WO2019111461A1 - ツインロータリー圧縮機及び冷凍サイクル装置 - Google Patents

ツインロータリー圧縮機及び冷凍サイクル装置 Download PDF

Info

Publication number
WO2019111461A1
WO2019111461A1 PCT/JP2018/032083 JP2018032083W WO2019111461A1 WO 2019111461 A1 WO2019111461 A1 WO 2019111461A1 JP 2018032083 W JP2018032083 W JP 2018032083W WO 2019111461 A1 WO2019111461 A1 WO 2019111461A1
Authority
WO
WIPO (PCT)
Prior art keywords
injection
injection pipe
pipe
rotary compressor
muffler
Prior art date
Application number
PCT/JP2018/032083
Other languages
English (en)
French (fr)
Inventor
宏樹 長澤
祐策 石部
亮 濱田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to KR1020207014918A priority Critical patent/KR102336280B1/ko
Priority to JP2019558005A priority patent/JP6918138B2/ja
Priority to CN201880072911.1A priority patent/CN111417783B/zh
Publication of WO2019111461A1 publication Critical patent/WO2019111461A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0007Injection of a fluid in the working chamber for sealing, cooling and lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/04Heating; Cooling; Heat insulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/04Compression machines, plants or systems with non-reversible cycle with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor

Definitions

  • the present invention relates to a twin rotary compressor provided with an injection flow passage and a refrigeration cycle apparatus.
  • the rotary compressor has mounted the electric motor which consists of a rotor and a stator in the upper part in an airtight container. Then, the rotation of the motor is transmitted to the eccentric part provided at the lower part by the crankshaft fixed to the rotor.
  • the eccentric portion is provided with a piston, and the rotation of the crankshaft eccentrically moves the piston to reduce the volume of the compression chamber.
  • the refrigerant is compressed in the compression chamber.
  • an injection port may be formed in the compression chamber.
  • the intermediate pressure liquid or gas refrigerant is injected into the compression chamber from the injection flow path connected to the injection port.
  • the injection muffler absorbs pressure fluctuations and pressure pulsations of the injection refrigerant generated in the compression chamber, and is considered to be able to stably and smoothly supply the refrigerant to be injected.
  • the present invention is to solve the above-mentioned problems, and it is possible to absorb pressure fluctuations and pressure pulsations of the injection refrigerant generated in the compression chamber, and to provide a highly efficient twin capable of exerting a supercharging effect of increasing the flow rate of the injection refrigerant.
  • An object of the present invention is to provide a rotary compressor and a refrigeration cycle apparatus.
  • a twin rotary compressor comprises a motor having a stator and a rotor, a first eccentric portion provided on a main shaft fixed to the rotor, and a second eccentric portion provided on the main shaft.
  • a first cylinder in which the first eccentric portion and the first piston are disposed to form a first compression chamber is formed in the through hole, and a cylindrical through hole is formed, and the through hole is formed in the through hole.
  • a rotary compressor comprising: a second cylinder in which a second eccentric portion and the second piston are arranged to form a second compression chamber, the first compression chamber and the first compression chamber from the external refrigerant pipe Injection flow paths for injecting refrigerant into each of the second compression chambers
  • the injection passage includes a first injection port formed in the first compression chamber, a second injection port formed in the second compression chamber, and an injection inlet pipe connected to the refrigerant pipe, A first injection pipe for supplying a refrigerant to the first injection port, a second injection pipe for supplying a refrigerant to the second injection port, the injection inlet pipe, the first injection pipe, and the second injection pipe And an injection muffler disposed between the first injection pipe and the second injection pipe and having a diameter larger than the inner diameters of the first injection pipe and the second injection pipe, and the first injection pipe and the second injection pipe separately Connected to the muffler Is shall.
  • a refrigeration cycle apparatus includes the above-described twin rotary compressor.
  • the twin rotary compressor and the refrigeration cycle apparatus is disposed between the injection inlet pipe and the first injection pipe and the second injection pipe, and is wider than the inner diameters of the first injection pipe and the second injection pipe.
  • a first injection pipe and a second injection pipe are separately connected to the injection muffler. Therefore, pressure fluctuation and pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor is highly efficient.
  • FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle apparatus to which a twin rotary compressor according to Embodiment 1 of the present invention is applied. It is a longitudinal section showing a twin rotary compressor concerning Embodiment 1 of the present invention. It is a cross-sectional view which shows the injection port in the compression chamber which concerns on Embodiment 1 of this invention. It is a figure which shows the relationship of the supercharging rate (alpha) over 100% which concerns on Embodiment 1 of this invention, and the length L of the injection pipe
  • FIG. 1 is a refrigerant circuit diagram showing a refrigeration cycle apparatus 200 to which a twin rotary compressor 100 according to Embodiment 1 of the present invention is applied.
  • the refrigeration cycle apparatus 200 includes a twin rotary compressor 100, a condenser 201, an expansion valve 202, and an evaporator 203.
  • the twin rotary compressor 100, the condenser 201, the expansion valve 202, and the evaporator 203 are connected by a refrigerant pipe 204 to form a refrigeration cycle circuit. Then, the refrigerant that has flowed out of the evaporator 203 is drawn into the twin rotary compressor 100 and becomes high temperature and high pressure. The high temperature and pressure refrigerant is condensed in the condenser 201 to become a liquid.
  • the refrigerant that has become a liquid is decompressed and expanded by the expansion valve 202 to be a low temperature low pressure gas-liquid two phase, and the gas-liquid two-phase refrigerant is heat-exchanged in the evaporator 203.
  • the refrigeration cycle apparatus 200 includes an injection flow path 205 for injecting a refrigerant from the refrigerant pipe 204 in front of the evaporator 203 and further in front of the expansion valve 202 in the refrigerant flow direction of the refrigeration cycle circuit. Details of the injection channel 205 will be described later.
  • the twin rotary compressor 100 described later can be applied to such a refrigeration cycle apparatus 200.
  • refrigeration cycle apparatus 200 an air conditioning apparatus, a freezer, or a water heater etc. are mentioned, for example.
  • FIG. 2 is a longitudinal sectional view showing a twin rotary compressor 100 according to Embodiment 1 of the present invention.
  • FIG. 3 is a cross-sectional view showing an injection port in a compression chamber according to Embodiment 1 of the present invention.
  • the twin rotary compressor 100 includes a cylindrical sealed container 101 whose upper and lower ends are closed.
  • the sealed container 101 includes a cylindrical member 101a, a bowl-shaped upper end closing member 101b closing the upper end of the cylindrical member 101a, and a bowl-shaped lower end closing member 101c closing the lower end of the cylindrical member 101a.
  • the sealed container 101 is installed and fixed to the pedestal 102.
  • An electric motor 103 is disposed in the upper part of the closed container 101.
  • the motor 103 has a stator 103a and a rotor 103b.
  • the stator 103 a of the motor 103 has a cylindrical shape and is fixed to the inner peripheral wall portion of the sealed container 101.
  • the rotor 103 b has a cylindrical shape, and is rotatably disposed in the hollow portion formed at the center of the stator 103 a in the horizontal direction and in the circumferential direction.
  • crankshaft 104 rotated by an electric motor 103 is disposed extending in the vertical direction.
  • the crankshaft 104 has a main shaft 104a, a first eccentric portion 104b, a second eccentric portion 104c, and an auxiliary shaft 104d.
  • the main shaft 104a is fixed to the rotor 103b.
  • the main shaft 104a transmits the rotational driving force from the rotor 103b to the first eccentric portion 104b and the second eccentric portion 104c.
  • the first eccentric portion 104b is provided on the main shaft 104a on the side of the main shaft 104a above the second eccentric portion 104c, decenters the center line from the main shaft 104a, and has a diameter larger than that of the main shaft 104a.
  • the second eccentric portion 104c is provided on the main shaft 104a on the side of the secondary shaft 104d below the first eccentric portion 104b, and the central axis is eccentric to the main shaft 104a and the first eccentric portion 104b, and the diameter is larger than that of the main shaft 104a. Is large.
  • the first eccentric portion 104 b is provided with a first piston 105 a.
  • the first piston 105a has a partition member 105a1 that partitions the first compression chamber 106a.
  • the first eccentric portion 104b and the first piston 105a are disposed in a first cylinder 107a in which a cylindrical through hole is formed.
  • the first eccentric portion 104b and the first piston 105a are disposed in the through hole to form a first compression chamber 106a.
  • the first compression chamber 106 a is a sealed cylindrical space.
  • the first inflow refrigerant pipe 108a is connected to the first cylinder 107a via the through hole 107a1.
  • the second eccentric portion 104 c is provided with a second piston (not shown).
  • the second piston has a partition member that partitions the second compression chamber.
  • the second eccentric portion 104c and the second piston are disposed in a second cylinder 107b in which a cylindrical through hole is formed below the first cylinder 107a.
  • a second eccentric portion 104c and a second piston are disposed in the through hole to form a second compression chamber.
  • the second compression chamber is a sealed cylindrical space.
  • the second inflow refrigerant pipe 108b is connected to the second cylinder 107b through the through hole.
  • an upper bearing 109a that constitutes the upper wall portion of the first compression chamber 106a is provided while slidably holding the crankshaft 104.
  • a lower bearing 109b which constitutes a lower wall portion of the second compression chamber is provided while slidably holding the crankshaft 104.
  • the lower wall portion of the first compression chamber 106a and the upper wall portion of the second compression chamber are formed between the first cylinder 107a and the second cylinder 107b, and the first compression chamber 106a and the second compression chamber are partitioned.
  • An intermediate plate 110 is provided.
  • An upper discharge muffler 111a covering the upper bearing 109a is provided above the upper bearing 109a.
  • the upper discharge muffler 111a encloses the discharge port 107a2 of the compressed refrigerant of the first cylinder 107a.
  • a lower discharge muffler 111b covering the lower bearing 109b is provided below the lower bearing 109b.
  • the lower discharge muffler 111b encloses the compressed refrigerant discharge port of the second cylinder 107b.
  • the upper discharge muffler 111 a and the lower discharge muffler 111 b reduce the noise amplified by the resonance of the internal space in the sealed container 101.
  • the compressed refrigerant discharged from the upper discharge muffler 111 a and the lower discharge muffler 111 b is supplied from the discharge pipe 112 provided in the upper portion of the closed container 101 to the refrigerant pipe 204 of the refrigeration cycle circuit.
  • the first inflow refrigerant pipe 108 a and the second inflow refrigerant pipe 108 b have both inlets inserted into the suction muffler 113.
  • the suction muffler 113 is connected to the refrigerant pipe 204 of the refrigeration cycle circuit to allow the refrigerant to flow therein.
  • the suction muffler 113 is fixed to the outer periphery of the closed container 101.
  • Refrigerant oil is accumulated at the bottom of the sealed container 101.
  • the refrigeration oil accumulated at the bottom is sucked up from the hollow hole provided in the crankshaft 104 by the rotation of the crankshaft 104 in the manner of a centrifugal pump utilizing the rotation of the crankshaft 104.
  • the pumped refrigeration oil is circulated to each sliding portion through the oil supply hole opened from the hollow hole of the crankshaft 104 toward the outer peripheral portion. Thereby, the machine part is sealed by the refrigerator oil.
  • the sliding parts, the crankshaft 104, the first piston 105a, the second piston, the first cylinder 107a, the second cylinder 107b, the upper bearing 109a, the lower bearing 109b, and the intermediate plate 110 do not come into direct contact with each other. Damage is prevented and leakage of the refrigerant is further prevented.
  • An oil separator (not shown) is fitted on the top of the crankshaft 104.
  • the oil separator prevents the refrigerator oil from being discharged from the discharge pipe 112 out of the machine together with the discharged refrigerant.
  • the oil separator closes the flow path with respect to the mixed fluid of the refrigerant and the refrigerator oil flowing toward the discharge pipe 112, collides and separates the refrigerant and the refrigerator oil, and suppresses the outflow of the refrigerator oil to the outside of the machine.
  • the crankshaft 104 fixed to the rotor 103b of the motor part is rotated by the motor 103.
  • the first eccentric portion 104b and the second eccentric portion 104c, and the first piston 105a and the second piston attached to the outer peripheral portion of the first eccentric portion 104b and the second eccentric portion 104c, respectively Eccentric rotation.
  • the volumes of the first compression chamber 106 a and the second compression chamber are reduced, and the refrigerant is compressed to change to a high pressure.
  • the injection flow path 205 is formed by the refrigerant piping 204 in front of the evaporator 203 and further in front of the expansion valve 202 in the refrigerant flow direction of the refrigeration cycle circuit, and the first compression chamber 106 a and the second compression chamber. Inject the refrigerant into the
  • the injection flow channel 205 includes a first injection port 205a1, a second injection port 205a2, an injection inlet pipe 205b, a first injection pipe 205c, a second injection pipe 205d, an injection muffler 205e, and a first internal passage 205f1. And a second in-machine passage 205 f 2.
  • the first injection port 205a1 is formed in the first compression chamber 106a by opening a part of the upper bearing 109a.
  • the second injection port 205a2 is formed in the second compression chamber by opening a part of the lower bearing 109b.
  • the injection inlet pipe 205 b constituting the injection flow path 205 is connected to the refrigerant pipe 204 of the refrigeration cycle circuit and to the injection muffler 205 e.
  • the injection inlet pipe 205b protrudes downward into the injection muffler 205e from the first injection pipe 205c and the second injection pipe 205d protruding upward into the injection muffler 205e at the upper part of the injection muffler 205e.
  • the first injection pipe 205c has an inlet connected to the injection muffler 205e, is connected to the first in-machine passage 205f1, and supplies the refrigerant to the first injection port 205a1.
  • the second injection pipe 205d has an inlet connected to the injection muffler 205e, is connected to the second in-machine passage 205f2, and supplies the refrigerant to the second injection port 205a2.
  • the first injection pipe 205c and the second injection pipe 205d are separately connected to the injection muffler 205e.
  • the second injection pipe 205d is longer than the first injection pipe 205c because the second injection pipe 205d is connected to the lower part of the sealed container 101 than the first injection pipe 205c.
  • the injection muffler 205e is disposed between the injection inlet pipe 205b and the first injection pipe 205c and the second injection pipe 205d.
  • the inner diameter of the injection muffler 205e is larger than the inner diameter of the first injection pipe 205c and the second injection pipe 205d.
  • the first injection pipe 205c and the second injection pipe 205d are inserted into the circular bottom of the injection muffler 205e at two places.
  • the first injection pipe 205c and the second injection pipe 205d project upward into the injection muffler 205e at the lower part of the injection muffler 205e.
  • the amount B [m] of protrusion of the first injection pipe 205c and the second injection pipe 205d in the injection muffler 205e is 10% or less of the vertical length A [m] in the injection muffler 205e.
  • the first injection pipe 205c and the second injection pipe 205d have an appropriate length capable of injecting either the gas refrigerant or the liquid refrigerant, and project inside the injection muffler 205e.
  • the injection muffler 205 e is fixed to the outer peripheral portion of the closed container 101 in the same manner as the suction muffler 113.
  • the volume of the injection muffler 205 e is 5% or more of the volume of the suction muffler 113.
  • the volume of the injection muffler 205e is based on the relationship between the suction refrigerant and the injection refrigerant.
  • the first in-machine passage 205f1 connects the first injection pipe 205c and the first injection port 205a1.
  • the first in-machine passage 205f1 is formed as a through hole or the like inside the upper bearing 109a.
  • the second in-machine passage 205f2 connects the second injection pipe 205d and the second injection port 205a2.
  • the second in-machine passage 205f2 is formed as a through hole or the like in the lower bearing 109b.
  • the refrigerant flowing from the refrigeration cycle circuit through the injection flow passage 205 flows into the injection muffler 205e through the injection inlet pipe 205b.
  • the refrigerant flowing into the injection muffler 205e is supplied to the first injection pipe 205c and the second injection pipe 205d in the injection muffler 205e.
  • the refrigerant supplied to the first injection pipe 205c is injected as a liquid or gas refrigerant from the first injection port 205a1 into the inside of the first compression chamber 106a through the first in-machine passage 205f1 of the twin rotary compressor 100.
  • the refrigerant supplied to the second injection pipe 205d is injected as a liquid or gas refrigerant from the second injection port 205a2 into the second compression chamber through the second in-machine passage 205f2 of the twin rotary compressor 100.
  • the pressure in the injection muffler 205e is the pressure of the injection pressure from the refrigeration cycle circuit and the pressure of the first injection pipe 205c and the second injection pipe 205d supplied to the first compression chamber 106a and the second compression chamber. It is intermediate pressure. For this reason, the leakage of the refrigerant due to the pressure difference between the first compression chamber 106a and the second compression chamber is less likely to occur.
  • the pressure of the first injection pipe 205c and the second injection pipe 205d fluctuates according to the phase of the first piston 105a and the second piston.
  • the first injection pipe 205c and the second injection pipe 205d are connected to the injection inlet pipe 205b via the injection muffler 205e which maintains the internal pressure at an intermediate pressure. Therefore, the pressure of the injection inlet pipe 205b is kept constant, whereby the refrigerant injected from the injection flow path 205 is stabilized, and the loss is small.
  • the shape of the injection muffler 205e or the dimensions of the length and the inner diameter of the first injection pipe 205c and the second injection pipe 205d are specified and designed. Thereby, the supercharging effect can be obtained at the time of suction of the injection refrigerant. As a result, the flow rate of the injection refrigerant increases, and the injection refrigerant can be injected with high efficiency.
  • the inventors obtained the following findings. That is, the supercharging of the injection refrigerant is caused by amplification due to overlapping of pressure fluctuations at the inlet and the outlet of the first injection pipe 205c and the second injection pipe 205d for drawing the refrigerant.
  • the reason why pressure fluctuations at the inlet and the outlet of the first injection pipe 205c and the second injection pipe 205d are different from each other is a pipe generated when the refrigerant passes through the injection muffler 205e, the first injection pipe 205c or the second injection pipe 205d. Attributable to friction loss. Therefore, the rate of supercharging correlates with the equation of pressure loss due to tube friction loss.
  • the friction coefficient of the first injection pipe 205c or the second injection pipe 205d is defined as ⁇ .
  • the length of each of the first injection pipe 205c and the second injection pipe 205d is defined as L [m].
  • the length L is the length between the end of the first injection pipe 205c or the second injection pipe 205d exposed to the outside from the injection muffler 205e and the end exposed to the outside of the sealed container 101.
  • the first injection pipe 205c or the second injection pipe 205d is actually inserted into the injection muffler 205e and the closed vessel 101, the length L here is the length of the center line of the portion exposed to the outside. is there.
  • the inner diameter of each of the first injection pipe 205c or the second injection pipe 205d is defined as d [m].
  • the flow velocity of the refrigerant flowing through each of the first injection pipe 205c and the second injection pipe 205d is defined as v [m / s].
  • the density of the refrigerant flowing through each of the first injection pipe 205c and the second injection pipe 205d is defined as [[kg / m].
  • the flow rate of the refrigerant flowing through each of the first injection pipe 205c and the second injection pipe 205d is defined as Q [m 3 / s].
  • the cross-sectional area of each of the first injection pipe 205c and the second injection pipe 205d is defined as (d / 2) 2 ⁇ ⁇ .
  • ⁇ P is divided by the pressure loss Pbase [Pa] when there is no supercharging effect in each of the first injection pipe 205c and the second injection pipe 205d, and multiplied by 100 to obtain the first injection pipe 205c or
  • the supercharging rate ⁇ is obtained as an increase rate exceeding 100%, which is larger than the case where the supercharging effect does not occur is less than 100%.
  • FIG. 4 is a view showing the relationship between the supercharging rate ⁇ exceeding 100% and the length L and the inner diameter d of the first injection pipe 205c and the second injection pipe 205d according to the first embodiment of the present invention. As shown in FIG. 4, it is designed to have a first injection pipe 205c and a second injection pipe 205d having a combination of L and d in which the supercharging rate ⁇ exceeds 100% while the supercharging rate ⁇ varies. Be done.
  • FIG. 5 is a view showing the relationship between the supercharging rate ⁇ and the length L and the inner diameter d of the first and second injection pipes 205c and 205d according to the first embodiment of the present invention. From FIG. 5, in order to obtain a supercharging effect further, it is more preferable that the length L and the inner diameter d of the first and second injection pipes 205 c and 205 d satisfy the following relationship.
  • a first injection pipe 205c having a combination of L and d which can obtain ⁇ in the range of ( ⁇ max + 1) / 2 ⁇ ⁇ ⁇ ⁇ max, where ⁇ max is the maximum value of ⁇ obtained by the combination of L and d. It is designed to include the second injection pipe 205d.
  • L is a range of ( ⁇ max + 1) / 2 ⁇ ⁇ ⁇ ⁇ max while satisfying the above-mentioned relational expression (Expression 2) which is a modification of (Expression 1).
  • d is a range of ( ⁇ max + 1) / 2 ⁇ ⁇ ⁇ ⁇ max while satisfying the above (Expression 3) which is a modification of (Expression 1).
  • the volume of the injection muffler 205 e is 0.00073 [m 3 ].
  • the volume of the suction muffler 113 is 0.00731 [m 3 ]. In such a case, the following is obtained from the above-described relational expression (Expression 1) and various configurations.
  • the volumes of the injection muffler 205e is 10% of the volume of the suction muffler 113, which satisfies the condition necessary for the relationship between the suction refrigerant and the injection refrigerant.
  • FIG. 6 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 1 of Embodiment 1 of the present invention.
  • the description of the same matters as those of the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • connection points of the outlets of the first injection pipe 205c and the second injection pipe 205d are made different from those in the above embodiment. That is, the outlet of the first injection pipe 205 c is connected to the passage in the intermediate plate 110. The outlet of the second injection pipe 205d is connected to the passage of the lower bearing 109b.
  • FIG. 7 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 2 of Embodiment 1 of the present invention.
  • the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • connection points of the outlets of the first injection pipe 205c and the second injection pipe 205d are made different from those in the above embodiment. That is, the outlet of the first injection pipe 205c is connected to the passage of the upper bearing 109a. The outlet of the second injection pipe 205 d is connected to the passage in the intermediate plate 110.
  • FIG. 8 is a longitudinal sectional view showing a twin rotary compressor 100 according to a third modification of the first embodiment of the present invention.
  • the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • the connection points of the outlets of the first injection pipe 205c and the second injection pipe 205d are made different from those in the above embodiment. That is, the outlet of the first injection pipe 205c or the second injection pipe 205d is connected to one of the first cylinder 107a or the second cylinder 107b with its circumferential position shifted, and the upper bearing 109a or the lower bearing from the inside It is connected to the passage in 109 b and the passage in the middle plate 110 respectively.
  • FIG. 9 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 4 in Embodiment 1 of the present invention.
  • the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • the connection points of the outlets of the first injection pipe 205c and the second injection pipe 205d are made different from those in the above embodiment. That is, the outlet of the first injection pipe 205c is connected to the first cylinder 107a, and is connected to the passage in the upper bearing 109a from the inside thereof. The outlet of the second injection pipe 205d is connected to the second cylinder 107b, and is connected to the passage in the lower bearing 109b from the inside thereof.
  • FIG. 10 is a longitudinal sectional view showing a twin rotary compressor 100 according to the fifth modification of the first embodiment of the present invention.
  • the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • the inner diameters D1 [m] and D2 [m] of the first injection pipe 205c and the second injection pipe 205d are different from each other. That is, the inner diameter D1 of the first injection pipe 205c whose pipe length L1 [m] is shorter than the length L2 [m] than the second injection pipe 205d is smaller than the inner diameter D2 of the second injection pipe 205d. That is, the inner diameters D1 and D2 of the first injection pipe 205c and the second injection pipe 205d may be smaller as the lengths of the first injection pipe 205c and the second injection pipe 205d are shorter.
  • FIG. 11 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 6 in Embodiment 1 of the present invention.
  • the description of the same matters as those of the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • m] is provided with a connection pipe 206 whose inner diameter D is smaller than the inner diameter D of the first injection pipe 205c or the second injection pipe 205d. That is, the inner diameter D3 of the connecting portion of the first injection pipe 205c having a pipe length shorter than that of the second injection pipe 205d with the first injection port 205a1 is the inner diameter D of the first injection pipe 205c and the second injection pipe 205d.
  • a smaller connection tube 206 is provided.
  • FIG. 12 is a longitudinal sectional view showing a twin rotary compressor 100 according to Modification 7 of Embodiment 1 of the present invention.
  • the seventh modification the description of the same matters as those of the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • the seventh modification is a combination of the fifth modification and the sixth modification.
  • the inner diameters D1 and D2 of the first injection pipe 205c and the second injection pipe 205d are different from each other.
  • an inner diameter D3 of the connection portion of at least one of the first injection pipe 205c and the second injection pipe 205d with the first injection port 205a1 or the second injection port 205a2 is the first injection pipe 205c or the second injection pipe 205d.
  • a connecting pipe 206 is provided which is smaller than the inner diameters D1 and D2 of That is, the inner diameter D1 of the first injection pipe 205c whose pipe length L1 is shorter than the length L2 of the second injection pipe 205d is smaller than the inner diameter D2 of the second injection pipe 205d.
  • the inner diameter D3 of the first injection pipe 205c and the second injection pipe 205d is smaller at the connection portion of the first injection pipe 205c with the first injection port 205a1 whose pipe length L1 is shorter than that of the second injection pipe 205d.
  • a connecting tube 206 is provided which is smaller than the inner diameters D1 and D2.
  • FIG. 13 is a longitudinal sectional view showing a twin rotary compressor 100 according to a modification 8 of the first embodiment of the present invention.
  • the eighth modification the description of the same matters as those in the above-described embodiment will be omitted, and only the characteristic portions will be described.
  • the projecting amounts B1 [m] and B2 [m] of the first injection pipe 205c and the second injection pipe 205d that project in the respective injection mufflers 205e are mutually different. It is different. That is, the protrusion amount B1 of the first injection pipe 205c whose pipe length L1 is shorter than the length L2 of the second injection pipe 205d protrudes in the injection muffler 205e is the inside of the injection muffler 205e of the second injection pipe 205d. Longer than the protruding amount B2 that protrudes.
  • the projecting amounts B1 or B2 of the first injection pipe 205c and the second injection pipe 205d, which project in the respective injection mufflers 205e, are longer as the lengths of the first injection pipe 205c and the second injection pipe 205d are shorter. good.
  • twin rotary compressor 100 includes electric motor 103 having stator 103a and rotor 103b.
  • the twin rotary compressor 100 has a first eccentric portion 104b provided on the main shaft 104a fixed to the rotor 103b and a second eccentric portion 104c provided on the main shaft 104a, and is rotated by the electric motor 103.
  • a crankshaft 104 is provided.
  • the twin rotary compressor 100 includes a first piston 105 a provided to the first eccentric portion 104 b.
  • the twin rotary compressor 100 includes a second piston provided to the second eccentric portion 104c.
  • twin rotary compressor 100 In the twin rotary compressor 100, a cylindrical through hole is formed, and the first eccentric portion 104b and the first piston 105a are disposed in the through hole to form a first cylinder 107a in which a first compression chamber 106a is formed. Prepare.
  • the twin rotary compressor 100 is provided with a second cylinder 107b in which a cylindrical through hole is formed, a second eccentric portion 104c and a second piston are disposed in the through hole, and a second compression chamber is formed.
  • the twin rotary compressor 100 includes an injection flow path 205 for injecting the refrigerant from the refrigerant pipe 204 in front of the evaporator 203 in the refrigerant flow direction of the refrigeration cycle circuit into each of the first compression chamber 106 a and the second compression chamber.
  • the injection flow channel 205 has a first injection port 205a1 formed in the first compression chamber 106a.
  • the injection channel 205 has a second injection port 205a2 formed in the second compression chamber.
  • the injection channel 205 has an injection inlet pipe 205 b connected to the refrigerant pipe 204.
  • the injection flow path 205 has a first injection pipe 205c for supplying a refrigerant to the first injection port 205a1.
  • the injection flow path 205 has a second injection pipe 205d for supplying the refrigerant to the second injection port 205a2.
  • the injection flow passage 205 is disposed between the injection inlet pipe 205b and the first injection pipe 205c and the second injection pipe 205d, and is an injection muffler having a diameter larger than the inner diameter of the first injection pipe 205c and the second injection pipe 205d. It has 205e.
  • the first injection pipe 205c and the second injection pipe 205d are separately connected to the injection muffler 205e.
  • the injection inlet pipe 205b is disposed between the first injection pipe 205c and the second injection pipe 205d, and the diameter is enlarged than the inner diameters of the first injection pipe 205c and the second injection pipe 205d. It has an injection muffler 205e.
  • the first injection pipe 205c and the second injection pipe 205d are separately connected to the injection muffler 205e. Therefore, pressure fluctuations and pressure pulsations of the injection refrigerant generated in the first compression chamber 106a and the second compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
  • the injection refrigerant is injected into the first compression chamber 106a and the second compression chamber by the first injection pipe 205c and the second injection pipe 205d, respectively.
  • the pressure difference between the first compression chamber 106 a and the second compression chamber prevents the refrigerant from leaking from one compression chamber to the other compression chamber, and the reduction in compressor performance can be reduced.
  • the first injection pipe 205c and the second injection pipe 205d project upward into the injection muffler 205e at the lower part of the injection muffler 205e.
  • the first injection pipe 205c and the second injection pipe 205d can be easily connected to the injection muffler 205e in terms of processing.
  • the injection inlet pipe 205b is separated from the first injection pipe 205c and the second injection pipe 205d protruding upward into the injection muffler 205e at the upper part of the injection muffler 205e, and is placed in the injection muffler 205e. Protrudes downward.
  • pressure fluctuations and pressure pulsations of the injection refrigerant generated in the first compression chamber 106a and the second compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited.
  • the projecting amounts B, B1 and B2 from which the first injection pipe 205c and the second injection pipe 205d project in the injection muffler 205e have lengths that allow injection of either the gas refrigerant or the liquid refrigerant. Have.
  • the liquid refrigerant can be injected.
  • a gas refrigerant there is no condition like a liquid refrigerant. Thereby, any of the gas refrigerant and the liquid refrigerant can be injected.
  • K ⁇ (L / d 5 ) (Equation 1)
  • ⁇ [%] is a value of ⁇ > 100%
  • the pressure loss ⁇ P when there is a supercharging effect in each of the first injection pipe 205c and the second injection pipe 205d is the first injection pipe Pressure loss Pbase [Pa] when there is no supercharging effect in each of 205c and the second injection pipe 205d is divided and multiplied by 100, and 100% in each of the first injection pipe 205c and the second injection pipe 205d If there is a supercharging effect that exceeds.
  • L [m] is the length of each of the first injection pipe 205c or the second injection pipe 205d.
  • K [kg ⁇ m 3 / (s 2 ⁇ Pa)] is a coefficient having correlation with ⁇ , ⁇ , Q, Pbase, in which J ⁇ 100 / Pbase is replaced.
  • J [kg ⁇ m 3 / s 2 ] is a coefficient having correlation with ⁇ , ⁇ , and Q, in which (8 / ⁇ 2 ⁇ ⁇ ⁇ ⁇ ⁇ Q 2 ) is replaced.
  • the pressure fluctuation and the pressure pulsation of the injection refrigerant generated in the compression chamber by the injection muffler 205e can be absorbed from each of the first injection pipe 205c and the second injection pipe 205d.
  • the correlation between the length L of each of the first injection pipe 205c or the second injection pipe 205d and the inner diameter d of each of the first injection pipe 205c or the second injection pipe 205d with the supercharging rate ⁇ can be designed such that the supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited.
  • the twin rotary compressor 100 is highly efficient. For example, in the twin rotary compressor 100 of 2 to 10 HP, by setting the length L to 20 to 850 mm and the inner diameter d to ⁇ 1 to ⁇ 15 mm, a configuration in which the supercharging ratio ⁇ exceeds 100% can be suitably designed. And the above-mentioned supercharging effect can be exhibited suitably.
  • twin rotary compressor 100 when the maximum value of ⁇ obtained by the combination of L and d is ⁇ max, twin rotary compressor 100 can obtain ⁇ in the range of ( ⁇ max + 1) / 2 ⁇ ⁇ ⁇ ⁇ max.
  • a first injection pipe 205c and a second injection pipe 205d having a combination of L and d are provided.
  • the length L of each of the first injection pipe 205c or the second injection pipe 205d and the inner diameter d of each of the first injection pipe 205c or the second injection pipe 205d indicate the flow rate of the injection refrigerant. It can be designed to a size that can increase the supercharging effect more effectively. Therefore, the pressure fluctuation and the pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and the supercharging effect of increasing the flow rate of the injection refrigerant can be more effectively exhibited. And heating capacity can be improved. Therefore, the twin rotary compressor 100 is highly efficient.
  • the connection outlet heights to the two injection ports of the two injection mufflers are different, and the inner diameters of the two injection pipes coincide.
  • the supercharging effect of one injection pipe is optimally adjusted, the supercharging effect of the other injection pipe is deteriorated.
  • the supercharging effect of both the first injection pipe 205c and the second injection pipe 205d is enhanced.
  • the first embodiment when the respective inner diameters D1 and D2 of the first injection pipe 205c and the second injection pipe 205d are smaller as the lengths of the first injection pipe 205c and the second injection pipe 205d are shorter, the first The supercharging effects of both the injection pipe 205c and the second injection pipe 205d can be optimized.
  • an inner diameter D3 of the connection portion of at least one of the first injection pipe 205c or the second injection pipe 205d to the first injection port 205a1 or the second injection port 205a2 is the first injection pipe 205c or If the connecting pipe 206 smaller than the inner diameter D1 or D2 of the second injection pipe 205d is provided, the supercharging effect of both the first injection pipe 205c and the second injection pipe 205d can be optimized.
  • the condition that the injection muffler, the inlet of the first injection pipe and the inlet of the second injection pipe are provided at a position lower than the container height is there. That is, the upper limit of L is determined by the closed container. Also, the lower limit of d is determined by the required bending resistance. According to this configuration, when L / d 5 is increased, connection pipes 206 having different inner diameters D3 are provided in at least one of the connection outlets of the first injection pipe 205c and the second injection pipe 205d when the supercharging effect is enhanced. Can improve the supercharging effect.
  • the first injection pipe 205c and the second injection pipe 205d which protrude in the respective injection mufflers 205e, are different from each other, the first injection pipe 205c and The supercharging effect of both of the two injection pipes 205d can be optimized.
  • the connection outlet heights to the two injection ports of the two injection mufflers are different, and the inner diameters of the two injection pipes coincide.
  • the supercharging effect of one injection pipe is optimally adjusted, the supercharging effect of the other injection pipe is deteriorated.
  • the supercharging effect of both the first injection pipe 205c and the second injection pipe 205d is enhanced.
  • the protruding amount B1 or B2 of each of the first injection pipe 205c and the second injection pipe 205d protruding in the injection muffler 205e is the length of the first injection pipe 205c and the second injection pipe 205d. If the length is shorter, the supercharging effect of both the first injection pipe 205c and the second injection pipe 205d can be optimized.
  • twin rotary compressor 100 has suction muffler 113 in the pipe for supplying the refrigerant to twin rotary compressor 100.
  • the volume of the injection muffler 205 e is 5% or more of the volume of the suction muffler 113.
  • the relationship between the refrigerant sucked into the twin rotary compressor 100 and the injection refrigerant is not impaired. Therefore, pressure fluctuation and pressure pulsation of the injection refrigerant generated in the compression chamber can be absorbed, and a supercharging effect of increasing the flow rate of the injection refrigerant can be exhibited. Therefore, the twin rotary compressor 100 is highly efficient.
  • the injection muffler 205 e is fixed to the outer peripheral portion of the hermetic container 101 of the twin rotary compressor 100.
  • the injection muffler 205e is fixed to the outer peripheral portion of the hermetic container 101 of the twin rotary compressor 100, the piping vibration of the first and second injection pipes 205c and 205d can be suppressed.
  • the injection muffler 205e can be handled as part of the twin rotary compressor 100 and is easy to handle.
  • the refrigeration cycle apparatus 200 includes the twin rotary compressor 100 according to the first embodiment.
  • the refrigeration cycle apparatus 200 including the twin rotary compressor 100 can absorb pressure fluctuations and pressure pulsations of the injection refrigerant generated in the first compression chamber 106a and the second compression chamber, and the flow rate of the injection refrigerant The supercharge effect to increase can be exhibited. Therefore, the refrigeration cycle apparatus 200 including the twin rotary compressor 100 is highly efficient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

ツインロータリー圧縮機は、電動機と、クランク軸と、ピストンと、シリンダと、外部の冷媒配管から圧縮室に冷媒を注入するインジェクション流路と、を備え、インジェクション流路は、第1インジェクションポートと、第2インジェクションポートと、インジェクション入口管と、第1インジェクション管と、第2インジェクション管と、インジェクションマフラーと、を有し、第1インジェクション管及び第2インジェクション管は、それぞれ別々にインジェクションマフラーに接続される。

Description

ツインロータリー圧縮機及び冷凍サイクル装置
 本発明は、インジェクション流路を備えるツインロータリー圧縮機及び冷凍サイクル装置に関する。
 従来、ロータリー圧縮機は、密閉容器内の上部に回転子及び固定子からなる電動機を搭載していた。そして、回転子に固定されたクランク軸によって電動機の回転が下部に設けられた偏芯部に伝達される。偏芯部には、ピストンが設けられ、クランク軸が回転することによりピストンが偏心運動して圧縮室の体積が縮小する。これにより、ロータリー圧縮機では、圧縮室内にて冷媒が圧縮される。
 また、圧縮室内には、インジェクションポートが形成されている場合がある。この場合には、中間圧の液又はガス冷媒は、インジェクションポートに接続されたインジェクション流路から圧縮室にインジェクションされる。
 ここで、インジェクション流路において、インジェクションマフラーを有する技術が知られている(たとえば、特許文献1参照)。インジェクションマフラーは、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動を吸収し、インジェクションする冷媒を安定して円滑に供給できるとされている。
実開平1-58046号公報
 ところで、インジェクションマフラーを適用したロータリー圧縮機の場合には、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるだけでなく、インジェクション冷媒の流量を増大させる過給効果が発揮されることが見出された。特に、ツインロータリー圧縮機にて、2つの圧縮室に対してそれぞれ過給効果が得られることが見出された。
 本発明は、上記課題を解決するためのものであり、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる高効率なツインロータリー圧縮機及び冷凍サイクル装置を提供することを目的とする。
 本発明に係るツインロータリー圧縮機は、固定子及び回転子を有する電動機と、前記回転子に固定された主軸に設けられた第1偏芯部と前記主軸に設けられた第2偏芯部とを有し、前記電動機によって回転させられるクランク軸と、前記第1偏芯部に設けられた第1ピストンと、前記第2偏芯部に設けられた第2ピストンと、円筒状の貫通孔が形成され、該貫通孔に前記第1偏芯部と前記第1ピストンとが配置されて第1圧縮室が形成される第1シリンダと、円筒状の貫通孔が形成され、該貫通孔に前記第2偏芯部と前記第2ピストンとが配置されて第2圧縮室が形成される第2シリンダと、を備えたロータリー圧縮機であって、外部の冷媒配管から前記第1圧縮室及び前記第2圧縮室のそれぞれに冷媒を注入するインジェクション流路を備え、前記インジェクション流路は、前記第1圧縮室に形成された第1インジェクションポートと、前記第2圧縮室に形成された第2インジェクションポートと、前記冷媒配管に接続されたインジェクション入口管と、前記第1インジェクションポートに冷媒を供給する第1インジェクション管と、前記第2インジェクションポートに冷媒を供給する第2インジェクション管と、前記インジェクション入口管と前記第1インジェクション管及び前記第2インジェクション管との間に配置されて前記第1インジェクション管及び前記第2インジェクション管の内径よりも拡径されたインジェクションマフラーと、を有し、前記第1インジェクション管及び前記第2インジェクション管は、それぞれ別々に前記インジェクションマフラーに接続されるものである。
 本発明に係る冷凍サイクル装置は、上記のツインロータリー圧縮機を備えるものである。
 本発明に係るツインロータリー圧縮機及び冷凍サイクル装置によれば、インジェクション入口管と第1インジェクション管及び第2インジェクション管との間に配置されて第1インジェクション管及び第2インジェクション管の内径よりも拡径されたインジェクションマフラーを有し、第1インジェクション管及び第2インジェクション管は、それぞれ別々にインジェクションマフラーに接続される。したがって、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機が高効率となる。
本発明の実施の形態1に係るツインロータリー圧縮機を適用した冷凍サイクル装置を示す冷媒回路図である。 本発明の実施の形態1に係るツインロータリー圧縮機を示す縦断面図である。 本発明の実施の形態1に係る圧縮室内のインジェクションポートを示す横断面図である。 本発明の実施の形態1に係る100%を超える過給率αとインジェクション管の長さL及び内径dとの関係を示す図である。 本発明の実施の形態1に係る過給率αとインジェクション管の長さL及び内径dとの関係を示す図である。 本発明の実施の形態1における変形例1に係るツインロータリー圧縮機を示す縦断面図である。 本発明の実施の形態1における変形例2に係るツインロータリー圧縮機を示す縦断面図である。 本発明の実施の形態1における変形例3に係るツインロータリー圧縮機を示す縦断面図である。 本発明の実施の形態1における変形例4に係るツインロータリー圧縮機を示す縦断面図である。 本発明の実施の形態1における変形例5に係るツインロータリー圧縮機を示す縦断面図である。 本発明の実施の形態1における変形例6に係るツインロータリー圧縮機を示す縦断面図である。 本発明の実施の形態1における変形例7に係るツインロータリー圧縮機を示す縦断面図である。 本発明の実施の形態1における変形例8に係るツインロータリー圧縮機を示す縦断面図である。
 以下、図面に基づいて本発明の実施の形態について説明する。なお、各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、断面図の図面においては、視認性に鑑みて適宜ハッチングが省略されている。さらに、明細書全文に示す構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。
実施の形態1.
<冷凍サイクル装置200>
 図1は、本発明の実施の形態1に係るツインロータリー圧縮機100を適用した冷凍サイクル装置200を示す冷媒回路図である。
 図1に示すように、冷凍サイクル装置200は、ツインロータリー圧縮機100、凝縮器201、膨張弁202及び蒸発器203を備える。これらツインロータリー圧縮機100、凝縮器201、膨張弁202及び蒸発器203が冷媒配管204で接続されて冷凍サイクル回路を形成している。そして、蒸発器203から流出した冷媒は、ツインロータリー圧縮機100に吸入されて高温高圧となる。高温高圧となった冷媒は、凝縮器201において凝縮されて液体になる。液体となった冷媒は、膨張弁202で減圧膨張されて低温低圧の気液二相となり、気液二相の冷媒が蒸発器203において熱交換される。
 冷凍サイクル装置200は、冷凍サイクル回路の冷媒流通方向にて蒸発器203手前、更には膨張弁202手前の冷媒配管204から圧縮室に冷媒を注入するインジェクション流路205を備える。インジェクション流路205の詳細については、後述する。
 後述のツインロータリー圧縮機100は、このような冷凍サイクル装置200に適用できる。なお、冷凍サイクル装置200としては、たとえば空気調和装置、冷凍装置又は給湯器などが挙げられる。
<ツインロータリー圧縮機100の構成>
 図2は、本発明の実施の形態1に係るツインロータリー圧縮機100を示す縦断面図である。図3は、本発明の実施の形態1に係る圧縮室内のインジェクションポートを示す横断面図である。
 図2に示すように、ツインロータリー圧縮機100は、上下両端部を閉塞された筒状の密閉容器101を備える。密閉容器101は、筒状部材101aと、筒状部材101aの上端部を塞ぐ椀状の上端閉塞部材101bと、筒状部材101aの下端部を塞ぐ椀状の下端閉塞部材101cと、を有する。密閉容器101は、台座102に据付固定されている。
 密閉容器101内の上部には、電動機103が配置されている。電動機103は、固定子103a及び回転子103bを有する。電動機103の固定子103aは、円筒状であり、密閉容器101の内周壁部に固定されている。回転子103bは、円柱状であり、固定子103aの中心に形成される中空部分に水平方向かつ円周方向にて回転自在に配置されている。
 密閉容器101内には、電動機103によって回転させられるクランク軸104が上下方向に延びて配置されている。クランク軸104は、主軸104aと、第1偏芯部104bと、第2偏芯部104cと、副軸104dと、を有する。
 主軸104aは、回転子103bに固定されている。主軸104aが回転子103bからの回転駆動力を第1偏芯部104b及び第2偏芯部104cに伝達する。第1偏芯部104bは、第2偏芯部104cよりも上方の主軸104a側の主軸104aに設けられ、主軸104aと中心線を偏心させ、主軸104aよりも径が大きい。第2偏芯部104cは、第1偏芯部104bよりも下方の副軸104d側の主軸104aに設けられ、主軸104a及び第1偏芯部104bと中心線を偏心させ、主軸104aよりも径が大きい。
 図3に示すように、第1偏芯部104bには、第1ピストン105aが設けられている。第1ピストン105aは、第1圧縮室106aを仕切る仕切り部材105a1を有する。
 第1偏芯部104b及び第1ピストン105aは、円筒状の貫通孔が形成された第1シリンダ107a内に配置されている。第1シリンダ107aには、貫通孔に第1偏芯部104bと第1ピストン105aとが配置されて第1圧縮室106aが形成される。第1圧縮室106aは、密閉された円柱空間である。第1シリンダ107aには、貫通孔107a1を介して第1流入冷媒配管108aが接続されている。
 また、図3と同様に、第2偏芯部104cには、図示しない第2ピストンが設けられている。第2ピストンは、第2圧縮室を仕切る仕切り部材を有する。
 第2偏芯部104c及び第2ピストンは、第1シリンダ107aよりも下方にて、円筒状の貫通孔が形成された第2シリンダ107b内に配置されている。第2シリンダ107bには、貫通孔に第2偏芯部104cと第2ピストンとが配置されて第2圧縮室が形成される。第2圧縮室は、密閉された円柱空間である。第2シリンダ107bには、貫通孔を介して第2流入冷媒配管108bが接続されている。
 第1シリンダ107aの上端には、クランク軸104を摺動自在に保持しつつ、第1圧縮室106aの上壁部を構成する上軸受109aが設けられている。
 第2シリンダ107bの下端には、クランク軸104を摺動自在に保持しつつ、第2圧縮室の下壁部を構成する下軸受109bが設けられている。
 第1シリンダ107aと第2シリンダ107bとの間には、第1圧縮室106aの下壁部及び第2圧縮室の上壁部を構成し、第1圧縮室106aと第2圧縮室とを仕切る中間板110が設けられている。
 上軸受109aの上方には、上軸受109aを覆う上吐出マフラー111aが設けられている。上吐出マフラー111aは、第1シリンダ107aの圧縮された冷媒の排出口107a2を囲っている。下軸受109bの下方には、下軸受109bを覆う下吐出マフラー111bが設けられている。下吐出マフラー111bは、第2シリンダ107bの圧縮された冷媒の排出口を囲っている。上吐出マフラー111a及び下吐出マフラー111bは、密閉容器101内の内部空間の共振によって増幅される騒音を低減させる。上吐出マフラー111a及び下吐出マフラー111bから排出された圧縮冷媒は、密閉容器101の上部に設けられた吐出管112から冷凍サイクル回路の冷媒配管204に供給される。
 第1流入冷媒配管108a及び第2流入冷媒配管108bは、吸入マフラー113内に双方の流入口を差し込んでいる。吸入マフラー113は、冷凍サイクル回路の冷媒配管204に接続され、冷媒を流入させる。吸入マフラー113は、密閉容器101の外周に固定されている。
<ツインロータリー圧縮機100の動作>
 密閉容器101の底部には、冷凍機油が溜まっている。底部に溜まった冷凍機油は、クランク軸104の回転によってクランク軸104に設けられた中空孔からクランク軸104の回転を利用した遠心ポンプの要領で吸い上げられる。吸い上げられた冷凍機油は、クランク軸104の中空孔から外周部に向かって開いた給油孔を通って各摺動部に循環される。これにより、機械部分は、冷凍機油によってシールされる。このため、摺動部品であるクランク軸104、第1ピストン105a、第2ピストン、第1シリンダ107a、第2シリンダ107b、上軸受109a、下軸受109b、及び、中間板110が直接接触せず、損傷が防止され、更に冷媒の漏れが防止される。
 クランク軸104の上部には、図示しない油分離器が嵌められている。油分離器は、吐出される冷媒と一緒に冷凍機油を吐出管112から機外に出て行くことを防止する。油分離器は、吐出管112に向かって流れる冷媒と冷凍機油との混合流体に対して流路を塞ぎ、冷媒と冷凍機油とを衝突分離させ、機外への冷凍機油の流出を抑制する。
 ツインロータリー圧縮機100では、モータ部分の回転子103bに固定されたクランク軸104が電動機103によって回転する。これにより、第1偏芯部104b及び第2偏芯部104cと、第1偏芯部104b及び第2偏芯部104cの外周部にそれぞれ取り付けられた第1ピストン105a及び第2ピストンと、が偏芯回転する。そして、第1圧縮室106a及び第2圧縮室の容積が縮小され、冷媒が圧縮されて高圧に変化する。
<インジェクション流路205の詳細>
 図1に示すように、インジェクション流路205は、冷凍サイクル回路の冷媒流通方向にて蒸発器203手前、更には膨張弁202手前の冷媒配管204から第1圧縮室106a及び第2圧縮室のそれぞれに冷媒を注入する。
 インジェクション流路205は、第1インジェクションポート205a1と、第2インジェクションポート205a2と、インジェクション入口管205bと、第1インジェクション管205cと、第2インジェクション管205dと、インジェクションマフラー205eと、第1機内通路205f1と、第2機内通路205f2と、を有する。
 図2、図3に示すように、第1インジェクションポート205a1は、上軸受109aの一部を開口して第1圧縮室106aに形成されている。第2インジェクションポート205a2は、下軸受109bの一部を開口して第2圧縮室に形成されている。
 図2に示すように、インジェクション流路205を構成するインジェクション入口管205bは、冷凍サイクル回路の冷媒配管204に接続されるとともに、インジェクションマフラー205eに接続されている。インジェクション入口管205bは、インジェクションマフラー205eの上部にて、インジェクションマフラー205e内に上方に突出した第1インジェクション管205c及び第2インジェクション管205dと離間してインジェクションマフラー205e内に下方に突出する。
 第1インジェクション管205cは、インジェクションマフラー205eに流入口を差し込まれ、第1機内通路205f1に接続され、第1インジェクションポート205a1に冷媒を供給する。第2インジェクション管205dは、インジェクションマフラー205eに流入口を差し込まれ、第2機内通路205f2に接続され、第2インジェクションポート205a2に冷媒を供給する。第1インジェクション管205c及び第2インジェクション管205dは、それぞれ別々にインジェクションマフラー205eに接続されている。第2インジェクション管205dは、第1インジェクション管205cよりも密閉容器101の下部に接続されるため、第1インジェクション管205cよりも長い。
 インジェクションマフラー205eは、インジェクション入口管205bと第1インジェクション管205c及び第2インジェクション管205dとの間に配置されている。インジェクションマフラー205eの内径は、第1インジェクション管205c及び第2インジェクション管205dの内径よりも拡径されている。これにより、インジェクションマフラー205eの円形底部には、第1インジェクション管205c及び第2インジェクション管205dが2か所にて差し込まれている。
 第1インジェクション管205c及び第2インジェクション管205dは、インジェクションマフラー205eの下部にてインジェクションマフラー205e内に上方に突出している。第1インジェクション管205c及び第2インジェクション管205dがインジェクションマフラー205e内にて突出する突出し量B[m]は、インジェクションマフラー205e内の上下方向長さA[m]の10%以下である。これにより、第1インジェクション管205c及び第2インジェクション管205dは、ガス冷媒及び液冷媒のいずれでもインジェクションできる適切な長さを有してインジェクションマフラー205e内にて突出する。
 インジェクションマフラー205eは、吸入マフラー113と同様に密閉容器101の外周部に固定されている。インジェクションマフラー205eの容積は、吸入マフラー113の容積の5%以上である。インジェクションマフラー205eの容積は、吸入冷媒とインジェクション冷媒との関係に基づくものである。
 第1機内通路205f1は、第1インジェクション管205cと第1インジェクションポート205a1とを繋ぐ。第1機内通路205f1は、上軸受109a内部に貫通孔などとして形成されている。第2機内通路205f2は、第2インジェクション管205dと第2インジェクションポート205a2とを繋ぐ。第2機内通路205f2は、下軸受109b内部に貫通孔などとして形成されている。
<インジェクション流路205の動作>
 冷凍サイクル回路からインジェクション流路205を流通する冷媒は、インジェクション入口管205bを通ってインジェクションマフラー205e内に流入する。インジェクションマフラー205e内に流入した冷媒は、インジェクションマフラー205e内にて第1インジェクション管205c及び第2インジェクション管205dに供給される。第1インジェクション管205cに供給された冷媒は、ツインロータリー圧縮機100の第1機内通路205f1を経て第1インジェクションポート205a1から第1圧縮室106aの内部に液又はガス冷媒としてインジェクションされる。第2インジェクション管205dに供給された冷媒は、ツインロータリー圧縮機100の第2機内通路205f2を経て第2インジェクションポート205a2から第2圧縮室の内部に液又はガス冷媒としてインジェクションされる。
 このとき、インジェクションマフラー205e内の圧力は、冷凍サイクル回路からのインジェクション圧力と、第1圧縮室106a及び第2圧縮室に供給される第1インジェクション管205c及び第2インジェクション管205dの圧力と、の中間圧になっている。このため、第1圧縮室106aと第2圧縮室との差圧による冷媒の漏れが発生し難い状態である。
 第1インジェクション管205c及び第2インジェクション管205dの圧力は、第1ピストン105a及び第2ピストンの位相によって変動している。しかし、第1インジェクション管205c及び第2インジェクション管205dは、内圧を中間圧に保っているインジェクションマフラー205eを介してインジェクション入口管205bと接続されている。このため、インジェクション入口管205bの圧力が一定に保たれることにより、インジェクション流路205からインジェクションされる冷媒が安定し、損失が少ない。
<インジェクション流路205の特徴>
 上述に加え、インジェクションマフラー205eの形状あるいは第1インジェクション管205c及び第2インジェクション管205dの長さ及び内径の寸法が指定して設計される。これにより、インジェクション冷媒の吸入時に過給効果が得られる。その結果、インジェクション冷媒の流量が増大し、インジェクション冷媒が高効率にインジェクションできる。
 ここで、発明者らは、以下の知見を得た。すなわち、インジェクション冷媒の過給は、冷媒を吸入する第1インジェクション管205c及び第2インジェクション管205dの入口と出口との圧力変動が重なって増幅することによって引き起こされる。第1インジェクション管205c及び第2インジェクション管205dの入口と出口との圧力変動がそれぞれ異なる要因は、冷媒がインジェクションマフラー205e、第1インジェクション管205c又は第2インジェクション管205dを通過する際に発生する管摩擦損失に起因する。そのため、過給率は、管摩擦損失に起因する圧力損失の式と相関関係がある。
 第1インジェクション管205c又は第2インジェクション管205dの管摩擦係数は、λと定義される。第1インジェクション管205c又は第2インジェクション管205dのそれぞれの長さは、L[m]と定義される。ここで、長さLは、第1インジェクション管205c又は第2インジェクション管205dがインジェクションマフラー205eから外部に露出した先端部と密閉容器101から外部に露出した先端部との間の長さである。第1インジェクション管205c又は第2インジェクション管205dは、インジェクションマフラー205e及び密閉容器101内に実際には差し込まれているが、ここでの長さLは外部に露出する部分の中心線上の長さである。第1インジェクション管205c又は第2インジェクション管205dのそれぞれの内径は、d[m]と定義される。第1インジェクション管205c又は第2インジェクション管205dのそれぞれを流れる冷媒流速は、v[m/s]と定義される。第1インジェクション管205c又は第2インジェクション管205dのそれぞれを流れる冷媒の密度は、ρ[kg/m]と定義される。このとき、第1インジェクション管205c又は第2インジェクション管205dのそれぞれの出口での圧力損失△P[Pa]は、
 △P=λ×(L/d)×1/2×ρ×vとなる。
 ここで、第1インジェクション管205c又は第2インジェクション管205dのそれぞれを流れる冷媒流量は、Q[m/s]と定義される。第1インジェクション管205c又は第2インジェクション管205dのそれぞれの管断面積は、(d/2)×πと定義される。その場合には、冷媒流速v=Q/((d/2)×π)であることから、△Pの式のvが置き換えられ、△Pは、
 △P=(L/d)×(8/π×λ×ρ×Q)となる。
 さらに、(8/π×λ×ρ×Q)は、λ、ρ、Qに相関のある係数J[kg・m/s]と置き換えられると、△Pは、
 △P=J×(L/d)となる。
 ここで、△Pに、第1インジェクション管205c又は第2インジェクション管205dのそれぞれにて過給効果が無い場合の圧力損失Pbase[Pa]を除算し、100を乗算し、第1インジェクション管205c又は第2インジェクション管205dのそれぞれにて過給効果がある過給率α[%]が算出されると、αは、
 α=△P/Pbase×100=J×100/Pbase×(L/d)となる。
 なお、過給率αは、過給効果が無い場合を100%未満とした場合よりも大きい100%を超える増加率として求められる。
 J×100/Pbaseは、λ、ρ、Q、Pbaseに相関のある係数K[kg・m/(s・Pa)]と置き換えられると、
 α=K×(L/d)・・・(式1)となる。
 図4は、本発明の実施の形態1に係る100%を超える過給率αと第1インジェクション管205c及び第2インジェクション管205dの長さL及び内径dとの関係を示す図である。図4に示すように、過給率αが変動する中で過給率αが100%を超えるLとdとの組み合わせを有した第1インジェクション管205c及び第2インジェクション管205dを備えるように設計される。
 そして、αとL、dとは、係数Kを用いた相関関係がある。その結果、次の関係式(式2)、(式3)を用いて、第1、第2インジェクション管205c、205dの長さL及び内径dが設計できる。
 L=(α×d)/K・・・(式2)
 d=(K×L/α)1/5・・・(式3)
 図5は、本発明の実施の形態1に係る過給率αと第1、第2インジェクション管205c、205dの長さL及び内径dとの関係を示す図である。図5より、更に過給効果を得るため、第1、第2インジェクション管205c、205dの長さL及び内径dは、次の関係を満たすとより好ましい。
 Lとdとの組み合わせによって得られるαの最大値をαmaxとしたとき、(αmax+1)/2≦α≦αmaxの範囲のαが得られるLとdとの組み合わせを有した第1インジェクション管205c及び第2インジェクション管205dを備えるように設計される。
 そして、Lは、(式1)を変形した上記関係式(式2)を満たしつつ、(αmax+1)/2≦α≦αmaxの範囲である。
 dは、(式1)を変形した上記(式3)を満たしつつ、(αmax+1)/2≦α≦αmaxの範囲である。
<実施例>
 第1インジェクション管205cの長さLは、L=0.169[m]である。第2インジェクション管205dの長さLは、L=0.211[m]である。第1、第2インジェクション管205c、205dの内径dは、d=0.004[m]である。インジェクションマフラー205eの容積は、0.00073[m]である。吸入マフラー113の容積は、0.00731[m]である。このような場合に、上述の関係式(式1)及び各種構成から以下のようになる。
 すなわち、第1インジェクション管205cでの過給率αは、α=122.7%である。第2インジェクション管205dでの過給率αは、α=123.7%である。これらのように、過給効果を発揮する条件を満たす。また、インジェクションマフラー205eの容積は、吸入マフラー113の容積の10%となり、吸入冷媒とインジェクション冷媒との関係に必要な条件を満たす。以上により、この場合には、第1圧縮室106a及び第2圧縮室で発生する圧力変動並びにインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。
<変形例1>
 図6は、本発明の実施の形態1における変形例1に係るツインロータリー圧縮機100を示す縦断面図である。変形例1では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
 図6に示すように、ツインロータリー圧縮機100は、第1インジェクション管205c及び第2インジェクション管205dの出口の接続箇所を上記実施の形態と異ならせている。すなわち、第1インジェクション管205cの出口は、中間板110内の通路に接続されている。第2インジェクション管205dの出口は、下軸受109bの通路に接続されている。
<変形例2>
 図7は、本発明の実施の形態1における変形例2に係るツインロータリー圧縮機100を示す縦断面図である。変形例2では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
 図7に示すように、ツインロータリー圧縮機100は、第1インジェクション管205c及び第2インジェクション管205dの出口の接続箇所を上記実施の形態と異ならせている。すなわち、第1インジェクション管205cの出口は、上軸受109aの通路に接続されている。第2インジェクション管205dの出口は、中間板110内の通路に接続されている。
<変形例3>
 図8は、本発明の実施の形態1における変形例3に係るツインロータリー圧縮機100を示す縦断面図である。変形例3では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
 図8に示すように、ツインロータリー圧縮機100は、第1インジェクション管205c及び第2インジェクション管205dの出口の接続箇所を上記実施の形態と異ならせている。すなわち、第1インジェクション管205c又は第2インジェクション管205dの出口は、第1シリンダ107a又は第2シリンダ107bのどちらか一方に周方向の位置をずらせて接続され、その内部から上軸受109a又は下軸受109b内の通路及び中間板110内の通路にそれぞれ接続されている。
<変形例4>
 図9は、本発明の実施の形態1における変形例4に係るツインロータリー圧縮機100を示す縦断面図である。変形例4では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
 図9に示すように、ツインロータリー圧縮機100は、第1インジェクション管205c及び第2インジェクション管205dの出口の接続箇所を上記実施の形態と異ならせている。すなわち、第1インジェクション管205cの出口は、第1シリンダ107aに接続され、その内部から上軸受109a内の通路に接続されている。第2インジェクション管205dの出口は、第2シリンダ107bに接続され、その内部から下軸受109b内の通路に接続されている。
<変形例5>
 図10は、本発明の実施の形態1における変形例5に係るツインロータリー圧縮機100を示す縦断面図である。変形例5では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
 図10に示すように、ツインロータリー圧縮機100では、第1インジェクション管205c及び第2インジェクション管205dのそれぞれの内径D1[m]及びD2[m]は、互いに異なっている。すなわち、第2インジェクション管205dよりも配管の長さL1[m]が長さL2[m]よりも短い第1インジェクション管205cの内径D1は、第2インジェクション管205dの内径D2よりも小さい。つまり、第1インジェクション管205c及び第2インジェクション管205dのそれぞれの内径D1及びD2は、第1インジェクション管205c及び第2インジェクション管205dの長さが短いほど小さいと良い。
<変形例6>
 図11は、本発明の実施の形態1における変形例6に係るツインロータリー圧縮機100を示す縦断面図である。変形例6では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
 図11に示すように、ツインロータリー圧縮機100では、第1インジェクション管205c又は第2インジェクション管205dの少なくとも一方の第1インジェクションポート205a1又は第2インジェクションポート205a2との接続部分には、内径D3[m]が第1インジェクション管205c又は第2インジェクション管205dの内径Dよりも小さい接続管206が設けられている。すなわち、第2インジェクション管205dよりも配管の長さが短い第1インジェクション管205cの第1インジェクションポート205a1との接続部分には、内径D3が第1インジェクション管205c及び第2インジェクション管205dの内径Dよりも小さい接続管206が設けられている。
<変形例7>
 図12は、本発明の実施の形態1における変形例7に係るツインロータリー圧縮機100を示す縦断面図である。変形例7では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。変形例7は、変形例5及び変形例6の組み合わせである。
 図12に示すように、ツインロータリー圧縮機100では、第1インジェクション管205c及び第2インジェクション管205dのそれぞれの内径D1及びD2は、互いに異なっている。加えて、第1インジェクション管205c又は第2インジェクション管205dの少なくとも一方の第1インジェクションポート205a1又は第2インジェクションポート205a2との接続部分には、内径D3が第1インジェクション管205c又は第2インジェクション管205dの内径D1及びD2よりも小さい接続管206が設けられている。すなわち、第2インジェクション管205dよりも配管の長さL1が長さL2よりも短い第1インジェクション管205cの内径D1は、第2インジェクション管205dの内径D2よりも小さい。加えて、第2インジェクション管205dよりも配管の長さL1が短い第1インジェクション管205cの第1インジェクションポート205a1との接続部分には、内径D3が第1インジェクション管205c及び第2インジェクション管205dの内径D1及びD2よりも小さい接続管206が設けられている。
<変形例8>
 図13は、本発明の実施の形態1における変形例8に係るツインロータリー圧縮機100を示す縦断面図である。変形例8では、上記実施の形態と同様な事項の説明を省略し、その特徴部分だけを説明する。
 図13に示すように、ツインロータリー圧縮機100では、第1インジェクション管205c及び第2インジェクション管205dのそれぞれのインジェクションマフラー205e内にて突出する突出し量B1[m]及びB2[m]は、互いに異なる。すなわち、第2インジェクション管205dよりも配管の長さL1が長さL2よりも短い第1インジェクション管205cのインジェクションマフラー205e内にて突出する突出し量B1は、第2インジェクション管205dのインジェクションマフラー205e内にて突出する突出し量B2よりも長い。つまり、第1インジェクション管205c及び第2インジェクション管205dのそれぞれのインジェクションマフラー205e内にて突出する突出し量B1又はB2は、第1インジェクション管205c及び第2インジェクション管205dの長さが短いほど長いと良い。
<実施の形態1の効果>
 実施の形態1によれば、ツインロータリー圧縮機100は、固定子103a及び回転子103bを有する電動機103を備える。ツインロータリー圧縮機100は、回転子103bに固定された主軸104aに設けられた第1偏芯部104bと主軸104aに設けられた第2偏芯部104cとを有し、電動機103によって回転させられるクランク軸104を備える。ツインロータリー圧縮機100は、第1偏芯部104bに設けられた第1ピストン105aを備える。ツインロータリー圧縮機100は、第2偏芯部104cに設けられた第2ピストンを備える。ツインロータリー圧縮機100は、円筒状の貫通孔が形成され、該貫通孔に第1偏芯部104bと第1ピストン105aとが配置されて第1圧縮室106aが形成される第1シリンダ107aを備える。ツインロータリー圧縮機100は、円筒状の貫通孔が形成され、該貫通孔に第2偏芯部104cと第2ピストンとが配置されて第2圧縮室が形成される第2シリンダ107bを備える。ツインロータリー圧縮機100は、冷凍サイクル回路の冷媒流通方向にて蒸発器203手前の冷媒配管204から第1圧縮室106a及び第2圧縮室のそれぞれに冷媒を注入するインジェクション流路205を備える。インジェクション流路205は、第1圧縮室106aに形成された第1インジェクションポート205a1を有する。インジェクション流路205は、第2圧縮室に形成された第2インジェクションポート205a2を有する。インジェクション流路205は、冷媒配管204に接続されたインジェクション入口管205bを有する。インジェクション流路205は、第1インジェクションポート205a1に冷媒を供給する第1インジェクション管205cを有する。インジェクション流路205は、第2インジェクションポート205a2に冷媒を供給する第2インジェクション管205dを有する。インジェクション流路205は、インジェクション入口管205bと第1インジェクション管205c及び第2インジェクション管205dとの間に配置されて第1インジェクション管205c及び第2インジェクション管205dの内径よりも拡径されたインジェクションマフラー205eを有する。第1インジェクション管205c及び第2インジェクション管205dは、それぞれ別々にインジェクションマフラー205eに接続されている。
 この構成によれば、インジェクション入口管205bと第1インジェクション管205c及び第2インジェクション管205dとの間に配置されて第1インジェクション管205c及び第2インジェクション管205dのそれぞれの内径よりも拡径されたインジェクションマフラー205eを有する。そして、第1インジェクション管205c及び第2インジェクション管205dは、それぞれ別々にインジェクションマフラー205eに接続されている。したがって、第1圧縮室106a及び第2圧縮室で発生する圧力変動並びにインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。
 また、インジェクションマフラー205eから別々に第1インジェクション管205c及び第2インジェクション管205dによって第1圧縮室106a及び第2圧縮室にそれぞれインジェクション冷媒がインジェクションされる。これにより、第1圧縮室106a及び第2圧縮室の圧力差によって冷媒が一方の圧縮室から他方の圧縮室に漏れることが抑制され、圧縮機性能の低下が低減できる。
 実施の形態1によれば、第1インジェクション管205c及び第2インジェクション管205dは、インジェクションマフラー205eの下部にてインジェクションマフラー205e内に上方に突出している。
 この構成によれば、第1インジェクション管205c及び第2インジェクション管205dがインジェクションマフラー205eに加工上容易に接続できる。
 実施の形態1によれば、インジェクション入口管205bは、インジェクションマフラー205eの上部にて、インジェクションマフラー205e内に上方に突出した第1インジェクション管205c及び第2インジェクション管205dと離間してインジェクションマフラー205e内に下方に突出している。
 この構成によれば、第1圧縮室106a及び第2圧縮室で発生する圧力変動並びにインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。
 実施の形態1によれば、第1インジェクション管205c及び第2インジェクション管205dがインジェクションマフラー205e内にて突出する突出し量B、B1及びB2は、ガス冷媒及び液冷媒のいずれでもインジェクションできる長さを有する。
 この構成によれば、液冷媒がインジェクションマフラー205e内の下層に落ちても、液冷媒のインジェクションが実施できる。また、ガス冷媒のインジェクションでは、液冷媒のような条件はない。これにより、ガス冷媒及び液冷媒のいずれでもインジェクションできる。
 実施の形態1によれば、上記のツインロータリー圧縮機100において、下記関係式(式1)で表される過給率α[%]であって、過給率αが100%を超える下記L[m]と下記d[m]との組み合わせを有した第1インジェクション管205c及び第2インジェクション管205dを備える。
 α=K×(L/d)・・・(式1)
 ここで、α[%]は、α>100%の値であり、第1インジェクション管205c及び第2インジェクション管205dのそれぞれにて過給効果がある場合の圧力損失△Pに、第1インジェクション管205c及び第2インジェクション管205dのそれぞれにて過給効果が無い場合の圧力損失Pbase[Pa]を除算し、100を乗算し、第1インジェクション管205c及び第2インジェクション管205dのそれぞれにて100%を超える過給効果がある場合の過給率である。
 L[m]は、第1インジェクション管205c又は第2インジェクション管205dのそれぞれの長さである。
 d[m]は、第1インジェクション管205c又は第2インジェクション管205dのそれぞれの内径である。
 K[kg・m/(s・Pa)]は、J×100/Pbaseを置き換えた、λ、ρ、Q、Pbaseに相関のある係数である。
 J[kg・m/s]は、(8/π×λ×ρ×Q)を置き換えた、λ、ρ、Qに相関のある係数である。
 この構成によれば、インジェクションマフラー205eによって圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が第1インジェクション管205c又は第2インジェクション管205dのそれぞれから吸収できる。またそれとともに、第1インジェクション管205c又は第2インジェクション管205dのそれぞれの長さLと、第1インジェクション管205c又は第2インジェクション管205dのそれぞれの内径dと、が、過給率αとの相関関係によって、インジェクション冷媒の流量を増大させる過給効果が発揮できる寸法に設計できる。したがって、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。たとえば、2~10HPのツインロータリー圧縮機100にて、長さLは20~850mm、内径dはφ1~φ15mmとすることによって、過給率αが100%を超えるような構成が好適に設計でき、上記の過給効果が好適に発揮できる。
 実施の形態1によれば、ツインロータリー圧縮機100は、Lとdとの組み合わせによって得られるαの最大値をαmaxとしたとき、(αmax+1)/2≦α≦αmaxの範囲のαが得られるLとdとの組み合わせを有した第1インジェクション管205c及び第2インジェクション管205dを備える。
 この構成によれば、第1インジェクション管205c又は第2インジェクション管205dのそれぞれの長さLと、第1インジェクション管205c又は第2インジェクション管205dのそれぞれの内径dと、が、インジェクション冷媒の流量を増大させる過給効果がより効果的に発揮できる寸法に設計できる。したがって、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果がより効果的に発揮できる。そして、暖房能力が向上できる。そのため、ツインロータリー圧縮機100が高効率となる。
 実施の形態1によれば、第1インジェクション管205c及び第2インジェクション管205dのそれぞれの内径は、互いに異なると、第1インジェクション管205c及び第2インジェクション管205dの両方の過給効果の最適化が図れる。
 ここで、2つのインジェクション管のインジェクションマフラー内への突出し量が一致し、2つのインジェクションマフラーの2つのインジェクションポートへの接続出口高さが異なり、2つのインジェクション管の内径が一致している場合には、一方のインジェクション管の過給効果を最適に調節すると、他方のインジェクション管の過給効果が悪化する。しかし、この構成によれば、第1インジェクション管205c及び第2インジェクション管205dの両方の過給効果が高められる。
 実施の形態1によれば、第1インジェクション管205c及び第2インジェクション管205dのそれぞれの内径D1及びD2は、第1インジェクション管205c及び第2インジェクション管205dの長さが短いほど小さいと、第1インジェクション管205c及び第2インジェクション管205dの両方の過給効果の最適化が図れる。
 この構成によれば、第1インジェクション管205c及び第2インジェクション管205dの両方の過給効果が適切に高められる。
 実施の形態1によれば、第1インジェクション管205c又は第2インジェクション管205dの少なくとも一方の第1インジェクションポート205a1又は第2インジェクションポート205a2との接続部分には、内径D3が第1インジェクション管205c又は第2インジェクション管205dの内径D1又はD2よりも小さい接続管206が設けられていると、第1インジェクション管205c及び第2インジェクション管205dの両方の過給効果の最適化が図れる。
 ツインロータリー圧縮機100の設計事項として、インジェクションマフラー205eを密閉容器に固定する場合には、容器高さよりも低い位置にインジェクションマフラー、第1インジェクション管の入口及び第2インジェクション管の入口を備える条件がある。すなわち、Lの上限は密閉容器によって定められる。また、dの下限は必要な曲げ耐力によって定められる。この構成によれば、L/dを大きくすると、過給効果が高まる場合に、第1インジェクション管205c及び第2インジェクション管205dの接続出口の少なくとも一方に内径D3の異なる接続管206が設けられていることにより、過給効果が向上できる。
 実施の形態1によれば、第1インジェクション管205c及び第2インジェクション管205dのそれぞれのインジェクションマフラー205e内にて突出する突出し量B1又はB2は、互いに異なっていると、第1インジェクション管205c及び第2インジェクション管205dの両方の過給効果の最適化が図れる。
 ここで、2つのインジェクション管のインジェクションマフラー内への突出し量が一致し、2つのインジェクションマフラーの2つのインジェクションポートへの接続出口高さが異なり、2つのインジェクション管の内径が一致している場合には、一方のインジェクション管の過給効果を最適に調節すると、他方のインジェクション管の過給効果が悪化する。しかし、この構成によれば、第1インジェクション管205c及び第2インジェクション管205dの両方の過給効果が高められる。
 実施の形態1によれば、第1インジェクション管205c及び第2インジェクション管205dのそれぞれのインジェクションマフラー205e内にて突出する突出し量B1又はB2は、第1インジェクション管205c及び第2インジェクション管205dの長さが短いほど長いと、第1インジェクション管205c及び第2インジェクション管205dの両方の過給効果の最適化が図れる。
 この構成によれば、第1インジェクション管205c及び第2インジェクション管205dの両方の過給効果が適切に高められる。
 実施の形態1によれば、ツインロータリー圧縮機100は、ツインロータリー圧縮機100に冷媒を供給する配管に吸入マフラー113を有する。インジェクションマフラー205eの容積は、吸入マフラー113の容積の5%以上である。
 この構成によれば、ツインロータリー圧縮機100に吸入される冷媒と、インジェクション冷媒と、の関係が損なわれない。したがって、圧縮室で発生する圧力変動及びインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100が高効率となる。
 実施の形態1によれば、インジェクションマフラー205eをツインロータリー圧縮機100の密閉容器101の外周部に固定する。
 この構成によれば、インジェクションマフラー205eがツインロータリー圧縮機100の密閉容器101の外周部に固定されているので、第1、第2インジェクション管205c、205dの配管振動が抑制できる。また、インジェクションマフラー205eがツインロータリー圧縮機100の一部として取り扱え、取り扱い易い。
 冷凍サイクル装置200は、実施の形態1のツインロータリー圧縮機100を備える。
 この構成によれば、ツインロータリー圧縮機100を備える冷凍サイクル装置200は、第1圧縮室106a及び第2圧縮室で発生する圧力変動並びにインジェクション冷媒の圧力脈動が吸収できるとともに、インジェクション冷媒の流量を増大させる過給効果が発揮できる。そのため、ツインロータリー圧縮機100を備える冷凍サイクル装置200が高効率となる。
 100 ツインロータリー圧縮機、101 密閉容器、101a 筒状部材、101b 上端閉塞部材、101c 下端閉塞部材、102 台座、103 電動機、103a 固定子、103b 回転子、104 クランク軸、104a 主軸、104b 第1偏芯部、104c 第2偏芯部、104d 副軸、105a 第1ピストン、105a1 仕切り部材、106a 第1圧縮室、107a 第1シリンダ、107a1 貫通孔、107a2 排出口、107b 第2シリンダ、108a 第1流入冷媒配管、108b 第2流入冷媒配管、109a 上軸受、109b 下軸受、110 中間板、111a 上吐出マフラー、111b 下吐出マフラー、112 吐出管、113 吸入マフラー、200 冷凍サイクル装置、201 凝縮器、202 膨張弁、203 蒸発器、204 冷媒配管、205 インジェクション流路、205a1 第1インジェクションポート、205a2 第2インジェクションポート、205b インジェクション入口管、205c 第1インジェクション管、205d 第2インジェクション管、205e インジェクションマフラー、205f1 第1機内通路、205f2 第2機内通路、206 接続管。

Claims (14)

  1.  固定子及び回転子を有する電動機と、
     前記回転子に固定された主軸に設けられた第1偏芯部と前記主軸に設けられた第2偏芯部とを有し、前記電動機によって回転させられるクランク軸と、
     前記第1偏芯部に設けられた第1ピストンと、
     前記第2偏芯部に設けられた第2ピストンと、
     円筒状の貫通孔が形成され、該貫通孔に前記第1偏芯部と前記第1ピストンとが配置されて第1圧縮室が形成される第1シリンダと、
     円筒状の貫通孔が形成され、該貫通孔に前記第2偏芯部と前記第2ピストンとが配置されて第2圧縮室が形成される第2シリンダと、
    を備えたロータリー圧縮機であって、
     外部の冷媒配管から前記第1圧縮室及び前記第2圧縮室のそれぞれに冷媒を注入するインジェクション流路を備え、
     前記インジェクション流路は、前記第1圧縮室に形成された第1インジェクションポートと、前記第2圧縮室に形成された第2インジェクションポートと、前記冷媒配管に接続されたインジェクション入口管と、前記第1インジェクションポートに冷媒を供給する第1インジェクション管と、前記第2インジェクションポートに冷媒を供給する第2インジェクション管と、前記インジェクション入口管と前記第1インジェクション管及び前記第2インジェクション管との間に配置されて前記第1インジェクション管及び前記第2インジェクション管の内径よりも拡径されたインジェクションマフラーと、を有し、
     前記第1インジェクション管及び前記第2インジェクション管は、それぞれ別々に前記インジェクションマフラーに接続されるツインロータリー圧縮機。
  2.  前記第1インジェクション管及び前記第2インジェクション管は、前記インジェクションマフラーの下部にて前記インジェクションマフラー内に上方に突出する請求項1に記載のツインロータリー圧縮機。
  3.  前記インジェクション入口管は、前記インジェクションマフラーの上部にて、前記インジェクションマフラー内に上方に突出した前記第1インジェクション管及び前記第2インジェクション管と離間して前記インジェクションマフラー内に下方に突出する請求項2に記載のツインロータリー圧縮機。
  4.  前記第1インジェクション管及び前記第2インジェクション管が前記インジェクションマフラー内にて突出する突出し量は、ガス冷媒及び液冷媒のいずれでもインジェクションできる長さを有する請求項2又は3に記載のツインロータリー圧縮機。
  5.  請求項1~4のいずれか1項に記載のツインロータリー圧縮機において、
     下記関係式(式1)で表される過給率α[%]であって、過給率αが100%を超える下記L[m]と下記d[m]との組み合わせを有した前記第1インジェクション管及び前記第2インジェクション管を備えるツインロータリー圧縮機。
     α=K×(L/d)・・・(式1)
     ここで、α[%]は、α>100%の値である。
     L[m]は、前記第1インジェクション管又は前記第2インジェクション管のそれぞれの長さである。
     d[m]は、前記第1インジェクション管又は前記第2インジェクション管のそれぞれの内径である。
     K[kg・m/(s・Pa)]は、λ、ρ、Q、Pbaseに相関のある係数である。
  6.  請求項5に記載のツインロータリー圧縮機において、
     Lとdとの組み合わせによって得られるαの最大値をαmaxとしたとき、
    (αmax+1)/2≦α≦αmaxの範囲のαが得られるLとdとの組み合わせを有した前記第1インジェクション管及び前記第2インジェクション管を備えるツインロータリー圧縮機。
  7.  前記第1インジェクション管及び前記第2インジェクション管のそれぞれの内径は、互いに異なる請求項1~6のいずれか1項に記載のツインロータリー圧縮機。
  8.  前記第1インジェクション管及び前記第2インジェクション管のそれぞれの内径は、前記第1インジェクション管及び前記第2インジェクション管の長さが短いほど小さい請求項7に記載のツインロータリー圧縮機。
  9.  前記第1インジェクション管又は前記第2インジェクション管の少なくとも一方の前記第1インジェクションポート又は前記第2インジェクションポートとの接続部分には、内径が前記第1インジェクション管又は前記第2インジェクション管の内径よりも小さい接続管が設けられる請求項1~8のいずれか1項に記載のツインロータリー圧縮機。
  10.  前記第1インジェクション管及び前記第2インジェクション管のそれぞれの前記インジェクションマフラー内にて突出する突出し量は、互いに異なる請求項2又は請求項2に従属する請求項3~9のいずれか1項に記載のツインロータリー圧縮機。
  11.  前記第1インジェクション管及び前記第2インジェクション管のそれぞれの前記インジェクションマフラー内にて突出する突出し量は、前記第1インジェクション管及び前記第2インジェクション管の長さが短いほど長い請求項10に記載のツインロータリー圧縮機。
  12.  前記ロータリー圧縮機に冷媒を供給する配管に吸入マフラーを有し、
     前記インジェクションマフラーの容積は、前記吸入マフラーの容積の5%以上である請求項1~11のいずれか1項に記載のツインロータリー圧縮機。
  13.  前記インジェクションマフラーを前記ロータリー圧縮機の密閉容器の外周部に固定する請求項1~12のいずれか1項に記載のツインロータリー圧縮機。
  14.  請求項1~13のいずれか1項に記載のツインロータリー圧縮機を備える冷凍サイクル装置。
PCT/JP2018/032083 2017-12-07 2018-08-30 ツインロータリー圧縮機及び冷凍サイクル装置 WO2019111461A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207014918A KR102336280B1 (ko) 2017-12-07 2018-08-30 트윈 로터리 압축기 및 냉동 사이클 장치
JP2019558005A JP6918138B2 (ja) 2017-12-07 2018-08-30 ツインロータリー圧縮機及び冷凍サイクル装置
CN201880072911.1A CN111417783B (zh) 2017-12-07 2018-08-30 双旋转式压缩机和制冷循环装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2017/044069 WO2019111392A1 (ja) 2017-12-07 2017-12-07 ロータリー圧縮機及び冷凍サイクル装置
JPPCT/JP2017/044069 2017-12-07

Publications (1)

Publication Number Publication Date
WO2019111461A1 true WO2019111461A1 (ja) 2019-06-13

Family

ID=66750097

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2017/044069 WO2019111392A1 (ja) 2017-12-07 2017-12-07 ロータリー圧縮機及び冷凍サイクル装置
PCT/JP2018/032083 WO2019111461A1 (ja) 2017-12-07 2018-08-30 ツインロータリー圧縮機及び冷凍サイクル装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/044069 WO2019111392A1 (ja) 2017-12-07 2017-12-07 ロータリー圧縮機及び冷凍サイクル装置

Country Status (5)

Country Link
JP (1) JP6918138B2 (ja)
KR (1) KR102336280B1 (ja)
CN (1) CN111417783B (ja)
CZ (1) CZ309387B6 (ja)
WO (2) WO2019111392A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150096U (ja) * 1987-03-24 1988-10-03
JP2006194184A (ja) * 2005-01-14 2006-07-27 Mitsubishi Heavy Ind Ltd 圧縮機
JP2013231356A (ja) * 2010-08-26 2013-11-14 Sanyo Electric Co Ltd コンプレッサ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6458046A (en) 1987-08-28 1989-03-06 Omron Tateisi Electronics Co Data transfer system
CN101173664A (zh) * 2007-11-14 2008-05-07 美的集团有限公司 二阶压缩旋转式压缩机及其控制方法和应用
JP5683075B2 (ja) * 2009-02-13 2015-03-11 三菱重工業株式会社 インジェクション管
JP4609583B2 (ja) * 2009-03-25 2011-01-12 ダイキン工業株式会社 吐出マフラ及び吐出マフラを備えた二段圧縮機
WO2013005568A1 (ja) * 2011-07-01 2013-01-10 東芝キヤリア株式会社 多気筒回転式圧縮機及び冷凍サイクル装置
JP6274041B2 (ja) * 2014-07-18 2018-02-07 株式会社富士通ゼネラル ロータリ圧縮機
CN109154297B (zh) * 2016-05-20 2020-03-10 东芝开利株式会社 密闭型压缩机以及冷冻循环装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150096U (ja) * 1987-03-24 1988-10-03
JP2006194184A (ja) * 2005-01-14 2006-07-27 Mitsubishi Heavy Ind Ltd 圧縮機
JP2013231356A (ja) * 2010-08-26 2013-11-14 Sanyo Electric Co Ltd コンプレッサ

Also Published As

Publication number Publication date
JP6918138B2 (ja) 2021-08-11
KR20200070376A (ko) 2020-06-17
CZ309387B6 (cs) 2022-11-09
KR102336280B1 (ko) 2021-12-07
JPWO2019111461A1 (ja) 2020-07-02
CN111417783A (zh) 2020-07-14
CN111417783B (zh) 2022-06-21
WO2019111392A1 (ja) 2019-06-13
CZ2020292A3 (cs) 2020-06-17

Similar Documents

Publication Publication Date Title
WO2010143521A1 (ja) 冷媒圧縮機及びヒートポンプ装置
US8985985B2 (en) Rotary compressor and refrigeration cycle apparatus
JP5866004B2 (ja) 密閉形圧縮機及びヒートポンプ装置
CN103703253B (zh) 旋叶式压缩机
US20100054978A1 (en) Injectible two-stage compression rotary compressor
CN109844313B (zh) 抽吸消音器
WO2014083901A1 (ja) 圧縮機、冷凍サイクル装置およびヒートポンプ給湯装置
JP5338314B2 (ja) 圧縮機および冷凍装置
WO2019111461A1 (ja) ツインロータリー圧縮機及び冷凍サイクル装置
US11585343B2 (en) Muffler for a compression mechanism of a rotary compressor
KR101587174B1 (ko) 로터리 압축기
CN110762000A (zh) 增焓脉动衰减装置、涡旋压缩机及空调系统
JP7003272B2 (ja) ロータリー圧縮機及び冷凍サイクル装置
JP4948557B2 (ja) 多段圧縮機および冷凍空調装置
JP5727348B2 (ja) 気体圧縮機
JP5355361B2 (ja) 密閉型回転圧縮機
CN205533232U (zh) 多缸旋转式压缩机及具有其的制冷系统
WO2018043329A1 (ja) スクロール圧縮機
JP2020070748A (ja) 回転式圧縮機
JP5595324B2 (ja) 圧縮機
CN221033119U (zh) 泵体组件、压缩机及制冷设备
KR101587165B1 (ko) 스크롤 압축기 및 이를 적용한 냉동기기
JP6749183B2 (ja) スクロール圧縮機
WO2020067197A1 (ja) 多段圧縮システム
CN117345629A (zh) 泵体组件、压缩机及制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18885252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558005

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207014918

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18885252

Country of ref document: EP

Kind code of ref document: A1