JP4131984B2 - 可変スロットアンテナ及びその駆動方法 - Google Patents

可変スロットアンテナ及びその駆動方法 Download PDF

Info

Publication number
JP4131984B2
JP4131984B2 JP2007554778A JP2007554778A JP4131984B2 JP 4131984 B2 JP4131984 B2 JP 4131984B2 JP 2007554778 A JP2007554778 A JP 2007554778A JP 2007554778 A JP2007554778 A JP 2007554778A JP 4131984 B2 JP4131984 B2 JP 4131984B2
Authority
JP
Japan
Prior art keywords
conduction path
slot
selective conduction
region
state
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007554778A
Other languages
English (en)
Other versions
JPWO2007138959A1 (ja
Inventor
浩 菅野
丈泰 藤島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Application granted granted Critical
Publication of JP4131984B2 publication Critical patent/JP4131984B2/ja
Publication of JPWO2007138959A1 publication Critical patent/JPWO2007138959A1/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • H01Q3/247Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching by switching different parts of a primary active element

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

本発明は、マイクロ波帯、およびミリ波帯などのアナログ高周波信号、もしくはデジタル信号を送信、受信するためのアンテナ及びその駆動方法に関するものである。
アンテナの指向性を変化させ、放射ビームを走査するために、古くから様々な手法が提案されてきた。例えば、アダプティブアレーのように複数アンテナで受信した信号をデジタル信号部で処理することにより、等価的にビーム走査を実現する方法がある。また、セクターアンテナのように、あらかじめ複数アンテナを異なる向きに配置しておき、給電線側の経路の切り替えにより主ビーム方向を切り換える方法もある。更に、アンテナ周辺に無給電素子である反射器や導波器を配置し主ビーム方向を傾ける方法もある。
スロットアンテナは最も基本的な共振型アンテナの一つであり、同様にスロット長を2分の1実効波長とした場合に10%程度、スロット長を4分の1実効波長とした場合には最低でも15%以上の比帯域特性が期待できるため、広帯域通信への適用が有望なアンテナである。これらの値は、同様に基本的な共振型アンテナであるパッチアンテナの比帯域5%程度と比べると広帯域である。
特許文献1においては、スロットアンテナを用いたセクターアンテナとして、複数のスロットアンテナを放射状に配置して、給電線側の経路の切り替えで主ビーム方向の切り替えを実現するセクターアンテナ構成が開示されている。特許文献1においては、アンテナとして超広帯域なアンテナ特性を有することで知られるヴィヴァルディアンテナを用いることにより、超広帯域な周波数成分を有する放射電磁波の主ビーム方向一括切り替え切り替えを実現する。
また、特許文献2には、無給電の寄生素子を用いて放射スロット素子から放射する主ビーム方向を傾ける可変アンテナの例が開示されている。図20に示す可変アンテナにおいては、給電線路115により励振する2分の1実効波長スロット共振器を放射器201、無給電のスロット共振器を寄生素子203a、203bとして近接して接地導体101上に配置している。寄生素子203a、203bのスロット長の調整によって、反射器に対する寄生素子の機能を導波器とするか反射器とするかを切り替え、放射器からの放射ビームの方向を変化させることが出来る。寄生素子203a、203bを導波器として機能させるには、寄生素子のスロット長を放射器のスロット長より短くなるよう調整すればよいし、寄生素子203a、203bを反射器として機能させるには、寄生素子のスロット長を放射器のスロット長より長くなるよう調整する。スロット長を調整するには、回路基板に設定するスロット長をあらかじめ長めにしておいて、短いスロット長のスロット回路として機能させる状態では、スロット長の中途で、スロットを幅方向に跨いでスイッチ素子205a、205bで接地導体間を選択的に導通する。特許文献2ではスイッチ素子205a、205bを実現する方法の一例として、MEMSスイッチの使用を挙げている。
特開2003−527018号公報 特開2005−210520号公報 米国特許第6864848号明細書
高速通信用移動端末用アンテナには、小型化が要求されるだけでなく、反射波などの妨害波を回避する目的で、放射電磁波の主ビーム方向を大きく変化させる必要もあり、従来のスロットアンテナでは以下に示す課題があった。
第一に、特許文献1で開示されるアンテナでは、構成要素の大部分を共有しない4つのスロットアンテナを構造内に放射状に導入して、個々のスロットアンテナへの給電回路を切り替えるという駆動方法で、主ビーム方向の切り替え機能を実現しているが、アンテナ構造が大型になるという課題が生じる。
第二に、特許文献2で開示されるアンテナにおいても、構成要素を共有しないスロットアンテナを並列に配置しているため、小型化の観点から課題が生じている。また、寄生素子として用いるスロットアンテナが導波器もしくは反射器として機能する周波数帯域が限定されるため、アンテナの主ビーム方向が動作周波数帯域内で異なる方向に変化しかねないという問題があった。よって、特許文献2で開示されたアンテナは、狭帯域な通信システムに適用することは可能であるが、高速伝送を行うために広い周波数帯域の使用が要求される場合、通信システムへの適用には困難が生じる。より具体的に検証すると、第一に、2分の1実効波長スロット共振器の放射帯域は10%程度であるので、動作帯域の中心周波数より5%以上周波数が異なる周波数で動作するよう寄生素子のスロット長を調整する必要がある。第二に、動作帯域の上限周波数と下限周波数において、放射器と寄生素子間の結合度を保つ必要もある。しかし、スロット共振器間の結合は共振周波数が大きく異なるほど低下する傾向があるので、上記二条件を同時に成立させることが困難となる。また、特許文献2で開示されるアンテナでは、主ビーム方向を傾けることは出来るが、例えば主ビーム方向を反転するなどのドラスティックな可変性を実現することは不可能である。
本発明は、上記従来の課題を解決するもので、可変スロットアンテナにおいて、小型な回路構成を保ちながら、比較的広帯域な動作帯域内で主ビーム方向を同一方向に保ちつつ、可変角度範囲が広い主ビーム方向切り替え機能を実現するための駆動方法を提供することを目的とする。
本発明の可変スロットアンテナの駆動方法は、
誘電体基板と、
有限の面積の接地導体と、
前記接地導体を二つの有限接地導体領域に完全に分割し、両端が開放状態となったスロット領域とが
前記誘電体基板の裏面に配置され、
前記スロット領域の長さ方向の中央付近の領域と交差する給電線路が前記誘電体基板の表面に配置され、
前記スロット領域を幅方向に横断して、分離された前記有限接地導体領域の間を接続するか否かを選択可能な選択的導通経路が、前記給電線路と前記スロット領域の交差地点から前記スロット領域の両端の開放箇所を臨む方向に一つずつ配置した可変スロットアンテナ構造において、
第一の状態においては、第一の選択的導通経路を非接続状態に設定し、第二の選択的導通経路を接続状態に設定し、
第二の状態においては、第一の選択的導通経路を接続状態に設定し、第二の選択的導通経路を非接続状態に設定することを特徴とする。
本発明によれば、従来の可変スロットアンテナにおいては実現困難だった、構造の小型化と、動作帯域内での主ビーム方向の同一性、主ビーム方向の広い範囲での切り替え機能、が同時に満足でき、送受信状況が刻々と変化する移動端末において利用することが可能となる。
以下、本発明の実施形態について図面を参照しながら説明する。
(実施形態)
図1(a)、(b)では、本実施形態の可変スロットアンテナの駆動方法によって、駆動される可変スロットアンテナの構造について下面透視模式図(裏面からの透視図)を用いて説明するとともに、本駆動方法の二状態において得られる可変スロットアンテナの指向特性の可変性を模式的に示している。また、図2(a)、(b)に図1中の直線A1−A2、B1−B2で構造を切断した断面模式図をそれぞれ示している。議論の簡略化のため、まず対称性が高い実施形態として、左右対称な可変スロットアンテナ構造を例にとり、左右に主ビーム方向を切り替える駆動方法の実施形態について述べる。
有限の面積を有する接地導体101が誘電体基板103の裏面に形成されており、接地導体101の側面外縁部105から奥行き方向107に切り欠いて両端を開放したスロット領域109が形成されている。すなわち、有限の接地導体101は、スロット領域109により、第一の接地導体101aと第二の接地導体101bに二分割される。この結果、スロット領域109の両端はそれぞれ第一の開放端111a、第二の開放端111bとなる。スロット領域109の中央の給電箇所113において、スロット領域109は、誘電体基板103の表面(上面)に形成された給電線路115と交差する。給電箇所113から第一の開放端111aを臨む方向を第一の方向117aとし、給電箇所113から第一の方向117a側に少なくとも一つ以上の第一の選択的導通経路119が形成されている。同様に、給電箇所113から第二の開放端111bを臨む方向を第二の方向117bとし、給電箇所113から第二の方向117b側に、少なくとも一つ以上の第二の選択的導通経路121が形成されている。議論の簡略化のため、以下、第一の選択的導通経路119、第二の選択的導通経路121の数がそれぞれ一つの場合についてまず説明する。すなわち、図1に図示するように、給電箇所113から左側と右側にそれぞれ選択的導通経路119、121が一つずつ配置されている。第一の選択的導通経路119、第二の選択的導通経路121は、いずれも外部から与えられる制御信号に基づき、スロット領域109により分割された第一の接地導体101aと第二の接地導体101b間を選択的に導通させる役目を果たす。図1(a)では、第一の選択的導通経路119を導通し、第二の選択的導通経路121を開放状態に制御していることを、図1(b)では逆に、第一の選択的導通経路119を開放し、第二の選択的導通経路121が導通状態に制御していることを示している。この第一、および第二の選択的導通経路119、121の制御により、図1(a)の状態では矢印123aの方向へ、図1(b)の状態では矢印123bの方向への放射電磁波主ビームの配向が可能となる。
(駆動方法の特徴)
本発明実施形態の可変スロットアンテナの駆動方法の特徴は、第一の選択的導通経路119、第二の選択的導通経路121のいずれかの選択的導通経路を導通し、もう片方の選択的導通経路を必ず開放に選択し、給電箇所113から開放された選択的導通経路側を臨む方向へ主ビームを配向させることである。導通する選択的導通経路と開放する選択的導通経路を切り替えれば、主ビーム方向を異なる方向へ切り替えることが出来る。例えば、右方向123aに主ビームを向けたい場合は(図1(a))、給電箇所113に対して右側に配置されている第二の選択的導通経路121を開放し、給電箇所113に対して逆側である左側に配置されている第一の選択的導通経路119を短絡すればよい。逆に、図1(b)に示すように、左方向123bに主ビームを向けたい場合は、給電箇所113に対して左側に配置されている第一の選択的導通経路119を開放し、給電箇所113に対して右側に配置されている第二の選択的導通経路121を短絡すればよい。左右に主ビームを向ける場合に、本駆動方法において各選択的導通経路を制御すべき状態を表1にまとめる。
Figure 0004131984
本発明の駆動方法の採用により、導通された選択的導通経路は分断された接地導体101a、101b間を局所的に接続し、構造内に片側が開放、片側が短絡された4分の1実効波長のスロット共振器を、各駆動状態においてそれぞれ出現させることが出来る。図3(a)、(b)に、図1(a)、(b)の状態に駆動された可変スロットアンテナにおいてそれぞれ高周波的に実現している構造を模式的に示す。
上述したように、本発明の駆動方法により駆動する可変スロットアンテナのスロット領域は、あらかじめ両端が開放端に設定されているが、各駆動状態では片端は高周波的に短絡されているように扱うことが出来る。たとえば、図3(a)においては、図1(a)においては図示されている開放端111aを図示しなかった。これは、給電箇所113から開放端111aを臨む方向に配置された第一の選択的導通経路119の導通制御によって、給電箇所113から臨んだ場合、高周波的には開放端111aが無視できるようになるためである。また、第二の選択的導通経路121を高周波的に開放状態に設定すれば、第二の選択的導通経路121の具体的な形状などによる放射特性への影響は極めて限定的なものとなり、図1(a)は高周波的に図3(a)のように近似することが出来る。同様に、図1(b)の駆動状態での可変スロットアンテナは高周波的には図3(b)のように近似することが出来る。4分の1実効波長スロット共振器を給電した場合の主ビーム方向は、給電箇所から開放端側に向かう方向なので、給電箇所から開放端を臨む方向を駆動状態によって切り替えることが可能な本発明の駆動方法によって、ドラスティックな主ビーム方向の切り替えが実現できる。
以上の原理により、図4や図5に示すように、本発明の駆動方法により駆動する可変スロットアンテナ内に、給電箇所113からスロット領域109の開放端111a、111bに向かって単一ではなくそれぞれ複数個の選択的導通経路が配置された場合には、駆動方法に制限が生じる。まず、図4に示すように、右側(矢印123a方向)に主ビームを向けたい場合に、給電箇所113から開放端111bを臨む方向117bに複数の第二の選択的導通経路群121−1、121−2、・・・121−Nを配置している場合、全ての第二の選択的導通経路群121−1、121−2、・・・121−Nは、開放状態に設定する。また、図5に示すように、右側(矢印123a方向)に主ビームを向けたい場合に、給電箇所113から開放端111aを臨む方向117aに複数の第一の選択的導通経路群119−1、119−2、・・・119−Nを配置している場合は、第一の選択的導通経路群119−1、119−2、・・・119−Nの内、少なくとも一つが導通状態に選択されればよい。図5では、第二の選択的導通経路119−2のみが導通制御されている状態を示している。導通する選択的導通経路の選択により、形成されるスロット共振器の共振器長を調整することが可能である。また、導通する選択的導通経路の選択により、スロット共振器への給電インピーダンス調整を行うことも可能である。また、全ての選択的導通経路を導通させても勿論かまわない。
(選択的導通経路について)
第一、および第二の選択的導通経路により得られる第一の接地導体101a、第二の接地導体101b間の導通は、直流信号的な導通でなくてもよく、動作周波数付近に通過帯域が限定された高周波的な導通であってもかまわない。具体的には本発明の選択的導通経路を実現するためには、ダイオードスイッチ、高周波トランジスタ、高周波スイッチ、MEMSスイッチなど、アンテナ動作帯域で低損失且つ高分離度特性が得られるスイッチ素子であればいずれも使用可能である。ダイオードスイッチを用いれば給電回路の構成を簡略化することができる。
図6(a)、(b)には、本発明で用いられる選択的導通経路の実現例について、特にスロット領域109の幅がスイッチ素子のサイズより広い場合の例について、周辺箇所付近の下面構造を拡大した模式図をそれぞれ示す。図6(a)に示すように、選択的導通経路191は、高周波信号の導通、開放の切り替えが可能なスイッチ素子191aと、スイッチ素子191aの両側に設けられた突起状の導体193a、193bから構成されてよい。導体193a、193bは、それぞれ接地導体101a、101bからスロット領域109へ突き出した形状を採る。導体193a、193bの内、片方が構造から減じられ、スイッチ素子191aが接地導体101a、101bのいずれかと直接接続されてもよい。また、図6(b)に示すように、導体193a、193bの代わりに、導体ワイヤ193c、193dを用いて、接地導体101aとスイッチ素子191a、接地導体101bとスイッチ素子191a間の接続を実現しても構わない。また、スイッチ素子191aのサイズがスロット領域109の幅よりも大きい場合の選択的導通経路109の実現例を、図7に選択的導通経路周辺のみの拡大図として示す。いずれにせよ、本発明の駆動方法により駆動される可変スロットアンテナ内の選択的導通経路は、接地導体101a、101b間を接続すべくスロット領域をまたいで形成され、経路内に必ず高周波的な導通、開放の二状態を制御可能なスイッチ素子が直列に挿入された構造である。選択的導通経路は、経路内のスイッチ素子が開放されれば高周波的に開放状態として機能するし、経路内のスイッチ素子が導通制御されれば高周波的に導通状態として機能する。高周波帯域で用いられるスイッチ素子には、構造に応じて寄生回路成分が存在するので、完全な開放状態や完全な導通状態を実現することは厳密には不可能であるが、寄生回路成分をあらかじめ考慮して回路設計を行えば、本発明の目的を容易に達成することが出来る。例えば、本発明の実施例において用いた市販のガリウム砒素のPINダイオードスイッチは、直列の寄生容量が0.05pFであり、開放時には5GHz帯で25dB程度の、本発明の目的には十分な分離特性を得ることが可能である。この値を考慮せずに本発明で駆動する可変スロットアンテナの設計を行っても、特性に大きな変化は生じない。また、上述の市販ダイオードスイッチは、直列の寄生抵抗が4Ωであり、導通時の損失が5GHz帯で0.3dB程度の値が得られ、本発明の目的には十分な低損失特性が得られる。よって、この値を無視して理想的なスイッチ素子を配置したものとして本発明の駆動方法で可変スロットアンテナを駆動しても、アンテナの放射効率等の特性劣化も無視できる。すなわち、本発明において用いられる選択的導通経路は、一般的な回路技術で容易に実現することが可能である。
(スロット領域の向きについて)
本発明の駆動方法により駆動する可変スロットアンテナは、スロットの形成方向により主ビーム方向を変化させることが出来る。すなわち、給電箇所からスロットの開放端を臨む方向をやや下向きにすれば、放射電磁波の主ビーム方向もやや下向きに配向できる。
(構成の対称性について)
本発明の駆動方法により駆動する可変スロットアンテナの形状は、必ずしも鏡面対称である必要はない。しかし、二状態で同一反射特性、同一利得特性、同一偏波特性でありながら、主ビーム方向のみを切り替えられる可変性を有するアンテナの提供は、産業上の利用価値が特に高いものと考えられる。よって、スロット領域109の形状、給電線路115、接地導体101a、101bの形状は鏡面対称に構成されることが好ましい。また、第一の状態と第二の状態で主ビーム方向が逆平行になるように、第一の方向と第二の方向を逆向き、平行にすることが好ましい。
(別形状のスロットの例について)
本発明の駆動方法で駆動する可変スロットアンテナにおいて、スロット領域の形状は矩形である必要はなく、接地導体領域との境界線は任意の直線および曲線形状に置換可能である。例えば、スロット領域の形状は、図8に示すように、開放端付近でテーパ状にスロット幅が広がるような構造であっても構わない。動作帯域の上限周波数付近では、アンテナの放射開口面により、ビーム幅が決定されるため、開放端付近でスロット幅を広げておくことにより、高利得な指向性ビームを実現しやすくなる。
また、図9に示すように、主スロット領域に多数の細かく短いスロットを並列接続すれば(すなわち、略長方形の接地導体101a、101bのそれぞれ4辺のうち、向かい合うそれぞれ1辺に小さな連続する凸凹を施せば)、主スロット領域への直列インダクタンス付加効果が得られ、スロット長の実効的な短縮、更には回路の小型化という実用上好ましい効果が得られる。また、主スロット領域のスロット幅を狭くして、ミアンダ形状などに折り曲げ小型化を図った可変スロットアンテナ構造であっても、本発明の駆動方法によって主ビーム方向の切り替え効果を得ることができる。
(スロット共振器について)
各駆動状態において、回路上に出現するスロット共振器については、スロット幅Ws(すなわち、第1接地導体101aと第2接地導体101bとの間の距離)がスロット共振器長Lsに比べて無視できるほど狭い場合(一般的にWsが(Ls/8)以下である場合)、スロット長Lsは動作帯域の中心周波数f0付近において4分の1実効波長となるよう設定される。スロット幅Wsが広く、スロット共振器長Lsと比べて無視できない場合(一般的にWsが(Ls/8)を超える場合)、スロット幅も考慮したスロット長(Ls×2+Ws)をf0において2分の1実効波長に相当するように設定すればよい。
スロット共振器長Lsは、導通されている選択的導通経路(119または121)から給電線路115および給電箇所113を跨いで開口部111までの距離と定義される。なお、図4のように、単一ではなくそれぞれ複数個の選択的導通経路が配置された場合には、Lsは、厳密には、最も給電線路115に近いスイッチ121から給電線路115および給電箇所113を跨いで開口部111までの距離、と定義される。
(給電線路開放端の処理と複共振構造)
給電線路の形状について二つの特徴的な形態を図10(a)、(b)に示す。スロット109と一部が少なくとも交差する給電線路115は誘電体基板103の表面に形成され、一端は入出力端子201から入出力回路へと接続され、もう一端は終端点125で開放終端される。図10(a)に示すように、終端点125から給電箇所113までの距離t3を周波数f0において4分の1実効波長となるよう設定すれば、動作帯域で良好な整合特性を得ることが出来る。この場合、終端点125から給電箇所113までの給電線路115の線路幅は、入出力端子201付近での線路幅と同一のままでよく、例えば特性インピーダンスが50Ωのままでよいし、他の値を採用しても良好な整合を得ることが可能である。
一方、図1から示してきた実施形態では、図10(b)に示すように、終端点125からt4の長さの給電線路領域を、線路幅を細くしたインダクティブ共振器領域127へと置換しており、且つ給電線路115とスロット109の交差箇所は、インダクティブ共振器領域127の長手方向ほぼ中央に設定している。t4は周波数f0において4分の1実効波長に設定される。すなわち、給電線路115の先端部は、開放された終端点125から、動作帯域の中心周波数における4分の1実効波長の長さ(t4)に渡って、特性インピーダンスが50Ωよりも高い線路により構成される。この長さt4の部分が、インダクティブ共振器領域127として機能し、給電線路115は、インダクティブ共振器領域127の中央部で、スロット領域と交差する。
図10(b)の構成によって、4分の1実効波長スロット共振器と、4分の1実効波長インダクティブ共振器を結合させ、複共振動作の実現、すなわち、動作帯域の効果的な拡大が可能となり、実用上有効である。
また、終端点125を、抵抗素子を介して接地処理することにより広帯域な整合特性を得ることも可能である。終端点125付近で給電線路115の線路幅を徐々に広げ、終端箇所の形状をラジアル状にして、広帯域な整合特性を得ることも同様に可能である。
また、例えば開放端111aや111bに追加誘電体129を装荷し、スロットアンテナの放射特性を変化させることも可能である。具体的には広帯域動作時の主ビーム半値幅特性などが制御できる。
(多層構造での形態)
なお、本明細書内では、図11(a)に断面図を示すように、誘電体基板103の最表面に給電線路115が配置され、誘電体基板103の最裏面に接地導体101が配置された構造について説明しているが、図11(b)に別の形態の断面図を示すように、多層基板の採用などの方法により、給電線路115、接地導体101のいずれか、もしくはその両者が誘電体基板103の内層面に配置されていても構わない。また、図11(c)に別の形態の断面図を示すように、給電線路115に対して接地導体101として機能する導体配線面は構造内に一つに限定される必要はなく、給電線路115が形成された層を挟んで対向する接地導体101が配置された構造でもよい。すなわち、本発明の可変スロットアンテナの駆動方法は、マイクロストリップ線路構造の可変スロットアンテナのみでなく、ストリップ線路構造の可変スロットアンテナでも同様の効果を得ることができる。なお、本発明では、接地導体101を構成している導体層が厚み方向に完全に除去されている構造をスロットと定義している。すなわち、接地導体101の表面が一部の領域で削られて、厚みを減じただけの構造ではない。
(特許文献3との差異)
なお、特許文献3(特表2005−514844号公報と同趣旨)においては、MEMSスイッチを用いて特性の調整を行う2分の1実効波長スロットアンテナが開示されている。図12に示す、特許文献3の図7などで開示されたスロットアンテナは、本発明の駆動方法で駆動する可変スロットアンテナと構造が類似しているように見えるが、本発明の可変スロットアンテナの駆動方法とは目的、発明にいたった経緯、駆動時の可変スロットアンテナ内に実現される高周波構造、得られる可変効果、構造のサイズの全ての点について異なる発明であるので、以下、両者の差異について説明する。
まず、特許文献3のスロットアンテナでは2分の1実効波長のスロット共振モードを用いて放射動作を行っているのに比べ、本発明の駆動方法で駆動する可変スロットアンテナでは主として4分の1実効波長のスロット共振モードを用いているという差異がある。このため、特許文献3のアンテナからの放射電磁波の主ビーム方向は常に基板に垂直な方向である。図中に示す座標系を、給電線である給電線路に平行な方向をX軸、基板に平行な平面をXY面、基板に垂直な方向をZ軸として説明すると、2分の1実効波長スロットアンテナからの放射の主ビーム方向は常に±Z方向に配向することになる。一方、本発明の駆動方法により駆動する可変スロットアンテナは、常に片端を開放制御、もう片端を導通制御され、基本的に4分の1実効波長スロット共振モードを放射原理として用いるスロットアンテナの駆動方法なので、放射電磁波の主ビーム方向は、給電箇所から、開放制御された選択的導通経路を臨む方向、すなわち、前述の座標系を用いれば、主ビーム方向は+Y方向かマイナスY方向に劇的に変更させることが可能である。一方、主ビーム方向の切り替え機能は特許文献3では原理的に不可能である。
また、図13には特許文献3の図9として開示された、90度方向を折り曲げた2スロット状態を選択可能な実施形態を示す。この場合も、主ビーム方向はやはり常に±Z方向であり、切り替わるのは主ビーム方向に向く放射電磁波の偏波特性(放射される電磁波の電界が配向する向き)だけであり、やはり本発明のような劇的な指向性切り替え効果を提供できない。すなわち、特許文献3に開示されたアンテナは、所望波の到来方向が一方向に限定され、移動体端末での使用に極めて不適であるが、本発明の駆動方法により駆動する可変スロットアンテナでは、この課題を解決することが出来る。
さらに、主ビーム方向の切り替え効果だけでなく、本発明の駆動方法により駆動される可変スロットアンテナと特許文献3のスロットアンテナとの差異は、サイズ、周波数帯域、という二点においても顕著である。特許文献3ではアンテナ動作に2分の1実効波長スロット共振モードを用いるが、本発明のアンテナでは基本的に4分の1波長共振スロットモードを用いるので、スロット長は半分になる。また、2分の1実効波長スロットアンテナの動作帯域は比帯域(動作帯域幅Δfを動作帯域の中心周波数f0で規格化した値)にして10%程度に限られるが、4分の1波長のスロットアンテナは放射Q値が低いため少なくとも15〜20%の広帯域な比帯域特性が期待できる。特許文献3のスロットアンテナがMEMSスイッチを導入してまでスロットアンテナに可変特性を付与するそもそもの目的は、動作周波数の微妙な調整である。しかし、4分の1実効波長スロットアンテナをアンテナ構造内に発現させる本発明の駆動方法においては、初めから動作周波数を微妙に調整する必要自体がないので、本発明の目的には特許文献3と関連するところがない。
特許文献3によれば、最終的にMEMSスイッチによってスロット共振器の両端で接地導体間を接続してしまうにも関わらず、両端を開放端とするスロット領域を設定する理由は、「当前記開放端部に近接して配置されるRF−MEMSスイッチに最大限の同調性を与えるため」である。すなわち、分離された接地導体間を金属材料により完全に接続してしまう通常のスロットアンテナと比較すると、RF−MEMSスイッチによる接地導体間の接続は、高周波電流にとって入力インピーダンスが高い。よって、RF−MEMSスイッチ近辺にて導体による接地導体間接続が行われてしまえば、RF−MEMSスイッチの切り替えを行っても高周波特性の変化が明確に現れなくなってしまう。特許文献3は、共振周波数や入力インピーダンスの微妙な制御を行うために、RF−MEMSスイッチ近辺での導体による接地導体間接続を回避することを目的としている。すなわち、特許文献3は、有限の接地導体間が高周波スイッチ素子以外の回路で接続されてよい二分の一波長共振器を前提とした発明でしかない。以上のように、特許文献3と本発明は駆動方法、各駆動状態で実現されるアンテナ構造にも差異があるだけでなく、発明の目的が明らかに異なっているため、本発明の可変スロットアンテナの駆動方法は、特許文献3からは容易に類推することが不可能である。
(実施例)
図14に下面からの透視模式図を示すような、実施例1の可変スロットアンテナを作製した。誘電体基板103として、総厚0.5mmのFR4基板を用いた。基板表面と裏面には、銅配線により厚さ20ミクロンの給電線路パターンと接地導体パターンをそれぞれ形成した。各配線パターンはウェットエッチングにより一部領域の金属層を除去することにより、形成し、表面には厚さ1ミクロンの金メッキを施した。接地導体101の外縁部105は、誘電体基板103の端面に最も近接した場合においても、端面より0.1mmは内側となるように配線マージンを設定した。図には接地導体パターンを実線で、給電線路のパターンを点線で示す。入力端子部201には高周波コネクタを接続し、特性インピーダンスが50Ω相当の給電線路115を介して、作製したアンテナと測定系を接続した。接地導体101を中央で分離し、有限の接地導体領域101a、101b間に挟まれたスロット領域109を形成し、スロット領域109を跨ぐ二経路の選択性導通経路119、121を設定した。選択性導通経路内の高周波スイッチ素子としては、市販のガリウム砒素のPINダイオードを用いた。使用したPINダイオードは、導通時の挿入損失は5GHzで0.3dB、開放時の分離度は5GHzで25dBと、実用上全く問題ない値であった。接地導体領域101bに、1kΩの抵抗素子を介してバイアス回路を接続し、ダイオードへのバイアス給電を実現した。119、121のダイオードの極性を逆向きと設定して配置することにより、選択性導通経路119、121の片方が導通動作時にはもう片方が開放動作するよう、駆動する設定が完了した。図14に示す実施例1の構造パラメータを表2にまとめた。
Figure 0004131984
第一の駆動状態において、選択性導通経路119を導通し、選択性導通経路121を開放することにより、図中の座標系でのマイナスX方向への放射を広い周波数帯域で得た。図14は、第一の駆動状態における、構造模式図に相当している。また、第二の駆動状態においては、逆向きのバイアスを接地導体領域に与えることにより、選択性導通経路119が開放され、選択性導通経路121を導通することにより、プラスX方向への放射を広い周波数帯域で得た。第一の駆動状態での反射特性を図15に示す。2.7GHzから4.3GHzという周波数帯域でマイナス10dB以下という良好な反射特性値を得ることが出来た。上記帯域は比帯域として45%に相当する。また、第二の駆動状態でも、ほぼ同様の周波数帯域で同様の反射特性を得ることが出来た。第一の駆動状態と第二の駆動状態における3GHzと4GHzでの放射特性をそれぞれ図16(a)、(b)に示す。図示したのは、図14中の座標系におけるXZ面内での放射指向性である。図中、s1として示したのが第一の駆動状態での放射指向性、s2として示したのが第二の駆動状態での放射指向性である。図15、16より明らかなように、二状態においてほぼ同等且つ良好な反射特性を広い周波数帯域で得つつ、且つ、広い周波数帯域において同一方向に主ビーム方向を配向させ、且つ主ビーム方向を二状態で完全に切り替えることが出来た。
次に、図17に下面からの透視模式図を示すような、実施例2の可変スロットアンテナを作製した。実施例2の構造パラメータを表3にまとめた。実施例2では、実施例1の構造から、給電線路115の先端開放箇所から4分の1実効波長に相当する領域をインダクティブ共振器領域127へと置換している。また、インダクティブ共振器領域127の中央部をスロット給電箇所に対応させた。また、スロット領域の幅を実施例1の10倍とした。
Figure 0004131984
実施例2の第一の駆動状態での反射特性を図18に示す。図中には、実施例1の第一の駆動状態での反射特性も比較のために図示する。実施例2では2.2GHzから4.7GHzという周波数帯域でマイナス10dB以下という良好な反射損失値を得ることが出来た。上記帯域は比帯域に換算すれば72%もの広帯域特性に相当する。また、第二の駆動状態でも、ほとんど同様の反射特性を得ることが出来た。実施例2の第一の駆動状態と第二の駆動状態における2.5GHzと4.5GHzでの放射特性をそれぞれ図19(a)、(b)に示す。図示したのは、図17中の座標系におけるXZ面内での放射指向性である。図中、s1として示したのが第一の駆動状態での放射指向性、s2として示したのが第二の駆動状態での放射指向性である。図18、19より明らかなように、二状態においてほぼ同等且つ良好な反射特性を広い周波数帯域で得つつ、且つ、広い周波数帯域において同一方向に主ビーム方向を配向させ、且つ主ビーム方向を二状態で完全に切り替えることが出来た。
以上、本発明の駆動方法によって、小型な回路占有面積の可変スロットアンテナにおいて主ビーム方向の劇的な切り替え機能を実現可能なことが証明された。
本発明によれば、回路占有面積を増大させることなく、主ビーム方向の劇的な切り替え機能を実現できるので、従来複数のアンテナを搭載しなければ実現できなかった高機能端末を簡易な構成で実現することが可能となる。また、本発明の駆動方法により実現する可変スロットアンテナが、4分の1実効波長のスロット共振器構造を基にしているため、広帯域特性を得やすく、従来よりもはるかに広い周波数帯域を用いる近距離無線用の通信システムの実現にも貢献することが出来る。また、デジタル信号を無線で送受信するような、超広帯域な周波数特性を必要とするようなシステムにおいても可変性を有する小型アンテナを導入しうる。
上記の説明から把握される本発明の技術的思想は以下の通りである。
誘電体基板(103)を有する指向性可変スロットアンテナであって、
前記誘電体基板(103)の裏面には、有限の面積の接地導体(101)とスロット領域(109)とが形成されており、
前記スロット領域(109)は、前記接地導体(101)を、第一の接地導体(101a)および第二の接地導体(101b)からなる二つの領域に分割し、
前記スロット領域(109)の両端にはそれぞれ開放端(111a、111b)が形成されており、
前記誘電体基板(103)の裏面には、さらに、前記スロット領域(109)を横断して前記第一の接地導体(101a)と前記第二の接地導体(101b)を接続する2つの選択的導通経路群(119、121)が配置されており、
前記誘電体基板(103)の表面には、前記スロット領域(109)の長手方向中央付近の給電箇所(113)において前記スロット領域(109)と交差する給電線路(115)が配置されており、
前記2つの選択的導通経路群(119、121)は、第1の選択的導通経路(119)および第2の選択的導通経路(121)からなり、
前記第1の選択的導通経路(119)および第2の選択的導通経路(121)は、前記誘電体基板(103)の法線方向から前記指向性可変スロットアンテナを透過した透過平面視において、前記給電線路(115)を間に挟む。
さらにここで、スロット共振器長Lsを、前記第1の選択的導通経路(119)と前記スロット領域(109)の−X方向の先端に位置する開放端(111b)との間の距離、スロット幅Wsが前記第1の接地導体(101a)と前記第2の接地導体(101b)との間の距離と設定したとき、
Wsが(Ls/8)以下である場合には、前記Lsが動作帯域の中心周波数f0に対して4分の1実効波長と同一の長さになるように設定され、
Wsが(Ls/8)を超える場合には、(2Ls+Ws)が動作帯域の中心周波数f0に対して2分の1実効波長と同一の長さになるように設定される。
第一の状態においては、第1の選択的導通経路(119)を導通状態に選択し、かつ第2の選択的導通経路(119)を開放状態に選択することにより、−X方向に主ビームを放射(123a)させ、第二の状態においては、第1の選択的導通経路(119)を開放状態に選択し、かつ第2の選択的導通経路(121)を導通状態に選択することにより、X方向に主ビームを放射(123b)させる。
本発明の駆動方法により駆動される可変スロットアンテナの下面透視模式図であって、(a)は主ビーム方向を右側に向ける場合の下面透視模式図、(b)は主ビーム方向を左側に向ける場合の下面透視模式図である。 本発明の駆動方法により駆動される可変スロットアンテナの構造断面図であって、(a)は図1(a)の直線A1−A2での断面図の構造断面図、(b)は図1(a)の直線B1−B2での断面図の構造断面図である。 本発明の駆動方法により駆動される可変スロットアンテナ上に高周波的に実現する構造の模式図であって、(a)は図1(a)の駆動条件時の模式図、(b)は図1(b)の駆動条件時の模式図である。 本発明の駆動方法により駆動される可変スロットアンテナの下面透視模式図である。 本発明の駆動方法により駆動される可変スロットアンテナの下面透視模式図である。 (a)及び(b)は本発明の選択性導通経路の周辺の拡大図である。 本発明の選択性導通経路の周辺の拡大図である。 本発明の駆動方法により駆動される可変スロットアンテナの下面透視模式図である。 本発明の駆動方法により駆動される可変スロットアンテナの下面透視模式図である。 本発明の駆動方法により駆動される可変スロットアンテナの下面透視模式図であって、(a)は一般的な給電構造の場合の下面透視模式図、(b)は複共振動作を得る場合の下面透視模式図である。 (a)から(c)は、本発明の駆動方法により駆動される可変スロットアンテナの断面構造図である。 特許文献3の図7にて開示された可変アンテナの構造図である。 特許文献3の図9にて開示された可変アンテナの構造図である。 実施例1の可変アンテナの構造図である。 実施例1の可変アンテナの反射特性の周波数依存性図である。 実施例1の可変アンテナの放射特性図であって、(a)は第一、第二の駆動状態での3GHzでの放射特性比較図、(b)は第一、第二の駆動状態での4GHzでの放射特性比較図である。 実施例2の可変アンテナの構造図である。 実施例2の可変アンテナの反射特性の周波数依存性図である。 実施例2の可変アンテナの放射特性図であって、(a)は第一、第二の駆動状態での2.5GHzでの放射特性比較図、(b)は第一、第二の駆動状態での4.5GHzでの放射特性比較図である。 特許文献2にて開示された可変アンテナの構造図である。
符号の説明
101、101a、101b、22 接地導体、接地導体領域
103 誘電体基板
105 接地導体の側面外縁部
107 奥行き方向
109、20 スロット領域
111a、111b スロット開放端
113 給電箇所
115、16 給電線路
117a、117b 給電箇所から各スロット開放端111a、111bを臨む方向
119、119−1、2、・・・N 第一の選択的導通経路
121、121−1、2、・・・N 第二の選択的導通経路
123a、123b 各駆動状態における主ビーム方向
125 終端点
127 インダクティブ共振器領域
201 放射器
203a、203b 寄生素子
205a、205b、18−1、2、3 スイッチ素子
W1 給電線路幅
Ls スロット長
Ws スロット幅
t3 スロット中心から給電線路の開放終端点までの距離
t4 インダクティブ共振器領域長
Lo 選択性導通経路から給電線路115までのスロットオフセット長
WL インダクティブ共振器領域の給電線路幅

Claims (20)

  1. 誘電体基板を有する指向性可変スロットアンテナであって、
    前記誘電体基板の裏面には、有限の面積の接地導体とスロット領域とが形成されており、
    前記スロット領域は、前記接地導体を、第一の接地導体および第二の接地導体に分割し、
    前記スロット領域の両端にはそれぞれ開放端が形成されており、
    前記誘電体基板の裏面には、さらに、前記スロット領域を横断して前記第一の接地導体と前記第二の接地導体とを接続する少なくとも2つの選択的導通経路群が配置されており、
    前記誘電体基板の表面には、前記スロット領域の長手方向中央付近の給電箇所において前記スロット領域と交差する給電線路が配置されており、
    前記少なくとも2つの選択的導通経路群は、第1の選択的導通経路および第2の選択的導通経路を有しており、
    スロット共振器長Lsを、前記第1の選択的導通経路と前記スロット領域の−X方向の先端に位置する開放端との間の距離、
    スロット幅Wsを、前記第1の接地導体と前記第2の接地導体との間の距離と設定したとき、
    前記第2の選択的導通経路と前記スロット領域のX方向の先端に位置する開放端との間の距離は、前記スロット共振器長Lsに等しく、
    Wsが(Ls/8)以下である場合には、前記Lsが動作帯域の中心周波数f0に対して4分の1実効波長と同一の長さになるように設定され、
    Wsが(Ls/8)を超える場合には、(2Ls+Ws)が動作帯域の中心周波数f0に対して2分の1実効波長と同一の長さになるように設定されており、
    前記第1の選択的導通経路および第2の選択的導通経路は、前記誘電体基板の法線方向から前記指向性可変スロットアンテナを透過した透過平面視において、前記給電線路を間に挟み、
    前記スロット領域の長手方向をX方向、前記給電線路の長手方向をY方向、前記誘電体基板の法線方向をZ方向と設定したとき、
    前記開放端のうち、前記スロット領域のX方向の先端に位置する開放端と前記給電箇所との間に前記第1の選択的導通経路が配置されており、
    前記開放端のうち、前記スロット領域の−X方向の先端に位置する開放端と前記給電箇所との間に前記第2の選択的導通経路が配置されており、
    第一の状態においては、第1の選択的導通経路を導通状態に選択し、かつ第2の選択的導通経路を開放状態に選択することにより、−X方向に主ビームを放射させ、
    第二の状態においては、第1の選択的導通経路を開放状態に選択し、かつ第2の選択的導通経路を導通状態に選択することにより、X方向に主ビームを放射させる、指向性可変スロットアンテナ。
  2. 前記給電箇所付近での前記給電線路と前記スロット領域形状とが鏡面対称に配置され、前記第一の方向と前記第二の方向とが鏡面対称な方向である請求項1に記載の可変スロットアンテナ。
  3. 前記第一の方向と前記第二の方向が平行且つ逆向きである請求項2に記載の可変スロットアンテナ。
  4. 前記給電線路の先端部が、開放終端点から動作帯域の中心周波数における4分の1実効波長の長さに渡って、特性インピーダンスが50Ωよりも高い線路により構成されたインダクティブ共振器領域に設定され、
    前記インダクティブ共振器領域の中央部で、前記スロット領域と交差する請求項1に記載の可変スロットアンテナ。
  5. 前記第1の選択的導通経路が、複数の部分を有している場合、
    前記第一の状態においては、前記第1の選択的導通経路の前記複数の部分の少なくとも1つを導通状態に選択し、かつ第2の選択的導通経路を開放状態に選択することにより、−X方向に主ビームを放射させ、
    前記第二の状態においては、前記第1の選択的導通経路の前記複数の部分のすべてを開放状態に選択し、かつ第2の選択的導通経路を導通状態に選択することにより、X方向に主ビームを放射させる請求項1に記載の指向性可変スロットアンテナ。
  6. 前記第2の選択的導通経路が、複数の部分を有している場合、
    前記第一の状態においては、第1の選択的導通経路を導通状態に選択し、かつ第2の選択的導通経路の前記複数の部分のすべてを開放状態に選択することにより、−X方向に主ビームを放射させ、
    前記第二の状態においては、第1の選択的導通経路を開放状態に選択し、かつ第2の選択的導通経路の前記複数の部分の少なくとも1つを導通状態に選択することにより、X方向に主ビームを放射させる、請求項1に記載の指向性可変スロットアンテナ。
  7. 前記スロット領域は、前記開放端に向かってテーパ状にスロット幅が広がっている部分を有している請求項1に記載の指向性可変スロットアンテナ。
  8. 前記第一の接地導体および第二の接地導体の外縁のうち、前記スロット領域を介して対向する部分は、Z方向から見たときに複数の凹凸がX方向に沿って配列された平面形状を有している、請求項1に記載の指向性可変スロットアンテナ。
  9. 前記給電線路は一様な線路幅を有している請求項1に記載の指向性可変スロットアンテナ。
  10. 前記給電線路において、開放終端点から動作帯域の中心周波数における4分の1実効波長の長さに渡る部分の線路幅が他の部分の線路幅よりも狭く、
    前記給電線路は、開放終端点から動作帯域の中心周波数における4分の1実効波長の長さに渡る部分の中央部で、前記スロット領域と交差する請求項1に記載の可変スロットアンテナ。
  11. 誘電体基板を有する指向性可変スロットアンテナの駆動方法であって、
    前記誘電体基板の裏面には、有限の面積の接地導体とスロット領域とが形成されており、
    前記スロット領域は、前記接地導体を、第一の接地導体および第二の接地導体に分割し、
    前記スロット領域の両端にはそれぞれ開放端が形成されており、
    前記誘電体基板の裏面には、さらに、前記スロット領域を横断して前記第一の接地導体と前記第二の接地導体とを接続する少なくとも2つの選択的導通経路群が配置されており、
    前記誘電体基板の表面には、前記スロット領域の長手方向中央付近の給電箇所において前記スロット領域と交差する給電線路が配置されており、
    前記少なくとも2つの選択的導通経路群は、第1の選択的導通経路および第2の選択的導通経路を有しており、
    スロット共振器長Lsを、前記第1の選択的導通経路と前記スロット領域の−X方向の先端に位置する開放端との間の距離、
    スロット幅Wsを、前記第1の接地導体と前記第2の接地導体との間の距離と設定したとき、
    前記第2の選択的導通経路と前記スロット領域のX方向の先端に位置する開放端との間の距離は、前記スロット共振器長Lsに等しく、
    Wsが(Ls/8)以下である場合には、前記Lsが動作帯域の中心周波数f0に対して4分の1実効波長と同一の長さになるように設定され、
    Wsが(Ls/8)を超える場合には、(2Ls+Ws)が動作帯域の中心周波数f0に対して2分の1実効波長と同一の長さになるように設定されており、
    前記第1の選択的導通経路および第2の選択的導通経路は、前記誘電体基板の法線方向から前記指向性可変スロットアンテナを透過した透過平面視において、前記給電線路を間に挟み、
    前記スロット領域の長手方向をX方向、前記給電線路の長手方向をY方向、前記誘電体基板の法線方向をZ方向と設定したとき、
    前記開放端のうち、前記スロット領域のX方向の先端に位置する開放端と前記給電箇所との間に前記第1の選択的導通経路が配置されており、
    前記開放端のうち、前記スロット領域の−X方向の先端に位置する開放端と前記給電箇所との間に前記第2の選択的導通経路が配置されており、
    第1の選択的導通経路を導通状態に選択し、かつ第2の選択的導通経路を開放状態に選択することにより、−X方向に主ビームを放射させる第1工程と、
    第1の選択的導通経路を開放状態に選択し、かつ第2の選択的導通経路を導通状態に選択することにより、X方向に主ビームを放射させる第2工程と、
    を包含する指向性可変スロットアンテナの駆動方法。
  12. 前記給電箇所付近での前記給電線路と前記スロット領域形状とが鏡面対称に配置され、前記第一の方向と前記第二の方向とが鏡面対称な方向である請求項11に記載の可変スロットアンテナの駆動方法。
  13. 前記第一の方向と前記第二の方向が平行且つ逆向きである請求項12に記載の可変スロットアンテナの駆動方法。
  14. 前記給電線路の先端部が、開放終端点から動作帯域の中心周波数における4分の1実効波長の長さに渡って、特性インピーダンスが50Ωよりも高い線路により構成されたインダクティブ共振器領域に設定され、
    前記インダクティブ共振器領域の中央部で、前記スロット領域と交差する請求項11に記載の可変スロットアンテナの駆動方法。
  15. 前記第1の選択的導通経路が、複数の部分を有している場合、
    前記第1工程では、前記第1の選択的導通経路の前記複数の部分の少なくとも1つを導通状態に選択し、かつ第2の選択的導通経路を開放状態に選択することにより、−X方向に主ビームを放射させ、
    前記第2工程では、前記第1の選択的導通経路の前記複数の部分のすべてを開放状態に選択し、かつ第2の選択的導通経路を導通状態に選択することにより、X方向に主ビームを放射させる、請求項11に記載の指向性可変スロットアンテナの駆動方法。
  16. 前記第2の選択的導通経路が、複数の部分を有している場合、
    前記第1工程では、第1の選択的導通経路を導通状態に選択し、かつ第2の選択的導通経路の前記複数の部分のすべてを開放状態に選択することにより、−X方向に主ビームを放射させ、
    前記第2工程では、第1の選択的導通経路を開放状態に選択し、かつ第2の選択的導通経路の前記複数の部分の少なくとも1つを導通状態に選択することにより、X方向に主ビームを放射させる、請求項11に記載の指向性可変スロットアンテナの駆動方法。
  17. 前記スロット領域は、前記開放端に向かってテーパ状にスロット幅が広がっている部分を有している請求項11に記載の指向性可変スロットアンテナの駆動方法。
  18. 前記第一の接地導体および第二の接地導体の外縁のうち、前記スロット領域を介して対向する部分は、Z方向から見たときに複数の凹凸がX方向に沿って配列された平面形状を有している請求項11に記載の指向性可変スロットアンテナの駆動方法。
  19. 前記給電線路は一様な線路幅を有している請求項11に記載の指向性可変スロットアンテナの駆動方法。
  20. 前記給電線路において、開放終端点から動作帯域の中心周波数における4分の1実効波長の長さに渡る部分の線路幅が他の部分の線路幅よりも狭く、
    前記給電線路は、開放終端点から動作帯域の中心周波数における4分の1実効波長の長さに渡る部分の中央部で、前記スロット領域と交差する請求項11に記載の可変スロットアンテナの駆動方法。
JP2007554778A 2006-05-25 2007-05-23 可変スロットアンテナ及びその駆動方法 Expired - Fee Related JP4131984B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006144799 2006-05-25
JP2006144799 2006-05-25
PCT/JP2007/060550 WO2007138959A1 (ja) 2006-05-25 2007-05-23 可変スロットアンテナ及びその駆動方法

Publications (2)

Publication Number Publication Date
JP4131984B2 true JP4131984B2 (ja) 2008-08-13
JPWO2007138959A1 JPWO2007138959A1 (ja) 2009-10-08

Family

ID=38778479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007554778A Expired - Fee Related JP4131984B2 (ja) 2006-05-25 2007-05-23 可変スロットアンテナ及びその駆動方法

Country Status (4)

Country Link
US (1) US7538736B2 (ja)
JP (1) JP4131984B2 (ja)
CN (1) CN101401262B (ja)
WO (1) WO2007138959A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101542833B (zh) * 2007-01-11 2012-07-04 松下电器产业株式会社 宽带缝隙天线
JP4177888B2 (ja) * 2007-01-24 2008-11-05 松下電器産業株式会社 差動給電指向性可変スロットアンテナ
KR101472371B1 (ko) * 2007-09-21 2014-12-15 삼성전자주식회사 다중 주파수 대역 사용을 위한 안테나 및 이를 이용하는안테나 시스템
US20100328142A1 (en) * 2008-03-20 2010-12-30 The Curators Of The University Of Missouri Microwave and millimeter wave resonant sensor having perpendicular feed, and imaging system
JP5029559B2 (ja) 2008-09-30 2012-09-19 日立電線株式会社 アンテナ及びそれを備えた電気機器
US9401745B1 (en) 2009-12-11 2016-07-26 Micron Technology, Inc. Wireless communication link using near field coupling
JP5314610B2 (ja) * 2010-02-01 2013-10-16 日立電線株式会社 複合アンテナ装置
CN102195136B (zh) * 2010-03-01 2014-10-01 日立金属株式会社 天线以及具备该天线的电气设备
FR2958805A1 (fr) * 2010-10-11 2011-10-14 Thomson Licensing Antenne planaire compacte
WO2012107976A1 (ja) * 2011-02-09 2012-08-16 日本電気株式会社 スロットアンテナ
CN103187626A (zh) * 2013-03-08 2013-07-03 华南理工大学 一种陷波特性可重构的超宽带平面单极子天线
US9972902B2 (en) 2014-11-04 2018-05-15 Panasonic Intellectual Property Management Co., Ltd. Antenna device and electronic device
US9905909B2 (en) * 2015-09-29 2018-02-27 Chiun Mai Communication Systems, Inc. Antenna module and wireless communication device using same
WO2017173582A1 (zh) * 2016-04-05 2017-10-12 华为技术有限公司 终端天线和终端
WO2019208140A1 (ja) * 2018-04-27 2019-10-31 日本電気株式会社 導体、アンテナ、および通信装置
US10734714B2 (en) * 2018-05-29 2020-08-04 Apple Inc. Electronic device wide band antennas
CN109004342B (zh) * 2018-07-19 2021-09-14 合肥联宝信息技术有限公司 天线系统、电子设备和天线频段调节方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0365681A (ja) 1989-08-03 1991-03-20 Mitsubishi Heavy Ind Ltd 撮像方式
FR2651926B1 (fr) 1989-09-11 1991-12-13 Alcatel Espace Antenne plane.
JPH03224323A (ja) 1989-12-22 1991-10-03 Nippondenso Co Ltd 無線電話装置
JP2654248B2 (ja) 1990-11-21 1997-09-17 株式会社エイ・ティ・アール光電波通信研究所 共平面アンテナ
JP2882928B2 (ja) * 1991-04-12 1999-04-19 アルプス電気株式会社 スロットアンテナ
JPH0514034A (ja) 1991-06-27 1993-01-22 Nissan Motor Co Ltd 偏波発生器
US5268696A (en) 1992-04-06 1993-12-07 Westinghouse Electric Corp. Slotline reflective phase shifting array element utilizing electrostatic switches
JPH0685520A (ja) 1992-09-03 1994-03-25 Sumitomo Metal Mining Co Ltd プリントアンテナ
JP3684285B2 (ja) 1997-03-10 2005-08-17 株式会社日立製作所 同調型スロットアンテナ
JP3608379B2 (ja) 1997-05-30 2005-01-12 株式会社日立製作所 同調型スロットアンテナ
JPH11251829A (ja) * 1998-02-27 1999-09-17 Kyocera Corp スロットアンテナ及びそれを具備する配線基板
US6150989A (en) 1999-07-06 2000-11-21 Sky Eye Railway Services International Inc. Cavity-backed slot antenna resonating at two different frequencies
US6292153B1 (en) 1999-08-27 2001-09-18 Fantasma Network, Inc. Antenna comprising two wideband notch regions on one coplanar substrate
US6366254B1 (en) 2000-03-15 2002-04-02 Hrl Laboratories, Llc Planar antenna with switched beam diversity for interference reduction in a mobile environment
DE60009874T2 (de) 2000-05-26 2005-03-31 Sony International (Europe) Gmbh V-Schlitz-Antenne für zirkulare Polarisation
JP2002084130A (ja) * 2000-09-06 2002-03-22 Maspro Denkoh Corp Uhfアンテナ
JP3360118B2 (ja) * 2000-11-22 2002-12-24 独立行政法人通信総合研究所 水平偏波アンテナ
FR2826209A1 (fr) * 2001-06-15 2002-12-20 Thomson Licensing Sa Dispositif pour la reception et/ou l'emission de signaux electromagnetiques a diversite de rayonnement
US6864848B2 (en) * 2001-12-27 2005-03-08 Hrl Laboratories, Llc RF MEMs-tuned slot antenna and a method of making same
FR2840456A1 (fr) 2002-05-31 2003-12-05 Thomson Licensing Sa Perfectionnement aux antennes planaires de type fente
US6664931B1 (en) * 2002-07-23 2003-12-16 Motorola, Inc. Multi-frequency slot antenna apparatus
JP2004129234A (ja) * 2002-08-29 2004-04-22 Matsushita Electric Ind Co Ltd アンテナ装置
DE10244206A1 (de) * 2002-09-23 2004-03-25 Robert Bosch Gmbh Vorrichtung zum Übertragen bzw. Abstrahlen hochfrequenter Wellen
JP2004304226A (ja) * 2003-03-28 2004-10-28 Matsushita Electric Ind Co Ltd アンテナ装置およびそれを用いた無線通信装置
JP3828504B2 (ja) 2003-04-01 2006-10-04 株式会社東芝 無線装置
FR2858468A1 (fr) * 2003-07-30 2005-02-04 Thomson Licensing Sa Antenne planaire a diversite de rayonnement
JP2005079972A (ja) * 2003-09-01 2005-03-24 Alps Electric Co Ltd 平面アンテナ装置
JP2005210521A (ja) 2004-01-23 2005-08-04 Sony Corp アンテナ装置
JP3903991B2 (ja) * 2004-01-23 2007-04-11 ソニー株式会社 アンテナ装置
JP4163632B2 (ja) * 2004-01-28 2008-10-08 日本電波工業株式会社 スロットライン型の平面アンテナ
WO2005081360A1 (en) 2004-02-19 2005-09-01 E.M.W. Antenna Co., Ltd. Internal antenna for handset and design method thereof
EP1754315B1 (fr) 2004-06-09 2014-08-06 Thomson Licensing SA Dispositif rayonnant comprenant au moins un filtre rejecteur adaptatif et antenne comprenant ce dispositif
JP4153902B2 (ja) * 2004-06-17 2008-09-24 松下電器産業株式会社 スロットアレーアンテナ及び無線通信端末
JP2006066993A (ja) * 2004-08-24 2006-03-09 Sony Corp マルチビームアンテナ
JP2006310927A (ja) 2005-04-26 2006-11-09 Advanced Telecommunication Research Institute International アンテナ装置

Also Published As

Publication number Publication date
CN101401262B (zh) 2012-10-10
CN101401262A (zh) 2009-04-01
US20080272972A1 (en) 2008-11-06
US7538736B2 (en) 2009-05-26
WO2007138959A1 (ja) 2007-12-06
JPWO2007138959A1 (ja) 2009-10-08

Similar Documents

Publication Publication Date Title
JP4131984B2 (ja) 可変スロットアンテナ及びその駆動方法
JP4131985B2 (ja) 可変スロットアンテナ及びその駆動方法
JP4871516B2 (ja) アンテナ装置およびアンテナ装置を用いた無線機
JP4109629B2 (ja) RF−MEMs同調型スロットアンテナ及びその製造方法
JP4372156B2 (ja) アンテナ装置およびそのアンテナ装置を用いた無線端末
US20140062822A1 (en) Dual frequency coupling feed antenna and adjustable wave beam module using the antenna
JP4053585B2 (ja) 差動給電スロットアンテナ
JP2006519545A (ja) マルチバンド分岐放射器アンテナ素子(multibandbranchradiatorantennaelement)
WO2006004156A9 (ja) 高周波デバイス
JP2006066993A (ja) マルチビームアンテナ
JP4177888B2 (ja) 差動給電指向性可変スロットアンテナ
JPWO2008018230A1 (ja) アンテナ装置
JP4197542B2 (ja) 差動給電指向性可変スロットアンテナ
JP2000196344A (ja) アンテナ装置
JP2006340202A (ja) アンテナ装置およびこれを備えた無線通信装置
JP4542866B2 (ja) 指向性制御マイクロストリップアンテナ
JP5429459B2 (ja) ミリ波アンテナ
CN210167505U (zh) 一种宽带siw缝隙天线
JP3895223B2 (ja) アンテナ装置
WO2020209074A1 (ja) アンテナ装置および携帯端末
JP4202944B2 (ja) アンテナ装置及び情報端末
JP2008294732A (ja) アンテナ装置
JP3223594B2 (ja) マイクロストリップアンテナ
JP2010283500A (ja) 極短パルス発生装置
JP2008160825A (ja) 誘電体アンテナ

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4131984

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees