JP2018111803A - エアロゲル複合材料 - Google Patents

エアロゲル複合材料 Download PDF

Info

Publication number
JP2018111803A
JP2018111803A JP2017223881A JP2017223881A JP2018111803A JP 2018111803 A JP2018111803 A JP 2018111803A JP 2017223881 A JP2017223881 A JP 2017223881A JP 2017223881 A JP2017223881 A JP 2017223881A JP 2018111803 A JP2018111803 A JP 2018111803A
Authority
JP
Japan
Prior art keywords
airgel
group
composite material
mass
sol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017223881A
Other languages
English (en)
Inventor
寛之 泉
Hiroyuki Izumi
寛之 泉
正人 宮武
Masato Miyatake
正人 宮武
智彦 小竹
Tomohiko Kotake
智彦 小竹
雄太 赤須
Yuta AKASU
雄太 赤須
入野 哲朗
Tetsuro Irino
哲朗 入野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Publication of JP2018111803A publication Critical patent/JP2018111803A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/242Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using metal fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/42Impregnation with macromolecular compounds
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Textile Engineering (AREA)
  • Laminated Bodies (AREA)
  • Silicon Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermal Insulation (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Silicon Compounds (AREA)

Abstract

【課題】優れた断熱性を有すると共に、エアロゲルの脱落を抑制することが可能なエアロゲル複合材料を提供する。【解決手段】多孔質構造を有する基材10と、該基材10に付着したエアロゲル層20とを備え、前記エアロゲル層20が、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物である、エアロゲル複合材料100、200。【選択図】図1

Description

本発明は、新規なエアロゲル複合材料に関するものであり、更に詳しくは、建築用、極低温容器用、高温容器用等における断熱材として好適に使用されるエアロゲル複合材料に関するものである。
近年、居住空間の快適性、及び、省エネルギーの要求が高まる中、断熱対象物の形状も複雑となり、また、断熱材の設置空間も狭小となる傾向にある。従って、それらに用いられる断熱材は、更なる断熱性能の向上と薄型化が求められている。
従来の断熱材としては、ウレタンフォーム、フェノールフォーム等の発泡性の断熱材が知られている。しかし、これらの材料は空気よりも熱伝導率が高いために、更なる断熱性の向上のためには、空気よりも断熱性に優れる材料を開発しなければならない。
空気より優れた断熱性を有する断熱材として、フォームを形成する空隙に、フロン又はフロン代替発泡剤等の使用により低熱伝導ガスを充填させた断熱材があるが、経時劣化による低熱伝導ガス漏出の可能性があり、断熱性能の低下が懸念される(例えば下記特許文献1)。
また、無機繊維とフェノール樹脂バインダーとを用いた芯材を有する真空断熱材が知られている(例えば下記特許文献2)。しかし、真空断熱材では、経時劣化又は梱包袋の傷といった問題により断熱性能が著しく低下し、さらに、真空梱包する点から断熱材の柔軟性がなく曲面への施工ができないといった課題がある。
特許第4084516号公報 特許第4898157号公報 米国特許第4402927号明細書
現在、常圧で最も低熱伝導の材料としてエアロゲルが知られている(例えば上記特許文献3)。エアロゲルは、微細多孔質の構造を有することにより、空気をはじめとする気体の移動が抑制されることで熱伝導が小さくなる。しかし、一般的なエアロゲルは、非常に脆く、取扱性が困難であり、生産性に課題がある。例えば、塊状のエアロゲルは、手で触って持ち上げようとするだけで破損してしまう恐れがある。
従来の断熱材のこのような問題を解決する手法として、エアロゲルと補強材とを用いたエアロゲルシートが考案されている。しかし、エアロゲル自体が脆いため、衝撃又は折り曲げ作業によりシートからエアロゲル(エアロゲル粉末等)が脱落するといった施工性の課題がある。
本発明は、上記事情を鑑みてなされたものであり、優れた断熱性を有すると共に、エアロゲルの脱落を抑制することが可能なエアロゲル複合材料を提供することを目的とする。
本発明者は、上記目的を達成するために鋭意研究を重ねた結果、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物であるエアロゲル(前記ゾルから生成された湿潤ゲルを乾燥してなるエアロゲル)が、多孔質構造を有する基材に付着しているエアロゲル複合材料が、優れた断熱性を有すると共に、エアロゲルが柔軟性を有していることでエアロゲルの脱落(粉落ち)が少ない材料となることを見出し、本発明の完成に至った。
本発明は、多孔質構造を有する基材と、該基材に付着したエアロゲルと、を備え、前記エアロゲルが、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物である、エアロゲル複合材料を提供する。
本発明のエアロゲル複合材料は、従来の断熱材料と比較して優れた断熱性を有している。また、本発明のエアロゲル複合材料によれば、エアロゲルが柔軟性を有していることで、従来の断熱材料と比較してエアロゲルの脱落を抑制することができる。本発明のエアロゲル複合材料は、エアロゲルが柔軟性を有していることで、エアロゲルの脱落を抑制しつつ、基材の柔軟性に応じて折り曲げ可能である。
ところで、エアロゲルを製造する上で超臨界乾燥を行う場合には、製造コストが高くなること、又は、バッチ式の生産によるため製造効率が充分でないことがある。これに対し、本発明のエアロゲル複合材料の一態様では、超臨界乾燥を用いることなくエアロゲル複合材料を得ることができる。
前記ゾルは、シリカ粒子を更に含有することができる。これにより、更に優れた断熱性及び柔軟性を達成することができる。
前記シリカ粒子の平均1次粒子径は、1〜500nmとすることができる。これにより、断熱性と柔軟性とが更に向上し易くなる。
前記ケイ素化合物は、前記加水分解性の官能基としてアルコキシ基を有するケイ素化合物を含むことができる。前記アルコキシ基の炭素数は、1〜6とすることができる。
前記ケイ素化合物は、前記縮合性の官能基としてヒドロキシアルキル基を有するケイ素化合物を含むことができる。前記ヒドロキシアルキル基の炭素数は、1〜6とすることができる。
前記ケイ素化合物は、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物を含むことができる。
前記ポリシロキサン化合物は、下記一般式(A)で表される構造を有する化合物を含むことができる。
Figure 2018111803

[式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1〜50の整数を示す。]
前記ポリシロキサン化合物は、下記一般式(B)で表される構造を有する化合物を含むことができる。
Figure 2018111803

[式(B)中、R1bはアルキル基又はアルコキシ基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1〜50の整数を示す。]
前記エアロゲルは、下記一般式(1)で表される構造を有することができる。
Figure 2018111803

[式(1)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。]
前記エアロゲルは、支柱部及び橋かけ部を備えるラダー型構造を有し、前記橋かけ部が、下記一般式(2)で表される構造を有する態様とすることができる。
Figure 2018111803

[式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1〜50の整数を示す。]
前記エアロゲルは、下記一般式(3)で表されるラダー型構造を有することができる。
Figure 2018111803

[式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1〜3000の整数を示し、bは1〜50の整数を示す。]
本発明のエアロゲル複合材料は、前記多孔質構造における孔が連通孔であり、前記孔の体積の合計が前記基材の全体積の50〜99体積%である態様とすることができる。これにより、断熱性が更に向上し易くなる。
本発明のエアロゲル複合材料は、前記連通孔に前記エアロゲルが充填されている態様とすることができる。これにより、空気による熱伝導が抑制されて断熱性が更に向上する。
前記多孔質構造を有する基材は、直径0.1〜1000μmの繊維状物質からなるシートとすることができる。これにより、繊維による熱伝導が抑制でき、かつ、空隙が充分に確保されるためシートへの前記ゾルの含浸性が向上する。
本発明のエアロゲル複合材料は、前記繊維状物質に前記エアロゲルが付着している態様とすることができる。これにより、前記繊維状物質同士の交点にエアロゲルが存在することで、繊維状物質間の熱伝導が抑制でき、断熱性が更に向上する。
本発明によれば、優れた断熱性を有すると共に、エアロゲルの脱落を抑制することが可能なエアロゲル複合材料を提供することができる。
図1は、エアロゲル複合材料の実施形態を示す断面図である。
以下、本発明の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
<定義>
本明細書において、「〜」を用いて示された数値範囲は、「〜」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。「A又はB」とは、A及びBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。本明細書に例示する材料は、特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。本明細書において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
<エアロゲル複合材料>
本実施形態のエアロゲル複合材料は、多孔質構造を有する基材(多孔質基材)と、該基材に付着したエアロゲルと、を備える。前記エアロゲルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(シリコン化合物)、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物(加水分解性の官能基が加水分解したケイ素化合物)からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲル(前記ゾルに由来する湿潤ゲル)の乾燥物である。すなわち、前記エアロゲルは、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルから生成された湿潤ゲルを乾燥してなる。前記エアロゲルは、例えば、基材内部に充填されている。
本実施形態のエアロゲル複合材料は、例えば、多孔質基材と、多孔質基材の少なくとも一部を被覆するエアロゲル層と、を有している。図1(a)及び図1(b)は、エアロゲル複合材料の実施形態を示す断面図である。図1(a)に示すエアロゲル複合材料100、及び、図1(b)に示すエアロゲル複合材料200は、多孔質基材10と、エアロゲル層20とを備えている。図1(a)では、多孔質基材10の内部にエアロゲルが充填されていると共に、多孔質基材10の全体がエアロゲル層20に被覆されている。図1(b)では、多孔質基材10の表面上にエアロゲル層20が配置されている。
本実施形態のエアロゲル複合材料では、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物であるエアロゲル(前記ゾルから生成された湿潤ゲルを乾燥してなるエアロゲル)を用いているため、断熱性と柔軟性とを両立することができる。特に、従来のエアロゲルでは、断熱性に優れるものの脆いため、取り扱い性が困難であるのに対し、本実施形態のエアロゲル複合材料では、上記特定のエアロゲルを用いることにより柔軟性が向上するため取り扱い性を向上させることができる。
エアロゲル層の厚みは、200μm以下とすることができ、100μm以下であってもよく、80μm以下であってもよく、50μm以下であってもよく、30μm以下であってもよい。エアロゲル層の厚みを200μm以下とすることで、粉落ちが容易に抑制されて取り扱い易くなる。エアロゲル層の厚みは、1μm以上とすることができ、3μm以上であってもよく、5μm以上であってもよく、10μm以上であってもよい。
本実施形態のエアロゲル複合材料の厚みは、100mm以下であってもよく、10mm以下であってもよく、1mm以下であってもよい。エアロゲル複合材料の厚みを100mm以下とすることで、エアロゲル複合材料が切断され易く施工性が良好となる。
(エアロゲル)
狭義には、湿潤ゲルに対して超臨界乾燥法を用いて得られた乾燥ゲルをエアロゲル、大気圧下での乾燥により得られた乾燥ゲルをキセロゲル、凍結乾燥により得られた乾燥ゲルをクライオゲルと称するが、本実施形態においては、湿潤ゲルのこれらの乾燥手法によらず、得られた低密度の乾燥ゲルを「エアロゲル」と称する。すなわち、本実施形態においてエアロゲルとは、広義のエアロゲルである「Gel comprised of a microporous solid in which the dispersed phase is a gas(分散相が気体である微多孔性固体から構成されるゲル)」を意味するものである。一般的にエアロゲルの内部は、網目状の微細構造となっており、2〜20nm程度のエアロゲル粒子(エアロゲルを構成する粒子)が結合したクラスター構造を有している。このクラスターにより形成される骨格間には、100nmに満たない細孔がある。これにより、エアロゲルは、三次元的に微細な多孔性の構造を有している。なお、本実施形態におけるエアロゲルは、例えば、シリカを主成分とするシリカエアロゲルである。シリカエアロゲルとしては、例えば、有機基(メチル基等)又は有機鎖を導入した、いわゆる、有機−無機ハイブリッド化されたシリカエアロゲルが挙げられる。例えば、本実施形態におけるエアロゲル層は、エアロゲルにより構成される層である。エアロゲル層は、ポリシロキサン由来の構造を有するエアロゲルを含有する層であってもよい。
本実施形態のエアロゲルは、(分子内に)加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物である。すなわち、本実施形態のエアロゲルは、(分子内に)加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルから生成された湿潤ゲルを乾燥して得られる。これらの態様を採用することにより、断熱性と柔軟性とに優れる。前記縮合物は、加水分解性の官能基を有するケイ素化合物の加水分解により得られた加水分解生成物の縮合反応により得られてもよく、加水分解により得られた官能基ではない縮合性の官能基を有するケイ素化合物の縮合反応により得られてもよい。前記ケイ素化合物は、加水分解性の官能基及び縮合性の官能基の少なくとも一方を有していればよく、加水分解性の官能基及び縮合性の官能基の双方を有していてもよい。なお、後述する各エアロゲルは、このように、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物(前記ゾルから生成された湿潤ゲルを乾燥することで得られるもの)であってもよい。
エアロゲル層は、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物から構成される層であってもよい。すなわち、エアロゲル層は、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルから生成された湿潤ゲルを乾燥してなる層で構成されていてもよい。
本実施形態のエアロゲルは、シロキサン結合(Si−O−Si)を含む主鎖を有するポリシロキサンを含有することができる。エアロゲルは、構造単位として、下記M単位、D単位、T単位又はQ単位を有することができる。
Figure 2018111803
上記式中、Rは、ケイ素原子に結合している原子(水素原子等)又は原子団(アルキル基等)を示す。M単位は、ケイ素原子が1個の酸素原子と結合した一価の基からなる単位である。D単位は、ケイ素原子が2個の酸素原子と結合した二価の基からなる単位である。T単位は、ケイ素原子が3個の酸素原子と結合した三価の基からなる単位である。Q単位は、ケイ素原子が4個の酸素原子と結合した四価の基からなる単位である。これらの単位の含有量に関する情報は、Si−NMRにより得ることができる。
本実施形態のエアロゲルは、シルセスキオキサンを含有していてもよい。シルセスキオキサンは、構造単位として上記T単位を有するポリシロキサンであり、組成式:(RSiO1.5を有する。シルセスキオキサンは、カゴ型、ラダー型、ランダム型等の種々の骨格構造を有することができる。
加水分解性の官能基としては、例えば、アルコキシ基が挙げられる。縮合性の官能基(加水分解性の官能基に該当する官能基を除く)としては、例えば、水酸基、シラノール基、カルボキシル基及びフェノール性水酸基が挙げられる。水酸基は、ヒドロキシアルキル基等の水酸基含有基に含まれていてもよい。加水分解性の官能基及び縮合性の官能基のそれぞれは、単独で又は2種類以上を混合して用いてもよい。
ケイ素化合物は、加水分解性の官能基としてアルコキシ基を有するケイ素化合物を含むことが可能であり、また、縮合性の官能基としてヒドロキシアルキル基を有するケイ素化合物を含むことができる。ケイ素化合物は、エアロゲルの柔軟性が更に向上する観点から、アルコキシ基、シラノール基、ヒドロキシアルキル基及びポリエーテル基からなる群より選ばれる少なくとも1種を有することができる。ケイ素化合物は、ゾルの相溶性が向上する観点から、アルコキシ基及びヒドロキシアルキル基からなる群より選ばれる少なくとも1種を有することができる。
ケイ素化合物の反応性の向上とエアロゲルの熱伝導率の低減の観点から、アルコキシ基及びヒドロキシアルキル基のそれぞれの炭素数は、1〜6とすることができ、エアロゲルの柔軟性が更に向上する観点から2〜4であってもよい。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基等が挙げられる。ヒドロキシアルキル基としては、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基等が挙げられる。
本実施形態のエアロゲルとしては、以下の態様が挙げられる。これらの態様を採用することにより、断熱性と柔軟性とに更に優れるエアロゲルを得ることが容易となる。各々の態様を採用することで、各々の態様に応じた断熱性と柔軟性とを有するエアロゲルを得ることができる。
[第一の態様]
本実施形態のエアロゲルは、(分子内に)加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物(前記加水分解性の官能基が加水分解したポリシロキサン化合物)からなる群より選択される少なくとも一種の化合物(以下、場合により「ポリシロキサン化合物群」という)を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。すなわち、本実施形態のエアロゲルは、(分子内に)加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルから生成された湿潤ゲルを乾燥して得られるものであってもよい。なお、後述する各エアロゲルも、このように、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物(前記ゾルから生成された湿潤ゲルを乾燥することで得られるもの)であってもよい。
エアロゲル層は、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物から構成される層であってもよい。すなわち、エアロゲル層は、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルから生成された湿潤ゲルを乾燥してなる層で構成されていてもよい。
加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物は、加水分解性の官能基及び縮合性の官能基とは異なる反応性基(加水分解性の官能基及び縮合性の官能基に該当しない官能基)を更に有していてもよい。反応性基としては、特に限定されないが、例えば、エポキシ基、メルカプト基、フェノール性水酸基、グリシドキシ基、ビニル基、アクリロイル基、メタクリロイル基及びアミノ基が挙げられる。エポキシ基は、グリシドキシ基等のエポキシ基含有基に含まれていてもよい。前記反応性基を有するポリシロキサン化合物は、単独で又は2種類以上を混合して用いてもよい。
ヒドロキシアルキル基を有するポリシロキサン化合物としては、例えば、下記一般式(A)で表される構造を有する化合物が挙げられる。
Figure 2018111803
式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1〜50の整数を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。式(A)中、2個のR1aは各々同一であっても異なっていてもよく、同様に、2個のR2aは各々同一であっても異なっていてもよい。式(A)中、2個以上のR3aは各々同一であっても異なっていてもよく、同様に、2個以上のR4aは各々同一であっても異なっていてもよい。
上記構造のポリシロキサン化合物又はその加水分解生成物を含有するゾルの縮合物である湿潤ゲル(前記ゾルから生成された湿潤ゲル)を用いることにより、低熱伝導率かつ柔軟なエアロゲルを更に得易くなる。同様の観点から、以下に示す特徴を満たしてもよい。式(A)中、R1aとしては、例えば炭素数が1〜6のヒドロキシアルキル基が挙げられ、具体的には、ヒドロキシエチル基及びヒドロキシプロピル基が挙げられる。式(A)中、R2aとしては、例えば炭素数が1〜6のアルキレン基が挙げられ、具体的には、エチレン基及びプロピレン基が挙げられる。式(A)中、R3a及びR4aはそれぞれ独立に炭素数が1〜6のアルキル基又はフェニル基であってもよい。該アルキル基は、メチル基であってもよい。式(A)中、nは2〜30とすることができ、5〜20であってもよい。
上記一般式(A)で表される構造を有するポリシロキサン化合物としては、市販品を用いることができ、例えば、X−22−160AS、KF−6001、KF−6002、KF−6003等の化合物(いずれも、信越化学工業株式会社製)、及び、XF42−B0970、Fluid OFOH 702−4%等の化合物(いずれも、モメンティブ社製)が挙げられる。
アルコキシ基を有するポリシロキサン化合物としては、例えば、下記一般式(B)で表される構造を有する化合物が挙げられる。
Figure 2018111803
式(B)中、R1bはアルキル基、アルコキシ基又はアリール基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1〜50の整数を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。なお、式(B)中、2個のR1bは各々同一であっても異なっていてもよく、2個のR2bは各々同一であっても異なっていてもよく、同様に、2個のR3bは各々同一であっても異なっていてもよい。式(B)中、mが2以上の整数の場合、2個以上のR4bは各々同一であっても異なっていてもよく、同様に、2個以上のR5bは各々同一であっても異なっていてもよい。
上記構造のポリシロキサン化合物又はその加水分解生成物を含有するゾルの縮合物である湿潤ゲル(前記ゾルから生成された湿潤ゲル)を用いることにより、低熱伝導率かつ柔軟なエアロゲルを更に得易くなる。同様の観点から、以下に示す特徴を満たしてもよい。式(B)中、R1bとしては、例えば炭素数が1〜6のアルキル基及び炭素数が1〜6のアルコキシ基が挙げられ、具体的には、メチル基、メトキシ基及びエトキシ基が挙げられる。式(B)中、R2b及びR3bは、それぞれ独立に炭素数が1〜6のアルコキシ基であってもよい。該アルコキシ基としては、例えばメトキシ基及びエトキシ基が挙げられる。式(B)中、R4b及びR5bは、それぞれ独立に炭素数が1〜6のアルキル基又はフェニル基であってもよい。該アルキル基は、メチル基であってもよい。式(B)中、mは2〜30とすることができ、5〜20であってもよい。
上記一般式(B)で表される構造を有するポリシロキサン化合物は、例えば、特開2000−26609号公報、特開2012−233110号公報等にて報告される製造方法を適宜参照して得ることができる。
なお、アルコキシ基は加水分解するため、アルコキシ基を有するポリシロキサン化合物はゾル中にて加水分解生成物として存在する可能性があり、アルコキシ基を有するポリシロキサン化合物と、その加水分解生成物とは混在していてもよい。また、アルコキシ基を有するポリシロキサン化合物において、分子中のアルコキシ基の全てが加水分解されていてもよいし、部分的に加水分解されていてもよい。
加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物のそれぞれは、単独で又は2種類以上を混合して用いてもよい。
良好な反応性を更に得易くなることから、上記ゾルに含まれるポリシロキサン化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物の含有量、及び、前記加水分解性の官能基を有するポリシロキサン化合物の加水分解生成物の含有量の総和)は、ゾルの総量100質量部に対し、1質量部以上とすることができ、3質量部以上であってもよく、4質量部以上であってもよく、5質量部以上であってもよく、7質量部以上であってもよい。良好な相溶性を更に得易くなることから、ポリシロキサン化合物群の前記含有量は、ゾルの総量100質量部に対し、50質量部以下とすることができ、30質量部以下であってもよく、15質量部以下であってもよい。すなわち、ポリシロキサン化合物群の前記含有量は、ゾルの総量100質量部に対し、1〜50質量部とすることができ、3〜50質量部であってもよく、4〜50質量部であってもよく、5〜50質量部であってもよく、7〜30質量部であってもよく、7〜15質量部であってもよい。
[第二の態様]
加水分解性の官能基又は縮合性の官能基を有するケイ素化合物としては、ポリシロキサン化合物以外のケイ素化合物(シリコン化合物)を用いてもよい。すなわち、本実施形態のエアロゲルは、(分子内に)加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種の化合物(以下、場合により「ケイ素化合物群」という)を含有するゾルの縮合物である湿潤ゲルの乾燥物であってもよい。前記ケイ素化合物における分子内のケイ素数は、1又は2とすることができる。
加水分解性の官能基を有するケイ素化合物としては、特に限定されないが、例えば、アルキルケイ素アルコキシドが挙げられる。アルキルケイ素アルコキシドにおいて、耐水性が向上する観点から、加水分解性の官能基の数は、3個以下であってもよく、2〜3個であってもよい。アルキルケイ素アルコキシドとしては、例えば、モノアルキルトリアルコキシシラン、モノアルキルジアルコキシシラン、ジアルキルジアルコキシシラン、モノアルキルモノアルコキシシラン、ジアルキルモノアルコキシシラン及びトリアルキルモノアルコキシシランが挙げられる。アルキルケイ素アルコキシドとしては、例えば、メチルトリメトキシシラン、メチルジメトキシシラン、ジメチルジメトキシシラン及びエチルトリメトキシシランが挙げられる。
加水分解性の官能基の数が3個以下であり、反応性基を有するケイ素化合物として、ビニルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルメチルジメトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン等も用いることができる。
さらに、分子末端の加水分解性の官能基が3個以下のケイ素化合物として、ビストリメトキシシリルメタン、ビストリメトキシシリルエタン、ビストリメトキシシリルヘキサン等も用いることができる。
加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物のそれぞれは、単独で又は2種類以上を混合して用いてもよい。
良好な反応性を更に得易くなることから、上記ゾルに含まれるケイ素化合物群の含有量(加水分解性の官能基又は縮合性の官能基を有するケイ素化合物(ポリシロキサン化合物を除く)の含有量、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物の含有量の総和)は、ゾルの総量100質量部に対し、5質量部以上とすることができ、10質量部以上であってもよく、12質量部以上であってもよく、15質量部以上であってもよく、18質量部以上であってもよい。良好な相溶性を更に得易くなることから、ケイ素化合物群の前記含有量は、ゾルの総量100質量部に対し、50質量部以下とすることができ、30質量部以下であってもよく、25質量部以下であってもよく、20質量部以下であってもよい。すなわち、ケイ素化合物群の前記含有量は、ゾルの総量100質量部に対し、5〜50質量部とすることができ、10〜30質量部であってもよく、12〜30質量部であってもよく、15〜25質量部であってもよく、18〜20質量部であってもよい。
前記ポリシロキサン化合物群の含有量及び前記ケイ素化合物群の含有量の総和は、良好な反応性を更に得易くなることから、ゾルの総量100質量部に対し、5質量部以上とすることができ、10質量部以上であってもよく、15質量部以上であってもよく、20質量部以上であってもよく、22質量部以上であってもよい。良好な相溶性を更に得易くなることから、前記含有量の総和は、ゾルの総量100質量部に対し、50質量部以下とすることができ、30質量部以下であってもよく、25質量部以下であってもよい。すなわち、前記含有量の総和は、ゾルの総量100質量部に対し、5〜50質量部とすることができ、10〜30質量部であってもよく、15〜30質量部であってもよく、20〜30質量部であってもよく、22〜25質量部であってもよい。
前記ポリシロキサン化合物群の含有量と、前記ケイ素化合物群の含有量との比(ポリシロキサン化合物群:ケイ素化合物群)は、1:0.5〜1:4とすることができ、1:1〜1:2であってもよく、1:2〜1:4であってもよく、1:3〜1:4であってもよい。これらの化合物の含有量の比を1:0.5以上とすることにより、良好な相溶性を更に得易くなる。上記含有量の比を1:4以下とすることにより、ゲルの収縮を更に抑制し易くなる。
[第三の態様]
本実施形態のエアロゲルは、下記一般式(1)で表される構造を有することができる。本実施形態のエアロゲルは、式(1)で表される構造を含む構造として、下記一般式(1a)で表される構造を有することができる。上記一般式(A)で表される構造を有するポリシロキサン化合物を使用することにより、式(1)及び式(1a)で表される構造をエアロゲルの骨格中に導入することができる。
Figure 2018111803
Figure 2018111803
式(1)及び式(1a)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、R及びRはそれぞれ独立にアルキレン基を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。pは1〜50の整数を示す。式(1a)中、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(1a)中、2個のRは各々同一であっても異なっていてもよく、同様に、2個のRは各々同一であっても異なっていてもよい。
上記式(1)又は式(1a)で表される構造をエアロゲルの骨格中に導入することにより、低熱伝導率かつ柔軟なエアロゲルを容易に得ることができる。同様の観点から、以下に示す特徴を満たしてもよい。式(1)及び式(1a)中、R及びRは、それぞれ独立に炭素数が1〜6のアルキル基又はフェニル基であってもよい。該アルキル基は、メチル基であってもよい。式(1)及び式(1a)中、R及びRは、それぞれ独立に炭素数が1〜6のアルキレン基であってもよい。該アルキレン基は、エチレン基又はプロピレン基であってもよい。式(1a)中、pは2〜30とすることができ、5〜20であってもよい。
[第四の態様]
本実施形態のエアロゲルは、支柱部及び橋かけ部を備えるラダー型構造を有するエアロゲルであり、かつ、橋かけ部が、下記一般式(2)で表される構造を有するエアロゲルであってもよい。エアロゲルの骨格中にこのようなラダー型構造を導入することにより、耐熱性及び機械的強度を容易に向上させることができる。上記一般式(B)で表される構造を有するポリシロキサン化合物を使用することにより、一般式(2)で表される構造を有する橋かけ部を含むラダー型構造をエアロゲルの骨格中に導入することができる。なお、本実施形態において「ラダー型構造」とは、2本の支柱部(struts)と、支柱部同士を連結する橋かけ部(bridges)とを有する構造(いわゆる「梯子」の形態を有する構造)である。本態様において、エアロゲル骨格がラダー型構造からなっていてもよいが、エアロゲルが部分的にラダー型構造を有していてもよい。
Figure 2018111803
式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1〜50の整数を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。なお、式(2)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。
上記の構造をエアロゲルの骨格中に導入することにより、例えば、従来のラダー型シルセスキオキサンに由来する構造を有する(すなわち、下記一般式(X)で表される構造を有する)エアロゲルよりも優れた柔軟性を有するエアロゲルとなる。なお、下記一般式(X)に示すように、従来のラダー型シルセスキオキサンに由来する構造を有するエアロゲルでは、橋かけ部の構造が−O−であるが、本態様のエアロゲルでは、橋かけ部の構造が上記一般式(2)で表される構造(ポリシロキサン構造)である。
Figure 2018111803
式(X)中、Rはヒドロキシ基、アルキル基又はアリール基を示す。
支柱部となる構造及びその鎖長、並びに、橋かけ部となる構造の間隔は特に限定されないが、耐熱性と機械的強度とを更に向上させる観点から、ラダー型構造としては、下記一般式(3)で表されるラダー型構造を有していてもよい。
Figure 2018111803
式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1〜3000の整数を示し、bは1〜50の整数を示す。ここで、アリール基としては、例えばフェニル基及び置換フェニル基が挙げられる。置換フェニル基の置換基としては、例えばアルキル基、ビニル基、メルカプト基、アミノ基、ニトロ基及びシアノ基が挙げられる。式(3)中、bが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に、2個以上のRは各々同一であっても異なっていてもよい。式(3)中、aが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよく、同様に、cが2以上の整数の場合、2個以上のRは各々同一であっても異なっていてもよい。
更に優れた柔軟性を得る観点から、式(2)及び式(3)中、R、R、R及びR(ただし、R及びRは式(3)中のみ)は、それぞれ独立に炭素数が1〜6のアルキル基又はフェニル基であってもよい。該アルキル基は、メチル基であってもよい。式(3)中、a及びcは、それぞれ独立に6〜2000とすることができ、10〜1000であってもよい。式(2)及び式(3)中、bは、2〜30とすることができ、5〜20であってもよい。
[第五の態様]
本実施形態のエアロゲルは、シリカ粒子を含有していてもよい。エアロゲルを与えるゾルは、シリカ粒子を更に含有していてもよい。すなわち、本実施形態のエアロゲルは、シリカ粒子を含有するゾルの縮合物である湿潤ゲルの乾燥物(前記ゾルから生成された湿潤ゲルを乾燥して得られるもの)であってもよい。エアロゲル層は、シリカ粒子を含有するゾルの縮合物である湿潤ゲルの乾燥物から構成される層であってもよい。すなわち、エアロゲル層は、シリカ粒子を含有するゾルから生成された湿潤ゲルを乾燥してなる層で構成されていてもよい。なお、これまで述べてきたエアロゲルも、このように、シリカ粒子を含有するゾルの縮合物である湿潤ゲルの乾燥物(前記ゾルから生成された湿潤ゲルを乾燥することで得られるもの)であってもよい。
シリカ粒子としては、特に制限なく用いることができるが、例えば非晶質シリカ粒子が挙げられる。非晶質シリカ粒子としては、例えば、溶融シリカ粒子、ヒュームドシリカ粒子及びコロイダルシリカ粒子が挙げられる。これらのうち、コロイダルシリカ粒子は、単分散性が高く、ゾル中での凝集を抑制し易い。
シリカ粒子の形状としては、特に制限されず、球状、まゆ型、会合型等が挙げられる。これらのうち、シリカ粒子として球状の粒子を用いることにより、ゾル中での凝集を抑制し易くなる。シリカ粒子の平均1次粒子径は、適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲルが得易くなることから、1nm以上とすることができ、5nm以上であってもよく、10nm以上であってもよい。一方、シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなることから、シリカ粒子の平均1次粒子径は、500nm以下とすることができ、300nm以下であってもよく、250nm以下であってもよい。すなわち、シリカ粒子の平均1次粒子径は、1〜500nmとすることができ、5〜300nmであってもよく、10〜250nmであってもよい。
耐収縮性に優れるエアロゲルを得易くなることから、シリカ粒子1gあたりのシラノール基数は、10×1018個/g以上とすることができ、50×1018個/g以上であってもよく、100×1018個/g以上であってもよい。均質なエアロゲルが得易くなることから、シリカ粒子1gあたりのシラノール基数は、1000×1018個/g以下とすることができ、800×1018個/g以下であってもよく、700×1018個/g以下であってもよい。すなわち、シリカ粒子1gあたりのシラノール基数は、10×1018〜1000×1018個/gとすることができ、50×1018〜800×1018個/gであってもよく、100×1018〜700×1018個/gであってもよい。
適度な強度をエアロゲルに付与し易くなり、乾燥時の耐収縮性に優れるエアロゲルが得易くなることから、上記ゾルに含まれるシリカ粒子の含有量は、ゾルの総量100質量部に対し、1質量部以上とすることができ、4質量部以上であってもよい。シリカ粒子の固体熱伝導を抑制し易くなり、断熱性に優れるエアロゲルが得易くなることから、上記ゾルに含まれるシリカ粒子の含有量は、20質量部以下とすることができ、15質量部以下であってもよく、12質量部以下であってもよく、10質量部以下であってもよく、8質量部以下であってもよい。すなわち、シリカ粒子の含有量は、ゾルの総量100質量部に対し、1〜20質量部とすることができ、4〜15質量部であってもよく、4〜12質量部であってもよく、4〜10質量部であってもよく、4〜8質量部であってもよい。
[その他の態様]
本実施形態のエアロゲルは、下記一般式(4)で表される構造を有することができる。本実施形態のエアロゲルは、シリカ粒子を含有すると共に、下記一般式(4)で表される構造を有することができる。
Figure 2018111803
式(4)中、Rはアルキル基を示す。アルキル基としては、例えば炭素数が1〜6のアルキル基が挙げられ、具体的には、メチル基が挙げられる。
本実施形態のエアロゲルは、下記一般式(5)で表される構造を有することができる。本実施形態のエアロゲルは、シリカ粒子を含有すると共に、下記一般式(5)で表される構造を有することができる。
Figure 2018111803
式(5)中、R10及びR11はそれぞれ独立にアルキル基を示す。アルキル基としては、例えば炭素数が1〜6のアルキル基が挙げられ、具体的には、メチル基が挙げられる。
本実施形態のエアロゲルは、下記一般式(6)で表される構造を有することができる。本実施形態のエアロゲルは、シリカ粒子を含有すると共に、下記一般式(6)で表される構造を有することができる。
Figure 2018111803
式(6)中、R12はアルキレン基を示す。アルキレン基としては、例えば炭素数が1〜10のアルキレン基が挙げられ、具体的には、エチレン基及びヘキシレン基が挙げられる。
本実施形態のエアロゲルは、ポリシロキサン由来の構造を有していてもよい。ポリシロキサン由来の構造としては、例えば、上記一般式(1)、(2)、(3)、(4)、(5)又は(6)で表される構造が挙げられる。本実施形態のエアロゲルは、シリカ粒子を含有せずに、上記一般式(4)、(5)及び(6)で表される構造のうち、少なくとも一種を有するものであってもよい。
(多孔質基材)
「多孔質基材」は、一般的に、孔(微細孔)が多く含まれる材料の総称であり、孔の大きさによってマイクロポーラス材料、メソポーラス材料及びマクロポーラス材料に分類されるが、本実施形態では、孔の大きさによらず「多孔質基材」と称する。多孔質基材としては、例えば、繊維状物質からなる基材、及び、3次元で複雑な骨格を形成している基材が挙げられる。具体的には、多孔質基材としては、不織布、多孔質構造を有する多孔質シート等が挙げられる。多孔質構造における孔(多孔質構造を構成する孔)は、連通孔であってもよい。連通孔とは、多孔質基材内部の孔(空隙)と多孔質基材表面の孔(空隙)とが結合している状態であり、2次元的又は3次元的に空隙のネットワークを形成している状態を意味する。前記連通孔に前記エアロゲルが充填されていてもよい。
前記孔のサイズは、基材の面方向(厚み方向に直交する方向)に沿って基材の任意の10箇所の断面を観察したときの、観察面における孔が作る形状の最大直線距離を示す。孔のサイズは、0.1〜1000μmとすることができる。サイズが0.1μm以上であれば、ゾル塗液を容易に含浸させることができる。サイズが1000μm以下であれば、孔からのエアロゲルの脱落を容易に抑制できる。
前記孔の体積の合計(空隙率、気孔率)は、前記基材の全体積の50〜99体積%とすることができ、60〜99体積%であってもよく、70〜99体積%であってもよい。これにより、断熱性が更に向上し易くなる。多孔質構造における孔が連通孔である場合において孔の体積の合計が前記範囲を満たしていてもよい。孔の体積は、下記式に基づき得ることができる。
空隙率(体積%)=(1−基材の真の体積/基材の見かけ体積)×100
基材の真の体積:基材(基材を構成する材料)の密度と質量から算出した体積
基材の見かけ体積:基材の寸法から算出した体積
多孔質基材を構成する材質としては、ビニル重合体、ポリエステル、ポリアクリロニトリル、ポリスルホン、フェノール樹脂、ポリウレタン、ポリアミド、ポリイミド、炭素等の有機多孔質体;ガラス、金属(例えばニッケル)、金属酸化物(例えばアルミナ)等の無機多孔質体などが挙げられる。ビニル重合体としては、ポリオレフィン類(例えば、ポリエチレン及びポリプロピレン)、酢酸セルロース、ニトロセルロース、ポリテトラフルオロエチレン、ポリカーボネート、ポリスチレン、ポリビニルアルコール、ポリアクリル酸エステル、ポリ酢酸ビニル等が挙げられる。多孔質基材を構成する材質としては、耐熱性に更に優れる点から、ガラス、金属又は金属酸化物(例えばアルミナ)を用いることができ、熱伝導率を更に低減する点から、ガラス又はアルミナを用いることができる。
本実施形態のエアロゲル複合材料では、例えば、繊維状物質からなる基材、又は、3次元で複雑な骨格を形成している基材の空隙部分にエアロゲルが存在している。このような構造をとることにより、厚み方向に対する空気の移動が抑制され、断熱性が容易に向上する。さらに、固体の熱伝導の道筋は、エアロゲルを充填することにより高度に複雑化されるため熱伝導率の低減に効果がある。
多孔質基材は、繊維状物質からなるシート(不織布、繊維シート等)であってもよい。このような多孔質基材においては、例えば、繊維状物質にエアロゲルが付着している。
繊維状物質としては、ナイロン、ポリエステル、ポリプロピレン、ポリアクリロニトリル、ビニロン、ポリオレフィン、ポリウレタン、レーヨン、炭素繊維等の有機繊維;ガラス、ロックウール、セラミック等の無機繊維;銅、鉄、ステンレス、金、銀、アルミニウム等の金属繊維などが挙げられる。繊維状物質としては、耐熱性に更に優れる点から、無機繊維を用いることができ、熱伝導率を更に低減する点から、ガラス、ロックウール又はセラミックを用いることができる。
繊維状物質の直径(繊維径)は、0.1〜1000μmとすることができ、0.1〜100μmであってもよく、0.1〜80μmであってもよい。これにより、繊維による熱伝導が容易に抑制でき、かつ、空隙が充分に確保されるためシートへの前記ゾルの含浸性が向上する。繊維状物質の直径は、顕微鏡で観察し、任意に選ばれる繊維10本の直径の平均値として測定することができる。
<エアロゲル複合材料の製造方法>
次に、エアロゲル複合材料の製造方法について説明する。本実施形態のエアロゲル複合材料は、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲル(前記ゾルから生成された湿潤ゲル)を乾燥することにより得ることができる。本実施形態のエアロゲル複合材料の製造方法は、上記湿潤ゲルを乾燥する乾燥工程を備え、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルを反応させて上記湿潤ゲルを得るゲル生成工程を更に備えていてもよい。エアロゲル複合材料の製造方法は、例えば以下の方法により製造することができる。
すなわち、本実施形態のエアロゲル複合材料は、例えば、エアロゲルを形成するためのゾルを作製するゾル生成工程と、ゾル生成工程で得られたゾルを多孔質基材に含浸させる含浸工程と、ゾルをゲル化して湿潤ゲルを得るゲル生成工程と、ゾル又は湿潤ゲルで空隙が満たされた多孔質基材を熟成する熟成工程と、熟成した複合材料を洗浄及び/又は溶媒置換する洗浄・溶媒置換工程と、洗浄及び/又は溶媒置換した複合材料を乾燥する乾燥工程と、を主に備える製造方法により製造することができる。なお、「ゾル」とは、ゲル化反応が生じる前の状態であって、本実施形態においては、ケイ素化合物(必要に応じて、さらにシリカ粒子)が溶媒中に溶解若しくは分散している状態を意味する。含浸工程の後にゲル生成工程を行ってもよく、ゲル生成工程の後に含浸工程を行ってもよい。
繊維状物質からなる多孔質基材を用いる場合には、予め繊維状物質を上記ゾル塗液に分散し、熟成工程、洗浄・溶媒置換工程、乾燥工程を経由して、エアロゲルが付着した繊維状物質を作製し、これを抄造して不織布化することでエアロゲル複合材料とすることができる。
上記エアロゲルが付着した繊維状物質では、繊維表面が有する官能基と、エアロゲル表面の官能基との化学的相互作用による結合、繊維表面とエアロゲルとの分子間相互作用による結合等の結合様式を限定するものではない。繊維表面の一部又は全体にエアロゲル粒子(エアロゲルを構成する粒子)が付着していてもよい。
以下、本実施形態のエアロゲル複合材料の製造方法の各工程について説明する。なお、下記において、場合により、エアロゲルが層状のエアロゲル層である場合を例に説明しているが、エアロゲルは、層状であることに限定されない。
(ゾル生成工程)
ゾル生成工程は、例えば、ケイ素化合物(必要に応じて、さらにシリカ粒子)と溶媒とを混合し、加水分解反応を行った後、ゾルゲル反応を行い、半ゲル化のゾル塗液を得る工程である。本工程においては、加水分解反応を促進させるため、溶媒中に酸触媒を更に添加してもよい。また、特許第5250900号公報に示されるように、溶媒中に界面活性剤、熱加水分解性化合物等を添加することもできる。さらに、ゲル化反応を促進させるため、塩基触媒を添加してもよい。なお、本工程、後述するゲル生成工程、含浸工程、及び、熟成工程における工程時間を短縮し、加熱及び乾燥温度を低温化する観点から、ゾル中にシリカ粒子を含有するとよい。
溶媒としては、後述する含浸工程において良好な含浸性が得られれば特に限定されず、例えば、水、又は、水及びアルコールの混合液を用いることができる。アルコールとしては、例えば、メタノール、エタノール、n−プロパノール、2−プロパノール、n−ブタノール、2−ブタノール及びt−ブタノールが挙げられる。これらの中でも、表面張力が高く、揮発性が低い点から、水を用いることができる。
酸触媒としては、例えば、フッ酸、塩酸、硝酸、硫酸、亜硫酸、リン酸、亜リン酸、次亜リン酸、臭素酸、塩素酸、亜塩素酸、次亜塩素酸等の無機酸類;酸性リン酸アルミニウム、酸性リン酸マグネシウム、酸性リン酸亜鉛等の酸性リン酸塩類;ギ酸、酢酸、プロピオン酸、シュウ酸、マロン酸、コハク酸、クエン酸、リンゴ酸、アジピン酸、アゼライン酸等の有機カルボン酸類が挙げられる。これらの中でも、得られるエアロゲル複合材料の耐水性を更に向上させる酸触媒として、有機カルボン酸類を用いることができ、具体的には、酢酸、ギ酸、プロピオン酸、シュウ酸及びマロン酸が挙げられ、酢酸であってもよい。酸触媒は、単独で又は2種類以上を混合して用いてもよい。
酸触媒を用いることで、ケイ素化合物の加水分解反応を促進させて、より短時間でゾルを得ることができる。
酸触媒の添加量は、ケイ素化合物の総量100質量部に対し、0.001〜0.1質量部とすることができる。
界面活性剤としては、非イオン性界面活性剤、イオン性界面活性剤等を用いることができる。界面活性剤は、単独で又は2種類以上を混合して用いてもよい。
非イオン性界面活性剤としては、例えば、ポリオキシエチレン等の親水部と、主にアルキル基からなる疎水部とを含む化合物、ポリオキシプロピレン等の親水部を含む化合物などを使用できる。ポリオキシエチレン等の親水部と、主にアルキル基からなる疎水部とを含む化合物としては、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンアルキルエーテル等が挙げられる。ポリオキシプロピレン等の親水部を含む化合物としては、ポリオキシプロピレンアルキルエーテル、ポリオキシエチレンとポリオキシプロピレンのブロック共重合体等が挙げられる。
イオン性界面活性剤としては、カチオン性界面活性剤、アニオン性界面活性剤、両イオン性界面活性剤等を用いることができ、カチオン性界面活性剤又はアニオン性界面活性剤であってもよい。カチオン性界面活性剤としては、例えば、臭化セチルトリメチルアンモニウム及び塩化セチルトリメチルアンモニウムが挙げられる。アニオン性界面活性剤としては、例えば、ドデシルスルホン酸ナトリウムが挙げられる。両イオン性界面活性剤としては、例えば、アミノ酸系界面活性剤、ベタイン系界面活性剤及びアミンオキシド系界面活性剤が挙げられる。アミノ酸系界面活性剤としては、例えば、アシルグルタミン酸が挙げられる。ベタイン系界面活性剤としては、例えば、ラウリルジメチルアミノ酢酸ベタイン及びステアリルジメチルアミノ酢酸ベタインが挙げられる。アミンオキシド系界面活性剤としては、例えば、ラウリルジメチルアミンオキシドが挙げられる。
これらの界面活性剤は、後述する含浸工程において、反応系中の溶媒と、成長していくシロキサン重合体との間の化学的親和性の差異を小さくし、相分離を抑制する作用を有すると考えられている。
界面活性剤の添加量は、界面活性剤の種類、又は、ケイ素化合物の種類並びに量にも左右されるが、例えば、ケイ素化合物の総量100質量部に対し、1〜100質量部とすることができ、5〜60質量部であってもよい。
熱加水分解性化合物は、熱加水分解により塩基触媒を発生して、反応溶液を塩基性とし、ゾルゲル反応を促進すると考えられている。よって、この熱加水分解性化合物としては、加水分解後に反応溶液を塩基性にできる化合物であれば、特に限定されず、例えば、尿素;ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド等の酸アミド;ヘキサメチレンテトラミン等の環状窒素化合物を挙げることができる。これらの中でも、特に尿素は上記促進効果が得られ易い。
熱加水分解性化合物の添加量は、ゾルゲル反応を充分に促進することができる量であれば、特に限定されない。例えば、熱加水分解性化合物として尿素を用いた場合、その添加量は、ケイ素化合物の総量100質量部に対して、1〜200質量部とすることができ、2〜150質量部であってもよい。添加量を1質量部以上とすることにより、良好な反応性を更に得易くなる。添加量を200質量部以下とすることにより、結晶の析出及びゲル密度の低下を抑制し易くなる。
ゾル生成工程の加水分解は、混合液中のケイ素化合物、シリカ粒子、酸触媒、界面活性剤等の種類及び量にも左右されるが、例えば20〜60℃の温度環境下で、10分〜24時間行ってもよく、50〜60℃の温度環境下で5分〜8時間行ってもよい。これにより、ケイ素化合物中の加水分解性官能基が充分に加水分解され、ケイ素化合物の加水分解生成物をより確実に得ることができる。
溶媒中に熱加水分解性化合物を添加する場合は、ゾル生成工程の温度環境を、熱加水分解性化合物の加水分解を抑制してゾルのゲル化を抑制する温度に調節してもよい。この時の温度は、熱加水分解性化合物の加水分解を抑制できる温度であれば、いずれの温度であってもよい。例えば、熱加水分解性化合物として尿素を用いた場合は、ゾル生成工程の温度環境は、0〜40℃とすることができ、10〜30℃であってもよい。
塩基触媒としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化セシウム等のアルカリ金属水酸化物;水酸化アンモニウム、フッ化アンモニウム、塩化アンモニウム、臭化アンモニウム等のアンモニウム化合物;メタ燐酸ナトリウム、ピロ燐酸ナトリウム、ポリ燐酸ナトリウム等の塩基性燐酸ナトリウム塩;アリルアミン、ジアリルアミン、トリアリルアミン、イソプロピルアミン、ジイソプロピルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、2−エチルヘキシルアミン、3−エトキシプロピルアミン、ジイソブチルアミン、3−(ジエチルアミノ)プロピルアミン、ジ−2−エチルヘキシルアミン、3−(ジブチルアミノ)プロピルアミン、テトラメチルエチレンジアミン、t−ブチルアミン、sec−ブチルアミン、プロピルアミン、3−(メチルアミノ)プロピルアミン、3−(ジメチルアミノ)プロピルアミン、3−メトキシアミン、ジメチルエタノールアミン、メチルジエタノールアミン、ジエタノールアミン、トリエタノールアミン等の脂肪族アミン類;モルホリン、N−メチルモルホリン、2−メチルモルホリン、ピペラジン及びその誘導体、ピペリジン及びその誘導体、イミダゾール及びその誘導体等の含窒素複素環状化合物類などが挙げられる。これらの中でも、水酸化アンモニウム(アンモニア水)は、揮発性が高く、乾燥後のエアロゲル層に残存し難いため耐水性を損ないづらい点、及び、経済性の点で優れている。上記の塩基触媒は、単独で又は2種類以上を混合して用いてもよい。
塩基触媒を用いることで、ゾル中のケイ素化合物(ポリシロキサン化合物群及びケイ素化合物群)、及び、シリカ粒子の脱水縮合反応及び/又は脱アルコール縮合反応を促進することができ、ゾルのゲル化をより短時間で行うことができる。特に、アンモニアは、揮発性が高く、エアロゲル複合材料に残留し難い。そのため、塩基触媒としてアンモニアを用いることで、より耐水性の優れたエアロゲル複合材料を得ることができる。
塩基触媒の添加量は、ケイ素化合物(ポリシロキサン化合物群及びケイ素化合物群)の総量100質量部に対し、0.5〜5質量部とすることができ、1〜4質量部であってもよい。塩基触媒の添加量を0.5質量部以上とすることにより、ゲル化をより短時間で行うことができる。塩基触媒の添加量を5質量部以下とすることにより、耐水性の低下を容易に抑制することができる。
(含浸工程)
含浸工程は、例えば、上記ゾル塗液を多孔質基材に充填する又は不織布の原料繊維に付着させる工程である。具体的には、上記ゾル塗液に多孔質基材の材料を浸漬するディッピング法、又は、多孔質基材にゾル塗液を塗布する塗布法が挙げられる。含浸方法は、制限されず、多孔質基材の大きさ、形状、弾性率等の物理的性状に応じて好適な手法を選択できる。
不織布の原料繊維へのゾル塗液の処理方法については、例えば、上記ゾル塗液が入った容器に繊維を入れ所定の時間加熱撹拌して繊維を表面処理する湿式法、及び、攪拌機で繊維を高速攪拌させながらゾル塗液を添加して繊維表面を均一に処理する乾式法が挙げられる。繊維へのゾル塗液の処理方法としては、特に制限されないが、ゾル塗液が繊維表面に均一に処理し易いことから、湿式法を用いることができる。
塗工方法(塗工機)としては、ダイコーター、コンマコータ、バーコータ、キスコータ、ロールコーター等が利用でき、多孔質基材の材質又は厚み、ゾル塗液の粘度又は塗布量等によって適宜使用される。加熱・乾燥方法としては、加熱又は熱風吹きつけ等を用いることができる。
ゾル塗液を多孔質基材に塗布した後の加熱・乾燥条件は、例えば、加熱・乾燥後のエアロゲル層の含水率が10質量%以上(例えば50質量%以上)となるように加熱・乾燥させる。含水率を10質量%以上とすることにより、多孔質基材との接着性を得易くなる。
加熱・乾燥温度は、ゾル塗液中の水分量及び/又は有機溶媒量、有機溶媒の沸点等によっても異なるが、例えば、50〜150℃とすることができ、60〜120℃であってもよい。加熱・乾燥温度を50℃以上とすることにより、ゲル化をより短時間で行うことができる。加熱・乾燥温度を150℃以下とすることにより、多孔質基材との接着性を得易くなる。
加熱・乾燥時間は、加熱・乾燥温度によって異なるが、例えば、0.2〜10分とすることができ、0.5〜8分であってもよい。加熱・乾燥時間を0.2分以上とすることにより、エアロゲル層が形成し易くなる。加熱・乾燥時間を10分以下とすることにより、多孔質基材との接着性を得易くなる。上記加熱・乾燥条件は、予め簡単な実験により、適宜、好適な加熱・乾燥条件を設定することができる。
多孔質基材の両面には、セパレーターを積層することができる。セパレーターを積層することにより、多孔質基材の搬送及びその他工程における未硬化ゾルの転写又は汚染を防止することができる。含浸工程においてセパレーターを積層する方法としては、例えば、ゾル塗液を含浸した後に積層する方法、及び、加熱・乾燥した後に積層する方法が挙げられる。セパレーターとしては、例えば、ガラス不織布、ガラスクロス等の無機物繊維;ポリイミド、ポリアミドイミド、ポリエステル等の有機繊維;ポリオレフィン、ポリエステル、ポリカーボネート、ポリイミド等からなる基材フィルム;離型紙;銅箔、アルミニウム箔等の金属箔を挙げることができる。なお、上記セパレーターには、マット処理、コロナ処理の他、離型処理を施してもよい。これらの中でも、ゾル塗液を含浸した後に積層する場合は、エアロゲル層の含水率を高く保てる観点から、ポリオレフィン、ポリエステル、ポリカーボネート、ポリイミド等からなる基材フィルムなどを用いることができる。また、加熱・乾燥した後に積層する場合は、後述する熟成工程、洗浄・溶媒置換工程において剥離する必要がない観点から、ガラス不織布、ガラスクロス等の無機物繊維;ポリイミド、ポリアミドイミド、ポリエステル等の有機繊維などを用いることができる。
(ゲル生成工程)
ゲル生成工程は、ゾル生成工程で得られたゾルをゲル化して湿潤ゲルを得る工程である。本工程では、ゲル化を促進させるため塩基触媒を用いることができる。ゾルのゲル化の終了時点を判別することは困難な場合が多いため、ゾルのゲル化と、その後の熟成とは、連続して一連の操作で行ってもよい。
ゲル生成工程におけるゾルのゲル化は、溶媒及び塩基触媒が揮発しないように密閉容器内で行ってもよい。ゲル化温度は、30〜90℃とすることができるが、40〜80℃であってもよい。ゲル化温度を30℃以上とすることにより、ゲル化をより短時間に行うことができ、強度の高い湿潤ゲルを得ることができる。ゲル化温度を90℃以下にすることにより、溶媒(特にアルコール)の揮発を抑制し易くなるため、体積収縮を抑えながらゲル化することができる。
(熟成工程)
熟成工程は、上記含浸工程又は上記ゲル生成工程により得られた複合材料を、加熱にて熟成させる工程である。本工程において、エアロゲル層と多孔質基材との接着性の低下を抑制し易い観点から、エアロゲル層の含水率が10質量%以上となるように熟成させるとよく、50質量%以上となるように熟成させるとよりよい。熟成方法としては、上記範囲を満足すれば特に制限されないが、例えば、複合材料を密閉雰囲気で熟成する方法、及び、加熱による含水率の低下を抑制できる恒湿恒温槽等を用いて複合材料を熟成する方法が挙げられる。
熟成温度は、例えば、40〜90℃とすることができ、50〜80℃であってもよい。熟成温度を40℃以上とすることにより、熟成時間を短縮できる。熟成温度を90℃以下とすることにより、含水率の低下を抑制できる。
熟成時間は、例えば、1〜48時間とすることができ、3〜24時間であってもよい。熟成時間を1時間以上とすることにより、更に優れた断熱性を得ることができる。熟成時間を48時間以下にすることにより、多孔質基材との高い接着性を得ることができる。
(洗浄・溶媒置換工程)
洗浄・溶媒置換工程は、上記熟成工程により得られた複合材料を洗浄する工程(洗浄工程)と、後述する乾燥工程に適した溶媒に置換する工程(溶媒置換工程)とを有する工程である。洗浄及び溶媒置換手法は、特に制限されず、例えば、ロールトゥロール方式にて洗浄槽及び/又は溶媒置換槽等を複数個用いて連続処理することができる。洗浄・溶媒置換工程は、複合材料を洗浄する工程を行わず、溶媒置換工程のみを行う形態でも実施可能であるが、エアロゲル層中の未反応物、副生成物等の不純物を低減し、より純度の高いエアロゲル複合材料の製造を可能にする観点からは、熟成後のエアロゲル層を洗浄してもよい。
洗浄工程では、上記熟成工程で得られた複合材料に対し、水又は有機溶媒を用いて、複合材料を繰り返し洗浄することができる。
有機溶媒としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、アセトン、メチルエチルケトン、1,2−ジメトキシエタン、アセトニトリル、ヘキサン、トルエン、ジエチルエーテル、クロロホルム、酢酸エチル、テトラヒドロフラン、塩化メチレン、N,N−ジメチルホルムアミド、ジメチルスルホキシド、酢酸、ギ酸等の各種の有機溶媒を使用することができる。有機溶媒は、単独で又は2種類以上を混合して用いてもよい。
後述する溶媒置換工程では、乾燥によるエアロゲル層の収縮を抑制するため、低表面張力の溶媒を用いることができる。しかし、低表面張力の溶媒は、一般的に水との相互溶解度が極めて低い。そのため、溶媒置換工程において低表面張力の溶媒を用いる場合、洗浄工程で用いる有機溶媒としては、水及び低表面張力の溶媒の双方に対して高い相互溶解性を有する親水性有機溶媒を用いることができる。なお、洗浄工程において用いられる親水性有機溶媒は、溶媒置換工程のための予備置換の役割を果たすことができる。このことから、上記の有機溶媒の中でも、メタノール、エタノール、2−プロパノール、アセトン、メチルエチルケトン等の親水性有機溶媒を用いることができ、経済性の点から、メタノール、エタノール又はメチルエチルケトンを用いてもよい。
洗浄工程に使用される水又は有機溶媒の量としては、エアロゲル層中の溶媒を充分に置換し、洗浄できる量とすることができ、エアロゲル層の容量に対して3〜10倍の量の溶媒を用いることができる。洗浄は、洗浄後のエアロゲル層中の含水率が10質量%以下となるまで繰り返すことができる。
洗浄工程における温度は、洗浄に用いる溶媒の沸点以下の温度とすることができ、例えば、メタノールを用いる場合は、30〜60℃程度とすることができる。
溶媒置換工程では、後述する乾燥工程におけるエアロゲル層の収縮を抑制するため、洗浄したエアロゲル層の溶媒を所定の置換用溶媒に置き換えることができる。この際、加温することにより置換効率を向上させることができる。置換用溶媒としては、具体的には、乾燥工程において、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥する場合は、後述の低表面張力の溶媒が挙げられる。一方、超臨界乾燥をする場合、置換用溶媒としては、例えば、エタノール、メタノール、2−プロパノール、ジクロロジフルオロメタン又は二酸化炭素を単独で用いてもよく、これらを2種以上混合した溶媒を用いてもよい。
低表面張力の溶媒としては、例えば、20℃における表面張力が30mN/m以下の溶媒が挙げられる。該表面張力は、25mN/m以下であってもよく、20mN/m以下であってもよい。低表面張力の溶媒としては、例えば、ペンタン(15.5)、ヘキサン(18.4)、ヘプタン(20.2)、オクタン(21.7)、2−メチルペンタン(17.4)、3−メチルペンタン(18.1)、2−メチルヘキサン(19.3)、シクロペンタン(22.6)、シクロヘキサン(25.2)、1−ペンテン(16.0)等の脂肪族炭化水素類;ベンゼン(28.9)、トルエン(28.5)、m−キシレン(28.7)、p−キシレン(28.3)等の芳香族炭化水素類;ジクロロメタン(27.9)、クロロホルム(27.2)、四塩化炭素(26.9)、1−クロロプロパン(21.8)、2−クロロプロパン(18.1)等のハロゲン化炭化水素類;エチルエーテル(17.1)、プロピルエーテル(20.5)、イソプロピルエーテル(17.7)、ブチルエチルエーテル(20.8)、1,2−ジメトキシエタン(24.6)等のエーテル類;アセトン(23.3)、メチルエチルケトン(24.6)、メチルプロピルケトン(25.1)、ジエチルケトン(25.3)等のケトン類;酢酸メチル(24.8)、酢酸エチル(23.8)、酢酸プロピル(24.3)、酢酸イソプロピル(21.2)、酢酸イソブチル(23.7)、エチルブチレート(24.6)等のエステル類が挙げられる。かっこ内は20℃での表面張力を示し、単位は[mN/m]である。これらの中でも、脂肪族炭化水素類(ヘキサン、ヘプタン等)は、低表面張力及び作業環境性に優れている。また、これらの中でも、アセトン、メチルエチルケトン、1,2−ジメトキシエタン等の親水性有機溶媒を用いることで、上記洗浄工程の有機溶媒と兼用することができる。なお、これらの中でも、後述する乾燥工程における乾燥が容易な点で、常圧での沸点が100℃以下の溶媒を用いてもよい。上記の溶媒は、単独で又は2種類以上を混合して用いてもよい。
溶媒置換工程に使用される溶媒の量としては、洗浄後のエアロゲル層中の溶媒を充分に置換できる量とすることができ、エアロゲル層の容量に対して3〜10倍の量の溶媒を用いることができる。
溶媒置換工程における温度は、置換に用いる溶媒の沸点以下の温度とすることができ、例えば、30〜60℃程度とすることができる。
なお、本実施形態においては、ゾルがシリカ粒子を含有している場合、上述のとおり溶媒置換工程は必ずしも必須ではない。推察されるメカニズムとしては次のとおりである。本実施形態においては、シリカ粒子が三次元網目状のエアロゲル骨格の支持体として機能することにより、該骨格が支持され、乾燥工程におけるゲルの収縮が抑制される。そのため、洗浄に用いた溶媒を置換せずに、ゲルをそのまま乾燥工程に付すことができると考えられる。このように、本実施形態において、ゾルがシリカ粒子を含有している場合は、洗浄・溶媒置換工程〜乾燥工程の簡略化が可能である。
含浸工程にてセパレーターを積層している場合は、エアロゲル層の洗浄及び溶媒置換の効率を向上させる観点から、洗浄工程前にセパレーターを抜き取り、溶媒置換工程後に再度セパレーターを積層することができる。セパレーターとしては、抜き取りを行わず複合材料と共に処理することにより、洗浄・溶媒置換工程〜乾燥工程において、エアロゲル層の洗浄及び溶媒置換の効率の低下を抑制できる観点、及び、後述する乾燥工程における乾燥効率の低下を抑制できる観点から、ガラス不織布、有機繊維等を用いることができる。
(乾燥工程)
乾燥工程では、上記のとおり洗浄及び/又は溶媒置換した複合材料を乾燥させる。これにより、最終的なエアロゲル複合材料を得ることができる。
乾燥の手法としては、特に制限されず、公知の常圧乾燥、超臨界乾燥又は凍結乾燥を用いることができる。これらの中でも、低密度のエアロゲル層を製造し易い観点から、常圧乾燥又は超臨界乾燥を用いることができる。また、低コストで生産可能な観点から、常圧乾燥を用いることができる。なお、本実施形態において、常圧とは0.1MPa(大気圧)を意味する。
本実施形態のエアロゲル複合材料は、洗浄及び/又は溶媒置換した複合材料を、乾燥に用いられる溶媒の臨界点未満の温度にて、大気圧下で乾燥することにより得ることができる。乾燥温度は、置換された溶媒(溶媒置換を行わない場合は洗浄に用いられた溶媒)の種類又は多孔質基材の耐熱性により異なるが、60〜180℃とすることができ、90〜150℃であってもよい。乾燥時間は、エアロゲル層の容量及び乾燥温度により異なるが、2〜48時間とすることができる。なお、本実施形態において、生産性を阻害しない範囲内において圧力をかけて乾燥を速めることもできる。
本実施形態のエアロゲル複合材料の製造方法では、常圧乾燥における乾燥効率を向上させる観点から、乾燥工程の前にプレ乾燥を行ってもよい。プレ乾燥方法としては、特に制限されないが、例えばロールトゥロール方式であれば、洗浄・溶媒置換工程〜乾燥工程まで連続で行うこともできる。プレ乾燥温度は、60〜180℃とすることができ、90〜150℃であってもよい。プレ乾燥時間は、1〜30分とすることができる。なお、このようなプレ乾燥により得られた複合材料は、乾燥工程にて更に乾燥することができる。
洗浄・溶媒置換工程にてセパレーターを積層している場合は、乾燥効率と搬送効率の観点から、プレ乾燥前にセパレーターを抜き取り、プレ乾燥後に再度セパレーターを積層することができる。また、洗浄・溶媒置換工程〜乾燥工程まで連続で行う場合は、洗浄工程前にセパレーターを抜き取り、プレ乾燥後に再度セパレーターを積層することができる。プレ乾燥後に積層するセパレーターとしては、乾燥工程での乾燥効率の低下を抑制できる観点から、ガラス不織布、有機繊維等を用いることができる。
本実施形態のエアロゲル複合材料は、洗浄及び/又は溶媒置換した複合材料を超臨界乾燥することによって得ることもできる。超臨界乾燥は、公知の手法にて行うことができる。超臨界乾燥する方法としては、例えば、エアロゲル層に含まれる溶媒の臨界点以上の温度及び圧力にて溶媒を除去する方法が挙げられる。あるいは、超臨界乾燥する方法としては、エアロゲル層を、液化二酸化炭素中に、例えば、20〜25℃、5〜20MPa程度の条件で浸漬することで、エアロゲル層に含まれる溶媒の全部又は一部を、該溶媒より臨界点の低い二酸化炭素に置換した後、二酸化炭素を単独で、又は、二酸化炭素及び溶媒の混合物を除去する方法が挙げられる。
以上のとおり説明した本実施形態のエアロゲル複合材料は、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物であるエアロゲル(前記ゾルから生成された湿潤ゲルを乾燥してなるエアロゲル)と、多孔質構造を有する基材とを備えるものであり、優れた断熱性を有すると共に、従来では取扱いが困難であったエアロゲルのシート化及びボード化が可能である。このような利点から、本実施形態のエアロゲル複合材料は、極低温容器、宇宙分野、建築分野、自動車分野、家電分野、半導体分野、産業用設備等における断熱材としての用途等に適用できる。また、本実施形態のエアロゲル複合材料は、断熱材としての用途の他に、撥水用、吸音用、静振用、触媒担持用等として利用することができる。
次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。なお、以下において、上記一般式(2)で表される構造を有するエアロゲルシートは、支柱部及び橋かけ部を備えるラダー型構造を有し、橋かけ部が、上記一般式(2)で表される構造を有している。
<エアロゲル複合材料の作製>
(実施例1)
[ゾル塗液1]
シリカ粒子含有原料としてPL−2L(扶桑化学工業株式会社製、製品名、平均1次粒子径:20nm、固形分:20質量%)を100.0質量部、水を120.0質量部、メタノールを80.0質量部、及び、酸触媒として酢酸を0.10質量部混合して混合物を得た。この混合物に、ケイ素化合物としてメチルトリメトキシシラン(信越化学工業株式会社製、製品名:LS−530。以下『MTMS』と略記)60.0質量部及びジメチルジメトキシシラン(信越化学工業株式会社製、製品名:LS−520。以下『DMDMS』と略記)40.0質量部を加え、25℃で2時間反応させた。これに、塩基触媒として5%濃度のアンモニア水を40.0質量部加えてゾル塗液1を得た。
[エアロゲルシート1]
上記ゾル塗液1をバットに入れ、(縦)300mm×(横)200mm×(厚)3mmのガラス不織布(日本板硝子株式会社製、製品名:MGP BMS−5、繊維径:1.5μm、空隙率:90体積%)をゾル塗液1に載せて、ゾル塗液1を含浸させた。ゾル塗液1が充分にガラス不織布に含浸され、ガラス不織布がゾル塗液中に沈んだことを確認してから、60℃で30分ゲル化してエアロゲルシ−トを得た。その後、得られたエアロゲルシート(湿潤ゲル)を密閉容器に移し、60℃で12時間熟成した。
その後、熟成したエアロゲルシートを水2000mLに浸漬し、30分かけて洗浄を行った。次に、メタノール2000mLに浸漬し、60℃で30分かけて洗浄を行った。メタノールによる洗浄を新しいメタノールに交換しながら更に2回行った。次に、メチルエチルケトン2000mLに浸漬し、60℃で30分かけて溶媒置換を行った。メチルエチルケトンによる洗浄を新しいメチルエチルケトンに交換しながら更に2回行った。洗浄及び溶媒置換されたエアロゲルシートを、常圧下にて、120℃で6時間乾燥することで、上記一般式(4)及び(5)で表される構造を有するエアロゲルシート1を得た。
(実施例2)
[ゾル塗液2]
シリカ粒子含有原料としてST−OZL−35(日産化学工業株式会社製、製品名、平均1次粒子径:100nm、固形分:35質量%)を100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTAB(臭化セチルトリメチルアンモニウム)を20.0質量部、及び、熱加水分解性化合物として尿素を120.0質量部混合して混合物を得た。この混合物に、ケイ素化合物としてMTMSを60.0質量部、及び、上記一般式(A)で表される構造を有するポリシロキサン化合物としてX−22−160AS(信越化学工業株式会社製、製品名)20.0質量部を加え、25℃で2時間反応させた。その後、60℃で5時間ゾルゲル反応させてゾル塗液2を得た。
[エアロゲルシート2]
上記ゾル塗液2を用いて、実施例1と同様にして、上記一般式(1)、(1a)、(2)、(4)及び(5)で表される構造を有するエアロゲルシート2を得た。
(実施例3)
[ゾル塗液3]
シリカ粒子含有原料としてPL−2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部、及び、熱加水分解性化合物として尿素を120.0質量部混合して混合物を得た。この混合物に、ケイ素化合物としてMTMSを80.0質量部、及び、ポリシロキサン化合物として上記一般式(B)で表される構造を有する両末端2官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物A」という)を20.0質量部加え、25℃で2時間反応させた。その後、60℃で2時間ゾルゲル反応させてゾル塗液3を得た。
なお、上記「ポリシロキサン化合物A」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1Lの3つ口フラスコにて、両末端にシラノール基を有するジメチルポリシロキサン(モメンティブ社製、製品名:XC96−723)を100.0質量部、メチルトリメトキシシランを181.3質量部、及び、t−ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端2官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物A)を得た。
[エアロゲルシート3]
上記ゾル塗液3を用いて、実施例1と同様にして、上記一般式(2)、(3)、(4)及び(5)で表される構造を有するエアロゲルシート3を得た。
(実施例4)
[ゾル塗液4]
シリカ粒子含有原料としてPL−2Lを100.0質量部、水を200.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部、及び、熱加水分解性化合物として尿素を120.0質量部混合して混合物を得た。この混合物に、ケイ素化合物としてMTMSを60.0質量部、及び、ポリシロキサン化合物として上記一般式(B)で表される構造を有する両末端3官能アルコキシ変性ポリシロキサン化合物(以下、「ポリシロキサン化合物B」という)を40.0質量部加え、25℃で2時間反応させた。その後、60℃で2時間ゾルゲル反応させてゾル塗液4を得た。
なお、上記「ポリシロキサン化合物B」は次のようにして合成した。まず、撹拌機、温度計及びジムロート冷却管を備えた1Lの3つ口フラスコにて、XC96−723を100.0質量部、テトラメトキシシランを202.6質量部、及び、t−ブチルアミンを0.50質量部混合し、30℃で5時間反応させた。その後、この反応液を1.3kPaの減圧下、140℃で2時間加熱し、揮発分を除去することで、両末端3官能アルコキシ変性ポリシロキサン化合物(ポリシロキサン化合物B)を得た。
[エアロゲルシート4]
上記ゾル塗液4を用いて、実施例1と同様にして、上記一般式(2)、(3)、(4)及び(5)で表される構造を有するエアロゲルシート4を得た。
(実施例5)
[ゾル塗液5]
シリカ粒子含有原料としてPL−2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部、及び、熱加水分解性化合物として尿素を120.0質量部混合して混合物を得た。この混合物に、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを40.0質量部加え、25℃で2時間反応させた。その後、60℃で1.0時間ゾルゲル反応させてゾル塗液5を得た。
[エアロゲルシート5]
上記ゾル塗液5を用いると共にガラス不織布(オリベスト株式会社製、製品名:ボーロイドGMU、繊維径:13μm、空隙率:95体積%)を用いた他は実施例1と同様にして、上記一般式(4)及び(5)で表される構造を有するエアロゲルシート5を得た。
(実施例6)
[ゾル塗液6]
シリカ粒子含有原料としてPL−2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部、及び、熱加水分解性化合物として尿素を120.0質量部混合して混合物を得た。この混合物に、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、並びに、ポリシロキサン化合物としてX−22−160ASを20.0質量部加え、25℃で2時間反応させた。その後、60℃で1.0時間ゾルゲル反応させてゾル塗液6を得た。
[エアロゲルシート6]
上記ゾル塗液6を用いると共にガラス不織布(ボーロイドGMU)を用いた他は実施例1と同様にして、上記一般式(1)、(1a)、(2)、(4)及び(5)で表される構造を有するエアロゲルシート6を得た。
(実施例7)
[ゾル塗液7]
シリカ粒子含有原料としてPL−2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部、及び、熱加水分解性化合物として尿素を120.0質量部混合して混合物を得た。この混合物に、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、並びに、ポリシロキサン化合物としてポリシロキサン化合物Aを20.0質量部加え、25℃で2時間反応させた。その後、60℃で1.0時間ゾルゲル反応させてゾル塗液7を得た。
[エアロゲルシート7]
上記ゾル塗液7を用いると共にガラス不織布(ボーロイドGMU)を用いた他は実施例1と同様にして、上記一般式(2)、(3)、(4)及び(5)で表される構造を有するエアロゲルシート7を得た。
(実施例8)
[ゾル塗液8]
シリカ粒子含有原料としてPL−2Lを100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部、及び、熱加水分解性化合物として尿素を120.0質量部混合して混合物を得た。この混合物に、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、並びに、ポリシロキサン化合物としてポリシロキサン化合物Bを20.0質量部加え、25℃で2時間反応させた。その後、60℃で1.0時間ゾルゲル反応させてゾル塗液8を得た。
[エアロゲルシート8]
フラスコにて、100質量部の上記ゾル塗液8に、100質量部のガラス繊維(日本電気硝子株式会社製、製品名:ECS03T−187、繊維径:13μm)を加え、60℃、60分間、200rpmで攪拌して、得られたガラス繊維分散ゾルを密閉容器に移し、60℃で8時間熟成させた。
その後、洗浄・溶媒置換工程及び乾燥工程を実施例1と同様に行い、上記一般式(2)、(3)、(4)及び(5)で表される構造を有するエアロゲルが付着したガラス繊維が得られた。
得られたガラス繊維、水、及び、界面活性剤(ポリオキシエチレンラウリルエーテル)0.1質量%からなる分散液を40L作製し、分散液を抄造装置に投入した。抄造装置として、回転翼付き攪拌機を備えた上部の抄造槽(容量30L)、及び、下部の貯水槽(容量10L)からなり、抄造槽と貯水槽の間には多孔支持体が設けてある装置を用いた。まず、攪拌機を用いて、空気の微小気泡が発生するまで前記分散液を撹拌した。その後、所望の目付となるように質量を調整したガラス繊維を、空気の微小気泡が分散した分散液中に投入して攪拌することにより、エアロゲルが付着したガラス繊維が分散したスラリーを得た。次いで、貯水槽からスラリーを吸引し、多孔支持体を介して脱水して繊維抄造体とした。前記抄造体を熱風乾燥機にて150℃、2時間の条件下で乾燥させ、目付け100g/m、空隙率90体積%のエアロゲルシート8を得た。
(実施例9)
[ゾル塗液9]
シリカ粒子含有原料としてST−OZL−35を143.0質量部、水を57.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部、及び、熱加水分解性化合物として尿素を120.0質量部混合して混合物を得た。この混合物に、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、並びに、ポリシロキサン化合物としてポリシロキサン化合物Aを20.0質量部加え、25℃で2時間反応させた。その後、60℃で2.0時間ゾルゲル反応させてゾル塗液9を得た。
[エアロゲルボード9]
上記ゾル塗液9を用いると共に、ガラス不織布に代えて多孔質ニッケルシート(住友電工株式会社製、製品名:セルメット、厚さ:1.4mm、ニッケル目付量:420g/m、空隙率:97体積%)を用いた他は実施例1と同様にして、上記一般式(2)、(3)、(4)及び(5)で表される構造を有するエアロゲルボード9を得た。
(実施例10)
[ゾル塗液10]
シリカ粒子含有原料としてPL−20(扶桑化学工業株式会社製、製品名、平均1次粒子径:200nm、固形分:20質量%)を100.0質量部、水を100.0質量部、酸触媒として酢酸を0.10質量部、カチオン系界面活性剤としてCTABを20.0質量部、及び、熱加水分解性化合物として尿素を120.0質量部混合して混合物を得た。この混合物に、ケイ素化合物としてMTMSを60.0質量部及びDMDMSを20.0質量部、並びに、ポリシロキサン化合物としてポリシロキサン化合物Aを20.0質量部加え、25℃で2時間反応させた。その後、60℃で2.0時間ゾルゲル反応させてゾル塗液10得た。
[エアロゲルボード10]
上記ゾル塗液10を用いると共に、ガラス不織布に代えて多孔質アルミナシート(アスザック株式会社製、製品名:AZP60、平均厚み:700μm、空隙率:60体積%)を用いた他は実施例1と同様にして、上記一般式(2)、(3)、(4)及び(5)で表される構造を有するエアロゲルボード10を得た。
(比較例1)
上記ゾル塗液1を用いると共に、ガラス不織布に代えて、多孔質構造を有していないPETフィルム(帝人デュポン株式会社製、製品名:G2)を用い、上記ゾル塗液1をPETフィルムにバーコータでゾル塗液膜厚80μmとなるように塗布した他は実施例1と同様にして、上記一般式(4)及び(5)で表される構造を有するPETコアエアロゲルシートを得た。
(比較例2)
ガラス不織布に代えて、多孔質構造を有していない薄板ガラス(日本電気硝子株式会社製、製品名:OA−10G、厚さ:150μm)を用い、上記ゾル塗液1を薄板ガラスにバーコータでゾル塗液膜厚50μmとなるように塗布した他は実施例1と同様にして、上記一般式(4)及び(5)で表される構造を有するガラスコアエアロゲルシートを得た。
<各種評価>
以下の条件に従って、各実施例及び比較例で得られたエアロゲル複合材料について測定又は評価を行った。
(エアロゲル層の厚さの測定)
基材の表面において基材を被覆するエアロゲル層の厚さを測定した。具体的には、マイクロメータ(株式会社ミツトヨ製、製品名:CLM1−15QM)を用いて、測定力0.5Nにて、エアロゲル複合材料の厚みを測定し、多孔質基材の厚みを減ずることで算出した。結果を表1に示す。
(熱伝導率測定)
熱伝導率測定は、英弘精機株式会社製の熱伝導率測定装置(製品名:HC−074)を用いて行った。測定サンプルとして20cm×20cmのサンプルを用い、上下熱プレートの温度をそれぞれ30℃と10℃に設定して熱伝導率の測定を行った。結果を表1に示す。
(粉落ち性評価)
各実施例及び比較例で得られたエアロゲル複合材料の粉落ち性を評価した。同一種のエアロゲル複合材料を縦30cm×横30cm×高さ10〜15mm厚となるように複数積層し、積層したエアロゲル複合材料の縦方向及び横方向の4辺をそれぞれ台の上から5回ずつ落としたときの粉落ち量を測定した。粉落ち量が10mg以下であるものを粉落ち性良好と判定した。なお、落とす高さは、台から5cmの高さとして、垂直に落下させることを粉落ち性の試験方法とした。結果を表1に示す。
Figure 2018111803
表1から、実施例のエアロゲル複合材料では、熱伝導率が良好であり、粉落ち量が少ないことがわかる。そのため、断熱材施工時の発塵量を低減でき、施工時の取扱性が良好である。一方、比較例では、熱伝導率及び粉落ち量のいずれもが劣っている。
10…多孔質基材、20…エアロゲル層、100,200…エアロゲル複合材料。

Claims (16)

  1. 多孔質構造を有する基材と、該基材に付着したエアロゲルと、を備え、
    前記エアロゲルが、加水分解性の官能基又は縮合性の官能基を有するケイ素化合物、及び、前記加水分解性の官能基を有するケイ素化合物の加水分解生成物からなる群より選択される少なくとも一種を含有するゾルの縮合物である湿潤ゲルの乾燥物である、エアロゲル複合材料。
  2. 前記ゾルがシリカ粒子を更に含有する、請求項1に記載のエアロゲル複合材料。
  3. 前記シリカ粒子の平均1次粒子径が1〜500nmである、請求項2に記載のエアロゲル複合材料。
  4. 前記ケイ素化合物が、前記加水分解性の官能基としてアルコキシ基を有するケイ素化合物を含む、請求項1〜3のいずれか一項に記載のエアロゲル複合材料。
  5. 前記アルコキシ基の炭素数が1〜6である、請求項4に記載のエアロゲル複合材料。
  6. 前記ケイ素化合物が、前記縮合性の官能基としてヒドロキシアルキル基を有するケイ素化合物を含む、請求項1〜5のいずれか一項に記載のエアロゲル複合材料。
  7. 前記ヒドロキシアルキル基の炭素数が1〜6である、請求項6に記載のエアロゲル複合材料。
  8. 前記ケイ素化合物が、加水分解性の官能基又は縮合性の官能基を有するポリシロキサン化合物を含む、請求項1〜7のいずれか一項に記載のエアロゲル複合材料。
  9. 前記ポリシロキサン化合物が、下記一般式(A)で表される構造を有する化合物を含む、請求項8に記載のエアロゲル複合材料。
    Figure 2018111803

    [式(A)中、R1aはヒドロキシアルキル基を示し、R2aはアルキレン基を示し、R3a及びR4aはそれぞれ独立にアルキル基又はアリール基を示し、nは1〜50の整数を示す。]
  10. 前記ポリシロキサン化合物が、下記一般式(B)で表される構造を有する化合物を含む、請求項8又は9に記載のエアロゲル複合材料。
    Figure 2018111803

    [式(B)中、R1bはアルキル基又はアルコキシ基を示し、R2b及びR3bはそれぞれ独立にアルコキシ基を示し、R4b及びR5bはそれぞれ独立にアルキル基又はアリール基を示し、mは1〜50の整数を示す。]
  11. 前記エアロゲルが、支柱部及び橋かけ部を備えるラダー型構造を有し、
    前記橋かけ部が、下記一般式(2)で表される構造を有する、請求項1〜10のいずれか一項に記載のエアロゲル複合材料。
    Figure 2018111803

    [式(2)中、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、bは1〜50の整数を示す。]
  12. 前記エアロゲルが、下記一般式(3)で表されるラダー型構造を有する、請求項11に記載のエアロゲル複合材料。
    Figure 2018111803

    [式(3)中、R、R、R及びRはそれぞれ独立にアルキル基又はアリール基を示し、a及びcはそれぞれ独立に1〜3000の整数を示し、bは1〜50の整数を示す。]
  13. 前記多孔質構造における孔が連通孔であり、
    前記孔の体積の合計が前記基材の全体積の50〜99体積%である、請求項1〜12のいずれか一項に記載のエアロゲル複合材料。
  14. 前記連通孔に前記エアロゲルが充填されている、請求項13に記載のエアロゲル複合材料。
  15. 前記多孔質構造を有する基材が、直径0.1〜1000μmの繊維状物質からなるシートである、請求項1〜14のいずれか一項に記載のエアロゲル複合材料。
  16. 前記繊維状物質に前記エアロゲルが付着している、請求項15に記載のエアロゲル複合材料。
JP2017223881A 2015-07-15 2017-11-21 エアロゲル複合材料 Pending JP2018111803A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015141448 2015-07-15
JP2015141448 2015-07-15

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017528726A Division JP6330974B2 (ja) 2015-07-15 2016-07-14 エアロゲル複合材料

Publications (1)

Publication Number Publication Date
JP2018111803A true JP2018111803A (ja) 2018-07-19

Family

ID=57757934

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017528726A Active JP6330974B2 (ja) 2015-07-15 2016-07-14 エアロゲル複合材料
JP2017223881A Pending JP2018111803A (ja) 2015-07-15 2017-11-21 エアロゲル複合材料

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017528726A Active JP6330974B2 (ja) 2015-07-15 2016-07-14 エアロゲル複合材料

Country Status (4)

Country Link
JP (2) JP6330974B2 (ja)
CN (1) CN107849287A (ja)
TW (1) TW201710086A (ja)
WO (1) WO2017010551A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200077262A (ko) * 2018-12-20 2020-06-30 주식회사 엘지화학 실리카 에어로겔 블랭킷의 제조방법
KR20210151540A (ko) 2020-06-05 2021-12-14 주식회사 엘지화학 실리카 에어로겔 제조방법
WO2021256879A1 (ko) * 2020-06-19 2021-12-23 주식회사 엘지화학 소수성의 실리카 에어로겔 블랭킷 및 이의 제조방법
KR20220013190A (ko) 2020-07-24 2022-02-04 주식회사 엘지화학 실리카 에어로겔 제조방법

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142542A1 (ja) * 2017-02-02 2018-08-09 日立化成株式会社 粒子処理用の処理剤、撥水性粒子及びその製造方法、撥水層並びに浸透防止構造体
WO2018142551A1 (ja) * 2017-02-02 2018-08-09 日立化成株式会社 撥水処理剤、撥水構造体及びその製造方法
WO2018142552A1 (ja) * 2017-02-02 2018-08-09 日立化成株式会社 繊維処理用の処理剤、繊維及びその製造方法並びに繊維シートの製造方法
JP2018145330A (ja) * 2017-03-07 2018-09-20 日立化成株式会社 ゾル塗液
CN107513863A (zh) * 2017-08-01 2017-12-26 上海工程技术大学 一种纳米复合多孔网状超疏水纺织品的制备方法
WO2020084668A1 (ja) * 2018-10-22 2020-04-30 日立化成株式会社 エアロゲル複合材料
JP7322479B2 (ja) * 2019-04-10 2023-08-08 株式会社レゾナック 塗液、複合材料及び塗膜
JP6683870B1 (ja) * 2019-05-27 2020-04-22 ティエムファクトリ株式会社 エアロゲル複合体
JP2022541827A (ja) * 2019-09-03 2022-09-27 エルジー・ケム・リミテッド エアロゲルブランケット
TWI717257B (zh) * 2020-04-14 2021-01-21 台灣氣凝膠科技材料開發股份有限公司 耐高溫、隔熱、及防火之氣凝膠/無機纖維複合膠材的製備方法及其產物的應用
TWI760728B (zh) * 2020-04-20 2022-04-11 台灣氣凝膠科技材料開發股份有限公司 禦寒、隔熱之疏水性氣凝膠複合膠狀物的製備方法及其相關產物
JP7164853B2 (ja) * 2020-04-28 2022-11-02 台湾気凝膠科技材料開発股▲分▼有限公司 疎水性エアロゲル断熱材の作製方法とその使用
CN111893649B (zh) * 2020-07-17 2022-07-26 3M创新有限公司 保暖材料、制备保暖材料的方法、以保暖材料制备的制品
TWI741746B (zh) * 2020-08-20 2021-10-01 趙國昇 二氧化矽氣凝膠複合纖維毯之製造方法
CN114592353B (zh) * 2020-12-07 2024-02-02 财团法人纺织产业综合研究所 用于电子元件的无纺布膜材及其制备方法
CN117430922A (zh) * 2022-07-15 2024-01-23 凯传工业股份有限公司 含硅气凝胶聚酯母粒、其制备方法及含硅气凝胶聚酯纤维

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1230709B (it) * 1989-02-10 1991-10-29 Enichem Spa Procedimento per la preparazione di monoliti di aerogel di ossidi di metalli.
JPH06191822A (ja) * 1992-12-22 1994-07-12 Matsushita Electric Works Ltd エアロゲル複合材料の製造方法
JPH08300567A (ja) * 1995-04-28 1996-11-19 Matsushita Electric Works Ltd エアロゲルパネルの製法
JP3579998B2 (ja) * 1995-12-20 2004-10-20 松下電工株式会社 密度傾斜性エアロゲルの製法
US20020061396A1 (en) * 1997-11-17 2002-05-23 Susan M White Aerogel loaded tile composite material
JP2001162756A (ja) * 1999-12-14 2001-06-19 Kyodo Printing Co Ltd 断熱包材およびそれを用いた断熱容器
JP2002275305A (ja) * 2001-03-16 2002-09-25 Matsushita Electric Ind Co Ltd 複合多孔体およびその製造方法
HUE031836T2 (en) * 2003-06-24 2017-08-28 Aspen Aerogels Inc A method for producing gel films
CA2551843A1 (en) * 2004-01-06 2005-10-20 Aspen Aerogels, Inc. Ormosil aerogels containing silicon bonded polymethacrylate
US7560062B2 (en) * 2004-07-12 2009-07-14 Aspen Aerogels, Inc. High strength, nanoporous bodies reinforced with fibrous materials
US7635411B2 (en) * 2004-12-15 2009-12-22 Cabot Corporation Aerogel containing blanket
KR100836732B1 (ko) * 2005-12-01 2008-06-10 주식회사 엘지화학 중굴절 및 고굴절 실록산계 피복 조성물
GB0604583D0 (en) * 2006-03-08 2006-04-19 Dow Corning Impregnated flexible sheet material
FR2908406B1 (fr) * 2006-11-14 2012-08-24 Saint Gobain Couche poreuse, son procede de fabrication et ses applications.
TW200835648A (en) * 2007-02-26 2008-09-01 Ind Tech Res Inst Porous material and method for preparing the same
US8663742B2 (en) * 2008-06-30 2014-03-04 Stc.Unm Durable polymer-aerogel based superhydrophobic coatings, a composite material
CN101722604B (zh) * 2009-11-30 2013-08-21 浙江省普瑞科技有限公司 纤维基材与二氧化硅气凝胶复合保温隔热套筒的制备方法
JP2011162756A (ja) * 2010-02-15 2011-08-25 Eiju Sangyo:Kk 多孔質シリカ−繊維複合体の製造方法、多孔質シリカ−繊維複合体およびそれを用いた真空断熱材
JP2011178925A (ja) * 2010-03-02 2011-09-15 Asahi Kagaku Kk エアロゲルシートの製造方法、エアロゲルシート、及び真空断熱材
CN101948297B (zh) * 2010-09-28 2013-02-20 航天特种材料及工艺技术研究所 一种自催化的气凝胶隔热复合材料及其制备方法
CN103059306B (zh) * 2011-10-18 2015-02-18 北京化工大学 一种高折射率透明有机硅树脂及其制备方法
CN202787531U (zh) * 2012-06-21 2013-03-13 蓝烟(北京)科技有限公司 一种疏水性二氧化硅气凝胶绝热保温毡
CN103334336B (zh) * 2013-06-20 2016-06-29 陕西盟创纳米新型材料股份有限公司 气凝胶纸、其制备方法及应用
CN103435320B (zh) * 2013-08-19 2016-05-04 航天特种材料及工艺技术研究所 一种高性能气凝胶复合材料及其制备方法和设备
JP6188245B2 (ja) * 2014-01-30 2017-08-30 オゾンセーブ株式会社 断熱材及び断熱材の製造方法
MY179677A (en) * 2014-09-25 2020-11-11 Hitachi Chemical Co Ltd Aerogel composite, and supporting member and heat insulation material provided with aerogel composite
JP2017223881A (ja) * 2016-06-17 2017-12-21 株式会社半導体エネルギー研究所 表示装置、表示モジュール、および電子機器

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200077262A (ko) * 2018-12-20 2020-06-30 주식회사 엘지화학 실리카 에어로겔 블랭킷의 제조방법
KR102604538B1 (ko) * 2018-12-20 2023-11-22 주식회사 엘지화학 실리카 에어로겔 블랭킷의 제조방법
KR20210151540A (ko) 2020-06-05 2021-12-14 주식회사 엘지화학 실리카 에어로겔 제조방법
WO2021256879A1 (ko) * 2020-06-19 2021-12-23 주식회사 엘지화학 소수성의 실리카 에어로겔 블랭킷 및 이의 제조방법
KR20220013190A (ko) 2020-07-24 2022-02-04 주식회사 엘지화학 실리카 에어로겔 제조방법

Also Published As

Publication number Publication date
TW201710086A (zh) 2017-03-16
WO2017010551A1 (ja) 2017-01-19
JP6330974B2 (ja) 2018-05-30
CN107849287A (zh) 2018-03-27
JPWO2017010551A1 (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
JP6330974B2 (ja) エアロゲル複合材料
JP6428783B2 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP6927194B2 (ja) ゾル組成物、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
WO2017038779A1 (ja) エアロゲル積層複合体及び断熱材
WO2017168847A1 (ja) エアロゲル層付き部材
JP6269903B2 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP2018118488A (ja) エアロゲル積層複合体及び断熱材
JPWO2019069492A1 (ja) 塗液、塗膜の製造方法及び塗膜
JP2020172590A (ja) 塗液、複合材料及び塗膜
JPWO2019069494A1 (ja) 塗液、塗膜の製造方法及び塗膜
JP7163967B2 (ja) エアロゲル複合材料
JP2018118489A (ja) エアロゲル積層複合体及び断熱材
WO2017170498A1 (ja) エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JP7119292B2 (ja) エアロゲル入り梱包体及びエアロゲル入り梱包体の製造方法
JP6750626B2 (ja) エアロゲル複合体
JP6699292B2 (ja) エアロゲル複合体の製造方法
JP6693221B2 (ja) エアロゲル複合体の製造方法
WO2017168845A1 (ja) エアロゲル層付き部材
JP6693222B2 (ja) エアロゲル複合体の製造方法、エアロゲル複合体、エアロゲル複合体付き支持部材及び断熱材
JPWO2019069493A1 (ja) 塗液、塗膜の製造方法及び塗膜