JP5361259B2 - スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置 - Google Patents

スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置 Download PDF

Info

Publication number
JP5361259B2
JP5361259B2 JP2008161025A JP2008161025A JP5361259B2 JP 5361259 B2 JP5361259 B2 JP 5361259B2 JP 2008161025 A JP2008161025 A JP 2008161025A JP 2008161025 A JP2008161025 A JP 2008161025A JP 5361259 B2 JP5361259 B2 JP 5361259B2
Authority
JP
Japan
Prior art keywords
magnetic
layer
magnetic recording
spin torque
torque oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008161025A
Other languages
English (en)
Other versions
JP2010003354A (ja
JP2010003354A5 (ja
Inventor
健一郎 山田
仁志 岩崎
雅幸 高岸
知己 船山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2008161025A priority Critical patent/JP5361259B2/ja
Priority to US12/382,940 priority patent/US8687321B2/en
Publication of JP2010003354A publication Critical patent/JP2010003354A/ja
Publication of JP2010003354A5 publication Critical patent/JP2010003354A5/ja
Application granted granted Critical
Publication of JP5361259B2 publication Critical patent/JP5361259B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3133Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure
    • G11B5/314Disposition of layers including layers not usually being a part of the electromagnetic transducer structure and providing additional features, e.g. for improving heat radiation, reduction of power dissipation, adaptations for measurement or indication of gap depth or other properties of the structure where the layers are extra layers normally not provided in the transducing structure, e.g. optical layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/02Recording, reproducing, or erasing methods; Read, write or erase circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3109Details
    • G11B5/313Disposition of layers
    • G11B5/3143Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding
    • G11B5/3146Disposition of layers including additional layers for improving the electromagnetic transducing properties of the basic structure, e.g. for flux coupling, guiding or shielding magnetic layers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B15/00Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects
    • H03B15/006Generation of oscillations using galvano-magnetic devices, e.g. Hall-effect devices, or using superconductivity effects using spin transfer effects or giant magnetoresistance
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B2005/0002Special dispositions or recording techniques
    • G11B2005/0005Arrangements, methods or circuits
    • G11B2005/0024Microwave assisted recording
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1121Multilayer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1107Magnetoresistive
    • Y10T428/1143Magnetoresistive with defined structural feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/115Magnetic layer composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/11Magnetic recording head
    • Y10T428/1171Magnetic recording head with defined laminate structural detail

Description

本発明は、スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置に関する。
1990年代においては、MR(Magneto-Resistive effect)ヘッドとGMR(Giant Magneto-Resistive effect)ヘッドの実用化が引き金となって、HDD(Hard Disk Drive)の記録密度と記録容量が飛躍的な増加を示した。しかし、2000年代に入ってから磁気記録媒体の熱揺らぎの問題が顕在化してきたために、記録密度増加のスピードが一時的に鈍化した。それでも、面内磁気記録よりも原理的に高密度記録に有利である垂直磁気記録が2005年に実用化されたことが牽引力となって、昨今、HDDの記録密度は年率約40%の伸びを示している。
また、最新の記録密度実証実験では400Gbits/inchを超えるレベルが達成されており、このまま堅調に進展すれば、2012年頃には記録密度1Tbits/inchが実現されると予想されている。しかしながら、このような高い記録密度の実現は、垂直磁気記録方式を用いても、再び熱揺らぎの問題が顕在化するために容易ではないと考えられる。
この問題を解消し得る記録方式として「高周波磁界アシスト記録方式」が提案されている(例えば特許文献1)。高周波磁界アシスト記録方式では、記録信号周波数よりも十分に高い、磁気記録媒体の共鳴周波数付近の高周波磁界を、媒体に局所的に印加する。この結果、媒体が共鳴し、高周波磁界が印加された部分の媒体の保磁力(Hc)がもとの保磁力の半分以下となる。この効果を利用して、記録磁界に高周波磁界を重畳することにより、より高保磁力(Hc)かつ高磁気異方性エネルギー(Ku)の媒体への磁気記録が可能となる。しかし、この特許文献1に開示された手法では、コイルにより高周波磁界を発生させているので、媒体に高周波磁界を効率的に印加することが困難であった。
そこで高周波磁界の発生手段として、スピントルク発振子を利用する手法が提案されている(例えば、特許文献2〜4、及び、非特許文献1)。これらにより開示された技術においては、スピントルク発振子は、スピン注入層と、中間層と、磁性体層と、電極とからなる。電極を通じてスピントルク発振子に直流電流を通電すると、スピン注入層によって生じたスピントルクにより、磁性体層の磁化が強磁性共鳴を生じる。その結果、スピントルク発振子から高周波磁界が発生する。
スピントルク発振子のサイズは数十ナノメートル程度であるため、発生する高周波磁界はスピントルク発振子の近傍の数十ナノメートル程度の領域に局在する。さらに高周波磁界の面内成分により、垂直磁化した媒体を効率的に共鳴すること可能となり、媒体の保磁力を大幅に低下させることが可能となる。この結果、主磁極による記録磁界と、スピントルク発振子による高周波磁界とが重畳した部分のみで高密度磁気記録が行われ、高保磁力(Hc)かつ高磁気異方性エネルギー(Ku)の媒体を利用することが可能となる。このため、高密度記録時の熱揺らぎの問題を回避できる。
高周波磁界アシスト記録ヘッドを実現するためには、低駆動電流で安定して発振が可能であり、かつ、媒体磁化を十分に共鳴させる面内高周波磁界の発生が可能な、スピントルク発振子を設計・作製することが重要になる。
スピントルク発振子に通電可能な最大電流密度は、例えば素子サイズが70nm程度のとき、2×10A/cmである。これ以上の電流密度では、例えばスピントルク発振子の発熱及びマイグレーションにより、特性が劣化する。このため、なるべく低電流密度で発振可能なスピントルク発振子を設計することが重要となる。
一方、媒体磁化を十分に共鳴させるためには、面内高周波磁界の強度を、媒体の異方性磁界(Hk)の10%以上にすることが望ましいことが報告されている(例えば非特許文献2)。面内高周波磁界の強度を高める手段としては、発振層の飽和磁化の増加、発振層の層厚の増加、及び、発振層の磁化の回転角度の増加、が挙げられるが、これらのいずれの手段も、駆動電流を増加させてしまう。
このように、駆動電流の低電流密度化と、面内高周波磁界の強度の増加とは、二律背反の関係にあり、これらを同時に実現するスピントルク発振子の実現が望まれる。
なお、特許文献5には、TMRを利用した面内磁化型メモリ応用におけるフリー層にFeCoAl合金を用いる例が開示されている。また、特許文献6には、ホイッスラー合金を利用する例が公開されている。また、非特許文献3には、面内磁化膜CPP−GMRヘッド応用にて、FeCoAlを用いる例が公開されている。
米国特許第6011664号明細書 米国特許出願公開第2005/0023938号明細書 米国特許出願公開第2005/0219771号明細書 米国特許出願公開第2008/0019040A1号明細書 米国特許出願公開第2005/0110004号明細書 米国特許出願公開第2007/0063237号明細書 IEEE TRANSACTION ON MAGNETICS, VOL. 42, NO. 10, PP. 2670, "Bias-Field-Free Microwave Oscillator Driven by Perpendicularly Polarized Spin Current" by Xiaochun Zhu and Jian-Gang Zhu TMRC B6(2007), "Microwave Assisted Magnetic Recording (MAMR)"by Jian-Gang (Jimmy) Zhu and Xiaochun Zhu JOURNAL OF APPLIED PHYSICS 101 093905 (2007)
本発明は、低電流密度で安定して発振が可能であり、かつ、面内高周波磁界の強度の高いスピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置を提供する。
本発明の一態様によれば、Fe−CoにAl、Si、Ge、Mn、Cr、Bの少なくともいずれか1つ以上を添加した材料からなり、Fe組成比率が20原子パーセント以上でbcc構造の合金を含む第1の磁性体層と、垂直磁化膜を含む第2の磁性体層と、前記第1の磁性体層と前記第2の磁性体層との間に設けられた中間層と、を備え、前記第2の磁性体層は、前記中間層との界面において、Fe−CoにAl、Si、Ge、Mn、Cr、Bの少なくともいずれか1つ以上を添加した材料からなる合金を含むことを特徴とするスピントルク発振子が提供される。
また、本発明の他の一態様によれば、第1の磁性体層と、垂直磁化膜を含む第2の磁性体層と、前記第1の磁性体層と前記第2の磁性体層との間に設けられた中間層と、を備え、前記第2の磁性体層は、前記中間層との界面において、Fe−CoにAl、Si、Ge、Mn、Cr、Bの少なくともいずれか1つ以上を添加した材料からなる合金を含むことを特徴とするスピントルク発振子が提供される。
また、本発明の他の一態様によれば、上記のいずれか1つに記載のスピントルク発振子と、前記スピントルク発振子に併置された主磁極と、を備えたことを特徴とする磁気記録ヘッドが提供される。
また、本発明の他の一態様によれば、上記の磁気記録ヘッドと、前記磁気記録ヘッドが搭載されたヘッドスライダーと、前記ヘッドスライダーを一端に搭載するサスペンションと、前記サスペンションの他端に接続されたアームと、を備えたことを特徴とする磁気ヘッドアセンブリが提供される。
また、本発明の他の一態様によれば、磁気記録媒体と、上記の磁気ヘッドアセンブリと、前記磁気ヘッドアセンブリに搭載された前記磁気記録ヘッドを用いて前記磁気記録媒体への信号の書き込みと読み出しを行う信号処理部と、を備えたことを特徴とする磁気記録装置が提供される。
本発明によれば、低電流密度で安定して発振が可能であり、かつ、面内高周波磁界の強度の高いスピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置が提供される。
以下に、本発明の各実施の形態について図面を参照しつつ説明する。
なお、図面は模式的または概念的なものであり、各部分の厚みと幅との関係、部分間の大きさの比係数などは、必ずしも現実のものと同一とは限らない。また、同じ部分を表す場合であっても、図面により互いの寸法や比係数が異なって表される場合もある。
また、本願明細書と各図において、既出の図に関して前述したものと同様の要素には同一の符号を付して詳細な説明は適宜省略する。
(第1の実施の形態)
図1は、本発明の第1の実施形態に係るスピントルク発振子の構成を例示する模式的断面図である。
図1に表したように、本発明の第1の実施形態に係るスピントルク発振子10は、発振層(第1の磁性体層)10aと、スピン注入層(第2の磁性体層)30と、発振層10aとスピン注入層30との間に設けられた中間層22を有する積層構造体25を有する。
そして、スピントルク発振子10は、積層構造体25の積層方向に通電可能な1対の電極、すなわち、第1電極41及び第2電極42を有することができる。すなわち、第1電極41及び第2電極42によって、駆動電流Iが積層構造体25に通電される。
ただし、これらの第1及び第2の電極41、42の少なくともいずれかは、例えば、後述する磁気記録ヘッドの例えば主磁極及びリターンパス(シールド)等と兼用されても良く、この場合は、スピントルク発振子10の上記の第1及び第2の電極41、42の少なくともいずれかは省略可能である。以下では、スピントルク発振子10が、第1及び第2の電極41、42を有する場合として説明する。
なお、図1に表したように、積層構造体25には外部磁界Hexが印加される。
本実施形態に係るスピントルク発振子10においては、発振層10aは、Fe−Co−Al合金を含む。すなわち、本実施形態に係るスピントルク発振子10は、スピンFe−Co−Alを含む層を含む第1の磁性体層10aと、第2の磁性体層30と、第1の磁性体層10aと第2の磁性体層30との間に設けられた中間層22と、を備える。なお、本実施形態に係るスピントルク発振子10において、発振層10a(第1の磁性体層10a)が1層の磁性体層からなり、その磁性体層がFe−Co−Al合金を含んでも良い。また、発振層10a(第1の磁性体層10a)が、複数の層からなり、その複数の層の少なくとも1つの層が、Fe−Co−Al合金を含んでも良い。なお、本願明細書において、「Fe−Co−Al合金」は、「FeCoAl合金」と省略して記述されることがある。
スピントルク発振子10は、図示しない適切な基板の上や下地の上に形成され、図示しないアルミナやSiO2等の絶縁体により、他の回路と分離される。
第1及び第2の電極41、42には、Ti、Cuなどの電気抵抗が低く、酸化されにくい材料を用いることができる。また、第1の電極41のうち、第1の磁性体層10aとの界面はCuにすることが望ましい。これは、界面をCuとすることで、第1の磁性体層10aを構成するAl原子の拡散防止層として働き、Al原子が第1の電極41へ拡散することを防ぐことが可能となるためである。
本実施形態に係るスピントルク発振子10においては、発振層10aには以下の組成比率のFe−Co−Al合金が用いられている。すなわち、FeとCoとの比率(Fe:Co)が、50原子パーセント(原子百分率):50原子パーセントであり、そのFeとCoの混合部物と、Alと、の比率(FeCo:Al)が、68原子パーセント:32原子パーセントである。以下、この比率を、「(Fe50at%Co50at%68at%Al32at%」と記述する。なお、この材料の飽和磁化Msは、600emu/ccである。また、この発振層10aの層厚は、12nmである。
そして、中間層22には、層厚が3nmのCuが用いられている。
また、一方、スピン注入層30には、層厚が20nmの、CoとPtとの比率(Co:Pt)が、80原子パーセント:20原子パーセントの合金(Co80at%Pt20at%合金)が用いられている。このCo80at%Pt20at%合金は、垂直異方性を有する。なお、スピントルク発振子10の素子のサイズは、70nm四方である。
ただし、本実施形態に係るスピントルク発振子10は、上記の材料及び層厚だけでなく、各種の材料と層厚を有することができる。
例えば、中間層22には、例えば、Cu、Au、Agなどのスピン透過率の高い材料を用いることができる。中間層22の層厚は、1原子層から3nmとすることが望ましい。これにより発振層10aとスピン注入層30の交換結合を最適な値に調節することが可能となる。
また、スピン注入層30には、例えば、膜面直方向に磁化配向したCoCrPt、CoCrTa、CoCrTaPt、CoCrTaNb等のCoCr系磁性、TbFeCo等のRE−TM系アモルファス合金磁性層、Co/Pd、Co/Pt、CoCrTa/Pd等のCo人工格子磁性層、CoPt系やFePt系の合金磁性層、SmCo系合金磁性層など、垂直配向性に優れた材料、CoFe、CoNiFe、NiFe、CoZrNb、FeN、FeSi、FeAlSi等の、比較的、飽和磁束密度の大きく膜面内方向に磁気異方性を有する軟磁性層や、CoFeSi、CoMnSi、CoMnAl等のグループから選択されるホイスラー合金、膜面内方向に磁化が配向したCoCr系の磁性合金膜も適宜用いることができる。さらに、複数の上記材料を積層したものを用いてもよい。
また、発振層10aには、FeCoAl合金と、上記のスピン注入層30に用いることができる各種の材料を積層したものを用いても良い。
なお、発振層10aには、FeCoAl合金に、さらに、Si、Ge、Mn、Cr、Bの少なくともいずれか1つ以上を添加した材料を用いても良い。さらに、発振層10aには、FeCoAl合金におけるAlの替わりに、Si、Ge、Mn、Cr、Bのいずれか1つ以上を用いた、FeCoSi、FeCoGe、FeCoMn、FeCoCr、FeCoB合金を用いても良い。これにより、例えば、発振層10aとスピン注入層30との飽和磁束密度(Bs)、異方性磁界(Hk)、及び、スピントルク伝達効率を調整することができる。
このように、本実施形態のスピントルク発振子10においては、発振層10aは、Fe−Co−(Al、Si、Ge、Mn、Cr、B)合金を含む。なお、「Fe−Co−(Al、Si、Ge、Mn、Cr、B)合金」は、Feと、Coと、Al、Si、Ge、Mn、Cr及びBの少なくともいずれかと、を含む合金である。
なお、発振層10aの層厚は、5nmから20nmとすることが望ましく、スピン注入層30の層厚は、2nmから60nmとすることが望ましい。また、スピントルク発振子10の素子のサイズは10nm四方から100nm四方にすることが望ましく、素子形状も直方体だけでなく、円柱状や六角柱状としてもよい。
図2は、本発明の第1の実施形態に係るスピントルク発振子の特性を例示するグラフ図である。
すなわち、同図(a)は、スピントルク発振子10を流れる電流の電流密度が低い場合、すなわち、駆動電流Iの電流密度Jが0.2×10A/cmの時のRH曲線であり、同図(b)は、スピントルク発振子10を流れる電流の電流密度が高い場合、すなわち、駆動電流Iの電流密度Jが1.5×10A/cmの時のRH曲線である。これらの図において、横軸は、スピントルク発振子10に印加される外部磁界Hexを表し、縦軸は、積層構造体25を流れる電流における抵抗変化(第1電極41と第2電極42との間の抵抗の変化)を表す。なお同図(b)では、Hex=0での値が、同図(a)と等しくなるよう、値をずらしている。
また、同図(c)、(d)は、同図(a)の点A、点Bの状態における磁化の状態をそれぞれ示す模式的断面図である。また、同図(e)は、同図(b)の点Cの状態における磁化の状態を示す模式的断面図である。
図2(a)に表したように、低電流密度の時は、典型的な保磁力差型のRH曲線となっており、スピントルクの影響はない。すなわち、同図(a)における点Aの状態、すなわち、外部磁界が零の時は、発振層10aの形状異方性により、同図(c)に表したように、発振層10aの磁化の方向は、層面に対して平行方向となっている。そして、同図(a)における点Bの状態、すなわち、外部磁界が大きい時は、同図(d)に表したように、発振層10aの磁化の方向は、外部磁界の方向と略同一方向となっている。
一方、図2(b)に表したように、電流密度Jが大きいと、RH曲線は谷型となる。このことは、発振層10aが発振していることを表している。すなわち、すなわち、同図(b)における点Cの状態、すなわち、外部磁界が大きい時、同図(e)に表したように、発振層10aの磁化の方向は、スピントルクによって、外部磁界に対して逆向きとなり、磁化が回転している。すなわち、スピントルク発振子10の駆動電流によるスピントルクにより、発振層10aの磁化が発振している。
このように、本実施形態に係るスピントルク発振子10は、例えば、低電流密度Jが0.2×10A/cmの時は発振しないが、電流密度Jが1.5×10A/cmの時には、適正な発振を示す。
(第1の比較例)
図3は、第1の比較例のスピントルク発振子の特性を例示するグラフ図である。
第1の比較例のスピントルク発振子は、発振層10aとして、CoFeを用いたものである。これ以外は、本実施形態に係るスピントルク発振子10と同様なので説明を省略する。なお、CoFeの飽和磁化Msは、1400emu/ccであり、本実施形態に係るスピントルク発振子10の発振層10aに用いられているFeCoAl合金の600emu/ccに比べて大きい。また、図3は、第1の比較例のスピントルク発振子の駆動電流の電流密度Jが1.5×10A/cmの時の結果である。
図3に表したように、第1の比較例のスピントルク発振子の場合、駆動電流Iの電流密度Jが1.5×10A/cmと、比較的大きいにもかかわらず発振現象を示していない。すなわち、図2(a)に例示した、本実施形態に係るスピントルク発振子10における電流密度Jが低い場合(Jが0.2×10A/cm)のRH曲線に類似のRH曲線を示している。
なお、マイクロマグネティクス法によるシミュレーションによると、第1の比較例のように発振層10aに例えばCoFeを用いた場合には、RH曲線が谷型となる電流密度J、すなわち、発振現象を示す電流密度Jは、5.6×10A/cmであった。このように、第1の比較例のスピントルク発振子においては、発振するためには5.6×10A/cmと非常に大きい電流を必要とする。しかし、この電流は非常に大きいため、ジュール熱による発熱が非常に大きく、素子特性が劣化してしまうため、実用上、この電流を通電することは非常に困難である。このためCoFeを発振層10aに適用した場合には、安定して発振することが困難である。
これに対し、本実施形態に係るスピントルク発振子10は、低電流密度(例えば電流密度Jが1.5×10A/cm)でも発振し易い特性を発揮する。すなわち、本実施形態に係るスピントルク発振子10は、第1の比較例のスピントルク発振子に比べて、約1/4の電流密度で発振が可能である。
このように、本実施形態に係るスピントルク発振子10によれば、低電流密度で安定して発振が可能であり、かつ、面内高周波磁界の強度の高いスピントルク発振子が提供できる。
本実施形態に係るスピントルク発振子10では、スピン注入層30として垂直磁化膜を用いており、これにより、スピントルクの伝達効率が向上したものと考えられる。
すなわち、垂直磁化膜をスピン注入層30に用いた場合、発振層10aの磁化の軌跡が通る平面と、スピン注入層30の磁化方向は略垂直となり、発振層10aの磁化方向とスピン注入層30の磁化方向とがなす角は、常に略垂直となる。このため、常に安定したスピントルク伝達が行われる。
一方、スピン注入層30が面内磁化膜の場合、発振層10aの磁化の軌跡が通る平面と、スピン注入層30の磁化方向は略平行となる。このため、発振層10aの磁化方向とスピン注入層30の磁化方向がなす角は、瞬間瞬間によって変動する。その結果、ある瞬間はスピントルク伝達効率が高いが、ある瞬間は小さくなり、時間平均をとると、スピントルク伝達効率は大きく低下することになる。
従って、スピン注入層30に垂直磁化膜を用いた方が、スピントルク伝達効率が高く、低電流密度での安定した発振が可能となる。
従って、本実施形態のスピントルク発振子10において、スピン注入層30は、垂直磁化膜を含むことが望ましい。
図4は、本発明の第1の実施形態に係るスピントルク発振子における特性を例示するグラフ図である。
すなわち、同図は、発振層10aの磁化の回転の開き角が180度となる時の臨界電流密度Jcと、発振層10aの飽和磁化Ms及び層厚tとの関係の実験結果を例示するグラフである。同図(a)の横軸は、発振層10aの飽和磁化Msを表し、同図(b)の横軸は発振層10aの層厚tを表す。そして、同図(a)、(b)の縦軸は、発振層10aの層厚方向の全ての領域において均一に、磁化の回転の開き角が180度となる時の臨界電流密度の平均値Jcの絶対値を表す。
図4(a)、(b)に表したように、臨界電流密度Jcの飽和磁化層Ms依存性は、層厚t依存性よりも大きい。すなわち、臨界電流密度Jcの飽和磁化Msに対する傾きは、臨界電流密度Jcの層厚tに対する傾きの約2倍となっている。すなわち、臨界電流密度Jcは、発振層10aの層厚tに比例し、飽和密度Msの2乗に比例する。すなわち、臨界電流密度Jcは、tMsに比例する。
スピントルク発振子10において、発振層10aの媒体対向面に発生する磁荷量によって高周波磁界Hacが作られる。このため、発振層10aが均一に大きな角度で回転する場合(磁化の回転の開き角が180度となる場合)、高周波磁界の強度Hacは、発振層10aの層厚tと飽和磁化Msとの積(tMs)に比例すると考えられる。
その結果、発振層10aの飽和磁化Msが小さい場合は、層厚tを厚くしないと、高周波磁界アシスト記録に必要な高い強度の、高周波磁界の強度Hacが得られない。
従って、本実施形態に係る発振層10aでは、発振層10aの飽和磁化Msの低い材料を用いることで臨界電流密度Jcの低減を図り、そして、発振層10aの層厚tを実用的に可能な範囲で増大することで高周波磁界の強度Hacの増加を図る必要がある。
図5は、本発明の第1の実施形態に係るスピントルク発振子に用いられるFeCoAl合金の特性を例示するグラフ図である。
すなわち、同図は、第1の実施形態に用いることができるFeCoAl合金におけるAl組成比率と、飽和磁化Msと、の関係を例示している。同図において、横軸はFeCoAl合金におけるAl組成比率を表し、縦軸は飽和磁化Msを表す。
なお、同図には、比較例である、FeCoの飽和磁化の値と、NiFeの飽和磁化の値とを破線で示している。
図5に表したように、FeCoAl合金において、Al組成比率の増加により、飽和磁化Msは減少し、Al組成比率が24原子パーセント以上では、NiFeの飽和磁化の値以下となる。
スピントルクは、中間層22と発振層10aとの界面で受け渡されるため、発振層10aの層厚tが過度に厚い場合、界面付近では、磁化の回転の開き角が180度となる大きな回転を示すが、界面から離れた領域では大きな回転ができないことが生じる。このため、層厚tを厚くしても、高周波磁界の強度Hacは大きくは増加しないことが発生し得る。
このため、発振層10aの層厚方向の全ての領域において、均一に、大きな角度で回転する(磁化の回転の開き角が180度となる)には、発振層10aの層厚tは、30nm以下にする必要がある。
このため、発振層10aに飽和磁化Msが低い材料を用いたときに、必要な高周波磁界の強度Hacを必要な強度とするために、その材料の飽和磁化Msは、500emu以上とする必要がある。従って、図5に例示した飽和磁化MsのAl組成比率依存性の実験結果から、Al組成比率は、40原子パーセント以下とすることが望ましい。
一方、発振層10aの飽和磁化Msは、700emu/cc〜1000emu/ccが最適である。この時、発振層10aの層厚tは、10nm〜25nmとなり、発振層10aの層厚方向の全ての領域において、大きな角度で回転する(磁化の回転の開き角が180度となる)ことが可能である。すなわち、このとき、高周波磁界の強度Hacを最も効率的に大きくすることができる。
このため、Al組成比率は、20原子パーセント〜30原子パーセントであることがより望ましい。
一方、既に図4に関して説明したように、発振層10aの飽和磁化Msが増加すると、臨界電流密度Jc(駆動電流I)は、Msの2乗に比例して増加する。さらに、スピントルク発振子10の素子のジュール熱による発熱は、駆動電流Iの2乗に比例して増加する。このため、素子のジュール熱による発熱は、飽和磁化Msの4乗に比例して増加することになる。この時、飽和磁化Msが1300emu/ccよりも大きいとき、素子の発熱により素子特性が劣化するため、利用することが難しい。
従って、発振層10aの飽和磁化Msは、1300emu/cc以下とすることが望ましい。従って、図5に例示した飽和磁化MsのAl組成比率依存性の実験結果から、Al組成比率は、12原子パーセント以上とすることが望ましい。
スピントルク発振子におけるスピントルク効果の原理と、CPP−GMR(Current Perpendicular to Plane - Giant Magneto-Resistive)効果の原理と、は、同一の起源により発生していると考えられている。すなわち、反平行状態に磁化した2枚の磁性体層とその間に設けられた中間層からなる積層構造体において、最初の磁性層の磁化方向にスピン分極した伝導電子が、中間層を経由して、もう一方の磁性層に流入する現象を考える。このとき、最初の磁性層の磁化方向にスピン分極した伝導電子は、もう一方の磁性層に流入する際にスピン散乱し、抵抗が増加すると同時に、スピン角運動量をスピントルクとして受け渡すことになる。このため、MR比の増加が、スピントルク伝達効率の増加に直結する。
このため、GMR効果が大きい材料を発振層およびスピン注入層界面に用いることが望ましい。このため、本実施形態に係るスピントルク発振子10の発振層10aに用いるFeCo−(Al、Si、Ge、Mn、Cr、B)合金におけるFeCoの組成は、結晶構造がbcc構造となる組成、すなわち、Fe組成が20原子パーセント以上であることが望ましい。
以上のように、本実施形態に係るスピントルク発振子10において、発振層10aに用いるFeCoAl合金において、Al組成比率を10原子パーセント〜40原子パーセントとすることで、良好な高周波磁界の強度が達成可能かつ、低駆動電流で発振可能な、スピントルク発振素子を製作することが可能となる。
なお、特許文献5においては、フリー層にFeCoAl合金を利用している。しかし、特許文献5に開示された技術は、TMRを利用した面内磁化型メモリ応用であり、GMRを利用したスピントルク発振子への応用を目的とした本発明とは、異なる。また、特許文献6では、ホイッスラー合金の利用を想定し、組成もCo2FeAlに限定しており、本実施形態にスピントルク発振子10とは、FeCoの組成が大きく異なっている。また、非特許文献3では、面内磁化膜CPP−GMRヘッド応用において、FeCoAlによるJcの低減について記載されているが、この効果はJc∝tMs2で説明可能であり、本実施形態に係るスピントルク発振子10では、垂直磁化膜を用いたスピントルク発振素子であり、Jc∝tMsで説明不可能な新たに見いだされた効果により、Jcの低減が可能となっている。
(第2の実施の形態)
図6は、本発明の第2の実施形態に係るスピントルク発振子の構成を例示する模式的断面図である。
図6に表したように、本発明の第2の実施形態に係るスピントルク発振子10bにおいては、スピン注入層30として、層厚2nmの(Fe50at%Co50at%76at%Al24at%合金(第1スピン注入層30a)と、層厚20nmのCoPt層(第2スピン注入層30b)30bと、の積層膜が用いられている。FeCoAl層である第1スピン注入層30aは、中間層22との界面、すなわち、発振層10aの側に設けられている。発振層10aには、層厚が12nmの(Fe50at%Co50at%84at%Al16at%合金が用いられている。
これ以外は、第1の実施形態に係るスピントルク発振子10と同様である。すなわち、中間層22には、層厚が3nmのCuが用いられている。なお、スピントルク発振子10の素子のサイズは、70nm四方である。
このような構成を有する本実施形態に係るスピントルク発振子10bは、6kOeの外部磁界の印加の状態において、電流密度Jが1.4×10A/cmの場合に、良好に発振する。すなわち、スピントルク発振子10bの発振層10aは、磁化の回転の開き角が180度となる大きな回転を示す。
図7は、本発明の第2の実施形態に係るスピントルク発振子の特性を例示するグラフ図である。
すなわち、同図は、本発明の第2の実施形態に係るスピントルク発振子10bにおいて、各磁性体層の面内磁化成分の発振スペクトルを例示している。同図の横軸は、発振周波数であり、縦軸は面内磁化成分の発振強度である。
図7に表したように、本実施形態に係るスピントルク発振子10bは、19GHzにシャープなピークを有する。このことから、発振層10aは非常に安定して発振していることがわかる。
このように、発振層10a、及び、スピン注入層30の中間層との界面に、FeCoAl合金からなる第1スピン注入層30aを設けることで、スピントルク伝達効率がさらに向上する。すなわち、従来のCoFe/NiFeを用いた発振層やCoPtを用いたスピン注入層よりも、スピントルク伝達効率の向上が可能となる。
これにより、本実施形態に係るスピントルク発振子10bによれば、低電流密度で安定して発振が可能であり、かつ、面内高周波磁界の強度の高いスピントルク発振子が提供できる。
ところで、スピン注入層30の中間層との界面にFeCoAl合金からなる第1スピン注入層30aを設けた場合に、面内磁化膜であるFeCoAl合金が垂直に磁化するかどうかが懸念されるが、FeCoAl合金が低Msであること、第1スピン注入層30aの層厚を2nmと薄くしたこと、及び、第1スピン注入層30aのFeCoAl層と、第2スピン注入層30bのCoPt合金層との交換結合力が十分に大きいこと、によって、面内磁化膜であるFeCoAl合金が垂直に磁化することが実現可能になっている。なお、第1スピン注入層30aの膜厚が5nm以下とすることが望ましく、この時、第2スピン注入層30bの異方性エネルギーおよび、第1スピン注入層30aと第2スピン注入層30aとの間の交換結合力を調整することにより、第1スピン注入層30aを垂直に磁化することが可能となる。
また、スピン注入層30の中間層との界面にFeCoAl合金からなる第1スピン注入層30aを設けた場合に、スピントルク伝達効率を十分に大きくできるかどうかが懸念される。FeCoAl合金のスピン拡散長が短いため、第1スピン注入層30aのFeCoAl合金が薄い場合でも伝導電子はスピン分極する。この結果、第1スピン注入層30aのFeCoAl層が薄い場合でも、スピントルク伝達効率を十分に大きくできる。このため、第1スピン注入層30aの膜厚は0.5nm以上であればよい。
以上より、第1スピン注入層30aのFeCoAl合金の膜厚は0.5nmから5nmとすることが望ましい。
ただし、本実施形態に係るスピントルク発振子10bにおいても、上記の材料及び層厚だけでなく、各種の材料と層厚を有することができる。
例えば、中間層22には、例えば、Cu、Au、Agなどのスピン透過率の高い材料を用いることができる。中間層22の層厚は、1原子層から3nmとすることが望ましい。これにより発振層10aとスピン注入層30の交換結合を最適な値に調節することが可能となる。
また、スピン注入層30の第2スピン注入層30bには、例えば、膜面直方向に磁化配向したCoCrPt、CoCrTa、CoCrTaPt、CoCrTaNb等のCoCr系磁性、TbFeCo等のRE−TM系アモルファス合金磁性層、Co/Pd、Co/Pt、CoCrTa/Pd等のCo人工格子磁性層、CoPt系やFePt系の合金磁性層、SmCo系合金磁性層など、垂直配向性に優れた材料、CoFe、CoNiFe、NiFe、CoZrNb、FeN、FeSi、FeAlSi等の、比較的、飽和磁束密度の大きく膜面内方向に磁気異方性を有する軟磁性層や、CoFeSi、CoMnSi、CoMnAl等のグループから選択されるホイスラー合金、膜面内方向に磁化が配向したCoCr系の磁性合金膜も適宜用いることができる。さらに、複数の上記材料を積層したものを用いてもよい。
また、発振層10aには、FeCoAl合金と、上記のスピン注入層30の第2スピン注入層30bに用いることができる各種の材料を積層したものを用いても良い。
なお、発振層10aおよび第1スピン注入層30aには、FeCoAl合金に、さらに、Si、Ge、Mn、Cr、Bの少なくともいずれか1つ以上を添加した材料を用いても良い。さらに、発振層10aおよび第1スピン注入層30aには、FeCoAl合金におけるAlの替わりに、Si、Ge、Mn、Cr、Bのいずれか1つ以上を用いた、FeCoSi、FeCoGe、FeCoMn、FeCoCr、FeCoB合金を用いても良い。これにより、例えば、発振層10aとスピン注入層30との飽和磁束密度(Bs)、異方性磁界(Hk)、及び、スピントルク伝達効率を調整することができる。
すなわち、本実施形態に係るスピントルク発振子10bにおいては、発振層10aは、Fe−Co−(Al、Si、Ge、Mn、Cr、B)合金を含み、スピン注入層30の中間層22の側の部分は、Fe−Co−(Al、Si、Ge、Mn、Cr、B)合金を含む。
なお、発振層10aの層厚は、5nmから20nmとすることが望ましく、スピン注入層30の層厚は、2nmから60nmとすることが望ましい。また、Siは、アニールする際にFeCo合金母相から拡散しにくい、という特徴がある。このため、素子プロセスでアニールが必要な場合や、第1スピン注入層30aに用いる場合には、FeCoSi合金を用いることが望ましい。
(第3の実施の形態)
図8は、本発明の第3の実施形態に係るスピントルク発振子の構成を例示する模式的断面図である。
図8に表したように、本発明の第3の実施形態に係るスピントルク発振子10cにおいては、スピン注入層30として、中間層側のFeCoAl層(第1スピン注入層30a)と、層厚20nmのCoPt層(第2スピン注入層30b)30bと、の積層膜が用いられている。また、本実施形態に係るスピントルク発振子においては、発振層10aはFeCoAl合金を含んでいない。
すなわち、スピン注入層30は、FeCoAl合金層と、膜面垂直方向に磁化配向したCoPt合金層と、の積層構造からなっており、中間層22との界面に、FeCoAl合金層が配置されている。すなわち、スピン注入層30は、膜面垂直方向に磁化配向したCoPt合金を含む第2スピン注入層30bと、第2スピン注入層30bと中間層22との間に配置され、FeCoAl合金を含む第1スピン注入層30aと、を有している。
第1スピン注入層30aとなるFeCoAl合金層の層厚は、0.5nmから5nmであることが望ましい。
一方、第2スピン注入層30bとなるCoPt合金の層厚は、2nmから60nmとすることが望ましい。
なお、第1スピン注入層30aの層厚と、第2スピン注入層30bの層厚とは、第1スピン注入層30aとなるFeCoAl合金によりスピントルクが十分に発振層に伝達し、かつ、第2スピン注入層30bとなるCoPt合金の垂直磁気異方性によりFeCoAl合金層が垂直に磁化するように、適宜調整することができる。
なお、第1スピン注入層30aに用いられるFeCoAl合金は、Si、Ge、Mn、Cr、Bのうちのいずれか1つ以上を含むこともできる。
さらに、第1スピン注入層30aに用いられるFeCoAl合金のAlの替わりに、Si、Ge、Mn、Cr、Bをいずれか1つ以上用いた、FeCoSi、FeCoGe、FeCoMn、FeCoCr、FeCoB合金を、第1スピン注入層30aに用いても良い。
すなわち、本実施形態に係るスピントルク発振子10cにおいては、スピン注入層30の中間層22との界面では、Fe−Co−(Al、Si、Ge、Mn、Cr、B)合金を含む。
一方、発振層10aには、発振時に磁界を発生する高Bs軟磁性材料(FeCo/NiFe積層膜)を用いることができ、発振層10aの層厚は5nmから20nmとすることが望ましい。
また、第2スピン注入層30b、及び、発振層10aには、CoFe、CoNiFe、NiFe、CoZrNb、FeN、FeSi、FeAlSi等の、比較的、飽和磁束密度の大きく膜面内方向に磁気異方性を有する軟磁性層や、CoFeSi、CoMnSi、CoMnAl等のグループから選択されるホイスラー合金、膜面内方向に磁化が配向したCoCr系の磁性合金膜を用いることができる。さらに、膜面直方向に磁化配向したCoCrPt、CoCrTa、CoCrTaPt、CoCrTaNb等のCoCr系磁性、TbFeCo等のRE−TM系アモルファス合金磁性層、Co/Pd、Co/Pt、CoCrTa/Pd等のCo人工格子磁性層、CoPt系やFePt系の合金磁性層、SmCo系合金磁性層など、垂直配向性に優れた材料も適宜用いることができる。
また、第2スピン注入層30b、及び、発振層10aにおいては、複数の上記材料を積層してもよい。これにより、発振層10aとスピン注入層30との飽和磁束密度(Bs)及び異方性磁界(Hk)を調整することができる。
また、第1、第2の電極41、42としては、Ti、Cuなどの電気抵抗が低く、酸化されにくい材料を用いることができる。
また、中間層22としては、Cu、Au、Agなどのスピン透過率の高い材料を用いることができる。中間層22の層厚は、1原子層から3nmとすることが望ましい。これにより発振層とスピン注入層の交換結合を最適な値に調節することが可能となる。
このような構造を有する本実施形態に係るスピントルク発振子10cにおいては、スピン注入層30の中間層との界面に、FeCoAl合金からなる第1スピン注入層30aを設けることで、スピントルク伝達効率が向上する。
これにより、本実施形態に係るスピントルク発振子10cによれば、低電流密度で安定して発振が可能であり、かつ、面内高周波磁界の強度の高いスピントルク発振子が提供できる。
ところで、スピン注入層30の中間層側の界面にFeCoAl合金からなる第1スピン注入層30aを設けた場合において、FeCoAl合金が低Msであること、第1スピン注入層30aの層厚を2nmと薄くしたこと、及び、第1スピン注入層30aのFeCoAl層と、第2スピン注入層30bのCoPt合金層との交換結合力が十分に大きいこと、によって、面内磁化膜であるFeCoAl合金が垂直に磁化することが実現可能である。また、FeCoAl合金のスピン拡散長が短いため、スピントルク伝達効率を十分に大きくできる。
(第4の実施の形態)
本発明の第4の実施の形態に係る磁気記録ヘッドについて、多粒子系の垂直磁気記録媒体に記録する場合を想定して、説明する。
図9は、本発明の第4の実施形態に係る磁気記録ヘッドの構成を例示する模式的斜視図である。
図10は、本発明の第4の実施形態に係る磁気記録ヘッドが搭載されるヘッドスライダーの構成を例示する模式的斜視図である。
図11は、本発明の第4の実施形態に係る磁気記録ヘッドに用いられるスピントルク発振子の構成を例示する模式的斜視図である。
図9に表したように、本発明の第4の実施形態に係る磁気記録ヘッド51は、主磁極61と、上記の本発明の実施形態に係るスピントルク発振子10と、を備える。
なお、本具体例では、スピントルク発振子として、第1の実施形態に係るスピントルク発振子10が用いられているが、本発明はこれに限らず、第2及び第3の実施形態に係るスピントルク発振子10b、10c、及び、それらを変形した各種のスピントルク発振子を用いることができる。以下に説明する具体例では、スピントルク発振子として第1の実施形態に係るスピントルク発振子10を用いる例として説明する。
図9に表したように、発振層10aは、主磁極61とスピン注入層30との間に配置することができる。ただし、それとは逆に、スピン注入層30を、主磁極61と発振層10aとの間に配置しても良い。
上記の主磁極61と、スピントルク発振子10と、は、書き込みヘッド部60に含まれる。
さらに、書き込みヘッド部60は、リターンパス(シールド)62をさらに含むことができる。
なお、主磁極61と第2の電極42は共用されており、リターンパス(シールド)62と第1の電極41は共用されている。
なお、図9に表したように、本実施形態に係る磁気記録ヘッド51には、さらに、再生ヘッド部70を設けることができる。
再生ヘッド部70は、第1磁気シールド層72aと、第2磁気シールド層72bと、第1磁気シールド層72aと第2磁気シールド層72bとの間に設けられた磁気再生素子71と、を含む。
上記の再生ヘッド部70の各要素、及び、上記の書き込みヘッド部60の各要素は、図示しないアルミナ等の絶縁体により分離される。
磁気再生素子71としては、GMR素子やTMR(Tunnel Magneto-Resistive effect)素子などを利用することが可能である。なお、再生分解能をあげるために、磁気再生素子71は、2枚の磁気シールド層、すなわち、第1及び第2磁気シールド層72a、72bの間に設置される。
そして、図9に表したように、磁気記録ヘッド51の媒体対向面61sに対向して磁気記録媒体80が設置される。そして、主磁極61は、磁気記録媒体80に記録磁界を印加する。なお、磁気記録ヘッド51の媒体対向面61sは、磁気記録ヘッド51に対して設置される磁気記録媒体80に対向した主磁極61の主面とすることができる。
また、例えば、図10に表したように、磁気記録ヘッド51は、ヘッドスライダー3に搭載される。ヘッドスライダー3は、Al/TiCなどからなり、磁気ディスクなどの磁気記録媒体80の上を、浮上または接触しながら相対的に運動できるように設計され、製作される。
ヘッドスライダー3は、空気流入側3Aと空気流出側3Bとを有し、磁気記録ヘッド51は、空気流出側3Bの側面などに配置される。これにより、ヘッドスライダー3に搭載された磁気記録ヘッド51は、磁気記録媒体80の上を浮上または接触しながら相対的に運動する。
図9に表したように、磁気記録媒体80は、媒体基板82と、その上に設けられた磁気記録層81と、を有する。書き込みヘッド部60から印加される磁界により、磁気記録層81の磁化83が所定の方向に制御され、書き込みがなされる。なお、この時、磁気記録媒体80は、媒体移動方向85の方向に、磁気記録ヘッド51に対して相対的に移動する。
一方、再生ヘッド部70は、磁気記録層81の磁化の方向を読み取る。
図11に表したように、本実施形態に用いられるスピントルク発振子10は、スピン注入層30と、スピン透過率の高い中間層22と、発振層10aがこの順に積層された積層構造体25を有し、積層構造体25に接続された第1電極41及び第2電極42を通じて駆動電子流を流すことにより、発振層10aから高周波磁界を発生させることができる。駆動電流密度は、所望の発振状態になるよう適宜調整する。なお、記録トラックピッチが縮小し、スピントルク発振子の素子サイズがより小さくなった場合、熱の放散が改善されるため、駆動電流密度をより改善することが可能である。
また、スピン注入層30の保磁力は、主磁極61から印加される磁界より小さくすることが望ましい。この時、スピン注入層30の磁化方向と、主磁極61からの印加磁界方向とは略平行となる。その結果、主磁極61から発振層10aに印加される磁界と、スピン注入層30から発振層10aに印加されるスピントルクとが、主磁極61からの印加磁界方向に依存せず常につりあい、安定した発振が可能となる。このため、主磁極61が、「0」及び「1」のどちらを磁気記録媒体80に記録する場合にも、安定した高周波磁界アシスト記録が可能となる。
なお、スピン注入層30の保磁力が主磁極61から印加される磁界より大きい場合、スピン注入層30の磁化方向は、主磁極61からの印加磁界によらず、常に略同一方向に磁化する。この時、主磁極61が「0」を記録する場合には、安定した発振が可能であったとする。しかし、「1」を記録する場合、主磁極61からの磁界が反転する必要がある。この結果、主磁極61から発振層10aに印加される磁界と、スピン注入層30から発振層10aに印加されるスピントルクとがつりあわなくなり、発振が停止する。このため、安定した高周波磁界アシスト記録が不可能となる。以上の理由から、スピン注入層30の保磁力は、主磁極61から印加される磁界より小さくすることが望ましい。
スピントルク発振子10の各構成要素に関しては、既に第1の実施形態に関して説明したので省略する。
主磁極61及びリターンパス62は、FeCo、CoFe、CoNiFe、NiFe、CoZrNb、FeN、FeSi、FeAlSi等の、比較的、飽和磁束密度の大きい軟磁性層で構成されている。
また、主磁極61は、媒体対向面61sの側の部分と、それ以外の部分の材料を別々の材料としても良い。すなわち、例えば、磁気記録媒体80やスピントルク発振子10に発生する磁界を大きくするため、媒体対向面61sの側の部分の材料を、飽和磁束密度の特に大きいFeCo、CoNiFe、FeN等とし、それ以外の部分は、特に透磁率が高いNiFe等にしても良い。また、磁気記録媒体80やスピントルク発振子10に発生する磁界を大きくするため、主磁極61の媒体対向面61sの側の形状を、バックギャップ部より小さくしても良い。これにより、磁束が媒体対向面61sの側の部分に集中し、高強度の磁界を発生することが可能となる。
主磁極61のコイルには、Ti、Cuなどの電気抵抗が低く、酸化されにくい材料を用いることができる。
このような構成を有する本実施形態に係る磁気記録ヘッド51によれば、低電流密度で安定して発振が可能であり、かつ、面内高周波磁界の強度の高いスピントルク発振子による安定した高周波磁界が得られ、高密度の磁気記録を実現できる磁気記録ヘッドが提供できる。
なお、スピントルク発振子10の高周波磁界の強度Hacの最大領域は、発振層10aのリーディング側及びトレーリング側にある。主磁極61からの記録磁界の最大領域と、トレーリング側の高周波磁界の強度Hacの最大領域と、が重畳するように、スピントルク発振子10と、主磁極61と、シールド62の位置を調整することにより、良好な記録が可能である。
本実施形態に係る磁気記録ヘッド51において、スピントルク発振子として第2の実施形態で説明したスピントルク発振子10bを用いることができる。
すなわち、発振層10a、及び、スピン注入層30の中間層側の界面側、に、FeCoAl合金からなる第1スピン注入層30aを設ける。これにより、スピントルク伝達効率がさらに向上する。
従って、低電流密度でさらに安定して発振が可能であり、かつ、面内高周波磁界の強度の高いスピントルク発振子によるさらに安定した高周波磁界が得られ、高密度の磁気記録を実現できる磁気記録ヘッドが提供できる。
なお、この場合も、スピントルク発振子10bの高周波磁界の強度Hacの最大領域は、発振層10aのリーディング側及びトレーリング側にある。主磁極61からの記録磁界の最大領域と、トレーリング側の高周波磁界の強度Hacの最大領域と、が重畳するように、スピントルク発振子10bと、主磁極61と、シールド62の位置を調整することにより、良好な記録が可能である。
さらに、本実施形態に係る磁気記録ヘッド51において、スピントルク発振子として第3の実施形態で説明したスピントルク発振子10cを用いることができる。
すなわち、スピン注入層30の中間層側の界面側に、FeCoAl合金からなる第1スピン注入層30aを設ける。これにより、スピントルク伝達効率が向上する。
また、主磁極61の発振層10aとの界面をCuとすることができる。これにより、FeCoAl合金からなる発振層10aのAl原子の拡散を防止することが可能となる。その結果、良好なスピントルク発振子を作製することが可能となる。
従って、低電流密度で安定して発振が可能であり、かつ、面内高周波磁界の強度の高いスピントルク発振子による安定した高周波磁界が得られ、高密度の磁気記録を実現できる磁気記録ヘッドが提供できる。
(第5の実施の形態)
以下、本発明の第5の実施の形態に係る磁気記録装置及び磁気ヘッドアセンブリについて説明する。
上記で説明した本発明の実施形態に係る磁気記録ヘッドは、例えば、記録再生一体型の磁気ヘッドアセンブリに組み込まれ、磁気記録装置に搭載することができる。なお、本実施形態に係る磁気記録装置は、記録機能のみを有することもできるし、記録機能と再生機能の両方を有することもできる。
図12は、本発明の第5の実施形態に係る磁気記録装置の構成を例示する模式的斜視図である。
図13は、本発明の第5の実施形態に係る磁気記録装置の一部の構成を例示する模式的斜視図である。
図12に表したように、本発明の第5の実施形態に係る磁気記録装置150は、ロータリーアクチュエータを用いた形式の装置である。同図において、記録用媒体ディスク180は、スピンドルモータ4に装着され、図示しない駆動装置制御部からの制御信号に応答する図示しないモータにより矢印Aの方向に回転する。本実施形態に係る磁気記録装置150は、複数の記録用媒体ディスク180を備えたものとしても良い。
記録用媒体ディスク180に格納する情報の記録再生を行うヘッドスライダー3は、既に説明したような構成を有し、薄膜状のサスペンション154の先端に取り付けられている。ここで、ヘッドスライダー3は、例えば、前述した実施の形態に係る磁気記録ヘッドをその先端付近に搭載している。
記録用媒体ディスク180が回転すると、サスペンション154による押付け圧力とヘッドスライダー3の媒体対向面(ABS)で発生する圧力とがつりあい、ヘッドスライダー3の媒体対向面は、記録用媒体ディスク180の表面から所定の浮上量をもって保持される。なお、ヘッドスライダー3が記録用媒体ディスク180と接触するいわゆる「接触走行型」としても良い。
サスペンション154は、図示しない駆動コイルを保持するボビン部などを有するアクチュエータアーム155の一端に接続されている。アクチュエータアーム155の他端には、リニアモータの一種であるボイスコイルモータ156が設けられている。ボイスコイルモータ156は、アクチュエータアーム155のボビン部に巻き上げられた図示しない駆動コイルと、このコイルを挟み込むように対向して配置された永久磁石及び対向ヨークからなる磁気回路とから構成することができる。
アクチュエータアーム155は、軸受部157の上下2箇所に設けられた図示しないボールベアリングによって保持され、ボイスコイルモータ156により回転摺動が自在にできるようになっている。その結果、磁気記録ヘッドを記録用媒体ディスク180の任意の位置に移動可能となる。
図13(a)は、本実施形態に係る磁気記録装置の一部の構成を例示しており、ヘッドスタックアセンブリ160の拡大斜視図である。また、図13(b)は、ヘッドスタックアセンブリ160の一部となる磁気ヘッドアセンブリ(ヘッドジンバルアセンブリ)158を例示する斜視図である。
図13(a)に表したように、ヘッドスタックアセンブリ160は、軸受部157と、この軸受部157から延出したヘッドジンバルアセンブリ158と、軸受部157からヘッドジンバルアセンブリ158と反対方向に延出しているとともにボイスコイルモータのコイル162を支持した支持フレーム161を有している。
また、図13(b)に表したように、ヘッドジンバルアセンブリ158は、軸受部157から延出したアクチュエータアーム155と、アクチュエータアーム155から延出したサスペンション154と、を有している。
サスペンション154の先端には、既に説明した本発明の実施形態に係る磁気記録ヘッドを具備するヘッドスライダー3が取り付けられている。そして、既に説明したように、ヘッドスライダー3には、本発明の実施形態に係る磁気記録ヘッドが搭載される。
すなわち、本発明の実施形態に係る磁気ヘッドアセンブリ(ヘッドジンバルアセンブリ)158は、本発明の実施形態に係る磁気記録ヘッドと、前記磁気記録ヘッドが搭載されたヘッドスライダー3と、前記ヘッドスライダー3を一端に搭載するサスペンション154と、前記サスペンション154の他端に接続されたアクチュエータアーム155と、を備える。
サスペンション154は、信号の書き込み及び読み取り用、浮上量調整のためのヒーター用、スピントルク発振子用のリード線(図示しない)を有し、このリード線とヘッドスライダー3に組み込まれた磁気記録ヘッドの各電極とが電気的に接続される。また、図示しない電極パッドが、ヘッドジンバルアセンブリ158に設けられる。本具体例においては、電極パッドは8個設けられる。すなわち、主磁極61のコイル用の電極パッドが2つ、磁気再生素子71用の電極パッドが2つ、DFH(ダイナミックフライングハイト)用の電極パッドが2つ、スピントルク発振子10用の電極パッドが2つ、設けられる。
そして、磁気記録ヘッドを用いて磁気記録媒体への信号の書き込みと読み出しを行う信号処理部190が設けられる。信号処理部190は、例えば、図12に例示した磁気記録装置150の図面中の背面側に設けられる。信号処理部190の入出力線は、ヘッドジンバルアセンブリ158の電極パッドに接続され、磁気記録ヘッドと電気的に結合される。
このように、本実施形態に係る磁気記録装置150は、磁気記録媒体と、上記の実施形態に係る磁気記録ヘッドと、磁気記録媒体と磁気記録ヘッドとを離間させ、または、接触させた状態で対峙させながら相対的に移動可能とした可動部と、磁気記録ヘッドを磁気記録媒体の所定記録位置に位置合せする位置制御部と、磁気記録ヘッドを用いて磁気記録媒体への信号の書き込みと読み出しを行う信号処理部と、を備える。
すなわち、上記の磁気記録媒体として、記録用媒体ディスク180が用いられる。
上記の可動部は、ヘッドスライダー3を含むことができる。
また、上記の位置制御部は、ヘッドジンバルアセンブリ158を含むことができる。
すなわち、本実施形態に係る磁気記録装置150は、磁気記録媒体と、本発明の実施形態に係る磁気ヘッドアセンブリと、前記磁気ヘッドアセンブリに搭載された前記磁気記録ヘッドを用いて前記磁気記録媒体への信号の書き込みと読み出しを行う信号処理部と、を備える。
本実施形態に係る磁気記録装置150によれば、上記の実施形態のスピントルク発振子及び上記の実施形態に係る磁気記録ヘッドを用いることで、低電流密度で安定して発振が可能であり、かつ、面内高周波磁界の強度の高いスピントルク発振子による安定した高周波磁界が得られ、高密度の磁気記録を実現できる磁気記録装置が提供できる。
なお、本発明の実施形態に係る磁気記録装置において、スピントルク発振子10は、主磁極61のトレーリング側に設けることができる。この場合は、磁気記録媒体80の磁気記録層81は、まず、スピントルク発振子10に対向し、その後で主磁極61に対向する。
また、本発明の実施形態に係る磁気記録装置において、スピントルク発振子10は、主磁極61のリーディング側に設けることができる。この場合は、磁気記録媒体80の磁気記録層81は、まず、主磁極61に対向し、その後でスピントルク発振子10に対向する。
以下、上記の実施形態の磁気記録装置に用いることができる磁気記録媒体について説明する。
図14は、本発明の実施形態に係る磁気記録装置の磁気記録媒体の構成を例示する模式的斜視図である。
図14に表したように、本発明の実施形態に係る磁気記録装置に用いられる磁気記録媒体80は、非磁性体(あるいは空気)87により互いに分離された垂直配向した多粒子系の磁性ディスクリートトラック(記録トラック)86を有する。この磁気記録媒体80がスピンドルモータ4により回転され、媒体移動方向85に向けて移動する際に、上記の実施形態に係る磁気記録ヘッドのいずれかが設けられ、これにより、記録磁化84を形成することができる。
このように、本発明の実施形態に係る磁気記録装置においては、磁気記録媒体80は、隣接し合う記録トラック同士が非磁性部材を介して形成されたディスクリートトラック媒体とすることができる。
スピントルク発振子10の記録トラック幅方向の幅(TS)を記録トラック86の幅(TW)以上で、かつ記録トラックピッチ(TP)以下とすることによって、スピントルク発振子10から発生する漏れ高周波磁界による隣接記録トラックの保磁力低下を大幅に抑制することができる。このため、本具体例の磁気記録媒体80では、記録したい記録トラック86のみを効果的に高周波磁界アシスト記録することができる。
本具体例によれば、いわゆる「べた膜状」の多粒子系垂直媒体を用いるよりも、狭トラックすなわち高トラック密度の高周波アシスト記録装置を実現することが容易になる。また、高周波磁界アシスト記録方式を利用し、さらに従来の磁気記録ヘッドでは書き込み不可能なFePtやSmCo等の高磁気異方性エネルギー(Ku)の媒体磁性材料を用いることによって、媒体磁性粒子をナノメートルのサイズまでさらに微細化することが可能となり、記録トラック方向(ビット方向)においても、従来よりも遥かに線記録密度の高い磁気記録装置を実現することができる。
本実施形態に係る磁気記録装置によれば、ディスクリート型の磁気記録媒体80において、高い保磁力を有する磁気記録層に対しても確実に記録することができ、高密度かつ高速の磁気記録が可能となる。
図15は、本発明の実施形態に係る磁気記録装置の別の磁気記録媒体の構成を例示する模式的斜視図である。
図15に表したように、本発明の実施形態に係る磁気記録装置に用いることができる別の磁気記録媒体80は、非磁性体87により互いに分離された磁性ディスクリートビット88を有する。この磁気記録媒体80がスピンドルモータ4により回転され、媒体移動方向85に向けて移動する際に、本発明の実施形態に係る磁気記録ヘッドにより、記録磁化84を形成することができる。
このように、本発明の実施形態に係る磁気記録装置においては、磁気記録媒体80は、非磁性部材を介して孤立した記録磁性ドットが規則的に配列形成されたディスクリートビット媒体とすることができる。
本実施形態に係る磁気記録装置によれば、ディスクリート型の磁気記録媒体80において、高い保磁力を有する磁気記録層に対しても確実に記録することができ、高密度かつ高速の磁気記録が可能となる。
この具体例においても、スピントルク発振子10の記録トラック幅方向の幅(TS)を記録トラック86の幅(TW)以上で、かつ記録トラックピッチ(TP)以下とすることによって、スピントルク発振子10から発生する漏れ高周波磁界による隣接記録トラックの保磁力低下を大幅に抑制することができるため、記録したい記録トラック86のみを効果的に高周波磁界アシスト記録することができる。本具体例を用いれば、使用環境下での熱揺らぎ耐性を維持できる限りは、磁性ディスクリートビット88の高磁気異方性エネルギー(Ku)化と微細化を進めることで、10Tbits/inch以上の高い記録密度の高周波磁界アシスト記録装置を実現できる可能性がある。
以上、具体例を参照しつつ、本発明の実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。例えば、スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置を構成する各要素の具体的な構成に関しては、当業者が公知の範囲から適宜選択することにより本発明を同様に実施し、同様の効果を得ることができる限り、本発明の範囲に包含される。
また、各具体例のいずれか2つ以上の要素を技術的に可能な範囲で組み合わせたものも、本発明の要旨を包含する限り本発明の範囲に含まれる。
その他、本発明の実施の形態として上述したスピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置を基にして、当業者が適宜設計変更して実施し得る全てのスピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置も、本発明の要旨を包含する限り、本発明の範囲に属する。
その他、本発明の思想の範疇において、当業者であれば、各種の変更例及び修正例に想到し得るものであり、それら変更例及び修正例についても本発明の範囲に属するものと了解される。
本発明の第1の実施形態に係るスピントルク発振子の構成を例示する模式的断面図である。 本発明の第1の実施形態に係るスピントルク発振子の特性を例示するグラフ図である。 第1の比較例のスピントルク発振子の特性を例示するグラフ図である。 本発明の第1の実施形態に係るスピントルク発振子における特性を例示するグラフ図である。 本発明の第1の実施形態に係るスピントルク発振子に用いられるFeCoAl合金の特性を例示するグラフ図である。 本発明の第2の実施形態に係るスピントルク発振子の構成を例示する模式的断面図である。 本発明の第2の実施形態に係るスピントルク発振子の特性を例示するグラフ図である。 本発明の第3の実施形態に係るスピントルク発振子の構成を例示する模式的断面図である。 本発明の第4の実施形態に係る磁気記録ヘッドの構成を例示する模式的斜視図である。 本発明の第4の実施形態に係る磁気記録ヘッドが搭載されるヘッドスライダーの構成を例示する模式的斜視図である。 本発明の第4の実施形態に係る磁気記録ヘッドに用いられるスピントルク発振子の構成を例示する模式的斜視図である。 本発明の第5の実施形態に係る磁気記録装置の構成を例示する模式的斜視図である。 本発明の第5の実施形態に係る磁気記録装置の一部の構成を例示する模式的斜視図である。 本発明の実施形態に係る磁気記録装置の磁気記録媒体の構成を例示する模式的斜視図である。 本発明の実施形態に係る磁気記録装置の別の磁気記録媒体の構成を例示する模式的斜視図である。
符号の説明
3 ヘッドスライダー
3A 空気流入側
3B 空気流出側
4 スピンドルモータ
5 磁気記録ヘッド、
10、10b、10c スピントルク発振子
10a 発振層
20 バイアス層
22 中間層
25 積層構造体
30 スピン注入層
41 第1電極
42 第2電極
51 磁気記録ヘッド
60 書き込みヘッド部
61 主磁極
61s 媒体対向面
62 シールド(リターンパス)
70 再生ヘッド部
71 磁気再生素子
72a、72b 磁気シールド層
80 磁気記録媒体
81 磁気記録層
82 媒体基板
83 磁化
84 記録磁化
85 媒体移動方向
86 記録トラック
87 非磁性体
88 磁気ディスクリートビット
150 磁気記録装置
154 サスペンション
155 アクチュエータアーム
156 ボイスコイルモータ
157 軸受部
158 ヘッドジンバルアセンブリ(磁気ヘッドアセンブリ)
160 ヘッドスタックアセンブリ
161 支持フレーム
162 コイル
180 記録用媒体ディスク
190 信号処理部

Claims (15)

  1. Fe−CoにAl、Si、Ge、Mn、Cr、Bの少なくともいずれか1つ以上を添加した材料からなり、Fe組成比率が20原子パーセント以上でbcc構造の合金を含む第1の磁性体層と、
    垂直磁化膜を含む第2の磁性体層と、
    前記第1の磁性体層と前記第2の磁性体層との間に設けられた中間層と、
    を備え
    前記第2の磁性体層は、前記中間層との界面において、Fe−CoにAl、Si、Ge、Mn、Cr、Bの少なくともいずれか1つ以上を添加した材料からなる合金を含むことを特徴とするスピントルク発振子。
  2. 前記第1の磁性体層は、Al組成比率が12原子パーセント以上40原子パーセント以下のFe−Co−Al合金を含むことを特徴とする請求項1記載のスピントルク発振子。
  3. 前記第2の磁性体層は、垂直磁化膜をさらに含み、
    前記中間層との界面に設けられる前記合金は、前記垂直磁化膜と前記中間層との間に配置されることを特徴とする請求項記載のスピントルク発振子。
  4. 第1の磁性体層と、
    垂直磁化膜を含む第2の磁性体層と、
    前記第1の磁性体層と前記第2の磁性体層との間に設けられた中間層と、
    を備え、
    前記第2の磁性体層は、前記中間層との界面において、Fe−CoにAl、Si、Ge、Mn、Cr、Bの少なくともいずれか1つ以上を添加した材料からなる合金を含むことを特徴とするスピントルク発振子。
  5. 前記第2の磁性体層は、垂直磁化膜をさらに含み、
    前記中間層との界面に設けられる前記合金は、前記垂直磁化膜と前記中間層との間に配置されることを特徴とする請求項記載のスピントルク発振子。
  6. 請求項1〜のいずれか1つに記載したスピントルク発振子と、
    前記スピントルク発振子に併置された主磁極と、
    を備えたことを特徴とする磁気記録ヘッド。
  7. 前記第1の磁性体層の保磁力は前記主磁極から印加される磁界より小さく、前記第2の磁性体層の保磁力は前記主磁極から印加される磁界より小さいことを特徴とする請求項記載の磁気記録ヘッド。
  8. 前記第1の磁性体層は、前記主磁極と前記第2の磁性体層との間に配置されていることを特徴とする請求項またはに記載の磁気記録ヘッド。
  9. 前記第2の磁性体層は、前記主磁極と前記第1の磁性体層との間に配置されていることを特徴とする請求項またはに記載の磁気記録ヘッド。
  10. 請求項のいずれか1つに記載の磁気記録ヘッドと、
    前記磁気記録ヘッドが搭載されたヘッドスライダーと、
    前記ヘッドスライダーを一端に搭載するサスペンションと、
    前記サスペンションの他端に接続されたアクチュエータアームと、
    を備えたことを特徴とする磁気ヘッドアセンブリ。
  11. 磁気記録媒体と、
    請求項10記載の磁気ヘッドアセンブリと、
    前記磁気ヘッドアセンブリに搭載された前記磁気記録ヘッドを用いて前記磁気記録媒体への信号の書き込みと読み出しを行う信号処理部と、
    を備えたことを特徴とする磁気記録装置。
  12. 前記スピントルク発振子は、前記主磁極のトレーリング側に設けられたことを特徴とする請求項11記載の磁気記録装置。
  13. 前記スピントルク発振子は、前記主磁極のリーディング側に設けられたことを特徴とする請求項11記載の磁気記録装置。
  14. 前記磁気記録媒体は、隣接し合う記録トラック同士が非磁性部材を介して形成されたディスクリートトラック媒体であることを特徴とする請求項1113のいずれか1つに記載の磁気記録装置。
  15. 前記磁気記録媒体は、非磁性部材を介して孤立した記録磁性ドットが規則的に配列形成されたディスクリートビット媒体であることを特徴とする請求項1113のいずれか1つに記載の磁気記録装置。
JP2008161025A 2008-06-19 2008-06-19 スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置 Expired - Fee Related JP5361259B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008161025A JP5361259B2 (ja) 2008-06-19 2008-06-19 スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
US12/382,940 US8687321B2 (en) 2008-06-19 2009-03-26 Magnetic head assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008161025A JP5361259B2 (ja) 2008-06-19 2008-06-19 スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013150389A Division JP2013251042A (ja) 2013-07-19 2013-07-19 スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置

Publications (3)

Publication Number Publication Date
JP2010003354A JP2010003354A (ja) 2010-01-07
JP2010003354A5 JP2010003354A5 (ja) 2012-02-16
JP5361259B2 true JP5361259B2 (ja) 2013-12-04

Family

ID=41431015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008161025A Expired - Fee Related JP5361259B2 (ja) 2008-06-19 2008-06-19 スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置

Country Status (2)

Country Link
US (1) US8687321B2 (ja)
JP (1) JP5361259B2 (ja)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008277586A (ja) 2007-04-27 2008-11-13 Toshiba Corp 磁気素子、磁気記録ヘッド及び磁気記録装置
JP4358279B2 (ja) 2007-08-22 2009-11-04 株式会社東芝 磁気記録ヘッド及び磁気記録装置
US8994587B2 (en) 2010-05-14 2015-03-31 Qualcomm Incorporated Compressed sensing for navigation data
JP2009080875A (ja) 2007-09-25 2009-04-16 Toshiba Corp 磁気ヘッド及び磁気記録装置
JP4929108B2 (ja) * 2007-09-25 2012-05-09 株式会社東芝 磁気ヘッドおよび磁気記録装置
JP5361259B2 (ja) 2008-06-19 2013-12-04 株式会社東芝 スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5377893B2 (ja) 2008-06-19 2013-12-25 株式会社東芝 磁気ヘッドアセンブリおよび磁気記録再生装置
JP2010040126A (ja) 2008-08-06 2010-02-18 Toshiba Corp 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5173750B2 (ja) 2008-11-06 2013-04-03 株式会社東芝 スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5558698B2 (ja) 2008-11-28 2014-07-23 株式会社東芝 磁気記録ヘッド、磁気ヘッドアセンブリ、磁気記録装置及び磁気記録方法
US8705213B2 (en) * 2010-02-26 2014-04-22 Seagate Technology Llc Magnetic field detecting device with shielding layer at least partially surrounding magnetoresistive stack
JP2011198399A (ja) * 2010-03-17 2011-10-06 Toshiba Corp 磁気記録ヘッド、磁気ヘッドアセンブリ、及び磁気記録再生装置
JP5581980B2 (ja) * 2010-11-08 2014-09-03 株式会社日立製作所 磁気記録ヘッドおよび磁気記録装置
JP2012119027A (ja) * 2010-11-30 2012-06-21 Toshiba Corp 磁気記録ヘッド、磁気ヘッドアセンブリおよび磁気記録装置
JP2012226799A (ja) * 2011-04-18 2012-11-15 Toshiba Corp 磁気記録ヘッド、これを備えたヘッドジンバルアッセンブリ、およびディスク装置
US8456967B1 (en) 2011-10-12 2013-06-04 Western Digital (Fremont), Llc Systems and methods for providing a pole pedestal for microwave assisted magnetic recording
US8982502B2 (en) * 2011-12-12 2015-03-17 HGST Netherlands B.V. Hard disk drive with write assist based on detected conditions
JP5606482B2 (ja) * 2012-03-26 2014-10-15 株式会社東芝 磁気ヘッド、磁気ヘッドアセンブリ、磁気記録再生装置及び磁気ヘッドの製造方法
JP5902037B2 (ja) 2012-05-25 2016-04-13 株式会社東芝 磁気記録ヘッド、磁気ヘッドアセンブリ、及び磁気記録再生装置
US8941196B2 (en) * 2012-07-10 2015-01-27 New York University Precessional reversal in orthogonal spin transfer magnetic RAM devices
US8970996B2 (en) * 2012-09-27 2015-03-03 HSGT Netherlands B.V. Spin-torque oscillator for microwave assisted magnetic recording
US8953283B2 (en) 2012-11-29 2015-02-10 Kabushiki Kaisha Toshiba Magnetic head, magnetic head assembly, and magnetic recording/reproduction apparatus
US9355654B1 (en) 2012-12-21 2016-05-31 Western Digital Technologies, Inc. Spin torque oscillator for microwave assisted magnetic recording with increased damping
US8908330B1 (en) 2012-12-21 2014-12-09 Western Digital Technologies, Inc. Spin torque oscillator for microwave assisted magnetic recording with optimal geometries
JP6000866B2 (ja) * 2013-01-31 2016-10-05 株式会社日立製作所 磁気ヘッド及び磁気記録再生装置
JP2015043247A (ja) * 2013-08-26 2015-03-05 株式会社東芝 磁気記録ヘッド、及びこれを用いた磁気記録再生装置
JP2018147540A (ja) 2017-03-08 2018-09-20 株式会社東芝 磁気ヘッド及び磁気記録再生装置
US11367551B2 (en) * 2017-12-20 2022-06-21 Montana State University Large moments in BCC FExCOyMNz and other alloy thin films
JP7319604B2 (ja) * 2019-10-03 2023-08-02 株式会社東芝 磁気ヘッド及び磁気記録装置
JP7424946B2 (ja) 2019-11-07 2024-01-30 株式会社東芝 磁気ヘッド及び磁気記録装置
JP2022182326A (ja) * 2021-05-28 2022-12-08 株式会社東芝 磁気ヘッド及び磁気記録装置
JP2023020022A (ja) * 2021-07-30 2023-02-09 株式会社東芝 磁気ヘッド及び磁気記録装置

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899834A (en) * 1972-10-02 1975-08-19 Westinghouse Electric Corp Electronic compass system
US4103315A (en) 1977-06-24 1978-07-25 International Business Machines Corporation Antiferromagnetic-ferromagnetic exchange bias films
US4782415A (en) * 1985-10-02 1988-11-01 International Business Machines Corp. Differential twin track vertical read/write magnetic head structure
DE3728237A1 (de) 1987-08-25 1989-03-09 Philips Patentverwaltung Verfahren zum schreiben von binaerer information in eine magnetooptische speicherschicht und anordnung zur durchfuehrung des verfahrens
US5139322B1 (en) * 1990-08-31 1996-06-18 Zaca Inc Medicine cabinet
JP3022023B2 (ja) 1992-04-13 2000-03-15 株式会社日立製作所 磁気記録再生装置
JPH05314424A (ja) * 1992-05-11 1993-11-26 Matsushita Electric Ind Co Ltd 磁気ヘッド
US5576915A (en) 1993-03-15 1996-11-19 Kabushiki Kaisha Toshiba Magnetoresistive head with antiferromagnetic sublayers interposed between first and second spin-valve units to exchange bias inner magnetic films thereof
JPH0845029A (ja) * 1994-08-01 1996-02-16 Alps Electric Co Ltd 薄膜磁気ヘッド
US5898546A (en) 1994-09-08 1999-04-27 Fujitsu Limited Magnetoresistive head and magnetic recording apparatus
US6011664A (en) * 1995-08-31 2000-01-04 Carnegie Mellon University Techniques for ultrahigh density writing with a probe on erasable magnetic media
US5695864A (en) 1995-09-28 1997-12-09 International Business Machines Corporation Electronic device using magnetic components
KR100274522B1 (ko) 1996-03-14 2001-01-15 니시무로 타이죠 멀티자기헤드및이것을구비한자기디스크장치
US5869963A (en) 1996-09-12 1999-02-09 Alps Electric Co., Ltd. Magnetoresistive sensor and head
JPH10302211A (ja) 1997-01-14 1998-11-13 Sony Corp 磁気ヘッド及びその製造方法
JP3255872B2 (ja) * 1997-04-17 2002-02-12 アルプス電気株式会社 スピンバルブ型薄膜素子及びその製造方法
US5748399A (en) 1997-05-13 1998-05-05 International Business Machines Corporation Resettable symmetric spin valve
JPH11316919A (ja) * 1998-04-30 1999-11-16 Hitachi Ltd スピントンネル磁気抵抗効果型磁気ヘッド
JP3400378B2 (ja) 1999-03-26 2003-04-28 アルプス電気株式会社 薄膜磁気ヘッドを用いた回転ヘッド組立体
US7330833B1 (en) * 2000-09-29 2008-02-12 Printvision, Inc. System and method for auctioning services over an information exchange network
JP2001118217A (ja) * 1999-10-14 2001-04-27 Alps Electric Co Ltd スピンバルブ型薄膜磁気素子及び薄膜磁気ヘッド及びスピンバルブ型薄膜磁気素子の製造方法
US6519119B1 (en) 1999-11-03 2003-02-11 Seagate Technology, Llc Structure for current perrpendicular to plane giant magnetoresistive read heads
US6621664B1 (en) 2000-02-28 2003-09-16 Seagate Technology Llc Perpendicular recording head having integrated read and write portions
JP4297585B2 (ja) * 2000-02-28 2009-07-15 株式会社日立グローバルストレージテクノロジーズ 磁気記録再生装置
US6583969B1 (en) 2000-04-12 2003-06-24 International Business Machines Corporation Pinned layer structure having nickel iron film for reducing coercivity of a free layer structure in a spin valve sensor
JP2002032903A (ja) 2000-07-13 2002-01-31 Alps Electric Co Ltd 垂直磁気記録用薄膜磁気ヘッド
JP3872259B2 (ja) * 2000-07-26 2007-01-24 セイコーインスツル株式会社 磁気センサーの駆動電流調整方法及び電子方位計
JP2002100005A (ja) 2000-09-25 2002-04-05 Toshiba Corp 磁気ヘッド
JP4365520B2 (ja) 2000-09-29 2009-11-18 Tdk株式会社 磁気記録媒体および磁気記録再生方式
US6580589B1 (en) 2000-10-06 2003-06-17 International Business Machines Corporation Pinned layer structure for a spin valve sensor having cobalt iron (CoFe) and cobalt iron oxide (CoFeO) laminated layers
US6937446B2 (en) 2000-10-20 2005-08-30 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
JP3833512B2 (ja) 2000-10-20 2006-10-11 株式会社東芝 磁気抵抗効果素子
US20020051330A1 (en) 2000-11-01 2002-05-02 Seagate Technology Llc High resistance CPP transducer in a read/write head
US6922316B2 (en) 2000-11-10 2005-07-26 Tdk Corporation Thin-film magnetic head and method of manufacturing same
JP3629431B2 (ja) * 2001-01-15 2005-03-16 アルプス電気株式会社 軟磁性膜の製造方法と薄膜磁気ヘッドの製造方法
US6809900B2 (en) 2001-01-25 2004-10-26 Seagate Technology Llc Write head with magnetization controlled by spin-polarized electron current
JP3861197B2 (ja) 2001-03-22 2006-12-20 株式会社東芝 記録媒体の製造方法
US6785092B2 (en) * 2001-07-24 2004-08-31 Seagate Technology Llc White head for high anisotropy media
US7532434B1 (en) 2001-09-06 2009-05-12 Schreck Erhard T Recessed write pole for perpendicular recording
JP2003152239A (ja) 2001-11-12 2003-05-23 Fujitsu Ltd 磁気抵抗効果素子、及び、それを有する読み取りヘッド並びにドライブ
JP3680035B2 (ja) 2002-03-29 2005-08-10 株式会社東芝 磁気記録装置及び磁気記録方法
JP4027145B2 (ja) 2002-04-15 2007-12-26 キヤノン株式会社 垂直磁気記録媒体、磁気記録再生装置及び情報処理装置
US7119990B2 (en) 2002-05-30 2006-10-10 Komag, Inc. Storage device including a center tapped write transducer
JP2004171733A (ja) 2002-11-06 2004-06-17 Alps Electric Co Ltd 磁気ヘッドおよびそれを備えた磁気テープ装置ならびに磁気ヘッドの製造方法
JP3989368B2 (ja) 2002-12-12 2007-10-10 株式会社東芝 磁気ヘッド及び磁気記録装置
JP4873338B2 (ja) 2002-12-13 2012-02-08 独立行政法人科学技術振興機構 スピン注入デバイス及びこれを用いた磁気装置
KR100663857B1 (ko) * 2002-12-13 2007-01-02 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 스핀 주입 디바이스 및 이를 사용한 자기 장치, 그리고이들에 사용되는 자성 박막
JP2004221298A (ja) * 2003-01-15 2004-08-05 Alps Electric Co Ltd 磁気検出素子
JP4317717B2 (ja) 2003-01-22 2009-08-19 株式会社日立グローバルストレージテクノロジーズ 垂直記録用薄膜磁気ヘッドを用いた磁気ディスク装置
KR20040069062A (ko) * 2003-01-28 2004-08-04 삼성전자주식회사 자기 기록헤드
JP4116913B2 (ja) 2003-03-26 2008-07-09 Tdk株式会社 垂直磁気記録ヘッドおよび磁気記録装置
JP3889374B2 (ja) 2003-04-10 2007-03-07 アルプス電気株式会社 磁気ヘッド装置および前記磁気ヘッド装置を用いた磁気ディスク装置
JP2004335931A (ja) 2003-05-12 2004-11-25 Alps Electric Co Ltd Cpp型巨大磁気抵抗効果素子
JP2005025831A (ja) * 2003-06-30 2005-01-27 Toshiba Corp 高周波発振素子、磁気情報記録用ヘッド及び磁気記憶装置
US6836971B1 (en) * 2003-07-30 2005-01-04 Honeywell International Inc. System for using a 2-axis magnetic sensor for a 3-axis compass solution
US6980469B2 (en) * 2003-08-19 2005-12-27 New York University High speed low power magnetic devices based on current induced spin-momentum transfer
US7120988B2 (en) * 2003-09-26 2006-10-17 Hitachi Global Storage Technologies Netherlands B.V. Method for forming a write head having air bearing surface (ABS)
JP2005108315A (ja) 2003-09-30 2005-04-21 Toshiba Corp 垂直磁気記録方式のディスクドライブ及び磁気ヘッド
US7177122B2 (en) * 2003-10-27 2007-02-13 Seagate Technology Llc Biasing for tri-layer magnetoresistive sensors
US7492550B2 (en) * 2003-11-18 2009-02-17 Tandberg Storage Asa Magnetic recording head and method for high coercivity media, employing concentrated stray magnetic fields
US7271981B2 (en) * 2003-11-20 2007-09-18 Seagate Technology Llc Ultrafast pulse field source utilizing optically induced magnetic transformation
US20050110004A1 (en) * 2003-11-24 2005-05-26 International Business Machines Corporation Magnetic tunnel junction with improved tunneling magneto-resistance
JP3874759B2 (ja) * 2004-03-03 2007-01-31 横河電機株式会社 ジャイロコンパス
US7256955B2 (en) 2004-03-17 2007-08-14 Seagate Technology Llc High frequency assisted writing
US7471491B2 (en) 2004-03-30 2008-12-30 Kabushiki Kaisha Toshiba Magnetic sensor having a frequency filter coupled to an output of a magnetoresistance element
JP4050245B2 (ja) 2004-03-30 2008-02-20 株式会社東芝 磁気記録ヘッド及び磁気記憶装置
JP2005294376A (ja) 2004-03-31 2005-10-20 Toshiba Corp 磁気記録素子及び磁気メモリ
US7322095B2 (en) 2004-04-21 2008-01-29 Headway Technologies, Inc. Process of manufacturing a four-sided shield structure for a perpendicular write head
JP5032009B2 (ja) 2004-08-17 2012-09-26 株式会社東芝 磁気センサ、磁気ヘッド、および磁気記録再生装置
US20060039089A1 (en) * 2004-08-17 2006-02-23 Kabushiki Kaisha Toshiba Magnetic oscillator, magnetic head, and magnetic recording and reproducing apparatus
US7466525B2 (en) 2004-09-03 2008-12-16 Tdk Corporation Magnetic sensing element including laminated film composed of half-metal and NiFe alloy as free layer
JP4770144B2 (ja) * 2004-09-10 2011-09-14 ソニー株式会社 記憶素子
JP4160947B2 (ja) 2004-11-09 2008-10-08 Tdk株式会社 磁気ヘッド、および磁気記録装置
JP2006147023A (ja) 2004-11-18 2006-06-08 Fujitsu Ltd 薄膜磁気ヘッドおよびその製造方法
US7161753B2 (en) 2005-01-28 2007-01-09 Komag, Inc. Modulation of sidewalls of servo sectors of a magnetic disk and the resultant disk
US7397633B2 (en) 2005-03-01 2008-07-08 Seagate Technology, Llc Writer structure with assisted bias
JP4677589B2 (ja) 2005-03-18 2011-04-27 独立行政法人科学技術振興機構 伝送回路一体型マイクロ波発生素子並びにマイクロ波検出方法、マイクロ波検出回路、マイクロ波検出素子及び伝送回路一体型マイクロ波検出素子
US7100294B1 (en) * 2005-03-24 2006-09-05 Spectron Glass And Electronics, Inc Method of sensing tilt, tilt sensor, and method of manufacturing same
JP4585353B2 (ja) 2005-03-31 2010-11-24 株式会社東芝 磁性発振素子、磁気センサ、磁気ヘッドおよび磁気再生装置
JP4098786B2 (ja) 2005-03-31 2008-06-11 株式会社東芝 磁気センサおよび磁気記録再生装置
JP4032062B2 (ja) 2005-07-15 2008-01-16 アルプス電気株式会社 垂直磁気記録ヘッド
KR100682949B1 (ko) 2005-07-27 2007-02-15 삼성전자주식회사 갭 실드를 포함하는 수직 자기 기록 헤드 및 수직 자기 기록 장치
US7973349B2 (en) * 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
JP2007116003A (ja) 2005-10-21 2007-05-10 Toshiba Corp 磁気抵抗効果素子、磁気ヘッド及びそれを用いた磁気記録再生装置
US7637024B2 (en) * 2005-10-26 2009-12-29 Honeywell International Inc. Magnetic field sensing device for compassing and switching
JP4886268B2 (ja) 2005-10-28 2012-02-29 株式会社東芝 高周波発振素子、ならびにそれを用いた車載レーダー装置、車間通信装置および情報端末間通信装置
US7461933B2 (en) * 2005-12-07 2008-12-09 Xerox Corporation Sheet heater assembly having air bearing platelets
US7486475B2 (en) * 2005-12-14 2009-02-03 International Business Machines Corporation Magnetic data system having bias circuit with bias resistor
US7911882B2 (en) 2005-12-16 2011-03-22 Tdk Corporation Thin-film magnetic head with near-field-light-generating layer
JP4193847B2 (ja) 2006-01-20 2008-12-10 Tdk株式会社 近接場光発生層及び熱膨張突出層を備えた薄膜磁気ヘッド及びこれを備えたヘッドジンバルアセンブリ、磁気ディスク装置
US7473478B2 (en) 2005-12-30 2009-01-06 Tdk Corporation Oscillator
US7732881B2 (en) * 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
JP2006209960A (ja) 2006-03-13 2006-08-10 Toshiba Corp 磁気記録再生装置
JP2006209964A (ja) 2006-03-27 2006-08-10 Hitachi Global Storage Technologies Netherlands Bv 磁気ディスク装置
JP2007299880A (ja) 2006-04-28 2007-11-15 Toshiba Corp 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法
US7616412B2 (en) * 2006-07-21 2009-11-10 Carnegie Melon University Perpendicular spin-torque-driven magnetic oscillator
JP4231068B2 (ja) 2006-08-14 2009-02-25 株式会社東芝 磁気ヘッド及び磁気記録装置
US7848059B2 (en) * 2006-09-29 2010-12-07 Kabushiki Kaisha Toshiba Magnetoresistive effect device and magnetic random access memory using the same
JP2008109118A (ja) * 2006-09-29 2008-05-08 Toshiba Corp 磁気抵抗効果素子およびそれを用いた磁気ランダムアクセスメモリ
US20080112087A1 (en) 2006-11-14 2008-05-15 Seagate Technology Llc WAMR writer with an integrated spin momentum transfer driven oscillator for generating a microwave assist field
US20080117545A1 (en) 2006-11-20 2008-05-22 Seagate Technology Llc Data storage system with field assist source
EP2089732A2 (en) * 2006-11-27 2009-08-19 Nxp B.V. A magnetic field sensor circuit
US7724469B2 (en) * 2006-12-06 2010-05-25 Seagate Technology Llc High frequency field assisted write device
US7633699B2 (en) * 2006-12-15 2009-12-15 Seagate Technology Llc CPP reader with phase detection of magnetic resonance for read-back
US7876531B2 (en) * 2007-01-09 2011-01-25 Seagate Technology Llc Virtual front shield writer
KR100866956B1 (ko) * 2007-01-26 2008-11-05 삼성전자주식회사 수직 자기 기록 헤드
US20080218891A1 (en) 2007-03-07 2008-09-11 Seagate Technology Llc Magnetic recording device with an integrated microelectronic device
JP2008277586A (ja) * 2007-04-27 2008-11-13 Toshiba Corp 磁気素子、磁気記録ヘッド及び磁気記録装置
KR20080108016A (ko) * 2007-06-07 2008-12-11 가부시끼가이샤 도시바 자기 기록 헤드 및 자기 기록 장치
US8994587B2 (en) * 2010-05-14 2015-03-31 Qualcomm Incorporated Compressed sensing for navigation data
JP4358279B2 (ja) * 2007-08-22 2009-11-04 株式会社東芝 磁気記録ヘッド及び磁気記録装置
JP4919901B2 (ja) * 2007-09-04 2012-04-18 株式会社東芝 磁気記録ヘッド及び磁気記録装置
JP4818234B2 (ja) * 2007-09-05 2011-11-16 株式会社東芝 磁気記録再生装置
JP2009064500A (ja) 2007-09-05 2009-03-26 Toshiba Corp 磁気ヘッド及び磁気ディスク装置
JP2009070439A (ja) * 2007-09-11 2009-04-02 Toshiba Corp 磁気記録ヘッド及び磁気記録装置
JP4929108B2 (ja) * 2007-09-25 2012-05-09 株式会社東芝 磁気ヘッドおよび磁気記録装置
JP4996406B2 (ja) 2007-09-25 2012-08-08 株式会社東芝 増幅器、無線送信装置および無線受信装置
JP2009080875A (ja) * 2007-09-25 2009-04-16 Toshiba Corp 磁気ヘッド及び磁気記録装置
JP2009080878A (ja) * 2007-09-25 2009-04-16 Toshiba Corp 磁気記録ヘッドおよび磁気記録装置
JP2009080904A (ja) * 2007-09-26 2009-04-16 Toshiba Corp 磁気記録装置
US8049567B2 (en) 2007-11-01 2011-11-01 Johan Persson Circuit for phase locked oscillators
US8057925B2 (en) 2008-03-27 2011-11-15 Magic Technologies, Inc. Low switching current dual spin filter (DSF) element for STT-RAM and a method for making the same
US9449618B2 (en) 2008-04-21 2016-09-20 Seagate Technology Llc Microwave assisted magnetic recording system
JP5377893B2 (ja) * 2008-06-19 2013-12-25 株式会社東芝 磁気ヘッドアセンブリおよび磁気記録再生装置
JP5361259B2 (ja) 2008-06-19 2013-12-04 株式会社東芝 スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2010003353A (ja) * 2008-06-19 2010-01-07 Toshiba Corp 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2010020857A (ja) 2008-07-11 2010-01-28 Toshiba Corp 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2010040060A (ja) * 2008-07-31 2010-02-18 Toshiba Corp 高周波アシスト記録用磁気ヘッドおよびそれを用いた磁気記録装置
JP2010040126A (ja) * 2008-08-06 2010-02-18 Toshiba Corp 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5320009B2 (ja) * 2008-10-06 2013-10-23 株式会社東芝 スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5173750B2 (ja) * 2008-11-06 2013-04-03 株式会社東芝 スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5558698B2 (ja) 2008-11-28 2014-07-23 株式会社東芝 磁気記録ヘッド、磁気ヘッドアセンブリ、磁気記録装置及び磁気記録方法
US8446690B2 (en) * 2009-08-17 2013-05-21 HGST Netherlands B.V. Perpendicular magnetic recording write head with spin torque oscillator for fast switching of write pole magnetization

Also Published As

Publication number Publication date
JP2010003354A (ja) 2010-01-07
US8687321B2 (en) 2014-04-01
US20090316303A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5361259B2 (ja) スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5320009B2 (ja) スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2013251042A (ja) スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5173750B2 (ja) スピントルク発振子、磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP4919901B2 (ja) 磁気記録ヘッド及び磁気記録装置
US8970996B2 (en) Spin-torque oscillator for microwave assisted magnetic recording
JP4358279B2 (ja) 磁気記録ヘッド及び磁気記録装置
US8446691B2 (en) Magnetic recording device
JP5377893B2 (ja) 磁気ヘッドアセンブリおよび磁気記録再生装置
JP5268289B2 (ja) 磁気記録ヘッド及び磁気記録装置
JP5787524B2 (ja) 記録ヘッド、磁気ヘッドアセンブリ、及び磁気記録装置
JP4960319B2 (ja) 磁気記録装置
US20100027158A1 (en) Magnetic head for high-frequency field assist recording and magnetic recording apparatus using magnetic head for high-frequency field assist recording
WO2011027396A1 (ja) 磁気記録再生装置
WO2010016296A1 (ja) 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP4975836B2 (ja) 磁気記録ヘッド及びそれを用いた磁気記録再生装置
IE20150401A1 (en) Spin torque oscillator with low magnetic moment and high perpendicular magnetic anisotropy material
JP2009080878A (ja) 磁気記録ヘッドおよび磁気記録装置
JP2008277586A (ja) 磁気素子、磁気記録ヘッド及び磁気記録装置
JP2010020857A (ja) 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP2011198399A (ja) 磁気記録ヘッド、磁気ヘッドアセンブリ、及び磁気記録再生装置
JP5570745B2 (ja) 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置
JP5011331B2 (ja) 磁気記録装置
JP2014149911A (ja) 磁気記録ヘッド、磁気ヘッドアセンブリ及び磁気記録装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130903

LAPS Cancellation because of no payment of annual fees