JP4153914B2 - 光デバイス - Google Patents

光デバイス Download PDF

Info

Publication number
JP4153914B2
JP4153914B2 JP2004567570A JP2004567570A JP4153914B2 JP 4153914 B2 JP4153914 B2 JP 4153914B2 JP 2004567570 A JP2004567570 A JP 2004567570A JP 2004567570 A JP2004567570 A JP 2004567570A JP 4153914 B2 JP4153914 B2 JP 4153914B2
Authority
JP
Japan
Prior art keywords
optical
substrate
array
optical device
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004567570A
Other languages
English (en)
Other versions
JPWO2004068592A1 (ja
Inventor
暢嗣 福山
康範 岩崎
晃啓 井出
卓弘 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2004068592A1 publication Critical patent/JPWO2004068592A1/ja
Application granted granted Critical
Publication of JP4153914B2 publication Critical patent/JP4153914B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4249Packages, e.g. shape, construction, internal or external details comprising arrays of active devices and fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/4228Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements
    • G02B6/423Passive alignment, i.e. without a detection of the degree of coupling or the position of the elements using guiding surfaces for the alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Description

本発明は、1つ以上の光ファイバを有する光ファイバアレイを具備した光デバイスに関し、特に、光ファイバを伝搬する信号光を途中でモニタする場合に好適な光デバイスに関する。
近時、ファイバアンプを用いた波長多重通信の発達に伴い、アンプ特性確保のため、各波長の光量をフォトダイオード(PD)でモニタし、光量を調整した上でアンプにて増幅させるという方式が採られるようになってきている。
このモニタには各種方法が知られているが、各光ファイバにモニタデバイスを搭載するため、モニタデバイスだけでかなりの大きさを必要としている。
そのため、モニタデバイスの小型化、高密度化が望まれている。また、モニタする際に、信号光の一部を取り出して行うようにしているが、信号光を大きく減衰させることなくモニタリングできるものが望まれている。
従来では、例えば特開2001−264594号公報に示すような技術が提案されている。この技術は、ガラス基板のV溝内に光ファイバを配置し、その後、ガラス基板に対して光ファイバを(その光軸に対して)斜めに横切るように平行溝を形成する。そして、前記平行溝内に光反射基体(光学部材)を挿入し、その隙間に紫外線硬化樹脂(接着剤)を充填するようにしている。
これにより、光ファイバを伝搬する信号光のうち、光反射基体で反射した光成分(反射光)がクラッド外に取り出されることになる。従って、この反射光を例えば受光素子にて検知することで、信号光のモニタが可能となる。
ところで、光ファイバ上にPDを配置する場合、そのほとんどは単心であり、金属製のパッケージタイプのPDを配置する場合が多かった(例えば特開平10−300936号公報、特開平11−133255号公報、国際公開第97/06458号パンフレット参照)。これは単心なので空間的制約が少ないことと、金属製のパッケージタイプのPDは市場に多く出回っており、価格・信頼性等での実績が大きいことによる。
一方、多心の場合は、金属製のパッケージタイプのPDを用いることは難しい。特に、光ファイバの配列ピッチが250μm等のように高密度な実装を要求される場合は、複数のベア(裸)のフォトダイオードが配列されたフォトダイオードアレイ(PDアレイ)を設置する必要がある。
そして、PDアレイからの電気信号を外部に導出するためには、一般に、複数のピンが設けられたパッケージを通じて行うようにしている。
主な従来例としては、光ファイバアレイが固定されたV溝基板の上面、あるいはV溝基板に光学的に結合される光導波路の上面に電極を設け、該電極を介してパッケージ等との配線接続をとる方式がある(例えば特開平7−104146号公報、特開平2−15203号公報、国際公開第97/06458号パンフレット、特開平7−159658号公報参照)。
両者共通の問題としては、そもそもV溝基板の上面、あるいは光導波路の上面に電極が形成されていることから、PDアレイとの配線接続(ワイヤボンディング等)やPDアレイの実装形態等に制約が発生する。
また、パッケージ等への配線接続、例えばパッケージのピンとワイヤボンディングを行うことを考えると、ワイヤはあまり長く形成できないので、V溝基板の上面、あるいは光導波路の上面の配線をピンの近傍まで近づける必要がある。これは、V溝基板、あるいは光導波路そのものをピンの近傍まで近づけることを意味し、この場合、V溝基板、あるいは光導波路の幅を不要に大きくすることになる。その結果、コスト増を招くことになる。
しかも、V溝基板、あるいは光導波路に対して相対位置を合わせて電極を形成する必要があり、これも手間の要する作業である。
更に、V溝基板においてはV溝を形成した後に電極を設け、光導波路においては完成した光導波路基板に電極を設けるため、電極形成に不良が発生した場合、作製したV溝基板及び光導波路基板も不良となり、歩留まりの低下につながる。
V溝基板、特に、ガラス製のV溝基板固有の問題としては、V溝基板の表面は研削が施されている場合が多く、表面が鏡面状態にないことである。このような場合、粗面に高密度な配線を設けることになるので、特性や信頼性の面で好ましくないといえる。V溝を形成するに先立って基板の表面を研削する理由は、V溝形成用の研削機と前記基板の加工表面の平行を確保するためであり、一度、前記基板の表面を平面研削盤等で研削してからV溝加工を行うようにしている。
また、従来例において、V溝基板、あるいは光導波路等の表面に電極を設ける以外の方法として、PDアレイそのものを光ファイバ上に配置する例は多く開示されているが(例えば国際公開第97/06458号パンフレット、特開昭63−191111号公報、特開2000−249874号公報、特開平3−103804号公報参照)、そのほとんどはPDアレイ設置以降の配線接続についての開示はない。この場合、パッケージ等への配線接続としては、PDアレイと光ファイバアレイとの間に別の配線基板を配置して、この別の配線基板を介して行うか、PDアレイから直接ワイヤボンディング等を実施することが考えられる。
前記別の配線基板を介して配線接続する場合、PDアレイの設置後に別の配線基板を新たに設置(位置合わせ・接着固定)し、配線を施すという手間が生じる。一方、PDアレイから直接配線する場合は、必要なワイヤ長がかなり長くなり、信頼性に乏しい上、複雑な配線を高密度で配列されたPDアレイから直接行うことになるので、非常に困難といえる。
更に、そもそもPDアレイの位置合わせを行う際、その出力電流を確認しながら調心を行うのが一般的であるが、上述した両者の方法とも、その段階ではPDアレイに直接プローブを当てることになるので、これも非常に困難な作業となる。
PDアレイに対する配線接続まで開示された例としては、例えば特開2002−182051号公報に記載された技術が挙げられる。この場合、サブマウント上にPDアレイが設置されてはいるが、PDアレイの一部をサブマウントに設置し、他の一部(活性層部分)を反射光の光路上に位置決めし、接着剤を介在するようにしている。つまり、PDアレイの活性層部分に至る光路上に障害となるものがあるとモニタとして機能しないことから、活性層以外の部分をサブマウントに設置するようにしている。
しかし、この構成では、接着剤の硬化収縮や熱膨張変動によって応力が発生した場合に、PDアレイそのものに応力(モーメント)支点が存在することから、PDアレイに歪み応力が加わる。PDアレイに応力が加わると、暗電流の増加等、特性に悪影響を与えることとなり好ましくないといえる。
また、サブマウントは、PDアレイが設置され、かつ、その表面に配線が形成されることから、サブマウントに反り等があると導通が確実でなくなったり、暗電流が発生する等、種々の問題が発生する。このため、サブマウントの厚みとして0.5mm以上は必要となる。つまり、従来の構成では、光ファイバアレイとPDアレイ間の距離を0.5mm未満にすることができず、反射光の損失並びにクロストークが発生するおそれがある。また、小型化並びにモニタ性能の向上に限界が生じることになる。
本発明はこのような課題を考慮してなされたものであり、光ファイバのクラッド面に受光素子の受光面を近接させることが可能となり、受光感度の向上、クロストークの低減を有効に図ることができると共に、パッケージを含めた構成の小型化を有効に図ることができる光デバイスを提供することを目的とする。
また、本発明の他の目的は、ワイヤボンディング工程の省略化を図ることができ、製造工程の簡略化、製造コストの低廉化を図ることができる光デバイスを提供することにある。
本発明に係る光デバイスは、オプティカルヘッドと、前記オプティカルヘッドが収容され、かつ、外部に導出されるピンを有するパッケージとを有し、前記オプティカルヘッドは、V溝が形成された第1の基板と、前記第1の基板の前記V溝に固定され、かつ、反射機能が設けられた1以上の光ファイバと、前記光ファイバのクラッド外のうち、少なくとも前記反射機能によって発生した反射光の光路上に接着層を介して固着された光素子と、前記光素子を実装するための第2の基板とを有し、前記第2の基板は、前記光素子の実装面が、前記第1の基板に対向させて設置され、前記光素子と前記パッケージのピンとが、前記第2の基板に形成された導体パターンを介して電気的に接続されていることを特徴とする。
これにより、第1の基板上に第2の基板を設置する際に、前記光素子を光ファイバに向けて設置することができ、光ファイバのクラッド面に光素子を近接させることが可能となり、受光感度の向上、クロストークの低減を有効に図ることができる。
また、上述のように、光ファイバのクラッド面に光素子を近接させることが可能であることから、オプティカルヘッド自体の小型化を図ることができると共に、パッケージを含めた光デバイス自体の小型化を図ることができる。
そして、前記構成において、前記パッケージは前記オプティカルヘッドが実装される台座を有し、前記台座に前記ピンが設けられ、前記第1の基板における前記V溝が形成された面とは反対側の面が前記台座に固定され、前記光素子と前記ピンとが、前記第2の基板に形成された導体パターンを介して電気的に接続されていてもよい。
この場合、前記第2の基板に形成された前記導体パターンを、前記実装面とは反対の面まで導出し、その導出された導体パターンと前記ピンとをワイヤを介して電気的に接続することが好ましい。
また、前記構成において、前記パッケージは前記オプティカルヘッドが実装される台座を有し、前記台座に前記ピンが設けられ、前記第2の基板における前記実装面とは反対の面が前記台座に固定され、前記光素子と前記ピンとが、前記第2の基板に形成された導体パターンを介して電気的に接続されていてもよい。
この場合、前記第2の基板に前記実装面に前記導体パターンを形成し、前記導体パターンと前記ピンとをワイヤを介して電気的に接続するようにしてもよい。これにより、ワイヤの長さを短縮することができるため、ワイヤボンディング工程の簡略化並びにワイヤの信頼性を向上させることができる。
また、前記第2の基板に形成された前記導体パターンを前記実装面とは反対の面まで導出し、その導出された導体パターンと前記ピンとを直接電気的に接続するようにしてもよい。これにより、ワイヤボンディング工程の省略化を図ることができ、製造工程の簡略化、製造コストの低廉化を図ることができる。
また、前記構成において、前記第2の基板を前記パッケージの台座として兼用するようにしてもよい。これにより、高さ方向のサイズを大幅に短くすることができ、光デバイスの小型化を更に促進させることができる。
この場合、前記第2の基板に前記ピンを設け、前記第2の基板の前記実装面に形成された前記導体パターンと前記ピンとを直接電気的に接続することが好ましい。これにより、ワイヤボンディング工程の省略化を図ることができ、製造工程の簡略化、製造コストの低廉化を図ることができる。
また、本発明に係る光デバイスは、オプティカルヘッドと、前記オプティカルヘッドが収容され、かつ、外部リードが形成されたパッケージとを有し、前記オプティカルヘッドは、V溝が形成された第1の基板と、前記第1の基板の前記V溝に固定され、かつ、反射機能が設けられた1以上の光ファイバと、前記光ファイバのクラッド外のうち、少なくとも前記反射機能によって発生した反射光の光路上に接着層を介して固着された光素子と、前記光素子を実装するための第2の基板とを有し、前記第2の基板は、前記光素子の実装面が、前記第1の基板に対向させて設置されると共に、前記パッケージの台座として兼用され、前記光素子と前記パッケージの前記外部リードとが、前記第2の基板に形成された導体パターン及び前記第2の基板に形成されたビアホールを介して電気的に接続されていることを特徴とする。この場合、光デバイスの小型化及び薄型化を図る上で有利になる。
図1は、第1の実施の形態に係る光デバイスを示す断面図である。
図2は、第1の実施の形態に係る光デバイスのオプティカルヘッドの構成を示す断面図である。
図3Aは、サブマウントの下面にスペーサを固定した状態を示す断面図である。
図3Bは、その底面図である。
図4は、第2の実施の形態に係る光デバイスを示す断面図である。
図5は、第3の実施の形態に係る光デバイスを示す断面図である。
図6は、第4の実施の形態に係る光デバイスを示す断面図である。
図7は、第4の実施の形態に係る光デバイスを示す断面図である。
以下、本発明に係る光デバイスを例えば4chインライン型パワーモニタモジュールに適用した実施の形態を図1〜図7を参照しながら説明する。
まず、第1の実施の形態に係る光デバイス100Aは、図1に示すように、オプティカルヘッド10と、該オプティカルヘッド10が収容され、かつ、外部に導出されるピン74を有するパッケージ72とを具備する。
パッケージ72は、オプティカルヘッド10が固着される台座75と、該台座75の周囲にオプティカルヘッド10を囲むように設置されるリング78と、該リング78の上面開口部を塞ぐ蓋84とを有する。台座75には複数の前記ピン74が設けられ、パッケージ72内に収容されたオプティカルヘッド10は樹脂80にて封止される。
オプティカルヘッド10は、図1及び図2に示すように、ガラス基板12と、該ガラス基板12に設けられた複数のV溝14に固定された複数の光ファイバ15からなる光ファイバアレイ16と、該各光ファイバ15の各上面からガラス基板12にかけて設けられたスリット18(図2参照)と、該スリット18内に挿入された分岐部材20(図2参照)と、各光ファイバ15を透過する光22のうち、少なくとも分岐部材20等にて反射された光(反射光)24を検出する活性層26が複数配列されたPD(フォトダイオード)アレイ28と、該PDアレイ28が実装され、かつ、PDアレイ28を光ファイバアレイ16に向けて固定するためのサブマウント30と、少なくともPDアレイ28を安定に固定するためのスペーサ32とを有する。なお、スリット18の2つの端面と分岐部材20の表面及び裏面は光ファイバ15を透過する光22の一部を反射する反射部33(図2参照)として機能することになる。
即ち、本具体例に係る光デバイス100Aのオプティカルヘッド10は、V溝14が形成されたガラス基板12と、該ガラス基板12のV溝14に固定され、かつ、各光ファイバ15に反射機能(スリット18、分岐部材20等)が設けられた光ファイバアレイ16と、各光ファイバ15のクラッド外のうち、少なくとも反射機能によって発生した反射光24の光路上に接着層60を介して固着されたPDアレイ28と、該PDアレイ28を実装するためのサブマウント30とを有し、該サブマウント30は、PDアレイ28の実装面30aが前記ガラス基板12に対向させて設置されていることを特徴とするものである。
なお、ここでは、複数の光ファイバ15にて光ファイバアレイ16を構成した例を示しているため、「各光ファイバ15」というときは、「4本の光ファイバの各々」という意味になる。しかし、1本の光ファイバ15でも光ファイバアレイ16を構成することができるため、この場合、「各光ファイバ」あるいは「複数の光ファイバ」は、「1本の光ファイバ」と読み替えればよい。
ガラス基板12の材料は、ホウケイ酸ガラス材料(例えば、パイレックス(登録商標)ガラス)を使用することができる。V溝14の角度は、後にスリット18を加工する際に光ファイバアレイ16の各光ファイバに与える負荷を考えると45°以上が好ましく、逆にフタ無し光ファイバアレイとするため、十分な接着剤量(=接着強度)の確保のために95°以下が好ましく、この第1の実施の形態では70°としている。
光ファイバアレイ16のガラス基板12への固定は、まず、光ファイバアレイ16をV溝14に収容載置し、この状態で紫外線硬化型接着剤を塗布し、光ファイバアレイ16の裏面並びに上方から紫外線を照射して、前記接着剤を本硬化させることにより行う。
スリット18は、厚さ30μm、深さ200μm、傾斜角度α(図2参照)は20°とした。スリット18の厚さは5〜50μmであることが望ましい。5μm未満の場合、スリット18に挿入される部材(分岐部材20)が薄くなりすぎるため、実装が困難になってしまい好ましくない。また、50μm以上とすると、過剰損失が大きくなり実仕様に適さなくなる。
スリット18の深さは、130μm〜250μmとすることが望ましい。130μm未満の場合、加工溝が光ファイバ15の途中で止まってしまう形となる可能性があるため、この加工溝を起点として光ファイバ15にダメージを与える可能性がある。また、250μm以上だとガラス基板12の強度の低下を招くために好ましくない。
傾斜角度αは、15°〜25°であることが望ましい。15°未満の場合、後に記述するが、PDアレイ28におけるクロストーク(混信)特性を悪化させるおそれがあり、25°以上の場合、分岐部分における反射光24の偏光依存性が悪化するおそれがある。
分岐部材20の基板は石英ガラスとした。分岐部材20の材料は分岐部材20のハンドリング等を考慮した場合、プラスチック材料、高分子材料、ポリイミド材料でもよいが、角度が20°と大きいので、屈折により透過側の光軸がずれることを抑えるために光ファイバ15(石英)と同じ屈折率の材料が好ましい。
この石英ガラス基板に、分岐用の多層膜を形成した。石英基板は50mm□×1tとした。傾斜設計は20°、分岐比率は透過93%、反射7%とした。膜構成はSiO、TiO、Alの多層膜を蒸着法にて形成した。また、波長帯域は1510nm〜1630nmにおいて特性(反射率)がフラットになるよう設計した。また、多層膜自身の偏光特性については上記帯域において、透過側<0.05dB、反射側<0.1dBとなるよう最適設計した。この多層膜を付した石英基板を6mm×2mmの寸法に切断し、チップ化した。チップ化した基板を25μmまで研磨し、薄板加工を行った。
そして、分岐部材20をスリット18に挿入し、紫外線硬化型接着剤を塗布し、紫外線照射により硬化させて実装を行った。
PDアレイ28の構造は、図2に示すように、裏面入射型構造を採用した。活性層26の上部(サブマウント30側)はAu半田や電極又は銀ペーストではなく異方性導電ペースト54とした。この部分はAu等のように反射率の高い材質ではなく、異方性導電ペースト54や空気等のように反射率の低い状態であることがクロストークの観点から好ましい。
もちろん、PDアレイ28として、表面入射型のPDアレイを使用してもよい。
裏面入射型のPDアレイ28の受光部分(活性層26)はφ約60μmとした。受光部分(活性層26)の大きさはφ40〜80μmであることが望ましい。これは、40μm未満の場合、受光部分(活性層26)が大きさが小さすぎるためにPD受光効率の低下が懸念される。80μm以上の場合、迷光を拾いやすくなるためにクロストーク特性が悪化するおそれがあるためである。
また、サブマウント30の取付け構造として、光ファイバ15−PDアレイ28−サブマウント30という構成を取った。光ファイバ15−サブマウント30−PDアレイ28という構成も取り得るが、この場合、サブマウント30が光ファイバ15とPDアレイ28間に存在してしまうため、反射光24の光路長が長くなり、反射光24の拡がりが大きくなってしまい、PD受光効率やクロストークの観点で好ましくない。
光ファイバ15−PDアレイ28−サブマウント30の構成の場合、PDアレイ28を表面入射の状態とすると、表面からサブマウント30への導通のためにワイヤボンディングが必要となる。この場合、ワイヤボンディングのために100μm程度は空間が必要となる。この空間は、光ファイバ15(石英)との屈折率整合や信頼性という意味で接着層60で埋める必要がある。つまり、表面入射の場合、100μmもの接着層60が光路に存在することになり、この接着層60がPDL(偏波依存性)や波長依存性等の特性に不安定性を招く。また、ワイアは通常Auなどの金属を用いるため、そこに光が当ると光が散乱し、迷光になりクロストーク悪化の原因となる。
裏面入射の場合、理論的には光ファイバ15にPDアレイ28を接することも可能である。PDアレイ28と光ファイバ15が接することは、物理的な欠陥を招くおそれがあるので10μm程度は安全をみて、この空間を接着層60とすればよい。
この両者の光学的光路長を比較する。活性層26がPDアレイ28の基板表面(光ファイバ15と対向する面)に存在していると仮定すると、表面入射の場合が光ファイバ15の表面と活性層26との間の距離が100μmなので、接着層60の屈折率が石英と同じ1.45とすると、100/1.45≒69μmとなる。裏面入射の場合、接着層60の厚みが10μm、一般的なPDアレイ28の厚みが150μmとすると、10/1.45+150/3.5≒50μmとなり、光学的には裏面入射の方が光路長を短くでき、この観点からも好ましいといえる。
さらに、表面入射と裏面入射の場合、活性層26への光の入射角が大きく異なる。表面入射の場合、表面が窒化珪素(屈折率1.94)のコーティングが施されている場合でもスリット18の傾斜角αが20°であるとPDアレイ28への入射角は約35°となる。これに対して、裏面入射の場合は18.5°と表面入射の場合と比較して非常に小さい値となり、PD受光効率等の観点から好ましい。
PDアレイ28のサブマウント30への実装は、後述するように(図1参照)、光ファイバアレイ16側をパッケージ72に搭載し、パッケージ72のピン74とサブマウント30の電極パッド65をワイヤ76で導通確保する構成とするために、図3Aに示すように、サブマウント30の下面(実装面30a)にAu電極パターン64が形成されている。PDアレイ28の実装の形態は、サブマウント30の実装面30aにPDアレイ28を配置し、スルーホール66にてAu電極パターン64をサブマウント30の上面へ引き回す構成としている。従って、サブマウント30の上面には、各Au電極パターン64に応じてそれぞれ電極パッド65が形成された形となる。なお、サブマウント30の構成材料はAlとした。
裏面入射型のPDアレイ28は、活性層26側(サブマウント30側)にアノード電極、カソード電極が配置されており、サブマウント30には共通のカソード電極と各チャンネルのアノード電極がAu電極パターン64でパターニングされている。各チャンネルのアノード電極及びカソード電極に対応する部分にAuバンプ68を設け、活性層26の部分には異方性導電ペースト54を充填した。Auバンプ68は確実な導通を図る目的のほかに、活性層26とサブマウント30の電極間距離を離すことで、この部分の反射・散乱による迷光を小さくする目的で本構造を採用した。異方性導電ペースト54は熱を加えることにより、ペースト54内にある銀等の導電物質がAuバンプ68のような導電性のものに集まる性質がある。これにより、Au電極パターン64との間にのみ導電性をもたらすのである。
なお、サブマウント30の下面のうち、活性層26に対応する部分にも屈折率差による反射を抑える目的で図示しないSiNのコーティングを行った。
また、サブマウント30の実装面には、光ファイバアレイ16とPDアレイ28とのギャップを決定するためのスペーサ32が固着されている。
スペーサ32の構成材料はホウケイ酸ガラス、この場合、特にパイレックス(登録商標)ガラス材料が好ましく採用される。また、ギャップ長は10μmに設定した。つまり、Auバンプ68も含めPDアレイの厚みが190μmなので、スペーサ32を200μmとした。
なお、このギャップ長は1〜100μmとなるように、スペーサ32の厚みを設計することが好ましい。ギャップ長は、1μm未満で設計した場合、PDアレイ28と光ファイバ15の上部が接触する可能性が高くなり、光路に接着層60が全面に行き渡りずらく、光路にエアを巻き込んでしまうことがあり好ましくない。また、ギャップ長が100μmを超えると、PD受光効率の低下が顕著となってしまう。こうして設計したスペーサ32を紫外線硬化型接着剤にて固定した。
また、スペーサ32は、ギャップ長の決定のほかに、ワイヤボンディングにおけるサブマウント30の台座の役割を果たす。ワイヤボンディングは超音波により電極とワイヤ76の接合を行うために、サブマウント30の電極部分の直下に空洞部分があると、超音波が逃げてしまい適切にボンディングすることができない。よって、図3Bに示すように、スペーサ32の形状は電極直下に空洞ができないように、L字型に加工してある。
サブマウント30の光ファイバアレイ16への実装は、PDアレイ28と光ファイバアレイ16とが対向するように実装を行った。このとき、反射光24の光路となる光ファイバ15の上部に必要量の接着層60(図2参照)を塗布しておくことが好ましい。
なお、PDアレイ28の調心は、以下のように行った。即ち、PDアレイ28とのアライメントは光ファイバアレイ16の両端のチャンネルに光を入射し、反射光24のPD受光パワー(両端チャンネルに対応する活性層26での受光パワー)が最大になるように、アクティブアライメントにて行った。このときのPD受光パワーのモニタは、両端チャンネルに対応する活性層26からの出力を、サブマウント30にプローブを当て、電流値を見ながら行った。
なお、この第1の実施の形態では、より厳密な特性を得るために調心時の使用波長を決定した。つまり、本モジュールの使用波長帯域がCバンド(1520〜1570nm)の場合、その中心である1545nmを用いた。Lバンド(1570〜1610nm)である場合は1590nmを用いた。さらに、CバンドとLバンドとの共用の場合はCバンドとLバンドの中心である1565nmを使用した。これにより、使用波長に対してよりフラットな特性を得ることができた。
そして、紫外線によりPDアレイ28を光ファイバアレイ16に固定した。このとき、紫外線の照射は、まず、100mWで横方向から調心器上にて10分行った。この段階では、PDアレイ28の周囲近傍の接着層60は硬化されるものの、内部全体にわたっては硬化されないので、次に、調心器から外し、光ファイバアレイ16の裏面側から10mWにて5分照射を行って硬化固定した(二次硬化)。この二次硬化で10mWと微弱な光量としたのは、反射光24の光路上にある接着層60に大きな応力歪みや気泡等の欠陥を生じさせないためである。
そして、この第1の実施の形態に係る光デバイス100Aは、ガラス基板12における前記V溝14が形成された面とは反対側の面がパッケージ72の台座75に固着され、PDアレイ28とパッケージ72のピン74とが、サブマウント30に形成された導体パターンを介して電気的に接続されている。
具体的には、PDアレイ28とピン74とは、サブマウント30の実装面30aに形成されたAu電極パターン64と、スルーホール66と、サブマウント30の上面に形成された電極パッド65とワイヤボンディング処理によって形成されたワイヤ76とを介して電気的に接続されている。なお、ガラス基板12の前記台座75への固着(ダイボンディング)は、熱硬化型接着剤を用いた。
オプティカルヘッド10のパッケージングは、まず、オプティカルヘッド10を囲むようにリング78を固定し、更に、オプティカルヘッド10に対して樹脂80による封止を行った。
リング78は、樹脂封止の際にダムの役割を果たす。リング78の構成材料はステンレス材料を使用した。コスト削減の観点から樹脂成形品を用いてもよい。リング78の固定には熱硬化型接着剤を使用した。封止用の樹脂80にはSiゲル材料を用いることができ、この場合、樹脂80をワイヤ76が完全に覆われるようにポッティングし、紫外線照射と熱養生にて硬化させることにより、樹脂封止を行うことができる。
その後、リング78の上面開口部に蓋84を被せて固定した。蓋84はステンレス製の板を使用した。もちろん、コスト削減の観点から樹脂成形品を用いてもよい。蓋84は熱硬化型接着剤にて固定することができる。
この第1の実施の形態に係る光デバイス100Aについて完成検査を実施した。
透過側特性、分岐側特性について各項目を検査した。透過側特性については挿入損失、偏光依存ロス、波長依存性について各チャンネルの特性を測定した。結果として、挿入損失<0.8dB、偏光依存ロス<0.05dB、波長依存性<0.1dBと使用上問題ないレベルの結果を得た。
分岐側特性については、PD受光効率、PD受光効率の偏光依存性、波長依存性、PDアレイ側のチャンネル間クロストークについて、各チャンネルの特性を測定した。その結果、PD受光効率50〜70mA/W、PD受光効率の偏光依存性<0.3dB、波長依存性<0.5dBであり、実使用上問題のないレベルであることを確認した。また、クロストークについては、トータルクロストークとして検査を行った。すなわち、4チャンネル中、いずれか1チャンネルを光らせた状態にて、他のチャンネルにどれだけの電流が流れたかの総和をとり、この入力チャンネルにおける電流と他チャンネルの電流の総和の比を10logで表記した。その結果、いずれのチャンネルも−34dB以下となり、極めて優れた特性を示すことが確認された。
スリット18の角度α(=反射角度)を大きくするとクロストークは向上するがPDLが大きくなり、逆にスリット18の角度αを小さくするとPDLは小さくなりクロストークが悪化するというトレードオフの関係にあったが、種々の適正化において従来は困難であったPDLとクロストークを両立することができた。
このように、第1の実施の形態に係る光デバイス100Aにおいては、ガラス基板12上にサブマウント30を設置する際に、PDアレイ28を光ファイバアレイ16に向けて設置することができ、各光ファイバ15のクラッド面にPDアレイ28を近接させることが可能となり、受光感度の向上、クロストークの低減を有効に図ることができる。
また、上述のように、各光ファイバ15のクラッド面にPDアレイ28を近接させることが可能であることから、オプティカルヘッド10自体の小型化を図ることができると共に、パッケージ72を含めた光デバイス100A自体の小型化を図ることができる。
次に、第2の実施の形態に係る光デバイス100Bについて図4を参照しながら説明する。
この第2の実施の形態に係る光デバイスは、図4に示すように、上述した第1の実施の形態に係る光デバイス(図1参照)とほぼ同様の構成を有するが、サブマウント30における前記実装面30aとは反対の面がパッケージ72の台座75に固着され、PDアレイ28とパッケージ72のピン74とが、サブマウント30に形成された導体パターンを介して電気的に接続されている点で異なる。
サブマウント30には、スルーホール66や電極パッド65は形成されておらず、実装面30aのみにAu電極パターン64が形成されている。そして、このAu電極パターン64とピン74とがワイヤ76を介して電気的に接続されている。
この第2の実施の形態に係る光デバイス100Bにおいては、サブマウント30をピン74の近傍に設置することができるため、Au電極パターン64とピン74との間にボンディングされたワイヤ76の長さを短縮することができ、ワイヤボンディング工程の簡略化並びにワイヤ76の信頼性を向上させることができる。
次に、第3の実施の形態に係る光デバイス100Cについて図5を参照しながら説明する。
この第3の実施の形態に係る光デバイス100Cは、図5に示すように、上述した第2の実施の形態に係る光デバイス100B(図4参照)とほぼ同様の構成を有するが、サブマウント30には、その実装面30aにAu電極パターン64が形成され、前記実装面30aとは反対の面(台座75に固着された面)に電極パッド65が形成されている点と、台座75の上面に、前記電極パッド65と対応する位置からピン74まで電極パターン90が形成されている点で異なる。
この場合、ワイヤ76を必要としないため、ワイヤボンディング工程の省略化を図ることができ、製造工程の簡略化、製造コストの低廉化を図ることができる。
次に、第4の実施の形態に係る光デバイス100Dについて図6を参照しながら説明する。
この第4の実施の形態に係る光デバイス100Dは、図6に示すように、上述した第3の実施の形態に係る光デバイス100C(図5参照)とほぼ同様の構成を有するが、オプティカルヘッド10のサブマウント30自体がパッケージ72の台座75として兼用されている点で異なる。
つまり、サブマウント30にPDアレイ28のほか、ピン74が設けられ、周囲にはパッケージ72のリング78が固着される。従って、サブマウント30の実装面30aに形成されたAu電極パターン64をピン74まで延長するようにすれば、ワイヤボンディング工程の省略化を図ることができ、製造工程の簡略化、製造コストの低廉化を図ることができる。
しかも、サブマウント30自体がパッケージ72の台座75であることから、高さ方向のサイズを大幅に短くすることができ、光デバイス100Dの小型化を更に促進させることができる。
次に、第5の実施の形態に係る光デバイス100Eについて図7を参照しながら説明する。
この第5の実施の形態に係る光デバイス100Eは、図7に示すように、上述した第4の実施の形態に係る光デバイス100D(図6参照)とほぼ同様の構成を有するが、台座75を兼用するサブマウント30において、ピン74の代わりに外部リード92がサブマウント30の端面30bに沿って設けられている点で異なる。サブマウント30にはビアホール94が形成され、サブマウント30の実装面30aに形成されたAu電極パターン64がビアホール94を介して外部リード92に電気的に接続されている。
この第5の実施の形態においては、ワイヤボンディング工程が省略できる。しかも、台座75を兼用したサブマウント30の端面30bから外方に向かってピン74が垂直方向に延在することがないため、実装上、光デバイス100E全体の厚み(高さ)を薄くすることができ、光デバイス100Eの小型化及び薄型化を実現させることができる。
なお、本発明に係る光デバイスは、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。

Claims (9)

  1. オプティカルヘッド(10)と、
    前記オプティカルヘッド(10)が収容され、かつ、外部に導出されるピン(74)を有するパッケージ(72)とを有し、
    前記オプティカルヘッド(10)は、
    V溝(14)が形成された第1の基板(12)と、
    前記第1の基板(12)の前記V溝(14)に固定され、かつ、反射機能が設けられた1以上の光ファイバ(15)と、
    前記光ファイバ(15)のクラッド外のうち、少なくとも前記反射機能によって発生した反射光(24)の光路上に接着層(60)を介して固着された光素子(28)と、
    前記光素子(28)を実装するための第2の基板(30)とを有し、
    前記第2の基板(30)は、前記光素子(28)の実装面(30a)が、前記第1の基板(12)に対向させて設置され、
    前記光素子(28)と前記パッケージ(72)のピン(74)とが、前記第2の基板(30)に形成された導体パターンを介して電気的に接続されていることを特徴とする光デバイス。
  2. 請求項1記載の光デバイスにおいて、
    前記パッケージ(72)は前記オプティカルヘッド(10)が実装される台座(75)を有し、
    前記台座(75)に前記ピン(74)が設けられ、
    前記第1の基板(12)における前記V溝(14)が形成された面とは反対側の面が前記台座(75)に固定され、
    前記光素子(28)と前記ピン(74)とが、前記第2の基板(30)に形成された導体パターンを介して電気的に接続されていることを特徴とする光デバイス。
  3. 請求項2記載の光デバイスにおいて、
    前記第2の基板(30)に形成された前記導体パターンは、前記実装面(30a)とは反対の面まで導出され、
    その導出された導体パターンと前記ピン(74)とがワイヤ(76)を介して電気的に接続されていることを特徴とする光デバイス。
  4. 請求項1記載の光デバイスにおいて、
    前記パッケージ(72)は前記オプティカルヘッド(10)が実装される台座(75)を有し、
    前記台座(75)に前記ピン(74)が設けられ、
    前記第2の基板(30)における前記実装面(30a)とは反対の面が前記台座(75)に固定され、
    前記光素子(28)と前記ピン(74)とが、前記第2の基板(30)に形成された導体パターンを介して電気的に接続されていることを特徴とする光デバイス。
  5. 請求項4記載の光デバイスにおいて、
    前記第2の基板(30)に前記実装面(30a)に前記導体パターンが形成され、
    前記導体パターンと前記ピン(74)とがワイヤ(76)を介して電気的に接続されていることを特徴とする光デバイス。
  6. 請求項4記載の光デバイスにおいて、
    前記第2の基板(30)に形成された前記導体パターンは、前記実装面(30a)とは反対の面まで導出され、
    その導出された導体パターンと前記ピン(74)とが直接電気的に接続されていることを特徴とする光デバイス。
  7. 請求項1記載の光デバイスにおいて、
    前記第2の基板(30)が前記パッケージ(72)の台座(75)として兼用されていることを特徴とする光デバイス。
  8. 請求項7記載の光デバイスにおいて、
    前記第2の基板(30)に前記ピン(74)が設けられ、
    前記第2の基板(30)の前記実装面(30a)に形成された前記導体パターンと前記ピン(74)とが直接電気的に接続されていることを特徴とする光デバイス。
  9. オプティカルヘッド(10)と、
    前記オプティカルヘッド(10)が収容され、かつ、外部リード(92)が形成されたパッケージ(72)とを有し、
    前記オプティカルヘッド(10)は、
    V溝(14)が形成された第1の基板(12)と、
    前記第1の基板(12)の前記V溝(14)に固定され、かつ、反射機能が設けられた1以上の光ファイバ(15)と、
    前記光ファイバ(15)のクラッド外のうち、少なくとも前記反射機能によって発生した反射光(24)の光路上に接着層(60)を介して固着された光素子(28)と、
    前記光素子(28)を実装するための第2の基板(30)とを有し、
    前記第2の基板(30)は、前記光素子(28)の実装面(30a)が、前記第1の基板(12)に対向させて設置されると共に、前記パッケージ(72)の台座(75)として兼用され、
    前記光素子(28)と前記パッケージ(72)の前記外部リード(74)とが、前記第2の基板(30)に形成された導体パターン(64)及び前記第2の基板(30)に形成されたビアホール(94)を介して電気的に接続されていることを特徴とする光デバイス。
JP2004567570A 2003-01-27 2003-12-19 光デバイス Expired - Fee Related JP4153914B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003017942 2003-01-27
JP2003017942 2003-01-27
PCT/JP2003/016347 WO2004068592A1 (ja) 2003-01-27 2003-12-19 光デバイス

Publications (2)

Publication Number Publication Date
JPWO2004068592A1 JPWO2004068592A1 (ja) 2006-05-25
JP4153914B2 true JP4153914B2 (ja) 2008-09-24

Family

ID=32820572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004567570A Expired - Fee Related JP4153914B2 (ja) 2003-01-27 2003-12-19 光デバイス

Country Status (3)

Country Link
US (1) US7287915B2 (ja)
JP (1) JP4153914B2 (ja)
WO (1) WO2004068592A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101284943B1 (ko) * 2006-06-30 2013-07-10 엘지디스플레이 주식회사 몰드의 제조방법
DE102007053849A1 (de) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Anordnung umfassend ein optoelektronisches Bauelement
WO2010131498A1 (ja) * 2009-05-12 2010-11-18 三菱電機株式会社 レーザダイオード素子

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5720180B2 (ja) 1974-01-14 1982-04-27
JPS50100467U (ja) * 1974-01-18 1975-08-20
US4186996A (en) * 1978-09-22 1980-02-05 Amp Incorporated Optic adaptor junction
US4846543A (en) 1984-05-02 1989-07-11 Kaptron, Inc. Star coupler for optical fibers
JPS61184938A (ja) 1985-02-12 1986-08-18 Mitsubishi Electric Corp 光波長多重伝送装置
US4820013A (en) 1987-01-06 1989-04-11 Alps Electric Co., Ltd. LED array head
JPS63191111A (ja) 1987-02-04 1988-08-08 Nippon Telegr & Teleph Corp <Ntt> 光結合器
JPS6442610A (en) 1987-08-11 1989-02-14 Furukawa Electric Co Ltd Multi-cored optical parts and production thereof
JPH0215203A (ja) 1988-07-04 1990-01-18 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ型光分波器
JPH0230181A (ja) * 1988-07-19 1990-01-31 Fujitsu Ltd 半導体装置
JPH0679098B2 (ja) 1988-10-01 1994-10-05 日本碍子株式会社 V型溝の検査方法及び加工方法
JP2702237B2 (ja) 1989-08-22 1998-01-21 日本電気株式会社 光分波系
JP2921877B2 (ja) 1989-09-19 1999-07-19 富士通株式会社 導波路分波モジュール及びその製造方法
JPH0730131A (ja) * 1993-06-25 1995-01-31 Fujitsu Ltd 受光素子アレイモジュール
JPH07104146A (ja) 1993-10-01 1995-04-21 Ngk Insulators Ltd 光部品の製造方法
JPH07159658A (ja) 1993-12-07 1995-06-23 Nippon Telegr & Teleph Corp <Ntt> 光導波路−光素子結合構造およびその製造方法
JP2001264594A (ja) 1995-08-03 2001-09-26 Matsushita Electric Ind Co Ltd 光デバイスおよびその製造方法
CN1125358C (zh) 1995-08-03 2003-10-22 松下电器产业株式会社 光学装置及光纤组件
JPH09120014A (ja) 1995-08-24 1997-05-06 Ngk Insulators Ltd 光ファイバアレイ
JPH09159882A (ja) 1995-12-08 1997-06-20 Nec Tohoku Ltd 光素子と光ファイバの結合構造及び結合方法
JP3150070B2 (ja) 1996-09-30 2001-03-26 日本電気株式会社 受光モジュール及びその製造方法
DE19709842C1 (de) 1997-02-28 1998-10-15 Siemens Ag Elektrooptische Koppelbaugruppe
DE19714170C1 (de) 1997-03-21 1998-07-30 Siemens Ag Elektrooptisches Modul
JPH10300936A (ja) 1997-04-24 1998-11-13 Matsushita Electric Ind Co Ltd 光学フィルタ内蔵光通信部品およびその製造方法
JP3191729B2 (ja) * 1997-07-03 2001-07-23 日本電気株式会社 光半導体モジュールとその製造方法
JPH1174496A (ja) * 1997-08-28 1999-03-16 Sharp Corp 固体撮像装置
JPH11133255A (ja) 1997-10-30 1999-05-21 Fujitsu Ltd 光モニタデバイス及びその装置
JP3566842B2 (ja) 1997-11-07 2004-09-15 松下電器産業株式会社 半導体受光装置、半導体受光装置の製造方法、双方向光半導体装置及び光伝送システム
US6048107A (en) 1998-05-05 2000-04-11 Tektronix, Inc. Cryogenic optical/electrical interconnect module
EP0987769B1 (en) 1998-09-18 2003-05-02 Sumitomo Electric Industries, Ltd. Photodiode module
JP3637228B2 (ja) * 1999-02-09 2005-04-13 住友電気工業株式会社 光送受信モジュール
JP2000249874A (ja) 1999-02-25 2000-09-14 Nhk Spring Co Ltd 光送受信モジュール
JP2000347050A (ja) 1999-06-03 2000-12-15 Nhk Spring Co Ltd 光送受信モジュール
US6516104B1 (en) 1999-06-25 2003-02-04 Kabushiki Kaisha Toshiba Optical wiring device
DE19932430C2 (de) 1999-07-12 2002-03-14 Harting Elektrooptische Bauteile Gmbh & Co Kg Opto-elektronische Baugruppe sowie Bauteil für diese Baugruppe
JP2001083349A (ja) 1999-09-14 2001-03-30 Sumitomo Electric Ind Ltd 光平面導波路型回路モジュール
JP2001100063A (ja) 1999-09-29 2001-04-13 Sony Corp 光転轍装置および光送受信装置ならびにそれらの製造方法
JP2001174671A (ja) 1999-12-16 2001-06-29 Japan Aviation Electronics Industry Ltd 光素子モジュール
US6526204B1 (en) 2000-07-11 2003-02-25 Shipley Company Llc Optical fiber array for preventing flow of glue between fibers and waveguide
JP4134499B2 (ja) * 2000-08-07 2008-08-20 住友電気工業株式会社 光学装置
JP3764640B2 (ja) 2000-09-26 2006-04-12 京セラ株式会社 光モジュール及びその製造方法
JP2002182051A (ja) 2000-10-04 2002-06-26 Sumitomo Electric Ind Ltd 光導波路モジュール
JP2002131281A (ja) 2000-10-27 2002-05-09 Nippon Sheet Glass Co Ltd Dna分析用ガラスキャピラリアレイ及びその製造方法
JP2002182052A (ja) 2000-12-11 2002-06-26 Hitachi Cable Ltd フォトブリーチング導波路の製造方法
JP2002231974A (ja) * 2001-01-30 2002-08-16 Matsushita Electric Ind Co Ltd 光受信装置及びその実装構造及びその製造方法
JP2002343983A (ja) * 2001-05-17 2002-11-29 Matsushita Electric Ind Co Ltd 光素子実装体
JP2003156665A (ja) 2001-11-19 2003-05-30 Matsushita Electric Ind Co Ltd 光送受信モジュール及びこれを用いた光送受信装置
JP3750649B2 (ja) * 2001-12-25 2006-03-01 住友電気工業株式会社 光通信装置
JPWO2003083542A1 (ja) 2002-03-29 2005-08-04 日本碍子株式会社 光デバイス及びその製造方法
US7123798B2 (en) * 2002-03-29 2006-10-17 Ngk Insulators, Ltd. Optical device and method of producing the same

Also Published As

Publication number Publication date
US20050259912A1 (en) 2005-11-24
JPWO2004068592A1 (ja) 2006-05-25
US7287915B2 (en) 2007-10-30
WO2004068592A1 (ja) 2004-08-12

Similar Documents

Publication Publication Date Title
US7076125B2 (en) Optical circuit element and production method therefor, array-form optical circuit element, optical circuit device using it
US7106980B2 (en) Optical receiver
JPH06308344A (ja) 光ファイバを電子回路に結合するためのインターフェース
JP2007523378A (ja) 光電モジュールの製作システムおよび方法
CN103620893B (zh) 光模块
US7577323B2 (en) Photoelectric circuit board
JP2019184941A (ja) 光サブアセンブリ及びその製造方法並びに光モジュール
US7195402B2 (en) Optical device
US7174062B2 (en) Optical device and method of manufacturing same
US20050238279A1 (en) Optical device
CN212009027U (zh) 一种光纤fa结构及高回损光接收器件
JP2003031755A (ja) 積層リードフレーム及び光通信モジュール並びにその製造方法
JP4153914B2 (ja) 光デバイス
JP2013057720A (ja) 光モジュール
CN111367027A (zh) 一种光纤fa结构及高回损光接收器件
JP6122380B2 (ja) 光モジュール
JP4031804B2 (ja) 光デバイス
JP4189404B2 (ja) 光デバイス
US7352922B2 (en) Optical device and method for producing same
US6894269B2 (en) Configuration for detecting optical signals in at least one optical channel in a planar light circuit, attenuator including the configuration, and method for manufacturing the configuration
US7321703B2 (en) Optical device
KR101824668B1 (ko) 광도파로칩을 이용한 광수신 모듈 및 이의 제조방법
WO2024105846A1 (ja) 光素子およびその製造方法
JP3107155B2 (ja) 半導体レーザモジュール
JP6286989B2 (ja) 光導波路型モジュールおよびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees