JP4864307B2 - エアーギャップを選択的に形成する方法及び当該方法により得られる装置 - Google Patents
エアーギャップを選択的に形成する方法及び当該方法により得られる装置 Download PDFInfo
- Publication number
- JP4864307B2 JP4864307B2 JP2004284815A JP2004284815A JP4864307B2 JP 4864307 B2 JP4864307 B2 JP 4864307B2 JP 2004284815 A JP2004284815 A JP 2004284815A JP 2004284815 A JP2004284815 A JP 2004284815A JP 4864307 B2 JP4864307 B2 JP 4864307B2
- Authority
- JP
- Japan
- Prior art keywords
- dielectric material
- air gap
- etching
- manufacturing
- dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76826—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by contacting the layer with gases, liquids or plasmas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/764—Air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76814—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics post-treatment or after-treatment, e.g. cleaning or removal of oxides on underlying conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/7682—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02167—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02203—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
- H01L21/31116—Etching inorganic layers by chemical means by dry-etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76822—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
- H01L21/76825—Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76835—Combinations of two or more different dielectric layers having a low dielectric constant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2221/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
- H01L2221/10—Applying interconnections to be used for carrying current between separate components within a device
- H01L2221/1005—Formation and after-treatment of dielectrics
- H01L2221/1052—Formation of thin functional dielectric layers
- H01L2221/1057—Formation of thin functional dielectric layers in via holes or trenches
- H01L2221/1063—Sacrificial or temporary thin dielectric films in openings in a dielectric
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Drying Of Semiconductors (AREA)
- Window Of Vehicle (AREA)
- Manufacturing Of Electrical Connectors (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US50761303P | 2003-09-30 | 2003-09-30 | |
US60/507613 | 2003-09-30 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2005123607A JP2005123607A (ja) | 2005-05-12 |
JP2005123607A5 JP2005123607A5 (GUID-C5D7CC26-194C-43D0-91A1-9AE8C70A9BFF.html) | 2005-11-04 |
JP4864307B2 true JP4864307B2 (ja) | 2012-02-01 |
Family
ID=34312477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004284815A Expired - Fee Related JP4864307B2 (ja) | 2003-09-30 | 2004-09-29 | エアーギャップを選択的に形成する方法及び当該方法により得られる装置 |
Country Status (5)
Families Citing this family (79)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004003337A1 (de) * | 2004-01-22 | 2005-08-18 | Infineon Technologies Ag | Plasmaangeregtes chemisches Gasphasenabscheide-Verfahren, Silizium-Sauerstoff-Stickstoff-haltiges Material und Schicht-Anordnung |
US7088003B2 (en) * | 2004-02-19 | 2006-08-08 | International Business Machines Corporation | Structures and methods for integration of ultralow-k dielectrics with improved reliability |
CN100558940C (zh) * | 2004-08-18 | 2009-11-11 | 陶氏康宁公司 | 涂布的基片及其制备方法 |
US7622193B2 (en) * | 2004-08-18 | 2009-11-24 | Dow Corning Corporation | Coated substrates and methods for their preparation |
DE102004050391B4 (de) * | 2004-10-15 | 2007-02-08 | Infineon Technologies Ag | Verfahren zum Herstellen einer Schicht-Anordnung und Schicht-Anordnung |
ATE543210T1 (de) * | 2005-09-16 | 2012-02-15 | Imec | Verfahren zum herstellen von engen graben in dielektrischen materialien |
JP5214866B2 (ja) * | 2005-09-16 | 2013-06-19 | アイメック | 誘電性材料に狭いトレンチを形成する方法 |
WO2007054195A1 (en) * | 2005-11-14 | 2007-05-18 | Unilever N.V. | Packaged oxidation-stable oil-in-water emulsion |
US7994046B2 (en) * | 2006-01-27 | 2011-08-09 | Taiwan Semiconductor Manufacturing Co., Ltd. | Method for forming a dielectric layer with an air gap, and a structure including the dielectric layer with the air gap |
JP4735314B2 (ja) * | 2006-02-14 | 2011-07-27 | ソニー株式会社 | 半導体装置およびその製造方法 |
US7682977B2 (en) * | 2006-05-11 | 2010-03-23 | Micron Technology, Inc. | Methods of forming trench isolation and methods of forming arrays of FLASH memory cells |
US7803713B2 (en) * | 2006-09-21 | 2010-09-28 | Taiwan Semiconductor Manufacturing Co. Ltd. | Method for fabricating air gap for semiconductor device |
WO2008056295A1 (en) * | 2006-11-09 | 2008-05-15 | Nxp B.V. | A semiconductor device and a method of manufacturing thereof |
FR2910706B1 (fr) * | 2006-12-21 | 2009-03-20 | Commissariat Energie Atomique | Element d'interconnexion a base de nanotubes de carbone |
KR100843233B1 (ko) * | 2007-01-25 | 2008-07-03 | 삼성전자주식회사 | 배선층의 양측벽에 인접하여 에어갭을 갖는 반도체 소자 및그 제조방법 |
US7871923B2 (en) * | 2007-01-26 | 2011-01-18 | Taiwan Semiconductor Maufacturing Company, Ltd. | Self-aligned air-gap in interconnect structures |
US20080185722A1 (en) * | 2007-02-05 | 2008-08-07 | Chung-Shi Liu | Formation process of interconnect structures with air-gaps and sidewall spacers |
US20080242118A1 (en) | 2007-03-29 | 2008-10-02 | International Business Machines Corporation | Methods for forming dense dielectric layer over porous dielectrics |
US7622390B2 (en) * | 2007-06-15 | 2009-11-24 | Tokyo Electron Limited | Method for treating a dielectric film to reduce damage |
KR100849773B1 (ko) * | 2007-06-29 | 2008-07-31 | 주식회사 하이닉스반도체 | 반도체 소자의 제조 방법 |
US20090081862A1 (en) * | 2007-09-24 | 2009-03-26 | Taiwan Semiconductor Manufacturing Co., Ltd. | Air gap structure design for advanced integrated circuit technology |
US7879683B2 (en) * | 2007-10-09 | 2011-02-01 | Applied Materials, Inc. | Methods and apparatus of creating airgap in dielectric layers for the reduction of RC delay |
US7868455B2 (en) * | 2007-11-01 | 2011-01-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Solving via-misalignment issues in interconnect structures having air-gaps |
JP2009135139A (ja) * | 2007-11-28 | 2009-06-18 | Toshiba Corp | 半導体装置及びその製造方法 |
FR2926397B1 (fr) * | 2008-01-16 | 2010-02-12 | Commissariat Energie Atomique | Procede de fabrication de films dielectriques permeables |
US8071459B2 (en) * | 2008-04-17 | 2011-12-06 | Freescale Semiconductor, Inc. | Method of sealing an air gap in a layer of a semiconductor structure and semiconductor structure |
KR101382564B1 (ko) * | 2008-05-28 | 2014-04-10 | 삼성전자주식회사 | 에어갭을 갖는 층간 절연막의 형성 방법 |
US7754601B2 (en) * | 2008-06-03 | 2010-07-13 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor interconnect air gap formation process |
US7979824B2 (en) * | 2008-09-11 | 2011-07-12 | International Business Machines Corporation | Cost-benefit optimization for an airgapped integrated circuit |
US8108820B2 (en) * | 2008-09-11 | 2012-01-31 | International Business Machines Corporation | Enhanced conductivity in an airgapped integrated circuit |
JP5423029B2 (ja) * | 2009-02-12 | 2014-02-19 | 富士通セミコンダクター株式会社 | 半導体装置の製造方法 |
DE102009010845B4 (de) * | 2009-02-27 | 2016-10-13 | Advanced Micro Devices, Inc. | Verfahren zur Herstellung eines Mikrostrukturbauelements mit einer Metallisierungsstruktur mit selbstjustierten Luftspalten und wieder aufgefüllten Luftspaltausschließungszonen |
US8298911B2 (en) * | 2009-03-26 | 2012-10-30 | Samsung Electronics Co., Ltd. | Methods of forming wiring structures |
KR101536333B1 (ko) * | 2009-03-26 | 2015-07-14 | 삼성전자주식회사 | 배선 구조물 및 이의 형성 방법 |
JP2011009636A (ja) * | 2009-06-29 | 2011-01-13 | Oki Semiconductor Co Ltd | ビアホールの形成方法 |
US8304863B2 (en) | 2010-02-09 | 2012-11-06 | International Business Machines Corporation | Electromigration immune through-substrate vias |
US8456009B2 (en) | 2010-02-18 | 2013-06-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structure having an air-gap region and a method of manufacturing the same |
US8685778B2 (en) | 2010-06-25 | 2014-04-01 | International Business Machines Corporation | Planar cavity MEMS and related structures, methods of manufacture and design structures |
DE102010030757B4 (de) * | 2010-06-30 | 2019-03-28 | Globalfoundries Dresden Module One Limited Liability Company & Co. Kg | Verfahren zur Herstellung komplexer Metallisierungssysteme in Halbleitern durch Entfernung geschädigter dielektrischer Oberflächenschichten |
CN102330089B (zh) * | 2010-07-14 | 2013-07-17 | 中国科学院微电子研究所 | 硅片打孔系统及方法 |
US8497203B2 (en) | 2010-08-13 | 2013-07-30 | International Business Machines Corporation | Semiconductor structures and methods of manufacture |
US8530347B2 (en) | 2010-10-05 | 2013-09-10 | Freescale Semiconductor, Inc. | Electronic device including interconnects with a cavity therebetween and a process of forming the same |
KR20120061609A (ko) * | 2010-12-03 | 2012-06-13 | 삼성전자주식회사 | 집적회로 칩 및 이의 제조방법 |
EP2649005B1 (en) | 2010-12-07 | 2020-02-05 | SPTS Technologies Limited | Process for manufacturing electro-mechanical systems |
US8975751B2 (en) | 2011-04-22 | 2015-03-10 | Tessera, Inc. | Vias in porous substrates |
KR101828063B1 (ko) | 2011-05-17 | 2018-02-09 | 삼성전자주식회사 | 반도체 장치 및 그 형성방법 |
US8450212B2 (en) * | 2011-06-28 | 2013-05-28 | International Business Machines Corporation | Method of reducing critical dimension process bias differences between narrow and wide damascene wires |
WO2013016815A1 (en) | 2011-07-29 | 2013-02-07 | Rashidian Atabak | Polymer-based resonator antennas |
US20130069189A1 (en) * | 2011-09-20 | 2013-03-21 | United Microelectronics Corporation | Bonding pad structure and fabricating method thereof |
CN103094183B (zh) * | 2011-10-29 | 2015-07-29 | 中芯国际集成电路制造(上海)有限公司 | 半导体器件的制造方法 |
CN103178000B (zh) * | 2011-12-20 | 2014-11-05 | 中芯国际集成电路制造(上海)有限公司 | 半导体器件及其形成方法 |
US8603889B2 (en) | 2012-03-30 | 2013-12-10 | International Business Machines Corporation | Integrated circuit structure having air-gap trench isolation and related design structure |
US9105634B2 (en) | 2012-06-29 | 2015-08-11 | Taiwan Semiconductor Manufacturing Company, Ltd. | Voids in interconnect structures and methods for forming the same |
CN103531524B (zh) * | 2012-07-02 | 2017-02-08 | 中芯国际集成电路制造(上海)有限公司 | 含有空气隙的互连结构的制备方法 |
KR101986126B1 (ko) | 2012-07-18 | 2019-06-05 | 삼성전자주식회사 | 비휘발성 메모리 소자 및 그 제조 방법 |
KR102054264B1 (ko) * | 2012-09-21 | 2019-12-10 | 삼성전자주식회사 | 반도체 소자 및 그의 제조 방법 |
WO2014117259A1 (en) * | 2013-01-31 | 2014-08-07 | Tayfeh Aligodarz Mohammadreza | Meta-material resonator antennas |
US8900989B2 (en) * | 2013-03-06 | 2014-12-02 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabricating an air gap using a damascene process and structure of same |
US9401329B2 (en) * | 2013-03-12 | 2016-07-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interconnect structure and method of forming the same |
US9058983B2 (en) | 2013-06-17 | 2015-06-16 | International Business Machines Corporation | In-situ hardmask generation |
CN103325730A (zh) * | 2013-06-27 | 2013-09-25 | 上海华力微电子有限公司 | 介电常数可调的铜互连层间介质之制造方法 |
EP3075028B1 (en) | 2013-12-20 | 2021-08-25 | University of Saskatchewan | Dielectric resonator antenna arrays |
US9230911B2 (en) * | 2013-12-30 | 2016-01-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Interconnect structure and method of forming the same |
US9117822B1 (en) * | 2014-04-29 | 2015-08-25 | Globalfoundries Inc. | Methods and structures for back end of line integration |
US9583380B2 (en) | 2014-07-17 | 2017-02-28 | Globalfoundries Inc. | Anisotropic material damage process for etching low-K dielectric materials |
US9443956B2 (en) | 2014-12-08 | 2016-09-13 | Globalfoundries Inc. | Method for forming air gap structure using carbon-containing spacer |
US10170330B2 (en) * | 2014-12-09 | 2019-01-01 | Globalfoundries Inc. | Method for recessing a carbon-doped layer of a semiconductor structure |
US9390967B2 (en) | 2014-12-11 | 2016-07-12 | International Business Machines Corporation | Method for residue-free block pattern transfer onto metal interconnects for air gap formation |
US9768058B2 (en) | 2015-08-10 | 2017-09-19 | Globalfoundries Inc. | Methods of forming air gaps in metallization layers on integrated circuit products |
FR3040532B1 (fr) * | 2015-08-31 | 2017-10-13 | St Microelectronics Tours Sas | Puce a montage en surface |
US20170365504A1 (en) | 2016-06-20 | 2017-12-21 | Globalfoundries Inc. | Forming air gap |
KR102658192B1 (ko) * | 2016-07-27 | 2024-04-18 | 삼성전자주식회사 | 반도체 장치 및 반도체 장치의 제조 방법 |
US9768118B1 (en) * | 2016-09-19 | 2017-09-19 | International Business Machines Corporation | Contact having self-aligned air gap spacers |
WO2018063323A1 (en) * | 2016-09-30 | 2018-04-05 | Intel Corporation | Via & plug architectures for integrated circuit interconnects & methods of manufacture |
DE102018127448B4 (de) | 2017-11-30 | 2023-06-22 | Taiwan Semiconductor Manufacturing Co. Ltd. | Metallschienenleiter für nicht-planare Halbleiter-Bauelemente |
TWI716818B (zh) * | 2018-02-28 | 2021-01-21 | 美商應用材料股份有限公司 | 形成氣隙的系統及方法 |
KR102594413B1 (ko) * | 2018-03-30 | 2023-10-27 | 삼성전자주식회사 | 반도체 장치 |
CN110858578B (zh) * | 2018-08-23 | 2021-07-13 | 联华电子股份有限公司 | 管芯封环及其制造方法 |
US11302641B2 (en) * | 2020-06-11 | 2022-04-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Self-aligned cavity strucutre |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6255156B1 (en) | 1997-02-07 | 2001-07-03 | Micron Technology, Inc. | Method for forming porous silicon dioxide insulators and related structures |
US6268261B1 (en) | 1998-11-03 | 2001-07-31 | International Business Machines Corporation | Microprocessor having air as a dielectric and encapsulated lines and process for manufacture |
KR20020028047A (ko) | 1999-05-03 | 2002-04-15 | 맥켈러 로버트 루이스 | 실리콘 카바이드 제거 방법 |
US6342722B1 (en) | 1999-08-05 | 2002-01-29 | International Business Machines Corporation | Integrated circuit having air gaps between dielectric and conducting lines |
JP4368498B2 (ja) * | 2000-05-16 | 2009-11-18 | Necエレクトロニクス株式会社 | 半導体装置、半導体ウェーハおよびこれらの製造方法 |
US6387818B1 (en) | 2000-07-21 | 2002-05-14 | Advanced Micro Devices, Inc. | Method of porous dielectric formation with anodic template |
US6413852B1 (en) | 2000-08-31 | 2002-07-02 | International Business Machines Corporation | Method of forming multilevel interconnect structure containing air gaps including utilizing both sacrificial and placeholder material |
TW465039B (en) | 2000-11-06 | 2001-11-21 | United Microelectronics Corp | Void-type metal interconnect and method for making the same |
KR100493409B1 (ko) * | 2000-12-23 | 2005-06-07 | 주식회사 하이닉스반도체 | 반도체 소자 제조방법 |
JP2002324837A (ja) * | 2001-04-25 | 2002-11-08 | Hitachi Ltd | 半導体装置の製造方法 |
JP4661004B2 (ja) * | 2001-08-17 | 2011-03-30 | パナソニック株式会社 | 半導体装置の製造方法 |
JP2003077920A (ja) * | 2001-09-04 | 2003-03-14 | Nec Corp | 金属配線の形成方法 |
JP3526289B2 (ja) * | 2001-10-03 | 2004-05-10 | 株式会社半導体先端テクノロジーズ | 半導体装置の製造方法 |
US6492245B1 (en) * | 2001-10-16 | 2002-12-10 | Taiwan Semiconductor Manufacturing Company | Method of forming air gap isolation between a bit line contact structure and a capacitor under bit line structure |
JP2003163266A (ja) * | 2001-11-28 | 2003-06-06 | Sony Corp | 半導体装置の製造方法および半導体装置 |
-
2004
- 2004-09-29 JP JP2004284815A patent/JP4864307B2/ja not_active Expired - Fee Related
- 2004-09-30 US US10/957,514 patent/US7078352B2/en not_active Expired - Fee Related
- 2004-09-30 DE DE602004032198T patent/DE602004032198D1/de not_active Expired - Lifetime
- 2004-09-30 AT AT04447219T patent/ATE505813T1/de not_active IP Right Cessation
- 2004-09-30 EP EP04447219A patent/EP1521302B1/en not_active Expired - Lifetime
-
2006
- 2006-03-22 US US11/387,188 patent/US7319274B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US7078352B2 (en) | 2006-07-18 |
JP2005123607A (ja) | 2005-05-12 |
US7319274B2 (en) | 2008-01-15 |
US20060177990A1 (en) | 2006-08-10 |
DE602004032198D1 (de) | 2011-05-26 |
ATE505813T1 (de) | 2011-04-15 |
EP1521302A1 (en) | 2005-04-06 |
US20050074961A1 (en) | 2005-04-07 |
EP1521302B1 (en) | 2011-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4864307B2 (ja) | エアーギャップを選択的に形成する方法及び当該方法により得られる装置 | |
US10192781B2 (en) | Interconnect structures incorporating air gap spacers | |
US7534696B2 (en) | Multilayer interconnect structure containing air gaps and method for making | |
US7037851B2 (en) | Methods for selective integration of airgaps and devices made by such methods | |
US7994046B2 (en) | Method for forming a dielectric layer with an air gap, and a structure including the dielectric layer with the air gap | |
JP5306196B2 (ja) | 誘電体空隙を有する相互接続構造体 | |
US12266568B2 (en) | Interconnect wires including relatively low resistivity cores | |
US20040127001A1 (en) | Robust ultra-low k interconnect structures using bridge-then-metallization fabrication sequence | |
JP2004508712A (ja) | 多孔性誘電性層及びエアギャップを有する半導体装置の製造方法 | |
US20090075470A1 (en) | Method for Manufacturing Interconnect Structures Incorporating Air-Gap Spacers | |
JP2006269537A (ja) | 半導体装置の製造方法及び半導体装置 | |
JP2008235890A (ja) | 集積回路用のキャビティを有する配線構造の製造方法 | |
JP2005197606A (ja) | 半導体装置およびその製造方法 | |
JP2007227921A (ja) | 低減された誘電率を有する誘電体の製造方法、および半導体デバイス構成要素、および基板 | |
KR100571391B1 (ko) | 반도체 소자의 금속 배선 구조의 제조 방법 | |
JP4379878B2 (ja) | エアーギャップを選択的に形成する方法及び当該方法により作製された装置 | |
CN100355069C (zh) | 半导体装置及其制造方法 | |
US7560357B2 (en) | Method for creating narrow trenches in dielectric materials | |
TWI254986B (en) | Method for fabricating a dual damascene and polymer removal | |
EP1608013B1 (en) | Method of formation of airgaps around interconnecting line | |
JP2008053308A (ja) | 半導体装置の製造方法およびプラズマ処理装置 | |
JP4695842B2 (ja) | 半導体装置およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050915 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050915 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20070730 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20070730 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090525 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091016 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20091201 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20091225 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111109 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141118 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |