧縮部から低段吐出マフラ空間へ冷媒が吐出される吐出口から、高段圧縮部に冷媒を導く中間連結流路に冷媒が流出する連通口へ向かう冷媒の流れが乱れ易くなり、圧力損失が増加する。
(3)また、中間連結流路が細くて長いため、あるいは、中間連結流路が広い空間と出入口によって縮小拡大流れを生じるため、あるいは、中間連結流路を通過時に流れ方向が三次元的に変化するため、圧力損失が増加する。
特許文献1には、中間連結部の容積を高段圧縮部の圧縮室の排除容積よりも大きく設定した二段圧縮機についての記載がある。この二段圧縮機では、容積の大きい中間連結部の緩衝作用で、圧力脈動を低減する。
特許文献2には、内部空間が2つの空間に仕切り部材で仕切られた中間容器を設けた二段圧縮機についての記載がある。
2つの空間のうち、一方の空間は、低段圧縮部の冷媒吐出口から高段圧縮部の冷媒吸入口へ連通した主流側空間である。他方の空間は、低段圧縮部の冷媒吐出口及び高段圧縮部の冷媒吸入口と直接繋がっていない反主流側空間である。主流空間と反主流空間とを仕切る仕切り部材には冷媒流路が設けられており、冷媒流路を介して主流側空間と反主流側空間とを冷媒が出入りするようになっている。
この二段圧縮機では、反主流側空間が緩衝容器として働き、中間容器の圧力脈動を低減する。
特許文献3には、下部軸受部材と、低段圧縮部を構成するシリンダと、低段圧縮部と高段圧縮部とを仕切る中板とを軸方向に貫通する流路で、中間連結流路を構成した二段圧縮機についての記載がある。この二段圧縮機では、中間連結流路を密閉シェル内に配置することにより、小型化を図っている。
特許文献4には、並列に接続された2つの圧縮部が上下に設けられたツインロータリ圧縮機についての記載がある。このツインロータリ圧縮機では、下側マフラ空間内に障壁部が設けられ、障壁部により他の部分と仕切られた淀み空間が形成されている。また、このツインロータリ圧縮機では、下側マフラ空間内に吐出口の近傍から上側密閉容器内への冷媒ガス出口である連通口へ向かう冷媒通路が形成されている。
非特許文献1には、エルボやベンド等の曲り管路や曲がりダクトにおける流体抵抗を低減する曲り誘導流路について示されている。特に、非特許文献1の77頁には、長方形断面を有するベンドについて、ベンドの曲率が大きいほど圧力損失係数(圧力損失係数(CP)=全圧損失(△P)÷動圧(ρu/2))が小さくなることについての記載がある。また、非特許文献1の80頁には、連続したエルボを用いて曲り管を構成することで、圧力損失係数が小さくなることについての記載がある。また、非特許文献1の82頁には、長方形断面の案内羽根入りベンドの効果についての記載がある。ここでは、直角に曲るエルボは圧力損失係数が大きいため、ベンド内に案内羽根を適切に配置することで圧力損失係数が減少することについての記載がある。
また、流れに対して鈍い(blunt)側面と鋭い(sharp)側面とを有する物体は、流れに対する姿勢によって抵抗係数が大きく変わる特性がある。
例えば、非特許文献2には3次元形状の物体の抵抗係数(C)について以下のように示されている。抵抗係数(C)=抵抗(D)÷動圧(ρu/2)÷投影面積(S)
また、非特許文献2には、同じ半球形状であっても、半球の凸面側が流れ上流方向を向く場合の抵抗係数が0.42に対して、凸面側が流れ下流方向を向く場合の抵抗係数は1.17で約3倍であることが示されている。半球殻の凸面側が流れ上流方向を向く場合の抵抗係数が0.38に対して、凸面側が流れ下流方向を向く場合の抵抗係数は1.42で約4倍であることが示されている。また、2次元物体形状である半円筒殻の凸面側が流れ上流方向を向く場合の抵抗係数が約1.2に対して、凸面側が流れ下流方向を向く場合の抵抗係数は2.3で約2倍であることが示されている。
また、非特許文献2(p.446)には、2次元正方形柱の抵抗係数と、流れ迎え角(α)による抵抗係数の変化が示されている。最も鈍い側面を流れ上流側に向ける(α=0°、S=S)場合にC=2.0で最も大きく、鋭い凸面側を流れ上流側に向ける(α=45°、S=1.41S)場合にC=1.5であることが示されている。また、迎え角を0°〜45°まで大きくしていくと、正方形側面から剥離する限界角度(α=13°、1.2S)まではC係数が低下し最小値1.25となり、その後C=1.5まで増加することが示されている。投影面積はS〜1.41Sまで緩やかに増加するが、圧力抵抗はやはり限界角度(α=13°)で最小となることが示されている。
さらに、流れに対する迎え角(α)による抵抗係数の変化が最も大きい物体としては、薄板、薄翼形状、翼型形状がある。
例えば、非特許文献3によれば、
抵抗係数(C)=抵抗(D)÷動圧(ρu/2)÷翼表面積(S)
と定義すると、2次元翼型形状は、一般的に迎え角(α)が0付近のときに、抵抗係数が最も小さく、−5°<α<+5°範囲ではほとんど変化がないが、さらに、迎え角を大きくしていくと、約10°付近で上翼面側から剥離が発生し、抵抗係数が急激に増加する。
薄翼理論に従たがえば、このような特性は、円弧や楕円弧のような対象翼形状の場合も同様である。
また、幅yの流路内に抵抗(D)が働く場合、抵抗(D)は、以下のように流路検査面の入口(I)と出口(O)で運動量を積分した値の差で求められる。
抵抗(D)=∫(p+ρ )dy−∫(p+ρ )dy
ここで、流路検査面の入口と出口で密度(ρ)と速度(u)が一定であると仮定すると
抵抗(D)≒∫(p−p)dy=∫(△p)dy
のように、流路で発生する圧力損失(△P)を流路幅yで積分した値に等しいと表せる。逆に、流路で発生する圧力損失(△P)は、流路内に置かれた物体の抵抗(D)にほぼ比例すると考えられる。
特開昭63−138189号公報 特開2007−120354号公報 特開平5−133368号公報 特開2009−2297号公報
(社)日本機械学会編、「技術資料 管路・ダクトの流体抵抗」昭和62年8月20日、p.77−84 (社)日本流体力学学会編、「流体力学ハンドブック」平成10年5月15日、p.441−445 藤本武助著、「流体力学」、養賢堂発行、平成60年4月20日、p.136−173
特許文献1に記載された二段圧縮機では、中間連結部に大きな緩衝容器を設けたことにより、中間連結部での圧力脈動の振幅が小さくなる。
しかし、中間連結部に大きな緩衝容器があると、中間連結部で冷媒が拡大、縮小しながら流れるため、圧力損失が増加する。また、中間連結部を流れる冷媒の追従性が悪くなり、位相遅れが生じる。そのため、中間連結部での圧力脈動の振幅は小さくなっても、中間連結部での圧力損失はかえって増加してしまう。
緩衝容器に代えて、前段吐出マフラ空間の容積を調整した場合であっても同様の状態となる。つまり、前段吐出マフラ空間の容積を小さくすると圧力脈動が大きくなって圧縮機効率が悪化してしまい、前段吐出マフラ空間の容積を大きくすると圧力損失が増加して圧縮機効率が悪化してしまう。
特許文献2に記載された二段圧縮機では、中間容器内の反主流側空間を単一共鳴型空間とすることによって、中間容器内で生じる圧力脈動を吸収して圧縮機効率を改善する。特に、この方法は、緩衝容器が共鳴吸収しやすい運転周波数で圧縮機が動作しているときに効果が得られる。
しかし、実際には、圧縮機の運転条件は範囲が広く、設計基準から外れた運転条件では圧縮機効率が改善されない。
例えば、冷媒の吐出量が少ない低速運転条件に合わせて、主流側空間の容積を小さくし、仕切部材に設けられた冷媒流路の面積を小さくしたとする。この場合、冷媒の吐出量が多い高速運転条件では、圧力脈動と圧力損失がかえって大きくなる。したがって、圧縮機効率は必ずしも改善されない。
特許文献3に記載された二段圧縮機では、中間連結流路を圧縮機構の内部に形成することで、中間連結流路の流路長さを短縮し、二段圧縮機特有の中間連結部における圧力損失を低減する。また、密閉シェルの外部に中間連結流路が設けられないため、小型化を図れる。
しかし、中間連結流路の曲りが急になる。そのため、中間連結部を構成する各部品の接続部において、冷媒が拡大縮小して流れることや、冷媒が曲って流れることにより圧力損失が増加する。したがって、圧縮機効率が低下する原因となる。
特許文献4に記載されたツインロータリ圧縮機では、マフラ空間内に端板部材で吐出口から連通口へ向かう流路を構成することで圧力損失を低減した。しかし、圧縮した冷媒ガスが吐出される流路の容積は元のマフラ空間の容積に比べて小さいため、圧力脈動が増加しかえって圧縮機効率が低下する。
この発明は、圧縮部で圧縮された冷媒が吐出される吐出マフラ空間における圧力損失を低減して、圧縮機効率を向上させることを目的とする。
この発明に係る冷媒圧縮機は、
中央部を貫通して設けられた駆動軸の回転によって駆動され、シリンダ室へ冷媒を吸入し圧縮する複数の圧縮部と、前記複数の圧縮部の前記シリンダ室に挟まれる中間仕切板を駆動軸方向に積層して構成した冷媒圧縮機において、
前記複数の圧縮部のうちの所定の圧縮部で圧縮した冷媒がその圧縮部の前記シリンダ室から吐出される吐出口と、前記吐出口から吐出された冷媒が別空間に流出する連通口とが設けられた吐出マフラ空間を、前記駆動軸の周りを一周する環状の空間として形成する吐出マフラと、
前記中間仕切板を前記駆動軸方向に貫通して形成され、前記吐出マフラ空間から前記連通口を通って冷媒を前記別空間に導く連結流路と、
前記吐出マフラ空間における前記連通口の開口部を所定範囲覆うように配置された連通口流れガイドと
を備えることを特徴とする。
この発明に係る多段圧縮機は、環状の吐出マフラ空間内で吐出口から連通口に向かう軸周りの流れを一方向に循環させ、さらに、連通口から前記連結流路が貫通する軸方向流れに滑らかに方向変換する連通口流れガイドを備えた。そのため、吐出マフラ空間内で生じる圧力脈動と圧力損失に加えて、連通口付近で生じる圧力損失を低減し、圧縮機効率が改善できる。
実施の形態1に係る二段圧縮機の全体構成を示す断面図。 実施の形態1に係る図1の二段圧縮機のB−B’断面図。 実施の形態1に係る図1の二段圧縮機のC−C’断面図。 実施の形態1に係る図1の二段圧縮機のA−A’断面図。 実施の形態1に係る吐出口背面ガイド41の説明図。 実施の形態1に係る連通口流れガイド46の説明図。 実施の形態1に係る二段圧縮機の高段圧縮部20のシリンダ21のシリンダ吸入流路25a付近の斜視図。 実施の形態1に係る連通口流れガイド46の他の例を示す説明図。 図1のA−A’断面に相当する部分を示す図であり、実施の形態2に係る二段圧縮機の低段吐出マフラ空間31を示す図。 図1のC−C’断面に相当する部分を示す図であり、実施の形態2に係る二段圧縮機の高段圧縮部20を示す図。 図1のA−A’断面に相当する部分を示す図であり、実施の形態3に係る二段圧縮機の低段吐出マフラ空間31を示す図。 実施の形態3に係る連通口流れガイド46の一例を示す説明図。 実施の形態3に係る連通口流れガイド46の他の例を示す説明図。 図1のA−A’断面に相当する部分を示す図であり、実施の形態4に係る二段圧縮機の低段吐出マフラ空間31を示す図。 実施の形態4に係る曲り流路ブロック40の説明図。 図1のA−A’断面に相当する部分を示す図であり、実施の形態5に係る二段圧縮機の低段吐出マフラ空間31を示す図。 図1のA−A’断面に相当する部分を示す図であり、実施の形態6に係る二段圧縮機の低段吐出マフラ空間31を示す図。 実施の形態7に係る二段圧縮機の全体構成を示す断面図。 実施の形態7に係る図18の二段圧縮機のD−D’断面図。 実施の形態8に係る単段ツイン圧縮機の全体構成を示す断面図。 実施の形態8に係る図20の単段ツイン圧縮機のE−E’断面図。 図20のE−E’断面に相当する部分を示す図であり、実施の形態9に係る単段ツイン圧縮機の下側吐出マフラ空間131を示す図。 実施の形態10に係るヒートポンプ式暖房給湯システム200の構成を示す概略図。
実施の形態1.
ここでは、多段圧縮機の一例として、低段圧縮部と高段圧縮部との2つの圧縮部(圧縮機構)を有する二段圧縮機(二段回転式圧縮機)について説明する。なお、多段圧縮機は、3つ以上の圧縮部(圧縮機構)を有する圧縮機であってもよい。
なお、以下の図において矢印は冷媒の流れを示す。
図1は、実施の形態1に係る二段圧縮機の全体構成を示す断面図である。
図2は、実施の形態1に係る図1の二段圧縮機のB−B’断面図である。
図3は、実施の形態1に係る図1の二段圧縮機のC−C’断面図である。
実施の形態1に係る二段圧縮機は、密閉シェル8の内側に、低段圧縮部10、高段圧縮部20、低段吐出マフラ30、高段吐出マフラ50、下部支持部材60、上部支持部材70、潤滑油貯蔵部3、中間仕切板5、駆動軸6、モータ部9を備える。
低段吐出マフラ30と、下部支持部材60と、低段圧縮部10と、中間仕切板5と、高段圧縮部20と、上部支持部材70と、高段吐出マフラ50と、モータ部9とが、駆動軸6の軸方向の下側から順に積層されている。また、密閉シェル8の内側において、駆動軸6の軸方向の最も下側には、圧縮機構を潤滑する潤滑油の潤滑油貯蔵部3が設けられる。
低段圧縮部10、高段圧縮部20はそれぞれ、平行平板からなるシリンダ11,21を備える。シリンダ11,21はそれぞれ、内部に、円筒形状のシリンダ室内11a、21a(圧縮空間,図2,3参照)を形成する。シリンダ室内11a,21aにはそれぞれ、回転ピストン12,22、ベーン14,24が設けられる。また、シリンダ11,21にはそれぞれ、シリンダ吸入口15,25でシリンダ室内11a、21aと連通したシリンダ吸入流路15a,25a(図2,3参照)が設けられる。
低段圧縮部10は、シリンダ11が下部支持部材60と中間仕切板5との間に挟まれるように積層される。
高段圧縮部20は、シリンダ21が上部支持部材70と中間仕切板5との間に挟まれるように積層される。
低段吐出マフラ30は、容器外周側壁32aと容器底フタ32bとを有する容器32、低段吐出マフラシール部33を備える。
低段吐出マフラ30は、容器32と下部支持部材60とによって囲まれた低段吐出マフラ空間31を形成する。低段吐出マフラ空間31に入った中間圧冷媒が漏れないように、容器32と下部支持部材60との間は低段吐出マフラシール部33で封止される。また、低段吐出マフラ空間31には、中間連結流路84(連結流路)を介して高段圧縮部20に連通する連通口34が設けられる。ここでは、連通口34は、下部支持部材60の吐出口側側面62に設けられている。
高段吐出マフラ50は、容器外周側壁52aと容器底フタ52bとを有する容器52を備える。
高段吐出マフラ50は、容器52と上部支持部材70とによって囲まれた高段吐出マフラ空間51を形成する。また、容器52には、密閉シェル8内部空間のモータ側へ冷媒を流出する連通口54が設けられる。
下部支持部材60は、下部軸受け部61、吐出口側側面62を備える。
下部軸受け部61は、円筒形に形成され、駆動軸6を支持する。吐出口側側面62は、低段吐出マフラ空間31を形成するとともに、低段圧縮部10を支持する。
また、吐出口側側面62には、低段圧縮部10のシリンダ11により形成されたシリンダ室内11aと、低段吐出マフラ30により形成された低段吐出マフラ空間31とを連通する吐出口16が設けられた吐出バルブ凹型設置部18(バルブ設置溝)が形成される。吐出バルブ凹型設置部18は、吐出口16の周囲に形成された溝であり、吐出バルブ凹型設置部18には、吐出口16を開閉する吐出バルブ17(開閉弁)が取り付けられる。
同様に、上部支持部材70は、上部軸受け部71、吐出口側側面72を備える。
上部軸受け部71は、円筒形に形成され、駆動軸6を支持する。吐出口側側面72は、高段吐出マフラ空間51を形成するとともに、高段圧縮部20を支持する。
また、吐出口側側面72には、高段圧縮部20のシリンダ21により形成されたシリンダ室内21aと、高段吐出マフラ50により形成された高段吐出マフラ空間51とを連通する吐出口26が設けられた吐出バルブ凹型設置部28が形成される。吐出バルブ凹型設置部28は、吐出口26の周囲に形成された溝であり、吐出バルブ凹型設置部28には、吐出口26を開閉する吐出バルブ27(開閉弁)が取り付けられる。
なお、下部支持部材60、低段圧縮部10のシリンダ11、中間仕切板5を貫通して、連通口34と高段圧縮部20のシリンダ吸入流路25aとを接続する中間連結流路84が密閉シェル8内部に形成されている。
ここで、図2,3に示すように、低段圧縮部10のシリンダ吸入口15が設けられた位相θS1と、高段圧縮部20のシリンダ吸入口25が設けられた位相θS2とは、ずれている。連通口34は下部支持部材60の吐出口側側面62に空けられた丸孔であり、連通口34は位相θs2に設けられている(図4参照)。つまり、連通口34は、位相θs2に設けられたシリンダ吸入口25から径方向へ延びたシリンダ吸入流路25aと軸方向で重なる位置に設けられている。そして、軸方向下側から、下部支持部材60の吐出口側側面62、低段圧縮部10のシリンダ11、中間仕切板5の順に駆動軸6と略平行に直線的に丸孔が開けられ、中間連結流路84が形成されている。但し、吐出口側側面62に設けられた中間連結流路84は、吐出口16から離れるように若干傾斜して設けられる。
また、低段吐出マフラ空間31には、連通口34の周囲に設けられ、吐出バルブ凹型設置部18と繋がったガイド溝39が設けられる。
また、実施の形態1に係る二段圧縮機は、密閉シェル8の外側に、圧縮機吸入管1、吸入マフラ連結管4、吸入マフラ7を備える。吸入マフラ7は、圧縮機吸入管1を介して外部の冷媒回路から冷媒を吸入する。吸入マフラ7は、吸入した冷媒をガス冷媒と液冷媒とに分離する。分離されたガス冷媒は、吸入マフラ連結管4から低段圧縮部10のシリンダ室内11aへ吸入される。
二段圧縮機における冷媒流れを説明する。
まず、低圧の冷媒は、圧縮機吸入管1を経由して(図1の(1))、吸入マフラ7へ流入する(図1の(2))。吸入マフラ7へ流入した冷媒は、吸入マフラ7の中でガス冷媒と液冷媒とに分離される。ガス冷媒と液冷媒とに分離された後、ガス冷媒は吸入マフラ連結管4を通って、低段圧縮部10のシリンダ室内11aへ吸入される(図1の(3))。
シリンダ室内11aへ吸入された冷媒は、低段圧縮部10で中間圧まで圧縮される。中間圧まで圧縮された冷媒は、吐出口16から低段吐出マフラ空間31へ吐出される(図1の(4))。吐出された冷媒は、連通口34から第2中間連結流路84を通って(図1の(5))、高段圧縮部20のシリンダ室内21aへ吸入される(図1の(6))。
シリンダ室内21aへ吸入された冷媒は、高段圧縮部20で高圧まで圧縮される。高圧まで圧縮された冷媒は、吐出口26から高段吐出マフラ空間51へ吐出される(図1の(7))。そして、高段吐出マフラ空間51へ吐出された冷媒は、連通口54から密閉シェル8の内側へ吐出される(図1の(8))。密閉シェル8の内側に吐出された冷媒は、圧縮部の上方にあるモータ部9の隙間を通った後、密閉シェル8に固定した圧縮機吐出管2を経て、外部冷媒回路へ吐出される(図1の(9))。
また、インジェクション運転がされている場合には、インジェクションパイプ85を流れるインジェクション冷媒が(図1の(10))、インジェクション注入口86から低段吐出マフラ空間31へ注入される(図1の(11))。そして、低段吐出マフラ空間31内でインジェクション冷媒と(図1の(11))、吐出口16から低段吐出マフラ空間31へ吐出された冷媒と(図1の(4))が混合される。混合された冷媒は、上述したように、高段圧縮部20のシリンダ21へ吸入され(図1の(5)(6))、高圧まで圧縮されて外部へ吐出される(図1の(7)(8)(9))。
なお、高圧冷媒が密閉シェル8の内側を通過する間に、冷媒と潤滑油とは分離される。分離された潤滑油は密閉シェル8底部の潤滑油貯蔵部3に貯蔵され、駆動軸6下部に取り付けられた回転ポンプによって汲み上げられ、各圧縮部の摺動部およびシール部に給油される。
また、上述したように、高段圧縮部20で高圧まで圧縮され、高段吐出マフラ空間51へ吐出された冷媒が密閉シェル8の内側へ吐出される。したがって、密閉シェル8内の圧力は、高段圧縮部20の吐出圧力に等しい。したがって、図1に示す二段圧縮機は、高圧シェル型である。
低段圧縮部10、高段圧縮部20の圧縮動作を説明する。
低段圧縮部10と高段圧縮部20とは、駆動軸6の軸方向に、平行平板のシリンダが積層されて構成されている。低段圧縮部10と高段圧縮部20とは、それぞれ、円筒形状のシリンダ室内11a,21aがベーン14,24により圧縮室と吸入室とに区画される(図2,3参照)。そして、低段圧縮部10と高段圧縮部20とは、駆動軸6が回転して回転ピストン12,22が偏芯回転することにより、圧縮室容積と吸入室容積とが変化する。低段圧縮部10と高段圧縮部20とは、この圧縮室容積と吸入室容積との変化により、シリンダ吸入口15,25から吸入した冷媒を圧縮して、シリンダ吐出口16,26から吐出する。つまり、二段圧縮機は、ロータリ圧縮方式の圧縮機である。
具体的には、モータ部9が、軸心6dを中心として駆動軸6を回転させ、圧縮部10、20を駆動させる。駆動軸6の回転により、低段圧縮部10と高段圧縮部20とで、それぞれシリンダ室内11a,21a内の回転ピストン12,22が、位相差180度で反時計まわりに偏心回転する。
低段圧縮部10では、回転ピストン12とシリンダ11内側壁との隙間が最小になる偏心方向位置が回転基準位相θ(図2参照)から、シリンダ吸入口の位相θS1(図2参照)、低段吐出口の位相θd1(図2参照)の順番に移動するように、回転ピストン12が回転移動して冷媒を圧縮する。ここでは、回転基準位相は、シリンダ室内11a内を圧縮室と吸入室に仕切るベーン14の位置とする。つまり、回転ピストン12は、回転基準位相から反時計回りに、シリンダ吸入口15の位相を通って、吐出口16の位相まで回転して冷媒を圧縮する。
高段圧縮部20においても同様に、回転ピストン22は、回転基準位相θから反時計回りに、シリンダ吸入口25の位相θS2(図3参照)を通って、吐出口26の位相θd2(図3参照)まで回転して冷媒を圧縮する。
低段吐出マフラ空間31について説明する。
図4は、実施の形態1に係る図1の二段圧縮機のA−A’断面図である。
図4に示すように、低段吐出マフラ空間31は、駆動軸6の軸方向と垂直方向の断面において、内周壁を下部軸受け部61により形成され、外周壁を容器外周側壁32aにより形成されて、リング状(ドーナッツ状)に形成される。つまり、低段吐出マフラ空間31は、環状(ループ状)に形成される。
したがって、吐出口16から連通口34へ向かう流路は、正方向(図4のA方向)の流路と、逆方向(図4のB方向)の流路との2つがある。同様に、インジェクション注入口86から連通口34へ向かう流路は、正方向(図4のA方向)の流路と、逆方向(図4のB方向)の流路との2つがある。
低段吐出マフラ空間31へは、低段圧縮部10で圧縮された冷媒が吐出口16から吐出される(図4の(1))とともに、インジェクション冷媒がインジェクション注入口86から注入される(図4の(6))。これらの冷媒は、(i)環状の低段吐出マフラ空間31を正方向(図4のA方向)へ循環するとともに(図4の(4))、(ii)連通口34から中間連結流路84を経て高段圧縮部20へ流入する(図4の(3))。
低段吐出マフラ空間31へ流入した冷媒の流れが上記の(i)(ii)となるのは、高段圧縮部20の動作により連通口34へ冷媒を吸引する力が働くことや、低段吐出マフラ空間31内に、吐出口背面ガイド41、注入口ガイド47が設けられたことによる。
図4,5に基づき、吐出口背面ガイド41について説明する。
図5は、実施の形態1に係る吐出口背面ガイド41の説明図である。
吐出口背面ガイド41は、吐出口16の周囲において、環状の吐出マフラ空間における吐出口16から連通口34までの逆方向の流路側から、吐出口16の開口から開口の縁部にわたる所定の範囲を滑らかな曲面で覆うように設けられる。以下、吐出口16の逆方向の流路側を吐出口16の背面部側と呼び、吐出口16の正方向の流路側を吐出口16の連通口34側と呼ぶ。ここで、吐出口16から連通口34までの流路長さは、逆方向の流路の方が正方向の流路よりも長い。また、吐出口背面ガイド41は、吐出口側側面62との間に、連通口34側へ向かって開口が設けられる。
ここで、吐出口背面ガイド41は、吐出口16から吐出された冷媒が逆方向に流れることを妨げ、正方向に循環する冷媒の流れを妨げないことが望ましい。そこで、吐出口背面ガイド41の吐出口16側(正方向側)を凹状に形成するとともに、吐出口16の逆側(逆方向側)を凸状に形成する。例えば、吐出口16側が凹状、逆側が凸状になるように、吐出口背面ガイド41の軸方向と垂直な断面における形状をU字状やV字状にする。
また、吐出口背面ガイド41を形成する材料として、例えば、パンチングメタルや金網等、多数の孔が設けられた金属板を用いることが望ましい。吐出口背面ガイド41を形成する材料として多数の孔が設けられた金属板を用いることにより、吐出口16から吐出された冷媒の圧力脈動を減衰する効果がある。また、吐出口16から吐出された冷媒と、低段吐出マフラ空間31内を循環する冷媒とを混合整流する効果がある。
なお、図5に示すように、下部支持部材60の吐出口側側面62には吐出口16が設けられた吐出バルブ凹型設置部18が形成される。吐出バルブ凹型設置部18には、板バネのような薄い板状の弾性体により形成された吐出バルブ17が取り付けられる。また、吐出バルブ17を覆うように、吐出バルブ17のリフト量(たわむ大きさ)を調整(制限)するストッパ19が取り付けられる。吐出バルブ17とストッパ19との一端側がボルト19bで吐出バルブ凹型設置部18に固定される。
低段圧縮部10のシリンダ11内に形成されたシリンダ室内11a内の圧力と低段吐出マフラ空間31内の圧力との差により、吐出バルブ17がたわむことで吐出口16を開閉して、吐出口16から冷媒を低段吐出マフラ空間31へ吐出させる。つまり、吐出口16を開く吐出バルブ機構は、リードバルブ方式である。
ここで、図5に示すように、ストッパ19は、一端側が吐出口16の背面部側に固定され、吐出口16の連通口34側へ向かって徐々に吐出口16から離れるように傾斜して設けられる。しかし、ストッパ19は、径方向の幅dが狭く、吐出口16が設けられた吐出口側側面62の面と平行に近い緩やかな角度に傾斜して設けられる。そのため、ストッパ19は、吐出口16から吐出された冷媒が逆方向(図4,5のB方向)へ流れることをほとんど妨げない。
これに対して、吐出口背面ガイド41は、吐出口16の背面部側から、吐出口16だけでなく、吐出バルブ17やストッパ19を覆うように設けられる。つまり、吐出口背面ガイド41の径方向の幅D1は、吐出口16の径、吐出バルブ17の径方向の幅、ストッパ19の径方向の幅dより大きく、吐出口背面ガイド41の流路投影面積はS1は、ストッパ19流路投影面積s(=d×高さh)より大きい。つまり、吐出口背面ガイド41は、ストッパ19よりも広い範囲において、吐出口16から吐出された冷媒が逆方向へ冷媒が流れることを妨げる。なお、吐出口背面ガイド41の流路投影面積S1とは、軸心6dを回転軸として吐出口背面ガイド41を回転させて、軸心6dを通る所定の平面を吐出口背面ガイド41が通った軌跡をプロットして得られる図形の面積である。同様に、ストッパの流路投影面積sとは、軸心6dを回転軸としてストッパ19を回転させて、軸心6dを通る所定の平面をストッパ19が通った軌跡をプロットして得られる図形の面積である。
また、吐出口背面ガイド41は凹面側が逆方向流れ上流方向を、凸面側が正方向流れ下流方向を向いており、吐出口背面ガイドで生じる抵抗係数は、逆方向流れの方が、正方向流れの場合より大きい。吐出口背面ガイドで生じる抵抗係数は、例えば、半球殻形状であれば約5倍大きい。したがって、吐出口背面ガイド41を設けることにより、吐出口16から吐出された冷媒を正方向に循環させることができる。
図4に基づき、注入口ガイド47について説明する。
注入口ガイド47は、インジェクション注入口86の周囲において、インジェクション注入口86から連通口34までの逆方向の流路側に設けられる。特に、注入口ガイド47は、逆方向の流路側からインジェクション注入口86を覆うように傾いて、低段吐出マフラ空間31内へ突出して設けられる。
インジェクションパイプ85を流れた冷媒(図4の(5))は、インジェクション注入口86から注入される際、注入口ガイド47により正方向へ偏向されて流れる(図4の(6))。そして、インジェクション冷媒は、正方向へ循環する。また、インジェクション注入口86の正方向側の壁面は、注入口ガイド47と略平行になるようにテーパが付けられている。
したがって、低段吐出マフラ空間31へ放射状に吐出された冷媒は(図4の(1))、連通口34へ冷媒を吸引する力や、吐出口背面ガイド41に逆方向への流れが妨げられることにより、正方向(図4のA方向)へ流れる(図4の(2))。吐出口16から正方向へ流れた冷媒は、連通口34から中間連結流路84を経て高段圧縮部20のシリンダ室内21aへ流入する(図4の(3))。なお、低段圧縮部10から冷媒が吐出されるタイミングと高段圧縮部20で冷媒を吸入するタイミングとのずれ等により、連通口34へ流入しない冷媒がある。このように、吐出口16から正方向へ流れた冷媒のうち、連通口34へ流入しなかった冷媒は、そのまま正方向へ流れ、環状の低段吐出マフラ空間31内を循環する(図4の(4))。
また、インジェクション注入口86から注入された冷媒(図4の(5))は、注入口ガイド47により誘導され、正方向へ流れる(図4の(6))。そして、環状の低段吐出マフラ空間31内を循環する冷媒と合流して混合され、低段吐出マフラ空間31内を流れる。低段吐出マフラ空間31内を流れる冷媒の一部は、連通口34から中間連結流路84を経て高段圧縮部20のシリンダ室内21aへ流入し(図4の(3))、残りは環状の低段吐出マフラ空間31内を循環する(図4の(4))。
なお、上述したように、連通口34は、下部支持部材60の吐出口側側面62に設けられている。したがって、吐出口16から正方向へ略水平(図1の横方向)に流れる冷媒は、軸方向上向き(図1の上方向)への流れに変換されて連通口34から中間連結流路84へ流入する。つまり、冷媒の流れが約90度偏向されて、連通口34から中間連結流路84へ流入する。
また、中間連結流路84へ流入した冷媒は、中間連結流路84の曲がり部83(図1参照)で、軸方向上向き(図1の上方向)への流れが、略水平(図1の横方向)への流れに変換されて、高段圧縮部20のシリンダ室内21aへと流入する。つまり、冷媒の流れが、再び約90度偏向されてシリンダ室内21aへと流入する。
このように、冷媒の流れる方向に急激な変化が起こると圧縮損失が発生する。
ここで、図4に示すように、低段吐出マフラ空間31内には、連通口34の近傍に、連通口流れガイド46が設けられている。また、連通口34の周囲には、一端が吐出バルブ凹型設置部18に繋がったガイド溝39が形成されている。
連通口流れガイド46について説明する。
図6は、実施の形態1に係る連通口流れガイド46の説明図である。図6では、本来見えない構成を破線で示す。
連通口流れガイド46は、下部支持部材60の吐出口側側面62に、連通口34の開口の縁部にわたる所定の範囲を滑らかな円弧曲面で覆うように取り付けられる。さらに、連通口流れガイド46は、低段吐出マフラ空間31側に向かって傾斜し、連通口34の開口部を下側から覆うように形成される。図4のように真下から見ると、連通口に繋がる開口面と流れを遮る円弧曲面である。
連通口流れガイド46の開口面が、吐出口16から連通口34までの駆動軸6の軸心周り流れのうちの正方向(図4,6のA方向)流れに対してなす角度αとすると、αを15度以下の範囲で小さくとり、ほぼ並行になるように配置する。
非特許文献3に示されているように、概略翼型形状の物体であればαが十分小さければ抵抗係数が最も小さい。また、半円弧形状であれば、αが小さいほど、正方向(図4,6のA方向)流れの回転投影面積も小さくなるので、連通口流れガイド46に生じる抵抗も小さい。すなわち、正方向の循環流路に生じる圧力損失も小さい。
なお、連通口流れガイド46は、連通口34が設けられた吐出口側側面62との間に、軸中心6d側に向かって開口部を形成する。この開口部の開口面積S3は、連通口34の開口面積や中間連結流路84の流路面積よりも大きい。連通口流れガイド46が、軸中心から遠い側(外側)から軸中心6d側へ向かって滑らかな曲面で連通口34の開口を覆うことにより、吐出口16から連通口34へ向かう水平方向の冷媒の流れを、上方向の流れに滑らかに変換することができる。また、連通口流れガイド46と吐出口側側面62との間に連通口34よりも大きい開口が設けられているため、連通口流れガイド46により連通口34へ冷媒を誘導することができる。
ガイド溝39について説明する。
ガイド溝39は、連通口34の周囲に設けられた溝であって、一端が吐出バルブ凹型設置部18の溝に繋がった溝である。吐出口16から吐出された冷媒は、連通口34へ吸引する力により吸引された場合に、ガイド溝39に沿って流れる。つまり、吐出口16から吐出された冷媒が、ガイド溝39により連通口34へ誘導される。そのため、吐出口16から吐出された冷媒が連通口34へ流入し易い。
なお、連通口34の開口部は、面取り34aされ、低段吐出マフラ空間31側へ向かって広がるテーパ部36が設けられている。つまり、連通口34は、低段吐出マフラ空間31側へ向かって広がるラッパ状に形成されている。そのため、吐出口16から吐出された冷媒が連通口34へ流入し易い。また、テーパ部36により、吐出口16から連通口34へ向かう水平方向の冷媒の流れを、上方向の流れに滑らかに変換することができる。
また、吐出口側側面62に設けられた中間連結流路84は、吐出口16から離れるように、若干傾斜して設けられる。つまり、吐出口側側面62に設けられた中間連結流路84は、連通口34の背面部側(連通口34の逆方向の流路側)へ若干傾斜して設けられる。そのため、吐出口16から連通口34へ向かう水平方向の冷媒が急激に上方向の流れに変換されず、水平方向の流れを、上方向の流れに滑らかに変換することができる。
また、連通口流れガイド46を形成する材料として、例えば、パンチングメタルや金網、多数の孔が設けられた金属板を用いることが望ましい。連通口流れガイド46を形成する材料として多数の孔が設けられた金属板を用いることにより、吐出口16から吐出された冷媒の圧力脈動を減衰する効果がある。
高段圧縮部20のシリンダ吸入流路25aについて説明する。
図7は、実施の形態1に係る二段圧縮機の高段圧縮部20のシリンダ21のシリンダ吸入流路25a付近の斜視図である。図7では、本来見えない構成を破線で示す。
高段圧縮部20のシリンダ吸入流路25aは位相θs2に形成される。シリンダ吸入流路25aは、シリンダ21の片面側に形成される。シリンダ吸入流路25aは、中間連結流路84と接続される端部25bにおいて、流路が所定の曲率で滑らかに曲がるように、ボールエンドミル加工が施されている。これにより、中間連結流路84からシリンダ吸入流路25aへ流入する曲がり部83における曲がり抵抗を減らすことができる。つまり、中間連結流路84における上向きの冷媒の流れを、シリンダ吸入流路25aにおける水平方向の流れに滑らかに変換することができる。
以上のように、実施の形態1に係る二段圧縮機では、吐出口背面ガイド41や注入口ガイド47を設けることにより、環状の低段吐出マフラ空間31内において冷媒を一定方向に循環させる。
低段圧縮部10が冷媒を吐出するタイミングと、高段圧縮部20が冷媒を吸入するタイミングとのずれにより発生する圧力脈動を、環状の吐出マフラ空間において冷媒を一定方向に循環させることにより、圧力損失ではなく回転運動エネルギーに置き換える効果があり、圧力損失の発生を抑えることができる。
また、環状の吐出マフラ空間における冷媒の循環方向を一定方向となるように促すことで、冷媒の流れが乱れづらく、圧力損失の増加を防止することができる。
また、実施の形態1に係る二段圧縮機では、連通口流れガイド46等が、低段吐出マフラ空間31において、吐出口16から連通口34へ向かう水平方向の冷媒の流れを、上方向の流れに滑らかに変換する。低段吐出マフラ空間31から連通口34へ流入する際の圧力損失を低減でき、圧縮機効率を改善できる。
また、連通口34と高段圧縮部20のシリンダ吸入口25との位相を合わせた。そのため、連通口34とシリンダ吸入流路25aとを直線的な中間連結流路84で接続した場合に、シリンダ吸入流路25aの距離を短くすることができる。これにより、連通口34からシリンダ吸入口25までの細い流路の距離を短縮することができる。その結果、中間連結流路84における圧力損失を低減でき、圧縮機効率を改善できる。
また、シリンダ吸入流路25aと中間連結流路84との接続部における流路の曲がりを滑らかにした。そのため、中間連結流路84における上向きの冷媒の流れを、シリンダ吸入流路25aにおける水平方向の流れに滑らかに変換することができる。その結果、中間連結流路84からシリンダ吸入流路25aへ流入する際の圧力損失を低減でき、圧縮機効率を改善できる。
図8は、実施の形態1に係る連通口流れガイド46の他の例を示す説明図である。図8では、本来見えない構成を破線で示す。
連通口流れガイド46は、平板を折り曲げた平面の組み合わせで構成される。具体的には、連通口流れガイド46は、連通口34の外側で吐出口側側面62に固定され、連通口34の下側へ向かって傾斜して突出して設けられる。特に、連通口流れガイド46は、先端部46aが傾斜が緩くなるように折り曲げられている。つまり、連通口流れガイド46は、先端部46aが連通口34が形成された容器外周側壁32aと平行に近くなるように折り曲げられている。
このように、連通口流れガイド46を平板を折り曲げた平面の組み合わせで構成しても、図6に示す連通口流れガイド46を設けた場合と同様の効果を得ることができる。
なお、図8では、吐出口側側面62に設けられた中間連結流路84が駆動軸6と略平行になるように形成されている。このように中間連結流路84を形成した場合、中間連結流路84を傾斜させた場合に比べ、吐出口16から連通口34へ向かう水平方向の冷媒の流れが上方向の流れに変換されることに伴う圧縮損失が増加する。しかし、中間連結流路84の流路長さを短縮することができ、圧縮損失を低減できる。
実施の形態2.
図9は、図1のA−A’断面に相当する部分を示す図であり、実施の形態2に係る二段圧縮機の低段吐出マフラ空間31を示す図である。なお、図9では、本来見えない構成を破線で示す。
図9に示す低段吐出マフラ空間31について、図4に示す低段吐出マフラ空間31と異なる部分のみ説明する。
連通口34の配置された位相θout1は、高段圧縮部20のシリンダ吸入口25が配置された位相θs2とずれている。
具体的には、連通口34は、シリンダ吸入口25や吐出口16等が密集するベーン14が配置された位相θ周辺から離れた位相θout1に形成されている。シリンダ吸入口25や吐出口16等が密集するベーン14が配置された位相θ周辺には、低段圧縮部10のシリンダ吸入流路15aやボルト65等もあり、連通口34と中間連結流路84とを形成するスペースがほとんどない。そのため、実施の形態1で説明したように、位相θ周辺に連通口34形成した場合、連通口34の開口面積と中間連結流路84の流路面積とを大きくすることが難しい。連通口34をベーン14位相周辺から離れた位相に形成することで、連通口34の開口面積と中間連結流路84の流路面積とを大きくすることができる。
しかし、連通口34を高段圧縮部20のシリンダ吸入口25が配置された位相θs2とずれた位相に配置したことで、連通口34が吐出口16と離れた位置に形成される。連通口34が吐出口16と離れた位置に形成されたことで、楕円形状のガイド溝39を吐出バルブ凹型設置部18と直接繋げることが難しくなる。そこで、ガイド溝39と吐出バルブ凹型設置部18との間に連結溝38を設けた。これにより、吐出口16から吐出された冷媒を連通口34へ誘導することができる。
高段圧縮部20のシリンダ吸入流路25aについて説明する。
図10は、図1のC−C’断面に相当する部分を示す図であり、実施の形態2に係る二段圧縮機の高段圧縮部20を示す図である。
高段圧縮部20のシリンダ吸入口25は位相θs2に形成される。また、連通口34は、位相θs2とは異なる位相θout1に形成される。そのため、実施の形態1に係るシリンダ吸入流路25aと比べ、実施の形態2に係るシリンダ吸入流路25aの距離が若干長くなる。
ここで、中間連結流路84とシリンダ吸入流路25aとが接続する端部25bにおいて、流路が所定の曲率となり、流路の曲がりが滑らかになるように、ボールエンドミル加工を施している。また、シリンダ吸入流路25aは、シリンダ室内21aに斜めに接続される。そこで、シリンダ吸入流路25aを流れる冷媒がシリンダ室内21aへ流入する際の圧力損失を抑えるために、シリンダ吸入流路25aの端部25cにもボールエンドミル加工を施している。
以上のように、実施の形態2に係る二段圧縮機では、連通口34を、シリンダ吸入口25や吐出口16等が密集するベーン14周辺位相から離れた位相に形成した。これにより、連通口34の開口面積と中間連結流路84の流路面積とを大きくすることができる。そのため、圧力損失を低減でき、圧縮機効率を改善できる。
但し、実施の形態1に係る二段圧縮機と比べると、シリンダ吸入流路25aが若干長くなったこと等により、圧力損失が大きくなり、圧縮機効率が悪くなる。
実施の形態3.
図11は、図1のA−A’断面に相当する部分を示す図であり、実施の形態3に係る二段圧縮機の低段吐出マフラ空間31を示す図である。
図11に示す低段吐出マフラ空間31について、図4に示す低段吐出マフラ空間31と異なる部分のみ説明する。
実施の形態3に係る連通口流れガイド46は、全体又は一部が下部支持部材60又は容器32と一体の鋳物で構成されている。
図12は、実施の形態3に係る連通口流れガイド46の一例を示す説明図である。図12では、本来見えない構成を破線で示す。
図12に示す例では、下部支持部材60の吐出口側側面62が連通口34の外側を覆うように、低段吐出マフラ空間31へ突出して、ブロック44aを形成する。ブロック44aには、連通口34の下側を覆うように設けられた金属板44bが取り付けられている。このブロック44aと金属板44bとにより、連通口流れガイド46を形成している。なお、金属板44bは、パンチングメタルや金網、多数の孔が設けられた金属板である。
図13は、実施の形態3に係る連通口流れガイド46の他の例を示す説明図である。図13では、本来見えない構成を破線で示す。
図13に示す例では、図12に示す例と同様に、下部支持部材60の吐出口側側面62が連通口34の外側を覆うように、低段吐出マフラ空間31へ突出して、ブロック44a(第1ブロック)を形成する。しかし、図13に示す例では、ブロック44aに金属板44bを取り付けることで、連通口34の下側を覆うのではなく、容器32の容器底フタ32bが連通口34の下側を覆うように、低段吐出マフラ空間31へ突出して、傾斜ブロック44c(第2ブロック)を形成する。特に、傾斜ブロック44cは、連通口34の外部側から軸中心6d側へ向かって徐々に吐出口側側面62から離れるように傾斜した傾斜面44dを有している。
なお、図12に示す例では、ブロック44a部分のみ下部支持部材60と一体成形されていた。しかし、ブロック44aと金属板44bとの両方を下部支持部材60と一体成形されていてもよい。また、加工が難しい場合には、金属板44bには孔が設けられていなくてもよい。
また、図13に示す例では、ブロック44aが下部支持部材60と一体成形され、傾斜ブロック44cが容器32と一体成形された。しかし、傾斜ブロック44cだけでなく、ブロック44aも容器32と一体成形されてもよい。
以上のように、連通口流れガイド46を下部支持部材60と一体型で形成した実施の形態3に係る二段圧縮機においても、実施の形態1に係る二段圧縮機と同様に圧縮機効率を改善できる。
実施の形態4.
図14は、図1のA−A’断面に相当する部分を示す図であり、実施の形態4に係る二段圧縮機の低段吐出マフラ空間31を示す図である。
図14に示す低段吐出マフラ空間31について、図4に示す低段吐出マフラ空間31と異なる部分のみ説明する。
実施の形態4に係る低段吐出マフラ空間31には、下部支持部材60と一体の鋳物で構成され、連通口34が形成された曲り流路ブロック40が設けられている。
図15は、実施の形態4に係る曲り流路ブロック40の説明図である。なお、図15では、容器32の容器底フタ32bが存在する位置を破線で示す。また、本来見えない曲り流路ブロック40内部の構成を破線で示す。
図15に示すように、曲り流路ブロック40は、下部支持部材60と一体成形され、内部に中間連結流路84の一部をなす内部流路40eが形成されている。また、曲り流路ブロック40は、内部流路40eと繋がる連通口34が、軸中心6d側に形成されている。つまり、上記実施の形態においては、連通口34が低段吐出マフラ空間31の上面に下向きに形成されていたのに対して、実施の形態4においては、連通口34が軸中心6d側を向いて横向きに形成されている。
連通口34が軸中心6d側を向いて横向きに形成されているため、吐出口16から吐出した冷媒が連通口34へ流入し易い。
なお、内部流路40eは、連通口34から中間連結流路84へ向かって緩やかに曲げられていてもよい。このように、内部流路40eを形成することにより、吐出口16から連通口34へ向かう水平方向の冷媒の流れを、上方向の流れに滑らかに変換することができる。したがって、低段吐出マフラ空間31から連通口34へ流入する際の圧力損失を低減でき、圧縮機効率を改善できる。
ここで、下部支持部材60と一体成形された曲り流路ブロック40に、エンドミル加工等により、中間連結流路84の一部及び連通口34を形成することができる。
以上のように、連通口流れガイド46に代え、曲り流路ブロック40を設けた実施の形態4に係る二段圧縮機においても、実施の形態1に係る二段圧縮機と同様に圧縮機効率を改善できる。
実施の形態5.
図16は、図1のA−A’断面に相当する部分を示す図であり、実施の形態5に係る二段圧縮機の低段吐出マフラ空間31を示す図である。
図16に示す低段吐出マフラ空間31について、図9に示す低段吐出マフラ空間31と異なる部分のみ説明する。
実施の形態5では、吐出バルブ凹型設置部18が、実施の形態2(図9参照)の場合と逆向きに設けられている。実施の形態2では、吐出バルブ凹型設置部18は、主に、吐出口16から連通口34までの逆方向(図9のB方向)の流路側に形成されていた。実施の形態5では、吐出バルブ凹型設置部18は、主に、吐出口16から連通口34までの正方向(図16のA方向)の流路側に形成されている。
ここで、図9に示すように、実施の形態2では、ガイド溝39と固定吐出バルブ凹型設置部18の溝と直接が繋がっていなかった。しかし、実施の形態5では、吐出バルブ凹型設置部18を、吐出口16から連通口34までの正方向の流路側に形成することにより、固定吐出バルブ凹型設置部18の溝が連通口34に近い位置に形成される。このため、ガイド溝39を固定吐出バルブ凹型設置部18の溝と繋げ易い。
以上のように、吐出バルブ凹型設置部18の向きを変えた実施の形態5に係る二段圧縮機においても、実施の形態1に係る二段圧縮機と同様に圧縮機効率を改善できる。
実施の形態6.
図17は、図1のA−A’断面に相当する部分を示す図であり、実施の形態6に係る二段圧縮機の低段吐出マフラ空間31を示す図である。
図17に示す低段吐出マフラ空間31について、図4に示す低段吐出マフラ空間31と異なる部分のみ説明する。
吐出口背面ガイド41は、流路全体を仕切るように設けられ、吐出口16から連通口34までの逆方向の流路側から吐出口16を滑らかな曲面で覆う。同様に、連通口流れガイド46は、流路全体を仕切るように設けられ、吐出口16から連通口34までの逆方向の流路側から連通口34を滑らかな曲面で覆う。
なお、吐出口背面ガイド41と連通口流れガイド46とには、複数の孔が設けられる。ここで、連通口流れガイド46の開口率は、吐出口背面ガイド41の開口率に比べて約3倍高い。つまり、連通口流れガイド46が設けられた部分の流路面積は、吐出口背面ガイド41が設けられた部分の流路面積よりも約3倍広い。したがって、吐出口16から吐出した冷媒は、連通口流れガイド46よりも吐出口背面ガイド41によって強く流れを妨げられ、正方向へ流れることになる。
なお、連通口流れガイド46が流路全体を塞ぐように設けられているため、連通口34付近へ流れた冷媒を連通口34へ誘導するのには有効である。しかし、正方向へ流れる流れを妨げるため、高速運転時等の冷媒量が多い場合には、圧縮損失が大きくなることが予測される。そこで、連通口流れガイド46の開口率を50%以上とすることが望ましい。
以上のような吐出口背面ガイド41や連通口流れガイド46を設けた実施の形態6に係る二段圧縮機においても、実施の形態1に係る二段圧縮機と同様に圧縮機効率を改善できる。
実施の形態7.
図18は、実施の形態7に係る二段圧縮機の全体構成を示す断面図である。
図19は、実施の形態7に係る図18の二段圧縮機のD−D’断面図である。
実施の形態7に係る二段圧縮機について、実施の形態1に係る二段圧縮機と異なる部分のみ説明する。
実施の形態7に係る二段圧縮機の低段吐出マフラ空間31には、吐出口背面ガイド41が設けられていない。また、インジェクションパイプ85が低段吐出マフラ30に接続されておらず、低段吐出マフラ空間31には注入口ガイド47が設けられていない。
そのため、実施の形態7に係る二段圧縮機では、実施の形態1に係る二段圧縮機と比べ、吐出口16から吐出された冷媒が低段吐出マフラ空間31内を一定方向に循環しにくくなる。したがって、実施の形態7に係る二段圧縮機では、実施の形態1に係る二段圧縮機に比べ、圧力損失が大きくなる。
しかし、実施の形態7に係る二段圧縮機には、連通口流れガイド46が設けられており、実施の形態1に係る二段圧縮機と同様に、吐出口16から連通口34へ向かう水平方向の冷媒の流れを、上方向の流れに滑らかに変換できる。したがって、従来の二段圧縮機に比べ、ある程度圧縮損失を低減することができる。
なお、以上の実施の形態では、回転ピストン式の二段圧縮機について説明した。しかし、高段圧縮部と低段圧縮部を中間連結したマフラ空間を有する二段圧縮機であれば、どのような圧縮形式であってもよい。例えば、スイングピストン式、スライディングベーン式などの様々な二段圧縮機であっても同様の効果が得られる。
また、以上の実施の形態では、密閉シェル8内の圧力が高段圧縮部20内の圧力に等しい高圧シェル型の二段圧縮機について説明した。しかし、中間圧シェル型、低圧シェル型のいずれの二段圧縮機であっても同様の効果が得られる。
また、以上の実施の形態では、低段圧縮部10が高段圧縮部20より下側に配置され、低段吐出マフラ空間31へ冷媒を下向きに吐出する二段圧縮機について説明した。しかし、低段圧縮部10、高段圧縮部20、低段吐出マフラ30の配置や、駆動軸6の回転方向が異なる二段圧縮機であっても同様の効果が得られる。
例えば、低段圧縮部10が高段圧縮部20より上側に配置され、低段吐出マフラ空間31へ冷媒を上向きに吐出する二段圧縮機であっても同様の効果が得られる。
また、通常縦置きの二段圧縮機を横置きした場合であっても同様の効果が得られる。
また、以上の実施の形態では、吐出口16を開く吐出バルブ機構として、薄い板状のバルブの弾性と低段圧縮部10と低段吐出マフラ空間31との圧力差によって開閉するリードバルブ方式を想定して説明した。しかし、その他の方式の吐出バルブ機構であってもよい。例えば、4ストローク機関の吸排気バルブで用いられるポペットバルブ式など、低段圧縮部10と低段吐出マフラ空間31との圧力差を利用して吐出口16を開閉する開閉弁であればよい。
実施の形態8.
以上の実施の形態1から7では、2つの圧縮部が直列に接続された二段圧縮機の低段吐出マフラの構造について説明した。実施の形態8では、2つの圧縮部が並列に接続された単段ツイン圧縮機の下側吐出マフラの構造について説明する。
従来の二段圧縮機では、低段圧縮部が冷媒を吐出するタイミングと、高段圧縮部が冷媒を吸入するタイミングとのずれにより中間連結部に大きな圧力脈動が発生する。そのため、中間圧脈動損失を低減することが圧縮機効率改善において非常に重要であった。
一方、従来の単段圧縮機では、二段圧縮機の中間連結部のような大きな圧力脈動は発生しない。しかし、圧縮室の容積変化の位相とバルブ開閉の位相との間にずれがある。そのため、少なからず、吐出マフラ内に圧力脈動が発生し、これによる損失を低減すると圧縮機効率を改善できる。
そこで、実施の形態8では、単段ツイン圧縮機の下側吐出マフラ130の構造に、実施の形態1から7で説明した二段圧縮機の低段吐出マフラ30と同様の構造を適用する。
図20は、実施の形態8に係る単段ツイン圧縮機の全体構成を示す断面図である。図20に示す単段ツイン圧縮機について、図1に示す二段圧縮機と異なる部分のみ説明する。
実施の形態8に係る単段ツイン圧縮機は、密閉シェル8の内側に、下側圧縮部110、上側圧縮部120、下側吐出マフラ130、上側吐出マフラ150を、実施の形態1に係る二段圧縮機が備える低段圧縮部10、高段圧縮部20、低段吐出マフラ30、高段吐出マフラ50に代えて備える。
なお、下側圧縮部110、上側圧縮部120、下側吐出マフラ130、上側吐出マフラ150の構造は、低段圧縮部10、高段圧縮部20、低段吐出マフラ30、高段吐出マフラ50の構造と概ね同様であるため、ここでは説明を省略する。但し、下側吐出マフラ空間131は密閉シェル8内圧とほぼ同圧のため、実施の形態1の低段吐出マフラ30と異なり、特に下側吐出マフラを封止するシール部は不要である。
また、吐出口側側面62には、下側吐出マフラ空間131へ流入した冷媒が流出する連通口134が形成される。そして、連通口134と繋がった下側吐出流路184(連結流路)が、吐出口側側面62、下側圧縮部110、中間仕切板5、上側圧縮部120、吐出口側側面72を貫通して形成される。下側吐出流路184は、下側吐出マフラ130の連通口134から流出した冷媒を上側吐出マフラ空間151へ導く流路である。
冷媒の流れを説明する。
まず、低圧の冷媒は、圧縮機吸入管1を経由して(図20の(1))、吸入マフラ7へ流入する(図20の(2))。吸入マフラ7へ流入した冷媒は、吸入マフラ7の中でガス冷媒と液冷媒とに分離される。ガス冷媒は吸入マフラ連結管4において吸入マフラ連結管4a側と吸入マフラ連結管4b側とへ分岐し、下側圧縮部110のシリンダ111と上側圧縮部120のシリンダ121とへ吸入される(図20の(3)と(6))。
下側圧縮部110のシリンダ111へ吸入され、下側圧縮部110で吐出圧まで圧縮された冷媒は、吐出口116から下側吐出マフラ空間131へ吐出される(図20の(4))。下側吐出マフラ空間131へ吐出された冷媒は、連通口134から下側吐出流路184を通って、上側吐出マフラ空間151へ導かれる(図20の(5))。
また、上側圧縮部120のシリンダ121へ吸入され、上側圧縮部120で吐出圧まで圧縮された冷媒は、吐出口126から上側吐出マフラ空間151へ吐出される(図20の(7))。
下側吐出マフラ空間131から上側吐出マフラ空間151へ導かれた冷媒(図20の(5))と、吐出口126から上側吐出マフラ空間151へ吐出された冷媒(図20の(7))とが合流する。合流した冷媒は、連通口154から密閉シェル8内のモータ部9との間の空間へ導かれる(図20の(8))。そして、密閉シェル8内のモータ部9との間の空間へ導かれた冷媒は、圧縮部の上方にあるモータ部9の隙間を通った後、密閉シェル8に固定した圧縮機吐出管2を経て、外部冷媒回路へ吐出される(図20の(9))。
なお、下側吐出マフラ空間131と上側吐出マフラ空間151とは相互に連結されているが、下側圧縮部110と上側圧縮部120との圧縮タイミングにはずれがあるため、圧力脈動が生じる。上側吐出マフラ空間151から下側吐出マフラ空間131へ冷媒が逆流する場合もある。
下側吐出マフラ130について説明する。
図21は、実施の形態8に係る図20の単段ツイン圧縮機のE−E’断面図である。
図21に示すように、下側吐出マフラ空間131は、駆動軸6の軸方向と垂直方向の断面において、内周壁を下部軸受け部61により形成され、外周壁を容器外周側壁132aにより形成されて、駆動軸6の回りを一周するリング状(ドーナッツ状)に形成される。つまり、下側吐出マフラ空間131は、駆動軸6の回りを一周する環状(ループ状)に形成される。
なお、吐出マフラ容器132は均等に配置した5本のボルト165を下部支持部材60に固定される。ボルト165を配置した固定部分は、吐出マフラ容器132が環状流路内に突出するように変形されている。
また、下側吐出マフラ空間131内には、吐出口背面ガイド141、連通口流れガイド146、ガイド溝139が設けられる。吐出口背面ガイド141、連通口流れガイド146、ガイド溝139は、実施の形態1で説明した吐出口背面ガイド41、連通口流れガイド46、ガイド溝39と同様である。
下側吐出マフラ空間131へは、下側圧縮部110で圧縮された冷媒が吐出口116から吐出される(図21の(1))。吐出された冷媒は、連通口134へ冷媒を吸入する力や吐出口背面ガイド141により、(i)環状の下側吐出マフラ空間131内を正方向(図21のA方向)へ循環する(図21の(2)(4))。また、(ii)連通口134から下側吐出流路184を経て上側吐出マフラ空間151へ流入する(図21の(3))。なお、冷媒が連通口134へ流入する際、連通口流れガイド146により、略水平方向(図20の横方向)の流れが、軸方向上向き(図20の上方向)の流れに滑らかに変換される。また、連通口134の周囲には、ガイド溝139が形成されているため、連通口134へ冷媒が流入し易い。
以上のように、実施の形態8に係る圧縮機は、上記実施の形態に係る二段圧縮機と同様に、圧縮部からと出された冷媒に生じる圧力脈動の振幅を小さくでき、圧力損失を低減することができる。したがって、圧縮機効率を改善できる。
実施の形態9.
図22は、図20のE−E’断面に相当する部分を示す図であり、実施の形態9に係る単段ツイン圧縮機の下側吐出マフラ空間131を示す図である。
図21に示す吐出マフラ容器132はボルト固定部以外ほぼ駆動軸6に対して対象形状であったが、図22に示す吐出マフラ容器132では、駆動軸6に対して非対称な形状である。
吐出マフラ容器132では、吐出口116の背面部側の流路幅(図22における径方向の幅)w1は、吐出口116から連通口134へ向かう軸回りの方向が異なる正方向(図22のA方向)と逆方向(図22のB方向)との二方向の流路うちの正方向の流路の最小幅w2に比べて小さい。つまり、吐出口116の背面部側の流路面積は、吐出口116から連通口134までの正方向の流路の最小流路面積よりも小さい。
また、吐出マフラ容器132は、吐出口116の背面部側を覆うように設けられ、実施の形態1で説明した吐出口背面ガイド41と同様の働きをする。また、吐出マフラ容器132は、連通口134の外側から開口の所定の範囲を覆うように設けられ、実施の形態8で説明した連通口流れガイド146と同様の働きをする。
吐出口116の背面部側の流路幅w1が、吐出口116から連通口134へ向かう正方向側の流路の最小幅w2に比べて小さいため、吐出口116から流出した冷媒は、逆方向側(図22B方向側)よりも正方向側(図22のA方向側)へ流れ易い。特に、実施の形態1で説明した吐出口背面ガイド41と同様の働きをするように、吐出マフラ容器132が形成されており、吐出口116から流出した冷媒は、正方向側(A方向側)へ流れ易い。
以上のように、実施の形態9に係る単段ツイン圧縮機は、上記実施の形態に係る圧縮機と同様に、圧縮部からと出された冷媒に生じる圧力脈動の振幅を小さくでき、圧力損失を低減することができる。したがって、圧縮機効率を改善できる。
なお、上記実施の形態で説明した二段圧縮機及び単段ツイン圧縮機は、HFC冷媒(R410A、R22、R407他)や、HC冷媒(イソブタン、プロパン)やCO2冷媒などの自然冷媒や、HFO1234yfなどの低GWP冷媒などを用いた場合であっても、上述した効果がある。
特に、上記実施の形態で説明した二段圧縮機及び単段ツイン圧縮機は、HC冷媒(イソブタン、プロパン)やR22、HFO1234yfなど低圧で動作する冷媒ほど、大きな効果がある。
なお、実施の形態8,9では、単段ツイン圧縮機の下側の吐出マフラ空間についての構造を説明した。しかし、実施の形態8,9で説明した吐出マフラ空間と同様の構造を、二段圧縮機の低段側の吐出マフラ空間に適用した場合には、最も大きな圧縮機効率改善効果が得られる。
また、実施の形態1から7で説明した吐出マフラ空間と同様の構成を、単段ツイン圧縮機の下側の吐出マフラ空間に適用してもよい。
実施の形態10.
実施の形態10では、以上の実施の形態で説明した多段圧縮機(二段圧縮機)の利用例であるヒートポンプ式暖房給湯システム200について説明する。
図23は、実施の形態10に係るヒートポンプ式暖房給湯システム200の構成を示す概略図である。ヒートポンプ式暖房給湯システム200は、圧縮機201、第1熱交換器202、第1膨張弁203、第2熱交換器204、第2膨張弁205、第3熱交換器206、主冷媒回路207、水回路208、インジェクション回路209、暖房給湯用水利用装置220を備える。ここで、圧縮機201は、以上の実施の形態で説明した多段圧縮機(ここでは、二段圧縮機)である。
ヒートポンプユニット211(ヒートポンプ装置)は、圧縮機201、第1熱交換器202、第1膨張弁203、第2熱交換器204を順次接続した主冷媒回路207と、第1熱交換器202、第1膨張弁203の間の分岐点212で一部の冷媒が分岐して第2膨張弁205、第3熱交換器206を流れ、圧縮機201の中間連結部80に冷媒を戻すインジェクション回路209から構成され、効率に優れたエコノマイザサイクルとして動作する。
第1熱交換器202では、圧縮機201が圧縮した冷媒と、水回路208を流れる液体(ここでは、水)とを熱交換する。ここでは、第1熱交換器202において熱交換されることにより、冷媒が冷され、水が温められる。第1膨張弁203は、第1熱交換器202で熱交換された冷媒を膨張させる。第2熱交換器204では、第1膨張弁203の制御に従い膨張した冷媒と空気との熱交換を行う。ここでは、第2熱交換器204において熱交換されることにより、冷媒が暖められ、空気が冷やされる。そして、温められた冷媒は、圧縮機201へ吸入される。
さらに、第1熱交換器202で熱交換された冷媒の一部は、分岐点212で分岐し、第2膨張弁205で膨張し、第3熱交換器206では、第2膨張弁205の制御に従い膨張した冷媒と、第1熱交換器202で冷やされた冷媒とを内部熱交換し、圧縮機201の中間連結部80に注入される。このように、ヒートポンプユニット211は、インジェクション回路209を流れる冷媒の減圧効果により冷房能力及び暖房能力を増大させるエコノマイザ手段を備える。
一方、水回路208では、上述したように、第1熱交換器202で熱交換されることにより水は温められ、温められた水は暖房給湯用水利用装置220へ流れて、給湯や暖房に利用される。なお、給湯用の水は、第1熱交換器202で熱交換される水でなくてもよい。つまり、給湯器などでさらに水回路208を流れる水と給湯用の水とが熱交換されるようにしてもよい。
本発明による多段圧縮機は単体の圧縮機効率に優れている。さらに、本実施の形態で説明したヒートポンプ式暖房給湯システム200にこれを搭載し、エコノマイザサイクルを構成すると高効率化に優位な構成が実現できる。
なお、ここでは、実施の形態1から7で説明した二段圧縮機の利用した場合について説明した。しかし、実施の形態8から10で説明した単段ツイン圧縮機を用いて、ヒートポンプ式暖房給湯システム等の蒸気圧縮式冷凍サイクルを構成することもできる。
また、ここでは、以上の実施の形態で説明した冷媒圧縮機によって圧縮された冷媒で水を加熱するヒートポンプ式暖房給湯システム(ATW(Air To Water)システム)について説明した。しかし、これに限らず、以上の実施の形態で説明した冷媒圧縮機によって圧縮された冷媒で空気等の気体を加熱又は冷却する蒸気圧縮式冷凍サイクルを形成することもできる。つまり、以上の実施の形態で説明した冷媒圧縮機により冷凍空調装置を構築することもできる。本発明の冷媒圧縮機を用いた冷凍空調装置においては、高効率化に優れている。
1 圧縮機吸入管、2 圧縮機吐出管、3 潤滑油貯蔵部、4 吸入マフラ連結管、5 中間仕切板、6 駆動軸、7 吸入マフラ、8 密閉シェル、9 モータ部、10 低段圧縮部、20 高段圧縮部、11,21 シリンダ、11a,21a シリンダ室内、12,22 回転ピストン、14,24 ベーン、14a,24a ベーン溝、15,25 シリンダ吸入口、15a,25a シリンダ吸入流路、16,26 吐出口、17,27 吐出バルブ、18,28 吐出バルブ凹型設置部、19 ストッパ、19b ボルト、30 低段吐出マフラ、31 低段吐出マフラ空間、32 容器、32a 容器外周側壁、32b 容器底フタ、33 シール部、34 連通口、36 テーパ部、38 連結溝、39 ガイド溝、40 曲り流路ブロック、40e 内部流路、41 吐出口背面ガイド、46 連通口流れガイド、47 注入口ガイド、50 高段吐出マフラ、51 高段吐出マフラ空間、52 容器、54 連通口、60 下部支持部材、61 下部軸受け部、62 吐出口側側面、65 ボルト、70 上部支持部材、71 上部軸受け部、72 吐出口側側面、80 中間連結部、83 曲がり部、84 中間連結流路、85 インジェクションパイプ、86 インジェクション注入口、110 下側圧縮部、120 上側圧縮部、111,121 シリンダ、111a,121a シリンダ室内、112,122 回転ピストン、14,24 ベーン、115,125 シリンダ吸入口、115a,125a シリンダ吸入流路、116,126 吐出口、117,127 吐出バルブ、118,128 吐出バルブ凹型設置部、119 ストッパ、130 下側吐出マフラ、131 下側吐出マフラ空間、132 容器、132a 容器外周側壁、132b 容器底フタ、134 連通口、136 テーパ部、138 連結溝、139 ガイド溝、141 吐出口背面ガイド、146 連通口流れガイド、150 上側吐出マフラ、151 上側吐出マフラ空間、152 容器、154 連通口、160 下部支持部材、161 下部軸受け部、162 吐出口側側面、165 ボルト、170 上部支持部材、171 上部軸受け部、172 吐出口側側面、184 下側吐出流路、200 ヒートポンプ式暖房給湯システム、201 圧縮機、202 第1熱交換器、203 第1膨張弁、204 第2熱交換器、205 第2膨張弁、206 第3熱交換器、207 主冷媒回路、208 水回路、209 インジェクション回路、210 暖房給湯用水利用装置、211 ヒートポンプユニット、212 分岐点。

Claims (14)

  1. 中央部を貫通して設けられた駆動軸の回転によって駆動され、シリンダ室へ冷媒を吸入し圧縮する複数の圧縮部と、前記複数の圧縮部の前記シリンダ室に挟まれる中間仕切板を駆動軸方向に積層して構成した冷媒圧縮機において、
    前記複数の圧縮部のうちの所定の圧縮部で圧縮した冷媒がその圧縮部の前記シリンダ室から吐出される吐出口と、前記吐出口から吐出された冷媒が別空間に流出する連通口とが設けられた吐出マフラ空間を、前記駆動軸の周りを一周する環状の空間として形成する吐出マフラと、
    前記中間仕切板を前記駆動軸方向に貫通して形成され、前記吐出マフラ空間から前記連通口を通って冷媒を前記別空間に導く連結流路と、
    前記吐出マフラ空間における前記連通口の開口部を所定範囲覆うように配置された連通口流れガイドと
    前記環状の吐出マフラ空間において、前記吐出口から前記連通口へ向かう駆動軸回り方向が異なる正方向と逆方向との二方向の流路のうちの逆方向の流路側における連通口よりも吐出口に近い位置に設けられた吐出口背面ガイドと
    を備え、
    冷媒が前記逆方向へ流れることを前記吐出口背面ガイドが妨げることにより、冷媒が前記環状の吐出マフラ空間内を前記正方向に循環し、
    前記吐出口から前記連通口へ向かって前記正方向に循環する冷媒の流れを前記連通口流れガイドが前記駆動軸方向の流れに変換し、
    前記連通口流れガイドと前記吐出口背面ガイドとにより、前記環状の吐出マフラ空間における前記駆動軸回りの冷媒循環流れに生じる圧力損失は、冷媒が前記正方向へ循環する場合の方が、冷媒が前記逆方向へ循環する場合よりも小さいことを特徴とする冷媒圧縮機。
  2. 前記連通口流れガイドにより前記正方向の冷媒循環流れに生じる流体抵抗は、前記吐出口背面ガイドにより前記逆方向の冷媒循環流れに生じる流体抵抗に比べて小さい
    ことを特徴とする請求項に記載の冷媒圧縮機。
  3. 前記連通口流れガイドにより前記正方向の冷媒循環流れに生じる流体抵抗は、前記逆方向の冷媒循環流れに生じる流体抵抗に比べて、小さいか、もしくは、同等である
    ことを特徴とする請求項1又は2に記載の冷媒圧縮機。
  4. 中央部を貫通して設けられた駆動軸の回転によって駆動され、シリンダ室へ冷媒を吸入し圧縮する複数の圧縮部と、前記複数の圧縮部の前記シリンダ室に挟まれる中間仕切板を駆動軸方向に積層して構成した冷媒圧縮機において、
    前記複数の圧縮部のうちの所定の圧縮部で圧縮した冷媒がその圧縮部の前記シリンダ室から吐出される吐出口と、前記吐出口から吐出された冷媒が別空間に流出する連通口とが設けられた吐出マフラ空間を、前記駆動軸の周りを一周する環状の空間として形成する吐出マフラと、
    前記中間仕切板を前記駆動軸方向に貫通して形成され、前記吐出マフラ空間から前記連通口を通って冷媒を前記別空間に導く連結流路と、
    前記吐出マフラ空間における前記連通口の開口部を所定範囲覆うように配置された連通口流れガイドであって、前記駆動軸の方向向きに開口部が形成され、前記開口部が前記駆動軸回りの冷媒循環流れとほぼ平行に配置された連通口流れガイド
    を備えることを特徴とする冷媒圧縮機。
  5. 中央部を貫通して設けられた駆動軸の回転によって駆動され、シリンダ室へ冷媒を吸入し圧縮する複数の圧縮部と、前記複数の圧縮部の前記シリンダ室に挟まれる中間仕切板を駆動軸方向に積層して構成した冷媒圧縮機において、
    前記複数の圧縮部のうちの所定の圧縮部で圧縮した冷媒がその圧縮部の前記シリンダ室から吐出される吐出口と、前記吐出口から吐出された冷媒が別空間に流出する連通口とが設けられた吐出マフラ空間を、前記駆動軸の周りを一周する環状の空間として形成する吐出マフラと、
    前記中間仕切板を前記駆動軸方向に貫通して形成され、前記吐出マフラ空間から前記連通口を通って冷媒を前記別空間に導く連結流路と、
    前記吐出マフラ空間における前記連通口の開口部を所定範囲覆うように配置された連通口流れガイドであって、前記連通口が設けられた前記圧縮部側の面から前記吐出マフラ空間へ向かって突出して設けられ、前記圧縮部側の面と対向する対向面が、前記駆動軸の中心側へ向かって、徐々に前記連通口から離れるように設けられた連通口流れガイド
    を備えることを特徴とする冷媒圧縮機。
  6. 前記連通口流れガイドは、前記対向面が前記駆動軸側へ向かって、徐々に前記連通口から離れつつ、徐々に前記圧縮部側の面と平行に近くなるように曲がった曲面状に形成された
    ことを特徴とする請求項に記載の冷媒圧縮機。
  7. 前記連通口流れガイドは、前記駆動軸側へ向かって、徐々に前記連通口から離れつつ、徐々に前記圧縮部側の面と平行に近くなるように曲がった曲面状に形成された平板であって、複数の孔が設けられた平板である
    ことを特徴とする請求項に記載の冷媒圧縮機。
  8. 中央部を貫通して設けられた駆動軸の回転によって駆動され、シリンダ室へ冷媒を吸入し圧縮する複数の圧縮部と、前記複数の圧縮部の前記シリンダ室に挟まれる中間仕切板を駆動軸方向に積層して構成した冷媒圧縮機において、
    前記複数の圧縮部のうちの所定の圧縮部で圧縮した冷媒がその圧縮部の前記シリンダ室から吐出される吐出口と、前記吐出口から吐出された冷媒が別空間に流出する連通口とが設けられた吐出マフラ空間を、前記駆動軸の周りを一周する環状の空間として形成する吐出マフラと、
    前記中間仕切板を前記駆動軸方向に貫通して形成され、前記吐出マフラ空間から前記連通口を通って冷媒を前記別空間に導く連結流路と、
    前記吐出マフラ空間における前記連通口の開口部を所定範囲覆うように配置された連通口流れガイドと
    を備え
    前記吐出マフラ空間には、前記吐出口の開閉を制御する吐出バルブが設置されるバルブ設置溝が前記吐出口の周囲に設けられるとともに、前記連通口の周囲に設けられ、前記バルブ設置溝と繋がったガイド溝が設けられた
    ることを特徴とする冷媒圧縮機。
  9. 前記環状の吐出マフラ空間を前記駆動軸方向と垂直な方向に切断した横断面において、前記連通口流れガイドの外形は、翼型の弦形状、円形の円弧、楕円の楕円弧のいずれかであり、凹側に前記連通口へ繋がる開口部が形成された
    ことを特徴とする請求項1から8までのいずれか1項に記載の冷媒圧縮機。
  10. 前記連通口流れガイドは、
    前記吐出マフラ空間を形成する部材と一体形成された
    ことを特徴とする請求項1からまでのいずれか1項に記載の冷媒圧縮機。
  11. 中央部を貫通して設けられた駆動軸の回転によって駆動され、前記シリンダ室内で冷媒を吸入し圧縮する前記圧縮部を2個備えて、それぞれの前記シリンダ室で冷媒を吸入し圧縮する位相が180度ずれて配置された
    ことを特徴とする請求項1から10までのいずれか1項に記載の冷媒圧縮機。
  12. 前記複数の圧縮部は、直列に接続された低段圧縮部と高段圧縮部との2つの圧縮部であって、それぞれの圧縮部を構成するシリンダの間に前記中間仕切板が挟まれ駆動軸方向に積層されて構成され、
    前記吐出マフラは、前記低段圧縮部が圧縮した冷媒が吐出される前記吐出マフラ空間を、前記低段圧縮部に対して前記軸方向の前記高段圧縮部とは逆側に形成し、
    前記高段圧縮部は、前記低段圧縮部を構成するシリンダと前記中間仕切板とを駆動軸方向に貫通する連通流路を介し前記低段圧縮部が圧縮した冷媒を、前記吐出マフラ空間からシリンダ室内に吸入しさらに圧縮する
    ことを特徴とする請求項1から10までのいずれか1項に記載の冷媒圧縮機。
  13. 前記冷媒圧縮機は、さらに、
    前記高段圧縮部を構成するシリンダには、前記連結流路と接続され、前記駆動軸方向と垂直な方向へ延びた吸入流路が形成され、前記吐出マフラ空間へ吐出された冷媒を前記連結流路と前記吸入流路とを介して前記シリンダ室内へ吸入してさらに圧縮し、
    前記連結流路と前記吸入流路との接続部分は、所定の曲率で曲がって形成された
    ことを特徴とする請求項12に記載の冷媒圧縮機。
  14. 冷媒圧縮機と、第1熱交換器と、膨張機構と、第2熱交換器とが配管により順次接続された冷媒回路を備えるヒートポンプ装置であり、
    前記冷媒圧縮機は、請求項1から13までのいずれか1項に記載の冷媒圧縮機であることを特徴とするヒートポンプ装置。
JP2011518396A 2009-06-11 2010-05-24 冷媒圧縮機及びヒートポンプ装置 Expired - Fee Related JP5484463B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011518396A JP5484463B2 (ja) 2009-06-11 2010-05-24 冷媒圧縮機及びヒートポンプ装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009139786 2009-06-11
JP2009139786 2009-06-11
PCT/JP2010/058721 WO2010143523A1 (ja) 2009-06-11 2010-05-24 冷媒圧縮機及びヒートポンプ装置
JP2011518396A JP5484463B2 (ja) 2009-06-11 2010-05-24 冷媒圧縮機及びヒートポンプ装置

Publications (2)

Publication Number Publication Date
JPWO2010143523A1 JPWO2010143523A1 (ja) 2012-11-22
JP5484463B2 true JP5484463B2 (ja) 2014-05-07

Family

ID=43308778

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011518396A Expired - Fee Related JP5484463B2 (ja) 2009-06-11 2010-05-24 冷媒圧縮機及びヒートポンプ装置
JP2011518395A Active JP5611202B2 (ja) 2009-06-11 2010-05-24 冷媒圧縮機
JP2011518394A Active JP5542813B2 (ja) 2009-06-11 2010-05-24 冷媒圧縮機及びヒートポンプ装置

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2011518395A Active JP5611202B2 (ja) 2009-06-11 2010-05-24 冷媒圧縮機
JP2011518394A Active JP5542813B2 (ja) 2009-06-11 2010-05-24 冷媒圧縮機及びヒートポンプ装置

Country Status (5)

Country Link
US (2) US8790097B2 (ja)
EP (2) EP2441960B1 (ja)
JP (3) JP5484463B2 (ja)
CN (3) CN102803733B (ja)
WO (3) WO2010143521A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012101672A1 (ja) * 2011-01-26 2014-06-30 三菱電機株式会社 空気調和装置
JP5586537B2 (ja) * 2011-07-28 2014-09-10 三菱電機株式会社 ロータリ二段圧縮機
CN103375405A (zh) * 2012-04-26 2013-10-30 珠海格力电器股份有限公司 压缩机及具有其的空调系统和热泵热水器
JP5429353B1 (ja) * 2012-07-25 2014-02-26 ダイキン工業株式会社 圧縮機
KR101981096B1 (ko) 2012-10-12 2019-05-22 엘지전자 주식회사 밀폐형 압축기
JP6111695B2 (ja) * 2013-01-29 2017-04-12 株式会社富士通ゼネラル ロータリ圧縮機
CN104075493B (zh) * 2013-03-27 2016-08-03 特灵空调系统(中国)有限公司 排气温度可控制的压缩系统及其排气温度控制方法
CN105402135A (zh) * 2014-08-18 2016-03-16 珠海格力节能环保制冷技术研究中心有限公司 旋转式压缩机
CN105485020B (zh) * 2016-01-20 2019-01-15 珠海格力电器股份有限公司 一种压缩机及其吸气端盖
JP6734918B2 (ja) * 2016-04-28 2020-08-05 ギガフォトン株式会社 タンク、ターゲット生成装置、及び、極端紫外光生成装置
WO2017213060A1 (ja) * 2016-06-07 2017-12-14 東芝キヤリア株式会社 密閉型圧縮機および冷凍サイクル装置
CN108087272B (zh) * 2017-11-30 2019-12-27 珠海格力电器股份有限公司 压缩机及具有其的空调器
CN109026708B (zh) * 2018-09-18 2023-09-08 珠海格力节能环保制冷技术研究中心有限公司 一种泵体组件及压缩机
CN113646534B (zh) * 2019-03-29 2023-05-23 松下电器制冷装置新加坡 用于往复式压缩机的吸入消声器以及往复式压缩机
CN111810409B (zh) * 2020-07-15 2022-04-08 珠海格力节能环保制冷技术研究中心有限公司 泵体及压缩机
KR102630536B1 (ko) * 2022-05-16 2024-01-30 엘지전자 주식회사 로터리 압축기

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853892U (ja) * 1981-10-09 1983-04-12 松下冷機株式会社 回転式圧縮機
JPH04203488A (ja) * 1990-11-30 1992-07-24 Hitachi Ltd 密閉形スクロール圧縮機
JPH07208363A (ja) * 1994-01-11 1995-08-08 Nippondenso Co Ltd 圧縮機
JP2000009072A (ja) * 1998-06-22 2000-01-11 Samsung Electron Co Ltd 複数の圧縮室を備えて多段圧縮を行うことができる回転圧縮機
JP2009085570A (ja) * 2007-10-03 2009-04-23 Denso Corp 冷凍サイクル用消音器

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853892A (ja) 1981-09-25 1983-03-30 日本電気株式会社 混成多層配線基板
JPS5966662A (ja) 1982-10-06 1984-04-16 ダイキン工業株式会社 ヒ−トポンプ式暖房装置
JPS60171988A (ja) 1984-02-14 1985-09-05 東芝昇降機サ−ビス株式会社 エスカレ−タの欄干組立法
JPS60171988U (ja) * 1984-04-25 1985-11-14 株式会社東芝 ロ−タリコンプレツサ−
JPS637292A (ja) 1986-06-27 1988-01-13 株式会社東芝 把持装置
JPS63138189A (ja) 1986-11-29 1988-06-10 Toshiba Corp 回転式圧縮機
JPH0269091A (ja) 1988-09-05 1990-03-08 Ascii Corp カラーディスプレイ装置
JPH0269091U (ja) * 1988-11-15 1990-05-25
JPH02196188A (ja) 1989-01-23 1990-08-02 Hitachi Ltd ロータリ圧縮機
JPH02294591A (ja) * 1989-05-10 1990-12-05 Mitsubishi Electric Corp 横置形回転式圧縮機
JPH04134196A (ja) * 1990-09-27 1992-05-08 Daikin Ind Ltd 密閉形圧縮機
JPH04159490A (ja) 1990-10-22 1992-06-02 Daikin Ind Ltd ロータリ圧縮機
JP2768004B2 (ja) * 1990-11-21 1998-06-25 松下電器産業株式会社 ロータリ式多段気体圧縮機
JP3073044B2 (ja) 1991-05-20 2000-08-07 東芝キヤリア株式会社 2シリンダ型回転圧縮機
JP2699723B2 (ja) 1991-11-12 1998-01-19 松下電器産業株式会社 逆止弁装置を備えた2段圧縮冷凍装置
JPH05195976A (ja) 1992-01-22 1993-08-06 Daikin Ind Ltd ロータリー圧縮機
JPH05312166A (ja) * 1992-05-11 1993-11-22 Mitsubishi Heavy Ind Ltd ロータリ圧縮機
JPH07247972A (ja) 1994-03-14 1995-09-26 Toshiba Corp ロータリコンプレッサ
JPH11166489A (ja) 1997-12-04 1999-06-22 Mitsubishi Electric Corp スクロール圧縮機
BR9904147A (pt) 1998-08-06 2000-09-05 Mitsubishi Electric Corp Compressor giratório, ciclo de refrigeração que utiliza o compressor, e refrigerador que utiliza o compressor
JP2000073974A (ja) * 1998-08-26 2000-03-07 Daikin Ind Ltd 2段圧縮機及び空気調和装置
JP3555549B2 (ja) 2000-03-31 2004-08-18 ダイキン工業株式会社 高圧ドーム型圧縮機
KR100397560B1 (ko) 2001-06-28 2003-09-13 주식회사 엘지이아이 밀폐형 회전식 압축기의 머플러
US7128540B2 (en) 2001-09-27 2006-10-31 Sanyo Electric Co., Ltd. Refrigeration system having a rotary compressor
ATE371113T1 (de) * 2001-11-16 2007-09-15 Lg Electronics Inc Dämpfer für hermetischen rotationsverdichter
TW568996B (en) * 2001-11-19 2004-01-01 Sanyo Electric Co Defroster of refrigerant circuit and rotary compressor for refrigerant circuit
US6807821B2 (en) 2003-01-22 2004-10-26 Bristol Compressors, Inc. Compressor with internal accumulator for use in split compressor
CN100449228C (zh) * 2004-04-27 2009-01-07 松下电器产业株式会社 热泵装置
KR20060024739A (ko) 2004-09-14 2006-03-17 삼성전자주식회사 다기통 압축기
US7611341B2 (en) 2005-02-23 2009-11-03 Lg Electronics Inc. Capacity varying type rotary compressor
JP2007113542A (ja) * 2005-10-24 2007-05-10 Hitachi Appliances Inc 密閉形2段ロータリ圧縮機
JP4778772B2 (ja) 2005-10-26 2011-09-21 日立アプライアンス株式会社 ロータリ圧縮機
JP2007178042A (ja) 2005-12-27 2007-07-12 Mitsubishi Electric Corp 超臨界蒸気圧縮式冷凍サイクルおよびこれを用いる冷暖房空調設備とヒートポンプ給湯機
JP4725387B2 (ja) 2006-03-28 2011-07-13 三菱電機株式会社 空気調和装置
JP4864589B2 (ja) 2006-08-03 2012-02-01 三菱電機株式会社 多段回転式圧縮機
CN101153600A (zh) * 2006-09-29 2008-04-02 富士通将军股份有限公司 旋转压缩机和热泵系统
JP2008096072A (ja) 2006-10-16 2008-04-24 Hitachi Appliances Inc 冷凍サイクル装置
JP4875484B2 (ja) * 2006-12-28 2012-02-15 三菱重工業株式会社 多段圧縮機
JP2008175111A (ja) * 2007-01-17 2008-07-31 Daikin Ind Ltd 圧縮機
JP2008248865A (ja) 2007-03-30 2008-10-16 Fujitsu General Ltd インジェクション対応2段圧縮ロータリ圧縮機およびヒートポンプシステム
JP2008274877A (ja) 2007-05-01 2008-11-13 Sanden Corp 密閉型圧縮機
JP2009002297A (ja) 2007-06-25 2009-01-08 Daikin Ind Ltd ロータリ圧縮機
KR20090047874A (ko) 2007-11-08 2009-05-13 엘지전자 주식회사 로터리식 2단 압축기
KR101299370B1 (ko) * 2007-11-09 2013-08-22 엘지전자 주식회사 로터리식 2단 압축기
JP2009167828A (ja) * 2008-01-11 2009-07-30 Fujitsu General Ltd ロータリ圧縮機
JP2010048089A (ja) 2008-08-19 2010-03-04 Panasonic Corp 密閉型圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853892U (ja) * 1981-10-09 1983-04-12 松下冷機株式会社 回転式圧縮機
JPH04203488A (ja) * 1990-11-30 1992-07-24 Hitachi Ltd 密閉形スクロール圧縮機
JPH07208363A (ja) * 1994-01-11 1995-08-08 Nippondenso Co Ltd 圧縮機
JP2000009072A (ja) * 1998-06-22 2000-01-11 Samsung Electron Co Ltd 複数の圧縮室を備えて多段圧縮を行うことができる回転圧縮機
JP2009085570A (ja) * 2007-10-03 2009-04-23 Denso Corp 冷凍サイクル用消音器

Also Published As

Publication number Publication date
US20120085118A1 (en) 2012-04-12
CN102459911B (zh) 2015-06-10
JPWO2010143523A1 (ja) 2012-11-22
JP5542813B2 (ja) 2014-07-09
EP2441960A1 (en) 2012-04-18
CN102803733A (zh) 2012-11-28
CN102803734B (zh) 2015-06-10
US8790097B2 (en) 2014-07-29
EP2441960B1 (en) 2017-06-21
JPWO2010143521A1 (ja) 2012-11-22
CN102803734A (zh) 2012-11-28
WO2010143523A1 (ja) 2010-12-16
CN102803733B (zh) 2016-04-20
CN102459911A (zh) 2012-05-16
EP2441961A1 (en) 2012-04-18
JPWO2010143522A1 (ja) 2012-11-22
US20120085119A1 (en) 2012-04-12
EP2441960A4 (en) 2013-06-12
EP2441961A4 (en) 2013-06-12
WO2010143522A1 (ja) 2010-12-16
WO2010143521A1 (ja) 2010-12-16
US9011121B2 (en) 2015-04-21
EP2441961B1 (en) 2017-10-04
JP5611202B2 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5484463B2 (ja) 冷媒圧縮機及びヒートポンプ装置
JP5866004B2 (ja) 密閉形圧縮機及びヒートポンプ装置
EP2634432B1 (en) Screw compressor
US20100054978A1 (en) Injectible two-stage compression rotary compressor
CN111472978A (zh) 导流管结构、定涡旋部件、压缩机组件及压缩机系统
JP5515289B2 (ja) 冷凍装置
JP5338314B2 (ja) 圧縮機および冷凍装置
US20130136626A1 (en) Screw compressor with muffle structure and rotor seat thereof
JP2011179394A (ja) 多気筒圧縮機
CN110762000A (zh) 增焓脉动衰减装置、涡旋压缩机及空调系统
JP4948557B2 (ja) 多段圧縮機および冷凍空調装置
CN110836183A (zh) 压缩机及其压缩机构
CN216554394U (zh) 一种转子压缩机组件和空调器
JP5184402B2 (ja) 液体潤滑式圧縮機
US6935854B2 (en) Gas compressor
JP5595324B2 (ja) 圧縮機
CN114087183A (zh) 一种转子压缩机组件和空调器
WO2020151365A1 (zh) 导流管结构、定涡旋部件、压缩机组件及压缩机系统
WO2019111461A1 (ja) ツインロータリー圧縮機及び冷凍サイクル装置
JP2024025669A (ja) 圧縮機および冷凍装置
JP5835299B2 (ja) 冷凍装置
JPWO2020059608A1 (ja) 多段圧縮機

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140218

R150 Certificate of patent or registration of utility model

Ref document number: 5484463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees