JP3838005B2 - 車両用衝突防止装置 - Google Patents

車両用衝突防止装置 Download PDF

Info

Publication number
JP3838005B2
JP3838005B2 JP2000248257A JP2000248257A JP3838005B2 JP 3838005 B2 JP3838005 B2 JP 3838005B2 JP 2000248257 A JP2000248257 A JP 2000248257A JP 2000248257 A JP2000248257 A JP 2000248257A JP 3838005 B2 JP3838005 B2 JP 3838005B2
Authority
JP
Japan
Prior art keywords
obstacle
pedestrian
braking
vehicle
characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000248257A
Other languages
English (en)
Other versions
JP2002059820A (ja
Inventor
光明 萩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2000248257A priority Critical patent/JP3838005B2/ja
Publication of JP2002059820A publication Critical patent/JP2002059820A/ja
Application granted granted Critical
Publication of JP3838005B2 publication Critical patent/JP3838005B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、障害物との衝突を防止するための自動制動手段を備えた車両用衝突防止装置に係り、特に、違和感の少ない制動特性を乗員に供与できる車両用衝突防止装置に関する。
【0002】
【従来の技術】
このような車両用衝突防止装置としては、例えば特開平8−248128号公報に記載される「車両の衝突回避方法及びこれを遂行するための装置」のように、赤外線カメラを用いて障害物の種類を判別し、その種類に応じて警報及び制動のタイミングを変更するものがある。
【0003】
また、特開平8−313632号公報に記載される「警報発生装置および方法、ならびにこの警報発生装置を搭載した車両」では、レーザーレーダを用いて障害物の種類を判別し、障害物が人である場合には人用の警報を発令するものがある。
【0004】
【発明が解決しようとする課題】
しかしながら、前記従来例は、警報又は制動のタイミングを障害物の種類によって変更するものの、自車から障害物までの距離などの物理的要因のみに基づいて変更するものであるため、運転者に大きな違和感を与える恐れがあった。
本発明は、このような従来技術の問題点に鑑みてなされたものであり、違和感の少ない制動特性を乗員に供与できる車両用衝突防止装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記問題点を解決するために、請求項1に係る発明である車両用衝突防止装置は、自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、前記障害物検出手段により検出された障害物のうちから歩行者を識別する歩行者識別手段と、前記歩行者識別手段が歩行者を識別した場合に、その歩行者に対する乗員の運転特性を検出する対歩行者運転特性検出手段と、前記歩行者識別手段で歩行者であると識別されなかった障害物に対する乗員の運転特性を検出する対物運転特性検出手段と、前記障害物検出手段により検出された障害物が歩行者であるときに、前記対歩行者運転特性検出手段の検出結果と前記対物運転特性検出手段の検出結果とに基づいて、前記障害物検出手段で検出された障害物が歩行者であるときと歩行者以外の障害物であるときとのいずれのときに障害物からより離れた位置で制動を行っているかを判定する判定手段と、前記障害物が歩行者であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更し、前記障害物が歩行者以外の障害物であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対物運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する制動特性変更手段と、を備え、前記対歩行者運転特性検出手段は、歩行者に対する制動操作時と歩行者以外の障害物に対する制動操作時とで、自車の平均減速度の履歴平均値、停止相当車速到達時点での自車から障害物までの距離の履歴平均値、及び最大減速度発生位置の履歴平均値を個別に演算し、歩行者に対する制動時、前記制動特性変更手段は、前記各履歴平均値について、より障害物から離れた位置で制動が行われる方を選択し、該選択値に基づき前記制動特性を変更することを特徴とする。
【0006】
らに、請求項に係る発明は、請求項1に係る発明である車両用衝突防止装置において、手動により前記制動特性を変更できる手動設定手段を備え、前記対歩行者運転特性検出手段は、前記手動設定手段の操作特性に基づいて前記運転特性を検出することを特徴とする。
また、請求項3に係る発明である車両用衝突防止装置は、自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、前記障害物検出手段により検出された障害物のうちから歩行者を識別する歩行者識別手段と、前記歩行者識別手段が歩行者を識別した場合に、その歩行者に対する乗員の運転特性を検出する対歩行者運転特性検出手段と、前記歩行者識別手段で歩行者であると識別されなかった障害物に対する乗員の運転特性を検出する対物運転特性検出手段と、前記障害物検出手段により検出された障害物が歩行者であるときに、前記対歩行者運転特性検出手段の検出結果と前記対物運転特性検出手段の検出結果とに基づいて、前記障害物検出手段で検出された障害物が歩行者であるときと歩行者以外の障害物であるときとのいずれのときに障害物からより離れた位置で制動を行っているかを判定する判定手段と、前記障害物が歩行者であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更し、前記障害物が歩行者以外の障害物であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対物運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する制動特性変更手段と、手動により前記制動特性を変更できる手動設定手段とを備え、
前記対歩行者運転特性検出手段は、前記手動設定手段の操作特性に基づいて前記運転特性を検出することを特徴とする。
また、請求項4に係る発明である車両用衝突防止装置は、自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、前記障害物検出手段により検出された障害物のうちから歩行者を識別する歩行者識別手段と、前記歩行者識別手段が歩行者を識別した場合に、その歩行者に対する乗員の運転特性を検出する対歩行者運転特性検出手段と、前記対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する制動特性変更手段と、を備え、前記対歩行者運転特性検出手段は、歩行者に対する制動操作時と歩行者以外の障害物に対する制動操作時とで、自車の平均減速度の履歴平均値、停止相当車速到達時点での自車から障害物までの距離の履歴平均値、及び最大減速度発生位置の履歴平均値を個別に演算し、歩行者に対する制動時、前記制動特性変更手段は、前記各履歴平均値について、より障害物から離れた位置で制動が行われる方を選択し、該選択値に基づき前記制動特性を変更することを特徴とする。
さらに、請求項5に係る発明である車両用衝突防止装置は、自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、前記障害物検出手段により検出された障害物のうちから歩行者を識別する歩行者識別手段と、前記歩行者識別手段が歩行者を識別した場合に、その歩行者に対する乗員の運転特性を検出する対歩行者運転特性検出手段と、前記対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する制動特性変更手段と、手動により前記制動特性を変更できる手動設定手段と、を備え、前記対歩行者運転特性検出手段は、前記手動設定手段の操作特性に基づいて前記運転特性を検出することを特徴とする。
また、請求項6に係る発明は、請求項2、3又は5に係る発明である車両用衝突防止装置において、前記対歩行者運転特性検出手段は、歩行者に対する制動後と歩行者以外の障害物に対する制動後との前記手動設定手段の操作量の頻度分布を個別に演算し、その頻度分布に有意差がある場合には前記制動特性の変更幅を大きくすることを特徴とする。
さらに、請求項7に係る発明は、請求項1から6のいずれか1項に係る発明である車両用衝突防止装置において、前記制動特性変更手段は、少なくとも、自動制動開始位置、最大制動力の発生位置、又は目標停止位置のいずれかを変更することを特徴とする。
【0007】
また、請求項に係る発明は、請求項1から7のいずれか1項に係る発明である車両用衝突防止装置において、前記対歩行者運転特性検出手段は、少なくとも、障害物に対して乗員が自ら制動を行ったときの制動特性、又は歩行者の近傍を通過するときの前記走行状態検出手段の検出結果と自車から歩行者までの間隔との相関関係に基づいて前記運転特性を検出することを特徴とする。
【0009】
また、請求項に係る発明は、請求項1からのいずれか1項に係る発明である車両用衝突防止装置において、前記対歩行者運転特性検出手段は、歩行者の近傍を通過する際の自車速度を目的変数とし歩行者と自車との間隔を説明変数とした回帰式の回帰係数を検出し、前記制動特性変更手段は、前記回帰係数が大きくなると前記制動特性の変更幅を小さくすることを特徴とする。
【0011】
さらに、請求項10に係る発明は、請求項から9のいずれか1項に係る発明である車両用衝突防止装置において、前記対歩行者運転特性検出手段は、昼間か夜間かを識別する昼夜識別手段を備え、前記制動特性変更手段は、前記昼夜識別手段の識別結果に基づいて前記制動特性の変更幅を決定することを特徴とする。
また、請求項11に係る発明である車両用衝突防止装置は、自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、前記障害物検出手段により検出された障害物のうちから歩行者を識別する歩行者識別手段と、前記歩行者識別手段が歩行者を識別した場合に、その歩行者に対する乗員の運転特性を検出する対歩行者運転特性検出手段と、前記歩行者識別手段で歩行者であると識別されなかった障害物に対する乗員の運転特性を検出する対物運転特性検出手段と、前記障害物検出手段により検出された障害物が歩行者であるときに、前記対歩行者運転特性検出手段の検出結果と前記対物運転特性検出手段の検出結果とに基づいて、前記障害物検出手段で検出された障害物が歩行者であるときと歩行者以外の障害物であるときとのいずれのときに障害物からより離れた位置で制動を行っているかを判定する判定手段と、前記障害物が歩行者であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更し、前記障害物が歩行者以外の障害物であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対物運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する制動特性変更手段と、を備え、前記対歩行者運転特性検出手段は、昼間か夜間かを識別する昼夜識別手段を備え、前記制動特性変更手段は、前記昼夜識別手段の識別結果に基づいて昼夜の前記運転特性に有意差があるか否か判定し、有意差がある場合には前記制動特性の変更幅を昼夜で切り替えることを特徴とする。
【0012】
一方、請求項2に係る発明である車両用衝突防止装置は、自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、前記障害物検出手段により検出された障害物を識別する障害物識別手段と、前記障害物識別手段が障害物の種類を識別した場合に、その障害物に対する乗員の運転特性を検出する対障害物運転特性検出手段と、前記障害物運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する対障害物制動特性変更手段と、を備え、前記対障害物運転特性検出手段は、障害物に対して乗員が自ら制動を行ったときに、障害物の移動速度と、自車を基準として自車進行方向に伸びる直線と障害物との間の距離である横方向の間隔と、障害物の乗員又は障害物である歩行者の年齢情報と、自車の平均減速度と、最大制動力の発生位置と、所定車速に到達したときの自車から障害物までの自車進行方向の距離である進行方向の間隔と、を障害物の種類毎に記憶するとともに、前記記憶されている障害物の移動速度と、横方向の間隔と、乗員又は歩行者の年齢情報と、に基づいて、前記記憶されている平均減速度と、最大制動力の発生位置と、進行方向の間隔と、を算出することができる回帰式を前記障害物の種類毎に記憶する運転者減速特性記憶手段を備えたことを特徴とする。
【0013】
また、請求項13に係る発明は、請求項12に係る発明である車両用衝突防止装置において、前記障害物識別手段は、走査電波を送信する走査電波送信手段と、前記走査電波に呼応して障害物から送信される障害物の固有情報を受信する障害物情報受信手段と、を有することを特徴とする。
【0014】
さらに、請求項14に係る発明は、請求12又は13に係る発明である車両用衝突防止装置において、前記対障害物制動特性変更手段は、障害物の種類と、障害物の移動速度と、横方向の間隔と、乗員又は歩行者の年齢情報と、に基づき、前記運転者減速特性記憶手段に記憶されている回帰式を参照して、自動制動開始位置と、最大制動力の発生位置と、目標停止位置と、を演算し、その演算結果に基づいて前記自動制動手段の自動制動特性を変更することを特徴とする。
【0015】
【発明の効果】
請求項1に係る発明にあっては、対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する対歩行者制動特性変更手段を備えたため、運転者の運転操作を自動制動の特性に適切に反映することができるので、歩行者の操作感覚に合致するように制動特性を変更することができ、違和感の少ない制動特性を乗員に供与できる。
【0016】
また、制動特性変更手段は、歩行者以外の障害物に対するときよりも、障害物から離れた位置で制動を行うように前記制動特性を変更するため、より違和感の少ない制動特性を乗員に供与できる。
ここで、制動特性変更手段が変更する前記制動する位置としては、請求項に係る発明のように、自動制動開始位置、最大制動力の発生位置、又は目標停止位置のいずれかを変更するようにしてもよく、請求項に係る発明によれば、自動制動に運転者の特性を精度良く反映することができる。
【0018】
さらに、請求項又は4に係る発明にあっては、前記対歩行者運転特性検出手段で、歩行者に対する制動操作時と歩行者以外の障害物に対する制動操作時とで、自車の平均減速度の履歴平均値、停止相当車速到達時点での自車から障害物までの距離の履歴平均値、及び最大減速度発生位置の履歴平均値を個別に演算し、歩行者に対する自動制動時、前記制動特性変更手段は、前記各履歴平均値について、より障害物から離れた位置で制動が行われる方を選択し、該選択値に基づき前記制動特性を変更するため、自動制動に乗員の運転特性を精度良く反映させることができるとともに、障害物が歩行者である場合に自動制動を早いタイミングで行うよう制動特性が変更されるため、乗員の制動特性に対する違和感を少なくすることができる。
また、請求項2、3又は5に係る発明にあっては、手動により前記制動特性を変更できる手動設定手段を備え、前記対歩行者運転特性検出手段は、前記手動設定手段の操作特性に基づいて前記運転特性を検出するため、自動制動に運転者の特性を精度良く反映させることができる。
ここで、制動特性変更手段が検出する前記運転特性としては、請求項6に係る発明のように、歩行者に対する制動後と歩行者以外の障害物に対する制動後との前記手動設定手段の操作量の頻度分布を個別に演算し、その頻度分布に有意差がある場合には前記制動特性の変更幅を大きくするようにしてもよく、請求項6に係る発明によれば、自動制動に乗員の運転特性を精度良く反映させることができる。
なお、頻度分布の作成に利用される手動設定手段の操作量としては、自動制動により制動した後の操作量と、乗員が自ら制動操作により自動制動と同等の減速度で停止した後の操作量を用いるとよい。
【0019】
さらに、請求項8に係る発明にあっては、前記対歩行者運転特性検出手段は、少なくとも、障害物に対して乗員が自ら制動を行ったときの制動特性、又は歩行者の近傍を通過するときの前記走行状態検出手段の検出結果と自車から歩行者までの間隔との相関関係に基づいて前記運転特性を検出するため、自動制動に運転者の特性を精度良く反映させることができる。
また、請求項に係る発明にあっては、前記対歩行者運転特性検出手段で、歩行者の近傍を通過する際の自車速度を目的変数とし歩行者と自車との間隔を説明変数とした回帰式の回帰係数を検出することにより、乗員は、減速せずに操舵で回避することを好むのか、制動により回避することを好むのかを検出することができる。
【0020】
乗員が操舵で回避することを好み、前記回帰係数が大きいときには、前記制動特性変更手段で、前記制動特性の変更幅を小さくするため、自動制動の開始時期を遅くすることができ、自動制動に乗員の運転特性を精度良く反映させることができる
【0022】
さらに、請求項10に係る発明にあっては、前記対歩行者運転特性検出手段は、昼間か夜間かを識別する昼夜識別手段を備え、前記制動特性変更手段で、前記昼夜識別手段の識別結果に基づいて前記制動特性の変更幅を決定するため、昼間と夜間とで異なる乗員の衝突回避行動の好みを、自動制動に適切に反映することができる。
【0023】
ここで、対歩行者運転特性変更手段が検出する前記運転特性としては、請求項11に係る発明のように、昼夜の前記運転特性に有意差があるか否か判定し、有意差がある場合には前記制動特性の変更幅を昼夜で切り替えるようにしてもよく、請求項11に係る発明によれば、自動制動に乗員の運転特性を精度良く反映させることができる。
【0024】
一方、請求項12に係る発明にあっては、障害物運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する対障害物制動特性変更手段を備えたため、例えば、歩行者と自転車、自動二輪といった障害物の種類によりことなる乗員の運転特性を自動制動に反映させることができ、違和感の少ない制動特性を供与できる。
さらに、障害物の種類と、障害物の移動速度と、横方向の間隔と、乗員又は歩行者の年齢情報と、に基づき、運転者減速特性記憶手段に記憶されている回帰式を参照して、自動制動開始位置と、最大制動力の発生位置と、目標停止位置と、を演算し、その演算結果に基づいて前記自動制動手段の自動制動特性を変更するため、障害物の種類や乗員の年齢等によって異なる乗員の運転特性を精度良く、自動制動に反映させることができ、より違和感のない制動特性を供与できる。
【0025】
また、請求項13に係る発明にあっては、前記障害物識別手段は、走査電波を送信する走査電波送信手段と、前記走査電波に呼応して障害物から送信される障害物の固有情報を受信する障害物情報受信手段と、を有することにより、いわゆるレーダ装置と同様の簡単な構成で障害物の種類を確実に識別することができる。
【0026】
さらに、請求項14係る発明にあっては、障害物の種類と、障害物の移動速度と、横方向の間隔と、乗員又は歩行者の年齢情報と、に基づき、運転者減速特性記憶手段に記憶されている回帰式を参照して、自動制動開始位置と、最大制動力の発生位置と、目標停止位置と、を演算し、その演算結果に基づいて前記自動制動手段の自動制動特性を変更するため、障害物の種類や乗員の年齢等によって異なる乗員の運転特性を精度良く、自動制動に反映させることができ、より違和感のない制動特性を供与できる。
【0027】
【発明の実施の形態】
これ以下、本発明の車両用衝突防止装置の各種実施形態を添付図面に基づいて説明する。
図1は本発明の第1の実施形態を示す概略構成図であって、図中、1FL、1FRは前輪、1RL、1RRは後輪であって、当該前輪及び後輪には、それぞれ制動力を発生するディスクブレーキ2が設けられており、各ディスクブレーキ2の制動流体圧は制動流体圧制御装置3によって制御されるようになっている。
【0028】
この制動流体圧制御装置3は、制動制御用コントローラ5において算出された目標ブレーキ圧力Bpを指令値として受け取り、該目標圧力を発生するよう動作する。該目標圧力は、通常はブレーキペダル4の踏み込み量に応じて算出され、自動制動時は、障害物との衝突を防止するために必要な制動力を求めるロジックに従い算出される。
【0029】
車両の前方側には、CCDカメラ等から構成されて自車両前方の映像を撮像する撮像装置6と、自車両前方の障害物との間の距離を検出するレーダ装置7と、が取り付けられている。このレーダ装置7としては、例えばレーザ光を前方に照射して車両前方の物体からの反射光を受光することにより、当該車両前方物体と自車両との距離を計測するレーダ装置等を適用することができる。そして、制動制御用コントローラ5は、前記撮像装置6の撮像情報とレーダ装置7の車両前方物体距離とを組み合わせ、自車両の走行に支障を来す障害物を検出するとともに、検出した障害物のうちから歩行者を識別することができるようになっている。
【0030】
また、各車輪1FL〜1RRには、当該車輪の回転速度、つまり車輪速Vwfl〜Vwrrを検出する車輪速センサ8が取り付けられている。この車輪速センサ8は、例えば所望する制動力が付与されているか否かの判定のために車輪速Vwfl〜Vwrrを検出すると共に、この車輪速Vwfl〜Vwrrに基づいて車速Vcarを検出するためにも用いられる。
【0031】
ブレーキペダル4には、当該ブレーキペダル4の踏み込みを検出するブレーキスイッチ9及び当該ブレーキペダル4の踏み込み位置からのストローク(踏み込み量、或いは操作量)を検出するブレーキペダルストロークセンサ10が取り付けられている。ステアリングホイール11を支持するステアリングシャフト12には、操舵角を検出する操舵角センサ13が取り付けられている。また、アクセルペダル14aには、当該アクセルペダル14aの踏み込み位置からのストロークを検出するアクセルペダルストロークセンサ14が取り付けられている。さらに、車両には、自車両のヨーイング運動を検出するためのヨーレートセンサ15、自車両に作用する前後及び横方向の加速度を検出する加速度センサ16が設けられ、これらの信号は制動制御用コントローラ5に入力される。
【0032】
さらに、ステアリングホイール11には、図2に示すように、当該自動ブレーキ機能を作動させるか否かを運転者が選択するための自動ブレーキ起動スイッチ17と、自動制動の特性を運転者が設定可能な自動ブレーキ設定スイッチ18と、が付設されている。自動ブレーキ起動スイッチ17は、押しボタン式のスイッチであり、押し込んだ状態で自動ブレーキ機能が起動するようになっており、自動ブレーキ設定スイッチ18は、ロータリー式のスイッチであり、上下2方向にそれぞれ自動制動の制動減速度を強める方向と弱める方向とが対応づけられており、手動により制動特性を設定できるようになっている。
【0033】
そして、前記制動制御用コントローラ5では、自動ブレーキ起動スイッチ17がオン状態のときに、操舵角センサ13、ヨーレートセンサ15、加速度センサ16及び車輪速センサ8の各検出結果に基づいて走行経路を算出し、その走行経路に前記撮像装置6及びレーダ装置7で検出した車両前方撮像情報及び位置情報を重ね合わせて前記走行経路上の障害物を検出し、前記走行経路上に障害物が検出されたときには自車に対する障害物の相対位置及び相対速度を算出し、自車との衝突可能性が大きい場合には、インストゥルメントパネル19に警報を表示したりアラームを鳴らしたりするとともに、当該障害物との衝突を回避する制動力を自動ブレーキ設定スイッチ18の設定位置を参照して算出し、さらに、算出された制動力が得られるように前記制動流体圧制御装置3に指令値を出力し、車両を減速するようになっている。
【0034】
なお、制動制御用コントローラ5には、乗員制動特性メモリが接続されており、制動制御用コントローラ5の動作に応じて、乗員の減速特性を記憶することができるようになっている。乗員制動特性メモリの搭載位置としては、制動制御用コントローラ5に内蔵されているものと、インストゥルメントパネル19に付設された入出力装置を介して読み書きするものとがあり、後者は、さらに、メモリ媒体として本発明の対象となるブレーキ制御専用のメモリ媒体を用いるものと、他の車載装置のメモリ媒体を用いるものとがある。
【0035】
制動制御用コントローラ5は、前述のような制御を行うためにマイクロコンピュータとその周辺機器とを備えている。そして、この制動制御用コントローラ5内のマイクロコンピュータでは、図3のフローチャートに示すように、ブレーキ制御の演算処理を実施するようになっている。
この演算処理は、所定の制御周期ΔT(例えば、10msec. )毎にタイマ割り込み処理として実行される。
【0036】
この演算処理では、まずステップ301で、自動制動が必要なモードであるのか、警告が必要なモードであるのか、或いは、なにも作動しなくてもよいモードであるのかを判定する自動ブレーキモード設定ルーチンを実行してから、ステップ302に移行するようになっている。
自動ブレーキモード設定ルーチンは、図4のフローチャートに示すように、まずステップ401で、自動ブレーキ起動スイッチ17が押されているかどうかの判定により、自動ブレーキ機能が運転者により起動されているか否かを判定し、現在、自動ブレーキ機能が起動されている場合にはステップ402に移行し、そうでない場合にはステップ407に移行するようになっている。
【0037】
ステップ402では、撮像装置6及びレーダ装置7の検出結果から、車両進行方向に障害物が検出されているか否かを判定するとともに、各車輪1FL〜1RRに取り付けられている車輪速センサ8の検出結果から車速を検出して車両が走行中であるか否かを判定し、走行中に障害物を検出した場合にはステップ403に移行し、そうでない場合にはステップ407に移行する。
【0038】
ステップ403では、自動ブレーキモード設定値Ab_modeが「2」、つまり自動制動が必要なモードに、既に設定されているかどうかを判定し、自動制動が必要なモードである場合にはステップ405に移行し、そうでない場合にはステップ404に移行するようになっている。
ステップ404では、後述するステップ405、406において、自動制動が必要なモードであるのか、警告が必要なモードであるのか、を判定するときに用いられる自動ブレーキ開始距離Xstart を算出する自動ブレーキ開始距離演算ルーチンを実行し、ステップ405に移行するようになっている。
【0039】
自動ブレーキ開始距離演算ルーチンは、図5のフローチャートに示すように、まず、ステップ501において、前記ステップ402で検出された障害物が歩行者であるかどうかを判定し、前記障害物が歩行者の場合にはステップ502に移行するようになっており、そうでない場合にはステップ508に移行するようになっている。
【0040】
ステップ502〜508では、乗員制動特性メモリを参照して、障害物の種類に応じて自動制動開始判定基準減速度αab_brk0及び最終停止目標距離Xstopをセットするようになっており、ステップ502では、乗員制動特性メモリに記憶されている対歩行者自動制動開始判定基準減速度αab_brk_pと対物自動制動開始判定基準減速度αab_brk_obとを比較して、対歩行者自動制動開始判定基準減速度αab_brk_pの方が小さい場合には、ステップ503に移行して、自動制動開始判定基準減速度αab_brk0として「対歩行者自動制動開始判定基準減速度αab_brk_p」をセットし、逆に、対物自動制動開始判定基準減速度αab_brk_obの方が小さい場合には、ステップ504に移行して、自動制動開始判定基準減速度αab_brk0として「対物自動制動開始判定基準減速度αab_brk_ob」をセットし、ステップ505に移行するようになっている。
【0041】
ステップ505では、対歩行者最終停止目標距離Xstop_pと対物最終停止目標距離Xstop_obとを比較して、対歩行者最終停止目標距離Xstop_pの方が大きい場合には、ステップ506に移行して、最終停止目標距離Xstopとして「対歩行者最終停止目標距離Xstop_p」をセットし、逆に、対物最終停止目標距離Xstop_obの方が大きい場合には、ステップ507に移行して、最終停止目標距離Xstopとして「対物最終停止目標距離Xstop_ob」をセットし、ステップ509に移行するようになっている。
【0042】
このように、障害物が歩行者であるときには、歩行者以外の障害物に対するときよりも、障害物から離れた位置に最終目標停止距離Xstopをセットするようになっており、運転者の特性を反映して、違和感の少ない制動特性を供与することができる。
一方、ステップ501で障害物が歩行者以外と判定された場合には、ステップ508に移行し、自動制動開始判定基準減速度αab_brk0として「対物自動制動開始判定基準減速度αab_brk_ob」をセットするとともに、最終停止目標距離Xstopとして「対物最終停止目標距離Xstop_ob」をセットし、ステップ509に移行するようになっている。
【0043】
ステップ509では、自動ブレーキ設定スイッチ18の設定位置ΔOpを検出し、ステップ510に移行するようになっている。設定位置ΔOpは、自動ブレーキ設定スイッチ18の中立位置からの偏差であらわされ、0、±1、±2、・・等の整数値となる。
ステップ510では、自動制動の開始判定に利用される基準減速度αab_brkを下記1式で演算してからステップ511に移行するようになっている。
【0044】
αab_brk=αab_brk0+ΔOp・αres ...(1)
基準減速度αab_brkは、乗員の通常走行における減速特性に基づいて算出された自動制動開始判定基準減速度αab_brk0に、現在設定されている変更幅を付加したものであり、その変更幅は、設定位置ΔOpに減速度に変換するための係数αres を掛け合わせたものである。
【0045】
ステップ511では、障害物と自車との相対速度Vrを下記2式で演算し、ステップ512に移行するようになっている。なお、Vcarは自車の車速であり、Vobは障害物の移動速度である。
Vr=Vcar−Vob ...(2)
そして、ステップ512では、自動ブレーキ開始距離Xstartを下記3式で演算し、自動ブレーキモード設定ルーチンに戻る。
【0046】
Xstart=Vr2/(2・αab_brk)+Xstop ...(3)
図5のフローチャートの演算によれば、障害物が歩行者である場合には、前記ステップ502〜507によって、障害物が歩行者以外のものである場合よりも、自動制動開始判定基準減速度αab_brk0が小さくなり、且つ最終停止目標距離Xstopが大きくなるため、上記3式によれば、自動ブレーキ開始距離Xstartは大きくなって、自動制動が障害物から離れた位置で開始されるようになるので、運転者の特性を反映した、違和感の少ない制動特性を供与することができる。
【0047】
また、乗員による自動ブレーキ設定スイッチ18の操作によって、図6に示すように、制動パタンが変更されるようになっており、自動ブレーキ設定スイッチ18が中立位置に設定されているときの自動ブレーキ開始距離Xstartを中立基準値Xstart0(図6中、実線図示)とすると、本実施形態では、自動ブレーキ設定スイッチ18がUP側に設定された場合には、ステップ510で、基準減速度αab_brkが強くなるため、ステップ511で、自動ブレーキ開始距離Xstart1が中立基準値Xstart0よりも減少し、自動制動の開始時期が障害物に近づく(図6中、破線図示)。
【0048】
逆に、自動ブレーキ設定スイッチ18がDOWN側に設定された場合には、ステップ510で、基準減速度αab_brkが弱くなるため、ステップ511で、自動ブレーキ開始距離Xstart2が中立基準値Xstart0よりも増加し、自動制動の開始時期が障害物から離れる(図6中、一点鎖線図示)。
自動ブレーキ開始距離演算ルーチンによって自動ブレーキ開始距離Xstartが算出されると、次に、ステップ405に移行し、自車から障害物までの距離Xobが自動ブレーキ開始距離Xstartより小さいかどうか、すなわち、自車が障害物に接近して自動ブレーキが必要な距離に達しているかどうかを判定し、未だ到達していない場合にはステップ406に移行するようになっており、既に到達している場合にはステップ409に移行するようになっている。
【0049】
ステップ406では、自動ブレーキ開始距離Xstartに既定の余裕時間twarnでの車間距離変化twarn・Vrを加えた距離に、自車から障害物までの距離Xobが達しているかどうかを判定し、未だ到達していない場合にはステップ407に移行するようになっており、既に到達している場合にはステップ408に移行するようになっている。本実施形態においては余裕時間twarnの値は、例えば1.5秒に設定されるが、これは、一般的に運転者が制動対象となる車両進行方向の障害物を発見して、ブレーキを作動させるのに要する時間が1秒程度といわれていることから定めたものである。
【0050】
ステップ407〜409では、自動ブレーキモード設定値Ab_modeの値をセットするようになっており、ステップ407では自動ブレーキモード設定値Ab_modeを「0」に、すなわち、何も作動させないモード(以後、非作動モードと呼ぶ)にセットし、ステップ408では、自動ブレーキモード設定値Ab_modeを「1」に、すなわち自車両が障害物に対して接近しており、間もなく自動ブレーキを作動させることを運転者に警報するモード(以後、警報モードと呼ぶ)にセットし、ステップ409では、自動ブレーキモード設定値Ab_modeを「2」に、すなわち自動ブレーキ設定スイッチ18によって設定した制動力で、自動ブレーキを作動させるモード(以後、自動制動モードと呼ぶ)にセットし、メインルーチンに戻るようになっている。
【0051】
自動ブレーキモード設定ルーチンによって自動ブレーキモード設定値Ab_modeがセットされると、次に、ステップ302に移行し、自動ブレーキモード設定値Ab_modeが「0」(非作動モード)かどうか判定し、非作動モードの場合にはステップ305に移行し、非作動モード以外(警報モード、自動制動モード)の場合にはステップ303に移行するようになっている。
【0052】
ステップ303では、ブレーキスイッチ9がオン状態になっているかどうか、つまり、ブレーキペダル4が踏まれているかどうかを判定し、ブレーキペダル4が踏まれている場合にはそのままステップ305に移行するが、ブレーキペダル4が踏まれていない場合にはステップ304に移行して、自車両が障害物に対して接近していることを警報する警報アラームを作動させるとともに、インストゥルメントパネル19に障害物の存在を報知する表示を行ってから、ステップ305に移行するようになっている。つまり、ステップ301で自動ブレーキモード設定値Ab_modeが、警報モード又は自動制動モードにセットされているにもかかわらず、運転者がブレーキペダル4を踏んでいない場合には、障害物の接近を警報するようになっている。
【0053】
ステップ305では、自動ブレーキモード設定値Ab_modeが「2」(自動制動モード)であるかどうか判定し、自動制動モードの場合にはステップ306に移行し、それ以外の場合にはステップ307に移行するようになっている。
ステップ306では、車両を自動制動させるときに必要な減速度である目標自動減速度ABGを算出する目標自動減速度演算ルーチンを実行してから、ステップ309に移行するようになっている。
【0054】
目標自動減速度演算ルーチンは、図7のフローチャートに示すように、まず、ステップ701で、自動制動中の進行距離xを下記4式で算出し、ステップ702に移行するようになっている。
x=(Xstart−Xob)/(Xstart−Xstop) ...(4)
したがって、自動制動中の進行距離xは、自車から障害物までの距離Xobが「自動ブレーキ開始距離Xstart」のとき「0」となり、自車が障害物に接近するにつれて大きくなって、自車から障害物までの距離Xobが「最終停止距離Xstop」のとき「1」となり、1≧x≧0となる。
【0055】
ステップ702では、対象としている障害物が歩行者か否かを判定し、歩行者の場合にはステップ703に移行し、そうでない場合にはステップ705に移行するようになっている。
ステップ703では、乗員制動特性メモリに記憶されている対歩行者最大減速度発生位置xm_pと対物最大減速度発生位置xm_obとを比較して、対歩行者最大減速度発生位置xm_pの方が小さい場合には、ステップ704に移行し、無次元化された最大減速度発生位置xmとして「対歩行者最大減速度発生位置xm_p」をセットし、逆に、対物最大減速度発生位置xm_obの方が小さい場合には、ステップ705に移行し、無次元化された最大減速度発生位置xmとして「対物最大減速度発生位置xm_ob」をセットしてから、ステップ706に移行するようになっている。
【0056】
このように、障害物が歩行者である場合には、前記ステップ703〜705によって、障害物が歩行者以外のものである場合よりも、無次元化された最大減速度発生位置xmが小さくなるため、最大減速度が障害物から離れた位置で発生するようになるので、運転者の特性を反映した、違和感の少ない制動特性を供与することができる。
【0057】
ステップ706では、図8の制御マップに基づいて、停止目標距離Xstop(x)を算出し、ステップ707に移行するようになっている。
ステップ707では、目標自動減速度ABGを下記5式で算出し、メインルーチンに戻るようになっている。
ABG=Vr2/{2・(Xob−Xstop(x))} ...(5)
停止目標距離Xstop(x)と目標自動減速度ABGとの関係を具体的に説明すると、先ず、停止目標距離Xstop(x)は、図8の制御マップに示すように、自動制御開始時点では最終停止目標距離Xstopよりも小さくしておき、その時点から徐々に車両が障害物に近づくにつれて最終停止目標距離Xstopから徐々に大きくするようになっており、停止目標距離Xstop(x)を徐々に大きくするということは、走行中の車両から見れば、停止目標位置が自車速よりも速い速度で近づいてくることになるから、結果として、目標自動減速度ABGが徐々に増大することになる(図6の各特性の前半部分)。
【0058】
また、一旦増大した停止目標距離Xstop(x)は、減少に転じ、最終停止目標距離Xstopに達した後はしばらく一定値を保つ。このため、目標自動減速度ABGは、緩やかな減少傾向となる(図6の各特性の中盤部分)。
そして、停止目標距離Xstop(x)は、最終停止目標距離Xstopに達すると再び減少に転じ、最終停止目標距離Xstopよりも若干小さい値が最終値となる。このため、目標自動減速度ABGは、減少傾向が緩やかになって、なめらかに零に収束する(図6の各特性の終盤部分)。
【0059】
以上のように目標自動減速度ABGが変化する結果、一般的な運転者が操作した場合に近い制動特性となるから、多くの場合、自動制動であっても、違和感の少ない制動感覚を乗員が感じるようになる。
次に、自動ブレーキ設定スイッチ18の設定位置ΔOpと目標自動減速度ABGとの関係を説明すると、乗員により自動ブレーキ設定スイッチ18が制動力が強くなるように操作されると、1式に示すように、自動ブレーキ開始距離Xstartが小さくなり、図8の制御マップにおける停止目標距離Xstop(x)が最大のところでの自車から障害物までの距離Xobが小さくなるため、上記5式の分母にあたる(Xob−Xstop(x))の値がそれまでの値よりも小さくなり、上記5式の演算結果である目標自動減速度ABGが逆に大きくなる。
【0060】
また、自動ブレーキ設定スイッチ18が制動力が弱くなるように操作されると、1式に示すように、自動ブレーキ開始距離Xstartが大きくなり、図8の制御マップにおける停止目標距離Xstop(x)が最大のところでの自車から障害物までの距離Xobが大きくなるため、上記5式の分母にあたる(Xob−Xstop(x))の値がそれまでの値よりも大きくなり、上記5式の演算結果である目標自動減速度ABGが逆に小さくなる。
【0061】
一方、ステップ305の判定で、自動ブレーキモード設定値Ab_modeが「2」(自動制動モード)以外であると判定されて、ステップ307に移行した場合は、目標自動減速度ABGを「0」にセットしてステップ308に移行するようになっている。
ステップ308では、例えば図9に示す制御マップ、即ちブレーキペダルストローク−目標手動減速度特性図に基づき、ブレーキペダルストロークセンサ3によって検出されるブレーキペダルストロークBsに応じた目標手動減速度MBGを算出し、ステップ309に移行するようになっている。
【0062】
ステップ309では、目標手動減速度MBGが「0」から正値に切り替わったかどうか、すなわち運転者がブレーキペダルを踏んだ直後かどうかを判定し、踏んだ直後でない場合はそのままステップ311に移行するようになっているが、踏んだ直後である場合はステップ310に移行し、後述する自動減速度算出用パラメータ処理済みフラグをF2を「0」のリセット状態にしてからステップ311に移行するようになっている。
【0063】
ステップ311では、目標自動減速度ABGと目標手動減速度MBGの大きさを比較するようになっており、目標自動減速度ABGが目標手動減速度MBGよりも大きい場合には、ステップ312に移行し、自動ブレーキフラグF1を「1」のセット状態にして自動制動を行うことを示し、ステップ313に移行して、目標自動減速度ABGを目標減速度BGに設定してからステップ316に移行するようになっている。
【0064】
一方、ステップ311において、目標自動減速度ABGが目標手動減速度MBGよりも小さいと判定された場合には、ステップ314に移行し、自動ブレーキフラグF1を「0」のリセット状態にして自動制動を行わないことを示し、ステップ315に移行し、目標手動減速度MBGを目標減速度BGに設定してからステップ316に移行するようになっている。
【0065】
したがって、運転者によるブレーキペダル4の踏み込み量、つまりブレーキペダルストロークBsが小さくて目標手動減速度MBGが目標自動減速度ABGよりも小さい場合には、ステップ313で目標減速度BGとして目標自動減速度ABGを設定するようになっているが、ブレーキペダルストロークBsが大きくて目標手動減速度MBGが目標自動減速度ABGよりも大きい場合には、ステップ315で目標減速度BGとして目標手動減速度MBGを設定するようになっているため、結果的に運転者の意図に応じた減速度の大きな制動を行うことができる。
【0066】
ステップ316では、図10に示すように、目標減速度BGに相当する目標ブレーキ圧力Bpを図10の特性から算出し、その目標ブレーキ圧力Bpを制動流体圧制御装置3に出力してから、ステップ317に移行するようになっている。
ステップ317では、自動ブレーキフラグF1が「0」のリセット状態かどうか、つまり、自動制動が作動しなかったかどうか判定し、自動制動が作動しなかった場合にはステップ318に移行し、自動制動が作動した場合にはステップ321に移行するようになっている。
【0067】
ステップ318では、目標手動減速度MBGが正値で車速Vcarが「0」かどうか、すなわち停車中で且つブレーキペダル4が踏まれているかどうか判定し、停車中で且つブレーキペダル4が踏まれている場合にはステップ319に移行し、そうでない場合にはステップ321に移行するようになっている。
ステップ319では、自動減速度算出用パラメータ処理済みフラグF2が「0」のリセット状態かどうか、つまり、運転者がブレーキをかけた直後であるかどうかを判定し、ブレーキをかけた直後である場合にはステップ320に移行し、そうでない場合にはステップ321に移行するようになっている。
【0068】
ステップ320では、自動減速度の算出に利用されるパラメータを演算して更新する自動減速度算出用パラメータ演算ルーチンを実行してから、ステップ321に移行するようになっている。
自動減速度算出用パラメータ演算ルーチンは、図3のステップ317〜319の判定により、自動制動が作動せずに停止したときに実行され、図11のフローチャートに示すように、まず、ステップ1101で、障害物が歩行者であるかどうかを判定し、歩行者であると判定された場合には、ステップ1102に移行し、歩行者フラグF3を「1」にセットし、ステップ1104に移行するようになっている。ステップ1101において障害物が歩行者以外であると判定された場合には、ステップ1103に移行して、さらに障害物が停止車両であるかどうかを判定し、停止車両でないと判定された場合には、前記パラメータを更新せず、ステップ1114に移行するようになっており、停止車両であると判定された場合にはステップ1104に移行するようになっている。
【0069】
歩行者かどうかの判定は、自車両が、例えば5km/hといった値で、ほぼ停止状態になったと見なせる車速である「停止判定車速Vstop」となった時点の前後の所定時間内における、車両前方の所定範囲内の障害物に対して行われる。
ステップ1104では、制御装置内の一時記憶メモリを参照して減速開始時点での車速Vcar0を設定し、ステップ1105に移行するようになっている。具体的には、アクセルペダルストロークセンサ14によるアクセルペダルストロークが「0」となった時点、すなわち、現在の停止状態に至るアクセルから足を離したときから、最も早くブレーキペダルを踏んだ時点での車速を制動開始車速Vcar0とする。
【0070】
ステップ1105では、制御装置内の一時記憶メモリを参照して、車速Vcarが「Vcar0」となった時点から、車速Vcarが「0」となるまでの所要時間tbrakeを算出し、ステップ1106に移行するようになっている。
ステップ1106では、減速過程における平均減速度αmeanを下記6式で算出し、ステップ1107に移行するようになっている。
【0071】
αmean=Vcar0/tbrake ...(6)
ステップ1107では、車速Vcarが「停止判定車速Vstop」となった時点での、自車から障害物までの距離Xobを停止距離Lobとし、ステップ1108に移行するようになっている。
ステップ1108では、車速Vcarが「停止判定車速Vcar0」となった時点から、車速Vcarが「0」となるまでの無次元化された最大減速度発生位置xmを算出し、ステップ1109に移行するようになっている。ここで、無次元化された最大減速度発生位置xmは車速Vcarが「制動開始車速Vcar0」となった時点から、車速Vcarが「0」となるまでの走行距離をXallとし、車速Vcarが「停止判定車速Vcar0」となるときの自車両の位置を起点とした最大減速度発生位置をXgmaxとすると、下記7式で算出することができるようになっている。
【0072】
xm=Xgmax/Xall ...(7)
つまり、図12に示すように、車速Vcarが「制動開始車速Vcar0」となった時点での自車の位置を起点として表した最大減速度発生位置Xgmaxを走行距離Xallで無次元化するようになっており、車速Vcarや最終停止目標距離Xstop、平均減速度αmean等の諸条件が異なったとしても、抽出した最大減速度の発生位置を支障なく利用することができる。
【0073】
ステップ1109では、ステップ1102で歩行者フラグF3が「1」にセットされているかどうか、つまり、障害物が歩行者であるか否かを判定し、障害物が歩行者である場合には、ステップ1110に移行し、障害物が歩行者である場合に利用されるパラメータを更新するようになっており、そうでない場合には、ステップ1112に移行し、障害物が歩行者以外である場合に利用されるパラメータを更新するようになっている。
【0074】
すなわち、まずステップ1110では、ステップ1106〜1108で算出された平均減速度αmean、停止距離Lob、無次元化された最大減速度発生位置xmを、それぞれ最新の対歩行者平均減速度αmean_p、対歩行者停止距離Lob_p、対歩行者最大減速度発生位置xm_p_sとして乗員制動特性メモリの所定位置に記憶し、ステップ1111に移行するようになっている。乗員制動特性メモリには、制動特性データとして平均減速度αmean、停止距離Lob、最大減速度発生位置xmを障害物が歩行者である場合と歩行者以外のものである場合とで個別に所定回数だけ記憶できるようになっており、最新データを記憶する際に最古のデータを削除する、いわゆるFIFO型バッファ方式でデータ更新を行う。
【0075】
ステップ1111では、対歩行者平均減速度αmean_p、対歩行者停止距離Lob_p、対歩行者最大減速度発生位置xm_p_sのそれぞれの履歴を個別に平均した値で、対歩行者自動制動開始判定基準減速度αab_brk_p、対歩行者最終停止距離Xstop_p、対歩行者最大減速度発生位置xm_pをそれぞれ更新し、ステップ1114に移行するようになっている。
【0076】
ステップ1112では、ステップ1106〜1108で算出された平均減速度αmean、停止距離Lob、最大減速度発生位置xmを、それぞれ最新の平均減速度αmean_ob、対物停止距離Lob_ob、対物最大減速度発生位置xm_ob_sとして乗員制動特性メモリの既定位置に記憶しステップ1113に移行するようになっている。
【0077】
ステップ1113では、対物平均減速度αmean_ob、対物停止距離Lob_ob、対物最大減速度発生位置xm_ob_sの履歴を個別に平均した位置で、対物自動制動開始判定基準減速度αab_brk_ob、対物最終停止距離Xstop_ob、対物最大減速度発生位置xm__obをそれぞれ更新し、ステップ1114に移行するようになっている。
【0078】
ステップ1114では、自動減速度算出用パラメータ処理済みフラグF2を「1」のセット状態にして、メインルーチンに戻るようになっている。
このように、障害物に対して運転者が自ら制動を行ったときの制動特性に基づいて運転者の特性を検出するようになっているため、自動制動に運転者の特性を精度良く反映させることができる。
【0079】
なお、本ルーチンは、優先順位の低い割り込みルーチンとして扱われ、本ルーチンよりも優先順位の高い割り込みが発生した場合には、本ルーチンの実行途中であっても、その時点での処理状態を退避させて、メインルーチンに戻り、次回に本ルーチンの処理が実行されるときには、退避させた時点から処理を再開させるようになっている。これにより、データ容量の大きい処理に多くの時間を要しても、車両の運動制御に影響を与えることがない。
【0080】
ステップ321では、制御装置内の一時記憶メモリに、現在の減速状態として、車速Vcar、アクセルペダルストロークBs、ブレーキスイッチ9の状態、ブレーキペダルストロークBs、障害物までの距離Xob等をFIFO式に記憶する。
次に、本実施形態の動作を具体的な状況を交えて説明する。
まず、自動ブレーキ起動スイッチ17がオフ状態のときに、運転者が、車両前方に障害物を発見し、その障害物との衝突を防ぐためにブレーキペダル4を踏んだとする。すると、ステップ301の自動ブレーキモード設定ルーチンで自動ブレーキモード設定値Ab_modeが「0」に設定されるため、ステップ302の判定が「YES」となり、ステップ305の判定が「NO」となるので、ステップ307に移行して、目標自動減速度ABGが「0」にセットされ、また、ステップ309の判定が「YES」となるため、ステップ310に移行して、自動減速度算出用パラメータ処理済みフラグF2が「0」のリセット状態にされる。
【0081】
また、ステップ307で目標自動減速度ABGが「0」のリセット状態にされたため、ステップ311の判定は「NO」となり、ステップ314に移行し、自動ブレーキフラグF1が「0」にリセットされ、ステップ315に移行し、目標減速度BGに相当する目標ブレーキ圧力Bpが算出され、その目標ブレーキ圧力Bpが制動流体圧制御装置3に入力されて、各輪のディスクブレーキ2が制動力を発生する。
【0082】
さらに、ステップ314で自動ブレーキフラグF1が「0」のリセット状態にされたため、ステップ317の判定は「YES」となるが、ブレーキを踏んだ直後であるため、車速Vcarは「0」になっておらず、ステップ318の判定は「NO」となり、ステップ321に移行し、制御装置内の一時記憶メモリに減速状態を記憶してメインルーチンを終了する。
【0083】
そして、所定の制御周期ΔT毎のタイマ割り込みを実行し、ブレーキ制御の演算処理が再び実行されたときに、先ほどのブレーキ操作により車両が停止し、車速Vcarが「0」になったとする。すると、ステップ318及びステップ319の判定は「YES」となるため、ステップ320の自動減速度算出用パラメータ演算ルーチンが実行される。
【0084】
ここで、障害物が歩行者であるとする。すると、ステップ1101の判定は「YES」となり、歩行者フラグF3が「1」にセットされるため、ステップ1109の判定は「YES」となり、平均減速度αmean、停止距離Lob、無次元化された最大減速度発生位置xmが、それぞれ最新の対歩行者平均減速度αmean_p、対歩行者停止距離Lob_p、対歩行者最大減速度発生位置xm_p_sとして乗員制動特性メモリの所定位置に記憶される。そして、ステップ1111で、対歩行者平均減速度αmean_p、対歩行者停止距離Lob_p、対歩行者最大減速度発生位置xm_p_sのそれぞれの履歴を個別に平均した値で、対歩行者自動制動開始判定基準減速度αab_brk_p、対歩行者最終停止距離Xstop_p、対歩行者最大減速度発生位置xm_pがそれぞれ更新される。
【0085】
また、障害物が停止車両であったとする。すると、ステップ1101の判定は「NO」となるため、歩行者フラグF3が「1」にセットされず、ステップ1109の判定は「NO」となるため、ステップ1112では、平均減速度αmean、停止距離Lob、最大減速度発生位置xmが、それぞれ最新の平均減速度αmean_ob、対物停止距離Lob_ob、対物最大減速度発生位置xm_ob_sとして乗員制動特性メモリの既定位置に記憶される。そして、ステップ1113で、対物平均減速度αmean_ob、対物停止距離Lob_ob、対物最大減速度発生位置xm_ob_sの履歴を個別に平均した位置で、対物自動制動開始判定基準減速度αab_brk_ob、対物最終停止距離Xstop_ob、対物最大減速度発生位置xm__obがそれぞれ更新される。
【0086】
このように、障害物に対して運転者が自ら制動を行ったときの制動特性に基づいて運転者の特性を検出するようになっているため、自動制動に運転者の特性を精度良く反映させることができる。
次に、自動ブレーキ起動スイッチ17がオン状態のときに、車両前方に歩行者が検出されたとする。すると、自動ブレーキモード設定ルーチンのステップ404で実行される自動ブレーキ開始距離演算ルーチンにおいて、ステップ501の判定は「YES」となり、ステップ502で、対歩行者自動制動開始判定基準減速度αab_brk_pと対物自動制動開始判定基準減速度αab_brk_obとのうち、小さい方が制動開始判定基準減速度αab_brk0にされ、ステップ505で、対歩行者最終停止目標距離Xstop_pと対物最終停止目標距離Xstop_obとのうち、大きい方が最終停止目標距離Xstopにされる。
【0087】
このように、障害物が歩行者であるときには、歩行者以外の障害物に対するときよりも、障害物から離れた位置に最終目標停止距離Xstopがセットされる。
ステップ512では、障害物が歩行者である場合には、ステップ502〜507によって、障害物が歩行者以外のものである場合よりも、自動制動開始判定基準減速度αab_brk0が小さくされ、且つ最終停止目標距離Xstopが大きくされるため、上記3式によれば、自動ブレーキ開始距離Xstartは大きくされて、自動制動が障害物から離れた位置で開始される。
【0088】
自動ブレーキ開始距離演算ルーチンが終了して、ステップ405に移行したときに、自車が障害物に近づいており、自車から障害物までの距離Xobが自動ブレーキ開始距離Xstartよりも小さかったとする。すると、ステップ405の判定は「YES」となり、ステップ409で自動ブレーキモード設定値Ab_modeを「2」に設定される。
【0089】
自動ブレーキモード設定ルーチンが終了すると、自動ブレーキモード設定値Ab_modeが「2」であるため、ステップ305の判定は「YES」となり、ステップ306の目標自動減速度演算ルーチンが実行される。
目標自動減速度演算ルーチンでは、ステップ703〜705によって、対歩行者最大減速度発生位置xm_pと対物最大減速度発生位置xm_obとのうち、小さい方を無次元化された最大減速度発生位置xmとし、障害物が歩行者以外のものである場合よりも、無次元化された最大減速度発生位置xmが小さくなるため、最大減速度が障害物から離れた位置で発生される。
【0090】
このように、障害物が歩行者であるとき(図13破線参照)には、歩行者以外の障害物に対するとき(図13実線参照)よりも、自動制動開始位置、最大制動力の発生位置、及び目標停止位置を障害物から離れた位置に設定したため、運転者の特性を反映した、違和感の少ない制動特性を供与することができる。
目標自動減速度演算ルーチンが終了したときに、その目標自動減速度ABGが、目標手動減速度MBGよりも大きいとすると、ステップ312の判定は「YES」となり、ステップ315で目標減速度BGが目標自動減速度ABGに設定され、ステップ316で、その目標減速度BGに対応する目標ブレーキ圧力Bpが制動流体圧制御装置3に出力されて、各輪のディスクブレーキ2が制御されて制動力が発生される。
【0091】
かくして、本実施形態の車両用衝突防止装置は、運転者の運転操作を自動制動の特性に適切に反映することができるので、歩行者の操作間隔に合致するように制動特性を変更することができ、違和感の少ない制動特性を乗員に供与することができる。
なお、本実施形態においては、制動制御用コントローラ5、撮像装置6、及びレーダ装置7が障害物検出手段に対応し、車輪速センサ8、ブレーキスイッチ、ブレーキペダルストロークセンサ10、操舵角センサ13、アクセルペダルストロークセンサ14、ヨーレートセンサ15、及び加速度センサ16が走行状態検出手段に対応し、制動流体圧制御装置3及び制動制御用コントローラ5が自動制動手段に対応し、制動制御用コントローラ5及び撮像装置6が歩行者識別手段に対応し、ステップ1101〜1113が対歩行者運転特性検出手段に対応し、ステップ501〜512及びステップ701〜707が制動特性変更手段に対応し、自動ブレーキ設定スイッチ18が手動設定手段に対応する。
【0092】
次に、本発明の車両衝突防止装置の第2実施形態について説明する。この実施形態では、図3、11、5、7のフローチャートに変えて、図14、17、19、20のフローチャートが用いた点が第1実施形態と異なる。
図14に示すフローチャートは、第1実施形態の図3に示すブレーキ制御の演算処理のメインルーチンのフローチャートの後半部分に対応し、図3のステップ321の後にステップ1422〜1425が追加されている点が図3のフローチャートとは異なる。
【0093】
ステップ1422では、自車両が歩行者の近傍を通過したか否かを判定し、歩行者の近傍を通過していない場合にはステップ1424にそのまま移行するようになっているが、歩行者の近傍を通過した場合には、ステップ1423に移行し、乗員制動特性メモリに、歩行者の近傍を通過したときの速度と自車両から歩行者までの間隔との相関関係の履歴を記録し、図15に示すように、前記速度と前記間隔との相関係数KvLを算出してから、ステップ1424に移行するようになっている。
【0094】
相関係数KvLは、歩行者の近傍を通過するときの自車両から歩行者までの間隔が変わらないときには、速度が小さく安全運転を行っているときほど小さくなり、後述する式9〜11にあらわれる{(KvL0/KvL)−1}が大きくなる。また、相関係数KvLは、速度が大きいほど大きくなり、前記{(KvL0/KvL)−1}は負値をとる。
【0095】
ステップ1424では、障害物を対象とした制動の後に、自動ブレーキ設定スイッチ18が操作されたかどうか判定し、操作されていない場合にはそのままメインルーチンを終了するようになっているが、操作された場合には、ステップ1425に移行し、対象となる障害物が歩行者である場合と歩行者以外のものである場合とで個別に自動ブレーキ設定スイッチ18の設定位置ΔOpの変更量の履歴を記憶するとともに、図16に示すように、設定位置ΔOpの変更量の履歴の平均値を対象となる障害物が歩行者である場合と歩行者以外のものである場合とで個別に算出し、両平均値の差である変更量履歴平均値差ΔOPp_cを記録する。
【0096】
変更量履歴平均値差ΔOPp_cは、障害物が歩行者である場合と歩行者以外のものである場合とで、自動ブレーキ設定スイッチ18の設定位置ΔOpの変更量が等しいときには「0」となるが、障害物が歩行者である場合の自動制動を開始時期を遅く感じ、設定値ΔOpを小さくすることが多いときほど小さくなる。また、変更量履歴平均値差ΔOPp_cは、障害物が歩行者である場合の自動制動の開始時期が早すぎると感じ、設定値ΔOpを大きくすることが多いときほど大きくなる。
【0097】
また、図17に示すフローチャートは、第1実施形態の図11に示す自動減速度算出用パラメータ演算ルーチンのフローチャートに対応し、ステップ1701〜1708では、図11のステップ1101〜1113と同様の処理によって、停止障害物がある場合に限り、障害物が歩行者か否かに関わらず自動制動開始判定基準減速度αab_brk0、最終停止距離Xstop、最大限速度発生位置Xmを算出する。
【0098】
次に、ステップ1709では、下記8式に示すように、車速Vcarが「制動開始車速Vcar0」となった時点から車速Vcarが「0」となる時点までの走行距離Xallを制動開始車速Vcar0で除して制動開始距離特性Tstartを演算し、ステップ1710に移行するようになっている。
Tstart=Xall/Vcar0 ...(8)
ステップ1710では、乗員制動特性メモリに、対象となる障害物が歩行者である場合と歩行者以外のものである場合とで個別に制動開始距離特性Tstartの履歴を記憶してから、ステップ1711に移行するようになっている。
【0099】
ステップ1711では、図18に示すように、乗員制動特性メモリに記憶されている制動開始距離特性Tstartの履歴の平均値を、対象となる障害物が歩行者である場合と歩行者以外のものである場合とで個別に算出して、両者の差である制動開始距離特性履歴平均値差ΔTHp_cを算出し、ステップ1712に移行するようになっている。
【0100】
制動開始距離特性履歴平均値差ΔTHp_cは、障害物が歩行者である場合と歩行者以外のものである場合とで、走行距離Xall及び制動開始車速Vcar0に変化がないときには「0」となるが、障害物が歩行者である場合に早い時期に制動操作を開始しており、走行距離Xallが大きかったり制動開始車速Vcar0が小さかったりする運転を行っているときほど制動開始距離特性履歴平均値差ΔTHp_cは大きくなる。また、障害物が歩行者である場合に遅い時期に制動操作を開始しており、走行距離Xallが小さかったり制動開始車速Vcar0が大きかったりときほど制動開始距離特性履歴平均値差ΔTHp_cは小さくなる。
【0101】
ステップ1712では、制動開始距離特性履歴平均値差ΔTHp_cと、歩行者位置と通過速度との相関係数KvLと、変更量履歴平均値差ΔOPp_cと、に基づいて、基準減速度補正値Δαab_brk、最終停止目標距離補正値ΔXstop、最大限速度発生位置補正値Δxmを下記9〜11式で演算し、ステップ1713に移行するようになっている。
【0102】
Δαab_brk=Δαab_brk0+Kα T・ΔTHp_c+Kα K・{(KvL0/KvL)−1}+Kα 0・ΔOPp_c ...(9)
ΔXstop=ΔXstop0+KXsK・{(KvL0/KvL)−1} ...(10)
Δxm=Δxm0+KXmT・ΔTHp_c+KXmK・{(KvL0/KvL)−1}
...(11)
ここで、基準減速度補正値Δαab_brkは、初期値であるΔαab_brk0(<0)に対して、制動開始距離特性履歴平均値差ΔTHp_c、歩行者位置と通過速度との相関係数KvL、変更量履歴平均値差ΔOPp_cによる影響を付加したものであり、ΔTHp_c、(KvL0/KvL)−1}、ΔOPp_cのそれぞれには係数Kα T(<0)、Kα K(<0)、Kα 0(>0)が掛け合わされている。
【0103】
また、最終停止目標距離補正値ΔXstopは、初期値であるΔXstop0(>0)に対して、歩行者位置と通過速度との相関係数KvLによる影響を付加したものであり、{(KvL0/KvL)−1}には係数KXsK(>0)が掛け合わされている。なお、KvL0はKvLの初期値であるとする。
さらに、最大限速度発生位置補正値Δxmは、初期値であるΔxm0(<0)に対して、制動開始距離特性履歴平均値ΔTHp_c、歩行者位置と通過速度との相関係数KvL、による影響を付加したものであり、ΔTHp_c、{(KvL0/KvL)−1}のそれぞれには係数KXmT(<0)、KXmK(<0)が掛け合わされている。
【0104】
つまり、基準減速度補正値Δαab_brkは、障害物が歩行者である場合であって早い時期に制動操作を開始しており、走行距離Xallが大きかったり制動開始車速Vcar0が小さかったりする運転を行っていて制動開始距離特性履歴平均値ΔTHp_cが大きな値をとるとき、または、歩行者の近傍を通過するときの自車両から歩行者までの間隔が変わらないときに速度が小さく安全運転を行っていて{(KvL0/KvL)−1}が大きな値をとるとき、障害物が歩行者である場合の自動制動を開始時期を遅く感じ、設定値ΔOpを小さくすることが多く変更量履歴平均値差ΔOPp_cが小さな値をとるとき、に大きな負の値をとる。
【0105】
同様に、最終停止目標距離補正値ΔXstopは、{(KvL0/KvL)−1}が大きな値をとるときに大きな正の値をとり、最大限速度発生位置補正値Δxmは、ΔTHp_cが大きな値をとるとき、または、{(KvL0/KvL)−1}が大きな値をとるときに大きな負の値をとる。
ステップ1713では、ステップ1114と同様に、自動減速度算出用パラメータ処理済みフラグF2を「1」のセット状態にして、メインルーチンに戻るようになっている。
【0106】
さらに、図19に示すフローチャートは、第1実施形態の図5に示す自動ブレーキ開始距離演算ルーチンのフローチャートに対応し、まずステップ1901で、検出された障害物が歩行者であるかどうかを判定し、歩行者である場合にはステップ1902に移行し、後述するステップ1905、1907で使用される基準減速度補正値Δαab_brkと最終停止目標距離補正値ΔXstopとを乗員制動特性メモリから読み込み、ステップ1904に移行するようになっている。また、ステップ1901で障害物が歩行者以外のものであると判定された場合には、ステップ1903に移行し、基準減速度補正値Δαab_brkと最終停止目標距離補正値ΔXstopとを「0」にリセットしてから、ステップ1904に移行するようになっている。
【0107】
ステップ1904では、図5のステップ509と同様に、自動ブレーキ設定スイッチ18の設定位置ΔOpを検出し、ステップ1905に移行するようになっている。
ステップ1905では、自動制動の開始判定に利用される基準減速度αab_brkを下記12式で演算してからステップ1906に移行するようになっている。
【0108】
αab_brk=αab_brk0+ΔOp・αres +Δαab_brk ...(12)
したがって、基準減速度補正値Δαab_brkが大きな負の値をとると、基準減速度αab_brkは小さな値となる。
ステップ1906では、ステップ511と同様に、障害物と自車との相対速度Vrを前記2式で演算し、ステップ1907に移行するようになっている。
【0109】
そして、ステップ1907では、自動ブレーキ開始距離Xstartを下記13式で演算し、自動ブレーキモード設定ルーチンに戻るようになっている。
Xstart=Vr2/(2・αab_brk)+Xstop +ΔXstop ...(13)
したがって、最終停止目標距離補正値ΔXstopが大きな正の値をとると、自動ブレーキ開始距離Xstartは大きな値となる。また、基準減速度αab_brkで除しているため、基準減速度補正値Δαab_brkが大きな負の値をとり、基準減速度αab_brkが小さくなるほど、自動ブレーキ開始距離Xstartが大きな値となり、自動制動が障害物から離れた位置で開始されるようになる。
【0110】
また、図20に示すフローチャートは、第1実施形態の図7に示す目標自動減速度演算ルーチンのフローチャートに対応し、図7のフローチャートのステップ702〜705がステップ2002〜2005に変更されている。
ステップ2002では、対象としている障害物が歩行者であるか否かを判定し、歩行者である場合には、ステップ2003に移行し、最大減速度発生位置補正値Δxmとして乗員制動特性メモリに記憶されている値をセットし、ステップ2005に移行するようになっている。また、ステップ2002で障害物が歩行者以外のものであると判定された場合には、ステップ2004に移行し、最大減速発生位置補正値Δxmを「0」にリセットし、ステップ2005に移行するようになっている。
【0111】
そして、ステップ2005では、無次元化された最大減速発生位置xmを下記14式で演算し、ステップ2006に移行するようになっている。
xm=xm+Δxm ...(14)
したがって、最大減速発生位置補正値が大きな負の値をとると、無次元化された最大減速発生位置xmは小さな値となる。
【0112】
かくして、本実施形態に係る車両用衝突防止装置によれば、歩行者の近傍を通過するときの速度と自車から歩行者までの間隔との相関関係と、手動設定手段の操作特性と、基づいて、自動制動の開始時期を決めるようになっているため、運転者の特性を反映して違和感の少ない制動特性を供与することができる。
次に、本発明の車両衝突防止装置の第3実施形態について説明する。この実施形態では、乗員制動特性メモリに昼夜の区別を併せて記憶させた点が上記第1又は第2実施形態と異なる。
【0113】
まず、ステップ321(又はステップ1421)では、一時記憶メモリに減速状態を記録する際に、その減速が昼に行われたのか夜に行われたのか記録するようになっている。
昼夜の区別は、オートエアコンの日射量の制御や前照灯を自動点灯するオートライト用の日照スイッチ等を利用して日照量を直接検出して行い、例えば、日照量がゼロとなった場合に夜と判定しそれ以外の場合を昼と判定するのでもよく、また、前照灯の点灯スイッチが所定時間以上オン状態にされている場合を夜と判定しそれ以外を昼と判定するのでもよい。
【0114】
次いで、ステップ1110又は1112(若しくは、ステップ1710、1423、1425)では、前記一時記憶メモリに記録されている減速状態を参照して、乗員制動特性メモリに平均減速度αmean等の制動特性データを記録する際に、その制動特性データの昼夜の区別も併せて記録する。
ステップ1111又は1113(若しくは、ステップ1711、1423、1425)では、乗員制動特性メモリに記憶されている各種制動特性データを平均して自動減速度の算出に利用されるパラメータを演算する際に、前記パラメータを昼のみで算出する場合と夜のみで算出する場合とで有意差がある場合には、各パラメータを昼夜別に記憶するようになっている。
【0115】
さらに、各パラメータが昼夜別に記憶されている場合には、ステップ501〜508又は702〜706(若しくは、1901〜1903、2002〜2006)では、前記乗員制動特性メモリに記憶されている各パラメータを用いて自動減速度を演算する際に、現時点の昼夜区別に応じたパラメータを用いるようになっている。
【0116】
これらによって、視力の低下に敏感な高齢者のように、前方が見えにくい夜間には昼間に比べて慎重に運転する運転者の運転特性を、自動制動に精度良く反映させることができ、違和感がなく安心感がある制動特性を供与できる。
次に、本発明の車両衝突防止装置の第4実施形態について説明する。この実施形態では、図21に示すように、レーダ装置7に変えて、当該レーダ装置7の機能に加えて障害物との通信機能を併せ持つ移動体間通信機20を備えた点が上記実施形態とは異なり、制動制御用コントローラ5で、前記撮像装置6の撮像情報と移動体間通信機20の車両前方物体距離及び障害物との通信情報とを組み合わせ、自車両の走行に支障を来す障害物を検出するとともに、検出した障害物の種類を識別することができるようになっている。これにより、第1〜第3実施形態で行っていた歩行者の認識を、障害物全般の認識に拡張することができ、対象となる障害物の種類を特定することが可能となる。
【0117】
移動体間通信機20は、図22に示すように、走査電波の送受信を行う電波送受信部21と、電波送受信部21が受信した反射波に基づいて障害物の位置を演算するレーダ処理部23と、電波送受信部21が受信したID情報に基づいて障害物を識別するトランスポンダID処理部24と、を有し、検出対象である障害物に付設されたトランスポンダ22との間で無線通信を行うことができるようになっている。
【0118】
トランスポンダ22は、図23に示すように、移動体間通信機20の電波送受信部21が発信した走査電波を受信すると、その走査電波の反射波とトランスポンダ24のID情報とを、走査電波を発信してきた移動体通信機20に送信するようになっている。ここで、ID情報の送信タイミングΔTは、移動体間通信機20が操作電波を送信した時期を起点として、トランスポンダ22が送信した反射波を移動体間通信機20が受信するまでの時間をΔtとし、移動体間通信機20が次に操作電波を送信する時期をΔTscanとすると、(Δt/2)<ΔT<(ΔTscan/2)を満たすようになっている。
【0119】
移動体間通信機20では、トランスポンダ22から送信された電波は、電波送受信部21によって分波されて、走査電波の反射波はレーダ処理部23に入力され、ID情報はトランスポンダID処理部24に入力される。レーダ処理部23では、検出移動体の位置情報として自車両から障害物までの車両進行方向の距離Ob_rxと横方向の距離Ob_ryとを出力するようになっている。トランスポンダID処理部24では、障害物の種類Ob_idと乗員の年齢情報Old_idとを出力し、制動制御用コントローラ5に入力するようになっている。
【0120】
前記制御用コントローラ5に入力された信号は、第1実施形態のステップ501、702、1101に相当する部分、すなわち、障害物が歩行者かどうかを識別する際に利用され、上記実施の形態と異なり歩行者のみならず、二輪車、車両の種別を区別することができる。
次に、第1実施形態と異なる部分について、本実施形態の動作を、図24、26、28のフローチャートに基づいて説明する。
【0121】
まず、図24に示すフローチャートは、第1実施形態の図11に示す自動減速度算出用パラメータ演算ルーチンのフローチャートに対応し、ステップ1107〜1113がステップ2404〜2408に変更されている。
ステップ2404では、一時記憶メモリを参照して停止判定車速Vstopにおける自車両から障害物までの距離である停止距離Lobと、自車両から障害物までの横方向の距離Ob_ryと、を設定し、ステップ2405に移行するようになっている。
【0122】
ステップ2405では、ステップ1108と同様に、無次元化された最大減速度発生位置xmを算出し、ステップ2406に移行するようになっている。
ステップ2406では、一時記憶メモリを参照して減速開始時期における障害物の移動速度Vobを設定し、ステップ2407に移行するようになっている。
ステップ2407では、図25の表に示すように、検出された障害物の種類Ob_id毎に、上記ステップ2403〜2406で設定した平均減速度αmean、停止距離Lob、無次元化された最大限速度発生位置xm、自車両から障害物までの横方向の距離Ob_ry、障害物の移動速度Vob、年齢情報Old_idを乗員制動特性メモリに記憶し、ステップ2408に移行するようになっている。乗員制動特性メモリには、減速データを所定回数だけ記憶できるようになっており、最新のデータを記憶するたびに、最古のデータを消去して、データの更新を行う。また、障害物の種類Ob_idが、自動二輪又は車両の場合には、乗員の身体的特徴は運転特性にあまり影響しないので年齢情報Old_idを記憶しない。
【0123】
ステップ2408では、障害物の種類Ob_id毎に記憶されているデータに基づいて平均減速度αmean、停止距離Lob、無次元化された最大限速度発生位置xm、自車両から障害物までの横方向の距離Ob_ry、障害物の移動速度Vob、年齢情報Old_idを説明変数とし、自動制動開始判定基準減速度αab_brk0、無次元化された最大減速度発生位置xm、最終停止目標距離Xstopを目的変数とした重回帰式を算出して乗員制動特性メモリに記憶し、ステップ2409に移行するようになっている。
【0124】
ただし、乗員制動特性メモリに記憶されている減速データの数が少ない場合など、前記重回帰式が統計的に有意でないと判断される場合には、自動制動開始判定基準減速度αab_brk0、無次元化された最大減速度発生位置xm、最終停止目標距離Xstopは初期定数のままとする。
また、図26に示すフローチャートは、第1実施形態の図5に示す自動ブレーキ開始距離演算ルーチンのフローチャートに対応し、ステップ501〜507がステップ2601、2602に変更されている。
【0125】
ステップ2601では、次のステップ2602で用いられるパラメータである障害物の自車進行方向に対する移動速度Vob、自車両から障害物までの横方向の距離Ob_ry、障害物の種類Ob_id、乗員の年齢情報Old_idを移動体間通信機20から読み込み、ステップ2602に移行するようになっている。
ここで、乗員の年齢情報Old_idは、図27に示す制御マップに基づいて、実際の年齢を変換してなるパラメータであり、障害物が子供や高齢者である場合に大きな値を取って、感度が高まるようになっている。
【0126】
ステップ2602では、ステップ2601で設定したパラメータを、乗員制動特性メモリに障害物の種類Ob_id毎に記憶されている重回帰式に代入し、自動制動開始判定基準減速度αab_brk0と最終停止目標距離Xstopとを算出して、ステップ2603に移行するようになっている。
ここで用いられる重回帰式は、図24に示す自動減速度算出用パラメータ演算ルーチンで算出されるものであり、障害物の種類毎に記憶されている乗員の減速操作の履歴に基づいて算出され、障害物の自車進行方向に対する移動速度Vob、自車両から障害物までの横方向の距離Ob_ry、歩行者又は乗員の年齢情報Old_idも加味しているため、この重回帰式で算出した、自動制動開始判定基準減速度αab_brk0と最終停止目標距離Xstopとに基づいて自動制動を行うことにより、自動制動を乗員に対して違和感のないタイミングと強さで行うことができる。
【0127】
次に、図28に示すフローチャートは、第1実施形態の図7に示す目標自動減速度演算ルーチンのフローチャートに対応し、ステップ702〜705がステップ2802、2803に変更されている。
ステップ2802では、障害物の自車進行方向に対する移動速度Vob、自車両から障害物までの横方向の距離Ob_ry、障害物の種類Ob_id、年齢情報Old_idを移動体間通信機20から読み込み、ステップ2803に移行するようになっている。
【0128】
ステップ2803では、ステップ2802で読み込んだパラメータを、乗員制動特性メモリに障害物の種類Ob_id毎に記憶されている重回帰式に代入して、無次元化された最大限速度発生位置xmを算出し、ステップ2804に移行するようになっている。
以上説明してきたように本実施形態によれば、例えば、歩行者と自転車といった障害物の種類による減速行動の違いや、同じ歩行者であっても高齢者や子供に対する減速行動の際を自動制動の制御特性に反映させることが可能となるため、自転車に対して歩行者と同様に早めに減速する乗員や、一般の歩行者よりもより注意深く減速する運転者の特性を精度良く自動制動特性に反映させることができる。
【0129】
なお、本実施形態においては、制動制御用コントローラ5、撮像装置6、及び移動体間通信機20が障害物検出手段に対応し、制動制御用コントローラ5、撮像装置6、及び移動体間通信機20が障害物識別手段に対応し、ステップ2401〜2408が対障害物運転特性検出手段に対応し、ステップ2601〜2606及びステップ2801〜2805が対障害物制動特性変更手段に対応し、電波送受信部21が走査電波送信手段に対応し、トランスポンダID処理部24が障害物情報受信手段に対応し、乗員制動特性メモリが運転者減速特性記憶手段に対応する。
【図面の簡単な説明】
【図1】本発明の車両用衝突防止装置の第1実施形態を示す車両の概略構成図である。
【図2】図1の車両用衝突防止装置に用いられるステアリングホイールの要部拡大図である。
【図3】制動制御用コントローラ内で行われるブレーキ制御の演算処理のメインルーチンのフローチャートである。
【図4】図3の演算処理で用いられる自動ブレーキモード設定ルーチンのフローチャートである。
【図5】図4のサブルーチンで用いられる自動ブレーキ開始距離演算ルーチンのフローチャートである。
【図6】本発明の車両用衝突防止装置の動作を説明するための説明図である。
【図7】図3のメインルーチンで用いられる目標自動減速度演算ルーチンのフローチャートである。
【図8】図7のサブルーチンで用いられる制御マップである。
【図9】図3のメインルーチンで用いられる制御マップである。
【図10】図3のメインルーチンで用いられる制御マップである。
【図11】図3のメインルーチンで用いられる自動減速度算出用パラメータ演算ルーチンのフローチャートである。
【図12】図11のサブルーチンで用いられるパラメータを説明するための説明図である。
【図13】本発明の車両用衝突防止装置の動作を説明するための説明図である。
【図14】本発明の車両用衝突防止装置の第2の実施形態を示す図であって、図3のブレーキ制御の演算処理のメインルーチンに対応するフローチャートである。
【図15】図14のメインルーチンで用いられるパラメータを説明するための説明図である。
【図16】図14のメインルーチンで用いられるパラメータを説明するための説明図である。
【図17】第2の実施形態における、図11の自動減速度算出用パラメータ演算ルーチンに対応するフローチャートである。
【図18】図17のサブルーチンで用いられるパラメータを説明するための説明図である。
【図19】第2の実施形態における、図5の自動ブレーキ開始距離演算ルーチンに対応するフローチャートである。
【図20】第2の実施形態における、図7の目標自動減速度演算ルーチンに対応するフローチャートである。
【図21】本発明の車両用衝突防止装置の第4の実施形態を示す車両の概略構成図である。
【図22】図21の車両用衝突防止装置に用いられる移動体間通信機の要部拡大図である。
【図23】本発明の車両用衝突防止装置における移動体間通信機の動作を説明するためのタイミングチャートである。
【図24】第4の実施形態における、図11の自動減速度算出用パラメータ演算ルーチンに対応するフローチャートである。
【図25】図24のサブルーチンで用いられる乗員制動特性メモリの記憶内容を示す表である。
【図26】第4の実施形態における、図5の自動ブレーキ開始距離演算ルーチンに対応するフローチャートである。
【図27】図26のサブルーチンで用いられる制御マップである。
【図28】第4の実施形態における、図7の目標自動減速度演算ルーチンに対応するフローチャートである。
【符号の簡単な説明】
1FL〜1FRは車輪
2はディスクブレーキ
3は制動流体圧制御装置
4はブレーキペダル
5は制動制御用コントローラ
6は撮像装置
7はレーダ装置
8は車輪速センサ
9はブレーキスイッチ
10はブレーキペダルストロークセンサ
13は操舵角センサ
14はアクセルペダルストロークセンサ
15はヨーレイトセンサ
16は加速度センサ
18は自動ブレーキ設定スイッチ
20は移動体間通信機
21は電波送受信部
24はトランスポンダID処理部

Claims (14)

  1. 自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、
    前記障害物検出手段により検出された障害物のうちから歩行者を識別する歩行者識別手段と、前記歩行者識別手段が歩行者を識別した場合に、その歩行者に対する乗員の運転特性を検出する対歩行者運転特性検出手段と、前記歩行者識別手段で歩行者であると識別されなかった障害物に対する乗員の運転特性を検出する対物運転特性検出手段と、前記障害物検出手段により検出された障害物が歩行者であるときに、前記対歩行者運転特性検出手段の検出結果と前記対物運転特性検出手段の検出結果とに基づいて、前記障害物検出手段で検出された障害物が歩行者であるときと歩行者以外の障害物であるときとのいずれのときに障害物からより離れた位置で制動を行っているかを判定する判定手段と、前記障害物が歩行者であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更し、前記障害物が歩行者以外の障害物であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対物運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する制動特性変更手段と、を備え
    前記対歩行者運転特性検出手段は、歩行者に対する制動操作時と歩行者以外の障害物に対する制動操作時とで、自車の平均減速度の履歴平均値、停止相当車速到達時点での自車から障害物までの距離の履歴平均値、及び最大減速度発生位置の履歴平均値を個別に演算し、歩行者に対する制動時、前記制動特性変更手段は、前記各履歴平均値について、より障害物から離れた位置で制動が行われる方を選択し、該選択値に基づき前記制動特性を変更することを特徴とする車両用衝突防止装置。
  2. 手動により前記制動特性を変更できる手動設定手段を備え、前記対歩行者運転特性検出手段は、前記手動設定手段の操作特性に基づいて前記運転特性を検出する請求項1に記載の車両用衝突防止装置。
  3. 自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、
    前記障害物検出手段により検出された障害物のうちから歩行者を識別する歩行者識別手段と、前記歩行者識別手段が歩行者を識別した場合に、その歩行者に対する乗員の運転特性を検出する対歩行者運転特性検出手段と、前記歩行者識別手段で歩行者であると識別されなかった障害物に対する乗員の運転特性を検出する対物運転特性検出手段と、前記障害物検出手段により検出された障害物が歩行者であるときに、前記対歩行者運転特性検出手段の検出結果と前記対物運転特性検出手段の検出結果とに基づいて、前記障害物検出手段で検出された障害物が歩行者であるときと歩行者以外の障害物であるときとのいずれのときに障害物からより離れた位置で制動を行っているかを判定する判定手段と、前記障害物が歩行者であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更し、前記障害物が歩行者以外の障害物であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対物運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する制動特性変更手段と、手動により前記制動特性を変更できる手動設定手段とを備え、
    前記対歩行者運転特性検出手段は、前記手動設定手段の操作特性に基づいて前記運転特性を検出することを特徴とする車両用衝突防止装置。
  4. 自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、
    前記障害物検出手段により検出された障害物のうちから歩行者を識別する歩行者識別手段と、前記歩行者識別手段が歩行者を識別した場合に、その歩行者に対する乗員の運転特性を検出する対歩行者運転特性検出手段と、前記対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する制動特性変更手段と、を備え、
    前記対歩行者運転特性検出手段は、歩行者に対する制動操作時と歩行者以外の障害物に対する制動操作時とで、自車の平均減速度の履歴平均値、停止相当車速到達時点での自車から障害物までの距離の履歴平均値、及び最大減速度発生位置の履歴平均値を個別に演算し、歩行者に対する制動時、前記制動特性変更手段は、前記各履歴平均値について、より障害物から離れた位置で制動が行われる方を選択し、該選択値に基づき前記制動特性を変更することを特徴とする車両用衝突防止装置。
  5. 自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、
    前記障害物検出手段により検出された障害物のうちから歩行者を識別する歩行者識別手段と、前記歩行者識別手段が歩行者を識別した場合に、その歩行者に対する乗員の運転特性を検出する対歩行者運転特性検出手段と、前記対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する制動特性変更手段と、手動により前記制動特性を変更できる手動設定手段と、を備え、
    前記対歩行者運転特性検出手段は、前記手動設定手段の操作特性に基づいて前記運転特性を検出することを特徴とする車両用衝突防止装置。
  6. 前記対歩行者運転特性検出手段は、歩行者に対する制動後と歩行者以外の障害物に対する制動後との前記手動設定手段の操作量の頻度分布を個別に演算し、その頻度分布に有意差がある場合には前記制動特性の変更幅を大きくする請求項2、3又は5に記載の車両用衝突防止装置。
  7. 前記制動特性変更手段は、少なくとも、自動制動開始位置、最大制動力の発生位置、又は目標停止位置のいずれかを変更する請求項1から6のいずれか1項に記載の車両用衝突防止装置。
  8. 前記対歩行者運転特性検出手段は、少なくとも、障害物に対して乗員が自ら制動を行ったときの制動特性、又は歩行者の近傍を通過するときの前記走行状態検出手段の検出結果と自車から歩行者までの間隔との相関関係に基づいて前記運転特性を検出する請求項1から7のいずれか1項に記載の車両用衝突防止装置。
  9. 前記対歩行者運転特性検出手段は、歩行者の近傍を通過する際の自車速度を目的変数とし歩行者と自車との間隔を説明変数とした回帰式の回帰係数を検出し、前記制動特性変更手段は、前記回帰係数が大きくなると前記制動特性の変更幅を小さくする請求項1から8のいずれか1項に記載の車両用衝突防止装置。
  10. 前記対歩行者運転特性検出手段は、昼間か夜間かを識別する昼夜識別手段を備え、前記制動特性変更手段は、前記昼夜識別手段の識別結果に基づいて前記制動特性の変更幅を決定する請求項1から9のいずれか1項に記載の車両用衝突防止装置。
  11. 自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、
    前記障害物検出手段により検出された障害物のうちから歩行者を識別する歩行者識別手段と、前記歩行者識別手段が歩行者を識別した場合に、その歩行者に対する乗員の運転特性を検出する対歩行者運転特性検出手段と、前記歩行者識別手段で歩行者であると識別されなかった障害物に対する乗員の運転特性を検出する対物運転特性検出手段と、前記障害物検出手段により検出された障害物が歩行者であるときに、前記対歩行者運転特性検出手段の検出結果と前記対物運転特性検出手段の検出結果とに基づいて、前記障害物検出手段 で検出された障害物が歩行者であるときと歩行者以外の障害物であるときとのいずれのときに障害物からより離れた位置で制動を行っているかを判定する判定手段と、前記障害物が歩行者であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対歩行者運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更し、前記障害物が歩行者以外の障害物であるときに障害物からより離れた位置で制動を行っていると判定された場合には、前記対物運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する制動特性変更手段と、を備え、
    前記対歩行者運転特性検出手段は、昼間か夜間かを識別する昼夜識別手段を備え、前記制動特性変更手段は、前記昼夜識別手段の識別結果に基づいて昼夜の前記運転特性に有意差があるか否か判定し、有意差がある場合には前記制動特性の変更幅を昼夜で切り替えることを特徴とする車両用衝突防止装置。
  12. 自車の進行方向の障害物を検出する障害物検出手段と、自車の走行状態を検出する走行状態検出手段と、前記障害物検出手段及び走行状態検出手段の検出結果に基づいて制動力を演算して自動制動を行う自動制動手段と、を備えた車両用衝突防止装置において、
    前記障害物検出手段により検出された障害物を識別する障害物識別手段と、前記障害物識別手段が障害物の種類を識別した場合に、その障害物に対する乗員の運転特性を検出する対障害物運転特性検出手段と、前記障害物運転特性検出手段の検出結果に基づいて前記自動制動手段の制動特性を変更する対障害物制動特性変更手段と、を備え、
    前記対障害物運転特性検出手段は、障害物に対して乗員が自ら制動を行ったときに、障害物の移動速度と、自車を基準として自車進行方向に伸びる直線と障害物との間の距離である横方向の間隔と、障害物の乗員又は障害物である歩行者の年齢情報と、自車の平均減速度と、最大制動力の発生位置と、所定車速に到達したときの自車から障害物までの自車進行方向の距離である進行方向の間隔と、を障害物の種類毎に記憶するとともに、前記記憶されている障害物の移動速度と、横方向の間隔と、乗員又は歩行者の年齢情報と、に基づいて、前記記憶されている平均減速度と、最大制動力の発生位置と、進行方向の間隔と、を算出することができる回帰式を前記障害物の種類毎に記憶する運転者減速特性記憶手段を備えたことを特徴とする車両用衝突防止装置。
  13. 前記障害物識別手段は、走査電波を送信する走査電波送信手段と、前記走査電波に呼応して障害物から送信される障害物の固有情報を受信する障害物情報受信手段と、を有する請求項12に記載の車両用衝突防止装置。
  14. 前記対障害物制動特性変更手段は、障害物の種類と、障害物の移動速度と、横方向の間隔と、乗員又は歩行者の年齢情報と、に基づき、前記運転者減速特性記憶手段に記憶されている回帰式を参照して、自動制動開始位置と、最大制動力の発生位置と、目標停止位置と、を演算し、その演算結果に基づいて前記自動制動手段の自動制動特性を変更する請求項12又は13に記載の車両用衝突防止装置。
JP2000248257A 2000-08-18 2000-08-18 車両用衝突防止装置 Expired - Fee Related JP3838005B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000248257A JP3838005B2 (ja) 2000-08-18 2000-08-18 車両用衝突防止装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000248257A JP3838005B2 (ja) 2000-08-18 2000-08-18 車両用衝突防止装置

Publications (2)

Publication Number Publication Date
JP2002059820A JP2002059820A (ja) 2002-02-26
JP3838005B2 true JP3838005B2 (ja) 2006-10-25

Family

ID=18738199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000248257A Expired - Fee Related JP3838005B2 (ja) 2000-08-18 2000-08-18 車両用衝突防止装置

Country Status (1)

Country Link
JP (1) JP3838005B2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003302470A (ja) * 2002-04-05 2003-10-24 Sogo Jidosha Anzen Kogai Gijutsu Kenkyu Kumiai 歩行者検出装置および歩行者検出方法
JP2004142686A (ja) * 2002-10-28 2004-05-20 Hitachi Ltd 自動車用走行制御装置および自動車の走行制御システム
JP4267294B2 (ja) 2002-11-05 2009-05-27 トヨタ自動車株式会社 車輌用制動制御装置
US7027920B2 (en) * 2003-07-18 2006-04-11 Visteon Global Technologies, Inc. Low-speed collision avoidance system
JP4517705B2 (ja) * 2004-04-07 2010-08-04 株式会社アドヴィックス 車両の自動制動制御装置
JP3823989B2 (ja) * 2004-08-04 2006-09-20 日産自動車株式会社 車両用減速補助装置
JP4265592B2 (ja) 2005-10-05 2009-05-20 トヨタ自動車株式会社 車両の減速制御装置
JP4907207B2 (ja) * 2006-03-29 2012-03-28 本田技研工業株式会社 車両の走行安全装置
JP4807753B2 (ja) * 2006-11-24 2011-11-02 富士重工業株式会社 車両の運転支援装置
JP4595932B2 (ja) 2006-12-08 2010-12-08 トヨタ自動車株式会社 車両制御装置
JP4871160B2 (ja) 2007-02-16 2012-02-08 株式会社東芝 ロボットおよびその制御方法
JP2009277078A (ja) * 2008-05-15 2009-11-26 Toyota Motor Corp 交通制御システム
JP5157845B2 (ja) * 2008-11-21 2013-03-06 トヨタ自動車株式会社 視認支援装置
CN102167033A (zh) * 2011-03-29 2011-08-31 韩瀚 汽车智能安全防护系统
DE102011085325A1 (de) 2011-10-27 2013-05-02 Robert Bosch Gmbh Verfahren zum Führen eines Fahrzeugs und Fahrerassistenzsystem
JP6209969B2 (ja) * 2014-01-07 2017-10-11 トヨタ自動車株式会社 運転支援装置
JP6388281B2 (ja) * 2014-10-21 2018-09-12 ボルボトラックコーポレーション 衝突被害軽減システム
KR101628503B1 (ko) * 2014-10-27 2016-06-08 현대자동차주식회사 운전자 보조장치 및 그 작동 방법
KR102387614B1 (ko) * 2017-08-17 2022-04-15 엘지전자 주식회사 차량 운전 보조 장치 및 차량
JP6525406B1 (ja) * 2017-11-02 2019-06-05 マツダ株式会社 車両制御装置
JP7290964B2 (ja) * 2019-03-20 2023-06-14 株式会社Subaru 車両

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2722746B2 (ja) * 1990-01-29 1998-03-09 日産自動車株式会社 自動ブレーキ装置
JP3142605B2 (ja) * 1991-08-21 2001-03-07 マツダ株式会社 車両の自動制動装置
JP3280064B2 (ja) * 1992-04-22 2002-04-30 マツダ株式会社 車両の自動制動装置
JP3400484B2 (ja) * 1993-03-23 2003-04-28 マツダ株式会社 車両の安全装置
JP2545868Y2 (ja) * 1993-06-30 1997-08-27 リズム時計工業株式会社 追突防止装置
KR960032262A (ko) * 1995-02-09 1996-09-17 배순훈 차량의 주행 안전 시스템
JPH08313632A (ja) * 1995-05-19 1996-11-29 Omron Corp 警報発生装置および方法,ならびにこの警報発生装置を搭載した車両
JPH09287943A (ja) * 1996-04-18 1997-11-04 Omron Corp 距離測定装置及び安全走行システム
JP3633744B2 (ja) * 1997-03-17 2005-03-30 三菱自動車工業株式会社 車両の走行制御装置
JP3314686B2 (ja) * 1997-09-18 2002-08-12 トヨタ自動車株式会社 車両最短停止距離予測方法および車両最短停止距離予測装置
JP4389276B2 (ja) * 1997-10-21 2009-12-24 マツダ株式会社 車両の障害物警報装置
JP3646492B2 (ja) * 1997-10-24 2005-05-11 日産自動車株式会社 ブレーキアシストシステム
JP4227232B2 (ja) * 1997-12-12 2009-02-18 本田技研工業株式会社 車両の統合制御装置
JP3562314B2 (ja) * 1998-06-09 2004-09-08 日産自動車株式会社 車両用制御装置

Also Published As

Publication number Publication date
JP2002059820A (ja) 2002-02-26

Similar Documents

Publication Publication Date Title
JP3838005B2 (ja) 車両用衝突防止装置
JP6275213B2 (ja) 車両の追従発進制御装置
JP2722746B2 (ja) 自動ブレーキ装置
KR102016186B1 (ko) 드라이빙 안정성을 향상시키는 방법
JP4320045B2 (ja) 車両用支援システム
JP5195672B2 (ja) 車両制御装置、車両および車両制御方法
JP3675330B2 (ja) 車両用表示装置及び表示装置を有する自動車
US8026799B2 (en) Vehicle collision determination apparatus
JP2013543811A (ja) トラックまたは乗用車のクリティカルな運転状況を検知するための方法および衝突を回避するための方法
JP2005504677A (ja) 表示装置を有する速度制御器
JP5462927B2 (ja) 車両操作支援装置
JP3826765B2 (ja) 車両制動警報装置及び車両制動制御装置
JP2006193069A (ja) 車両用警報装置
JP2005209073A (ja) 運転支援システム
JP4301084B2 (ja) 運転支援方策決定方法および運転支援装置
JP3064770B2 (ja) 車両追突防止装置
JP3921925B2 (ja) 車両用衝突防止装置
JP6648551B2 (ja) 自動運転装置
KR20160123110A (ko) 자동 긴급 제동 시스템
JP4576922B2 (ja) 車両用走行制御装置
JP2830576B2 (ja) 車間距離検知・警報装置
JP4628596B2 (ja) 車両用運転支援装置
JP3925642B2 (ja) 運転支援装置
JP4831509B2 (ja) 自動車における衝突警告方法
JP3912992B2 (ja) 追従走行装置及びその制御方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060724

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees