US9401745B1 - Wireless communication link using near field coupling - Google Patents
Wireless communication link using near field coupling Download PDFInfo
- Publication number
- US9401745B1 US9401745B1 US12/635,961 US63596109A US9401745B1 US 9401745 B1 US9401745 B1 US 9401745B1 US 63596109 A US63596109 A US 63596109A US 9401745 B1 US9401745 B1 US 9401745B1
- Authority
- US
- United States
- Prior art keywords
- integrated circuit
- memory integrated
- antenna
- coupled
- loop
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active, expires
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive loop type
- H04B5/02—Near-field transmission systems, e.g. inductive loop type using transceiver
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
- H01L23/66—High-frequency adaptations
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L25/00—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
- H01L25/03—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/065—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
- H01L25/0655—Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L51/00, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next to each other
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q23/00—Antennas with active circuits or circuit elements integrated within them or attached to them
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q7/00—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
- H01Q7/005—Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with variable reactance for tuning the antenna
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive loop type
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive loop type
- H04B5/0025—Near field system adaptations
- H04B5/0031—Near field system adaptations for data transfer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B5/00—Near-field transmission systems, e.g. inductive loop type
- H04B5/0075—Near-field transmission systems, e.g. inductive loop type using inductive coupling
- H04B5/0081—Near-field transmission systems, e.g. inductive loop type using inductive coupling with antenna coils
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by G11C11/00
- G11C5/02—Disposition of storage elements, e.g. in the form of a matrix array
- G11C5/04—Supports for storage elements, e.g. memory modules; Mounting or fixing of storage elements on such supports
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/58—Structural electrical arrangements for semiconductor devices not otherwise provided for
- H01L2223/64—Impedance arrangements
- H01L2223/66—High-frequency adaptations
- H01L2223/6605—High-frequency electrical connections
- H01L2223/6611—Wire connections
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2223/00—Details relating to semiconductor or other solid state devices covered by the group H01L23/00
- H01L2223/58—Structural electrical arrangements for semiconductor devices not otherwise provided for
- H01L2223/64—Impedance arrangements
- H01L2223/66—High-frequency adaptations
- H01L2223/6661—High-frequency adaptations for passive devices
- H01L2223/6677—High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
- H01L2924/143—Digital devices
- H01L2924/1434—Memory
Abstract
Description
With current demand for high density memory, die stacking technology is one solution to achieve a desired density. However, die stacking places many devices in parallel, which produces a capacitive loading effect that adversely reduces the bus bandwidth and limits the amount of data that can be transferred through a data link. There is a need for a viable solution that provides high density without reducing the maximum allowable data rate on a bus due to loading.
The subject matter regarded as the invention is particularly pointed out and distinctly claimed in the concluding portion of the specification. The invention, however, both as to organization and method of operation, together with objects, features, and advantages thereof, may best be understood by reference to the following detailed description when read with the accompanying drawings in which:
It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the figures have not necessarily been drawn to scale. For example, the dimensions of some of the elements may be exaggerated, relative to other elements, for clarity. Further, where considered appropriate, reference numerals have been repeated among the figures to indicate corresponding or analogous elements.
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the present invention may be practiced without the specific details. In other instances, well known methods, procedures, components and circuits have not been described in detail so as not to obscure the present invention.
Use of the terms “coupled” and “connected”, along with their derivatives, are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical or electrical contact with each other. “Coupled” may be used to indicate that two or more elements are either in direct or indirect (with other intervening elements between them) physical or electrical contact with each other, and/or that the two or more elements cooperate or interact with each other (e.g. as in a cause and effect relationship).
An array of memory elements, shown in
In some embodiments, the array may itself be a packaged or molded unit that can be secured to a circuit board as one integrated element. In other embodiments, it may be built up from pieces on a substrate.
In the embodiment illustrated in
In some embodiments, the coupling may be near field coupling. The near field coupling may be tuned to the spacing or distance between adjacent face-to-face abutted memory elements to reduce interference. In some embodiments, the distance between adjacent or neighboring near field coupled memory integrated circuits is much smaller than dimensions of individual memory circuits. For example, the distance between near field coupled antennas may be on the order of about one millimeter, in one embodiment, whereas dimensions of the integrated circuit packages may be on the order of ten millimeters or greater in one non-limiting example.
By tuning the antennas in the associated receiving and transmitting circuits to the near field range that corresponds to the distance between integrated circuits, interference with other transversely oriented antennas and more widely spaced antennas associated with distant memory integrated circuits may be reduced in some embodiments. Generally, sufficient coupling will only be present between parallelly aligned loop antennas or, particularly, in the case where each of the loop antennas lies generally in a plane, where the planes of closely adjacent loop antennas are generally parallel. This, too, greatly reduces interference since transverse antennas lying in transverse planes will not significantly affect communications between closely spaced antennas in substantially parallel planes, for example.
Thus, in some embodiments, signals may be passed between memory integrated circuits using electromagnetic radiation. However, signals may also be passed through interconnections in the form of connectors 13. The connectors 13, in some embodiments, may carry power and ground planes. In other embodiments, interconnections may provide other signals. In some embodiments, these connectors 13 may be implemented through integrated circuit connectors, such as solder balls, pins, wire bonds, and lands, to mention a few examples.
In some embodiments, the signals passing between the distributed memory integrated circuits 10 use near field electromagnetic technology via loop antennas to eliminate the need for direct electrical contact in providing inter die communication. Serial data links using the over-the-air transmission may be responsible for delivery and/or verifying that correct data was transmitted from, for example, a memory controller, to any of the devices within the array. Support to detect errors or loss data triggers retransmission until the data is verified as being correct and received completely in one embodiment.
Thus, in one embodiment, a memory controller may be placed relatively centrally within the array to facilitate communication with the other devices. Information transmitted from the memory controller in the center of the array, in one embodiment, may be transferred bucket brigade style throughout the array from device to device.
Referring to
As depicted in
Roughly speaking, the near field is a region within a radius R, much less than the wavelength, while the far field is in the region where the radius R is much greater than the wavelengths. Near field may also sometimes be called near zone. Generally, the near field is part of the radiated field that is below distances greater than S=D2/(4λ) times the Fresnel parameter from the source of the diffracting edge or antenna of longitude of diameter D. The near field is separated from the far field by the Fresnel region.
Thus, by choosing the appropriate wavelength, the loop antenna systems may be tuned so that they are effectively keyed to the distance S between adjacent integrated circuits, reducing interference between from widely spaced antennas.
Referring to
In some embodiments, the substrate 16 may be formed of multiple layers 36 and 38, shown in
Referring back to
Thus, referring to the cross-sectional depiction in
Referring to
Thus, in some embodiments, a tunable frequency transmitter and receiver may be provided. This may be useful in a number of different situations. In one situation, depending on fabrication variations, it may be desirable to tune the frequency of the resulting device. However, in addition, it may be desirable that different devices, within the array, transmit using different frequencies interference. For example, in one embodiment, all of the devices within a given plane or level of the array may be use a first frequency, while the devices in the level above and the level below use a second frequency. Thus, each device may be programmed to use a particular frequency at all times or may be varied from time to time in order to reduce interference.
In addition, two different types of devices with two different fixed frequencies can also be used and the stack may be made up appropriately to reduce interference. That is, the array may be arranged so that devices that are most likely to cause interference communicate with different frequencies.
For example, within a given integrated circuit, the upper and lower loop antennas may be operated at different frequencies to reduce interference. Then they can be matched with neighboring devices that have the same frequencies with which to communicate. In some embodiments, more than two different frequencies may be provided.
The vertical vias 32 through the substrate 16 may be completed, in one embodiment, by drilling holes into molded material forming the substrate 20, and filling the vias with solder paste, electrically conductive adhesive, or any other electrically conductive materials. Alternatively, solder or metal pillars may be in place prior to the molding process, where a grinding process on the finished mold exposes a metal for electrical pads.
By now it should be apparent that embodiments of the present invention allow increased memory storage efficiencies by using features, either singlely or in combination, that allow data to be reliably transferred in a distributed memory system using near field coupling. The wireless interface provides a method of uploading code and transferring data in inter died communication, while maintaining the maximum allowable data rate.
While certain features of the invention have been illustrated and described herein, many modifications, substitutions, changes, and equivalents will now occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as followed in the true spirit of the invention.
Claims (18)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/635,961 US9401745B1 (en) | 2009-12-11 | 2009-12-11 | Wireless communication link using near field coupling |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/635,961 US9401745B1 (en) | 2009-12-11 | 2009-12-11 | Wireless communication link using near field coupling |
US15/069,813 US10128916B2 (en) | 2009-12-11 | 2016-03-14 | Wireless communication link using near field coupling |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/069,813 Continuation US10128916B2 (en) | 2009-12-11 | 2016-03-14 | Wireless communication link using near field coupling |
Publications (1)
Publication Number | Publication Date |
---|---|
US9401745B1 true US9401745B1 (en) | 2016-07-26 |
Family
ID=56287059
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/635,961 Active 2031-08-19 US9401745B1 (en) | 2009-12-11 | 2009-12-11 | Wireless communication link using near field coupling |
US15/069,813 Active US10128916B2 (en) | 2009-12-11 | 2016-03-14 | Wireless communication link using near field coupling |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/069,813 Active US10128916B2 (en) | 2009-12-11 | 2016-03-14 | Wireless communication link using near field coupling |
Country Status (1)
Country | Link |
---|---|
US (2) | US9401745B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160197653A1 (en) * | 2009-12-11 | 2016-07-07 | Micron Technology, Inc. | Wireless communication link using near field coupling |
Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5621913A (en) * | 1992-05-15 | 1997-04-15 | Micron Technology, Inc. | System with chip to chip communication |
US5727972A (en) * | 1992-04-08 | 1998-03-17 | Aldous; Stephen C. | Media connector interface for use with a thin-architecture communications card |
US5754948A (en) * | 1995-12-29 | 1998-05-19 | University Of North Carolina At Charlotte | Millimeter-wave wireless interconnection of electronic components |
US6396449B1 (en) * | 2001-03-15 | 2002-05-28 | The Boeing Company | Layered electronically scanned antenna and method therefor |
US20040124248A1 (en) * | 2002-12-31 | 2004-07-01 | Massachusetts Institute Of Technology | Methods and apparatus for wireless RFID cardholder signature and data entry |
US6864848B2 (en) * | 2001-12-27 | 2005-03-08 | Hrl Laboratories, Llc | RF MEMs-tuned slot antenna and a method of making same |
US20060071794A1 (en) * | 2002-08-14 | 2006-04-06 | Kataname, Inc. | Method and system for providing an active routing antenna |
US7068234B2 (en) * | 2003-05-12 | 2006-06-27 | Hrl Laboratories, Llc | Meta-element antenna and array |
US7088964B2 (en) * | 2002-10-02 | 2006-08-08 | University Of Florida Research Foundation, Inc. | Single chip radio with integrated antenna |
US20060211380A1 (en) * | 2005-02-23 | 2006-09-21 | Mcconnell Roderick | Signal transmission arrangement and method |
US20070136537A1 (en) * | 2005-12-14 | 2007-06-14 | Sun Microsystems, Inc. | System memory board subsystem using dram with stacked dedicated high speed point to point links |
US20080115006A1 (en) * | 2006-07-31 | 2008-05-15 | Michael John Sebastian Smith | System and method for adjusting the timing of signals associated with a memory system |
US20080150111A1 (en) * | 2006-12-22 | 2008-06-26 | Dietmar Hiller | Memory device |
US20080248802A1 (en) * | 2007-04-09 | 2008-10-09 | Tzero Technologies, Inc. | Antenna pattern selection within a wireless network |
US20080272972A1 (en) * | 2006-05-25 | 2008-11-06 | Matsushita Electric Industrial Co., Ltd. | Variable slot antenna and driving method thereof |
US20080318524A1 (en) * | 2006-03-10 | 2008-12-25 | Broadcom Corporation | Millimeter wave near field communication device |
US20090085223A1 (en) * | 2007-09-28 | 2009-04-02 | Kabushiki Kaisha Toshiba | Semiconductor device and semiconductor memory device |
US20090117855A1 (en) * | 2006-12-29 | 2009-05-07 | Broadcom Corporation | Transceiver for use with multiple antennas and method for use therewith |
US20090195469A1 (en) * | 2008-01-31 | 2009-08-06 | Lim Chan-Ping | Antenna system and antenna thereof |
US20090231225A1 (en) * | 2008-03-11 | 2009-09-17 | Debabani Choudhury | Wireless antenna array system architecture and methods to achieve 3D beam coverage |
US20090243813A1 (en) * | 2008-03-25 | 2009-10-01 | Smith Joshua R | Wireless programming of non-volatile memory with near-field uhf coupling |
US20090267848A1 (en) * | 2008-04-28 | 2009-10-29 | Keio University | Electronic circuit |
US7617342B2 (en) * | 2007-06-28 | 2009-11-10 | Broadcom Corporation | Universal serial bus dongle device with wireless telephony transceiver and system for use therewith |
US20090322643A1 (en) * | 2008-06-30 | 2009-12-31 | Debabani Choudhury | Integrated high performance package systems for mm-wave array applications |
US20100054072A1 (en) * | 2008-08-27 | 2010-03-04 | Anthony Stansfield | Distributed block ram |
US20100109141A1 (en) * | 2008-10-31 | 2010-05-06 | Kabushiki Kaisha Toshiba | Semiconductor memory device and semiconductor memory card |
US20100121994A1 (en) * | 2008-11-10 | 2010-05-13 | International Business Machines Corporation | Stacked memory array |
US20100238693A1 (en) * | 2009-03-23 | 2010-09-23 | Micron Technology, Inc. | Configurable bandwidth memory devices and methods |
US20100253572A1 (en) * | 2009-04-01 | 2010-10-07 | Sony Corporation | Systems and Methods for Antenna Array Calibration |
US20100328047A1 (en) * | 2008-03-17 | 2010-12-30 | Joni Jorma Jantunen | Communication session establishment |
US20110040909A1 (en) * | 2009-08-17 | 2011-02-17 | Mostafa Naguib Abdulla | High-speed wireless serial communication link for a stacked device configuration using near field coupling |
US20110255352A1 (en) * | 2008-12-26 | 2011-10-20 | Keio University | Electronic circuit |
US20120290760A1 (en) * | 2011-05-12 | 2012-11-15 | Waveconnex, Inc. | Scalable high-bandwidth connectivity |
US20130009848A1 (en) * | 2009-10-29 | 2013-01-10 | Technische Universitat Dresden | Antenna arrangement for transmitting signals |
US20130031315A1 (en) * | 2011-07-29 | 2013-01-31 | Micron Technology, Inc. | Multi-device memory serial architecture |
US20130091312A1 (en) * | 2011-10-11 | 2013-04-11 | Etron Technology, Inc. | Reconfigurable high speed memory chip module and electronics system device |
US20130182513A1 (en) * | 2012-01-13 | 2013-07-18 | Samsung Electronics Co., Ltd. | Memory system capable of calibrating output voltage level of semiconductor memory device and method of calibrating output voltage level of semiconductor memory device |
US20130183903A1 (en) * | 2011-05-12 | 2013-07-18 | Waveconnex, Inc. | Scalable high-bandwidth connectivity |
US20140008447A1 (en) * | 2005-12-14 | 2014-01-09 | The University Of Kansas | Microstrip antenna for rfid device having both far-field and near-field functionality |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8602033A (en) * | 1986-08-08 | 1988-03-01 | Nedap Nv | Precision targeting function to recognize system. |
US5966641A (en) * | 1996-11-01 | 1999-10-12 | Plantronics, Inc. | Aerial arrays for inductive communications systems |
US5872542A (en) * | 1998-02-13 | 1999-02-16 | Federal Data Corporation | Optically transparent microstrip patch and slot antennas |
KR100856597B1 (en) * | 2000-10-12 | 2008-09-03 | 후루까와덴끼고오교 가부시끼가이샤 | Small antenna |
JP4135861B2 (en) * | 2001-10-03 | 2008-08-20 | 日本電波工業株式会社 | Multi-element planar antenna |
JP3875592B2 (en) * | 2002-04-26 | 2007-01-31 | 日本電波工業株式会社 | Multi-element array type of planar antenna |
DE10244173B4 (en) * | 2002-09-23 | 2005-11-03 | Siemens Ag | An antenna arrangement for a magnetic resonance apparatus, magnetic antenna system, magnetic resonance apparatus and methods for coupling of two antenna groups |
US7079078B2 (en) * | 2003-04-09 | 2006-07-18 | Alps Electric Co., Ltd. | Patch antenna apparatus preferable for receiving ground wave and signal wave from low elevation angle satellite |
US7444734B2 (en) * | 2003-12-09 | 2008-11-04 | International Business Machines Corporation | Apparatus and methods for constructing antennas using vias as radiating elements formed in a substrate |
DE102006045645B4 (en) * | 2006-09-27 | 2015-05-07 | Rohde & Schwarz Gmbh & Co. Kg | antenna |
JP4910967B2 (en) * | 2007-10-03 | 2012-04-04 | ソニー株式会社 | Non-contact communication device antenna substrate and the non-contact communication device |
EP2068400A1 (en) * | 2007-12-03 | 2009-06-10 | Sony Corporation | Slot antenna for mm-wave signals |
US7880677B2 (en) * | 2007-12-12 | 2011-02-01 | Broadcom Corporation | Method and system for a phased array antenna embedded in an integrated circuit package |
EP2081128B1 (en) * | 2008-01-18 | 2012-12-26 | F. Hoffmann-La Roche AG | A laboratory device, a laboratory rack assembly and a method to couple an RFID chip |
JP5451169B2 (en) * | 2008-05-15 | 2014-03-26 | 三菱電線工業株式会社 | The antenna device |
US7760144B2 (en) * | 2008-08-04 | 2010-07-20 | Taiwan Semiconductor Manufacturing Company, Ltd. | Antennas integrated in semiconductor chips |
US20100134376A1 (en) * | 2008-12-01 | 2010-06-03 | Toyota Motor Engineering & Manufacturing North America, Inc. | Wideband rf 3d transitions |
US8786287B2 (en) * | 2009-03-04 | 2014-07-22 | Baker Hughes Incorporated | Collocated tri-axial induction sensors with segmented horizontal coils |
US9401745B1 (en) * | 2009-12-11 | 2016-07-26 | Micron Technology, Inc. | Wireless communication link using near field coupling |
SG181897A1 (en) * | 2010-06-16 | 2012-07-30 | Halliburton Energy Serv Inc | Nuclear magnetic resonance logging tool having an array of antennas |
FR2966267A1 (en) * | 2010-10-19 | 2012-04-20 | Inside Contactless | An apparatus comprising a near field communication device by inductive coupling |
US9331378B2 (en) * | 2012-05-29 | 2016-05-03 | Nxp B.V. | Active load modulation antenna |
-
2009
- 2009-12-11 US US12/635,961 patent/US9401745B1/en active Active
-
2016
- 2016-03-14 US US15/069,813 patent/US10128916B2/en active Active
Patent Citations (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5727972A (en) * | 1992-04-08 | 1998-03-17 | Aldous; Stephen C. | Media connector interface for use with a thin-architecture communications card |
US5621913A (en) * | 1992-05-15 | 1997-04-15 | Micron Technology, Inc. | System with chip to chip communication |
US5754948A (en) * | 1995-12-29 | 1998-05-19 | University Of North Carolina At Charlotte | Millimeter-wave wireless interconnection of electronic components |
US6396449B1 (en) * | 2001-03-15 | 2002-05-28 | The Boeing Company | Layered electronically scanned antenna and method therefor |
US6864848B2 (en) * | 2001-12-27 | 2005-03-08 | Hrl Laboratories, Llc | RF MEMs-tuned slot antenna and a method of making same |
US20060071794A1 (en) * | 2002-08-14 | 2006-04-06 | Kataname, Inc. | Method and system for providing an active routing antenna |
US7088964B2 (en) * | 2002-10-02 | 2006-08-08 | University Of Florida Research Foundation, Inc. | Single chip radio with integrated antenna |
US20040124248A1 (en) * | 2002-12-31 | 2004-07-01 | Massachusetts Institute Of Technology | Methods and apparatus for wireless RFID cardholder signature and data entry |
US7068234B2 (en) * | 2003-05-12 | 2006-06-27 | Hrl Laboratories, Llc | Meta-element antenna and array |
US20060211380A1 (en) * | 2005-02-23 | 2006-09-21 | Mcconnell Roderick | Signal transmission arrangement and method |
US20070136537A1 (en) * | 2005-12-14 | 2007-06-14 | Sun Microsystems, Inc. | System memory board subsystem using dram with stacked dedicated high speed point to point links |
US20140008447A1 (en) * | 2005-12-14 | 2014-01-09 | The University Of Kansas | Microstrip antenna for rfid device having both far-field and near-field functionality |
US20080318524A1 (en) * | 2006-03-10 | 2008-12-25 | Broadcom Corporation | Millimeter wave near field communication device |
US20080272972A1 (en) * | 2006-05-25 | 2008-11-06 | Matsushita Electric Industrial Co., Ltd. | Variable slot antenna and driving method thereof |
US20080115006A1 (en) * | 2006-07-31 | 2008-05-15 | Michael John Sebastian Smith | System and method for adjusting the timing of signals associated with a memory system |
US20080150111A1 (en) * | 2006-12-22 | 2008-06-26 | Dietmar Hiller | Memory device |
US20090117855A1 (en) * | 2006-12-29 | 2009-05-07 | Broadcom Corporation | Transceiver for use with multiple antennas and method for use therewith |
US20080248802A1 (en) * | 2007-04-09 | 2008-10-09 | Tzero Technologies, Inc. | Antenna pattern selection within a wireless network |
US7617342B2 (en) * | 2007-06-28 | 2009-11-10 | Broadcom Corporation | Universal serial bus dongle device with wireless telephony transceiver and system for use therewith |
US20090085223A1 (en) * | 2007-09-28 | 2009-04-02 | Kabushiki Kaisha Toshiba | Semiconductor device and semiconductor memory device |
US20090195469A1 (en) * | 2008-01-31 | 2009-08-06 | Lim Chan-Ping | Antenna system and antenna thereof |
US20090231225A1 (en) * | 2008-03-11 | 2009-09-17 | Debabani Choudhury | Wireless antenna array system architecture and methods to achieve 3D beam coverage |
US20100328047A1 (en) * | 2008-03-17 | 2010-12-30 | Joni Jorma Jantunen | Communication session establishment |
US20090243813A1 (en) * | 2008-03-25 | 2009-10-01 | Smith Joshua R | Wireless programming of non-volatile memory with near-field uhf coupling |
US20090267848A1 (en) * | 2008-04-28 | 2009-10-29 | Keio University | Electronic circuit |
US20090322643A1 (en) * | 2008-06-30 | 2009-12-31 | Debabani Choudhury | Integrated high performance package systems for mm-wave array applications |
US20100054072A1 (en) * | 2008-08-27 | 2010-03-04 | Anthony Stansfield | Distributed block ram |
US20100109141A1 (en) * | 2008-10-31 | 2010-05-06 | Kabushiki Kaisha Toshiba | Semiconductor memory device and semiconductor memory card |
US20100121994A1 (en) * | 2008-11-10 | 2010-05-13 | International Business Machines Corporation | Stacked memory array |
US20110255352A1 (en) * | 2008-12-26 | 2011-10-20 | Keio University | Electronic circuit |
US20100238693A1 (en) * | 2009-03-23 | 2010-09-23 | Micron Technology, Inc. | Configurable bandwidth memory devices and methods |
US20100253572A1 (en) * | 2009-04-01 | 2010-10-07 | Sony Corporation | Systems and Methods for Antenna Array Calibration |
US20110040909A1 (en) * | 2009-08-17 | 2011-02-17 | Mostafa Naguib Abdulla | High-speed wireless serial communication link for a stacked device configuration using near field coupling |
US20130009848A1 (en) * | 2009-10-29 | 2013-01-10 | Technische Universitat Dresden | Antenna arrangement for transmitting signals |
US20130183903A1 (en) * | 2011-05-12 | 2013-07-18 | Waveconnex, Inc. | Scalable high-bandwidth connectivity |
US20120290760A1 (en) * | 2011-05-12 | 2012-11-15 | Waveconnex, Inc. | Scalable high-bandwidth connectivity |
US20130031315A1 (en) * | 2011-07-29 | 2013-01-31 | Micron Technology, Inc. | Multi-device memory serial architecture |
US20130091312A1 (en) * | 2011-10-11 | 2013-04-11 | Etron Technology, Inc. | Reconfigurable high speed memory chip module and electronics system device |
US20130182513A1 (en) * | 2012-01-13 | 2013-07-18 | Samsung Electronics Co., Ltd. | Memory system capable of calibrating output voltage level of semiconductor memory device and method of calibrating output voltage level of semiconductor memory device |
Non-Patent Citations (1)
Title |
---|
Mostafa Naguib Abdulla, U.S. Appl. No. 12/542,528, filed Aug. 17, 2009 entitled "High-Speed Wireless Serial Communication Link for a Stacked Device Configuration Using Near Field Coupling". |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160197653A1 (en) * | 2009-12-11 | 2016-07-07 | Micron Technology, Inc. | Wireless communication link using near field coupling |
US10128916B2 (en) * | 2009-12-11 | 2018-11-13 | Micron Technology, Inc. | Wireless communication link using near field coupling |
Also Published As
Publication number | Publication date |
---|---|
US20160197653A1 (en) | 2016-07-07 |
US10128916B2 (en) | 2018-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7768457B2 (en) | Integrated antenna and chip package and method of manufacturing thereof | |
US20140285277A1 (en) | Dielectric Waveguide Manufactured Using Printed Circuit Board Technology | |
US7405698B2 (en) | Ceramic antenna module and methods of manufacture thereof | |
EP2251934A1 (en) | Wireless ic device and wireless communication system | |
US20080291115A1 (en) | Surface mountable integrated circuit packaging scheme | |
US20100127937A1 (en) | Antenna Integrated in a Semiconductor Chip | |
US20130169499A1 (en) | Dielectric antenna and antenna module | |
US20110309893A1 (en) | Semiconductor device, method of manufacturing the same, in-millimeter-wave dielectric transmission device, method of manufacturing the same, and in-millimeter-wave dielectric transmission system | |
US8478344B2 (en) | Power recovery circuit based on partial standing waves | |
US7518221B2 (en) | Apparatus and methods for packaging integrated circuit chips with antennas formed from package lead wires | |
US20100283700A1 (en) | Antennas Using Chip-Package Interconnections for Millimeter-wave Wireless Communication | |
US20120263244A1 (en) | Integrated circuit with electromagnetic communication | |
US20130207274A1 (en) | Wafer-scale package structures with integrated antennas | |
US20070024504A1 (en) | Semiconductor device | |
US20150111496A1 (en) | Contactless communication unit connector assemblies with signal directing structures | |
US20050122265A1 (en) | Apparatus and methods for constructing antennas using vias as radiating elements formed in a substrate | |
US20130106673A1 (en) | Low-profile wireless connectors | |
US7394027B2 (en) | Multi-layer printed circuit board comprising a through connection for high frequency applications | |
WO2015161323A1 (en) | Metamaterial substrate for circuit design | |
US20080036668A1 (en) | Systems and Methods for Integrated Antennae Structures in Multilayer Organic-Based Printed Circuit Devices | |
US20140145883A1 (en) | Millimeter-wave radio frequency integrated circuit packages with integrated antennas | |
US20120290760A1 (en) | Scalable high-bandwidth connectivity | |
US20130183903A1 (en) | Scalable high-bandwidth connectivity | |
US20150070231A1 (en) | Substrate embedded horn antenna having selection capability of vertical and horizontal radiation pattern | |
US20110090030A1 (en) | Signal trasmission through lc resonant circuits |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NUMONYX B.V., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABDULLA, MOSTAFA NAGUIB;REEL/FRAME:024601/0712 Effective date: 20091208 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NUMONYX B.V.;REEL/FRAME:027075/0682 Effective date: 20110930 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NUMONYX B.V.;REEL/FRAME:027126/0176 Effective date: 20110930 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038669/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS COLLATERAL Free format text: PATENT SECURITY AGREEMENT;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:038954/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGEN Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REPLACE ERRONEOUSLY FILED PATENT #7358718 WITH THE CORRECT PATENT #7358178 PREVIOUSLY RECORDED ON REEL 038669 FRAME 0001. ASSIGNOR(S) HEREBY CONFIRMS THE SECURITY INTEREST;ASSIGNOR:MICRON TECHNOLOGY, INC.;REEL/FRAME:043079/0001 Effective date: 20160426 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, IL Free format text: SECURITY INTEREST;ASSIGNORS:MICRON TECHNOLOGY, INC.;MICRON SEMICONDUCTOR PRODUCTS, INC.;REEL/FRAME:047540/0001 Effective date: 20180703 |
|
AS | Assignment |
Owner name: MICRON TECHNOLOGY, INC., IDAHO Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:U.S. BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:047243/0001 Effective date: 20180629 |