JP5188686B2 - Nand型フラッシュメモリ装置及びその製造方法 - Google Patents

Nand型フラッシュメモリ装置及びその製造方法 Download PDF

Info

Publication number
JP5188686B2
JP5188686B2 JP2006190577A JP2006190577A JP5188686B2 JP 5188686 B2 JP5188686 B2 JP 5188686B2 JP 2006190577 A JP2006190577 A JP 2006190577A JP 2006190577 A JP2006190577 A JP 2006190577A JP 5188686 B2 JP5188686 B2 JP 5188686B2
Authority
JP
Japan
Prior art keywords
insulating film
selection
transistor region
low voltage
nand flash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006190577A
Other languages
English (en)
Other versions
JP2007027726A5 (ja
JP2007027726A (ja
Inventor
在▲ヒュク▼ 宋
定▲ヒュク▼ 崔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JP2007027726A publication Critical patent/JP2007027726A/ja
Publication of JP2007027726A5 publication Critical patent/JP2007027726A5/ja
Application granted granted Critical
Publication of JP5188686B2 publication Critical patent/JP5188686B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

本発明は半導体装置及びその製造方法に係り、より具体的にはNAND型フラッシュメモリ装置及びその製造方法に関する。
フラッシュメモリ装置は電源供給にかかわらず貯蔵された情報を保持することができる不揮発性メモリ装置の一種類として、不揮発性メモリ装置の一つであるROM(Read Only Memory)と異なり、貯蔵された情報を電気的に速くて容易に変更することができるという特徴を有する。
前記フラッシュメモリ装置はメモリセルがビットラインと接地電極に連結される方式に応じて、NOR型構造とNAND型構造に分類することができる。より具体的には、NOR型フラッシュメモリ装置(以下、NORフラッシュ)はメモリセルがビットラインと接地電極との間に並列に連結される構造として、速いランダムアクセスが可能である。これによって、NORフラッシュはBIOS(Basic Input Output System)、携帯電話及び携帯用個人情報端末機(PDA)などで主に用いられている。
これに比べて、NAND型フラッシュメモリ装置(以下、NANDフラッシュ)はメモリセルがビットラインと接地電極との間に直列に連結される構造である(図1参照)。具体的には、NANDフラッシュのセルアレイ100は複数個のセルストリング10を含み、各セルストリング10は直列連結された複数個のメモリセルを含む。この時、前記セルストリング10の両端には接地選択ラインGSLにより連結される接地選択トランジスタ及びストリング選択ラインSSLにより連結されるストリング選択トランジスタが配置されて、前記メモリセルと前記ビットライン40/接地電極45との間の電気的連結を制御する。
NANDフラッシュのこのような直列的連結構造によって、NANDフラッシュは現存する半導体装置の中で最高の集積度を有する。また、NANDフラッシュは複数個のメモリセルに貯蔵された情報を同時に変更する動作方式を採択するため、情報更新(update)速度が前記NORフラッシュに比べて非常に速い。このような高い集積度及び速い更新速度によって、NANDフラッシュはデジタルカメラまたはMP3プレーヤーなどのように大容量貯蔵装置(mass storage)を要する携帯用電子製品に主に用いられている。市場調査機関であるIDC社の予測によれば、携帯用電子製品の急増する需要によって、NANDフラッシュ製品の市場はさらに拡がると期待されている。
周知のように、NANDフラッシュはFNトンネリング(FoWLer−Nordheim tunneling)現象を利用して選択されたメモリセルに貯蔵された情報を更新し、このような情報更新動作(すなわち、書き込み(program)及び消去(erase)動作)は複数個のメモリセルで構成されるページまたはブロックに対して上述したように同時に実行される。この時、ページ単位の書き込み動作は選択されたワードラインWLに沿って配列された選択されなかったメモリセル(特に、選択されたメモリセルに隣接したメモリセル)がプログラムされる問題を誘発することができる。このように選択されなかったメモリセルに対する意図しないプログラムは一般的に“プログラム撹乱(program disturbance)”と呼ばれる。
このようなプログラム撹乱を防止するため、NANDフラッシュの書き込み動作は一般的に自己昇圧方式(self-boosting scheme)を利用する。前記自己昇圧方式は特許文献1及び特許文献2に開示されている。前記自己昇圧方式は選択されなかったセルストリングがそれに連結されたビットライン40及び接地電極45に電気的に連結されないように、ストリング選択ラインSSL及び接地選択ラインGSLのゲート電極に印加される電圧を調節する方法である。セルストリング10が、このように電気的に分離する場合、選択されなかったメモリセルの下の基板1電圧は選択されたワードラインWLに印加されるプログラム電圧によって所定の電圧まで上がる(図2参照)(このような電圧上昇をブースティングという)。このように基板電圧が上昇すれば、浮遊ゲート電極22と基板1との間の電位差が減少するため、トンネル絶縁膜70を通じたFNトンネリングは遮断される。すなわち、上述したプログラム撹乱は予防される。
このような自己昇圧方式のメカニズムを考慮する時、前記プログラム撹乱を防止するためには選択されなかったセルストリングはビットライン40及び接地電極45から完全に分離しなければならず、セルストリング10の電気的分離のためにはストリング選択トランジスタ及び接地選択トランジスタのターンオフ電流特性が優れなければならない。しかし、従来の技術によれば、図2に示したように、前記選択トランジスタのゲート絶縁膜75はメモリセルトランジスタのトンネル絶縁膜70と同一の厚さで形成されるため、選択トランジスタの特性向上は制限的である。特に、集積度増加のための選択トランジスタの線幅の減少は前記選択トランジスタのターンオフ電流特性を低下させる短チャンネル(short−channel)効果を誘発する。
米国特許第5,677,873号明細書 米国特許第5,991,202号明細書
本発明の課題は、プログラム撹乱を予防することができるNANDフラッシュメモリ装置を提供することにある。
本発明の他の課題は、選択トランジスタのターンオフ電流特性を向上させることができるNANDフラッシュメモリ装置を提供することにある。
本発明の他の課題は優れたターンオフ電流特性を有する選択トランジスタを具備するNANDフラッシュメモリ装置の製造方法を提供することにある。
上記の課題を解決するために、本発明は選択トランジスタのゲート絶縁膜とメモリセルトランジスタのトンネル絶縁膜の厚さが互いに異なるNANDフラッシュメモリ装置を提供する。この装置はメモリトランジスタ領域及び選択トランジスタ領域を含む半導体基板、前記半導体基板のメモリトランジスタ領域上に配置されるワードライン、前記半導体基板の選択トランジスタ領域上に配置される第1及び第2選択ライン、前記ワードラインと前記半導体基板との間に介在されるトンネル絶縁膜及び前記第1及び第2選択ラインと前記半導体基板との間に介在される選択ゲート絶縁膜を含む。この時、前記選択ゲート絶縁膜は前記トンネル絶縁膜より薄く、その厚さは端部より中央部で薄い。
本発明の一実施形態によれば、前記第1及び第2選択ラインは前記ワードラインより広い幅を有する。また、前記第1及び第2選択ラインの幅は少なくとも前記選択ゲート絶縁膜の厚さが前記トンネル絶縁膜の最も薄い厚さと同一になる位置から前記第1及び第2選択ラインの側壁までの離隔距離の二倍であることが望ましい。
前記課題を解決するために、本発明のNANDフラッシュメモリ装置はメモリトランジスタ領域、選択トランジスタ領域及び低電圧トランジスタ領域を含む半導体基板、前記半導体基板のメモリトランジスタ領域上に配置されるワードライン、前記半導体基板の選択トランジスタ領域上に配置される第1及び第2選択ライン、前記半導体基板の低電圧トランジスタ領域上に配置される低電圧ゲート電極、前記ワードラインと前記半導体基板との間に介在されるトンネル絶縁膜、前記第1及び第2選択ラインと前記半導体基板との間に介在される選択ゲート絶縁膜及び前記低電圧ゲート電極と前記半導体基板との間に介在される低電圧ゲート絶縁膜を含む。この時、前記選択ゲート絶縁膜は前記トンネル絶縁膜より薄い。
本発明の一実施形態によれば、前記選択ゲート絶縁膜は前記低電圧ゲート絶縁膜と同一の厚さを有することができる。また、前記ワードラインは前記第1及び第2選択ライン及び前記低電圧ゲート電極より狭い幅を有する。これに加えて、前記選択ゲート絶縁膜の厚さは端部より中央部で薄いことがある。
本発明の他の実施形態によれば、前記第1及び第2選択ラインの幅は少なくとも前記選択ゲート絶縁膜の厚さが前記トンネル絶縁膜の最も薄い厚さと同一になる位置から前記第1及び第2選択ラインの側壁までの離隔距離の2倍であり、前記低電圧ゲート電極の幅は少なくともその下部に配置された前記低電圧ゲート絶縁膜の厚さが前記トンネル絶縁膜の最も薄い厚さと同一になる位置から前記低電圧ゲート電極の側壁までの離隔距離の2倍である。
前記他の課題を解決するために、本発明は選択ゲート絶縁膜をトンネル絶縁膜より薄く形成する段階を含むNAND型フラッシュメモリ装置の製造方法を提供する。この方法はメモリトランジスタ領域、選択トランジスタ領域及び低電圧トランジスタ領域を含む半導体基板に活性領域を画定する素子分離膜パターンを形成して、前記活性領域上に前記メモリトランジスタ領域を覆う第1絶縁膜パターンを形成した後、前記第1絶縁膜パターンが形成された活性領域の全面に第2絶縁膜を形成する段階を含む。以後、前記第2絶縁膜上に、前記メモリトランジスタ領域の上部に配置されるワードライン、前記選択トランジスタ領域の上部に配置される第1及び第2選択ライン及び前記低電圧トランジスタ領域上に配置される低電圧ゲート電極を形成する。
前記第1絶縁膜パターンを形成する段階は、前記活性領域の全面に第1絶縁膜を形成した後、前記第1絶縁膜上に前記メモリトランジスタ領域の上部に配置されるマスクパターンを形成する段階と、前記マスクパターンをエッチングマスクとして使って前記第1絶縁膜をエッチングすることによって、前記選択トランジスタ領域及び前記低電圧トランジスタ領域で前記活性領域の上部面を露出させる段階とを含む。以後、前記マスクパターンは除去される。
また、前記第2絶縁膜を形成する段階は前記メモリトランジスタ領域の上部に積層される第1絶縁膜パターン及び第2絶縁膜の厚さの和が前記選択トランジスタ領域及び前記低電圧トランジスタ領域の上部に積層される第2絶縁膜の厚さより大きくなるように実施する。
前記他の課題を解決するために、本発明のNAND型フラッシュメモリ装置の製造方法はメモリトランジスタ領域、選択トランジスタ領域及び低電圧トランジスタ領域を含む半導体基板に活性領域を画定する素子分離膜パターンを形成して、前記活性領域の全面に第1厚さを有するゲート酸化膜を形成した後、前記ゲート酸化膜上に前記メモリトランジスタ領域の上部に配置されるワードライン、前記選択トランジスタ領域の上部に配置される第1及び第2選択ライン及び前記低電圧トランジスタ領域上に配置される低電圧ゲート電極を形成する段階を含む。以後、前記ワードラインの中央部の下に形成された前記ゲート酸化膜が第2厚さを有するまで熱酸化工程を実施する。この時、前記第1及び第2選択ラインは前記熱酸化工程で前記第1及び第2選択ラインの中央部の下に形成された前記ゲート酸化膜が前記第2厚さより薄い厚さを有するように、前記ワードラインより広い幅で形成する。
本発明によれば、選択ゲート絶縁膜はトンネル絶縁膜より薄く形成される。これによって、本発明に係るNAND型フラッシュメモリ装置の選択トランジスタは優れたターンオフ電流特性を有する。その結果、選択されなかったセルストリングはビットライン及び接地電極から電気的に分離することができるため、ブースティング電荷の漏洩によるプログラム撹乱は最小化されることができる。
なお、本発明の一実施形態によれば、選択ゲート絶縁膜の厚さをトンネル絶縁膜より薄く形成するため、選択ラインの線幅をワードラインの線幅より小さく形成した後、熱酸化工程の条件を調節する。これによって、工程段階の追加なくても、前記選択ゲート絶縁膜と前記トンネル絶縁膜の厚さを異なるように形成することが可能である。これに加えて、本発明によれば、低電圧ゲート絶縁膜は選択ゲート絶縁膜を形成する工程を利用して形成されることができる。これによって、低電圧トランジスタを製造するための工程段階を減らすことができる。その結果、本発明に係るNAND型フラッシュメモリ装置の製造費用は節減されることができる。
以上の本発明の目的、他の目的、特徴及び利点は添付の図と係わる以下の望ましい実施形態を通じて容易に理解されるであろう。しかし、本発明はここで説明される実施形態に限定されず、他の形態に具体化されることができる。むしろ、ここで紹介される実施形態は開示された内容が徹底して完全になれるように、そして当業者に本発明の思想を十分に
伝達するために提供されるものである。
本明細書においては、ある膜が他の膜または基板上にあると言及される場合に、それは他の膜または基板上に直接形成されることができるもの、またはそれらの間に第3の膜が介在されることができるものを意味する。また、図において、膜及び領域の厚さは技術的内容の効果的な説明のために誇張されたものである。また、本明細書の多様な実施形態において第1、第2、第3などの用語が多様な領域、膜などを記述するために使われたが、これら領域、膜がこのような用語によって限定されてはならない。これら用語は単にある所定領域または膜を他の領域または膜と区別させるために使われただけである。よって、ある一実施形態での第1膜として言及された膜が他の実施形態では第2膜として言及されることもできる。ここに説明されて例示される各実施形態はそれの相補的な実施形態も含む。
図3A乃至図3Fは本発明の第1実施形態に係るNAND型フラッシュメモリ装置の製造方法を示す工程断面図である。
図3Aを参照すれば、半導体基板1の所定領域に活性領域を画定する素子分離膜パターン110を形成する。前記半導体基板1はセルアレイ領域CAR及び周辺回路領域PCRを含み、前記セルアレイ領域CARはメモリトランジスタ領域MTR及び選択トランジスタ領域STR1、STR2を含み、前記周辺回路領域PCRは低電圧トランジスタ領域LVTR及び高電圧トランジスタ領域(図示しない)を含む。
前記素子分離膜パターン110を形成する段階は前記半導体基板1上に前記活性領域を定義するためのトレンチマスクパターン120を形成した後、前記トレンチマスクパターン120をエッチングマスクとして使って前記半導体基板1を異方性エッチングすることによって、トレンチ130を形成する段階を含む。前記トレンチマスクパターン120は順に積層されたパッド酸化膜、トレンチ下部マスク膜及びトレンチ上部マスク膜で構成されることができる。この時、前記トレンチ下部マスク膜は多結晶シリコンであり、前記トレンチ上部マスク膜はシリコン窒化膜でありうる。前記トレンチ130を形成した後、絶縁特性の強化のために所定のイオン注入工程を実施して、前記トレンチ130の内壁に熱酸化膜(図示しない)をおおよそ50Åの厚さで形成する。続いて、前記トレンチ130を満たす素子分離絶縁膜を形成した後、前記トレンチマスクパターン120が露出するまで前記素子分離絶縁膜を平坦化エッチングすることで前記素子分離膜パターン110を形成する。
図3Bを参照すれば、前記トレンチマスクパターン120を湿式エッチングの方法を用いて除去することによって、前記活性領域の上部面を露出させる。次に、前記露出した活性領域の上部面に第1絶縁膜140を形成する。前記第1絶縁膜140の厚さは前記メモリトランジスタ領域(memory transistor region;MTR)、選択トランジスタ領域(selection transistor region;STR1、STR2)及び低電圧トランジスタ領域(low voltage transistor region;LVTR)で同一であり、おおよそ10乃至60Åである。
前記第1絶縁膜140はシリコン酸化膜、シリコン窒化膜、シリコン酸化窒化膜、Al、AlSi、(Ba、Sr)TiO、BeAl、CeO、CeHfO、CoTiO、Si、EuAlO、HfO、Hf−silicate、La、LaAlO、LaScO、LaSiO、MaAl、NdAlO、PrAlO、SmAlO、SrTiO、Ta、TiO、Y、YSi、ZrO、Zr−silicate、Zr−Al−O及び(Zr、Sn)TiOのうちより選択された少なくとも一つで形成されることができる。本発明の一実施形態によれば、前記第1絶縁膜140は熱酸化工程を通じて形成されたシリコン酸化膜である。前記第1絶縁膜140を形成する段階はシリコン酸化膜である場合、熱酸化工程を利用することが望ましく、他の膜の場合には蒸着工程を利用することができる。
図3Cを参照すれば、前記メモリトランジスタ領域MTRの上部に配置されるマスクパターン150を形成する。前記マスクパターン150は前記選択トランジスタ領域STR1、STR2及び前記低電圧トランジスタ領域LVTRで前記第1絶縁膜140の上部面を露出させる。
前記マスクパターン150はフォトレジストパターンでありうる。これを形成する段階は前記第1絶縁膜140上にフォトレジスト膜を形成した後、露光及び現像工程を実施する段階を含む。前記マスクパターン150は前記フォトレジストパターンと前記第1絶縁膜140との間に介在される保護膜をさらに含むことができる。前記保護膜は前記第1絶縁膜140に対してエッチング選択性を有する物質である(この時、‘膜Aが膜Bに対してエッチング選択性は有する’という表現は膜Aのエッチング速度に比べて膜Bのエッチング速度が十分に大きいエッチング工程が可能であることを意味する。)。
図3Dを参照すれば、前記マスクパターン150をエッチングマスクとして使って、前記露出した第1絶縁膜140をエッチングする。これによって、前記選択トランジスタ領域STR1、STR2及び前記低電圧トランジスタ領域LVTRで前記活性領域の上部面を露出させる第1絶縁膜パターン145が形成される。すなわち、前記第1絶縁膜パターン145は前記メモリトランジスタ領域MTRに配置される。
前記第1絶縁膜140をエッチングする段階は前記半導体基板1に対してエッチング選択性を有するエッチング方法を用いて実施する。また、前記半導体基板1に対するエッチング損傷を最小化するため、前記第1絶縁膜140をエッチングする段階は湿式エッチングの方法を用いる。前記第1絶縁膜140をシリコン酸化膜で形成する実施形態の場合、HFを含むエッチング液が前記第1絶縁膜140をエッチングするために用いられることができる。
図3Eを参照すれば、前記マスクパターン150を除去して前記メモリトランジスタ領域MTRで前記第1絶縁膜パターン145の上部面を露出させる。前記第1絶縁膜パターン145は後続工程を通じてメモリトランジスタのゲート絶縁膜(すなわち、トンネル絶縁膜)として用いられるため、前記第1絶縁膜パターン145の物理的特性は前記メモリトランジスタの電気的特性に大きい影響を与える。このような点を考慮する時、前記マスクパターン150を除去する段階は前記第1絶縁膜パターン145の物理的特性を損傷させないように実施される必要がある。
本発明の一実施形態によれば、前記第1絶縁膜パターン145に対する損傷を防止するため、前記マスクパターン150はプラズマを用いない工程を通じて除去される。例えば、前記マスクパターン150がフォトレジストパターンの場合、これを除去する工程はプラズマアッシング段階なしにエッチング液を用いて実施することが望ましい。また、上述したように前記マスクパターン150が保護膜を含む場合、前記フォトレジストパターンはプラズマアッシング段階を含むことができるが、前記第1絶縁膜パターン145に接する前記保護膜は湿式エッチングの方法で除去される。
次に、前記第1絶縁膜パターン145が形成された結果物の全面に第2絶縁膜を形成する。これによって、前記選択トランジスタ領域STR1、STR2及び前記低電圧トランジスタ領域LVTRの上部には第2絶縁膜のみが形成され、前記メモリトランジスタ領域MTRの上部には前記第1絶縁膜パターン145及び前記第2絶縁膜が積層される。この時、前記メモリトランジスタ領域MTRの上部に積層される第1絶縁膜パターン145及び前記第2絶縁膜はメモリトランジスタのトンネル絶縁膜160Tとして用いられ、前記選択トランジスタ領域STR1、STR2及び前記低電圧トランジスタ領域LVTRの上部に形成される第2絶縁膜は各々選択トランジスタの選択ゲート絶縁膜160SG及び低電圧トランジスタの低電圧ゲート絶縁膜160LGとして用いられることができる。結果的に、本発明によれば、前記トンネル絶縁膜160Tは前記選択ゲート絶縁膜160SG及び低電圧ゲート絶縁膜160LGより厚い。
前記第2絶縁膜は前記第1絶縁膜パターン145と同一の物質で形成することができる。本発明の一実施形態によれば、前記第1絶縁膜パターン145と前記第2絶縁膜は全部熱酸化工程を通じて形成されるシリコン酸化膜であり、前記第2絶縁膜の積層の厚さはおおよそ10Å乃至50Åでありうる。
一方、上述した実施形態によれば、前記低電圧ゲート絶縁膜160LGは前記選択ゲート絶縁膜160SGと同一の厚さ及び物質からなる。これと異なり、本発明の他の実施形態によれば、前記低電圧ゲート絶縁膜160LGは別途の工程を通じて形成されることができる。この場合、前記低電圧ゲート絶縁膜160LGは前記選択ゲート絶縁膜160SGと厚さ及び物質の種類が変わることができる。
図3Fを参照すれば、前記第2絶縁膜が形成された結果物上に前記活性領域を横切るゲート構造体を形成する。前記ゲート構造体は前記メモリトランジスタ領域MTRに配置されるワードライン(wordline;WL)、前記選択トランジスタ領域STR1、STR2に配置されるストリング選択ライン(String selection line;SSL)及び接地選択ライン(ground selection line;GSL)、前記低電圧トランジスタ領域LVTRに配置される低電圧ゲート電極(low voltage gate electrode;LVG)を含む。
前記ゲート構造体を形成する段階は前記第2絶縁膜が形成された結果物上に第1導電膜を形成した後、前記第1導電膜をパターニングして第1導電パターンを形成する段階を含む。前記第1導電パターンは前記メモリトランジスタ領域MTRの活性領域の上部に配置される。次に、前記第1導電パターンが形成された結果物を覆うゲート層間絶縁膜及び第2導電膜を形成した後、その上部に前記活性パターンを横切るゲートマスクパターン174を形成する。以後、前記ゲートマスクパターン174をエッチングマスクとして用いて、前記第2導電膜、前記ゲート層間絶縁膜及び前記第1導電パターンを異方性エッチングすることによって、前記ゲート構造体を完成する。この時、前記ゲートマスクパターン174は除去されることもできるが、図示したように前記第2導電膜上に残存することもできる。
このような過程を通じて形成される前記ワードラインWLは順に積層されて前記活性領域を横切るゲート層間絶縁膜パターン172及び制御ゲート電極173、前記ゲート層間絶縁膜パターン172と前記トンネル絶縁膜160Tとの間に介在される浮遊ゲート電極171を有する。一方、前記ストリング選択ラインSSL及び前記接地選択ラインGSLは前記第1導電パターンと前記第2導電パターンが電気的に接続する構造を有する。このために、前記第2導電膜を形成する前に前記ゲート層間絶縁膜をエッチングして前記第1導電パターンの上部面を露出させる開口部を形成することができる。この時、前記開口部は前記選択トランジスタ領域STR1、STR2に形成され、前記低電圧トランジスタ領域LVTRでも形成されることができる。
一方、本発明の他の実施形態によれば、前記選択ラインSSL、GSL及び低電圧ゲート電極LVGは前記第1導電膜または前記第2導電膜のうちの一つからなることもできる。この実施形態によれば、前記第1導電膜、前記ゲート層間絶縁膜及び前記第2導電膜のうちの少なくとも一つは前記選択トランジスタ領域STR1、STR2と前記低電圧トランジスタ領域LVTで除去されることができる。
以後、前記ゲート構造体をイオン注入マスクとして用いるイオン注入工程を実施して前記ゲート構造体の間に露出する活性領域に不純物領域180を形成する。一方、前記メモリトランジスタ領域MTR、選択トランジスタ領域STR1、STR2、前記低電圧トランジスタ領域LVTR及び前記高電圧トランジスタ領域に各々形成される前記不純物領域180は互いに異なる構造及び不純物濃度を有することができる。
図4A及び図4Bは本発明の第2実施形態に係るNAND型フラッシュメモリ装置の製造方法を示す工程断面図である。本発明の第2実施形態によれば、前記第1絶縁膜140を形成した後、前記ゲート構造体を形成する。このような点で、第2実施形態は第2絶縁膜を形成した後ゲート構造体を形成する第1実施形態と差異を有する。簡略化のため、以下では上述した第1実施形態と重複される内容(すなわち、第1絶縁膜を形成するまでの過程)に対する説明は省略し、技術的に差異を有する内容に対して主に説明する。
図4A及び図4Bを参照すれば、第1絶縁膜140が形成された結果物上にゲート構造体を形成する。この実施形態によれば、前記第1絶縁膜140は熱酸化工程を通じて形成されたシリコン酸化膜であることが望ましい。前記ゲート構造体を形成する過程は第1実施形態と同一である。
この実施形態によれば、前記選択ラインSSL、GSLの幅を前記ワードラインWLの幅より広く形成する。ラインの線幅でのこのような差異は熱酸化工程で酸素原子の拡散経路での差を生じさせるため、その下部に形成されるゲート絶縁膜が互いに異なる厚さを有するようにさせる。
より具体的に説明すれば、前記ゲート構造体を形成するためのパターニング工程は前記活性領域、前記トンネル絶縁膜160T、前記ゲート絶縁膜160SG、160LG及び前記ゲート構造体にエッチング損傷を与えることができる。このようなエッチング損傷はトランジスタの電気的特性を低下させるため、これをキュアすることが必要である。また、前記ゲート構造体は前記パターニング工程が終わった直後に、角張っている下部角を有するが、ゲート構造体の角張っている下部角はGIDL(gate induced drain leakage)の問題を誘発する。上述した熱酸化工程はこのような問題を解決するために実施される。結果的に、前記熱酸化工程は上述した第1実施形態でも実施されることができる。
この時、前記熱酸化工程は前記ゲート構造体が形成された半導体基板を高温のチャンバにローディングした後、酸素原子を含む工程ガスをチャンバに流入させる段階を含む。この時、チャンバに流入される酸素原子は前記ゲート構造体及び前記半導体基板1のシリコン原子と反応してシリコン酸化膜(すなわち、第2絶縁膜)を形成する。このような熱酸化膜の形成によって、上述したエッチング損傷はキャアされることができる。
一方、前記酸素原子は前記第1絶縁膜140を通じて拡散することができるが、そのような拡散経路の長さは制限される。すなわち、前記結果物の表面から遠くなるほど、酸化反応に参加する酸素原子の数は減少する。また、知られたように、シリコンが酸化されてシリコン酸化膜が形成される場合、最終シリコン酸化膜の体積は初期シリコンの体積より膨脹する。このような体積膨脹と拡散経路の長さによる酸素原子の個数の減少によって、新しく形成されるシリコン酸化膜は前記ゲート構造体の側壁から遠くなるほど薄くなる。その結果、熱酸化工程が完了する時、前記ゲート構造体の下部角は図5に示したようにラウンディングされた形状を有する。
本発明の第2実施形態によれば、前記熱酸化工程は前記酸素原子の拡散経路長さが大略前記ワードラインWLの幅の半分と同一になるまで実施する。このために、前記熱酸化工程の工程時間は調節されることができる。この場合、上述したように、前記選択ラインSSL、GSLの幅は前記ワードラインWLの幅より広くて、前記選択ゲート絶縁膜160SGの中央部は酸化されない。その結果、前記選択ゲート絶縁膜160SGの中央部の厚さは図4B及び図5に示したように前記トンネル絶縁膜160Tの最も薄い部分の厚さtより薄くなる。言い換えれば、前記選択ゲート絶縁膜160SGの厚さが前記トンネル絶縁膜160Tの最も薄い部分の厚さtと同一になる位置99から前記選択ゲートラインSSL、GSLの側壁までの離隔距離wは前記選択ゲートラインSSL、GSLの幅wの半分より小さい。
この時、前記低電圧トランジスタ領域LVTRで、前記低電圧ゲート電極LVG及び前記低電圧ゲート絶縁膜160LGを形成する段階は、図4A及び図4Bに示したように、前記選択トランジスタ領域STRで前記選択ラインSSL、GSL及び前記選択ゲート絶縁膜を形成する段階を利用することができる。これによって、前記低電圧ゲート絶縁膜160LGの厚さが前記トンネル絶縁膜160Tの最も薄い部分の厚さtと同一になる位置99から前記低電圧ゲート電極LVGの側壁までの離隔距離wは同様に前記低電圧ゲート電極LVGの幅wの半分より小さい。
一般的なNAND型フラッシュメモリ装置のセルアレイの一部を示す平面図である。 従来技術に係るNAND型フラッシュメモリ装置のセルアレイの一部を示す工程断面図である。 本発明の第1実施形態に係るNAND型フラッシュメモリ装置の製造方法を示す工程断面図である。 本発明の第1実施形態に係るNAND型フラッシュメモリ装置の製造方法を示す工程断面図である。 本発明の第1実施形態に係るNAND型フラッシュメモリ装置の製造方法を示す工程断面図である。 本発明の第1実施形態に係るNAND型フラッシュメモリ装置の製造方法を示す工程断面図である。 本発明の第1実施形態に係るNAND型フラッシュメモリ装置の製造方法を示す工程断面図である。 本発明の第1実施形態に係るNAND型フラッシュメモリ装置の製造方法を示す工程断面図である。 本発明の第2実施形態に係るNAND型フラッシュメモリ装置の製造方法を示す工程断面図である。 本発明の第2実施形態に係るNAND型フラッシュメモリ装置の製造方法を示す工程断面図である。 本発明に係るNAND型フラッシュメモリ装置の選択トランジスタ及びメモリトランジスタを示す工程断面図である。
符号の説明
1 半導体基板
160T トンネル絶縁膜
160SG 選択ゲート絶縁膜
MTR メモリトランジスタ領域
STR 選択トランジスタ領域
WL ワードライン
SSL、SGL 選択ライン

Claims (9)

  1. メモリトランジスタ領域及び選択トランジスタ領域を含む半導体基板と、
    前記半導体基板のメモリトランジスタ領域上に配置されるワードラインと、
    前記半導体基板の選択トランジスタ領域上に配置される選択ラインと、
    前記ワードラインと前記半導体基板との間に介在されるトンネル絶縁膜と、
    前記選択ラインと前記半導体基板との間に介在される前記トンネル絶縁膜より薄い選択ゲート絶縁膜と、を含み、
    前記選択ゲート絶縁膜の厚さは端部より中央部で薄く、
    前記選択ゲート絶縁膜の中央部の厚さは、前記トンネル絶縁膜の最も薄い部分の厚さより薄いことを特徴とするNAND型フラッシュメモリ装置。
  2. 前記選択ラインは前記ワードラインより広い幅を有することを特徴とする請求項1に記載のNAND型フラッシュメモリ装置。
  3. 前記選択ラインの幅は少なくとも前記選択ゲート絶縁膜の厚さが前記トンネル絶縁膜の最も薄い厚さと同一になる位置から前記選択ラインの側壁までの離隔距離の2倍であることを特徴とする請求項1または2に記載のNAND型フラッシュメモリ装置。
  4. メモリトランジスタ領域、選択トランジスタ領域及び低電圧トランジスタ領域を含む半導体基板と、
    前記半導体基板のメモリトランジスタ領域上に配置されるワードラインと、
    前記半導体基板の選択トランジスタ領域上に配置される選択ラインと、
    前記半導体基板の低電圧トランジスタ領域上に配置される低電圧ゲート電極と、
    前記ワードラインと前記半導体基板との間に介在されるトンネル絶縁膜と、
    前記選択ラインと前記半導体基板との間に介在される前記トンネル絶縁膜より薄い選択ゲート絶縁膜と、
    前記低電圧ゲート電極と前記半導体基板との間に介在される低電圧ゲート絶縁膜と、を含み、
    前記選択ゲート絶縁膜の厚さは端部より中央部で薄く、
    前記選択ゲート絶縁膜の中央部の厚さは、前記トンネル絶縁膜の最も薄い部分の厚さより薄いことを特徴とするNAND型フラッシュメモリ装置。
  5. 前記選択ゲート絶縁膜は前記低電圧ゲート絶縁膜と同一の厚さを有することを特徴とする請求項4に記載のNAND型フラッシュメモリ装置。
  6. 前記ワードラインは前記選択ライン及び前記低電圧ゲート電極より狭い幅を有することを特徴とする請求項4または5に記載のNAND型フラッシュメモリ装置。
  7. 前記選択ラインの幅は少なくとも前記選択ゲート絶縁膜の厚さが前記トンネル絶縁膜の最も薄い厚さと同一になる位置から前記選択ラインの側壁までの離隔距離の2倍であり、
    前記低電圧ゲート電極の幅は少なくともその下部に配置された前記低電圧ゲート絶縁膜の厚さが前記トンネル絶縁膜の最も薄い厚さと同一になる位置から前記低電圧ゲート電極の側壁までの離隔距離の2倍であることを特徴とする請求項4から6の何れか一項に記載のNAND型フラッシュメモリ装置。
  8. 前記低電圧ゲート電極は前記選択ゲート電極と同一の厚さ及び同一の物質からなることを特徴とする請求項4から7の何れか一項に記載のNAND型フラッシュメモリ装置。
  9. 請求項4に記載のNAND型フラッシュメモリ装置の製造方法であって、
    メモリトランジスタ領域、選択トランジスタ領域及び低電圧トランジスタ領域を含む半導体基板に活性領域を画定する素子分離膜パターンを形成する段階と、
    前記活性領域上に前記メモリトランジスタ領域を覆う第1絶縁膜パターンを形成する段階と、
    前記第1絶縁膜パターンが形成された活性領域の全面に第2絶縁膜を形成する段階と、
    前記第2絶縁膜上に、前記メモリトランジスタ領域の上部に配置されるワードライン、前記選択トランジスタ領域の上部に配置される選択ライン及び前記低電圧トランジスタ領域上に配置される低電圧ゲート電極を形成する段階と、を含むことを特徴とするNAND型フラッシュメモリ装置の製造方法。
JP2006190577A 2005-07-12 2006-07-11 Nand型フラッシュメモリ装置及びその製造方法 Expired - Fee Related JP5188686B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2005-0062792 2005-07-12
KR1020050062792A KR101094840B1 (ko) 2005-07-12 2005-07-12 낸드형 플래시 메모리 장치 및 그 제조 방법

Publications (3)

Publication Number Publication Date
JP2007027726A JP2007027726A (ja) 2007-02-01
JP2007027726A5 JP2007027726A5 (ja) 2009-08-27
JP5188686B2 true JP5188686B2 (ja) 2013-04-24

Family

ID=37609730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006190577A Expired - Fee Related JP5188686B2 (ja) 2005-07-12 2006-07-11 Nand型フラッシュメモリ装置及びその製造方法

Country Status (4)

Country Link
US (1) US7283393B2 (ja)
JP (1) JP5188686B2 (ja)
KR (1) KR101094840B1 (ja)
CN (1) CN100595925C (ja)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7755132B2 (en) * 2006-08-16 2010-07-13 Sandisk Corporation Nonvolatile memories with shaped floating gates
WO2008126177A1 (ja) * 2007-03-14 2008-10-23 Fujitsu Microelectronics Limited 不揮発性半導体記憶装置及びその製造方法
JP4564511B2 (ja) * 2007-04-16 2010-10-20 株式会社東芝 半導体装置及びその製造方法
KR100858293B1 (ko) * 2007-10-01 2008-09-11 최웅림 Nand 메모리 셀 어레이, 상기 nand 메모리 셀어레이를 구비하는 nand 플래시 메모리 및 nand플래시 메모리의 데이터 처리방법
KR100939407B1 (ko) * 2008-02-26 2010-01-28 주식회사 하이닉스반도체 플래시 메모리 소자 및 그의 제조 방법
WO2009139101A1 (ja) * 2008-05-13 2009-11-19 パナソニック株式会社 電子機器システム、および半導体集積回路のコントローラ
CN101640188B (zh) * 2008-08-01 2011-07-13 中芯国际集成电路制造(上海)有限公司 闪存中源极和漏极的制作方法
US8541832B2 (en) 2009-07-23 2013-09-24 Samsung Electronics Co., Ltd. Integrated circuit memory devices having vertical transistor arrays therein and methods of forming same
US20110221006A1 (en) * 2010-03-11 2011-09-15 Spansion Llc Nand array source/drain doping scheme
KR101763420B1 (ko) 2010-09-16 2017-08-01 삼성전자주식회사 3차원 반도체 기억 소자 및 그 제조 방법
KR20130019242A (ko) * 2011-08-16 2013-02-26 에스케이하이닉스 주식회사 반도체 소자 및 그 제조방법
WO2013043602A2 (en) 2011-09-19 2013-03-28 SanDisk Technologies, Inc. High endurance non-volatile storage
TWI469270B (zh) * 2012-01-09 2015-01-11 Winbond Electronics Corp 反及閘型快閃記憶裝置之製造方法
US9224475B2 (en) * 2012-08-23 2015-12-29 Sandisk Technologies Inc. Structures and methods for making NAND flash memory
US9245898B2 (en) 2014-06-30 2016-01-26 Sandisk Technologies Inc. NAND flash memory integrated circuits and processes with controlled gate height
US9224637B1 (en) 2014-08-26 2015-12-29 Sandisk Technologies Inc. Bi-level dry etching scheme for transistor contacts
US9443862B1 (en) 2015-07-24 2016-09-13 Sandisk Technologies Llc Select gates with select gate dielectric first
US9613971B2 (en) 2015-07-24 2017-04-04 Sandisk Technologies Llc Select gates with central open areas
CN108630807B (zh) * 2017-03-23 2022-01-28 中芯国际集成电路制造(上海)有限公司 半导体器件、制造方法以及存储器
KR102396583B1 (ko) * 2017-11-09 2022-05-11 삼성전자주식회사 메모리 소자 및 이의 제조방법
CN114695370B (zh) * 2022-05-31 2023-03-24 广州粤芯半导体技术有限公司 半导体结构及其制备方法
CN115881798A (zh) * 2023-01-29 2023-03-31 合肥新晶集成电路有限公司 半导体结构及其制备方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2683078A1 (fr) * 1991-10-29 1993-04-30 Samsung Electronics Co Ltd Memoire morte a masque de type non-et.
JP3184045B2 (ja) * 1994-06-17 2001-07-09 株式会社東芝 不揮発性半導体メモリ
JPH1065028A (ja) * 1996-08-23 1998-03-06 Toshiba Corp 不揮発性半導体記憶装置及びその製造方法
JPH10154802A (ja) * 1996-11-22 1998-06-09 Toshiba Corp 不揮発性半導体記憶装置の製造方法
KR19990015794A (ko) 1997-08-09 1999-03-05 윤종용 불휘발성 메모리 장치 및 그 제조 방법
JP2001044395A (ja) 1999-08-04 2001-02-16 Nec Corp 不揮発性半導体記憶装置およびその製造方法
JP2001148428A (ja) * 1999-11-18 2001-05-29 Toshiba Microelectronics Corp 半導体装置
JP2003046062A (ja) * 2001-07-30 2003-02-14 Toshiba Corp 半導体メモリ装置の製造方法
JP4605956B2 (ja) 2001-09-19 2011-01-05 株式会社リコー 半導体装置の製造方法
KR100437453B1 (ko) * 2002-05-23 2004-06-23 삼성전자주식회사 소노스 게이트 구조를 갖는 낸드형 비휘발성 메모리 소자및 그 제조방법
WO2005031859A1 (en) * 2003-09-30 2005-04-07 Koninklijke Philips Electronics N.V. 2-transistor memory cell and method for manufacturing
US6996011B2 (en) * 2004-05-26 2006-02-07 Macronix International Co., Ltd. NAND-type non-volatile memory cell and method for operating same
JP2005123524A (ja) * 2003-10-20 2005-05-12 Toshiba Corp 半導体装置及びその製造方法
US6992929B2 (en) * 2004-03-17 2006-01-31 Actrans System Incorporation, Usa Self-aligned split-gate NAND flash memory and fabrication process
KR100559714B1 (ko) * 2004-04-19 2006-03-10 주식회사 하이닉스반도체 낸드 플래시 메모리 소자 및 이의 프로그램 방법
KR100697286B1 (ko) * 2005-05-31 2007-03-20 삼성전자주식회사 비휘발성 메모리 장치 및 그 형성 방법
KR100614802B1 (ko) * 2005-07-04 2006-08-22 삼성전자주식회사 불휘발성 메모리 장치의 셀 게이트 구조물 제조 방법
US7227786B1 (en) * 2005-07-05 2007-06-05 Mammen Thomas Location-specific NAND (LS NAND) memory technology and cells

Also Published As

Publication number Publication date
CN100595925C (zh) 2010-03-24
KR101094840B1 (ko) 2011-12-16
US20070012979A1 (en) 2007-01-18
KR20070008901A (ko) 2007-01-18
JP2007027726A (ja) 2007-02-01
CN1897283A (zh) 2007-01-17
US7283393B2 (en) 2007-10-16

Similar Documents

Publication Publication Date Title
JP5188686B2 (ja) Nand型フラッシュメモリ装置及びその製造方法
KR101916222B1 (ko) 수직 구조의 비휘발성 메모리 소자 및 그 제조 방법
US9391082B2 (en) Memory arrays with a memory cell adjacent to a smaller size of a pillar having a greater channel length than a memory cell adjacent to a larger size of the pillar and methods
KR20200084057A (ko) 메모리 어레이, 및 메모리 어레이를 형성하는 방법
US8716084B2 (en) Memory array with an air gap between memory cells and the formation thereof
US9397210B2 (en) Forming air gaps in memory arrays and memory arrays with air gaps thus formed
JP2005223340A (ja) 自己整列スプリットゲート型の不揮発性半導体メモリ素子、及びその製造方法
CN1956171B (zh) 形成非易失性存储器件的方法及由此形成的器件
JP2007036173A (ja) フラッシュメモリ素子およびその製造方法
KR102171025B1 (ko) 비휘발성 메모리 장치
CN111129022B (zh) 存储器阵列及形成存储器阵列的方法
CN106328653B (zh) 非易失性存储器及其制造方法
JP2009049300A (ja) 半導体記憶装置の製造方法
KR100654559B1 (ko) 노어형 플래시 메모리 셀 어레이 및 그의 제조 방법
KR100683389B1 (ko) 플래시 메모리의 셀 트랜지스터 및 그 제조 방법
JP2005340853A (ja) 不揮発性半導体記憶装置およびその製造方法
US11257830B2 (en) Memory structure
JP2008066725A (ja) Eeprom装置及びその製造方法
US7282758B2 (en) Method of fabricating a floating gate for a nonvolatile memory
KR100731077B1 (ko) 노어형 플래시 메모리 소자의 공통 소스 라인 형성 방법
JP2004241698A (ja) 不揮発性半導体記憶装置およびその製造方法
JP4829144B2 (ja) 半導体装置及びその製造方法
KR20110001096A (ko) 낸드 플래시 메모리 소자의 게이트 패턴 및 그 형성방법
KR20010064595A (ko) 플래시 메모리 장치 제조방법
KR20060007176A (ko) 비휘발성 메모리 소자의 제조방법

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees