JP5038191B2 - 電子部品検査方法およびそれに用いられる装置 - Google Patents

電子部品検査方法およびそれに用いられる装置 Download PDF

Info

Publication number
JP5038191B2
JP5038191B2 JP2008053642A JP2008053642A JP5038191B2 JP 5038191 B2 JP5038191 B2 JP 5038191B2 JP 2008053642 A JP2008053642 A JP 2008053642A JP 2008053642 A JP2008053642 A JP 2008053642A JP 5038191 B2 JP5038191 B2 JP 5038191B2
Authority
JP
Japan
Prior art keywords
imaging
electronic component
focal length
stage
focusing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008053642A
Other languages
English (en)
Other versions
JP2009210414A (ja
Inventor
仁彦 津田
春生 張
哲 後藤
衛紅 郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYODO DESIGN & PLANNING CORP.
Original Assignee
KYODO DESIGN & PLANNING CORP.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYODO DESIGN & PLANNING CORP. filed Critical KYODO DESIGN & PLANNING CORP.
Priority to JP2008053642A priority Critical patent/JP5038191B2/ja
Priority to KR1020107019709A priority patent/KR101505702B1/ko
Priority to TW098107032A priority patent/TWI490477B/zh
Priority to PCT/JP2009/054092 priority patent/WO2009110518A1/ja
Priority to CN2009801075498A priority patent/CN101960295B/zh
Publication of JP2009210414A publication Critical patent/JP2009210414A/ja
Application granted granted Critical
Publication of JP5038191B2 publication Critical patent/JP5038191B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95684Patterns showing highly reflecting parts, e.g. metallic elements

Description

本発明は、各種電子部品の微小な欠陥や異物の有無を検査する方法およびそれに用いられる装置に関するものである。
近年、液晶ディスプレイ(LCD)や光デバイス、半導体デバイス等の電子部品において、処理能力の大容量化、高集積化に伴い、実装技術の高度化、細密化が飛躍的に進んでいる。このため、このような高密度で実装される電子部品の製造ラインにおいて、電気回路のパターニングや部材同士の接続が適正になされているか否か、また異物が混入していないか否か等の検査を迅速かつ正確に行うことが、ますます重要な課題となってきている。
例えば、LCDモジュールは、液晶パネルのガラス基板の端縁に、COG方式によって駆動用チップを実装し、これをフレキシブル印刷基板(FPC)等を介して外部回路と接続することによって得られるが、その際、図12に示すように、ガラス基板1上に形成された電極パッド2と、駆動用チップ3の電極4とが、バンプ5と異方性導電膜6内の導電粒子7を介して、厚み方向に通電可能な状態になっていることが重要である。
そこで、上記バンプ5が、通電に充分な個数の導電粒子7を挟み込んだ状態で、ガラス基板1側の電極パッド2に圧着しているかどうかを、ガラス基板1の裏面側から観察すると、図13に示すように、上記電極パッド2に食い込んだ導電粒子7の圧痕8が、その裏側から見えるため、この圧痕8の数を数えることにより、圧着の良否を検査することができる。このような考え方にもとづく検査装置がいくつか提案されている(特許文献1、2等を参照)。
例えば、上記特許文献1には、透明基板側の電極パッドと、電子部品のバンプとを、異方性導電膜を介して圧着することにより、LCDモジュール等を得る装置において、上記透明基板を載置する透明ステージ下側に微分干渉顕微鏡と、その映像を撮像するCCDカメラを設け、その撮像画像に基づいて電極パッドに対するバンプの圧着状態の良否を検査する装置が開示されている。この装置によれば、圧着工程後、即座にその圧着の良否を検査することができ、不良品が発生すれば、すぐに圧着工程の動作を修正することができるという利点を有する。
また、上記特許文献2には、上記と同様、微分干渉顕微鏡とカメラとを組み合わせた検査装置において、検査領域を、画像データにもとづいて特定部分のみに分割限定することによって、検査時間の短縮を図ったものが開示されている。
特開2006−186179公報 特開2005−227217公報
しかしながら、これらの検査装置では、いずれも、検査用のステージに電子部品を載置し、これをX方向やY方向に移動させて、固定された顕微鏡の撮像部に位置決めするようになっているため、検査部位の数が多い場合や電子部品が大型LCDパネルのように大きい場合、検査のためにステージを移動させるのに時間がかかるという問題や、ステージ上での電子部品の位置決めにも手間がかかるという問題がある。また、検査対象品が大きくなればなるほど、これを水平方向に動かして検査するには、水平方向に大きなスペースが必要となるため、装置の設置スペースとして、広い空間が必要になるという問題もある。
さらに、光学系の顕微鏡を用いる場合、撮像に先立ち、必ず被写体にピントを合わせなければならないが、通常、ピント合わせは、顕微鏡に内蔵されるか、オプションとして付加される「オートフォーカス機能」によって行われる。しかし、従来のオートフォーカス機能は、被写体からの反射光を利用して距離を計測して焦点距離を算出するため、微細な電子部品の凹凸表面までの距離や、透明基板の裏面側から透かして見える圧痕までの距離を、正確に計測するのがむずかしいという問題があった。そこで、最近、上記課題に応えるものとして、特殊なレーザ式変位センサ等を用いたオートフォーカス機能が提案されているが、これらは価格が高く、また調整にも手間がかかるため、汎用的でないという問題がある。また、被写体に対し、撮影の都度焦点距離を算出していては、検査の高速化に限界があるという問題がある。しかも、このような変位センサを顕微鏡に組み込むと、顕微鏡の全体重量が重くなるという問題もある。
本発明は、このような事情に鑑みなされたもので、電子部品の微細な部分に対し、迅速かつ正確な検査を、低コストで簡単に行うことのできる、優れた検査方法と、それに用いられる装置の提供をその目的とする。
上記の目的を達成するため、本発明は、電子部品を検査用のステージ上に載置する工程と、上記電子部品の所定部位を撮像するための適正位置に、顕微鏡機能と画像データ出力機能を備えた撮像手段を移動させて位置決めする工程と、上記撮像手段の、顕微鏡機能における対物レンズを上記電子部品の所定部位に向かって進退させ、適正な焦点距離に位置決めしてピント合わせを行う工程と、ピント合わせがなされた撮像手段によって上記電子部品の所定部位を撮像し、その画像データを情報処理手段に入力してその撮像部位の良否を検査する工程とを、順次繰り返す検査方法において、上記ピント合わせが、上記対物レンズと電子部品の所定部位との距離Lを変えながら画像を撮像し、その画像データにもとづいて、上記情報処理手段において最適焦点距離の絞り込みを行い、最適焦点距離が決定するまで上記距離Lの変更および撮像を繰り返すことによって行われるようになっており、初回、ステージ上に載置された電子部品に対してピント合わせを行う際は、上記対物レンズと電子部品の所定部位との距離Lを、まず、予め設定された所定距離に設定し、最適焦点距離が決定するまでその距離の変更と撮像を繰り返すとともに、その決定された最適焦点距離を、上記情報処理手段に記憶させ、次回以降、ステージ上に載置された電子部品に対してピント合わせを行う際には、上記情報処理手段において、前回以前に記憶された最適焦点距離にもとづき最適焦点距離の予測値を導出し、上記対物レンズと電子部品の所定部位との距離Lを、まず、上記予測最適焦点距離に設定し、最適焦点距離が決定するまでその距離の変更と撮像を繰り返すとともに、その決定された最適焦点距離を、上記情報処理手段に記憶させるようにした電子部品検査方法を第1の要旨とする。
また、本発明は、そのなかでも、特に、上記撮像手段を、ステージ面に対しX方向およびY方向の少なくとも一方に移動自在に取り付け、ステージ上に載置された単一もしくは複数の電子部品に対し、上記撮像手段を移動させながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うようにした電子部品検査方法を第2の要旨とする。
さらに、本発明は、そのなかでも、特に、上記撮像手段として、ステージ面に対しX方向に移動しうる第1の撮像手段と、ステージ面に対しY方向に移動しうる第2の撮像手段とを設け、ステージ上に載置された単一もしくは複数の電子部品に対し、上記第1の撮像手段をX方向に移動させながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うと同時に、上記第2の撮像手段をY方向に移動させながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うようにした電子部品検査方法を第3の要旨とする。
そして、本発明は、上記第1の要旨である電子部品検査方法に用いられる装置であって、電子部品を載置するためのステージと、検査の都度、上記ステージ上に載置された電子部品の所定部位を撮像するための適正位置に移動して位置決めされるよう設定された撮像手段と、上記撮像手段によって得られた画像データにもとづいて、その撮像された部位の良否を検査するよう設定された情報処理手段とを備え、上記撮像手段には、対物レンズが撮像対象に向かって進退自在に動くよう設定された顕微鏡部と、上記顕微鏡部によって撮像された拡大画像を、上記情報処理手段に出力する画像データ出力部とが設けられており、上記顕微鏡部におけるピント合わせが、上記対物レンズと電子部品の所定部位との距離Lを変えながら画像を撮像し、その画像データにもとづいて、上記情報処理手段において最適焦点距離の絞り込みを行い、最適焦点距離が決定するまで上記距離Lの変更および撮像を繰り返すことによって行われるようになっており、初回、ステージ上に載置された電子部品に対するピント合わせが、上記対物レンズと電子部品の所定部位との距離Lを、まず、予め設定された所定距離に設定し、最適焦点距離が決定するまでその距離の変更と撮像を繰り返すことによって行われるとともに、その決定された最適焦点距離が、上記情報処理手段に記憶され、次回以降、ステージ上に載置された電子部品に対するピント合わせが、上記情報処理手段において、前回以前に記憶された最適焦点距離にもとづき最適焦点距離の予測値を導出し、上記対物レンズと電子部品の所定部位との距離Lを、まず、上記予測最適焦点距離に設定し、最適焦点距離が決定するまでその距離の変更と撮像を繰り返すことによって行われるとともに、その決定された最適焦点距離が、上記情報処理手段に記憶されるようになっている電子部品検査装置を第4の要旨とする。
また、本発明は、そのなかでも、特に、上記撮像手段が、ステージ面に対しX方向およびY方向の少なくとも一方に移動自在に取り付けられており、ステージ上に載置された単一もしくは複数の電子部品に対し、上記撮像手段が移動しながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うようになっている電子部品検査装置を第5の要旨とする。
さらに、本発明は、そのなかでも、特に、上記撮像手段として、ステージ面に対しX方向に移動しうる第1の撮像手段と、ステージ面に対しY方向に移動しうる第2の撮像手段とが設けられており、ステージ上に載置された単一もしくは複数の電子部品に対し、上記第1の撮像手段がX方向に移動しながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うと同時に、上記第2の撮像手段がY方向に移動しながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うようになっている電子部品検査装置を第6の要旨とする。
すなわち、本発明の電子部品検査方法は、従来のように、ステージ面に載置された電子部品の検査対象部位を、固定された撮像手段の撮像部に移動させて位置決めするのではなく、撮像手段の方を、電子部品の検査対象部位に移動させて検査を行うようにしたため、装置をコンパクトに設計することができるとともに、動作の高速化を実現することができる。特に、X方向に動く撮像手段と、Y方向に動く撮像手段を組み合わせることにより、より一層、装置のコンパクト化と動作の高速化を実現することができる。
また、本発明の電子部品検査方法によれば、ピント合わせを、変位ンセンサ等を用いたオートフォーカス機能等によって、1回ごとに一からピント合わせを行うのではなく、撮像手段の対物レンズと被写体である電子部品の所定部位(検査対象部位)との距離Lを変えながら撮像を繰り返して得られる画像データから、最適焦点距離を絞り込むようになっており、しかも、最初の1回のみ、予め設定された所定の距離から最適焦点距離を探すものの、次回以降は、前回以前の最適焦点距離を記憶しておき、この記憶された最適焦点距離から導出される予測最適焦点距離を起点として最適焦点距離を絞り込むため、連続して検査しようとする電子部品の品質が揃っていれば、次回以降は、即座に最適焦点距離を得ることができ、ピント合わせに要する時間を大幅に短縮することができる。しかも、画像データにもとづく正確なピント合わせがなされるため、鮮明な画像にもとづく正確な検査を、高速で行うことができる。
さらに、次回以降のピント合わせに際し、例えば前回以前に記憶された最適焦点距離のばらつきから一定の傾向を抽出し、そのばらつきに対応した補正を加えて予測最適焦点距離を導出するようにしておけば、検査を繰り返すに従い、対象である電子部品のばらつき傾向に応じたピント合わせを、より迅速に行うことができ、全体として大幅な時間短縮を実現することができる。
また、画像データにもとづいてピント合わせをするため、検査対象である電子部品の種類が、突然変更されても、装置を停止することなく、ピント合わせを自動調整しながら、検査を続行することができるという利点を有する。
そして、本発明の電子部品検査装置によれば、上記電子部品検査方法を、効率よく、しかも比較的安価に実施することができる。特に、この装置は、ステージ面に載置された電子部品の検査対象部位を、固定された撮像手段の撮像部に移動させて位置決めするのではなく、撮像手段の方を、電子部品の検査対象部位に移動させて検査を行うようになっているため、ステージを大きくとる必要がなく、全体がコンパクトで、省スペース化と動作の高速化を実現することができる。
また、本発明の電子部品検査装置によれば、ピント合わせの際、高価な変位センサによらず、撮像手段によって撮像される画像データそのものを利用しているため、製造コストを比較的安価に抑えることができるという利点を有する。さらに、撮像手段に変位センサ等の余分な部材を搭載する必要がないため、撮像手段のスリム化、軽量化を実現することができ、上記のように、撮像手段を移動させて位置決めしても、撮像手段に振動やぶれが生じにくく、短時間で撮像手段の移動、停止、撮影を繰り返すことができるという利点を有する。
つぎに、本発明を実施するための最良の形態について説明する。
図1は、本発明の電子部品検査装置の一実施の形態を示す外観斜視図である。この検査装置10は、LCDモジュール製造ラインに連結された搬送コンベア11の側方に設置されており、製造されたLCDモジュールを、順次、搬送コンベア11から検査装置10内のステージ内に取り込んで検査を行い、再び搬送コンベア11上に戻すようになっている。なお、20は、上記検査の際に得られる画像を表示するモニター画面であり、21は、装置の動作制御を行う制御管理手段と、検査のための情報処理手段とが内蔵された本体部である。
そして、この検査装置には、図2に示すように、検査のための2つのステージ12、13が、搬送コンベア11の搬送方向に沿って並べて設けられており、以下の動作によって、2個のLCDモジュールに対して同時に検査を行うことができるようになっている。
すなわち、まず、搬送コンベア11によって、ポイントPの位置に送られたきたLCDモジュール(1)が、上方に設けられた吸着パッド付の移載手段16によって、装置手前側のポイントQに配置された第1のステージ12上に移載される。このとき同時に、前段階で検査ポイントRにおいて検査を終えたLCDモジュール(0)は、移載手段17によって、奥側に配置された第2のステージ13に移載されて、検査ポイントSに位置決めされる。また、前段階で、装置手前側のポイントTに配置されていたLCDモジュール(−1)が、移載手段18によって、搬送コンベア11の上に移載されるようになっている。
つぎに、図2(b)に示すように、LCDモジュール(1)は、第1のステージ12に載置された状態のまま奥側に移動して、検査ポイントRに位置決めされ、検査ポイントSに位置決めされたLCDモジュール(0)とともに検査が行われる。このとき、搬送コンベア11の移動によって、つぎのLCDモジュール(2)が搬送コンベア11のポイントPに位置決めされるとともに、搬送コンベア11上に取り出されたLCDモジュール(−1)が、下流側に送られるようになっている。
そして、図3に示すように、検査を終えたLCDモジュール(0)は、第2のステージ13上に載置された状態のまま手前側のポイントTに移動し、次工程(図2〔a〕の工程)において、搬送コンベア11側に取り出される。そして、空になった第2のステージ13は、奥側の検査ポイントSに戻り、この上に、LCDモジュール(1)が移載される。以下、上記一連の動作が繰り返されて、LCDモジュールの検査が2個ずつ連続的に行われるようになっている。
上記検査対象であるLCDモジュールは、図4に示すように、LCD30と、LCD30の上縁部(LCD30を水平に置いた状態における奥縁部)に横一列に並ぶ10個のソースチップ31と、同じくLCD30の左縁部に縦一列に並ぶ4個のゲートチップ32と、これらのチップ31、32と制御基板33とを接続する駆動回路基板(FPC)34とで構成されている。そして、上記各チップ31、32は、図12に示すものと同様、そのバンプが、異方性導電膜を介して、LCD30側の電極パッドと圧着されている(図示は省略)。
そして、上記LCDモジュールの、駆動回路基板34の検査が、この検査装置の第1のステージ12において行われ、上記LCDモジュールのチップ31、32の実装部分の検査が、その第2のステージ13で行われるようになっている。
まず、上記第1のステージ12における検査は、図2において検査ポイントRで示す位置において、図5(a)およびそのA−A′断面図である図7に示すように、その奥側に設けられた撮像手段40を用いて行われる。この撮像手段40は、対物レンズ41と微分干渉プリズム42と同軸落射照明付鏡体43を備えた微分干渉顕微鏡44と、画像データ出力機能を有するCCDカメラ45とを組み合わせたもので、LCDモジュールの駆動回路基板34に対し、その裏面側から、X方向に移動しながら、所定のポイントごとにその拡大画像を撮像することができるようになっている。
なお、上記微分干渉顕微鏡44は、微分干渉プリズム42によって、被写体の屈折率や厚みの変化を、干渉色の変化や明暗のコントラストに変換して観察することができるという特徴を備えている。そして、上記微分干渉顕微鏡44の照明には、青色発光ダイオードが用いられている。照度が高く、熱の発生がないからである。
また、46は、上記撮像手段40をX方向に移動させるためのX方向移動手段で、具体的には、高速停止が可能なリニアサーボアクチュエータが用いられている。さらに、47は、上記撮像手段40をZ方向に移動させてピント合わせを行うためのZ方向調整手段で、具体的には、撮像手段40の高さをマイクロメートル(μm)単位で調整可能なリニアステッピングアクチュエータが用いられている。
なお、上記撮像手段40がX方向に移動後高速停止を繰り返しても、振動や光軸ぶれが生じて撮像に影響が出ないように、撮像手段40の重心Gを含む部分がZ方向調整手段47に強固に固定されている。また、同様の理由から、撮像手段40の上端部に配置される対物レンズ41と、下端部に配置されるCCDカメラ45の外筒部も、移動時にぐらつかないようガイドブロック48a、48bによって固定されている。
そして、49は、第1のステージ12および第2のステージ13を含む、検査のための各種構成品を支受するベースプレートで、厚み12mm以上、特に好ましくは16mm以上の超剛性鋼板が用いられており、撮像手段40の移動による振動、温度変化、湿度変化に対して安定で、検査が経時的に安定して行われるようになっている。
上記撮像手段40の微分干渉顕微鏡44で得られた画像は、CCDカメラ45によって撮像され、画像データとして、装置の本体部21(図1参照)の情報処理手段に入力されるようになっている。
上記情報処理手段では、上記撮像手段40から入力される画像データを、予め設定された、検査項目に対応した所定の演算プログラムによって変換(例えば256階調の輝度スケールにもとづく輝度分布データに変換)し、これを、検査項目ごとに設定された基準データと比較して、その基準から外れているものを不良として検出するようになっている。そして、その比較データは、定期的に、または必要に応じて、プリントアウトされるようになっている。
また、検査の間、上記情報処理手段に入力された画像データは、その検査結果と併せて、逐次装置のモニター画面20(図1参照)に表示されるようになっている。すなわち、検査対象部位の拡大画像が、基準データとの対比に用いられた特定領域にマーキングが施された状態で表示され、不良を検出した部位については、そのマーキング部分の色が、常態の色と異なる色で表示されるようになっている(例えば、良好な場合は、特定領域を緑色の枠で囲い、不良の場合は赤色の枠で囲って表示)。
さらに、上記情報処理手段には、以下に述べる、ピント合わせのためのキャリブレーションシステムの一環として、最適焦点距離算出部とその最適焦点距離記憶部とが設けられている。すなわち、このシステムによれば、前記LCDモジュールを順次検査する際、その最初のLCDモジュールに対しては、検査に先立って、ピント合わせのための撮像を、同じ検査ポイントにおいて複数回繰り返して行い、得られた画像データにもとづいて、最適焦点距離を算出してその値にしたがって撮像手段40(の対物レンズ41)をZ方向に移動してピント合わせを行い、その状態で検査のための撮像を行うとともに、そのピント合わせ時に算出された最適焦点距離を、上記情報処理手段において記憶するようになっている。そして、次回以降の検査においては、別途設けられた基準値や、ランダムな値から焦点距離を絞っていくのではなく、その記憶された最適焦点距離から、所定のアルゴリズムにしたがって、予測最適焦点距離を導出し、その距離にしたがって、撮像手段40のZ方向の初期位置を決め、その位置から自動的にピント合わせを行うようになっている。
これは、検査対象であるLCDモジュールが、例えば図6に誇張して示すように、製造時の加熱やテンションによって反りや歪みをもっていることから、検査ポイント(例えば、図6では矢印で示す12個所)ごとに適正な焦点距離が変わることを考慮したもので、上記初回のピント合わせ時に記憶した12個所の適正焦点距離のデータにもとづいて、次回の焦点距離をキャリブレーションすることによって、各検査ポイントごとに、実際の最適焦点距離により近い(と思われる)予測最適焦点距離を設定し、その位置から効率よくピント合わせを行うことができ、短時間で撮影動作に入ることができるという利点を有する。
また、つぎつぎと検査を繰り返す過程で、その都度、ピント合わせ時の最適焦点距離を記憶し、その記憶された最適焦点距離から、検査対象であるLCDモジュールの形状のばらつき傾向を把握することができることから、前回以前に記憶された最適焦点距離のばらつきから一定の傾向を抽出し、そのばらつきに対応した補正を加えて予測最適焦点距離を導出するようにしておけば、検査を繰り返すに従い、対象である電子部品のばらつき傾向に応じたピント合わせを、より迅速に行うことができ、全体として大幅な時間短縮を実現することができる。
なお、前回以前に記憶された最適焦点距離から、次回以降の最適焦点距離を予測する手法としては、単純な例をあげれば、例えば、(1)前回の最適焦点距離を、今回の予測最適焦点距離とする、(2)前回以前に蓄積された全ての最適焦点距離の平均値を、今回の予測最適焦点距離とする、(3)例えば前回とその一つ前の回の計2回の最適焦点距離の差(変動値)を前回の最適焦点距離に加えて、今回の予測最適焦点距離とする、等の手法がある。もちろん、装置の調整時に、検査対象品の特性に応じて、最も高速化が期待できる手法を選択して、ピント合わせのキャリブレーションシステムを構築することが好ましい。
ちなみに、各検査ポイントにおける最適焦点距離の絞り込みは、情報処理手段において、例えば、その検査ポイントにおける、画像データの輝度と、対物レンズ41と撮像対象物との距離との関係を示す関係式にもとづいて算出される。すなわち、図8(a)に示すように、距離変化に応じて変化する輝度が、特定の距離の前後において、極端に大きく変化する個所があり、この変化曲線の最大変化量Δαと、その勾配から、適正な焦点距離を推理し、再度、その予測された焦点距離の前後で距離を変化させることにより、図8(b)に示すように、勾配がプラスからマイナスになる点を挟む2点を特定し、それによって、輝度がピークとなる適正焦点距離を特定するというプロセスによって、ごく短時間で求めることができる。
なお、上記検査のためにLCDモジュールを載置する第1のステージ12の下側には、上記LCDモジュールを、搬送コンベア11(図2、図3参照)から取り込んで、所定の初期位置に位置決めするために、第1のステージ12自体を移動させるための、X方向移動手段と、Y方向移動手段と、ステージ面を面方向に回転させるθ軸回転手段とが設けられている(これらの図示は省略)。
一方、上記第2のステージ13における検査は、図2において検査ポイントSで示す位置において、図5(b)に示すように、その左側に設けられるY方向撮像手段50と、その奥側に2個並べて設けられるX方向撮像手段51、52とを用いて行われる。
上記X方向撮像手段51、52は、検査対象であるLCDモジュールの、横一列に並ぶソースチップ31とLCD30の圧着部の良否を検査するためのもので、隣り合うチップ31を2個同時に検査できるよう、チップ31の間隔と同じ間隔で並設されている。そして、各撮像手段51、52のそれぞれが、前記撮像手段40(図7参照)と同様、ピント合わせのためのZ方向調整手段47を介して、X方向移動手段46に取り付けられており、前記撮像手段40と同様の動作によって、X方向に移動しながら、2個のチップ31に対して同時に、所定のポイントごとにその拡大画像を撮像することができるようになっている。より具体的には、図4において、a1 〜a5 で示すチップ31が、上記撮像手段51で撮像され、b1 〜b5 で示すチップ31が、上記撮像手段52で撮像されるようになっている。これらの撮像は、撮像手段51、52を同時に並走させることによって、同時に行われるため、全体として、非常に短時間で、その撮像および検査を行うことができる。
また、上記Y方向撮像手段50は、同じくLCDモジュールの、縦一列に並ぶゲートチップ32とLCD30の圧着部の良否を検査するためのもので、前記撮像手段40やX方向撮像手段51、52と同様、ピント合わせのためのZ方向調整手段47を介して、Y方向移動手段53に取り付けられており、Y方向に移動しながら、チップ32に対して、所定のポイントごとにその拡大画像を撮像することができるようになっている。上記Y方向撮像手段50による撮像も、上記撮像手段51、52による撮像と同時に行われるため、全体として、非常に短時間で、その撮像および検査を行うことができる。
これらの撮像手段50〜52によって得られる画像データも、装置の本体部21の情報処理手段に入力され、前記第1のステージ12における検査と同様にして処理されて、不良検出がなされるようになっている。この画像データも、その検査結果と併せて、逐次装置のモニター画面20(図1参照)に表示することができるようになっており、第1のステージ12における検査画像と、第2のステージ13における検査画像を、スイッチによって切り替えて見ることができるようになっている。ただし、これらの表示の仕方は、特に限定するものではなく、適宜に設定することができる。
なお、上記検査においても、第1のステージ12における検査と同様、最初のLCDモジュールに対しては、検査に先立って、ピント合わせのための撮像を、同じ検査ポイントにおいて複数回繰り返して行い、得られた画像データにもとづいて、最適焦点距離を算出してその値にしたがって撮像手段50〜52をZ方向に移動してピント合わせを行い、その状態で検査のための撮像を行うとともに、その最適焦点距離を記憶するようになっている。そして、次回以降の検査においては、上記記憶された最適焦点距離から導出される予測最適焦点距離にしたがって、各検査ポイントにおける撮像手段50〜52のZ方向の位置決めを自動的に行い、より効率よくピント合わせを行うようになっている。
また、第2のステージ13上に載置されるLCDモジュールは、第1のステージ12において、予め精密な位置に位置決めされ、その状態のまま、高い精度で、この第2のステージ13上に移載されるため、第2のステージ13自体には、第1のステージ12のように、位置決めのための移動手段は設けられていない。ただし、上記LCDモジュールを搬送コンベア11(図2、図3参照)側に排出するために、上記第2のステージ13の下側に、Y方向移動手段が設けられている(図示は省略)。
上記検査装置を用い、例えばつぎのようにして、LCDモジュールの検査を行うことができる。まず、搬送コンベア11(図2参照)上から第1のステージ12に移載されたLCDモジュール(1枚目)を、検査ポイントRに、正確に位置決めする。この位置決めは、撮像手段40を用い、LCDモジュールに設けられたアライメントマークを目印として、第1のステージ12をX方向、Y方向、θ(回転)方向に移動させることによって行う。
つぎに、上記LCDモジュールの駆動回路基板34の検査開始位置に、撮像手段40を移動させ、微分干渉顕微鏡44の対物レンズ41を、適正な検査位置に位置決めした上で、ピント合わせのために、同じ検査ポイントにおいて複数回繰り返して行い、得られた画像データにもとづいて適正焦点距離を算出し、その値にしたがって撮像手段40(の対物レンズ41)をZ方向に移動してピント合わせを行い、その状態で検査のための撮像を行うとともに、そのピント合わせ時に算出された最適焦点距離を記憶する。これを、各検査ポイントごとに行う。そして、すでに述べたように、次回以降のピント合わせの際には、上記記憶された最適焦点距離から導出される予測最適焦点距離にもとづいて、より効率よくピント合わせがなされるようになっており、全体として、検査処理の高速化が図られるようになっている。
そして、本体部21(図1参照)内の情報処理手段では、上記撮像手段40から入力された画像データを、予め設定された基準データと比較して、その基準から外れているものを不良として検出する。このとき、上記情報処理手段に入力された画像データは、その検査結果と併せて、逐次装置のモニター画面20(図1参照)に表示され、不良を検出した部位については、その不良が一目でわかるように表示される。
ちなみに、上記駆動回路基板34(図4参照)と、異方性導電膜を挟んだLCD30の圧着部において、上記駆動回路基板34のバンプと、LCD30の電極との間にずれがないか否かの良否を検査する場合、その検査画像は、例えば図9(a)に示すようになる。このとき、各バンプ60の圧着部において縦方向に並ぶ導電粒子61の数を所定ピッチごとに計測し、導電粒子61の数の偏りを調べることにより、バンプ60とLCD30の電極とのずれ(図においてNで示す)を検査することができる。このずれの割合が一定以上になった場合に、不良表示がなされるようになっている。
また、上記駆動回路基板34とLCD30の圧着部における異物の混入を検査する場合、その検査画像は、例えば図9(b)に示すようになる。このとき、圧着部に異物63がある場合、その異物63が存在する範囲を、上下方向に4分割し、その面積、形状、輝度等のデータから、導電粒子61以外と判別される場合であって所定の値以上の大きさのものである場合に、不良表示がなされるようになっている。
なお、図10に、上記第1のステージ12におけるLCDモジュールの検査(3個所)時の、X方向移動手段(図10では「X軸」と記載)46と、Z方向調整手段(図10では「Z軸」と記載)47と、CCDカメラ45と、情報処理手段における画像処理手段(図10では「CPU」と記載)の運転パターンのチャートの一例を示す。
つぎに、上記第1のステージ12による検査を終えたLCDモジュール(1枚目)を、検査ポイントR(図2参照)から、検査ポイントSに配置された第2のステージ13上に移載する。そして、LCDモジュールのソースチップ31、ゲートチップ32とLCD30との圧着部に対する検査を、X方向撮像手段51、52と、Y方向撮像手段50とを、同時に駆動させることにより同時に行う。これにより、各チップ31、32に対し、高速で検査を行うことができる。なお、この場合も、1枚目のLCDモジュールに対する検査であることから、検査のための撮像に先立ち、ピント合わせのための画像データを得るために、同じ検査位置において複数回、Z軸方向の高さを変えながら撮像を行い、前述の方法によって最適焦点距離を算出し、その値にもとづいてピント合わせを行う。そして、上記最適焦点距離を、情報処理手段において記憶する。そして、次回以降の検査時には、上記記憶された最適焦点距離から導出される予測最適焦点距離にしたがって、各撮像手段51等をZ方向に位置決めした上で、最適焦点距離の絞り込みを行うことにより、より効率よくピント合わせを行うことができる。
ちなみに、上記各チップ31(32)と、異方性導電膜を挟んだLCD30の圧着部において、上記チップ31(32)のバンプと、LCD30の電極との間に、充分な数の導電粒子61が挟まれているか否かを検査する場合、その検査画像は、例えば図11(a)に示すようになる。すなわち、各バンプの圧着部64には、この部分に圧着された導電粒子の圧痕65が略円形の陰影として表れるため、図11(b)でに示すように、各バンプの圧着部64を囲う領域を四角枠で囲い、この四角枠内に表れている導電粒子の圧痕65を、その陰影パターンから特定してマーキングし(小枠66で示す)、その数を数える。そして、その数が予め設定される基準値を下回る場合、不良表示がなされるようになっている。
このように、上記検査装置によれば、LCDモジュールの駆動回路基板34と、縦横に並ぶチップ31、32の良否を検査する際、その画像データを利用してピント合わせ時の最適焦点距離を算出して記憶させ、次回以降のLCDモジュールに対し、前回以前の、記憶された最適焦点距離から導出される予測最適焦点距離にもとづいて、自動的にピント合わせが行われるようになっているため、軽量の撮像手段40が高速で移動して停止し、瞬時に撮像態勢に入れることと相俟って、高速かつ高精度で検査することができる。しかも、LCDモジュールを移動させながら検査を行うのではなく、撮像手段40、50〜52の方を移動させて所定部位ごとに連続して画像データを撮像して検査を行うため、LCDモジュールが大型であっても、全体として装置スペースがコンパクトですみ、LCDモジュールの製造ラインと組み合わせて用いても、場所をとることがない。
なお、上記の例において、撮像手段40、50〜52(以下「40等」と略す)のX方向、Y方向への移動速度は、装置に要求される検査速度、検査精度等によって、適宜に設定されるが、通常、1000mm/秒以下、なかでも100mm/秒以下に設定することが、高速検査を実施する上で好適である。
また、上記のように、撮像手段40等を高速移動、高速停止しても、停止後即座に鮮明な画像データを得ることができるように、上記の例では、撮像手段40等の安定保持を目的として、撮像手段40等の重心Gを含む部分をZ方向調整手段47に取り付け、その対物レンズ41と、下端部に配置されるCCDカメラ45の外筒部についても、同時に固定するようにしているが、撮像手段40等の固定方法は、その重心Gの動きを抑制する構成になっていれば、特に限定するものではない。ただし、上記の例のように、光軸方向のぶれを抑制する構成になっていれば、より好適である。
また、撮像手段40等は、軽量であることが望ましく、微分干渉顕微鏡44とCCDカメラ45を組み合わせた総重量が2.5kg以下、なかでも、2.0〜1.0kgであることが好適である。また、その高さも、300mm以下、なかでも、200〜100mmであることが好適で、鏡筒の直径も、50〜30mm程度であることが好適である。
そして、上記の例では、検査の効率を向上させるために、第1のステージ12と第2のステージ13とを並設して、2種類の検査を同時に行うことができるようにしたが、ステージの数は、特に限定するものではない。単一であっても、3個以上であっても、タイミングを合わせることにより、同様にして検査を行うことができる。ただし、搬送コンベア11との同期等を考慮すれば、上記の例のように、2つのステージを組み合わせることが、最適である。
さらに、上記の例では、X方向に移動する撮像手段40を備えた第1のステージ12と、X方向に移動する撮像手段51、52およびY方向に移動する撮像手段50とを組み合わせた第2のステージ13を設けたが、撮像手段の移動方向については、特に限定するものではなく、初期位置に位置決めされた対象物に対し、検査の都度、移動するものであれば、特に限定するものではない。
また、上記の例では、第1のステージ12に、LCDモジュールの初期位置の位置決め用として、X方向移動手段とY方向移動手段とθ軸回転手段とが設けられているため、LCDモジュールの検査時において、上記撮像手段40の移動を前提とした上で、さらなる位置調整に、上記第1のステージ12側の移動手段を利用することができる。
さらに、上記の例は、本発明を、LCDモジュールの検査に用いたものであるが、検査対象は、特に限定するものではなく、画像データを利用して検査することのできる、各種の電子部品(製品を含む)に適用することができる。
また、本発明の装置において、検査ごとに記憶される最適焦点距離の蓄積データから、最適焦点距離の変化を経時的に分析してその傾向を抽出し、その傾向にもとづいて、予測最適焦点距離を導出する際、その傾向を取り込んだ補正を加えるようにすると、より装置の特性、検査対象の特性に即したピント合わせを実現することができ、より高速かつ高精度で画像データを得ることができる。
さらに、本発明の装置を用いた検査において、その検査結果を分析してその不良傾向を抽出し、その不良傾向にもとづく情報を、製造ライン側にフィードバックして、生産管理に活かすことができる。また、検査結果の分析だけでなく、上記最適焦点距離の蓄積データの分析によって、例えば「ワークが反りすぎている」といった、検査対象の不良傾向を抽出することができ、その不良傾向にもとづく情報を、製造ライン側にフィードバックして、生産管理に活かすことができる。
なお、本発明の装置に、振動センサ等を取り付けておけば、検査において不良品が検知された場合に、外的な振動が影響しているか否かを即座に判断でき、好適である。
また、本発明は、画像データによって検知できる項目であれば、どのような項目に関しても検査することができるのであり、検査項目の種類は、特に限定するものではない。
本発明の一実施例の外観斜視図である。 (a)、(b)は、ともに上記実施例の動作説明図である。 上記実施例の動作説明図である。 上記実施例に用いられるLCDモジュールの説明図である。 (a)は上記実施例の第1のステージにおける検査の説明図、(b)は上記実施例の第2のステージにおける検査の説明図である。 LCDモジュールの反り等についての説明図である。 図5(a)のA−A′断面図である。 (a)、(b)は、ともに上記実施例におけるキャリブレーションシステムの説明図である。 (a)、(b)は、ともに上記実施例の第1のステージにおける検査に用いられる拡大画像の説明図である。 上記実施の第1のステージにおける検査時の運転パターンのチャートである。 (a)、(b)は、ともに上記実施例の第2のステージにおける検査に用いられる拡大画像の説明図である。 LCDモジュールの実装部分の説明図である。 上記実装部分の検査方法の説明図である。
符号の説明
44:微分干渉顕微鏡
45:CCDカメラ
46:X方向移動手段
47:Z方向調整手段

Claims (6)

  1. 電子部品を検査用のステージ上に載置する工程と、上記電子部品の所定部位を撮像するための適正位置に、顕微鏡機能と画像データ出力機能を備えた撮像手段を移動させて位置決めする工程と、上記撮像手段の、顕微鏡機能における対物レンズを上記電子部品の所定部位に向かって進退させ、適正な焦点距離に位置決めしてピント合わせを行う工程と、ピント合わせがなされた撮像手段によって上記電子部品の所定部位を撮像し、その画像データを情報処理手段に入力してその撮像部位の良否を検査する工程とを、順次繰り返す検査方法において、
    上記ピント合わせが、上記対物レンズと電子部品の所定部位との距離Lを変えながら画像を撮像し、その画像データにもとづいて、上記情報処理手段において最適焦点距離の絞り込みを行い、最適焦点距離が決定するまで上記距離Lの変更および撮像を繰り返すことによって行われるようになっており、
    初回、ステージ上に載置された電子部品に対してピント合わせを行う際は、上記対物レンズと電子部品の所定部位との距離Lを、まず、予め設定された所定距離に設定し、最適焦点距離が決定するまでその距離の変更と撮像を繰り返すとともに、その決定された最適焦点距離を、上記情報処理手段に記憶させ、
    次回以降、ステージ上に載置された電子部品に対してピント合わせを行う際には、上記情報処理手段において、前回以前に記憶された最適焦点距離にもとづき最適焦点距離の予測値を導出し、上記対物レンズと電子部品の所定部位との距離Lを、まず、上記予測最適焦点距離に設定し、最適焦点距離が決定するまでその距離の変更と撮像を繰り返すとともに、その決定された最適焦点距離を、上記情報処理手段に記憶させるようにしたことを特徴とする電子部品検査方法。
  2. 上記撮像手段を、ステージ面に対しX方向およびY方向の少なくとも一方に移動自在に取り付け、ステージ上に載置された単一もしくは複数の電子部品に対し、上記撮像手段を移動させながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うようにした請求項1記載の電子部品検査方法。
  3. 上記撮像手段として、ステージ面に対しX方向に移動しうる第1の撮像手段と、ステージ面に対しY方向に移動しうる第2の撮像手段とを設け、ステージ上に載置された単一もしくは複数の電子部品に対し、上記第1の撮像手段をX方向に移動させながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うと同時に、上記第2の撮像手段をY方向に移動させながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うようにした請求項2記載の電子部品検査方法。
  4. 請求項1記載の電子部品検査方法に用いられる装置であって、電子部品を載置するためのステージと、検査の都度、上記ステージ上に載置された電子部品の所定部位を撮像するための適正位置に移動して位置決めされるよう設定された撮像手段と、上記撮像手段によって得られた画像データにもとづいて、その撮像された部位の良否を検査するよう設定された情報処理手段とを備え、上記撮像手段には、対物レンズが撮像対象に向かって進退自在に動くよう設定された顕微鏡部と、上記顕微鏡部によって撮像された拡大画像を、上記情報処理手段に出力する画像データ出力部とが設けられており、
    上記顕微鏡部におけるピント合わせが、上記対物レンズと電子部品の所定部位との距離Lを変えながら画像を撮像し、その画像データにもとづいて、上記情報処理手段において最適焦点距離の絞り込みを行い、最適焦点距離が決定するまで上記距離Lの変更および撮像を繰り返すことによって行われるようになっており、
    初回、ステージ上に載置された電子部品に対するピント合わせが、上記対物レンズと電子部品の所定部位との距離Lを、まず、予め設定された所定距離に設定し、最適焦点距離が決定するまでその距離の変更と撮像を繰り返すことによって行われるとともに、その決定された最適焦点距離が、上記情報処理手段に記憶され、
    次回以降、ステージ上に載置された電子部品に対するピント合わせが、上記情報処理手段において、前回以前に記憶された最適焦点距離にもとづき最適焦点距離の予測値を導出し、上記対物レンズと電子部品の所定部位との距離Lを、まず、上記予測最適焦点距離に設定し、最適焦点距離が決定するまでその距離の変更と撮像を繰り返すことによって行われるとともに、その決定された最適焦点距離が、上記情報処理手段に記憶されるようになっていることを特徴とする電子部品検査装置。
  5. 上記撮像手段が、ステージ面に対しX方向およびY方向の少なくとも一方に移動自在に取り付けられており、ステージ上に載置された単一もしくは複数の電子部品に対し、上記撮像手段が移動しながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うようになっている請求項4記載の電子部品検査装置。
  6. 上記撮像手段として、ステージ面に対しX方向に移動しうる第1の撮像手段と、ステージ面に対しY方向に移動しうる第2の撮像手段とが設けられており、ステージ上に載置された単一もしくは複数の電子部品に対し、上記第1の撮像手段がX方向に移動しながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うと同時に、上記第2の撮像手段がY方向に移動しながら、位置の異なる複数個所において順次ピント合わせおよび撮像を行うようになっている請求項5記載の電子部品検査装置。
JP2008053642A 2008-03-04 2008-03-04 電子部品検査方法およびそれに用いられる装置 Expired - Fee Related JP5038191B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008053642A JP5038191B2 (ja) 2008-03-04 2008-03-04 電子部品検査方法およびそれに用いられる装置
KR1020107019709A KR101505702B1 (ko) 2008-03-04 2009-03-04 전자부품 검사 방법과 이에 이용되는 장치
TW098107032A TWI490477B (zh) 2008-03-04 2009-03-04 電子零件檢查方法及用於該方法中之裝置
PCT/JP2009/054092 WO2009110518A1 (ja) 2008-03-04 2009-03-04 電子部品検査方法およびそれに用いられる装置
CN2009801075498A CN101960295B (zh) 2008-03-04 2009-03-04 电子元件检查方法及该方法所使用的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008053642A JP5038191B2 (ja) 2008-03-04 2008-03-04 電子部品検査方法およびそれに用いられる装置

Publications (2)

Publication Number Publication Date
JP2009210414A JP2009210414A (ja) 2009-09-17
JP5038191B2 true JP5038191B2 (ja) 2012-10-03

Family

ID=41056071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008053642A Expired - Fee Related JP5038191B2 (ja) 2008-03-04 2008-03-04 電子部品検査方法およびそれに用いられる装置

Country Status (5)

Country Link
JP (1) JP5038191B2 (ja)
KR (1) KR101505702B1 (ja)
CN (1) CN101960295B (ja)
TW (1) TWI490477B (ja)
WO (1) WO2009110518A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143628A (ja) * 2014-01-31 2015-08-06 有限会社共同設計企画 電子部品検査装置

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5209441B2 (ja) * 2008-10-30 2013-06-12 芝浦メカトロニクス株式会社 実装部品の検査装置及び検査方法
JP2011021999A (ja) * 2009-07-15 2011-02-03 Kyodo Design & Planning Corp 基板検査装置
CN102269713B (zh) * 2011-08-02 2013-04-17 武汉科技大学 一种连铸结晶器铜板表面图像采集装置
KR101306289B1 (ko) 2011-09-15 2013-09-09 (주) 인텍플러스 평판 패널 검사방법
CN102590224A (zh) * 2012-01-18 2012-07-18 肇庆市宏华电子科技有限公司 一种片式电子元件外观检测机
CN104280398A (zh) * 2013-07-05 2015-01-14 上海维锐智能科技有限公司 一种电子元器件的自动测试装置
JP2015149451A (ja) * 2014-02-07 2015-08-20 デクセリアルズ株式会社 アライメント方法、電子部品の接続方法、接続体の製造方法、接続体、異方性導電フィルム
WO2016147535A1 (ja) * 2015-03-16 2016-09-22 セイコーエプソン株式会社 電子部品搬送装置、電子部品検査装置、結露あるいは着霜の検査用試験片、および結露あるいは着霜の検査方法
CN106370656B (zh) * 2015-07-23 2019-03-05 旭东机械工业股份有限公司 自动化显微取像设备及取像方法
KR20170134828A (ko) 2016-05-26 2017-12-07 삼성디스플레이 주식회사 유기발광표시장치 및 유기발광표시장치의 제조 방법
CN107031124A (zh) * 2016-12-14 2017-08-11 江苏宇驰包装股份有限公司 一种可调节物料位置的压痕机
CN108364879B (zh) * 2017-01-26 2020-07-24 中芯国际集成电路制造(上海)有限公司 一种半导体器件的缺陷扫描方法及扫描装置
CN110100175A (zh) * 2017-02-02 2019-08-06 伊斯梅卡半导体控股公司 用于检查部件的组件和方法
JP7015987B2 (ja) * 2017-10-03 2022-02-04 パナソニックIpマネジメント株式会社 部品実装装置および実装基板の製造方法
CN107748428A (zh) * 2017-10-18 2018-03-02 歌尔股份有限公司 屏幕检测自动对焦方法及装置
TWI662262B (zh) * 2018-04-20 2019-06-11 國立臺灣大學 具等向性轉換函數之量化差分相位對比顯微系統
CN108802046B (zh) * 2018-06-01 2021-01-29 中国电子科技集团公司第三十八研究所 一种混合集成电路组件缺陷光学检测装置及其检测方法
JP7035857B2 (ja) * 2018-07-03 2022-03-15 オムロン株式会社 検査方法、検査システム及びプログラム
CN108645868A (zh) * 2018-08-10 2018-10-12 北京妙想科技有限公司 一种小张印铁双面质量检测设备
TWI705744B (zh) * 2019-04-26 2020-09-21 旭東機械工業股份有限公司 壓合機構
CN110031467A (zh) * 2019-05-10 2019-07-19 厦门柯尔自动化设备有限公司 导电粒子检测光学模组
CN110208289A (zh) * 2019-05-27 2019-09-06 武汉中导光电设备有限公司 基于图像清晰度的自动面型跟踪对焦系统及方法
CN110132982A (zh) * 2019-05-27 2019-08-16 武汉中导光电设备有限公司 一种高灵敏度的自动光学检测方法及设备
CN110702685A (zh) * 2019-09-24 2020-01-17 深圳市华星光电半导体显示技术有限公司 显示面板的缺陷检测方法及缺陷检测系统
CN112735307A (zh) * 2019-10-28 2021-04-30 深圳汉和智造有限公司 一种获取导电粒子压痕图像的装置及获取方法
KR20210116777A (ko) * 2020-03-13 2021-09-28 (주)테크윙 전자부품 처리장비용 촬영장치
CN111239143B (zh) * 2020-03-17 2021-04-27 合肥市商巨智能装备有限公司 液晶面板缺陷复判方法
CN111522074B (zh) * 2020-05-29 2023-04-25 深圳市燕麦科技股份有限公司 麦克风检测设备及麦克风检测方法
CN113322653B (zh) * 2021-06-01 2022-08-30 苏州精梭智能技术有限公司 一种自动定位纺织品缺陷检测系统
CN113865509A (zh) * 2021-09-29 2021-12-31 苏州华兴源创科技股份有限公司 自动跟随检测装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08178858A (ja) * 1994-12-26 1996-07-12 Nec Corp スルーホール検査装置
JP3701353B2 (ja) * 1995-09-29 2005-09-28 大日本印刷株式会社 画像取得装置
JP3816615B2 (ja) * 1997-01-29 2006-08-30 オリンパス株式会社 基板検査装置
US6472671B1 (en) 2000-02-09 2002-10-29 Jean I. Montagu Quantified fluorescence microscopy
KR101145534B1 (ko) * 1999-05-19 2012-06-01 디지맥 코포레이션 컴퓨터들을 제어하거나 물리적 및 전자적 객체들로부터 인터넷 리소스들에 링크하기 위한 방법들 및 시스템들
US7518652B2 (en) * 2000-05-03 2009-04-14 Aperio Technologies, Inc. Method and apparatus for pre-focus in a linear array based slide scanner
US7127098B2 (en) * 2001-09-13 2006-10-24 Hitachi, Ltd. Image detection method and its apparatus and defect detection method and its apparatus
TWI264532B (en) * 2001-11-05 2006-10-21 Olympus Corp Substrate inspection device
AUPS047702A0 (en) * 2002-02-13 2002-03-07 Silverbrook Research Pty. Ltd. Methods and systems (ap68)
JP4302028B2 (ja) * 2004-09-27 2009-07-22 三菱重工業株式会社 透明電極膜基板の検査装置及びその方法並びにプログラム
JP2006170622A (ja) * 2004-12-10 2006-06-29 Olympus Corp 外観検査装置
JP2006184303A (ja) * 2004-12-24 2006-07-13 Olympus Corp 画像検査装置
JP2006234553A (ja) * 2005-02-24 2006-09-07 Dainippon Screen Mfg Co Ltd 外観検査装置および外観検査方法
US20090039908A1 (en) * 2006-04-26 2009-02-12 Tokyo Electron Limited Microstructure inspecting apparatus and microstructure inspecting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143628A (ja) * 2014-01-31 2015-08-06 有限会社共同設計企画 電子部品検査装置

Also Published As

Publication number Publication date
CN101960295A (zh) 2011-01-26
KR101505702B1 (ko) 2015-03-30
KR20100124742A (ko) 2010-11-29
JP2009210414A (ja) 2009-09-17
CN101960295B (zh) 2012-07-04
TW201000885A (en) 2010-01-01
TWI490477B (zh) 2015-07-01
WO2009110518A1 (ja) 2009-09-11

Similar Documents

Publication Publication Date Title
JP5038191B2 (ja) 電子部品検査方法およびそれに用いられる装置
WO2011007651A1 (ja) 基板検査装置
JP6176789B2 (ja) 電子部品検査装置
CN103858001B (zh) 用于检查平板的方法
JP2005191387A (ja) 撮像素子試験方法及び装置
KR20030082992A (ko) 프로브 방법 및 프로브 장치
US7375360B2 (en) Light device of arranging thin film inspection sensor array, and method and apparatus for arranging sensor array using the same
TWI512276B (zh) 量測發光二極體模組之光軸的方法
JP2013025251A (ja) 撮像装置
JP2015148604A (ja) 高さ検出装置、塗布装置および高さ検出方法
KR20100039816A (ko) 메인보드의 마크 검지 방법, 검지 장치 및 메인보드 배치 방법
CN1670939A (zh) 标记方法及标记装置和检查装置
CN106782233B (zh) Oled显示屏检测系统及其应用
TWI429902B (zh) 電路板的標記檢知及偏移量檢知之方法及其置件方法
JP2008091843A (ja) 基板の圧着状態検査装置
US20100150430A1 (en) Visual inspection apparatus and visual inspection method for semiconductor laser chip or semiconductor laser bar
KR100847740B1 (ko) 압흔검사시스템 및 압흔검사시스템의 제어방법
KR101351004B1 (ko) 상하 이동이 가능한 결함 검출용 카메라 어레이가 구비된 이송장치
TW200303410A (en) Method and apparatus for measuring a line width
JP2000214368A (ja) レンズ系光軸調整方法およびレンズ系光軸調整装置
KR100810581B1 (ko) 자동 압흔 검사장치 및 방법
KR20160002151A (ko) 압흔 검사 장치 및 방법
KR101005076B1 (ko) 범퍼 검사장치 및 방법
JP2007292683A (ja) 試料測定装置および試料測定装置の試料台調節方法
KR101351000B1 (ko) 복수 개의 검사 모드를 가지는 인라인 카메라 검사 장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120612

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5038191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees