JP2017509317A - Mhcクラスiエピトープ送達ポリペプチド - Google Patents

Mhcクラスiエピトープ送達ポリペプチド Download PDF

Info

Publication number
JP2017509317A
JP2017509317A JP2016546476A JP2016546476A JP2017509317A JP 2017509317 A JP2017509317 A JP 2017509317A JP 2016546476 A JP2016546476 A JP 2016546476A JP 2016546476 A JP2016546476 A JP 2016546476A JP 2017509317 A JP2017509317 A JP 2017509317A
Authority
JP
Japan
Prior art keywords
polypeptide
cell
seq
toxin
cell epitope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016546476A
Other languages
English (en)
Other versions
JP6655017B2 (ja
Inventor
エリック ポーマ
エリック ポーマ
エリン ウィラート
エリン ウィラート
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Molecular Templates Inc
Original Assignee
Molecular Templates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Molecular Templates Inc filed Critical Molecular Templates Inc
Publication of JP2017509317A publication Critical patent/JP2017509317A/ja
Application granted granted Critical
Publication of JP6655017B2 publication Critical patent/JP6655017B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/25Shigella (G)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • A61P5/14Drugs for disorders of the endocrine system of the thyroid hormones, e.g. T3, T4
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/081Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from DNA viruses
    • C07K16/085Herpetoviridae, e.g. pseudorabies virus, Epstein-Barr virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/081Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from DNA viruses
    • C07K16/085Herpetoviridae, e.g. pseudorabies virus, Epstein-Barr virus
    • C07K16/088Varicella-zoster virus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/081Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from DNA viruses
    • C07K16/085Herpetoviridae, e.g. pseudorabies virus, Epstein-Barr virus
    • C07K16/089Cytomegalovirus
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1036Retroviridae, e.g. leukemia viruses
    • C07K16/1045Lentiviridae, e.g. HIV, FIV, SIV
    • C07K16/1063Lentiviridae, e.g. HIV, FIV, SIV env, e.g. gp41, gp110/120, gp160, V3, PND, CD4 binding site
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/286Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against neuromediator receptors, e.g. serotonin receptor, dopamine receptor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2866Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for cytokines, lymphokines, interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2887Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against CD20
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/32Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against translation products of oncogenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/62DNA sequences coding for fusion proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1077Pentosyltransferases (2.4.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2497Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing N- glycosyl compounds (3.2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/02Pentosyltransferases (2.4.2)
    • C12Y204/02036NAD(+)--diphthamide ADP-ribosyltransferase (2.4.2.36)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/02Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2) hydrolysing N-glycosyl compounds (3.2.2)
    • C12Y302/02022Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2) hydrolysing N-glycosyl compounds (3.2.2) rRNA N-glycosylase (3.2.2.22)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6037Bacterial toxins, e.g. diphteria toxoid [DT], tetanus toxoid [TT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/22Immunoglobulins specific features characterized by taxonomic origin from camelids, e.g. camel, llama or dromedary
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/04Fusion polypeptide containing a localisation/targetting motif containing an ER retention signal such as a C-terminal HDEL motif
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/55Fusion polypeptide containing a fusion with a toxin, e.g. diphteria toxin

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • AIDS & HIV (AREA)
  • Communicable Diseases (AREA)
  • Diabetes (AREA)
  • Neurology (AREA)
  • Hematology (AREA)
  • Dermatology (AREA)
  • Pulmonology (AREA)

Abstract

本発明は、1つ又は2つ以上のCD8+T細胞エピトープを細胞のMHCクラスI経路に送達するT細胞エピトープ送達ポリペプチドであって、組み込まれたT細胞エピトープを含み脱免疫化されている毒素由来ポリペプチドを含む、T細胞エピトープ送達ポリペプチドに関する。本発明は、特異的細胞タイプの標的化殺滅、並びにがん、免疫障害及び微生物感染を含む様々な疾患、障害及び状態の治療のために、特定の細胞、例えば感染細胞又は悪性細胞に細胞毒性を標的化送達するための、細胞標的化、CD8+T細胞エピトープ送達分子を提供する。本発明は、1つ又は2つ以上の異種T細胞エピトープをMHCクラスI提示経路に送達することができるポリペプチドを産生する方法も提供し、ポリペプチドは、1)B細胞及び/若しくはCD4+T細胞脱免疫化されている、2)組み込まれたT細胞エピトープを含む、並びに/又は3)毒素機能を保持する毒素エフェクターを含む、ポリペプチドを含む。

Description

本発明は、一般に、脊索動物細胞によるMHCクラスI提示のために異種T細胞エピトープを送達するポリペプチドの能力を導入するためのポリペプチド修飾方法、及びこれらの方法を用いて製造されたポリペプチドに関する。より具体的には、本発明は、MHCクラスI分子によって認識されうる、及び脊索動物細胞のMHCクラスI系によって細胞表面に提示されうる、1つ又は2つ以上のT細胞エピトープペプチドを付加させることによって、プロテアソーム送達エフェクター機能を有するポリペプチドを修飾して、免疫特性の点で親分子と異なる異種T細胞エピトープ送達ポリペプチドにする方法に関する。本発明の特定の方法は、1つ又は2つ以上のT細胞エピトープの導入によって抗原性及び/又は免疫原性を低減させるようにポリペプチドを修飾する方法に関する。別の態様において、本発明は、本発明の方法を用いて生成されたポリペプチド、及び本発明の方法を用いて生成されたポリペプチドを含む細胞標的化分子に関する。本発明の細胞標的化分子は、例えば、様々な疾患、例えばがん、腫瘍、他の増殖異常、免疫障害及び微生物感染などの、障害及び状態の診断及び治療などの、非常に多くの用途に使用することができる。
両生類、鳥類、魚類、哺乳類、爬虫類及びサメなどの脊索動物の免疫系は、特に脅威となる外来性分子、細胞及び病原体の存在を特定しようと外因性分子の細胞外環境と細胞内環境両方を絶えず探査している。主要組織適合性(MHC,Major Histo-Compatibility)系は、脊索動物において適応免疫系の一部として機能する(Janeway's Immunobiology(Murphy K, ed., Garland Science, 8th ed., 2011))。脊索動物体内で、細胞外抗原はMHCクラスII系によって提示されるが、細胞内抗原はMHCクラスI系によって提示されうる。
一般に、細胞への外因性ペプチド、ポリペプチド又はタンパク質の投与は、細胞膜の物理的バリアのため、これらの分子がその細胞に侵入する結果にはならない。加えて、これらの分子は、細胞表面及び/又は細胞外環境で細胞外酵素活性によって分解されて小分子になることが多い。エンドサイトーシスによって細胞外環境から内在化されるポリペプチド及びタンパク質は、一般に、初期エンドソーム、後期エンドソーム及びリソソームを含むエンドサイトーシス経路の一部としてリソソームタンパク質分解によって分解される。ファゴサイトーシスによって細胞外環境から内在化されるポリペプチド及びタンパク質は、一般に、ファゴリソソームで終わる同様の経路によって分解される。
MHCクラスII経路は、一般に特殊化抗原提示細胞によるファゴサイトーシス及びプロセッシング後、細胞外空間内の分子に由来する抗原性ペプチドを提示し、これらの細胞は、プロフェッショナル抗原提示細胞又は他の抗原提示細胞、例えば樹状細胞(DC,dendritic cell)、単核食細胞(MNPC,mononuclear phagocyte)、特定の内皮細胞及びBリンパ球(B細胞)などでありうる。これらの抗原提示細胞は、CD4陽性(CD4+,CD4 positive)Tリンパ球(T細胞)による認識のためにMHCクラスII分子と複合体を形成した特定のペプチドを該細胞表面に提示する。その一方で、MHCクラスI系は、脊索動物のほとんどの細胞において機能して、CD8+T細胞による認識のために細胞内空間、一般にサイトゾル、から抗原性ペプチドを提示する。
MHCクラスI系は、細胞内抗原の抗原提示をもたらすことにより、免疫系において不可欠な役割を果たす(Cellular and Molecular Immunology(Abbas A, ed., Saunders, 8th ed., 2014))。このプロセスは、主として新生物細胞から及び細胞内病原体が関与する微生物感染から保護するために脊索動物において進化した適応免疫系の重要な部分であると考えられているが、特定の損傷細胞はこのプロセスによって同様に除去されうる。MHCクラスI分子と複合体を形成した抗原ペプチドの提示は、溶解、アポトーシスの誘導、及び/又は壊死によって提示細胞を細胞毒性T細胞(CTL,cytotoxic T-cell)による標的化殺滅に対して感作させる。MHCクラスI分子と複合体を形成した特異的ペプチドエピトープの提示は、がん、腫瘍及び細胞内病原体に対する免疫応答の刺激及び維持に大きな役割を果たす。
MHCクラスI系は、様々な細胞内エピトープ、自己又は非自己(外来性)両方のペプチド抗原又は脂質抗原両方をプロセッシングし、細胞表面に提示するように、継続的に機能する。MHCクラスIは、細胞内病原体又は形質転換細胞からの外来性抗原を呈示し、防御T細胞免疫応答を開始するようにCD8+エフェクターT細胞にシグナルを送る。加えて、MHCクラスI系は、自己ペプチドエピトープを提示するように継続的に機能して、免疫学的寛容を確立し、維持する。
MHCクラスI系によるペプチドエピトープ提示は、5つの主要ステップを含む:1)細胞質ペプチドの生成、2)小胞体(ER,endoplasmic reticulum)の内腔へのペプチドの輸送、3)特定のペプチドと結合しているMHCクラスI分子の安定した複合体形成、4)細胞表面でのそれらの安定したペプチド−MHCクラスI分子複合体(ペプチド−MHCクラスI複合体)の提示、及び5)特異的CD8+T細胞(特異的CTLを含む)による提示された特定の抗原性ペプチド−MHCクラスI複合体の認識。
提示された抗原−MHCクラスI複合体のCD8+T細胞による認識は、CD8+T細胞活性化、クローン増殖、及びCD8+エフェクター細胞(特異的エピトープ−MHCクラスI複合体を提示する破壊細胞を標的にするCTLを含む)への分化につながる。これは、特異的CD8+エフェクター細胞集団の生成につながり、この集団の一部が体全体を移動して、特異的エピトープ−MHCクラスI複合体を提示する細胞を探索して破壊する。
MHCクラスI系は、サイトゾルペプチドで開始される。サイトゾル中のペプチドの存在は、様々な形で現れることがある。一般に、MHCクラスI分子によって提示されるペプチドは、細胞内タンパク質及びポリペプチドのプロテアソーム分解から得られる。MHCクラスI経路は、ER膜と会合している抗原ペプチド輸送体(TAP,transporter associated with antigen processing)タンパク質で始まることができる。TAPがペプチドをサイトゾルからERの内腔に移行させ、その後、そこでペプチドは空のMHCクラスI分子と会合することができる。TAPは、6〜40アミノ酸残基も含むが最も一般的には約8〜12アミノ酸残基のサイズのものであるペプチドを移行させる(Koopmann J et al., Eur J Immunol 26: 1720-8 (1996))。
MHCクラスI経路は、プロセッシングのためにタンパク質、ポリペプチド又はペプチドのサイトゾルに輸送すること、そしてその後TAP媒介移行によりERに再び入り直すことを含む経路によってERの内腔で開始されることもある。
TAPによってサイトゾルからERの内腔に輸送されたペプチドは、その後、様々なMHCクラスI分子による結合に利用されうる。ERの内腔において、TAPを含む多成分ペプチド負荷マシンは、安定したペプチド−MHCクラスI分子複合体の構築に役立ち、場合によっては、特に、トリミングと呼ばれるプロセスでの最適なサイズのペプチドへの切断により、ペプチドをさらにプロセッシングする(Mayerhofer P, Tampe R, J Mol Biol pii S0022-2835 (2014)を参照されたい)。ERにおいて、様々なMHCクラスI分子は、高特異的免疫グロブリン型の抗原結合ドメインを用いて、MHCクラスI分子が強い親和性を有する特異的ペプチドのみと堅く結合する。その後、ペプチド−MHCクラスI複合体は、細胞外環境への提示及びCD8+T細胞による認識のために分泌経路によって細胞膜に輸送される。
エピトープ−MHCクラスI複合体のCD8+T細胞による認識は防御免疫応答を開始し、1又は2以上のCTLの細胞毒活性のため、最終的には提示細胞の死滅で終わる。CTLは、様々な特異性を有する様々なT細胞受容体(TCR,T-cell receptor)を発現する。MHC対立遺伝子は高可変性であり、これらの多型によって付与される多様性は、二通りで、すなわち、ペプチド抗原の結合に影響を及ぼすことによって、及びMHC分子とTCR間の接触領域に影響を及ぼすことによって、T細胞による認識に影響を及ぼすことができる。その特定の細胞表面TCRを介したCTLによる抗原−MHCクラスI分子複合体認識に応じて、CTLは、主として提示細胞へのパーフォリン及び/又はグランザイム送達によって媒介される細胞溶解活性によって、抗原−MHCクラスI複合体提示細胞を殺滅することになる。加えて、CTLは、免疫賦活性サイトカイン、例えば、インターフェロンガンマ(IFN−ガンマ,interferon gamma)、腫瘍壊死因子(TNF,tumor necrosis factor)アルファ、マクロファージ炎症性タンパク質−1ベータ(MIP−1ベータ,macrophage inflammatory protein-1 beta)、並びにインターロイキン、例えばIL−17、IL−4及びIL−22などを放出することになる。さらに、活性化されたCTLは、それらを活性化したエピトープ−MHCクラスI複合体の提示細胞の近位を、その近位細胞の存在するペプチド−MHCクラスI複合体レパートリーにかかわらず、無差別に殺滅することができる(Wiedemann A et al., Proc Natl Acad Sci USA 103: 10985-90 (2006))。これらのエピトープ−MHCクラスI複合体誘導免疫応答を、患者体内の特定の細胞タイプを殺滅するための並びに他の近位細胞に対して免疫系を感作するための治療薬に利用することができるだろうと考えられた。
MHCクラスI提示経路は、所望の免疫応答を誘導するために様々な治療薬に活用することができるだろう。しかし、そのような技術の開発には、例えば、細胞膜を通っての送達;エンドサイトーシス経路の回避及びリソソームの破壊;並びに一般には標的細胞による外来性ポリペプチドの離隔、修飾及び/又は破壊を含む、いくつかの障害がある(Sahay G et al., J Control Release 145: 182-195 (2010)、Fuchs H et al., Antibodies 2: 209-35 (2013))。
加えて、ポリペプチドを含む治療薬、例えば、ポリペプチド系生物製剤及びバイオ医薬品の有効性は、該治療薬に反応してレシピエントにおいて発生する望ましくない免疫応答によって削減されることが多い。事実上全てのポリペプチド系治療薬は、哺乳動物対象への投与後、ある程度の免疫応答を誘導する。様々な免疫応答レベルは、低レベル、低親和性及び一過性免疫グロブリン−M抗体の産生から高レベル、高親和性免疫グロブリンG抗体の産生までを包含する。治療薬の免疫原性は、治療有効性を低下させる、薬物動態を有害に変化させる、及び/又は、数ある帰結のなかでも、過敏症反応、アナフィラキシー、アナフィラキシー様反応若しくは輸注反応をもたらす、望ましくない免疫応答をレシピエントにおいて生じさせることもある(Buttel I et al., Biologicals 39: 100-9 (2011)を参照されたい)。
例えば、ポリペプチド系治療薬は、レシピエントが該治療薬の抗原性部位に対する抗体(中和抗体又は坑薬物抗体と呼ばれることもある)を生じる原因になることがある。治療薬を認識する抗体を発生させる免疫応答は、該治療薬の作用に対する免疫抵抗をもたらすこともある。加えて、内因性因子を有する抗治療抗体間の交差反応が望ましくない臨床成績をもたらすこともある。
レシピエントが哺乳動物であり、ポリペプチド配列が植物又は微生物に由来する場合などの、レシピエントと遠縁に当たる種に由来するポリペプチド配列を有するポリペプチド系治療薬は、レシピエントの免疫系による攻撃標的にされる傾向がある(総説については、Sauerborn M et al., Trends Pharmacol Sci 31: 53-9 (2010)を参照されたい)。脊椎動物免疫系は、自然免疫系と適応免疫系の両方で外来性ポリペプチド配列を認識することに適応している。したがって、例えば2つの異種ヒトポリペプチド配列の組換え接合部を含むポリペプチドのヒトへの投与などの、同じ脊椎動物種からの脊椎動物へのポリペプチドの投与は、非自己として認識され、免疫応答を惹起しうる。
したがって、ポリペプチド含有治療薬を設計する際、治療的処置を受ける対象における望ましくない免疫応答の出現を予防及び/又は低減するために治療薬の免疫原性を最小にするように努めることが、多くの場合、望ましい。特に、B細胞及び/又はT細胞抗原性及び/又は免疫原性を生じさせる可能性が高い治療薬のポリペプチド領域は、除去、抑制及び最小化の標的にされる。
所与のポリペプチド配列中のB細胞エピトープとT細胞エピトープの両方を、ソフトウェアを使用してインシリコで予測することができる(Bryson C et al., BioDrugs 24: 1-8 (2010)を参照されたい)。例えば、EpiMatrix(EpiVax社製、Providence、RI、U.S.)と呼ばれるソフトウェアをうまく利用して、組換えタンパク質におけるT細胞免疫原性を予測した(De Groot A et al., Dev Biol (Basel) 122: 171-94 (2005)、Koren E et al., Clin Immunol 124: 26-32 (2007))。
短縮化又は変異による抗原性及び/又は免疫原性エピトープの除去などの、ポリペプチド含有治療薬の免疫原性を低減するための多くのアプローチが記載されている(Tangri S et al., J Immunol 174: 3187-96 (2005)、Mazor R et al., Proc Natl Acad Sci USA 109: E3597-603 (2012)、Yumura K et al., Protein Sci 22: 213-21 (2012))。適応免疫系は、外来性ポリペプチドを、該ポリペプチドの表面の少数の別個の部位に多くの場合存在する免疫エピトープによって絶妙な特異性で認識することができる。しかし、抗体結合親和性は、エピトープ内の少数の特異的アミノ酸との相互作用によって支配されうる。したがって、免疫原性エピトープを破壊するポリペプチド中の極めて重要なアミノ酸の修飾は、免疫原性を低減させることができる(Laroche Y et al., Blood 96: 1425-32 (2000))。エピトープ認識を壊す修飾は、アミノ酸欠失、置換、及び非免疫原性コンジュゲートでのエピトープ隠蔽を含む。
ポリペプチド系治療薬の開発のために、患者のB細胞媒介免疫応答及び中和抗体の産生を誘導しないようにすることが望ましい。なぜならその誘導は治療の有効性を低減させ、用量効果プロファイルを変化させ、患者が受ける用量の数を制限するからである(Lui W et al., Proc Natl Acad Sci USA 109: 11782-7 (2012)を参照されたい)。
Murphy K, ed., Garland Science, 8thed., 2011 Cellular and Molecular Immunology(Abbas A, ed., Saunders, 8th ed., 2014) Koopmann J et al., Eur J Immunol 26: 1720-8 (1996) Mayerhofer P, Tampe R, J Mol Biol pii S0022-2835 (2014) Wiedemann A et al., Proc Natl Acad Sci USA 103: 10985-90 (2006) Sahay G et al., J Control Release 145: 182-195 (2010) Fuchs H et al., Antibodies 2: 209-35 (2013) Buttel I et al., Biologicals 39: 100-9 (2011) Sauerborn M et al., Trends Pharmacol Sci 31: 53-9 (2010) Bryson C et al., BioDrugs 24: 1-8 (2010) De Groot A et al., Dev Biol (Basel) 122: 171-94 (2005) Koren E et al., Clin Immunol 124: 26-32 (2007) Tangri S et al., J Immunol 174: 3187-96 (2005) Mazor R et al., Proc Natl Acad Sci USA 109: E3597-603 (2012) Yumura K et al., Protein Sci 22: 213-21 (2012) Laroche Y et al., Blood 96: 1425-32 (2000) Lui W et al., Proc Natl Acad Sci USA 109: 11782-7 (2012)
したがって、1つ又は2つ以上のT細胞エピトープを細胞のMHCクラスI提示経路に送達することができる新規T細胞エピトープ送達ポリペプチドを生成する方法を有することは、望ましいことであろう。生理条件下でT細胞エピトープを標的細胞の内部に送達して所望のT細胞媒介免疫応答を開始させることができるポリペプチドであるが、細胞外空間にあるときに例えば阻害抗体の生成などの望ましくない免疫応答を誘導しないポリペプチドを有することも、望ましいことであろう。したがって、1つ又は2つ以上のCD8+T細胞エピトープが付加され、1つ又は2つ以上のB細胞及び/又はCD4+T細胞エピトープが消失されている、T細胞エピトープ送達ポリペプチドを有することは、望ましいことであろう。
特異的細胞タイプ、例えば感染又は悪性細胞、への細胞毒性の標的化送達のための細胞標的化、CD8+T細胞エピトープ送達分子を有することも、望ましいことであろう。加えて、B細胞免疫原性の低減を示す細胞標的化、CD8+T細胞エピトープ送達分子を有することは、望ましいことであろう。細胞標的化分子によって送達されたT細胞免疫原性ペプチドが標的細胞の表面に提示されると、T細胞エピトープは、レシピエント自身の免疫系を活性化してCD8+T細胞を動員することによって提示細胞破壊のシグナルを伝達することができる。加えて、標的細胞が提示するT細胞エピトープ−MHCクラスI複合体によって活性化されたCD8+T細胞は、より広範な免疫応答を刺激し、微小環境を(例えば、腫瘍又は感染組織部位でのサイトカイン放出によって)、他の免疫細胞(例えばエフェクターT細胞)がその局所領域に動員されうるように変化させることができる。
加えて、毒素に由来するが、親毒素ポリペプチドの特定の生物学的エフェクター機能、例えば、細胞内在化の促進、細胞内経路指定の指示、及び/又は毒素の酵素活性を保っている、新規T細胞エピトープ送達ポリペプチドを生成する方法を有することは、望ましいことであろう。加えて、ポリペプチドが望ましくない免疫応答を生じさせる尤度の低減、及び毒素ポリペプチドを含む分子を内在化する標的細胞に対する望ましいT細胞応答を誘導する尤度の増加、両方の手段として、B細胞エピトープをT細胞エピトープで置換することによって毒素由来ポリペプチドを工学的に操作する方法を有することは、望ましいことであろう。
本発明は、特定の細胞標的化分子の成分として、脊索動物体内の有核標的細胞による提示のためにT細胞エピトープを送達する能力を有する、T細胞エピトープ送達ポリペプチド(本書では「CD8+T細胞高度免疫化された」と言う)の様々な実施形態を提供する。本発明は、B細胞及び/又はCD4+T細胞エピトープに関して哺乳動物において抗原性及び/又は免疫原性の可能性が低減された、脱免疫化された、CD8+T細胞高度免疫化されたポリペプチド(本書では「B細胞及び/又はCD4+T細胞脱免疫化された」と言う)の様々な実施形態も提供する。本発明は、特異的細胞タイプ、例えば脊索動物体内の感染又は悪性細胞、への細胞毒性の標的化送達のための細胞標的化、CD8+T細胞エピトープ送達分子の様々な実施形態も提供する。
加えて、本発明は、細胞のMHCクラスI提示経路に1つ又は2つ以上異種T細胞エピトープを送達することができる新規ポリペプチドを生成する方法の実施形態を提供する。本発明は、B細胞及び/又はCD4+T細胞免疫原性の尤度を低減させると同時にCD8+T細胞免疫原性の尤度を増加させることによる、ポリペプチドのバリアントを生成する方法の様々な実施形態も提供する。本発明は、出発ポリペプチドが、毒素エフェクター領域を含み、本発明の方法を用いることによって産生される特定のポリペプチドが、結果として、例えば酵素活性及び細胞毒性などの毒素エフェクター機能を保持するポリペプチドとなる、細胞のMHCクラスI提示経路に1つ又は2つ以上の異種T細胞エピトープを送達することができる新規ポリペプチドを産生する方法の特定の実施形態も提供する。
本発明のポリペプチドは、CD8+T細胞高度免疫化されていることもあり、又は脱免疫化されていることもあり、又は両方であることもある。本発明の脱免疫化されたポリペプチドは、B細胞エピトープ脱免疫化されていることもあり、又はT細胞脱免疫化されていることもあり、又は両方であることもある。本発明のT細胞脱免疫化されたポリペプチドは、CD4+T細胞脱免疫化されていることもあり、又はCD8+T細胞脱免疫化されていることもあり、又は両方であることもある。本発明のポリペプチドの特定の実施形態は、1つ又は2つ以上の異種T細胞エピトープを含む。本発明のポリペプチドの特定のさらなる実施形態において、1つ又は2つ以上の異種T細胞エピトープは、CD8+T細胞エピトープである。
特定の実施形態において、本発明のポリペプチドは、組み込まれた(embedded)又は挿入された(inserted)異種T細胞エピトープを含み、ポリペプチドは、ポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームにT細胞エピトープを細胞内送達することができる。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチドをさらに含み、毒素由来ポリペプチドは、毒素由来ポリペプチドが存在する細胞の、サイトゾル、小胞体及びリソソームからなる群から選択される細胞内区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチドに組み込まれている又は挿入されている異種T細胞エピトープを含む。
特定の実施形態において、本発明のポリペプチドは、1又は2以上の毒素エフェクター機能を示すことができる毒素エフェクターポリペプチドを含む毒素由来ポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素(Pseudomonas exotoxin)A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する。
特定の実施形態において、本発明のポリペプチドは、配列番号1、配列番号2若しくは配列番号3のアミノ酸75〜251又は配列番号45のアミノ酸2〜389に由来する毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する。
特定の実施形態において、本発明のポリペプチドは、組み込まれた又は挿入された異種CD8+T細胞エピトープを有し、ポリペプチドは、ポリペプチドが存在する細胞の初期エンドソーム区画からのMHCクラスI分子にT細胞エピトープを細胞内送達することができる。特定のさらなる実施形態において、ポリペプチドは、毒素由来ポリペプチドをさらに含み、毒素由来ポリペプチドは、ポリペプチドが存在する細胞の、サイトゾル、小胞体及びリソソームからなる群から選択される細胞内区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチド中の異種CD8+T細胞エピトープを含む。特定のさらなる実施形態において、本発明のポリペプチドは、1又は2以上の毒素エフェクター機能を示すことができる毒素エフェクターポリペプチドを含む毒素由来ポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する毒素エフェクターポリペプチドを含む。特定の実施形態において、本発明のポリペプチドは、配列番号1、配列番号2若しくは配列番号3のアミノ酸75〜251又は配列番号45のアミノ酸2〜389に由来する毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する。
特定の実施形態において、本発明のポリペプチドは、異種CD8+T細胞エピトープを含み、ポリペプチドは、ポリペプチドが存在する細胞の表面でのMHCクラスI分子による提示のためにT細胞エピトープを細胞内送達することができる。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチドを含み、毒素由来ポリペプチドは、毒素由来ポリペプチドが存在する細胞の、サイトゾル、小胞体及びリソソームからなる群から選択される細胞内区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチド中の異種CD8+T細胞エピトープを含む。特定のさらなる実施形態において、本発明のポリペプチドは、1又は2以上の毒素エフェクター機能を示すことができる毒素エフェクターポリペプチドを含む毒素由来ポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する毒素エフェクターポリペプチドを含む。特定の実施形態において、本発明のポリペプチドは、配列番号1、配列番号2若しくは配列番号3のアミノ酸75〜251又は配列番号45のアミノ酸2〜389に由来する毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する。
特定の実施形態において、本発明のポリペプチドは、異種CD8+T細胞エピトープと会合しているプロテアソーム送達エフェクターポリペプチドであって、ポリペプチドが存在する細胞の表面でのMHCクラスI分子による提示のためにT細胞エピトープを細胞内送達することができるプロテアソーム送達エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、異種CD8+T細胞エピトープが志賀毒素エフェクターポリペプチドのアミノ末端に直接融合されていない、志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、B細胞エピトープに組み込まれている又は挿入されている第2のT細胞エピトープをさらに含む。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチドをさらに含む。特定のさらなる実施形態において、本発明のポリペプチドは、プロテアソーム送達エフェクターポリペプチドと第2のT細胞エピトープとを含む毒素エフェクターポリペプチドを含む、毒素由来ポリペプチドをさらに含む。特定のさらなる実施形態において、本発明のポリペプチドは、1又は2以上の毒素エフェクター機能を示すことができる毒素エフェクターポリペプチドを含む毒素由来ポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する毒素エフェクターポリペプチドを含む。特定の実施形態において、本発明のポリペプチドは、配列番号1、配列番号2若しくは配列番号3のアミノ酸75〜251又は配列番号45のアミノ酸2〜389に由来する毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する。
本発明の方法の特定のさらなる実施形態には、ポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、ポリペプチドは、ポリペプチドが存在する細胞の、サイトゾル、小胞体及びリソソームからなる群から選択される細胞内区画に細胞内で経路指定することができ、方法が、ポリペプチドに異種CD8+T細胞エピトープを組み込む又は挿入するステップを含む方法がある。特定のさらなる実施形態において、方法は、ポリペプチドの内因性B細胞エピトープ、内因性CD4+T細胞エピトープ及び/又は触媒ドメイン内への組み込み又は挿入である、組み込む又は挿入するステップを含む。方法の特定のさらなる実施形態において、方法のポリペプチドは毒素に由来する。方法の特定のさらなる実施形態において、ポリペプチドは、毒素エフェクターポリペプチドを含み、毒素エフェクターポリペプチドは、毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームにT細胞エピトープを細胞内送達することができ、方法は、毒素エフェクターポリペプチドに異種T細胞エピトープを組み込む又は挿入するステップを含む。方法の特定のさらなる実施形態では、組み込む又は挿入するステップの結果として毒素エフェクターポリペプチドが得られ、毒素エフェクターポリペプチドは、毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子へのT細胞エピトープの細胞内送達に加えて、1又は2以上の毒素エフェクター機能を示すことができる。
本発明の方法の特定のさらなる実施形態には、ポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、ポリペプチドは、ポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームにT細胞エピトープを細胞内送達することができ、方法が、ポリペプチドに異種CD8+T細胞エピトープを組み込む又は挿入するステップを含む方法がある。方法の特定のさらなる実施形態において、方法のポリペプチドは毒素に由来する。方法の特定のさらなる実施形態において、ポリペプチドは、毒素エフェクターポリペプチドを含み、毒素エフェクターポリペプチドは、毒素エフェクターポリペプチドが存在する細胞の初期エンドソームからプロテアソームにT細胞エピトープを細胞内送達することができ、方法は、毒素エフェクターポリペプチドに異種T細胞エピトープを組み込む又は挿入するステップを含む。方法の特定のさらなる実施形態では、組み込む又は挿入するステップの結果として毒素エフェクターポリペプチドが得られ、毒素エフェクターポリペプチドは、毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子へのT細胞エピトープの細胞内送達に加えて、1又は2以上の毒素エフェクター機能を示すことができる。
本発明の方法の特定のさらなる実施形態には、ポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、ポリペプチドは、ポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子にT細胞エピトープを細胞内送達することができ、方法が、ポリペプチドに異種CD8+T細胞エピトープを組み込む又は挿入するステップを含む方法がある。方法の特定のさらなる実施形態において、方法のポリペプチドは毒素に由来する。方法の特定のさらなる実施形態において、ポリペプチドは、毒素エフェクターポリペプチドを含み、毒素エフェクターポリペプチドは、毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームにT細胞エピトープを細胞内送達することができ、方法は、毒素エフェクターポリペプチドに異種T細胞エピトープを組み込む又は挿入するステップを含む。方法の特定のさらなる実施形態では、組み込む又は挿入するステップの結果として毒素エフェクターポリペプチドが得られ、毒素エフェクターポリペプチドは、毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子へのT細胞エピトープの細胞内送達に加えて、1又は2以上の毒素エフェクター機能を示すことができる。
本発明の方法の特定の実施形態には、T細胞エピトープ送達分子を生成する方法であって、T細胞エピトープ送達分子は、その分子が存在する細胞の初期エンドソーム区画からサイトゾル、小胞体及び/又はリソソームにT細胞エピトープを細胞内送達することができ、方法が、異種T細胞エピトープをポリペプチドと会合させるステップを含み、ポリペプチドは、ポリペプチドが存在する細胞の、サイトゾル、小胞体及びリソソームからなる群から選択される細胞内区画に経路指定することができる、方法がある。方法の特定のさらなる実施形態において、会合は、分子の内因性B細胞エピトープ、内因性CD4+T細胞エピトープ及び/又は触媒ドメインへの異種T細胞エピトープの組み込み及び挿入からなる。方法の特定のさらなる実施形態において、方法のポリペプチドは、毒素に由来する。方法の特定のさらなる実施形態において、ポリペプチドは、毒素エフェクターポリペプチドを含み、毒素エフェクターポリペプチドは、毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からサイトゾル、小胞体及び/又はリソソームにT細胞エピトープを細胞内送達することができ、方法は、毒素エフェクターポリペプチドに異種T細胞エピトープを組み込む又は挿入するステップを含む。方法の特定のさらなる実施形態では、組み込む又は挿入するステップの結果として毒素エフェクターポリペプチドが得られ、毒素エフェクターポリペプチドは、毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からサイトゾル、小胞体及び/又はリソソームへのT細胞エピトープの細胞内送達に加えて、1又は2以上の毒素エフェクター機能を示すことができる。
本発明の方法の特定の実施形態には、CD8+T細胞エピトープ送達分子を生成する方法であって、CD8+T細胞エピトープ送達分子は、その送達分子が存在する細胞の初期エンドソーム区画からプロテアソームにT細胞エピトープを細胞内送達することができ、方法が、プロテアソーム送達エフェクターポリペプチドに異種CD8+T細胞エピトープを組み込む又は挿入するステップであって、プロテアソーム送達エフェクターポリペプチドは、プロテアソーム送達エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームにT細胞エピトープを細胞内送達することができる、ステップを含む方法がある。方法の特定のさらなる実施形態において、会合は、分子の内因性B細胞エピトープ、内因性CD4+T細胞エピトープ及び/又は触媒ドメインへの異種T細胞エピトープの組み込み及び挿入からなる。方法の特定のさらなる実施形態において、方法のポリペプチドは、毒素に由来する。方法の特定のさらなる実施形態において、ポリペプチドは、毒素エフェクターポリペプチドを含み、毒素エフェクターポリペプチドは、毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームへのT細胞エピトープの細胞内送達に加えて、1又は2以上の毒素エフェクター機能を示すことができる。
本発明の方法の特定の実施形態にはCD8+T細胞エピトープ送達分子を生成する方法であって、CD8+T細胞エピトープ送達分子は、その送達分子が存在する細胞の初期エンドソーム区画からMHCクラスI分子にT細胞エピトープを細胞内送達することができ、方法が、プロテアソーム送達エフェクターポリペプチドに異種CD8+T細胞エピトープ送達分子を組み込む又は挿入するステップであって、プロテアソーム送達エフェクターポリペプチドは、プロテアソーム送達エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子にT細胞エピトープを細胞内送達することができる、ステップを含む方法がある。方法の特定のさらなる実施形態において、会合は、分子の内因性B細胞エピトープ、内因性CD4+T細胞エピトープ及び/又は触媒ドメインへの異種T細胞エピトープの組み込み及び挿入からなる。方法の特定のさらなる実施形態において、方法のポリペプチドは、毒素に由来する。方法の特定のさらなる実施形態において、ポリペプチドは、プロテアソーム送達エフェクターポリペプチドを含む毒素エフェクターポリペプチドを含み、方法は、毒素エフェクターポリペプチドに異種T細胞エピトープを組み込む又は挿入するステップを含む。方法の特定のさらなる実施形態において、__の結果として得られる毒素エフェクターポリペプチドは、その毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子へのT細胞エピトープの細胞内送達に加えて、1又は2以上の毒素エフェクター機能を示すことができる。
本発明の方法の特定の実施形態には、細胞内に存在するときにMHCクラスI分子による提示のためにT細胞エピトープを送達することができるCD8+T細胞エピトープ送達分子を生成する方法であって、方法が、プロテアソーム送達エフェクターポリペプチドに異種CD8+T細胞エピトープを組み込む又は挿入するステップを含み、プロテアソーム送達エフェクターポリペプチドは、プロテアソーム送達エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームにT細胞エピトープを細胞内送達することができる、方法がある。方法の特定のさらなる実施形態において、会合は、分子の内因性B細胞エピトープ、内因性CD4+T細胞エピトープ及び/又は触媒ドメインへの異種T細胞エピトープの組み込み及び挿入からなる。方法の特定のさらなる実施形態において、方法のポリペプチドは、毒素に由来する。方法の特定のさらなる実施形態において、ポリペプチドは、プロテアソーム送達エフェクターポリペプチドを含む毒素エフェクターポリペプチドを含み、方法は、毒素エフェクターポリペプチドに異種T細胞エピトープを組み込む又は挿入するステップを含む。方法の特定のさらなる実施形態において、__の結果として得られる毒素エフェクターポリペプチドは、その毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子へのT細胞エピトープの細胞内送達に加えて、1又は2以上の毒素エフェクター機能を示すことができる。
本発明の方法の特定の実施形態には、細胞内に存在するときにMHCクラスI分子による提示のためにT細胞エピトープを送達することができるCD8+T細胞エピトープ送達分子を生成する方法であって、方法が、プロテアソーム送達エフェクターポリペプチドに異種CD8+T細胞エピトープ送達分子を組み込む又は挿入するステップを含み、プロテアソーム送達エフェクターポリペプチドは、プロテアソーム送達エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子にT細胞エピトープを細胞内送達することができる、方法がある。方法の特定のさらなる実施形態において、会合は、分子の内因性B細胞エピトープ、内因性CD4+T細胞エピトープ及び/又は触媒ドメインへの異種T細胞エピトープの組み込み及び挿入からなる。方法の特定のさらなる実施形態において、方法のポリペプチドは、毒素に由来する。方法の特定のさらなる実施形態において、ポリペプチドは、プロテアソーム送達エフェクターポリペプチドを含む毒素エフェクターポリペプチドを含み、方法は、毒素エフェクターポリペプチドに異種T細胞エピトープを組み込む又は挿入するステップを含む。方法の特定のさらなる実施形態において、__の結果として得られる毒素エフェクターポリペプチドは、その毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子へのT細胞エピトープの細胞内送達に加えて、1又は2以上の毒素エフェクター機能を示すことができる。
特定の実施形態において、本発明の脱免疫化されたポリペプチドは、内因性B細胞エピトープ及び/又はCD4+T細胞エピトープを破壊する異種T細胞エピトープを含む。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチドを含む。特定のさらなる実施形態において、異種CD8+T細胞エピトープは、毒素由来ポリペプチドの中にある。特定のさらなる実施形態において、本発明の毒素由来ポリペプチドは、毒素エフェクターポリペプチドを含む。特定のさらなる実施形態では、毒素エフェクターポリペプチド中の異種CD8+T細胞エピトープ。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、1又は2以上の毒素エフェクター機能を示すことができる。特定のさらなる実施形態において、本発明のポリペプチドは、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、ジフテリア毒素ファミリーの少なくとも1つのメンバーのA及びBサブユニットに由来するアミノ酸配列を含むジフテリア毒素エフェクターポリペプチドであり、ジフテリア毒素エフェクターポリペプチドは、配列番号39の3〜10、配列番号39の33〜43、配列番号39の71〜77、配列番号39の125〜131、配列番号39の138〜146、配列番号39の165〜175、及び配列番号39の185〜191からなる天然位置のアミノ酸の群から選択されるアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、ジフテリア毒素エフェクターポリペプチドは、ジフテリア毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号45のアミノ酸2〜389に由来するジフテリア毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、志賀毒素ファミリーの少なくとも1つのメンバーのAサブユニットに由来するアミノ酸配列を含む志賀毒素エフェクターポリペプチドであり、志賀毒素エフェクターポリペプチドは、配列番号1又は配列番号2の1〜15、配列番号3の3〜14、配列番号3の26〜37、配列番号1又は配列番号2の27〜37、配列番号1又は配列番号2の39〜48、配列番号3の42〜48、配列番号1、配列番号2又は配列番号3の53〜66、配列番号1、配列番号2又は配列番号3の94〜115、配列番号1又は配列番号2の141〜153、配列番号3の140〜156、配列番号1又は配列番号2の179〜190、配列番号3の179〜191、配列番号3の204、配列番号1又は配列番号2の205及び配列番号3の210〜218、配列番号3の240〜260、配列番号1又は配列番号2の243〜257、配列番号1又は配列番号2の254〜268、配列番号3の262〜278、配列番号3の281〜297及び配列番号1又は配列番号2の285〜293のB細胞エピトープ領域と、配列番号1又は配列番号2の4〜33、配列番号1又は配列番号2の34〜78、配列番号1又は配列番号2の77〜103、配列番号1又は配列番号2の128〜168、配列番号1又は配列番号2の160〜183、配列番号1又は配列番号2の236〜258及び配列番号1又は配列番号2の274〜293のCD4+T細胞エピトープ領域とからなる天然位置のアミノ酸の群から選択される志賀毒素Aサブユニットアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、志賀毒素エフェクターポリペプチドは、志賀毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸75〜251に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する。
特定の実施形態において、本発明のポリペプチドは、内因性B細胞エピトープ及び/又は内因性CD4+T細胞エピトープを破壊する、異種CD8+T細胞エピトープを含み、ポリペプチドは、ポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームにCD8+T細胞エピトープを細胞内送達することができる。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチドを含む。特定のさらなる実施形態において、異種CD8+T細胞エピトープは、毒素由来ポリペプチドの中にある。特定のさらなる実施形態において、本発明の毒素由来ポリペプチドは、毒素エフェクターポリペプチドを含む。特定のさらなる実施形態では、毒素エフェクターポリペプチド中の異種CD8+T細胞エピトープ。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、1又は2以上の毒素エフェクター機能を示すことができる。特定のさらなる実施形態において、本発明のポリペプチドは、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、ジフテリア毒素ファミリーの少なくとも1つのメンバーのA及びBサブユニットに由来するアミノ酸配列を含むジフテリア毒素エフェクターポリペプチドであり、ジフテリア毒素エフェクターポリペプチドは、配列番号39の3〜10、配列番号39の33〜43、配列番号39の71〜77、配列番号39の125〜131、配列番号39の138〜146、配列番号39の165〜175、及び配列番号39の185〜191からなる天然位置のアミノ酸の群から選択されるアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、ジフテリア毒素エフェクターポリペプチドは、ジフテリア毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号45のアミノ酸2〜389に由来するジフテリア毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、志賀毒素ファミリーの少なくとも1つのメンバーのAサブユニットに由来するアミノ酸配列を含む志賀毒素エフェクターポリペプチドであり、志賀毒素エフェクターポリペプチドは、配列番号1又は配列番号2の1〜15、配列番号3の3〜14、配列番号3の26〜37、配列番号1又は配列番号2の27〜37、配列番号1又は配列番号2の39〜48、配列番号3の42〜48、配列番号1、配列番号2又は配列番号3の53〜66、配列番号1、配列番号2又は配列番号3の94〜115、配列番号1又は配列番号2の141〜153、配列番号3の140〜156、配列番号1又は配列番号2の179〜190、配列番号3の179〜191、配列番号3の204、配列番号1又は配列番号2の205及び配列番号3の210〜218、配列番号3の240〜260、配列番号1又は配列番号2の243〜257、配列番号1又は配列番号2の254〜268、配列番号3の262〜278、配列番号3の281〜297及び配列番号1又は配列番号2の285〜293のB細胞エピトープ領域と、配列番号1又は配列番号2の4〜33、配列番号1又は配列番号2の34〜78、配列番号1又は配列番号2の77〜103、配列番号1又は配列番号2の128〜168、配列番号1又は配列番号2の160〜183、配列番号1又は配列番号2の236〜258及び配列番号1又は配列番号2の274〜293のCD4+T細胞エピトープ領域とからなる天然位置のアミノ酸の群から選択される志賀毒素Aサブユニットアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、前記志賀毒素エフェクターポリペプチドは、前記志賀毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸75〜251に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する。
特定の実施形態において、本発明の脱免疫化されたポリペプチドは、内因性B細胞エピトープ及び/又は内因性CD4+T細胞エピトープを破壊する、異種CD8+T細胞エピトープを含み、ポリペプチドは、ポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子にCD8+T細胞エピトープを細胞内送達することができる。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチドを含む。特定のさらなる実施形態において、異種CD8+T細胞エピトープは、毒素由来ポリペプチドの中にある。特定のさらなる実施形態において、本発明の毒素由来ポリペプチドは、毒素エフェクターポリペプチドを含む。特定のさらなる実施形態では、毒素エフェクターポリペプチド中の異種CD8+T細胞エピトープ。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、1又は2以上の毒素エフェクター機能を示すことができる。特定のさらなる実施形態において、本発明のポリペプチドは、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、ジフテリア毒素ファミリーの少なくとも1つのメンバーのA及びBサブユニットに由来するアミノ酸配列を含むジフテリア毒素エフェクターポリペプチドであり、ジフテリア毒素エフェクターポリペプチドは、配列番号39の3〜10、配列番号39の33〜43、配列番号39の71〜77、配列番号39の125〜131、配列番号39の138〜146、配列番号39の165〜175、及び配列番号39の185〜191からなる天然位置のアミノ酸の群から選択されるアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、ジフテリア毒素エフェクターポリペプチドは、ジフテリア毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号45のアミノ酸2〜389に由来するジフテリア毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、志賀毒素ファミリーの少なくとも1つのメンバーのAサブユニットに由来するアミノ酸配列を含む志賀毒素エフェクターポリペプチドであり、志賀毒素エフェクターポリペプチドは、配列番号1又は配列番号2の1〜15、配列番号3の3〜14、配列番号3の26〜37、配列番号1又は配列番号2の27〜37、配列番号1又は配列番号2の39〜48、配列番号3の42〜48、配列番号1、配列番号2又は配列番号3の53〜66、配列番号1、配列番号2又は配列番号3の94〜115、配列番号1又は配列番号2の141〜153、配列番号3の140〜156、配列番号1又は配列番号2の179〜190、配列番号3の179〜191、配列番号3の204、配列番号1又は配列番号2の205及び配列番号3の210〜218、配列番号3の240〜260、配列番号1又は配列番号2の243〜257、配列番号1又は配列番号2の254〜268、配列番号3の262〜278、配列番号3の281〜297及び配列番号1又は配列番号2の285〜293のB細胞エピトープ領域と、配列番号1又は配列番号2の4〜33、配列番号1又は配列番号2の34〜78、配列番号1又は配列番号2の77〜103、配列番号1又は配列番号2の128〜168、配列番号1又は配列番号2の160〜183、配列番号1又は配列番号2の236〜258及び配列番号1又は配列番号2の274〜293のCD4+T細胞エピトープ領域とからなる天然位置のアミノ酸の群から選択される志賀毒素Aサブユニットアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、志賀毒素エフェクターポリペプチドは、志賀毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸75〜251に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する。
特定の実施形態において、本発明の脱免疫化されたポリペプチドは、内因性B細胞エピトープ及び/又は内因性CD4+T細胞エピトープを破壊する、異種CD8+T細胞エピトープを含み、ポリペプチドは、ポリペプチドが存在する細胞の表面でのMHCクラスI分子による提示のためにCD8+T細胞エピトープを細胞内送達することができる。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチドを含む。特定のさらなる実施形態において、異種CD8+T細胞エピトープは、毒素由来ポリペプチドの中にある。特定のさらなる実施形態において、本発明の毒素由来ポリペプチドは、毒素エフェクターポリペプチドを含む。特定のさらなる実施形態では、毒素エフェクターポリペプチド中の異種CD8+T細胞エピトープ。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、1又は2以上の毒素エフェクター機能を示すことができる。特定のさらなる実施形態において、本発明のポリペプチドは、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、ジフテリア毒素ファミリーの少なくとも1つのメンバーのA及びBサブユニットに由来するアミノ酸配列を含むジフテリア毒素エフェクターポリペプチドであり、ジフテリア毒素エフェクターポリペプチドは、配列番号39の3〜10、配列番号39の33〜43、配列番号39の71〜77、配列番号39の125〜131、配列番号39の138〜146、配列番号39の165〜175、及び配列番号39の185〜191からなる天然位置のアミノ酸の群から選択されるアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、ジフテリア毒素エフェクターポリペプチドは、ジフテリア毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号45のアミノ酸2〜389に由来するジフテリア毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、志賀毒素ファミリーの少なくとも1つのメンバーのAサブユニットに由来するアミノ酸配列を含む志賀毒素エフェクターポリペプチドであり、前記志賀毒素エフェクターポリペプチドは、配列番号1又は配列番号2の1〜15、配列番号3の3〜14、配列番号3の26〜37、配列番号1又は配列番号2の27〜37、配列番号1又は配列番号2の39〜48、配列番号3の42〜48、配列番号1、配列番号2又は配列番号3の53〜66、配列番号1、配列番号2又は配列番号3の94〜115、配列番号1又は配列番号2の141〜153、配列番号3の140〜156、配列番号1又は配列番号2の179〜190、配列番号3の179〜191、配列番号3の204、配列番号1又は配列番号2の205及び配列番号3の210〜218、配列番号3の240〜260、配列番号1又は配列番号2の243〜257、配列番号1又は配列番号2の254〜268、配列番号3の262〜278、配列番号3の281〜297及び配列番号1又は配列番号2の285〜293のB細胞エピトープ領域と、配列番号1又は配列番号2の4〜33、配列番号1又は配列番号2の34〜78、配列番号1又は配列番号2の77〜103、配列番号1又は配列番号2の128〜168、配列番号1又は配列番号2の160〜183、配列番号1又は配列番号2の236〜258及び配列番号1又は配列番号2の274〜293のCD4+T細胞エピトープ領域とからなる天然位置のアミノ酸の群から選択される志賀毒素Aサブユニットアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、志賀毒素エフェクターポリペプチドは、志賀毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸75〜251に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する。
特定の実施形態において、本発明の脱免疫化されたポリペプチドは、内因性B細胞エピトープ及び/又は内因性CD4+T細胞エピトープを破壊する第1の異種CD8+T細胞エピトープを含む、プロテアソーム送達エフェクターポリペプチドを含み、プロテアソーム送達エフェクターポリペプチドは、第2のCD8+T細胞エピトープに連結されており、ポリペプチドは、ポリペプチドが存在する細胞の表面でのMHCクラスI分子による提示のために第2のCD8+T細胞エピトープを細胞内送達することができる。特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチドを含む。特定のさらなる実施形態において、異種CD8+T細胞エピトープは、毒素由来ポリペプチドの中にある。特定のさらなる実施形態において、本発明の毒素由来ポリペプチドは、毒素エフェクターポリペプチドを含む。特定のさらなる実施形態では、毒素エフェクターポリペプチド中の異種CD8+T細胞エピトープ。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、1又は2以上の毒素エフェクター機能を示すことができる。特定のさらなる実施形態において、本発明のポリペプチドは、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、ジフテリア毒素ファミリーの少なくとも1つのメンバーのA及びBサブユニットに由来するアミノ酸配列を含むジフテリア毒素エフェクターポリペプチドであり、ジフテリア毒素エフェクターポリペプチドは、配列番号39の3〜10、配列番号39の33〜43、配列番号39の71〜77、配列番号39の125〜131、配列番号39の138〜146、配列番号39の165〜175、及び配列番号39の185〜191からなる天然位置のアミノ酸の群から選択されるアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、ジフテリア毒素エフェクターポリペプチドは、ジフテリア毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号45のアミノ酸2〜389に由来するジフテリア毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、毒素エフェクターポリペプチドは、志賀毒素ファミリーの少なくとも1つのメンバーのAサブユニットに由来するアミノ酸配列を含む志賀毒素エフェクターポリペプチドであり、前記志賀毒素エフェクターポリペプチドは、配列番号1又は配列番号2の1〜15、配列番号3の3〜14、配列番号3の26〜37、配列番号1又は配列番号2の27〜37、配列番号1又は配列番号2の39〜48、配列番号3の42〜48、配列番号1、配列番号2又は配列番号3の53〜66、配列番号1、配列番号2又は配列番号3の94〜115、配列番号1又は配列番号2の141〜153、配列番号3の140〜156、配列番号1又は配列番号2の179〜190、配列番号3の179〜191、配列番号3の204、配列番号1又は配列番号2の205及び配列番号3の210〜218、配列番号3の240〜260、配列番号1又は配列番号2の243〜257、配列番号1又は配列番号2の254〜268、配列番号3の262〜278、配列番号3の281〜297及び配列番号1又は配列番号2の285〜293のB細胞エピトープ領域と、配列番号1又は配列番号2の4〜33、配列番号1又は配列番号2の34〜78、配列番号1又は配列番号2の77〜103、配列番号1又は配列番号2の128〜168、配列番号1又は配列番号2の160〜183、配列番号1又は配列番号2の236〜258及び配列番号1又は配列番号2の274〜293のCD4+T細胞エピトープ領域とからなる天然位置のアミノ酸の群から選択される志賀毒素Aサブユニットアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、志賀毒素エフェクターポリペプチドには、志賀毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸75〜251に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、本発明のポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する志賀毒素エフェクターポリペプチドを含む。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する。特定のさらなる実施形態において、志賀毒素エフェクターポリペプチドは、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する。
本発明の方法の特定の実施形態には、ポリペプチドのB細胞免疫原性を低減させる方法であって、ポリペプチドに付加させたT細胞エピトープの1つ又は2つ以上のアミノ酸残基でB細胞エピトープを破壊するステップを含む方法がある。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープにおいて1つ又は2つ以上のアミノ酸置換を行うステップをさらに含む。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープへの1つ又は2つ以上のアミノ酸挿入を行うステップをさらに含む。
本発明の方法の特定の実施形態には、ポリペプチドのB細胞免疫原性を低減させる方法であって、ポリペプチド中のB細胞エピトープを同定するステップと、同定されたB細胞エピトープをポリペプチドに付加させたT細胞エピトープ内の1つ又は2つ以上のアミノ酸残基で破壊するステップとを含む方法がある。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープにおいて1つ又は2つ以上のアミノ酸置換を行うステップをさらに含む。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープへの1つ又は2つ以上のアミノ酸挿入を行うステップをさらに含む。
本発明の方法の特定の実施形態には、ポリペプチドのB細胞免疫原性を低減させると同時にポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、ポリペプチドに付加させた異種CD8+T細胞エピトープ内の1つ又は2つ以上のアミノ酸残基でB細胞エピトープを破壊するステップを含む方法がある。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープにおいて1つ又は2つ以上のアミノ酸置換を行うステップをさらに含む。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープへの1つ又は2つ以上のアミノ酸挿入を行うステップをさらに含む。
本発明の方法の特定の実施形態には、ポリペプチドのB細胞免疫原性を低減させると同時にポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、ポリペプチド中のCD4+T細胞エピトープを同定するステップと、同定されたCD4+T細胞エピトープをポリペプチドに付加させたCD8+T細胞エピトープ内の1つ又は2つ以上のアミノ酸残基で破壊するステップとを含む方法がある。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープにおいて1つ又は2つ以上のアミノ酸置換を行うステップをさらに含む。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープへの1つ又は2つ以上のアミノ酸挿入を行うステップをさらに含む。
本発明の方法の特定の実施形態には、ポリペプチドにおけるCD4+T細胞免疫原性を低減させる方法であって、前記ポリペプチドに付加させたCD8+T細胞エピトープ内の1つ又は2つ以上のアミノ酸残基でCD4+T細胞エピトープを破壊するステップを含む方法がある。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープにおいて1つ又は2つ以上のアミノ酸置換を行うステップをさらに含む。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープへの1つ又は2つ以上のアミノ酸挿入を行うステップをさらに含む。
本発明の方法の特定の実施形態には、ポリペプチドにおけるCD4+T細胞免疫原性を低減させる方法であって、ポリペプチド中のCD4+T細胞エピトープを同定するステップと、同定されたCD4+T細胞エピトープをポリペプチドに付加させたCD8+T細胞エピトープ内の1つ又は2つ以上のアミノ酸残基で破壊するステップとを含む方法がある。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープにおいて1つ又は2つ以上のアミノ酸置換を行うステップをさらに含む。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープへの1つ又は2つ以上のアミノ酸挿入を行うステップをさらに含む。
本発明の方法の特定の実施形態には、ポリペプチドにおけるCD4+T細胞免疫原性を低減させると同時にポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、ポリペプチドに付加させた異種CD8+T細胞エピトープ内の1つ又は2つ以上のアミノ酸残基でCD4+T細胞エピトープを破壊するステップを含む方法がある。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープにおいて1つ又は2つ以上のアミノ酸置換を行うステップをさらに含む。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープへの1つ又は2つ以上のアミノ酸挿入を行うステップをさらに含む。
本発明の方法の特定の実施形態には、ポリペプチドにおけるCD4+T細胞免疫原性を低減させると同時にポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、ポリペプチド中のCD4+T細胞エピトープを同定するステップと、同定されたCD4+T細胞エピトープをポリペプチドに付加させたCD8+T細胞エピトープ内の1つ又は2つ以上のアミノ酸残基で破壊するステップとを含む方法がある。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープにおいて1つ又は2つ以上のアミノ酸置換を行うステップをさらに含む。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープへの1つ又は2つ以上のアミノ酸挿入を行うステップをさらに含む。
本発明のポリペプチドの特定の実施形態は、本発明の方法のいずれかによって産生されたポリペプチドを提供する。
特定の実施形態において、本発明のポリペプチドは、配列番号11〜43及び46〜48のうちのいずれか1つを含む、又は配列番号11〜43及び46〜48のうちのいずれか1つから本質的になる。
特定の実施形態において、本発明の細胞標的化分子は、細胞標的化部分又は細胞標的化剤と、本発明の任意のポリペプチドとを含む。特定のさらなる実施形態において、細胞標的化分子は結合領域をさらに含み、結合領域は、1つ又は2つ以上のポリペプチドを含み、少なくとも1つの細胞外標的生体分子に特異的に結合することができる。特定のさらなる実施形態において、結合領域は、相補性決定領域3(CDR3,complementary determining region 3)断片拘束FR3−CDR3−FR4(FR3−CDR3−FR4)ポリペプチド、シングルドメイン抗体(sdAb,single-domain antibody)断片、ナノボディ、ラクダ科動物に由来する重鎖抗体ドメイン(VH断片)、軟骨魚類に由来する重鎖抗体ドメイン、免疫グロブリン新規抗原受容体(IgNAR,immunoglobulin new antigen receptor)、VNAR断片、一本鎖可変断片(scFv,single-chain variable fragment)、抗体可変断片(Fv,variable fragment)、抗原結合断片(Fab,antigen-binding fragment)、Fd断片、小モジュラー免疫医薬(SMIP,small modular immunopharmaceutical)ドメイン、フィブロネクションから得られる第10フィブロネクチンIII型ドメイン(10Fn3,fibronection-derived 10th fibronectin type III domain)(例えばモノボディ)、テネイシンIII型ドメイン(例えばTNfn3)、アンキリン反復モチーフドメイン(ARD,ankyrin repeat motif domain)、低密度リポタンパク質受容体由来Aドメイン(LDLRのAドメイン又はLDLR−A,low-density-lipoprotein-receptor-derived A-domain)、リポカリン(アンチカリン)、Kunitzドメイン、プロテインA由来Zドメイン、ガンマ−B結晶由来ドメイン(アフィリン)、ユビキチン由来ドメイン、Sac7d由来ポリペプチド、Fyn由来SH2ドメイン(アフィチン)、ミニタンパク質、C型レクチン様ドメイン足場、工学的に操作された抗体模倣物、及び結合機能性を保持する前述のもののいずれかの遺伝子操作された任意の対応物からなる群から選択されるポリペプチドを含む。本発明の細胞標的化分子の特定のさらなる実施形態では、細胞標的化分子を結合領域の細胞外標的生体分子と物理的に結合されている細胞に投与すると、細胞標的化分子は細胞を死滅させることができる。本発明の細胞標的化分子の特定のさらなる実施形態では、細胞標的化分子を、メンバーが結合領域の細胞外標的生体合分子と物理的に結合されている第1の細胞集団、及びメンバーが前記結合領域のいかなる細胞外標的生体分子とも物理的に結合されていない第2の細胞集団に投与すると、前記第2の細胞集団のメンバーと比較して前記第1の細胞集団のメンバーに対する細胞標的化分子の細胞毒性効果は少なくとも3倍大きい。本発明の細胞標的化分子の特定のさらなる実施形態において、結合領域は、CD20、CD22、CD40、CD79、CD25、CD30、HER2/neu/ErbB2、EGFR、EpCAM、EphB2、前立腺特異的膜抗原、Cripto、エンドグリン、線維芽細胞活性化タンパク質、Lewis−Y、CD19、CD21、CS1/SLAMF7、CD33、CD52、EpCAM、CEA、gpA33、ムチン、TAG−72、炭酸脱水酵素IX、葉酸結合タンパク質、ガングリオシドGD2、ガングリオシドGD3、ガングリオシドGM2、ガングリオシドLewis−Y2、VEGFR、アルファVベータ3、アルファ5ベータ1、ErbB1/EGFR、Erb3、c−MET、IGF1R、EphA3、TRAIL−R1、TRAIL−R2、RANKL、FAP、テネイシン、CD64、メソセリン、BRCA1、MART−1/メランA、gp100、チロシナーゼ、TRP−1、TRP−2、MAGE−1、MAGE−3、GAGE−1/2、BAGE、RAGE、NY−ESO−1、CDK−4、ベータ−カテニン、MUM−1、カスパーゼ−8、KIAA0205、HPVE6、SART−1、PRAME、癌胎児抗原、前立腺特異的抗原、前立腺幹細胞抗原、ヒトアスパルチル(アスパラギニル)ベータ−ヒドロキシラーゼ、EphA2、HER3/ErbB−3、MUC1、MART−1/メランA、gp100、チロシナーゼ関連抗原、HPV−E7、エプスタイン・バーウイルス抗原、Bcr−Abl、アルファ−フェトプロテイン抗原、17−A1、膀胱腫瘍抗原、CD38、CD15、CD23、CD52、CD53、CD88、CD129、CD183、CD191、CD193、CD244、CD294、CD305、C3AR、FceRIa、ガレクチン−9、mrp−14、siglec−8、siglec−10、CD49d、CD13、CD44、CD54、CD63、CD69、CD123、CD193、TLR4、FceRIa、IgE、CD107a、CD203c、CD14、CD15、CD33、CD64、CD68、CD80、CD86、CD105、CD115、F4/80、ILT−3、ガレクチン−3、CD11a−c、GITRL、MHCクラスII、CD284−TLR4、CD107−Mac3、CD195−CCR5、HLA−DR、CD16/32、CD282−TLR2、CD11c、CD123、及び前述のもののいずれかの任意の免疫原性断片からなる群から選択される細胞外標的生体分子と結合することができる。本発明の細胞標的化分子の特定のさらなる実施形態において、細胞標的化分子は、KDELファミリーのメンバーのカルボキシ末端小胞体保留/回収シグナルモチーフをさらに含む。特定のさらなる実施形態では、KDEL、HDEF、HDEL、RDEF、RDEL、WDEL、YDEL、HEEF、HEEL、KEEL、REEL、KAEL、KCEL、KFEL、KGEL、KHEL、KLEL、KNEL、KQEL、KREL、KSEL、KVEL、KWEL、KYEL、KEDL、KIEL、DKEL、FDEL、KDEF、KKEL、HADL、HAEL、HIEL、HNEL、HTEL、KTEL、HVEL、NDEL、QDEL、REDL、RNEL、RTDL、RTEL、SDEL、TDEL及びSKELからなる群から選択される、カルボキシ末端小胞体保留/回収シグナルモチーフ。
本発明の特定の実施形態において、細胞毒性タンパク質の細胞標的化部分の細胞外標的生体分子と物理的に結合されている細胞に本発明の細胞標的化分子を投与すると、細胞毒性タンパク質は、細胞を死滅させることができる。
本発明の特定の実施形態において、細胞外標的生体分子の存在について異なる細胞タイプの2集団に本発明の細胞標的化分子を投与すると、細胞標的化分子は、細胞標的化分子の細胞標的化部分の細胞外標的生体分子と物理的に結合されていない細胞タイプとのCD50に比べて少なくとも3倍又は4倍以上小さいCD50で、その結合領域の細胞外標的生体分子と物理的に結合されている細胞タイプを細胞死させることができる。
特定の実施形態において、本発明の細胞標的化分子は、配列番号49〜60のアミノ酸配列のいずれか1つのポリペプチドを含む、又は配列番号49〜60のアミノ酸配列のいずれか1つのポリペプチドから本質的になる。
特定のさらなる実施形態において、本発明のポリペプチドは、毒素由来ポリペプチドの触媒活性を低減させる又は除去するが少なくとも1つの他の毒素エフェクター機能を保持する変異を含む。特定の実施形態において、本発明の細胞標的化分子は、酵素活性を有する毒素エフェクターポリペプチドに由来する毒素由来ポリペプチドをさらに含み、毒素由来ポリペプチドは、天然に存在する毒素と比較して毒素エフェクターポリペプチドの酵素活性を変化させる変異を含む。特定のさらなる実施形態において、変異は、毒素エフェクターポリペプチドの細胞毒性を低減させる又は除去する少なくとも1つのアミノ酸残基欠失、挿入及び置換から選択される。特定の実施形態において、本発明の細胞標的化分子は、ジフテリア毒素ファミリーのメンバーの天然に存在するAサブユニットと比較してジフテリア毒素エフェクター領域の酵素活性を変化させる変異であって、例えば少なくとも1つのアミノ酸残基欠失又は置換、例えばH21A、Y27A、W50A、Y54A、Y65A、E148A及びW153Aなど、から選択される変異をさらに含む志賀毒素エフェクター領域を含む。特定の実施形態において、本発明の細胞標的化分子は、志賀毒素ファミリーのメンバーの天然に存在するAサブユニットと比較して志賀毒素エフェクター領域の酵素活性を変化させる変異であって、例えば少なくとも1つのアミノ酸残基欠失又は置換、例えば配列番号1、配列番号2又は配列番号3におけるA231E、R75A、Y77S、Y114S、E167D、R170A、R176K及び/又はW203Aなど、から選択される変異をさらに含む志賀毒素エフェクター領域を含む。
本発明は、本発明のポリペプチド及び/又は細胞標的化分子と、少なくとも1つの薬学的に許容される賦形剤又は担体とを含む医薬組成物、並びに本書の中でさらに説明するような本発明の方法におけるそのようなポリペプチド、細胞標的化分子、又はそれを含む組成物の使用も提供する。本発明の特定の実施形態は、本発明の任意のポリペプチド及び/又は本発明の任意の細胞標的化分子と、少なくとも1つの薬学的に許容される賦形剤又は担体とを含む医薬組成物である。
本発明のポリペプチド、細胞標的化分子、タンパク質及び組成物の他に、本発明のポリペプチドを含む本発明のポリペプチド又は細胞標的化分子又はタンパク質を含むポリペプチドをコードすることができるポリヌクレオチド、並びに本発明のポリヌクレオチドを含む発現ベクター、及び本発明の発現ベクターを含む宿主細胞は、本発明の範囲内である。発現ベクターを含む宿主細胞は、例えば、本発明のポリペプチド及び/若しくはそれを含む本発明のタンパク質又はそれらのポリペプチド成分若しくは断片を組換え発現によって産生する方法において、使用されることがある。
加えて、本発明は、細胞を選択的に殺滅する方法であって、細胞を、本発明の細胞標的化分子、又は本発明のそのようなタンパク質を含む医薬組成物と接触させるステップを含む方法を提供する。特定の実施形態において、細胞を接触させるステップは、インビトロで行われる。特定の実施形態において、細胞を接触させるステップは、インビボで行われる。
本発明は、それを必要とする患者において疾患、障害及び/又は状態を治療する方法であって、それを必要とする患者に、本発明のポリペプチドを含む組成物、ポリペプチド及び/若しくはそれを含むタンパク質、又は前述のもののいずれかを含む組成物(例えば医薬組成物)の治療有効量を投与するステップを含む方法をさらに提供する。特定の実施形態において、本発明のこの方法を用いて治療される疾患、障害又は状態は、がん、腫瘍、免疫障害及び微生物感染から選択される。この方法の特定の実施形態において、治療されるがんは、骨がん、乳がん、中枢/末梢神経系がん、胃腸がん、胚細胞がん、腺がん、頭頸部がん、血液がん、腎・尿路癌、肝がん、肺/胸膜がん、前立腺がん、肉腫、皮膚がん及び子宮がんからなる群から選択される。この方法の特定の実施形態において、治療される免疫障害は、アミロイドーシス、強直性脊椎炎、喘息、クローン病、糖尿病、移植片拒絶、移植片対宿主病、橋本甲状腺炎、溶血性尿毒症症候群、HIV関連疾患、エリテマトーデス、多発性硬化症、多発動脈炎、乾癬、乾癬性関節炎、リウマチ様関節炎、強皮症、敗血症性ショック、シェーグレン症候群、潰瘍性大腸炎及び血管炎からなる群から選択される疾患に関連した免疫障害である。
本発明の特定の実施形態には、がん、腫瘍、免疫障害又は微生物感染の治療又は予防のための、本発明のポリペプチドを含む組成物、ポリペプチド及び/若しくはそれを含む細胞標的化分子、又は前述のもののいずれかを含む組成物がある。本発明の特定の実施形態には、がん、腫瘍、免疫障害又は微生物感染の治療又は予防のための医薬品の製造における、本発明の組成物の使用がある。
本発明の細胞標的化分子の特定の実施形態を用いて、本発明のタンパク質の細胞外標的生体分子と物理的に結合されている細胞に1つ又は2つ以上のさらなる外因性物質を送達することができる。加えて、本発明は、細胞の内部に外因性物質を送達する方法であって、細胞を本発明の細胞標的化分子、医薬組成物及び/又は診断用組成物とインビトロ又はインビボのいずれかで接触させるステップを含む方法を提供する。本発明は、外因性物質を、それを必要とする患者の細胞の内部に送達する方法であって、患者に本発明の細胞標的化分子を投与するステップを含み、標的細胞が本発明のタンパク質の細胞外標的生体分子と物理的に結合されている、方法をさらに提供する。
本発明の特定の実施形態には、疾患、障害又は状態の診断、予後予測又は特性評価における、本発明の化合物(例えばポリペプチド若しくは細胞標的化分子)及び/又は本発明の組成物(例えば医薬組成物)の使用がある。
本発明の特定の実施形態には、本発明のポリペプチド及び/若しくはそれを含む細胞標的化分子、又は前述のもののいずれかを含む組成物と、細胞タイプ、組織、器官、疾患、障害、状態又は患者についての診断に有用な情報などの情報の収集のための検出促進剤とを含む、診断用組成物がある。
本発明の特定の実施形態には、本発明の細胞標的化分子及び/又は診断用組成物を使用して細胞を検出する方法であって、細胞を前記細胞標的化分子及び/又は診断用組成物と接触させるステップと、前記細胞標的化分子及び/又は診断用組成物の存在を検出するステップとを含む方法がある。特定の実施形態において、細胞を接触させるステップは、インビトロで行われる。特定の実施形態において、細胞を接触させるステップは、インビボで行われる。特定の実施形態において、細胞を検出するステップは、インビトロで行われる。特定の実施形態において、細胞を検出するステップは、インビボで行われる。
例えば、本発明の診断用組成物を使用して、検出促進剤を含む本発明のタンパク質を含む組成物を哺乳動物対象に投与し、次いで、本発明のタンパク質の存在をインビトロ又はインビボのいずれかで検出することにより、細胞をインビボで検出してもよい。収集される情報は、本発明の細胞標的化分子の結合領域の細胞外標的と物理的に結合されている細胞の存在に関することもあり、又は疾患、障害若しくは状態の診断、予後予測、特性評価及び/若しくは治療に有用であることもある。本発明の特定の化合物(例えばポリペプチド及び細胞標的化分子)、本発明の組成物(例えば医薬組成物及び診断用組成物)、及び本発明の方法を用いて、患者が、本発明の医薬組成物に応答する群に属するかどうかを判定してもよい。
本発明のポリペプチド及び本発明の細胞標的化分子の特定の実施形態を、脊索動物の免疫治療及び/又はワクチン接種のために免疫原として又は免疫原の成分として利用してもよい。
特定の実施形態については、本発明の方法は、脊索動物体内の組織部位に「接種」するための方法であり、方法は、本発明の細胞標的化分子、本発明の医薬組成物、又は本発明の診断用組成物を脊索動物に投与するステップを含む。特定の実施形態において、組織部位に「接種」する本発明の方法は、悪性、罹病又は炎症組織を含む組織部位に「接種」する方法である。特定のさらなる実施形態において、組織部位に「接種」する本発明の方法は、罹病組織、腫瘍塊、がん性腫瘍、腫瘍、感染組織及び異常細胞塊からなる群から選択される組織を含む組織部位に「接種」する方法である。特定のさらなる実施形態において、組織部位に「接種」する本発明の方法は、MHCクラスI複合体中の細胞標的化分子の標的細胞によって自然に提示されないペプチド、標的細胞によって発現されるいずれのタンパク質中にも自然に存在しないペプチド、標的細胞のプロテオーム中に自然に存在しないペプチド、接種される部位の細胞外微小環境に自然に存在しないペプチド、及び標的にされる腫瘍塊又は感染組織に自然に存在しないペプチドからなる群から選択される異種T細胞エピトープを含む、本発明の細胞標的化分子、本発明の医薬組成物又は本発明の診断用組成物を脊索動物に投与するステップを含む。
本発明の特定の実施形態には、本発明の組成物を備え、使用説明書、さらなる試薬及び/又は医薬品送達デバイスを備えていてもよいキットがある。
本発明のこれら及び他の特徴、態様及び利点は、以下の説明、添付の特許請求の範囲、及び付属の図に関連してよりよく理解されることになる。本発明の上述の要素を個々に組み合わせて又は自由に除去して本発明の他の実施形態を、以降にそのような組合せ又は除去に反対するいかなる記述もなければ、作製することができるだろう。
B細胞/CD4+T細胞脱免疫化バリアントを含む、エフェクターポリペプチドを提示する例示的T細胞エピトープ、及びそれを含む細胞標的化タンパク質の一般的構造を示す図である。 毒素エフェクターポリペプチドのB細胞エピトープ領域へのT細胞エピトープの組み込みによって触媒活性は有意に損なわなかったことを示すグラフである。B細胞エピトープ領域に組み込まれたT細胞エピトープを含む2つの例示的ジフテリア毒素由来ポリペプチドは、野生型ジフテリア毒素に匹敵するリボソームの不活性化レベルを示した。 ウェスタンブロット分析による様々な抗SLT−1A抗体の認識により、B細胞エピトープ領域へのT細胞エピトープの組み込み又は挿入によってエピトープが破壊されたことを示す図である。 ウェスタン分析による様々な抗SLT−1A抗体の認識により、B細胞エピトープ領域へのT細胞エピトープの組み込みによってエピトープが破壊されたことを示す図である。 異なる処理(未処理、本発明の例示的細胞標的化タンパク質での処理、外因性エピトープペプチド及びPLEでの処理、並びに外因性エピトープペプチドのみでの処理)が行われた細胞のセットのフローサイトメトリー分析結果のオーバーレイを示すグラフである。B細胞エピトープ領域を破壊する組み込まれたT細胞エピトープを含む脱免疫化志賀毒素エフェクターポリペプチドを含む、本発明の3つの例示的細胞標的化タンパク質で処理された細胞の細胞表面で、MHC分子と複合体を形成する組み込まれたエピトープペプチドが提示された。
例証となる非限定的実施形態、及び付属の図への参照を用いて、以降、本発明をより詳細に説明する。しかし、本発明は多くの異なる形態で実施されることがあり、本発明を、下に示す実施形態に限定されるとみなすべきではない。むしろ、これらの実施形態は、本開示が行き届いたものになるように、また本発明の範囲を当業者に知らせるために提供するものである。
本発明をより容易に理解できるように、特定の用語を下で定義する。さらなる定義は、発明の詳細な説明の中で見つけることができる。
本明細書及び添付の特許請求の範囲において用いる場合、用語「1つの(a)」、「1つの(an)」及び「その(the)」は、文脈による別段の明白な指図がない限り、単数及び複数両方の指示対象を含む。
本明細書及び添付の特許請求の範囲において用いる場合、2つの種、A及びB、に言及するときの用語「及び/又は」は、A及びBの少なくとも一方を意味する。本明細書及び添付の特許請求の範囲において用いる場合、2つより多くの種、例えばA、B及びC、に言及するときの用語「及び/又は」は、A、B若しくはCの少なくとも1つ、又はA、B若しくはCのいずれかの組合せ(この場合は各々の種に単数の可能性又は複数の可能性がある)の少なくとも1つを意味する。
本明細書全体を通して、語「含む(comprise)」、又は「含む(comprises)」若しくは「含むこと(comprising)」などの語尾変化形は、述べられている整数(若しくは成分)又は整数(若しくは成分)群の包含を暗示するが、他のいかなる整数(若しくは成分)又は整数(若しくは成分)群の除外も暗示しないと解されるものとする。
本明細書を通して、用語「含む(including)」は、「含むがこれらに限定されない(including but not limited to)」を意味するために用いる。「含む(including)」及び「含むがこれらに限定されない(including but not limited to)」は、同義で用いる。
用語「アミノ酸残基」又は「アミノ酸」は、タンパク質、ポリペプチド又はペプチドに組み込まれているアミノ酸への言及を含む。用語「ポリペプチド」は、アミノ酸又はアミノ酸残基の任意の重合体を含む。用語「ポリペプチド配列」は、ポリペプチドを物理的に含む一連のアミノ酸又はアミノ酸残基を指す。「タンパク質」は、1本又は2本以上のポリペプチド鎖を含む高分子である。「ペプチド」は、合計15〜20アミノ酸残基より小さいサイズの小さいポリペプチドである。用語「アミノ酸配列」は、その長さに依存してペプチド又はポリペプチドを物理的に含む一連のアミノ酸又はアミノ酸残基を指す。別段の指示がない限り、本書において開示するポリペプチド及びタンパク質配列は、アミノ末端からカルボキシ末端へのそれらの順序を表すように左から右に記載している。
用語「アミノ酸」、「アミノ酸残基」、「アミノ酸配列」又はポリペプチド配列は、天然に存在するアミノ酸を含み、別段の制限がない限り、天然に存在するアミノ酸と同様に機能することができる公知の天然アミノ酸アナログ、例えば、セレノシステイン、ピロールリジン、N−ホルミルメチオニン、ガンマ−カルボキシグルタメート、ヒドロキシプロリン、ハイプシン、ピログルタメート及びセレノメチオニンも含む。本書において言及するアミノ酸は、表A中の以下のような簡略表記名によって記載している:
ポリペプチドに関しての句「保存的置換」は、ポリペプチド全体の機能及び構造を実質的に改変しない、ポリペプチドのアミノ酸組成の変化を指す(Creighton, Proteins: Structures and Molecular Properties (W. H. Freeman and Company, New York (2nd ed., 1992)を参照されたい)。
本書において用いる場合、用語「発現された」、「発現すること」又は「発現する」は、ポリヌクレオチド又は核酸のポリペプチド又はタンパク質への翻訳を指す。発現されたポリペプチド又はタンパク質は、細胞内に残存し、細胞表面膜の成分になることもあり、又は細胞外空間に分泌されることもある。
本書において用いる場合、記号「α」は、記号の後に続く生体分子と結合することができる免疫グロブリン型結合領域の簡略表記である。記号「α」は、記号の後に続く生体分子と結合するその能力に基づく免疫グロブリン型結合領域の機能的特徴を指すために用いている。
記号「::」は、物理的に互いに結合して連続するポリペプチドを形成する前又はした後のポリペプチド領域を意味する。
本発明では、句「〜に由来する」は、ポリペプチド領域が、タンパク質中で元来見つけられるアミノ酸配列であって、元の配列と比較して全機能及び構造が実質的に保存されるような付加、欠失、短縮化又は他の改変を今や含むこともあるアミノ酸配列を含むことを意味する。
本発明では、用語「エフェクター」は、1つ又は2つ以上の因子の動員及び/又はアロステリック効果をもたらす、細胞毒性、生体シグナル伝達、酵素的触媒、細胞内経路指定及び/又は分子間結合などの、生物活性を提供することを意味する。
本書において用いる場合、例えばABx毒素などの多量体毒素に関して、用語「サブユニット」及び「鎖」は同義で用いている。
本発明では、句「CD8+T細胞高度免疫化された」は、分子が、生きている脊索動物体内の有核脊索動物細胞の内部に存在するとき、CD8+T細胞抗原性又は免疫原性に関して抗原能力及び/又は免疫原能力が増加されたことを意味する。一般に、CD8+T細胞免疫化された分子は、固有の特徴のため、又は細胞標的化分子の成分として、有核脊索動物細胞の初期エンドソーム区画に細胞内在化することができる。
本発明では、句「B細胞及び/又はCD4+T細胞脱免疫化された」は、分子が、哺乳動物への投与後、B細胞抗原性若しくは免疫原性及び/又はCD4+T細胞抗原性若しくは免疫原性のいずれかに関して抗原能力及び/又は免疫原能力が低減されたことを意味する。
本発明では、用語「プロテアソーム送達エフェクター」は、プロテアソーム送達エフェクター分子のプロテアソーム分解をもたらすのに適格である細胞内区画に細胞内局在する生物活性を提供する分子を意味する。一般に、このプロテアソーム送達生物活性は、初期エンドソーム区画内へのプロテアソーム送達エフェクター分子の初期細胞内局在から判定することができるが、細胞内への移動及び、例えばその細胞内へのエンドサイトーシス的侵入後などの、その細胞のエンドソーム区画の通過を含む前記活性を、例えば細胞外開始位置から、判定することもできる。あるいは、プロテアソーム送達エフェクター生物活性は、特定の実施形態では、プロテアソーム送達エフェクターポリペプチドが内在化してそのプロテアソーム分解をもたらすのに的確な区画に達する前に、細胞のいかなるエンドソーム区画の通過も伴わないことがある。当業者は、当技術分野において公知の技法を用いて、プロテアソーム送達エフェクター機能をもたらす所与の分子の能力をアッセイすることができる。
本発明のT細胞エピトープ又はポリペプチドのT細胞エピトープペプチド成分に関して、用語「異種」は、修飾されるポリペプチドに最初は存在しなかったエピトープ又はペプチド配列であって、本書に記載するような組み込み方法、融合方法、挿入方法及び/若しくはアミノ酸置換方法によって付加されたのか、任意の他の工学手段によって付加されたのかにかかわらず、本発明の方法を用いてポリペプチドに付加されたエピトープ又はペプチド配列を指す。その付加の結果が、元の未修飾ポリペプチドに対して外来性のT細胞エピトープを含む修飾ペプチドであり、すなわち、T細胞エピトープは、元のポリペプチド中には存在しなかった。
ポリペプチド中のB細胞エピトープ又はCD4+T細胞エピトープに関して、用語「内因性」は、本発明の方法によって修飾される前にそのポリペプチド中に既に存在するエピトープを指す。
本書において用いる場合、ポリペプチド領域又はポリペプチド内の特徴に関して、用語「破壊された」又は「破壊」又は「破壊すること」は、領域内の又は特徴を構成する少なくとも1つのアミノ酸の改変を指す。アミノ酸改変は、ポリペプチドのアミノ酸配列を改変する様々な変異、例えば、欠失、反転、挿入又は置換などを含む。アミノ酸改変は、例えば、アミノ酸官能基の1つ又は2つ以上の原子の改変、又はアミノ酸官能基への1つ又は2つ以上の原子の付加などの、化学的変化も含む。
本発明のT細胞エピトープ又はポリペプチドのT細胞エピトープペプチド成分に関して、句「と会合している」又は「と会合した」は、T細胞エピトープ及びポリペプチドが、共有結合的連結によるか非共有結合的連結によるかにかかわらず、互いに物理的に連結されていること、例えば、ポリペプチド内に組み込まれている若しくは挿入されている、ポリペプチドに融合されている、及び/又はポリペプチドと化学的に結合されていることを意味する。
請求項記載の本発明に関して、用語「会合させること」は、互いと会合した又は互いと会合している2つの分子を作製する行為を意味する。
本発明のT細胞エピトープ又はポリペプチドのT細胞エピトープペプチド成分に関して、用語「組み込まれた」及びその文法上の異形は、同じ総数のアミノ酸残基を共有する新たなポリペプチド配列を生成するための、ポリペプチド内の1つ又は2つ以上のアミノ酸の異なるアミノ酸領域での内部置換を指す。したがって、組み込まれたという用語は、出発ポリペプチドへのいかなる追加のアミノ酸、ペプチド又はポリペプチド成分のいかなる外的な末端融合も含まず、いかなる追加のアミノ酸残基のいかなる追加の内部挿入も含まず、既存のアミノ酸の置換のみを含む。内部置換は、単にアミノ酸残基置換によって果たされることもあり、又は一連の置換、欠失、挿入及び/若しくは反転によって果たされることもある。1つ又は2つ以上のアミノ酸の挿入を用いる場合には、組み込まれたT細胞エピトープを得るために挿入の次に同数の近位アミノ酸を欠失させなければならない。これは、全T細胞エピトープの長さと同等のポリペプチド配列長増加性付加を指す、本発明のポリペプチド中のT細胞エピトープに関する用語「挿入」の使用とは対照的である。挿入は、挿入部の近位にないポリペプチドの他の領域が欠失されて、その結果、最終ポリペプチドの全長を減少させたとしても、前述のものを含む。
本発明のT細胞エピトープ又はポリペプチドのT細胞エピトープペプチド成分に関して、用語「融合された」及びその文法上の異形は、元のアミノ酸残基数より多いアミノ酸残基数を有する新たなポリペプチドを生成するための、ポリペプチドのアミノ末端又はカルボキシ末端いずれかへの4、5、6又は7つ以上のアミノ酸の外的付加を指す。融合T細胞エピトープは、ポリペプチドの他の領域が欠失されて、その結果、最終ポリペプチドの全長を減少させたとしても、新たなポリペプチドが例えばプロテアソーム送達エフェクター機能などの元のポリペプチドのエフェクター機能を保持するのであれば、アミノ末端又はカルボキシ末端のいずれかへの4、5、6又は7つ以上のアミノ酸の付加を含む。
本書において用いる場合、用語「毒素エフェクターポリペプチド」は、ポリペプチドが由来する毒素に存在する1又は2以上の生物活性をもたらすのに十分である毒素由来エフェクター領域を含むポリペプチドを意味する。
本書において用いる場合、用語「T細胞エピトープ送達」は、T細胞エピトープを有するプポリペプチド領域のプロテアソーム分解をもたらすのに適格である細胞内区画に細胞内で局在する生物活性を提供する分子を意味する。一般に、このプロテアソーム送達生物活性は、初期エンドソーム区画内へのT細胞エピトープの初期細胞内局在から判定することができるが、細胞内への移動及び、例えばその細胞内へのエンドサイトーシス的侵入後などの、その細胞のエンドソーム区画の通過を含む活性を、例えば細胞外開始位置から、判定することもできる。あるいは、T細胞エピトープ送達活性は、特定の実施形態では、T細胞エピトープ送達分子が内在化して、T細胞エピトープペプチドへの分解のためにT細胞エピトープをプロテアソームに送達するのに的確な区画に達する前に、細胞のいかなるエンドソーム区画の通過も伴わないことがある。有効なT細胞エピトープ送達機能は、T細胞エピトープ送達分子が内在化された細胞の細胞に表面における送達されたT細胞エピトープのMHC提示を観察することによってアッセイすることができる。
本書において用いる場合、毒素エフェクター機能又は活性は、なかんずく、細胞内在化の促進、エンドソーム逃避の促進、細胞内区画への経路指定の指示、触媒機能、基質結合、細胞のアポトーシスの誘導、細胞分裂停止(cytostasis)の誘発、及び細胞毒性を含みうる。
本書において用いる場合、毒素由来ポリペプチドエフェクター機能の保持は、再現性のある適切な定量的アッセイによって測定して、野生型ポリペプチド対照に匹敵する毒素エフェクター機能活性レベルを指す。例えば、当業者に公知の様々なアッセイを用いて、毒素エフェクターポリペプチドの酵素活性及び/又は細胞内経路指定を測定することができる。本発明のポリペプチドの酵素的ポリペプチドエフェクター毒素機能は、その酵素活性が、同じ条件下での同じアッセイで野生型ポリペプチドに匹敵する場合、保持されている。
細胞毒性タンパク質の細胞毒性活性に関して、用語「選択的細胞毒性」は、標的細胞タイプの細胞殺滅の優先性を明らかにするための標的細胞集団と非標的バイスタンダー細胞集団間の相対細胞毒性レベルを指し、この相対細胞毒性レベルを標的細胞タイプの半最大細胞毒性濃度(CD50)の非標的細胞タイプのCD50に対する比として表現することができる。
序論
本発明は、細胞表面提示のために標的細胞のMHCクラスI系にT細胞エピトープペプチドを送達することができるポリペプチド及び細胞標的化分子を産生する方法を提供する。本発明は、細胞表面提示のために標的細胞のMHCクラスI系に異種T細胞エピトープペプチドを送達することができる、本発明の方法を用いて製造された、例示的T細胞エピトープポリペプチドも提供する。本発明の方法を用いて生成されるポリペプチド、例えばT細胞エピトープ送達ポリペプチド及びCD8+T細胞高度免疫化されたポリペプチドは、様々な分子及び組成物、例えば、細胞毒性治療薬、治療送達剤及び診断分子の成分として利用されうる。
加えて、本発明は、MHCクラスI提示によってT細胞免疫原性の尤度を増加させるために異種T細胞エピトープをポリペプチド内の重複位置に備えさせると同時にB細胞抗原性及び/又は免疫原性の尤度を低下させることによって、ポリペプチドのバリアントを産生する方法を提供する。本発明は、細胞表面提示のために標的細胞のMHCクラスI系に異種T細胞エピトープペプチドを送達することができる、本発明の方法を用いて製造された、例示的B細胞エピトープ脱免疫化された、T細胞エピトープポリペプチドも提供する。本発明の方法を用いて生成されるポリペプチド、例えばB細胞/CD4+T細胞脱免疫化されたエピトープ送達ポリペプチド、CD8+T細胞高度免疫化され、CD4+T細胞脱免疫化されたポリペプチドは、様々な分子及び組成物、例えば、細胞毒性治療薬、治療送達剤及び診断分子の成分として利用されうる。
I.CD8+T細胞高度免疫化されたポリペプチドの一般構造
本発明は、様々なプロテアソーム送達エフェクターポリペプチド領域を含むポリペプチドを、1つ又は2つ以上の異種T細胞エピトープを含むように工学的に操作することを含み、この場合、ポリペプチドを真核細胞の初期エンドソーム区画に送達すると、ポリペプチドは、分解及び細胞のMHCクラスI系への侵入のための1つ又は2つ以上の異種T細胞エピトープのプロテアソームへの送達に十分な細胞内の細胞内区画に局在することができる。プロテアソーム送達エフェクターポリペプチドは、いかなる源から得られるものであってもよいが、特定の実施形態では、本発明のポリペプチドは、天然に存在するタンパク質毒素に由来する様々なプロテアソーム送達エフェクターポリペプチドに由来する。
A.1つ又は2つ以上の異種、T細胞エピトープ及びプロテアソーム送達エフェクターポリペプチドを含むように工学的に操作されたポリペプチド
本発明は、1つ又は2つ以上の異種T細胞エピトープの組み込み、融合及び/又は挿入による本発明のポリペプチドへの修飾の出発点として様々なポリペプチドを使用することを企図している。これらのソースポリペプチドは、プロテアソーム送達エフェクター能力を示すべきである、又は示すと予測されるものであるべきである。
MHCクラスI経路に侵入するペプチドエピトープの主要な源は、サイトゾル分子のプロテアソーム分解の結果として得られるペプチドである。しかし、ER局在分子、例えばウイルス糖タンパク質及び形質転換細胞糖タンパク質は、異なる経路によってMHCクラスI系により提示されることもある。MHCクラスI提示のこの代替経路はERで始まるが、このペプチドのポリペプチド又はタンパク質源は、プロテアソームによるタンパク質プロセッシングのためにサイトゾルに輸送された後、MHCクラスI分子へのペプチド負荷のためにTAPによってERの内腔に輸送される。この代替経路の根底をなす正確なメカニズムは不明であるが、ミスフォールドタンパク質、「欠陥のあるリボソーム産物」及び前述のものを模倣する構造を検出するためのER関連分解(ERAD,ER-associated degradation)型監視系を含むだろう。このERAD型系は、分解のために特定のポリペプチド及びタンパク質をサイトゾル中のプロテアソームに輸送し、その結果、サイトゾル抗原性ペプチドを産生することができる。加えて、様々な毒素の細胞内経路指定に関する研究は、サイトゾル又は小胞体いずれかへ到達するだけでMHCクラスI経路にT細胞エピトープが送達されることを示唆している。
したがって、サイトゾル及び/若しくは小胞体に局在すること並びに/又はサイトゾル及び/若しくは小胞体へのそれら自体の細胞内輸送を指示することが公知である又は発見されたポリペプチド及びタンパク質は、プロテアソーム送達機能を示す1つ又は2つ以上のプロテアソーム送達エフェクターポリペプチド領域を含むと予測される分子クラスに相当する。例えば特定の毒素などの、特定のタンパク質及びポリペプチドは、エンドソーム区画からサイトゾルに逃避し、それによってリソソーム分解を回避する能力を示す。したがって、エンドソーム分解を免れてサイトゾルに達することが公知である又は発見されたポリペプチド及びタンパク質は、上述の分子クラスに含まれる。ポリペプチド又はタンパク質が、プロテアソームへの到達を可能にする細胞内位置に最終的に到着するのであれば、そのポリペプチド又はタンパク質がとるサイトゾル又はERへの正確な経路はどうでもよい。
加えて、特定の分子は、リソソームに局在した後に細胞のプロテアソームに達することができる。例えば、細胞のサイトゾルに直接導入される外来性タンパク質、例えばリステリア・モノサイトゲネス(Listeria monocytogenes)によって分泌されるリステリオリジン及び他のタンパク質、は、MHCクラスI経路に侵入し、エフェクターT細胞による認識のためにMHCクラスI複合体で提示される(Villanueva M et al., J Immunol 155: 5227-33 (1995))。加えて、ファゴリソソームタンパク質分解を含む、リソソームタンパク質分解は、抗原性ペプチドを生産することができ、抗原性ペプチドは、サイトゾルに移行され、カノニカルERAD系から展開しうる交差提示と呼ばれるプロセスで細胞表面提示のためにMHCクラスI経路に侵入する(Gagnon E et al., Cell 110: 119-31 (2002))。したがって、リソソームに局在するこが既知である又は発見された特定のポリペプチド及びタンパク質は、プロテアソーム送達機能を示すプロテアソーム送達エフェクター領域を有するポリペプチドの好適な源でありうる。
初期エンドソーム区画の出発位置からの細胞のサイトゾル、ER及び/又はリソソーム区画に細胞内経路指定するタンパク質性分子の能力は、当業者が当技術分野において公知のアッセイを用いて判定することができる。その場合、当業者は、当技術分野において公知の標準的な技法を用いて、例えば毒素などのポリペプチド又はタンパク質源のプロテアソーム送達エフェクターポリペプチド領域をマッピングし、単離することができる。
1.毒素に由来するプロテアソーム送達エフェクターポリペプチド
本発明は、毒素に由来する様々なポリペプチドをプロテアソーム送達エフェクター領域として使用することを企図している。多くの毒素は、それらの細胞内経路指定挙動についての豊富な知識のため、プロテアソーム送達エフェクターポリペプチドの最適な源となる。
多くの天然に存在するタンパク質性毒素は、エンドソーム逃避及び逆行輸送経路によるものを含む、脊椎動物宿主細胞における細胞内経路指定の指示のために最適化された、高度に進化した構造を有する。
非常に多くの毒素は、一般に細孔形成によって、エンドソーム逃避特性を示す(Mandal M et al., Biochim Biophys Acta 1563: 7-17 (2002))。例えば、ジフテリア毒素、及びリシンのような植物II型リボソーム不活性化タンパク質は、エンドソームから逃避することができる(Murphy S et al., Biochim Biophys Acta 1824: 34-43 (2006)、Slominska-Wojewodzka M, Sandvig K, Antibodies 2: 236-269 (2013)、Walsh M et al., Virulence 4: 774-84 (2013))。リソソームを含む、エンドソーム区画からの逃避は、当技術分野において公知のアッセイを用いて、例えば、ホースラディッシュペルオキシダーゼ、ウシ血清アルブミン、Alexa 488のようなフルオロフォア、及び毒素由来ポリペプチドを用いるレポーターアッセイを用いて、直接測定し、定量することができる(例えば、Bartz R et al., Biochem J 435: 475-87 (2011)、Gilabert-Oriol R et al., Toxins 6: 1644-66 (2014)を参照されたい。
多くの毒素は、脊椎動物宿主細胞においてそれらの独自の細胞内経路指定を指示する。例えば、多くの毒素の中毒経路は、1)宿主細胞への毒素の細胞内在化、2)1つ又は2つ以上の細胞内区画を経由する毒素の細胞内経路指定、及び3)宿主因子基質が酵素的に修飾されるサイトゾルへの毒素の触媒部分のその後の局在を含む、多段階プロセスとして説明することができる。例えば、このプロセスは、炭疽菌致死因子、コレラ毒素、ジフテリア毒素、百日咳毒素、緑膿菌外毒素、並びにII型リボソーム不活性化タンパク質、例えばリシン及び志賀毒素の中毒経路を表す。
同様に、組換え毒素、修飾毒素構造、及び毒素に由来する工学的に操作されたポリペプチドは、これらの同じ特性を保存することができる。例えば、ジフテリア毒素(DT,diphtheria toxin)、炭疽菌致死因子(LF,anthrax lethal factor)毒素、及び緑膿菌外毒素(PE,Pseudomonas exotoxin)Aに由来する工学的に操作された組換えポリペプチドは、細胞外空間からサイトゾルにポリペプチドを移動させるための送達媒体として使用されている。初期エンドソーム区画からサイトゾル又はERいずれかに細胞内経路を指定する固有の能力を有するいずれのタンパク質毒素も、本発明の目的に活用されうる、例えば、修飾のための出発成分として活用されることもあり、又はプロテアソーム送達エフェクターポリペプチド内のより小さいプロテアソーム送達エフェクター領域をマッピングするための源として活用されることもある、プロテアソーム送達エフェクターポリペプチドの源となる。
多くの毒素標的化真核細胞について、毒性は、サイトゾル中の基質が関与する酵素メカニズムの結果である(表Iを参照されたい)。これらの毒素は、それらのホロ毒素の酵素的に活性なポリペプチド領域をサイトゾルに送達する能力を有する毒素構造を進化させた。これらの毒素の酵素領域を本発明のポリペプチドの生成のための出発成分として使用してもよい。
メンバーが重複している2つの毒素スーパーファミリーの毒素、ABx毒素及びリボ毒、は本発明での使用に非常に適している。
ABx毒素は、真核細胞に侵入し、サイトゾルに経路指定して、それらの分子標的を攻撃することができる。同様に、リボ毒は、真核細胞に侵入し、サイトゾルに経路指定して、リボソームを不活性化することができる。Abx毒素及びリボ毒スーパーファミリーのメンバーは、本発明において使用するための毒素由来ポリペプチド及びプロテアソーム送達エフェクターポリペプチドを同定するための適切な源である。
バイナリー毒素とも言われるABx毒素は、細菌、真菌及び植物において見つけられる。ABx毒素は、A及びBサブユニットと言われる、別個の機能を有する2本又は3本以上のポリペプチド鎖の構造構成を共有する毒素のスーパーファミリーを形成する。xは、例えば、ジフテリア毒素についてのAB及び志賀毒素についてのABのような、ABxファミリーメンバーのホロ毒素中のBサブユニットの数を表す。AB5毒素スーパーファミリーは、次の4つの主要ファミリーからなる:コリックス毒素(Ct又はCtx,cholix toxin)、百日咳毒素(Ptx,pertussis toxin)、志賀毒素(Stx,Shiga toxin)、及びスブチラーゼ細胞毒(SubAB,Subtilase cytotoxin)。AB5毒素の細胞毒メカニズムは、中毒にかかっている真核生物宿主細胞における毒素のAサブユニットのサイトゾル又はERのいずれかへの細胞内経路指定を含み、サイトゾル又はERにおいて、触媒Aサブユニットは、様々な宿主細胞タンパク質に相当する該サブユニットの酵素基質に対して作用する(表Iを参照されたい)。
ジフテリア毒素は、真核性伸長因子−2(EF2,elongation factor-2)の触媒性ADPリボシル化によってタンパク質合成を中断させる。ジフテリア毒素は、触媒Aサブユニットと、リン脂質二重層移行エフェクタードメイン及び細胞標的化結合ドメインを含有するBサブユニットとからなる。その中毒過程で、ジフテリア毒素は、おそらくエンドソーム逃避によって、該毒素の触媒ドメインの真核細胞のサイトゾルへの細胞内経路を指定することができる(Murphy J, Toxins (Basel) 3: 294-308 (2011))。このエンドソーム逃避メカニズムは、例えば炭疽菌致死因子及び浮腫因子などの他の毒素と共有されることがあり、一般的なエンドソーム逃避能力は、例えば特定のクロストリジウム・ディフィシル(C. difficile)毒素、ゲロニン、リステリオリジン、PE、リシン及びサポリンを含む、多くの多様な毒素によって示される(例えば、Varkouhi A et al., J Control Release 151: 220-8 (2010)、Murphy J, Toxins (Basel) 3: 294-308 (2011)を参照されたい)。
特に、サイトゾル中のリボソームを不活性化する毒素は、本発明において使用のためのプロテアソーム送達エフェクターポリペプチドの同定に有用である。これらの毒素は、サイトゾル標的化エフェクター機能と細胞毒性リボ毒性毒素エフェクター機能の両方を同時にもたらすポリペプチド領域を含む。
請求項記載の本発明に関して、句「リボ毒性毒素エフェクターポリペプチド」は、インビトロでリボソーム不活性化、インビトロ及び/若しくはインビボでタンパク質合成阻害、細胞毒、並びに/又は細胞分裂停止をもたらすことができる、天然に存在するリボ毒及び合成リボ毒を含む、タンパク質に由来するポリペプチドを指す。一般に、リボ毒性毒素エフェクターポリペプチドは、天然に存在するタンパク質毒素、又はヒトの介入によって改変されている若しくは工学的に操作されている毒素様構造に由来する。しかし、毒素又は合成ポリペプチド中に自然に存在しない天然に存在する酵素性ドメインなどの、他のポリペプチドは、本書において用いる場合、この用語の範囲内である(例えば、Newton D et al., Blood 97: 528-35 (2001)、De Lorenzo C et al., FEBS Lett 581: 296-300 (2007)、De Lorenzo C, D'Alessio G, Curr Pharm Biotechnol 9: 210-4 (2008)、Menzel C et al., Blood 111: 3830-7 (2008)を参照されたい。したがって、リボ毒性毒素エフェクターポリペプチドは、リボ毒性が増加若しくは減少した合成若しくは工学的に操作されたタンパク質構造、及び/又は非ネイティブ特性を有するように別様に改変された天然に存在するタンパク質に由来することもある。
リボ毒性毒素エフェクターポリペプチドは、例えば藻類、細菌、真菌、植物及び動物などの、多様な門からのタンパク質のリボ毒性ドメインに由来することもある。例えば、様々なリボ毒に由来するポリペプチドは、細胞タイプ特異的細胞毒治療薬を創生するという目的で化学的コンジュゲーション又は組換えタンパク質工学によって免疫グロブリンドメイン又は受容体リガンドに連結又は融合されてきた(Pastan I et al., Annu Rev Biochem 61: 331-54 (1992)、Foss F et al., Curr Top Microbiol Immunol 234: 63-81 (1998)、Olsnes S, Toxicon 44: 361-70 (2004)、Pastan I, et al., Nat Rev Cancer 6: 559-65 (2006)、Lacadena J et al., FEMS Microbiol Rev 31: 212-37 (2007)、de Virgilio M et al., Toxins 2: 2699-737 (2011)、Walsh M, Virulence 4: 774-84 (2013)、Weidle U et al., Cancer Genomics Proteomics 11: 25-38 (2014))。
リボ毒性毒素エフェクターポリペプチドは、タンパク質リボ毒のリボソーム不活性化タンパク質(RIP,Ribosome Inactivating Protein)スーパーファミリーのメンバーの触媒ドメインに由来することもある(de Virgilio M et al., Toxins 2: 2699-737 (2011)、Lapadula W et al., PLoS ONE 8: e72825 (2013)、Walsh M, Virulence 4: 774-84 (2013))。RIPは、藻類、細菌、真菌及び植物において発現されるリボ毒性タンパク質であり、準化学量論的濃度で真核生物及び原核生物タンパク質合成の強力な阻害剤であることが多い(Stirpe, F, Biochem J 202: 279-80 (1982)を参照されたい)。様々なRIPが、がん治療用の治療薬に使用するための有望な毒素エフェクターポリペプチド配列源と考えられている(Pastan I, et al., Nat Rev Cancer 6: 559-65 (2006)、Fracasso G et al., Ribosome-inactivating protein-containing conjugates for therapeutic use, Toxic Plant Proteins 18, pp. 225-63 (Eds.Lord J, Hartley, M. Berlin, Heidelberg: Springer-Verlag, 2010)、de Virgilio M et al., Toxins 2: 2699-737 (2011)、Puri M et al., Drug Discov Today 17: 774-83 (2012)、Walsh M, Virulence 4: 774-84 (2013)を参照されたい)。
組換え細胞毒性ポリペプチドにおいて最も一般的に使用されているリボ毒は、ジフテリア毒素、緑膿菌外毒素A、リシン、α−サルシン、サポリン、及びゲロニンを含む(Shapira A, Benhar I, Toxins 2: 2519-83 (2010)、Yu C et al., Cancer Res 69: 8987-95 (2009)、Fuenmayor J, Montano R, Cancers 3: 3370-93 (2011)、Weldon, FEBS J 278: 4683-700 (2011)、Carreras-Sangra N et al., Protein Eng Des Sel 25: 425-35 (2012)、Lyu M at al., Methods Enzymol 502: 167-214 (2012)、Antignani, Toxins 5: 1486-502 (2013)、Lin H et al., Anticancer Agents Med Chem 13: 1259-66 (2013)、Polito L et al., Toxins 5: 1698-722 (2013)、Walsh M, Virulence 4: 774-84 (2013)を参照されたい。これらのリボ毒は、一般に、リボソーム不活性化タンパク質(RIP)として分類され、サルシン−リシンループ(SRL,sarcin-ricin loop)、又はSRLと結合するリボソーム機能に必要なタンパク質を攻撃することによって、真核生物リボソームを不活性化する一般細胞毒性メカニズムを共有する。
SRL構造は、古菌類、細菌及び真核生物という3つの系統発生群間で、原核生物リボソームと真核生物リボソームの両方がSRLリボソーム構造を共有するように、高度に保存されている(Gutell R et al., Nucleic Acids Res 21: 3055-74 (1993)、Szewczak A, Moore P, J Mol Biol 247: 81-98 (1995)、Gluck A, Wool I, J Mol Biol 256: 838-48 (1996)、Seggerson K, Moore P, RNA 4: 1203-15 (1998)、Correll C et al., J Mol Biol 292: 275-87 (1999))。多様な門からの様々な種のSRLを結晶構造電子密度マップに非常に精密に重ね合わせることができる(Ban N et al., Science 11: 905-20 (2000)、Gabashvili I et al., Cell 100: 537-49 (2000))。SRLは、EF−Tu、EF−G、EF1及びEF2などの伸長因子の共同作用によるリボソーム移行機能に不可欠である保存された二次構造を形成する、より大きい普遍的に保存されたリボソーム配列である(Voorhees R et al., Science 330: 835-8 (2010)、Shi X et al., J Mol Biol 419: 125-38 (2012)、Chen K et al., PLoS One 8: e66446 (2013))。SRL(サルシン−リシンループ)は、真菌リボ毒サルシン及び植物II型RIPリシンの共有標的であることにちなんで名付けられた。
RIPスーパーファミリーは、リボソーム移行機能に干渉する、RIP、真菌リボ毒及び細菌リボ毒を含む(表B、Brigotti M et al., Biochem J 257: 723-7 (1989)を参照されたい)。大部分のRIP、例えばアブリン、ゲロニン、リシン及びサポリンは、リボソームの大きいrRNAの普遍的に保存されたサルシン/リシンループ(SRL)内の特異的アデニン(例えば、動物におけるA4324、真菌におけるA3027、及び原核生物におけるA2660)を不可逆的に脱プリン化する。大部分の真菌リボ毒、例えばα−サルシンは、SRL内の特異的結合(例えば、動物におけるG4325とA4326間の結合、真菌におけるG3028とA3029間の結合、及び原核生物におけるG2661とA2662間の結合)を不可逆的に切断して、リボソームを損傷させることによってタンパク質合成を触媒的に阻害する(Martinez-Ruiz A et al., Toxicon 37: 1549-63 (1999)、Lacadena J et al., FEMS Microbiol Rev 31: 212-37 (2007)、Tan Q et al., J Biotechnol 139: 156-62 (2009))。細菌タンパク質リボ毒Ct、DT及びPEは、リボソーム機能を触媒的に損傷させることによってタンパク質合成を阻害することができ、ほんの少数の毒素分子で有効にアポトーシスを誘導することができるので、RIPスーパーファミリーに分類される。
RIPは、リボソームRNA(rRNA,robosomal RNA)N−グリコシダーゼ活性によってリボソームを損傷させることによってインビトロで移行を阻害する能力という1つの共通の特徴によって定義される。2013年までに、100を超えるRIPが記載されていた(Walsh M, Virulence 4: 774-84 (2013))。大部分のRIPは、真核生物リボソームと原核動物リボソーム両方の大きいrRNAの普遍的に保存されたサルシン/リシンループ(SRL)内の特異的アデニンを脱プリン化する。より多数のRIPが次の科で見つかっている:ナデシコ科、ニワトコ科、ウリ科、トウダイグサ科、ヤマゴボウ科及びイネ科。
RIPファミリーのメンバーは、それらの構造に基づいて少なくとも3クラスにカテゴリー分けされる。I型RIP、例えば、ゲロニン、ルフィン、PAP、サポリン及びトリコサンチンは、酵素ドメインを含み、会合している標的化ドメインがない、単量体タンパク質である。II型RIP、例えば、アブリン、リシン、志賀毒素は、バイナリーABx毒素に特有の酵素Aサブユニット及び標的化Bサブユニットを有する、マルチサブユニット、ヘテロマータンパク質である(Ho M, et al., Proc Natl Acad Sci USA 106: 20276-81 (2009))。III型RIP、例えば、オオムギJIP60 RIP及びトウモロコシb−32 RIPは、活性化のために大規模なタンパク質プロセッシングを必要とする酵素前駆体として合成される(Peumans W et al., FASEB J 15: 1493-1506 (2001)、Mak A et al., Nucleic Acids Res 35: 6259-67 (2007))。
RIPファミリーのメンバー間の配列相同性は低い(同一性50%未満)が、それらの触媒ドメインは、重ね合わせることができる保存された三次構造を共有し、その結果、リボソームの脱プリン化に関与する肝要な残基を同定することができる(de Virgilio M et al., Toxins 2: 2699-737 (2011)、Walsh M, Virulence 4: 774-84 (2013))。例えば、リシン及び志賀毒素の触媒ドメインは、それらのA鎖サブユニットの18%配列同一性にもかかわらず結晶学的データを使用して重ね合わせることができる(Fraser M et al., Nat Struct Biol 1: 59-64 (1994))。
多くの酵素及びポリペプチドエフェクター領域が例えばゲロニン、サポリン、ヤマゴボウ抗ウイルスタンパク質(PAP,pokeweed antiviral protein)、ブリオジン、アルファ−サルシン、Onconase(登録商標)、膵臓リボヌクレアーゼ、Bax、好酸球由来ニューロトキシン、及びアンジオゲニンなどの、免疫毒素の細胞毒性成分を生成するために使用されている。特に、細胞毒性の強い免疫毒素は、次のRIPに由来するポリペプチドを使用して産生されている:リシン、ゲロニン、サポリン、モモルジン及びPAP(Pasqualucci L et al., Haematologica 80: 546-56 (1995))。
コレラ毒素、リシン及び志賀毒素は全て、それらのそれぞれの中毒過程で、ERへの細胞内経路を指定し、その後、そのERにおいてそれらの触媒ドメインは放出され、サイトゾルに移行される。これらの毒素は、宿主細胞のアンフォールドタンパク質機構及びERAD系を利用して宿主細胞にシグナルを送って、それらの触媒ドメインをサイトゾルに輸送させる(Spooner R, Lord J, Curr Top Microbiol Immunol 357: 190-40 (2012)を参照されたい)。
特異的細胞内区画に細胞内経路指定する所与の分子の能力を、当業者は、当技術分野において公知の技法を用いてアッセイすることができる。これは、次の細胞内区画:サイトゾル、ER及びリソソーム、のいずれか1つに目的の分子を局在させることができる、当技術分野において一般的な技法を含む。
請求項記載の本発明に関して、句「サイトゾル標的化毒素エフェクターポリペプチド」は、細胞内在化後にサイトゾルに細胞内で経路指定することができる、天然に存在するリボ毒及び合成リボ毒を含む、タンパク質に由来するポリペプチドを指す。一般に、サイトゾル標的化毒素エフェクター領域は、天然に存在するタンパク質毒素、又はヒト介入によって改変されている若しくは工学的に操作されている毒素様構造に由来するが、例えばコンピューターによって設計されたポリペプチドなどの他のペプチドは、本書において用いる場合、この用語の範囲内である(例えば、Newton D et al., Blood 97: 528-35 (2001)、De Lorenzo C et al., FEBS Lett 581: 296-300 (2007)、De Lorenzo C, D'Alessio G, Curr Pharm Biotechnol 9: 210-4 (2008)、Menzel C et al., Blood 111: 3830-7 (2008)を参照されたい)。したがって、サイトゾル標的化毒素エフェクター領域は、リボ毒性が増加若しくは減少した合成若しくは工学的に操作されたタンパク質構造、及び/又は非ネイティブ特性を有するように別様に改変された天然に存在するタンパク質に由来することがある。当業者は、当技術分野において公知の技法を用いて、サイトゾル標的化毒素エフェクター機能をもたらす所与の分子の能力をアッセイすることができる。
本発明のサイトゾル標的化毒素エフェクター領域は、リボ毒性毒素エフェクターポリペプチドに由来することがあり、多くの場合、リボ毒性毒素エフェクターポリペプチドと重なるか、又はリボ毒性毒素エフェクターポリペプチドを完全に含む。
2.他のポリペプチド領域又は非タンパク質性材料に由来するプロテアソーム送達エフェクターポリペプチド
毒素由来分子以外のタンパク質性分子であって、サイトゾル、ER、若しくはプロテアソームへの送達に好適な任意の他の細胞内区画内に局在する、又はサイトゾル、ER若しくは区画へのそれら独自の細胞内経路指定を指示する、固有の能力を有するタンパク質性分子が、非常に多数ある。これらのポリペプチドのいずれかを直接使用してもよいし、又は本発明において使用するためのプロテアソーム送達エフェクターポリペプチドに誘導体化してもよいが、だたし、固有の細胞内局在エフェクター機能が保存されることを条件とする。
例えば、非常に多くの天然に存在するタンパク質及びポリペプチドを含む、非常の多数の分子が、細孔形成、脂質二重層融合及びプロトンスポンジ効果を含む非常に多くのメカニズムによって、細胞へのエンドサイトーシス後にエンドソーム区画から逃避できることは公知である(例えば、Varkouhi A et al., J Control Release 151: 220-8 (2010)を参照されたい)。エンドソーム逃避機能を有する非毒度由来分子の非限定的な例は、ウイルス剤、例えばヘマグルチニンHA2;脊椎動物由来ポリペプチド及びペプチド、例えばヒトカルシトニン由来ペプチド、ウシプリオンタンパク質及びスイートアローペプチド;合成生物模倣型ペプチド;並びにエンドソーム破壊能力を有するポリマーを含む(例えば、Varkouhi A et al., J Control Release 151: 220-8 (2010)を参照されたい)。リソソームを含む、エンドソーム区画からの逃避は、当技術分野において公知のアッセイを用いて、例えば、ホースラディッシュペルオキシダーゼ、ウシ血清アルブミン、Alexa 488のようなフルオロフォア、及び毒素由来ポリペプチドを用いるレポーターアッセイを用いて、直接測定し、定量することができる(例えば、Bartz R et al., Biochem J 435: 475-87 (2011)、Gilabert-Oriol R et al., Toxins 6: 1644-66 (2014)を参照されたい)。
他の例は、特異的細胞内区画に局在する分子である。内質保持/回収シグナルモチーフ(例えばKDEL)を含む大部分のポリペプチドは、細胞内の異なる区画から真核生物細胞のERに局在することができる。
初期エンドソーム区画の出発位置からの細胞のサイトゾル、ER及び/又はリソソーム区画に細胞内経路指定するポリペプチドの能力は、当業者が当技術分野において公知のアッセイを用いて判定することができる。その場合、当業者は、当技術分野において公知の標準的な技法を用いて、例えば毒素などのポリペプチド又はタンパク質源のプロテアソーム送達エフェクターポリペプチド領域をマッピングし、単離することができる。
3.1つ又は2つ以上の異種、T細胞エピトープ及びプロテアソーム送達エフェクターポリペプチドを含むように工学的に操作されたポリペプチド
プロテアソーム送達エフェクターポリペプチドが得られたら、本発明の方法を使用してそのポリペプチドを工学的に操作して、本発明のT細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたポリペプチドにすることができる。初期エンドソーム区画から出発してMHCクラスI経路への侵入及びその後のMHCクラスI提示のためにプロテアソームにT細胞エピトープを送達することができる本発明のポリペプチドを生成するために、本発明の方法を用いて、1つ又は2つ以上のT細胞エピトープを任意のプロテアソーム送達エフェクターポリペプチド、例えばサイトゾルへの経路を指定する毒素エフェクターポリペプチドなど(リボ毒性毒素エフェクターポリペプチドを含むこともある)に組み込む、融合する、又は挿入する。
細胞のMHCクラスI経路への侵入のためにプロテアソームにT細胞エピトープを送達する所与の分子の能力を、当業者は、本書に記載する方法及び/又は当技術分野において公知の技法を用いてアッセイすることができる(下記の実施例を参照されたい)。同様に、初期エンドソーム区画からプロテアソームにT細胞エピトープを送達する所与の分子の能力を、当業者は、本書に記載する方法及び/又は当技術分野において公知の技法を用いてアッセイすることができる。
細胞表面での提示のために初期エンドソーム区画からのMHCクラスI分子にT細胞エピトープを送達する所与の分子の能力を、当業者は、本書に記載する方法及び/又は当技術分野において公知の技法を用いてアッセイすることができる(下記の実施例を参照されたい)。同様に、初期エンドソーム区画からMHCクラスI分子にT細胞エピトープを送達する所与の分子の能力を、当業者は、本書に記載する方法及び/又は当技術分野において公知の技法を用いてアッセイすることができる。
本発明の方法を用いて修飾されたプロテアソーム送達エフェクターポリペプチドは、本発明の方法による修飾前又は後いずれにおいても、細胞内在化を誘導できる必要も、促進できる必要もない。本発明の細胞標的化分子を製造するために、当技術分野において公知の標準的技法を用いて、必要に応じて細胞標的化及び/又は細胞内在化機能をもたらすための当業者に公知の他の成分と本発明のポリペプチドを連結させてもよい。
B.異種T細胞エピトープ
本発明のポリペプチド及び細胞標的化分子は、各々、1つ又は2つ以上の異種T細胞エピトープを含む。T細胞エピトープは、抗原が有する分子構造であり、ペプチド及び直鎖状アミノ酸配列及び__によって表すことができる。異種T細胞エピトープは、本発明のT細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたポリペプチドを生成するために本発明の方法を使用して修飾される出発プロテアソーム送達エフェクターポリペプチドであるソースポリペプチドにはまだ存在しないエピトープである。
異種T細胞エピトープペプチドは、例えばソースポリペプチド内で1つ又は2つ以上のアミノ酸置換を生じさせる方法、ソースポリペプチドに1つ若しくは2つ以上のアミノ酸を融合させる方法、ソースポリペプチドに1つ若しくは2つ以上のアミノ酸を挿入する方法、ソースポリペプチドにペプチドを連結させる方法、及び/又は前述の方法の組合せを含む、当業者に公知の非常に多くの方法によって、ソースポリペプチドに組み込むことができる。その組込みの結果が、1つ又は2つ以上の異種T細胞エピトープを含むソースポリペプチドの修飾バリアントである。
いずれのT細胞エピトープも本発明の異種T細胞エピトープとして使用されると考えられるが、所望の特性に基づいて特定のエピトープを選択してもよい。1つの目的は、CD8+T細胞高度免疫化されたポリペプチドの生成であり、前記CD8+T細胞高度免疫化されたポリペプチドは、該異種T細胞エピトープが、高免疫原性であり、細胞表面において提示され、MHCクラスI分子と複合体を形成すると強いインビボ免疫応答を惹起してすることができることを意味する。本発明のポリペプチドの特定の実施形態において、1つ又は2つ以上の異種T細胞エピトープは、CD8+T細胞エピトープである。
T細胞エピトープは、タンパク質のペプチド成分、及び哺乳動物免疫応答を惹起できることが既知である又は証明されているタンパク質に由来するペプチドを含む、いくつかの源に由来することがある。T細胞エピトープは、様々な天然に存在するタンパク質から生成されることがあり、又はそのようなタンパク質に由来することがある。T細胞エピトープは、哺乳動物にとって異質の様々な天然に存在するタンパク質、例えば、微生物のタンパク質などに由来することもある。特に、感染性微生物は、公知の抗原特性及び/若しくは免疫原特性を有する非常の多数のタンパク質、又は小領域若しくはエピトープを含有することがある。T細胞エピトープは、変異したヒトタンパク質に由来することもあり、又は悪性ヒト細胞によって異常に発現されたヒトタンパク質に由来することもある。
T細胞エピトープは、ペプチド、タンパク質のペプチド成分、及びタンパク質に由来するペプチドを含む、哺乳動物免疫応答を惹起することができることが既知であるいくつかのソース分子から選択されることがあり、そのようなソース分子に由来することもある。例えば、細胞内病原体のタンパク質と哺乳動物宿主は、T細胞エピトープ源である。抗原性タンパク質又はペプチドが十分に研究されている、ウイルス、細菌、真菌及び単細胞真核生物などの非常に多くの細胞内病原体がある。T細胞エピトープは、ヒトウイルス又は他の細胞内病原体、例えば、細菌様マイコバクテリウム、真菌様トキソプラズマ、及び原生生物様トリパノソーマなどから選択又は同定することができる。
例えば、ヒトウイルスからのウイルスタンパク質の多くの公知免疫原性ウイルスペプチド成分がある。非常に多くのヒトT細胞エピトープが、A型インフルエンザウイルスからタンパク質中ペプチド、例えば、タンパク質(HA糖タンパク質FE17、S139/1、CH65、C05、ヘマグルチニン1(HA1,hemagglutin 1)ヘマグルチニン2(HA2,hemagglutinin 2)、非構造タンパク質1及び2(NS1及びNS2,nonstructural protein 1及び2)、基質タンパク質1及び2(M1及びM2,matrix protein 1及び2)、核タンパク質(NP,nucleoprotein)、ノイラミニダーゼ(NA,neuraminidase))中のペプチドにマッピングされており、これらのペプチドの多くは、エクスビボアッセイを用いることなどによって、ヒト免疫応答を惹起することが証明されている(例えば、Assarsson E et al, J Virol 82: 12241-51 (2008)、Alexander J et al., Hum Immunol 71: 468-74 (2010)、Wang M et al., PLoS One 5: e10533 (2010)、Wu J et al., Clin Infect Dis 51: 1184-91 (2010)、Tan P et al., Human Vaccin 7: 402-9 (2011)、Grant E et al., Immunol Cell Biol 91: 184-94 (2013)、Terajima M et al., Virol J 10: 244 (2013)を参照されたい)。同様に、非常に多くのT細胞エピトープは、ヒトサイトメガロウイルス(HCMV,human cytomegalovirus)からのタンパク質のペプチド成分、例えば、タンパク質(pp65(UL83)、UL128−131、最初期1(IE−1,immediate-early 1;UL123)、糖タンパク質B、テグメントタンパク質)中のペプチド、にマッピングされており、これらのペプチドの多くは、エクスビボアッセイを使用することなどによってヒト免疫応答を惹起することが証明されている(Schoppel K et al., J Infect Dis 175: 533-44 (1997)、Elkington R et al, J Virol 77: 5226-40 (2003)、Gibson L et al., J Immunol 172: 2256-64 (2004)、Ryckman B et al., J Virol 82: 60-70 (2008)、Sacre K et al., J Virol 82: 10143-52 (2008))。
いずれのT細胞エピトープを本発明の組成物及び方法において使用してもよいが、特定のT細胞エピトープが、それらの公知の特性及び/又は実験によって判定された特性に基づき、望ましいこともある。
多くの種において、MHC遺伝子は複数のMHC−I分子バリアントをコードする。MHCクラスIタンパク質多型は、CD8+T細胞による抗原−MHCクラスI複合体認識に影響しうるため、特定のMHCクラスI多型についての知識及び/又は異なる遺伝子型のT細胞によって認識される特定の抗原−MHCクラスI複合体の能力を用い、それらに基づいて、異種T細胞エピトープを選択してもよい。
免疫原性であること、MHCクラスI限定であること、及び/又は特異的ヒト白血球抗原(HLA,human leukocyte antigen)バリアントと適合することが公知である、十分に定義されたペプチド−エピトープがある。ヒトにおける利用又はヒト標的細胞を伴う利用のために、当業者は、当技術分野において公知の技法を用いて、HLAクラスI限定エピトープを選択又は同定することができる。ヒトMHCクラスI分子と結合するペプチドの能力を用いて、推定T細胞エピトープの免疫原性を予測することができる。ヒトMHCクラスI分子と結合するペプチドの能力を、ソフトウェアツールを用いて点数化することができる。特定のヒト集団においてより高頻度に見られる対立遺伝子によってコードされているHLAバリアントのペプチド選択性に基づいてT細胞エピトープを本発明の異種T細胞エピトープ成分としての使用に選択してもよい。例えば、ヒト集団は、MHCクラスI分子のアルファ鎖について多型性であり、可変対立遺伝子がHLA遺伝子によってコードされている。特定のT細胞エピトープは、例えばHLA−A対立遺伝子群、HLA−A2及びHLA−A3、によってコードされている普通に存在するHLA変異体などの、特異的HLA分子によって、より効率よく提示されることがある。
本発明の異種T細胞エピトープ成分として使用するためのT細胞エピトープを選択する際、エピトープ産生及びそれぞれのMHCクラスI分子への輸送に影響を及ぼすことができる複数の因子をMHCクラスI分子によるエピトープ選択の過程で考えられることがあり、例えば、標的細胞における次の因子:プロテアソーム、ERAAP/ERAP1、タパシン、及びTAP、のエピトープ特異性などを考えることができる(例えば、Akram A, Inman R, Clin Immunol 143: 99-115 (2012)を参照されたい)。
本発明の異種T細胞エピトープ成分として使用するためのT細胞エピトープを選択する際、標的にすべき細胞タイプ又は細胞集団中に存在するMHCクラスI分子と最もよく適合するエピトープ−ペプチドを選択してもよい。異なるMHCクラスI分子は、特定のペプチド配列と差次的結合を示し、特定のペプチド−MHCクラスIバリアント複合体は、エフェクターT細胞のTCRによって特異的に認識される。当業者は、MHCクラスI分子特異性及びTCR特異性についての知識を用いて、本発明において使用する異種T細胞エピトープの選択を最適化することができる。
加えて、MHCクラスI提示のための複数の免疫原性T細胞エピトープを、複数のT細胞エピトープの標的化送達において同時に使用するために同じポリペプチド成分に組み込んでもよい。
C.内因性B細胞及び/又はCD4+T細胞エピトープ領域を破壊するために組み込まれた又は挿入された1つ又は2つ以上の異種T細胞エピトープを含むプロテアソーム送達エフェクターポリペプチド
治療薬の成分としてプロテアソーム送達エフェクターポリペプチドを使用することの魅力にもかかわらず、多くのポリペプチドは、脊椎動物に投与されたとき細胞外空間において免疫原性である。タンパク質療法において望ましくない免疫原性は、有効性の低下、予測不能な薬物動態、並びに投薬量及び反復投与を制限する望ましくない免疫応答をもたらした。治療薬を脱免疫化しようと努力する上で、1つの主な難題は、例えばプロテアソーム送達などの所望のポリペプチドエフェクター機能を維持しながら、ポリペプチドエフェクタードメイン、例えばそのサイトゾル標的化ドメイン、内の免疫原性エピトープをサイレンシング又は破壊することである。加えて、ポリペプチドの機能を保存しながらポリペプチド構造内の免疫エピトープをアミノ酸置換によって破壊し、同時に、標的細胞による細胞内在化、プロセッシング及び細胞表面提示後まで免疫系によって認識されない1つ又は2つ以上T細胞エピトープを付加することは、かなりの難題である。この難題を解決することによって、望ましいCD8+T細胞免疫原性を示し、その上、望ましくないB細胞及びCD4+T細胞免疫原性を低減させるポリペプチド(本明細書では「CD8+高度免疫化された及び/若しくはB細胞/CD4+T細胞脱免疫化された」分子、又は「T細胞エピトープ送達及び/若しくはB細胞/CD4+T細胞脱免疫化された」分子と言う)の生成が可能になる。
II.本発明のT細胞エピトープ送達、CD8+T細胞高度免疫化されたポリペプチドを含む細胞標的化分子の一般構造
本発明のポリペプチドを非常に多くの他のポリペプチド、薬剤及び部分と結合させて、例えば本発明の細胞毒性、細胞標的化タンパク質などの、細胞標的化分子を生成することができる。本発明のプロテアソーム送達エフェクターポリペプチドを含むT細胞エピトープを使用し、例えば、特異的細胞タイプの表面と物理的に結合されている細胞外標的生体分子との高親和性結合を示すことができる結合領域などの、細胞標的化成分の付加を用いて、細胞毒性ポリペプチド及びタンパク質を構築することができる。加えて、毒性であるか非毒性であるかにかかわらず本発明のB細胞エピトープ脱免疫化されたポリペプチドを哺乳動物への投与に有用な非常に多くの分子の成分として使用することができる。
A.異種T細胞エピトープを含むプロテアソームエフェクターポリペプチドを含む細胞標的化分子
本発明は、1)細胞標的化結合領域と、2)異種T細胞エピトープを含む本発明のプロテアソーム送達エフェクターポリペプチドとを各々が含む、細胞標的化分子を含む。
細胞標的化部分
本発明の特定の分子は、細胞外標的生体分子に特異的に結合することができる結合領域を含む細胞標的化部分に連結された本発明のT細胞高度免疫化されたプロテアソーム送達エフェクターポリペプチドを含む。特定の実施形態において、本発明の分子は、T細胞高度免疫化されたプロテアソーム送達エフェクターポリペプチド及び細胞標的化結合領域が互いに融合されて連続ポリペプチド鎖又は細胞標的化融合タンパク質を形成するために、単一のポリペプチド又はタンパク質を含む。
本発明の細胞標的化分子の細胞標的化部分は、本発明のポリペプチドに連結されているときに特異的細胞の極めて近位にある細胞標的化分子を、それらの特異的細胞の表面での分子相互作用に基づいて各々が架橋できる、分子構造を含む。細胞標的化部分は、リガンドと、細胞表面標的と結合するポリペプチドとを含む。
細胞標的化部分の1つのタイプは、タンパク質性結合領域である。本発明の細胞標的化分子の結合領域は、細胞外標的生体分子に選択的に及び特異的に結合することができる1つ又は2つ以上のポリペプチドを含む。結合領域は、1つ又は2つ以上の様々なポリペプチド部分、例えば、合成リガンドであるか自然に存在するリガンドであるかにかかわらず、リガンド、及びそれらの誘導体;免疫グロブリン由来ドメイン;免疫グロブリンドメインの代替物として合成により工学的に操作された足場などを含むことがある。本発明の細胞標的化分子にタンパク質性結合領域を使用することにより、一本鎖細胞標的化タンパク質である細胞標的化分子の生成が可能になる。
リガンド、モノクローナル抗体、工学的に操作された抗体誘導体、抗体の工学的に操作された代替物などの、特異的細胞タイプへのポリペプチドの、それらの結合特性による標的化に有用である非常に多くの結合領域が、当技術分野において公知である。
1つの特異的な、しかし非限定的な態様によると、本発明の細胞標的化分子の結合領域は、天然に存在するリガンド、又は細胞外標的生体分子、一般に細胞表面受容体、との結合機能性を保持するリガンドの誘導体を含む。例えば、当技術分野において公知の様々なサイトカイン、成長因子及びホルモンを使用して、コグネートサイトカイン受容体、成長因子受容体又はホルモン受容体を発現する特異的細胞タイプの細胞表面に本発明の細胞標的化分子を標的化することができる。リガンドの特定の非限定的な例(別名をカッコ内に示す)は、B細胞活性化因子(BAFF,B-cell activating factor、APRIL)、コロニー刺激因子(CSF,colony stimulating factor)、表皮成長因子(EGF,epidermal growth factor)、線維芽細胞増殖因子(FGF,fibroblast growth factor)、血管内皮増殖因子(VEGF,vascular endothelial growth factor)、インスリン様増殖因子(IGF,insulin-like growth factor)、インターフェロン、インターロイキン(例えばIL−2、IL−6及びIL−23)、神経成長因子(NGF,nerve growth factor)、血小板由来増殖因子(TGF,platelet derived growth factor)、及び腫瘍壊死因子(TNF,tumor necrosis factor)を含む。
特定の他の実施形態によると、結合領域は、細胞外標的生体分子に結合することができる合成リガンドを含む。1つの非限定的な例は、細胞毒性Tリンパ球抗原4(CTLA−4,cytotoxic T-lymphocyte antigen 4)に対するアンタゴニストである。
1つの特異的な、しかし非限定的な態様によると、結合領域は、免疫グロブリン型結合領域を含むことがある。本書において用いる場合の用語「免疫グロブリン型結合領域」は、抗原又はエピトープなどの1つ又は2つ以上の標的生体分子に結合することができるポリペプチド領域を指す。結合領域は、標的と結合するそれらの能力によって定義されることもある。免疫グロブリン型結合領域は、一般に、抗体又は抗体様構造に由来するが、他の源からの代替足場がこの用語の範囲内で考えられる。
免疫グロブリン(Ig)タンパク質は、Igドメインとして公知の構造ドメインを有する。Igドメインは、長さが約70〜110アミノ酸残基の範囲であり、典型的に7〜9本の逆平行ベータ鎖が、サンドイッチ様構造を形成する2つのベータシートになるように並んでいる、特徴的なIgフォールドを有する、Igフォールドは、前記サンドイッチの内面で疎水性アミノ酸相互作用及び前記サンドイッチ内のシステイン残基間の高度に保存されたジスルフィド結合によって安定化される。Igドメインは、可変的なもの(IgV又はIセット)であることもあり、定常的なもの(IgC又はCセット)であることもあり、又は中間のもの(IgI又はIセット)であることもある。一部のIgドメインは、抗体の、それらのエピトープへの結合の特異性にとって重要である、相補性決定領域(CDR,complementarity determining region)と会合していることがある。Ig様ドメインは、非免疫グロブリンタンパク質においても見つけられ、それに基づいてタンパク質のIgスーパーファミリーのメンバーとして分類される。HUGO遺伝子命名法委員会(HGNC,HUGO Gene Nomenclature Committee)は、Ig様ドメイン含有ファミリーのメンバーのリストを提供している。
免疫グロブリン型結合領域は、アミノ酸配列が、例えば分子工学によって又はライブラリースクリーニングによる選択によって、ネイティブ抗体のアミノ酸配列又は非免疫グロブリンタンパク質のIg様ドメインのアミノ酸配列から変更された、抗体又はその抗原結合断片のポリペプチド配列である。免疫グロブリン型結合領域の産生における組換えDNA技術及びインビトロライブラリースクリーニングの妥当性のため、抗体を再設計して、より小さいサイズ、細胞侵入又は他の治療上の改善などの所望の特性を得ることができる。可能なバリエーションは多く、1つだけのアミノ酸の変化から、例えば可変領域の、完全再設計まで様々でありうる。典型的に、抗原結合特性を向上させるように、可変領域の安定性を向上させるように、又は免疫原性応答の可能性を低下させるように、可変領域に変更を加えることになる。
本発明の成分として企図される非常に多くの免疫グロブリン型結合領域がある。特定の実施形態において、免疫グロブリン型結合領域は、細胞外標的生体分子に結合することができる抗体パラトープなどの、免疫グロブリン結合領域に由来する。特定の他の実施形態において、免疫グロブリン型結合領域は、いずれの免疫グロブリンドメインにも由来しないが、細胞外標的生体分子との高親和性結合をもたらすことによって免疫グロブリン結合領域のように機能する、工学的に操作されたポリペプチドを含む。この工学的に操作されたポリペプチドは、本書に記載の免疫グロブリンからの相補性決定領域を含む、又はそのような相補鎖決定領域から本質的になる、ポリペプチド足場を含んでいてもよい。
特異的細胞タイプへのポリペプチドの、それらの高親和性結合特性による標的化に有用である、非常に多くの結合領域が、先行技術にもある。特定の実施形態において、本発明の結合領域は、シングルドメイン抗体(sdAb)ドメイン、ナノボディ、ラクダ化動物に由来する重鎖抗体ドメイン(VH断片)、二価ナノボディ、軟骨魚類に由来する重鎖抗体ドメイン、免疫グロブリン新規抗原受容体(IgNAR)、VNAR断片、一本鎖可変(scFv)断片、多量体化scFv断片(ダイアボディ、トリアボディ、テトラボディ)、二重特異性タンデムscFv断片、ジスルフィド安定化抗体可変(Fv)断片、V、V、C及びC1ドメインからなるジスルフィド安定化抗体結合(Fab)断片、二価F(ab’)2断片、重鎖及びC1ドメインからなるFd断片、一本鎖Fv−C3ミニボディ、二重特異性ミニボディ、二量体C2ドメイン断片(C2D)、Fc抗原結合ドメイン(Fcab)、単離された相補性決定領域3(CDR3)断片、拘束フレームワーク領域3,CDR3,フレームワーク領域4(FR3−CDR3−FR4)ポリペプチド、小モジュラー免疫医薬(SMIP)ドメイン、並びにそのパラトープ及び結合機能を保持する前述のものの任意の遺伝子操作された対応物を含む群から選択される(Saerens D et al., Curr.Opin.Pharmacol 8: 600-8 (2008)、Dimitrov D, MAbs 1: 26-8 (2009)、Weiner L, Cell 148: 1081-4 (2012)、Ahmad Z et al., Clin Dev Immunol 2012: 980250 (2012)を参照されたい)。
特定の他の実施形態に従って、結合領域は、免疫グロブリンドメインの工学的に操作された代替足場であって、標的生体分子の高親和性及び特異的結合などの類似の機能特性を示し、より大きい安定性又は免疫原性の低減などの特性向上の工学的操作を可能にする、代替足場を含む。本発明の細胞標的タンパク質の特定の実施形態について、結合領域は、工学的に操作された、第10フィブロネクチンIII型(10Fn3)ドメイン(モノボディ、AdNectins(商標)、又はAdNexins(商標))、工学的に操作された、テネイシン由来、テネイシンIII型ドメイン(Centryns(商標))、工学的に操作された、アンキリン反復モチーフ含有ポリペプチド(DARPins(商標))、工学的に操作された、低密度リポタンパク質受容体由来、Aドメイン(LDLR−A)(Avimers(商標))、リポカリン(アンチカリン)、工学的に操作された、プロテアーゼ阻害剤由来、Kunitzドメイン、工学的に操作された、プロテインA由来、Zドメイン(Affibodies(商標))、工学的に操作された、ガンマ−B結晶由来足場又は工学的に操作された、ユビキチン由来足場(アフィリン)、Sac7d由来ポリペプチド(Nanoffitins(登録商標)又はアフィチン)、工学的に操作された、Fyn由来、SH2ドメイン(Fynomers(登録商標))、ミニタンパク質、C型レクチン様ドメイン足場、工学的に操作された抗体模倣体、及びその結合機能性を保持する前述のものの任意の遺伝子操作された対応物を含む群から選択される(Worn A, Pluckthun A, J Mol Biol 305: 989-1010 (2001)、Xu L et al., Chem Biol 9: 933-42 (2002)、Wikman M et al., Protein Eng Des Sel 17: 455-62 (2004)、Binz H et al., Nat Biotechnol 23: 1257-68 (2005)、Hey T et al., Trends Biotechnol 23 :514-522 (2005)、Holliger P, Hudson P, Nat Biotechnol 23: 1126-36 (2005)、Gill D, Damle N, Curr Opin Biotech 17: 653-8 (2006)、Koide A, Koide S, Methods Mol Biol 352: 95-109 (2007)、Byla P et al., J Biol Chem 285: 12096 (2010)、Zoller F et al., Molecules 16: 2467-85 (2011))。
上記結合領域のいずれを本発明の成分として使用してもよいが、ただし、その結合領域成分が、細胞外標的生体分子に対して、1リットル当たり10−5〜10−12モル、好ましくは200ナノモル(nM)未満の解離定数を有することを条件とする。
本発明の特定の細胞標的化分子は、細胞外標的生体分子に選択的に及び特異的に結合することができる1つ又は2つ以上のポリペプチドを含む細胞外標的生体分子特異的結合領域に連結された本発明のポリペプチドを含む。細胞外標的生体分子は、非常に多くの基準に基づいて選択することができる。
細胞標的化部分の細胞外標的生体分子
本発明の細胞標的化分子の特定の結合領域は、細胞外標的生体分子と特異的に結合することができる、好ましくは、がん細胞、腫瘍細胞、形質細胞、感染細胞、又は細胞内病原体を内部に持つ宿主細胞などの、目的の細胞タイプの表面に物理的に結合されている、ポリペプチド領域を含む。
用語「標的生体分子」は、結合領域によって結合されてタンパク質を生物体内の特定の細胞タイプ又は位置に標的化することができる生体分子、一般にはタンパク質、又はグリコシル化などの翻訳後修飾によって修飾されたタンパク質を指す。細胞外標的生体分子は、未修飾ポリペプチド、生化学的官能基の付加によって修飾されたポリペプチド、及び糖脂質を含む、様々なエピトープを含みうる(例えば、米国特許第5,091,178号明細書、欧州特許第2431743号明細書を参照されたい)。細胞外標的生体分子は、本発明の細胞標的化分子に内因的に内在化される、又は本発明の細胞標的化分子との相互作用によって容易に内在化させられることが望ましい。
本発明では、標的生体分子の修飾に関して用語「細胞外」は、その構造の少なくとも一部分が細胞外環境に曝露された生体分子を指す。細胞外標的生体分子は、細胞膜成分、膜貫通タンパク質、細胞膜に係留されている生体分子、細胞表面に結合されている生体分子及び分泌された生体分子を含む。
本発明に関して、標的生体分子を記述するために使用するときの句「物理的に結合されている」は、標的生体分子又はその一部分を細胞の外部と結合させる、共有結合性及び/又は非共有結合性両方の分子間相互作用、例えば、単一の相互作用各々のエネルギーがおおよそ約1〜5キロカロリーである、標的生体分子と細胞との複数の非共有結合性相互作用(例えば、静電結合、水素結合、ファンデルワールス相互作用、疎水力など)を意味する。全ての不可欠膜タンパク質は、細胞膜と物理的に結合されている状態で見出すことができる。例えば、細胞外標的生体分子は、膜貫通領域、脂質アンカー、糖脂質アンカーを含むことがあり、及び/又は前述のもののいずれか1つを含む因子と(例えば、非特異的疎水性相互作用及び/又は脂質結合相互作用によって)非共有結合的に会合していることもある。
本発明の細胞標的化分子の結合領域は、例えば、それらの標的生体分子の細胞特異的発現、及び/又は特異的細胞タイプに対するそれらの標的生体分子の物理的局在などの、非常に多くの基準に基づいて設計又は選択されうる。例えば、本発明の特定の細胞毒性タンパク質は、1つの細胞タイプのみによって排他的に発現される細胞方面標的を細胞表面と結合させることができる結合ドメインを含む。
全ての有核脊椎動物細胞は、MHCクラスI系を使用して細胞内ペプチドエピトープを発現することができると考えられている。したがって、本発明の細胞標的化分子の細胞外標的生体分子は、原理上は、いかなる有核脊椎動物細胞も、MHCクラスI提示経路へのT細胞エピトープ送達の標的にすることができる。
本発明の細胞標的化分子の結合領域の細胞外標的生体分子は、がん細胞、免疫細胞、及び細胞内病原体、例えばウイルス、細菌、真菌、プリオン又は原生動物に感染した細胞上にバイオマーカーを不釣り合いなほど多く又は排他的に含みうる。
当業者は、当技術分野において公知の技法を用いて、本発明のT細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたポリペプチドを様々な他の分子に連結させて、細胞に物理的に結合されている特異的細胞外標的生体分子を標的化し、標的細胞内在化を促進することができる。例えば、本発明のポリペプチドを、例えば受容体媒介エンドサイトーシスなどによって、より容易に形質膜貫入される細胞表面受容体標的化分子に連結させてもよく、又は細胞表面でのメカニズムによって細胞内在化を促進する分子、例えば、クラスリン被覆ピット構築、リン脂質層形成、及び/若しくは管状陥入を促進する分子などに連結させてもよい。標的結合後に細胞内在化を促進する細胞標的化部分の能力を、当業者に公知のアッセイを用いて判定してもよい。
KDELファミリーのメンバーの小胞体保留/回収シグナルモチーフ
本発明では、句「小胞体保留/回収シグナルモチーフ」、KDEL型シグナルモチーフ、又はシグナルモチーフは、真核生物細胞内でKDEL受容体による小胞体へのタンパク質の細胞内局在を促進するように機能することができるKDELファミリーの任意のメンバーを指す。
カルボキシ末端リジン−アスパラギン−グルタメート−ロイシン(KDEL)配列は、真核生物細胞内の可溶性タンパク質のカノニカル小胞体保留及び回収シグナルモチーフであり、KDEL受容体によって認識される(Capitani M, Sallese M, FEBS Lett 583: 3863-71 (2009)を参照されたい)。シグナルモチーフのKDELファミリーは、多くのKDEL様モチーフ、例えば、HDEL、RDEL、WDEL、YDEL、HEEL、KEEL、REEL、KFEL、KIEL、DKEL、KKEL、HNEL、HTEL、KTEL及びHVELを含み、これらの全てが、系統発生学上の複数の界にわたって小胞体の内腔の常在物であることが公知であるタンパク質のカルボキシ末端において見出される(Munro S, Pelham H, Cell 48: 899-907 (1987)、Raykhel I et al., J Cell Biol 179: 1193-204 (2007))。KDELシグナルモチーフファミリーは、合成構築物を使用して証明された少なくとも46のポリペプチドバリアントを含む(Raykhel, J Cell Biol 179: 1193-204 (2007))。さらなるKDELシグナルモチーフは、ALEDEL、HAEDEL、HLEDEL、KLEDEL、IRSDEL、ERSTEL、及びRPSTELを含む(Alanen H et al., J Mol Biol 409: 291-7 (2011))。KDELシグナルモチーフを表す一般化コンセンサスモチーフは、[KRHQSA]−[DENQ]−E−Lと記載されている(Hulo N et al., Nucleic Acids Res 34: D227-30 (2006))。
KDELファミリーシグナルモチーフを含有するタンパク質は、Golgi複合体全体にわたって分布しているKDEL受容体によって結合され、小胞体の内腔への放出のために微小管依存性メカニズムによって小胞体に輸送される(Griffiths G et al., J Cell Biol 127: 1557-74 (1994)、Miesenbock G, Rothman J, J Cell Biol 129: 309-19 (1995))。KDEL受容体は、Golgi複合体と小胞体間で動的に循環する(Jackson M et al., EMBO J. 9: 3153-62 (1990)、Schutze M et al., EMBO J. 13: 1696-1705 (1994))。
本発明では、KDELファミリーのメンバーは、真核生物細胞内でKDEL受容体による小胞体へのタンパク質の細胞内局在を促進するように機能することができる合成シグナルモチーフを含む。言い換えると、KDELファミリーの一部のメンバーは、自然界に存在しないことがあり、しかし自然界で観察される必要もなく、当技術分野において公知の方法を用いて構築され、実験により検証されており、又は構築され、実験により検証されうる。例えば、Raykhel I et al., J Cell Biol 179: 1193-204(2007)を参照されたい。
本発明のポリペプチド及び細胞標的化分子の特定の実施形態の成分として、KDEL型シグナルモチーフは、ポリペプチド又は細胞標的化タンパク質中でカルボキシ末端上に存在するように物理的に位置し、配向され、又は配置される。
本発明では、T細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたポリペプチド並びに細胞標的化結合領域について、互いとの関連でも、全体の、細胞標的化、融合タンパク質のN末端及びC末端との関連でも、特定の順序も配向も決められていない(例えば図1を参照されたい)。
本発明の細胞標的化分子の一般構造は、様々な多様な細胞標的化結合領域を様々なCD8+T細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたポリペプチドとともに使用して、様々な細胞外標的生体分子の多様な標的化をもたらし、かくして細胞毒性、細胞分裂停止、及び/又は様々な多様な細胞タイプへの外因性物質送達の標的化をもたらす点で、モジュラーである。不適切な細胞内経路指定のため、T細胞エピトープ提示をもたらさず、及び/又は細胞毒性でない、CD8+T細胞高度免疫化された及びB細胞/CD4+T細胞脱免疫化されたポリペプチドは、細胞に外因性物質を送達するための細胞標的化分子の成分、例えば、T細胞エピトープ又は抗原などとして依然として有用でありうる。
III.本発明のポリペプチド成分及び/又はそれらの小成分を結合する連結
本発明の個々の細胞標的化部分、ポリペプチド、及び/又はタンパク質成分、例えば、細胞標的化結合領域並びにCD8+T細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたポリペプチドを、当技術分野において周知の及び/又は本書に記載する1つ又は2つ以上のリンカーによって安定的に互いに連結させることができる。結合領域の個々のポリペプチド小成分、例えば、重鎖可変領域(V)、軽鎖可変領域(V)、CDR、及び/又はABR領域を、当技術分野において周知の及び/又は本書に記載する1つ又は2つ以上のリンカーによって安定的に互いに連結させることができる(例えば、Weisser N, Hall J, Biotechnol Adv 27: 502-20 (2009)、Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013))。本発明のタンパク質成分、例えば、多鎖結合領域は、当技術分野において周知の1つ又は2つ以上のリンカーによって互いに又は本発明の他のポリペプチド成分と安定的に連結させることができる。本発明のペプチド成分、例えば、KDELファミリー小胞体保留/回収シグナルモチーフは、当技術分野において周知の1つ又は2つ以上のリンカー、例えばタンパク質性リンカー、によって本発明の別の成分に安定的に連結させることができる。
好適なリンカーは、一般に、いずれのリンカーも他の成分も用いずに個々に生産されたポリペプチド成分と非常に類似した三次元構造での、本発明の各ポリペプチド成分のフォールディングを可能にするものである。好適なリンカーは、単一のアミノ酸、ペプチド、ポリペプチド、及び上述のもののいずれかを欠くリンカー、例えば、分岐状であるか環状であるかにかかわらず様々な非タンパク質性炭素鎖を含む(例えば、Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013))。
好適なリンカーは、タンパク質性であることがあり、1つ又は2つ以上のアミノ酸、ペプチド及び/又はポリペプチドを含むことがある。タンパク質性リンカーは、組換え融合タンパク質及び化学的に連結されたコンジュゲートの両方に好適である。タンパク質性リンカーは、例えば約5〜約30、又は約6〜約25アミノ酸残基などの、約2〜約50アミノ酸残基を概して有する。選択されるリンカーの長さは、例えば、所望の特性、又はリンカーを選択している特性などの、様々な因子に依存することとなる(例えば、Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013)を参照されたい)。
好適なリンカーは、例えば化学的リンカーなどの、非タンパク質性のものであることもある(例えば、Dosio F et al., Toxins 3: 848-83 (2011)、Feld J et al., Oncotarget 4: 397-412 (2013)を参照されたい)。免疫グロブリン由来ポリペプチドを異種ポリペプチドに結合させるために一般に使用されるリンカーなどの、当技術分野において公知の様々な非タンパク質性リンカーを使用して、細胞標的化部分を、CD8+T細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたポリペプチド成分に連結させることができる。例えば、ポリペプチドリンカーは、それらのアミノ酸残基及び炭水化物部分の官能性側鎖、例えば、カルボキシ、アミノ、アミン、スルフヒドリル、カルボン酸、カルボニル、ヒドロキシル及び/又は環式環基などを用いて連結させることができる。例えば、ジスルフィド結合及びチオエーテル結合を用いて、2つ又は3つ以上のポリペプチドを連結させてもよい(例えば、Fitzgerald D et al., Bioconjugate Chem 1: 264-8 (1990)、Pasqualucci L et al., Haematologica 80: 546-56 (1995)を参照されたい)。加えて、非天然アミノ酸残基を他の官能性側鎖、例えばケトン基と併用してもよい(例えば、Sun S et al., Chembiochem Jul 18 (2014)、Tian F et al., Proc Natl Acad Sci USA 111: 1766-71 (2014)を参照されたい)。非タンパク質性化学的リンカーの例は、N−スクシンイミジル(4−ヨードアセチル)−アミノベンゾエート、S−(N−スクシンイミジル)チオアセテート(SATA,S-(N-succinimidyl) thioacetate)、N-スクシンイミジル−オキシカルボニル−cu−メチル−a−(2−ピリジルジチオ)トルエン(SMPT,N-succinimidyl-oxycarbonyl-cu-methyl-a-(2-pyridyldithio) toluene)、N-スクシンイミジル4−(2−ピリジルジチオ)−ペンタノアート(SPP,N-succinimidyl 4-(2-pyridyldithio)-pentanoate)、スクシンイミジル4−(N−マレイミドメチル)シクロヘキサンカルボキシレート(SMCC又はMCC,succinimidyl 4-(N-maleimidomethyl) cyclohexane carboxylate)、スルホスクシンイミジル(4−ヨードアセチル)−アミノベンゾエート、4−スクシンイミジル−オキシカルボニル−α−(2−ピリジルジチオ)トルエン、スルホスクシンイミジル−6−(α−メチル−α−(ピリジルジチオール)−トルアミド)ヘキサノエート、N−スクシンイミジル−3−(−2−ピリジルジチオ)−プロピオネート(SPDP,N-succinimidyl-3-(-2-pyridyldithio)-proprionate)、スクシンイミジル6(3(−(−2−ピリジルジチオ)−プロピオンアミド)ヘキサノエート、スルホスクシンイミジル 6(3(−(−2−ピリジルジチオ)−プロピオンアミド)ヘキサノエート、マレイミドカプロイル(MC,maleimidocaproyl)、マレイミドカプロイル−バリン−シトルリン−P−アミノベンジルオキシカルボニル(MC−vc−PAB,maleimidocaproyl-valine-citrulline-p-aminobenzyloxycarbonyl)、3−マレイミド安息香酸N−ヒドロキシスクシンイミドエステル(MBC,3-maleimidobenzoic acid N-hydroxysuccinimide ester)、アルファ−アルキル誘導体、スルホNHS−ATMBA(スルホスクシンイミジルN−[3−(アセチルチオ)−3−メチルブチリル−ベータ−アラニン])、スルホジクロロフェノール、2−イミノチオラン、3−(2−ピリジルジチオ)−プロピオニルヒドラジド、エルマン試薬、ジクロロトリアジン酸、及びS−(2−チオピリジル)−L−システインを含むが、これらに限定されない(例えば、Thorpe P et al., Eur J Biochem 147: 197-206 (1985)、Thorpe P et al., Cancer Res 47: 5924-31 (1987)、Thorpe P et al., Cancer Res 48: 6396-403 (1988)、Grossbard M et al., Blood 79: 576-85 (1992)、Lui C et al., Proc Natl Acad Sci USA 93: 8618-23 (1996)、Doronina S et al., Nat Biotechnol 21: 778-84 (2003)、Feld J et al., Oncotarget 4: 397-412 (2013)を参照されたい)。
タンパク質性であるか非タンパク性であるかにかかわらず、好適なリンカーは、例えば、プロテアーゼ感受性、環境酸化還元電位感受性、pH感受性、酸切断性、光切断性及び/又は熱感受性リンカーを含みうる(例えば、Dosio F et al., Toxins 3: 848-83 (2011)、Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013)、Feld J et al., Oncotarget 4: 397-412 (2013)を参照されたい)。
タンパク質性リンカーを本発明の組換え融合細胞標的化分子への組み込みに選択してもよい。本発明の組換え融合細胞標的化タンパク質のためのリンカーは、約2〜50アミノ酸残基、好ましくは約5〜30アミノ酸残基を概して含む(Argos P, J Mol Biol 211: 943-58 (1990)、Williamson M, Biochem J 297: 240-60 (1994)、George R, Heringa J, Protein Eng 15: 871-9 (2002)、Kreitman R, AAPS J 8: E532-51 (2006))。一般に、タンパク質性リンカーは、例えばトレオニン、プロリン、グルタミン、グリシン及びアラニンなどの、極性、非荷電及び/又は荷電残基を有するアミノ酸残基の大部分を含む(例えば、Huston J et al.Proc Natl Acad Sci U.S.A.85: 5879-83 (1988)、Pastan I et al., Annu Rev Med 58: 221-37 (2007)、Li J et al., Cell Immunol 118: 85-99 (1989)、Cumber A et al.Bioconj Chem 3: 397-401 (1992)、Friedman P et al., Cancer Res 53: 334-9 (1993)、Whitlow M et al., Protein Engineering 6: 989-95 (1993)、Siegall C et al., J Immunol 152: 2377-84 (1994)、Newton et al.Biochemistry 35: 545-53 (1996)、Ladurner et al.J Mol Biol 273: 330-7 (1997)、Kreitman R et al., Leuk Lymphoma 52: 82-6 (2011)、米国特許第4,894,443号明細書を参照されたい)。タンパク質性リンカーの非限定的な例は、アラニン−セリン−グリシン−グリシン−プロリン−グルタメート(ASGGPE)、バリン−メチオニン(VM)、アラニン−メチオニン(AM)、AM(G2−4S)AM(この場合、Gはグリシンであり、Sはセリンであり、xは1〜10の整数である)を含む。
タンパク質性リンカーを所望の特性に基づいて選択することができる。当業者は、特異的特徴を念頭に置いて、例えば、融合分子のフォールディング、安定性、発現、可溶性、薬物動態特性、薬力学的特性、及び/又は融合構築物に関連して同じドメイン単独での活性と比較した融合ドメインの活性のうちの1つ又は2つ以上を最適化するように、タンパク質性を選択することができる。例えば、タンパク質性リンカーは、可動性、剛性及び/又は切断性に基づいて選択されることもある(例えば、Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013)を参照されたい)。当業者は、リンカーを選択する際にデータベース及びリンカー設計ソフトウェアツールを利用することができる。特定のリンカーが、発現を最適化するために選択されることもある(例えば、Turner D et al., J Immunl Methods 205: 43-54 (1997)を参照されたい)。ホモ多量体を形成するために同一のポリペプチド若しくはタンパク質間の又はヘテロ多量体を形成するために異なるポリペプチド若しくはタンパク質間の分子間相互作用を促進するために、特定のリンカーが選択されることもある。例えば、本発明の細胞標的化タンパク質のポリペプチド成分間の所望の非共有結合性相互作用、例えば、二量体及び他のより高次の多量体の形成に関連した相互作用などを可能にする、タンパク質性リンカーを選択されることもある(例えば、米国特許第4,946,778号明細書を参照されたい)。
可動性タンパク質性リンカーは、多くの場合、12アミノ酸残基長より長く、小さい非極性アミノ酸残基、極性アミノ酸残基及び/又は親水性アミノ酸残基、例えばグリシン、セリン及びトレオニンなどに富んでいる(例えば、Bird R et al., Science 242: 423-6 (1988)、Friedman P et al., Cancer Res 53: 334-9 (1993)、Siegall C et al., J Immunol 152: 2377-84 (1994)を参照されたい)。可動性タンパク質性リンカーは、成分間の空間的離隔を増すように選択されることもあり、及び/又は成分間の分子間相互作用を可能にするように選択されることもある。例えば、様々な「GS」リンカーが当業者に公知であり、複数のグリシン及び/又は1つ若しくは2つ以上のセリンで構成され、例えば(GS)、(SG)、(GGGGS)及び(G)(この場合、xは1〜6であり、nは1〜30である)などの反復単位で構成されることもある(例えば、国際公開第96/06641号パンフレットを参照されたい)。可動性タンパク質性リンカーの非限定的な例は、GKSSGSGSESKS、GSTSGSGKSSEGKG、GSTSGSGKSSEGSGSTKG、GSTSGSGKSSEGKG、GSTSGSGKPGSGEGSTKG、EGKSSGSGSESKEF、SRSSG、及びSGSSCを含む。
剛性タンパク質性リンカーは、多くの場合、堅いアルファヘリックス構造であり、プロリン残基及び/又は1つ若しくは2つ以上の戦略的に配置されたプロリンに富んでいる(例えば、Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013)を参照されたい)。剛性リンカーは、連結された成分間の分子間相互作用を防止するために選択されることがある。
好適なリンカーは、成分のインビボ分離、例えば、切断及び/又は環境特異的不安定性に起因する成分のインビボ分離などを可能にするように、選択されうる(例えば、Dosio F et al., Toxins 3: 848-83 (2011)、Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013)を参照されたい)。インビボ切断性タンパク質性リンカーは、タンパク質プロセッシングによって結合解除することができる、及び/又は環境を、多くの場合、生物体内の若しくは特定の細胞タイプの内部の特異的部位の環境を、削減することができる(例えば、Doronina S et al., Bioconjug Chem 17: 144-24 (2006)、Erickson H et al., Cancer Res 66: 4426-33 (2006)を参照されたい)。インビボ切断性タンパク質性リンカーは、1つ又は2つ以上のシステイン対によって形成されるプロテアーゼ感受性モチーフ及び/又はジスルフィド結合を含むことが多い(例えば、Pietersz G et al., Cancer Res 48: 4469-76 (1998)、The J et al., J Immunol Methods 110: 101-9 (1998)を参照されたい;Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013)を参照されたい)。インビボ切断性タンパク質性リンカーは、生物体内の特定の位置、細胞内の区画、のみに存在する及び/又は特定の生理若しくは病的条件下でのみ活性になるプロテアーゼ(例えば、異常に高レベルのプロテアーゼ、特定の疾患部位で過剰発現されるプロテアーゼ、及び病原性微生物によって特異的に発現されるプロテアーゼなど)に対して感受性であるように設計することができる。例えば、細胞内のみに存在するプロテアーゼ、特異的細胞タイプ内にのみ存在するプロテアーゼ、及びがん若しくは炎症のような病的条件下でのみ存在するプロテアーゼ、例えば、R−x−x−Rモチーフ及びAMGRSGGGCAGNRVGSSLSCGGLNLQAMなどによって切断されるタンパク質性リンカーは、当技術分野において公知である。
本発明の細胞標的化分子の特定の実施形態では、標的細胞内に存在するプロテアーゼによる切断をもたらすために1つ又は2つ以上のプロテアーゼ感受性部位を含むリンカーを使用することがある。本発明の細胞標的化分子の特定の実施形態では、脊椎動物生物への投与後の望ましくない毒性を低減させるために切断性でないリンカーを使用することもある。
好適なリンカーは、タンパク質性であるか非タンパク性であるかにかかわらず、例えば、プロテアーゼ感受性、環境酸化還元電位感受性、pH感受性、酸切断性、光切断性及び/又は熱感受性リンカーを含みうる(例えば、Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013)を参照されたい)。
好適な切断性リンカーは、例えば、Zarling D et al., J Immunol 124: 913-20 (1980)、Jung S, Moroi M, Biochem Biophys Acta 761: 152-62 (1983)、Bouizar Z et al., Eur J Biochem 155: 141-7 (1986)、Park L et al., J Biol Chem 261: 205-10 (1986)、Browning J, Ribolini A, J Immunol 143: 1859-67 (1989)、Joshi S, Burrows R, J Biol Chem 265: 14518-25 (1990)などの、当技術分野において公知である切断性基を含むリンカーを含みうる。
好適なリンカーは、pH感受性リンカーを含みうる。例えば、特定の好適なリンカーは、標的細胞の細胞内区画内部での解離をもたらすためにより低いpH環境でのそれらの不安定性について選択されることがある。例えば、1つ又は2つ以上のトリチル基、誘導体化トリチル基、ビスマレイミドエトキシプロパン基、アジピン酸ジヒドラジド基及び/又は酸不安定性基を含むリンカーは、特異的pH範囲を有する環境で本発明の細胞標的化分子の成分、例えばポリペプチド成分、の放出をもたらすことができる(例えば、Welhoner H et al., J Biol Chem 266: 4309-14 (1991)、 Fattom A et al., Infect Immun 60: 584-9 (1992)を参照されたい)。例えば腫瘍組織のpHが健常組織の場合より低いなどの、組織間の生理的pH差に対応するpH範囲で切断する特定のリンカーを選択してもよい(例えば、米国特許第5,612,474号明細書を参照されたい)。
光切断性リンカーは、可視領域の光などの、特定の波長領域の電磁放射線への曝露に基づいて切断されるリンカーである。(例えば、Goldmacher V et al., Bioconj Chem 3: 104-7 (1992)を参照されたい)。光切断性リンカーを使用して、本発明の細胞標的化分子の成分、例えばポリペプチド成分、を特定の波長の光への曝露に基づいて放出させることができる。光切断性リンカーの非限定的な例は、システインの光切断性保護基のようなニトロベンジル基、ニトロベンジルオキシカルボニルクロリド架橋剤、ヒドロキシプロピルメタクリルアミド共重合体、グリシン共重合体、フルオレセイン共重合体及びメチルローダミン共重合体を含む(Hazum E et al., Pept Proc Eur Pept Symp, 16th, Brunfeldt K, ed., 105-110 (1981)、Senter et al., Photochem Photobiol 42: 231-7 (1985)、Yen et al., Makromol Chem 190: 69-82 (1989)、Goldmacher V et al., Bioconj Chem 3: 104-7 (1992))。光切断性リンカーは、ファイバーオプティクスを使用して光に曝露することができる疾患、障害及び状態を治療するために設計された本発明の細胞標的化分子を形成するための連結成分に、特に使用されうる。
本発明の細胞標的化分子の特定の実施形態において、細胞標的化結合領域は、共有結合性連結及び非共有結合性連結の両方を含む当業者に公知の手段を任意の数用いて、CD8+T細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたポリペプチドに連結される(例えば、Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013)、Behrens C, Liu B, MAbs 6: 46-53 (2014)を参照されたい)。
本発明の細胞標的化タンパク質の特定の実施形態において、タンパク質は、重鎖可変(V)ドメインと軽鎖可変(V)ドメインを接続するリンカーを有するscFvである結合領域を含む。例えば15残基(Gly4Ser)ペプチドなどの、この目的に好適な非常に多くのリンカーが当技術分野において公知である。非共有結合性多価構造の形成に使用することができる好適なscFvリンカーは、GGS、GGGS、GGGGS、GGGGSGGG、GGSGGGG、GSTSGGGSGGGSGGGGSS及びGSTSGSGKPGSSEGSTKGを含む(Pluckthun A, Pack P, Immunotechnology 3: 83-105 (1997)、Atwell J et al., Protein Eng 12: 597-604 (1999)、Wu A et al., Protein Eng 14: 1025-33 (2001)、Yazaki P et al., J Immunol Methods 253: 195-208 (2001)、Carmichael J et al., J Mol Biol 326: 341-51 (2003)、Arndt M et al., FEBS Lett 578: 257-61 (2004)、Bie C et al., World J Hepatol 2: 185-91 (2010))。
本発明の細胞標的化分子の成分の連結に好適な方法は、そのような連結を果たすために当技術分野において現在公知のいずれの方法によるものであってもよいが、ただし、本書に記載するアッセイを含む適切なアッセイによって測定して、その結合が、細胞標的化部分の結合能力、CD8+T細胞高度免疫化された及び/若しくはB細胞/CD4+T細胞脱免疫化されたポリペプチド成分の細胞内在化、並びに/又は適切な場合には所望の毒素エフェクター機能を妨げないことを条件とする。
本発明の細胞標的化分子では、細胞標的化結合領域並びにCD8+T細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたポリペプチド領域について、互いとの関連でも、細胞標的化分子全体との関連でも、特定の順序も配向も決められていない(例えば図1を参照されたい)。本発明のポリペプチド及び細胞標的化分子の成分をいずれの順序で配置してもよいが、ただし、細胞標的化部分並びにT細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたエフェクターポリペプチド領域の所望の活性を除去しないことを条件とする。本発明の細胞標的化分子の特定の実施形態において、細胞標的化部分、CD8+T細胞高度免疫化された及び/若しくはB細胞/CD4+T細胞脱免疫化されたポリペプチド、並びに/或いは小胞体保留/回収シグナルモチーフを互いに直接連結されることもあり、並びに/又は1つ若しくは2つ以上の介在ポリペプチド配列によって、例えば、当技術分野において周知の及び/若しくは本書に記載する1つ若しくは2つ以上のリンカーで、安定的に互いに連結されることもある。
IV.T細胞エピトープを送達するCD8+T細胞の高度免疫化されたポリペプチド及びそれを含む細胞標的化融合タンパク質の特異的構造のバリエーションの例
標的細胞によってMHCクラスI提示のためのT細胞エピトープを送達する能力を有するT細胞の高度免疫化されたポリペプチドは、原則的に、エフェクターポリペプチドを送達するいずれかのプロテアソームにT細胞エピトープを付加することによって作製することができる。本発明のT細胞の高度免疫化されたポリペプチドのB細胞/CD4+T細胞の脱免疫化されたサブバリアントは、エフェクターポリペプチドを送達するプロテアソーム内のいずれかのB細胞及び/又はCD4+T細胞エピトープ領域における1又は2以上のアミノ酸残基を、重複する異種T細胞エピトープで置き換えることによって作製することができる。標的細胞によってMHCクラスI提示のためのCD8+T細胞エピトープを送達する能力を有する細胞標的化分子は、原則的に、結果得られた分子が、少なくとも本発明のポリペプチド、細胞標的化部分、又はそれらが一緒になった構造的な組合せによってもたらされる細胞の内在化能力を有する限りは、いずれかの本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドを細胞標的化部分に連結することによって作製することができる。
標的細胞によってMHCクラスI提示のためのCD8+T細胞エピトープを送達する能力を有するCD8+T細胞の高度免疫化されたポリペプチドは、毒素によって誘導されたエフェクターポリペプチドを送達するプロテアソームを使用することによって作製することができる。同様に、本発明のB細胞/CD4+T細胞の脱免疫化された、CD8+T細胞の高度免疫化されたポリペプチドは、毒素によって誘導されたプロテアソームを送達するエフェクターポリペプチド中のいずれかのB細胞エピトープ領域中の1又は2以上のアミノ酸残基を、重複する異種CD8+T細胞エピトープで置き換えることによって作製することができる。
本発明の特定のT細胞の高度免疫化された及びB細胞/CD4+T細胞の脱免疫化されたポリペプチドは、哺乳動物への投与後にポリペプチドが抗原性及び/又は免疫原性を示す可能性を低下させるために、異種T細胞エピトープの付加による少なくとも1つの推定上のB細胞エピトープ領域の破壊を含む。用語「破壊された」又は「破壊」又は「破壊すること」は、本明細書でB細胞エピトープ領域に関して使用される場合、B細胞エピトープ領域における少なくとも1つのアミノ酸の欠失、逆転したアミノ酸の少なくとも1つがB細胞エピトープ領域にある場合は2又は3以上のアミノ酸の逆位、B細胞エピトープ領域における少なくとも1つのアミノ酸の挿入、又はB細胞エピトープ領域における少なくとも1つのアミノ酸の変異を指す。変異によるB細胞エピトープ領域の破壊は、非標準アミノ酸及び/又は非天然アミノ酸でのアミノ酸置換を包含する。破壊の影響を受けた領域におけるアミノ酸残基の数は、好ましくは、2又は3以上、3又は4以上、4又は5以上、5又は6以上、6又は7以上、7又は8以上等、8、9、10、11、12まで、又はそれより多くのアミノ酸残基である。
特定のB細胞エピトープ領域及び破壊は、本明細書において、配列リストに示されるネイティブの志賀毒素のAサブユニット又は原始型のジフテリア毒素のAサブユニットの特定のアミノ酸位置を参照して表されるが、ここで、天然に存在する毒素のAサブユニットは、そのアミノ末端に約22アミノ酸のシグナル配列を含有する前駆体型を含む可能性があり、このシグナル配列が除去されると、成熟毒素のAサブユニットが産生されて、熟練した作業者にとって認識可能になることに留意されたい。
本発明の特定のT細胞の高度免疫化された及びB細胞/CD4+T細胞の脱免疫化されたポリペプチドは、哺乳動物への投与後にポリペプチドがCD4+T細胞の抗原性及び/又は免疫原性を示す可能性を低下させるために、異種T細胞エピトープの付加による少なくとも1つの推定上のCD4+T細胞エピトープ領域の破壊を含む。用語「破壊された」又は「破壊」又は「破壊すること」は、本明細書でCD4+T細胞エピトープ領域に関して使用される場合、CD4+T細胞エピトープ領域における少なくとも1つのアミノ酸の欠失、逆転したアミノ酸の少なくとも1つがCD4+T細胞エピトープにある場合は2又は3以上のアミノ酸の逆位、CD4+T細胞エピトープ領域における少なくとも1つのアミノ酸の挿入、又はCD4+T細胞エピトープ領域における少なくとも1つのアミノ酸の変異を指す。変異によるCD4+T細胞エピトープ領域の破壊は、非標準アミノ酸及び/又は非天然アミノ酸でのアミノ酸置換を包含する。破壊の影響を受けた領域におけるアミノ酸残基の数は、好ましくは、2又は3以上、3又は4以上、4又は5以上、5又は6以上、6又は7以上、7又は8以上等、8、9、10、11、12まで、又はそれより多くのアミノ酸残基である。
特定のCD4+T細胞エピトープ領域及び破壊は、本明細書において、配列リストに示されるネイティブの志賀毒素のAサブユニット又は原始型のジフテリア毒素のAサブユニットの特定のアミノ酸位置を参照して表されるが、ここで、天然に存在する毒素のAサブユニットは、そのアミノ末端に約22アミノ酸のシグナル配列を含有する前駆体型を含む可能性があり、このシグナル配列が除去されると、成熟毒素のAサブユニットが産生されて、熟練した作業者にとって認識可能になることに留意されたい。
1.志賀毒素によって誘導されたCD8+T細胞エピトープ提示及びB細胞/CD4+T細胞の脱免疫化されたポリペプチド
タンパク質毒素の志賀毒素ファミリーは、構造的及び機能的に関連する様々な天然に存在する毒素、例えば、志賀毒素、志賀毒素様毒素1、及び志賀毒素様毒素2で構成される(Johannes L, Romer W, Nat Rev Microbiol 8: 105-16 (2010))。志賀毒素ファミリーのメンバーは、同じ全体構造及び作用機序を共有する(Engedal, N et al., Microbial Biotech 4: 32-46 (2011))。例えば、Stx、SLT−1及びSLT−2は、無細胞系において区別できない酵素活性を示す(Head S et al., J Biol Chem 266: 3617-21 (1991)、Tesh V et al., Infect Immun 61: 3392-402 (1993)、Brigotti M et al., Toxicon 35:1431-1437 (1997))。
志賀毒素ファミリーは、志賀赤痢菌(S. dysenteriae)血清型1から単離した真の志賀毒素(Stx)、腸管出血性大腸菌(enterohemorrhagic E. coli)の血清型から単離した志賀毒素様毒素1バリアント(SLT1又はStx1又はSLT−1又はSlt−I)、及び腸管出血性大腸菌の血清型から単離した志賀毒素様毒素2バリアント(SLT2又はStx2又はSLT−2)を包含する。SLT1は、1つのみの残基でStxと異なっており、どちらもベロ細胞毒素又はベロ毒素(VT)と称されてきた(O’Brien, Curr Top Microbiol Immunol 180: 65-94 (1992))。SLT1及びSLT2バリアントは、アミノ酸配列レベルで約53〜60%しか互いに類似していないが、これらは、志賀毒素ファミリーのメンバーに共通の酵素活性及び細胞毒性のメカニズムを有する(Johannes, Nat Rev Microbiol 8: 105-16 (2010))。39種を超える様々な志賀毒素、例えば定義されたサブタイプであるStx1a、Stx1c、Stx1d、及びStx2a−gが説明されている(Scheutz F et al., J Clin Microbiol 50: 2951-63 (2012))。志賀毒素をコードする遺伝子は、遺伝子水平伝播を介して細菌種間で広がっている可能性があるため、志賀毒素ファミリーのメンバーは本来、いかなる細菌種にも限定されない(Strauch E et al., Infect Immun 69: 7588-95 (2001)、Zhaxybayeva O, Doolittle W, Curr Biol 21: R242-6 (2011))。種間伝播の一例として、志賀毒素は、患者から単離したA.ヘモリチカス(A. haemolyticus)の株で発見された(Grotiuz G et al., J Clin Microbiol 44: 3838-41 (2006))。志賀毒素をコードするポリヌクレオチドが新しい亜種又は種に侵入すると、志賀毒素のアミノ酸配列は、志賀毒素ファミリーのメンバーに共通の細胞毒性メカニズムをなお維持しながら遺伝的浮動及び/又は選択圧力によりわずかな配列バリエーションを発生させることが可能になると推測される(Scheutz, J Clin Microbiol 50: 2951-63 (2012)を参照)。
本発明の目的に関して、成句「志賀毒素エフェクター領域」は、少なくとも1つの志賀毒素の機能を示すことが可能な、志賀毒素ファミリーのメンバーの志賀毒素のAサブユニットに由来するポリペプチド領域を指す。志賀毒素の機能としては、例えば、細胞への侵入、脂質膜の変形、細胞内経路を方向付けること、リボソームを触媒的に不活性化すること、細胞毒性を達成すること、及び細胞増殖抑制作用を達成することが挙げられる。
本発明の目的に関して、志賀毒素のエフェクター機能は、志賀毒素のAサブユニットに由来するポリペプチド領域によって付与された生物活性である。志賀毒素のエフェクター機能の非限定的な例としては、細胞の内在化、細胞内の経路決定、触媒活性、及び細胞毒性が挙げられる。志賀毒素の触媒活性の非限定的な例としては、リボソーム不活性化、タンパク質合成阻害、N−グリコシダーゼ活性、ポリヌクレオチド:アデノシングリコシダーゼ活性、RNAアーゼ活性、及びDNAアーゼ活性が挙げられる。RIPは、核酸、ポリヌクレオシド、ポリヌクレオチド、rRNA、ssDNA、dsDNA、mRNA(及びポリA)、及びウイルス核酸を脱プリン化することができる(Barbieri L et al., Biochem J 286: 1-4 (1992)、Barbieri L et al., Nature 372: 624 (1994)、Ling J et al., FEBS Lett 345: 143-6 (1994)、Barbieri L et al., Biochem J 319: 507-13 (1996)、Roncuzzi L, Gasperi-Campani A, FEBS Lett 392: 16-20 (1996)、Stirpe F et al., FEBS Lett 382: 309-12 (1996)、Barbieri L et al., Nucleic Acids Res 25: 518-22 (1997)、Wang P, Tumer N, Nucleic Acids Res 27: 1900-5 (1999)、Barbieri L et al., Biochim Biophys Acta 1480: 258-66 (2000)、Barbieri L et al., J Biochem 128: 883-9 (2000)、Bagga S et al., J Biol Chem 278: 4813-20 (2003)、Picard D et al., J Biol Chem 280: 20069-75 (2005))。いくつかのRIPは、抗ウイルス活性及びスーパーオキシドジスムターゼ活性を示す(Erice A et al., Antimicrob Agents Chemother 37: 835-8 (1993)、Au T et al., FEBS Lett 471: 169-72 (2000)、Parikh B, Tumer N, Mini Rev Med Chem 4: 523-43 (2004)、Sharma N et al., Plant Physiol 134: 171-81 (2004))。志賀毒素の触媒活性は、インビトロとインビボの両方で観察されている。志賀毒素のエフェクター活性に関するアッセイは、例えば、タンパク質合成阻害活性、脱プリン活性、細胞成長の阻害、細胞毒性、スーパーコイルDNAの弛緩活性、及び/又はヌクレアーゼ活性などの様々な活性を測定することができる。
志賀毒素のエフェクター機能の保持とは、本明細書で使用される場合、野生型志賀毒素のエフェクターポリペプチド対照に匹敵する再現性を有する適切な定量アッセイによって測定された場合の、志賀毒素の機能的な活性のレベルを指す。リボソーム阻害に関して、志賀毒素のエフェクター機能は、10,000pM又はそれ未満のIC50を示す。標的陽性細胞殺滅アッセイにおける細胞毒性に関して、志賀毒素のエフェクター機能は、細胞型及びその適切な細胞外標的生体分子の発現に応じて、1,000nM又はそれ未満CD50を示す。
「有意な」志賀毒素のエフェクター機能の保持とは、本明細書で使用される場合、野生型志賀毒素エフェクターポリペプチド対照に匹敵する再現性を有する適切な定量アッセイによって測定された場合の、志賀毒素の機能的な活性のレベルを指す。インビトロでのリボソーム阻害に関して、有意な志賀毒素のエフェクター機能は、リボソーム源(例えば細菌、古細菌、又は真核生物(藻類、菌類、植物、又は動物))に応じて300pM又はそれ未満のIC50を示す。これは、触媒的に不活性なSLT−1A 1−251二重ミュータント(Y77S、E167D)の場合の100,000pMのおよそのIC50と比較して有意に大きい阻害である。実験室での細胞培養における標的陽性細胞殺滅アッセイにおける細胞毒性に関して、有意な志賀毒素のエフェクター機能は、細胞株及びその適切な細胞外標的生体分子の発現に応じて100、50、若しくは30nM又はそれ未満のCD50を示す。これは、細胞株に応じて100〜10,000nMのCD50を有する細胞を標的化する結合領域を有さないSLT−1A成分単独と比較して有意に大きい適切な標的細胞株に対する細胞毒性である。
いくつかのサンプルに関して、正確な曲線適合に必要なデータポイントを収集できないことにより、IC50又はCD50のいずれかの正確な値を得るのが難しい場合がある。不正確なIC50及び/又はCD50値は、有意な志賀毒素のエフェクター機能活性を決定する場合に、検討されるべきではなない。例えば実施例で説明されるアッセイなどの例示的な志賀毒素のエフェクター機能アッセイからのデータの分析で説明されるように、曲線を正確に適合するのに不十分なデータは、実際の志賀毒素のエフェクター機能の代表値として検討されるべきではない。例えば、理論上、所与のサンプルについて一連の濃度でそれぞれ50%より大きいリボソーム阻害又は細胞死が起こらない場合、IC50もCD50も決定することはできない。
志賀毒素のエフェクター機能における活性検出の失敗は、細胞への侵入、細胞内の経路決定、及び/又は酵素活性の欠如というよりは、不適切な発現、ポリペプチドフォールディング、及び/又はポリペプチドの安定性に起因する可能性がある。志賀毒素のエフェクター機能に関するアッセイは、志賀毒素のエフェクター機能活性の有意な量を測定するために本発明のポリペプチドをそれほど多く必要としない場合がある。低い又はゼロのエフェクター機能の根本的な原因が、タンパク質の発現又は安定性に関すると経験的に決定される程度に、当業者は、志賀毒素の機能的なエフェクター活性を回復させて測定できるように、当業界において公知のタンパク質化学及び分子工学技術を使用してこのような要因を相殺することが可能な場合がある。例として、不適切な細胞ベースの発現は、異なる発現制御配列を使用することによって相殺してもよい。不適切なポリペプチドフォールディング及び/又は安定性は、末端配列を安定化すること、又はタンパク質の3次元構造を安定化させる非エフェクター領域における補償変異などによって利益を得る可能性がある。個々の志賀毒素の機能のための新しいアッセイが利用可能になる場合、CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクターポリペプチドは、志賀毒素のエフェクター機能のいずれかのレベルが、例えば野生型志賀毒素エフェクターポリペプチドの活性の1000倍若しくは100倍以内又はそれ未満であるか、又は機能的なノックアウト志賀毒素エフェクターポリペプチドと比較して3倍〜30倍又はそれより大きい活性を示す場合に分析され得る。
十分な細胞内の経路決定は、単に、細胞毒性アッセイ、例えばT細胞エピトープ提示ベースの、又はサイトゾル及び/若しくはER標的基質が関与する毒素のエフェクター機能ベースの細胞毒性アッセイなどで細胞毒性を観察するだけで推測され得る。
注目すべきことに、志賀毒素エフェクターポリペプチドの細胞毒性が野生型と比べて低下しているとしても、実際には、弱毒化したCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクターポリペプチドを使用する適用は、野生型志賀毒素エフェクターポリペプチドを使用する適用と同等か又はそれより有効な可能性があり、これはなぜなら低下した抗原性及び/又は免疫原性は、例えばより多くの投薬量、より多くの繰り返しの投与、又は長期投与などを可能にすることによって低下した細胞毒性を相殺する可能性があるためである。野生型志賀毒素エフェクターポリペプチドは極めて有力であり、サイトゾルに到達する1つのみの分子で殺滅することが可能であるか、又はおそらく40個の分子を内在化させることが可能である。野生型志賀毒素エフェクターポリペプチドと比較して顕著に低下した志賀毒素のエフェクター機能、例えば細胞内の経路決定又は細胞毒性などを有するCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクターポリペプチドであっても、標的化細胞の殺滅及び/又は特異的な細胞検出ベースの適用にとってなお十分有力である可能性がある。
本発明の特定の実施形態は、志賀毒素ファミリーのメンバーのAサブユニットに由来するアミノ酸配列を含む志賀毒素エフェクターポリペプチドを含むポリペプチドであって、志賀毒素エフェクター領域は、本明細書に示される少なくとも1つの天然位置の(natively positioned)B細胞エピトープ領域(例えば表2、3、及び4を参照)の破壊を含む、ポリペプチドを提供する。特定の実施形態において、本発明のCD8+T細胞の高度免疫化された及びB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクターポリペプチドは、配列番号1又は配列番号2の1〜15;配列番号3の3〜14;配列番号3の26〜37;配列番号1又は配列番号2の27〜37;配列番号1又は配列番号2の39〜48;配列番号3の42〜48;配列番号1、配列番号2又は配列番号3の53〜66;配列番号1、配列番号2又は配列番号3の94〜115;配列番号1又は配列番号2の141〜153;配列番号3の140〜156;配列番号1又は配列番号2の179〜190;配列番号3の179〜191;配列番号3の204;配列番号1又は配列番号2の205;及び配列番号3の210〜218;配列番号3の240〜260;配列番号1又は配列番号2の243〜257;配列番号1又は配列番号2の254〜268;配列番号3の262〜278;配列番号3の281〜297;及び配列番号1又は配列番号2の285〜293のB細胞エピトープ領域、並びに配列番号1又は配列番号2の4〜33、配列番号1又は配列番号2の34〜78、配列番号1又は配列番号2の77〜103、配列番号1又は配列番号2の128〜168、配列番号1又は配列番号2の160〜183、配列番号1又は配列番号2の236〜258、及び配列番号1又は配列番号2の274〜293のCD4+T細胞エピトープ領域からなる天然位置のアミノ酸の群から選択されるアミノ酸配列;又は保存された志賀毒素エフェクターポリペプチド及び/若しくは非ネイティブの志賀毒素エフェクターポリペプチド配列における等価な位置の少なくとも1つの破壊を含む、全長の志賀毒素のAサブユニット(例えばSLT−1A(配列番号1)、StxA(配列番号2)、又はSLT−2A(配列番号3))を含むか又はそれから本質的になっていてもよい。
本発明の特定の実施形態は、志賀毒素ファミリーのメンバーのAサブユニットに由来するアミノ酸配列を含む志賀毒素エフェクターポリペプチドを含むポリペプチドであって、志賀毒素エフェクター領域は、本明細書に示される少なくとも1つの天然位置のCD4+T細胞エピトープ領域(例えば表2、3、及び4を参照)の破壊を含む、ポリペプチドを提供する。特定の実施形態において、本発明のCD8+T細胞の高度免疫化された及びB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクターポリペプチドは、4〜33、34〜78、77〜103、128〜168、160〜183、236〜258、及び274〜293からなる天然位置のアミノ酸の群から選択されるアミノ酸配列;又は保存された志賀毒素エフェクターポリペプチド及び/若しくは非ネイティブの志賀毒素エフェクターポリペプチド配列における等価な位置の少なくとも1つの破壊を含む、全長の志賀毒素のAサブユニット(例えばSLT−1A(配列番号1)、StxA(配列番号2)、又はSLT−2A(配列番号3))を含むか又はそれから本質的になっていてもよい。
特定の実施形態において、本発明の志賀毒素エフェクターポリペプチドは、トランケートされた志賀毒素のAサブユニットを含むか又はそれから本質的になっていてもよい。志賀毒素のAサブユニットのトランケーションは、毒素エフェクターの触媒活性及び細胞毒性に影響を及ぼすことなくB細胞エピトープ領域全体の欠失をもたらす可能性がある。有意な酵素活性を示す最小の志賀毒素のAサブユニットフラグメントは、StxAの残基75〜247で構成されるポリペプチドである(Al-Jaufy, Infect Immun 62: 956-60 (1994))。SLT−1A、StxA、又はSLT−2Aのカルボキシ末端のアミノ酸1〜251へのトランケーションは、2つの予測されたB細胞エピトープ領域、2つの予測されたCD4陽性(CD4+)T細胞エピトープ、及び予測された不連続のB細胞エピトープを除去する。SLT−1A、StxA、又はSLT−2Aのアミノ末端の75〜293へのトランケーションは、少なくとも3つの予測されたB細胞エピトープ領域及び3つの予測されたCD4+T細胞エピトープを除去する。SLT−1A、StxA、又はSLT−2Aのアミノ及びカルボキシ末端の両方の75〜251へのトランケーションは、少なくとも5つの予測されたB細胞エピトープ領域、4つの推定上のCD4+T細胞エピトープ、及び1つの予測された不連続のB細胞エピトープを欠失させる。
特定の実施形態において、本発明の志賀毒素エフェクターポリペプチドは、提供されたB細胞及び/又はCD4+T細胞エピトープ領域中に少なくとも1つの変異、例えば欠失、挿入、逆位、又は置換を有する全長又はトランケートされた志賀毒素のAサブユニットを含むか又はそれから本質的になっていてもよい。特定のさらなる実施形態において、ポリペプチドは、B細胞及び/又はCD4+T細胞エピトープ領域内に少なくとも1つのアミノ酸の欠失を含む破壊を含む。特定のさらなる実施形態において、ポリペプチドは、B細胞及び/又はCD4+T細胞エピトープ領域内に少なくとも1つのアミノ酸の挿入を含む破壊を含む。特定のさらなる実施形態において、ポリペプチドは、アミノ酸の逆位を含む破壊を含み、ここで少なくとも1つの逆転したアミノ酸は、B細胞及び/又はCD4+T細胞エピトープ領域内である。特定のさらなる実施形態において、ポリペプチドは、非標準アミノ酸又は化学的に改変された側鎖を有するアミノ酸へのアミノ酸置換などの変異を含む破壊を含む。実施例に、極めて多くのアミノ酸置換の例を示す。
他の実施形態において、本発明の志賀毒素エフェクターポリペプチドは、少なくとも1つのアミノ酸が実施例で示される天然位置のB細胞及び/又はCD4+T細胞エピトープ領域(表2、3、及び/又は4を参照)において破壊されている全長の志賀毒素のAサブユニットより短いトランケートされた志賀毒素のAサブユニットを含むか又はそれから本質的になる。
本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクターポリペプチドは、全長Aサブユニットより小さくてもよく、例えば、アミノ酸77〜239位のポリペプチド領域(SLT−1A(配列番号1)又はStxA(配列番号2))又は志賀毒素ファミリーのメンバーの他のAサブユニットにおける均等物(例えば配列番号3の77〜238)などからなる。例えば、本発明の特定の実施形態において、SLT−1Aに由来する志賀毒素エフェクターポリペプチドは、少なくとも1つのアミノ酸が実施例で示される内因性B細胞及び/又はCD4+T細胞エピトープ領域(表2、3、及び/又は4)において破壊されている配列番号1のアミノ酸75〜251、配列番号1の1〜241、配列番号1の1〜251、又は配列番号1のアミノ酸1〜261に由来してもよい。同様に、StxAに由来するCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクター領域は、少なくとも1つのアミノ酸が実施例で示される少なくとも1つの内因性B細胞及び/又はCD4+T細胞エピトープ領域(表2、3、及び/又は4)において破壊されている配列番号2のアミノ酸75〜251、配列番号2の1〜241、配列番号2の1〜251、又は配列番号2のアミノ酸1〜261を含むか又はそれから本質的になっていてもよい。加えて、SLT−2に由来する志賀毒素エフェクター領域は、少なくとも1つのアミノ酸が実施例で示される少なくとも1つのB細胞及び/又はCD4+T細胞エピトープ領域(表2、3、及び/又は4)において破壊されている配列番号3のアミノ酸75〜251、配列番号3の1〜241、配列番号3の1〜251、又は配列番号3のアミノ酸1〜261を含むか又はそれから本質的になっていてもよい。
本発明の細胞標的化分子の特定の実施形態はそれぞれ、酵素活性に関する1又は2以上の主要な残基を変異させることによって、志賀毒素のエフェクター機能を保持しつつも、細胞毒性ではない機能、例えば、細胞分裂停止の達成、外因性物質の送達、及び/又は細胞型の検出のために細胞毒性が低減又は無効化されたポリペプチドに細胞毒性の親分子から加工されていてもよい、CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクターポリペプチドを含む。
特定の実施形態に関して、本発明のポリペプチドは、志賀毒素エフェクターポリペプチドを含む。特定の実施形態に関して、本発明のポリペプチドは、配列番号11〜43のポリペプチドの1つを含むか又はそれから本質的になる。
特定の実施形態に関して、本発明の細胞標的化分子は、志賀毒素エフェクターポリペプチドを含む細胞毒性タンパク質である。特定の実施形態に関して、本発明の細胞標的化分子は、配列番号49〜54のポリペプチドの1つを含むか又はそれから本質的になる。
2.ジフテリア毒素によって誘導されたCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド
本発明の目的に関して、成句「ジフテリア毒素エフェクター領域」は、少なくとも1つのジフテリア毒素の機能を示すことが可能な、ジフテリア毒素ファミリーのメンバーのジフテリア毒素に由来するポリペプチド領域を指す。ジフテリア毒素の機能としては、例えば、細胞への侵入、エンドソーム脱出、細胞内経路を方向付けること、リボソームを触媒的に不活性化すること、細胞毒性を達成すること、及び細胞増殖抑制作用を達成することが挙げられる。
本発明の目的に関して、ジフテリア毒素のエフェクター機能は、ジフテリア毒素に由来するポリペプチド領域によって付与された生物活性である。ジフテリア毒素のエフェクター機能の非限定的な例としては、細胞の内在化、細胞内の経路決定、触媒活性、及び細胞毒性が挙げられる。ジフテリア毒素の触媒活性の非限定的な例としては、リボソーム不活性化、タンパク質合成阻害、及びADP−リボシル化が挙げられる。ジフテリア毒素の触媒活性は、インビトロとインビボの両方で観察されている。ジフテリア毒素のエフェクター活性に関するアッセイは、例えば、タンパク質合成阻害活性、ADP−リボシル化、細胞成長の阻害、及び/又は細胞毒性などの様々な活性を測定することができる。十分な細胞内の経路決定は、単に、細胞毒性アッセイ、例えばT細胞エピトープ提示ベースの、又はサイトゾル及び/若しくはER標的基質が関与する毒素のエフェクター機能ベースの細胞毒性アッセイなどで細胞毒性を観察するだけで推測され得る。
注目すべきことに、ジフテリア毒素エフェクターポリペプチドの毒素エフェクター活性が野生型と比べて低下しているとしても、実際には、弱毒化したCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたジフテリア毒素エフェクターポリペプチドを使用する適用は、野生型の活性レベルを有するジフテリア毒素エフェクターポリペプチドを使用する適用と同等か又はそれより有効な可能性があり、これはなぜなら低下した抗原性及び/又は免疫原性は、例えばより多くの投薬量、より多くの繰り返しの投与、又は長期投与などを可能にすることによって低下した細胞毒性を相殺する可能性があるためである。細胞内の経路決定のエフェクター活性のみを示すジフテリア毒素エフェクターポリペプチドは、標的化細胞のCD8+T細胞エピトープ送達ベースの適用での使用に適切である。
本発明の特定の実施形態は、ジフテリア毒素ファミリーのメンバーのAサブユニットに由来するアミノ酸配列を含むジフテリア毒素エフェクターポリペプチドを含むポリペプチドであって、ジフテリア毒素エフェクター領域は、本明細書で提供される少なくとも1つの天然位置のB細胞及び/又はCD4+T細胞エピトープ領域の破壊を含む、ポリペプチドを提供する(例えば表5を参照)。特定の実施形態において、本発明のCD8+T細胞の高度免疫化された及びB細胞/CD4+T細胞の脱免疫化されたジフテリア毒素エフェクターポリペプチドは、配列番号44の3〜10、配列番号44の15〜31、配列番号44の32〜54;配列番号44の33〜43、配列番号44の71〜77、配列番号44の93〜113、配列番号44の125〜131、配列番号44の138〜146、配列番号44の141〜167、配列番号44の165〜175、配列番号45の182〜201、配列番号44の185〜191、及び配列番号45の225〜238からなる天然位置のアミノ酸の群から選択されるアミノ酸配列;又は保存されたジフテリア毒素エフェクターポリペプチド及び/若しくは非ネイティブのジフテリア毒素エフェクターポリペプチド配列における等価な位置の少なくとも1つの破壊を含む配列番号45のアミノ酸2〜389のポリペプチドを含むか又はそれから本質的になっていてもよい。
本発明のジフテリア毒素エフェクターポリペプチドは、少なくとも1つのアミノ酸が、実施例で示される少なくとも1つの天然位置のB細胞及び/又はCD4+T細胞エピトープ領域において破壊されている限りは(表5を参照)、野生型と比較して1又は2以上の変異(例えば置換、欠失、挿入又は逆位)を含んでいてもよい。本発明の特定の実施形態において、CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたジフテリア毒素エフェクターポリペプチドは、宿主細胞形質転換、トランスフェクション、感染若しくは誘導の周知の方法、又はジフテリア毒素エフェクターポリペプチドと連結された細胞を標的化する結合領域が媒介する内在化のいずれかによって細胞に侵入した後に細胞毒性を保持するのに十分な程度の、天然に存在するジフテリア毒素のAサブユニットに対する配列同一性を有する。
ジフテリア毒素のAサブユニットにおける酵素活性及び/又は細胞毒性にとって最も重要な残基は、以下の残基位置:ヒスチジン−21、チロシン−27、グリシン−52、トリプトファン−50、チロシン−54、チロシン−65、グルタミン酸−148、及びトリプトファン−153にマッピングされている(Tweten R et al., J Biol Chem 260: 10392-4 (1985)、Wilson B et al., J Biol Chem 269: 23296-301 (1994)、Bell C, Eisenberg D, Biochemistry 36: 481-8 (1997)、Cummings M et al., Proteins 31: 282-98 (1998)、Keyvani K et al., Life Sci 64: 1719-24 (1999)、Dolan K et al., Biochemistry 39: 8266-75 (2000)、Zdanovskaia M et al., Res Micrbiol 151: 557-62 (2000)、Kahn K, Bruice T, J Am Chem Soc 123: 11960-9 (2001)、Malito E et al., Proc Natl Acad Sci USA 109: 5229-34 (2012))。本発明の細胞毒性細胞標的化分子の細胞死を引き起こす能力、例えばその細胞毒性は、当業界において周知の多数のアッセイのいずれか1又は2以上を使用して測定され得る。
本発明の特定の実施形態において、ポリペプチドは、少なくとも1つのアミノ酸が実施例で示される天然位置のB細胞エピトープ及び/又はCD4+T細胞エピトープ領域において破壊されている(表5)配列番号45のアミノ酸2又はアミノ酸2〜389を含むか又はそれから本質的になる、CD8+T細胞の高度免疫化された及びB細胞/CD4+T細胞の脱免疫化されたジフテリア毒素エフェクターを含む。
特定の実施形態に関して、本発明のポリペプチドは、ジフテリア毒素エフェクターポリペプチドを含む。特定の実施形態に関して、本発明のポリペプチドは、配列番号46〜48のポリペプチドの1つを含むか又はそれから本質的になる。
特定の実施形態に関して、本発明の細胞標的化分子は、ジフテリア毒素エフェクターポリペプチドを含む細胞毒性タンパク質である。特定の実施形態に関して、本発明の細胞標的化分子は、配列番号55〜60のポリペプチドの1つを含むか又はそれから本質的になる。
特定の実施形態に関して、本発明のポリペプチドは、配列番号11〜43又は46〜48のポリペプチドのいずれか1つを含むか又はそれから本質的になる。
本発明の細胞標的化分子はそれぞれ、細胞表面上で発現される標的生体分子などの、細胞と物理的に関連する少なくとも1つの細胞外標的生体分子に特異的に結合することができる細胞標的化部分に連結された、少なくとも1つのT細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドを含む。この一般的な構造は、本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドにあらゆる数の多様な細胞標的化部分を連結させることができるモジュール式構造である。
標的生体分子のいずれかの細胞外部分への機能的な結合部位を含有し、さらにより好ましくは高親和性(例えばKで示されるような)での標的生体分子への結合が可能な、本発明のポリペプチド及び細胞標的化分子のフラグメント、バリアント、及び/又は誘導体を使用することは、本発明の範囲内である。本発明の細胞標的化分子の製作及び本発明の方法における使用のために、10−5〜10−12モル/リットル、好ましくは200nM未満の解離定数(K)で標的生体分子の細胞外部分に結合するいずれの細胞標的化部分が置換されていてもよい。
VI.本発明のT細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド並びにそれを含む細胞標的化分子のポリペプチド配列におけるバリエーション
熟練した作業者であれば、例えば、抗原性及び/又は免疫原性を示す可能性を低下させる1又は2以上のエピトープ破壊と共に毒素エフェクター領域の全体の構造及び機能を維持することによって、本発明のT細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び細胞標的化分子、並びに前者のいずれかをコードするポリヌクレオチドに、それらの生物活性を低減させることなくバリエーションをもたらすことができることを理解していると予想される。例えば、いくつかの改変が、発現、精製、並びに/又は薬物動態学的特性及び/若しくは免疫原性を容易にする可能性がある。このような改変は熟練した作業者に周知であり、例えば、開始部位を提供するためのアミノ末端に付加されたメチオニン、都合よく配置された制限部位若しくは終止コドンを作製するためのいずれかの末端に配置された追加のアミノ酸、並びに便利な検出及び/若しくは精製のために提供されるいずれかの末端に融合した生化学的な親和性タグが挙げられる。
また、エピトープタグ又は他の部分に関する配列などの、アミノ及び/又はカルボキシ末端における追加のアミノ酸残基の包含も本明細書において検討される。追加のアミノ酸残基は、例えば、クローニングの容易化、発現の容易化、翻訳後修飾、合成の容易化、精製、検出の容易化、及び投与などの様々な目的に使用することができる。エピトープタグ及び部分の非限定的な例は、キチン結合タンパク質ドメイン、エンテロペプチダーゼ切断部位、Xa因子切断部位、FIAsHタグ、FLAGタグ、緑色蛍光タンパク質(GFP,green fluorescent protein)、グルタチオン−S−トランスフェラーゼ部分、HAタグ、マルトース結合タンパク質ドメイン、mycタグ、ポリヒスチジンタグ、ReAsHタグ、strep−タグ、strep−タグII、TEVプロテアーゼ部位、チオレドキシンドメイン、トロンビン切断部位、及びV5エピトープタグである。
上記実施形態の特定のものにおいて、本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又は細胞標的化タンパク質のポリペプチド配列は、少なくとも1つのアミノ酸が本明細書に示される少なくとも1つの天然位置のB細胞エピトープ領域において破壊されている限りは、ポリペプチド領域に導入される1又は2以上の保存的アミノ酸置換で変更される。用語「保存的置換」は、本明細書で使用される場合、1又は2以上のアミノ酸が別の生物学的に類似するアミノ酸残基で置き換えられることを示す。その例としては、類似の特徴を有するアミノ酸残基、例えば小さいアミノ酸、酸性アミノ酸、極性アミノ酸、塩基性アミノ酸、疎水性アミノ酸及び芳香族アミノ酸の置換が挙げられる(例えば、下記の表Cを参照)。内因性の哺乳動物ペプチド及びタンパク質に通常存在しない残基での保存的置換の例は、アルギニン又はリシン残基の、例えばオルニチン、カナバニン、アミノエチルシステイン、又は別の塩基性アミノ酸での保存的置換である。ペプチド及びタンパク質において表現型ではサイレントな置換に関するさらなる情報については、例えば、Bowie J et al., Science 247: 1306-10 (1990)を参照されたい。
表Cにおける保存的置換のスキームでは、例示的なアミノ酸の保存的置換は、物理化学的な特性によって、I:中性、親水性;II:酸及びアミド;III:塩基性;IV:疎水性;V:芳香族、嵩高なアミノ酸、VI:親水性で非荷電性、VII:脂肪族で非荷電性、VIII:非極性で非荷電性、IX:シクロアルケニル結合、X:疎水性、XI:極性、XII:小さい、XIII:ターン許容性、及びXIV:フレキシブルにグループ分けされる。例えば、保存的アミノ酸置換としては、以下:1)Sは、Cで置換されていてもよい;2)M又はLは、Fで置換されていてもよい;3)Yは、Mで置換されていてもよい;4)Q又はEは、Kで置換されていてもよい;5)N又はQは、Hで置換されていてもよい;及び6)Hは、Nで置換されていてもよいことが挙げられる。
追加の保存的アミノ酸置換としては、以下:1)Sは、Cで置換されていてもよい;2)M又はLは、Fで置換されていてもよい;3)Yは、Mで置換されていてもよい;4)Q又はEは、Kで置換されていてもよい;5)N又はQは、Hで置換されていてもよい;及び6)Hは、Nで置換されていてもよいことが挙げられる。
特定の実施形態において、本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又は細胞標的化分子(例えば細胞標的化タンパク質)は、最大で、20、15、10、9、8、7、6、5、4、3、2、又は1つのアミノ酸置換を有する本発明のポリペプチド領域の機能的なフラグメント又はバリアントを含んでいてもよい。
特定の実施形態において、本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又は細胞標的化分子は、それが実施例で示される天然位置のB細胞及び/又はCD4+T細胞エピトープ領域(表2、3、4、及び/又は5)の少なくとも1つのアミノ酸の破壊を保持する限りは、さらにポリペプチド又はタンパク質が、単独で並びに/又は治療及び/若しくは診断用組成物の成分としてT細胞エピトープ送達機能を保持する限りは、本明細書で列挙されたポリペプチド配列と比較して、最大で、20、15、10、9、8、7、6、5、4、3、2、又は1つのアミノ酸置換を有する本発明のポリペプチド領域の機能的なフラグメント又はバリアントを含んでいてもよい。本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクターポリペプチド及び/又は細胞標的化タンパク質のバリアントは、変化した細胞毒性、変化した細胞増殖抑制作用、変化した免疫原性、及び/又は変化した血清中半減期などの所望の特性を達成するために、例えば結合領域又はCD8+T細胞の高度免疫化された及び/若しくはB細胞/CD4+T細胞の脱免疫化されたポリペプチド領域内で、1又は2以上のアミノ酸を変更すること又は1又は2以上のアミノ酸を欠失させるか若しくは挿入することによって、本発明の細胞標的化タンパク質のポリペプチドを変化させる結果として本発明の範囲内である。本発明のB細胞エピトープの脱免疫化された及びCD8+T細胞の高度免疫化されたポリペプチド及び/又は細胞標的化タンパク質はさらに、シグナル配列を伴っていてもよいし、又はそうでなくてもよい。
したがって、特定の実施形態において、本発明の志賀毒素エフェクター又はジフテリア毒素エフェクターポリペプチドは、例えば志賀毒素のAサブユニット、例えばSLT−1A(配列番号1)、StxA(配列番号2)、及び/若しくはSLT−2A(配列番号3)、又はジフテリア毒素の触媒ドメイン(配列番号44)などの天然に存在する毒素に対して、少なくとも55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%、99.5%又は99.7%の全体的な配列同一性を有するアミノ酸配列を含むか又はそれから本質的になる。特定の実施形態において、本発明の脱免疫化された志賀毒素エフェクター又はジフテリア毒素エフェクターポリペプチドは、少なくとも1つのアミノ酸が実施例で示される少なくとも1つの天然位置のB細胞及び/又はCD4+T細胞エピトープ領域(表2、3、4、及び/又は5)において破壊されている天然に存在する毒素に対して、少なくとも55%、60%、65%、70%、75%、80%、85%、90%、95%、97%、98%、99%、99.5%又は99.7%の全体的な配列同一性を有するアミノ酸配列を含むか又はそれから本質的になる。
本発明の細胞標的化分子の特定の実施形態において、CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された毒素エフェクターポリペプチド領域の酵素活性を増加させるために、1又は2以上のアミノ酸残基が変異、挿入又は欠失されていてもよい。例えば、Stx1Aにおけるアラニン−231の残基位置をグルタミン酸に変異させることは、インビトロでその酵素活性を増加させる(Suhan M, Hovde C, Infect Immun 66: 5252-9 (1998))。
本発明の細胞標的化分子の特定の実施形態において、CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された毒素エフェクターポリペプチド領域の触媒性及び/又は細胞毒性の活性を低下させるか又は消去するために、1又は2以上のアミノ酸残基が変異又は欠失されていてもよい。例えば、志賀毒素ファミリー又はジフテリア毒素ファミリーのメンバーのAサブユニットの触媒性及び/又は細胞毒性の活性は、変異又はトランケーションによって低減又は消去され得る。
本発明の特定の実施形態において、リボトキシンのエフェクター領域は、インビトロでリボソームの触媒性の不活性化を維持できなくなるように変更されている。しかしながら、リボトキシンの毒性を低下させるか又は消去するためのリボトキシンのエフェクター領域を改変する他の手段も、本発明の範囲内で想定される。例えば、特定の変異は、インビトロでのアッセイによって観察可能な触媒能力を維持しつつも、リボトキシンのエフェクター領域がそのリボソーム基質と結合できないようにすることができ、それに対して他の変異は、インビトロで裸の核酸に対する触媒能力を維持しつつも、リボトキシンの領域がリボソーム内の特異的なリボ核酸配列を標的化できないようにすることができる(例えばAlford S et al., BMC Biochem 10: 9 (2009)、Alvarez-Garcia E et al., Biochim Biophys Act 1814: 1377-82 (2011)、Wong Y et al., PLoS One 7: e49608 (2012)を参照)。
DTにおいて、例えば、ヒスチジン−21、チロシン−27、グリシン−52、トリプトファン−50、チロシン−54、チロシン−65、グルタミン酸−148、及びトリプトファン−153などの、触媒活性にとって重要であることが公知の数種のアミノ酸残基がある(Tweten R et al., J Biol Chem 260: 10392-4 (1985)、Wilson B et al., J Biol Chem 269: 23296-301 (1994)、Bell C, Eisenberg D, Biochemistry 36: 481-8 (1997)、Cummings M et al., Proteins 31: 282-98 (1998)、Keyvani K et al., Life Sci 64: 1719-24 (1999)、Dolan K et al., Biochemistry 39: 8266-75 (2000)、Zdanovskaia M et al., Res Micrbiol 151: 557-62 (2000)、Kahn K, Bruice T, J Am Chem Soc 123: 11960-9 (2001)、Malito E et al., Proc Natl Acad Sci USA 109: 5229-34 (2012))。コリックス毒素(cholix toxin)におけるグルタミン酸−581は、DTにおいてグルタミン酸−148と共に保存されており(Jorgensen R et al., EMBO Rep 9: 802-9 (2008))、したがって、コリックス毒素におけるグルタミン酸−581の変異は、コリックス毒素の酵素活性を低下させると予測される。
PEにおいて、例えば、トリプトファン−417、ヒスチジン−426、ヒスチジン−440、グリシン−441、アルギニン−485、トリプトファン−458、トリプトファン−466、チロシン−470、チロシン−481、グルタミン酸−546、アルギニン−551、グルタミン酸−553、及びトリプトファン−558などの、触媒活性にとって重要であることが公知の数種のアミノ酸残基がある(Douglas C, Collier R, J Bacteriol 169: 4967-71 (1987)、Wilson B, Colliver R, Curr Top Microbiol Immunol 175: 27-41 (1992))、Beattie B et al., Biochemistry 35: 15134-42 (1996)、Roberts T, Merrill A, Biochem J 367: 601-8 (2002)、Yates S et al., Biochem J 385: 667-75 (2005)、Jorgensen R et al., EMBO Rep 9: 802-9 (2008))。コリックス毒素におけるグルタミン酸−574及びグルタミン酸−581は、それぞれPEにおいてグルタミン酸−546及びグルタミン酸−553と共に保存されており(Jorgensen R et al., EMBO Rep 9: 802-9 (2008))、したがってコリックス毒素におけるグルタミン酸−574及び/又はグルタミン酸−581の変異は、コリックス毒素の酵素活性を低下させると予測される。
コリックス毒素の触媒ドメイン、DT、PE、及び他の関連する酵素は重ね合わせることが可能であるため(Jorgensen R, et al., J Biol Chem 283: 10671-8 (2008))、触媒活性に必要なアミノ酸残基は、熟練した作業者に公知の配列アライメント方法によって、関連するポリペプチド配列で予測が可能である。
RIPファミリーの数種のメンバーは、触媒残基に関してよく研究されている。例えば、ほとんどのRIPファミリーメンバーは、例えば触媒ドメインのアミノ末端近傍の2つのチロシン、触媒ドメインの中心の近傍のグルタミン酸及びアルギニン、並びに触媒ドメインのカルボキシ末端の近傍のトリプトファンなどの触媒作用に関する5つの主要なアミノ酸残基を共有する(Lebeda F, Olson M, Int J Biol Macromol 24: 19-26 (1999)、Mlsna D et al., Protein Sci 2: 429-35 (1993)、de Virgilio M et al., Toxins 2: 2699-737 (2011)、Walsh M, Virulence 4: 774-84 (2013)))。RIPファミリーのメンバーの触媒ドメインは重ね合わせることが可能であるため、触媒活性に必要なアミノ酸残基は、熟練した作業者に公知の配列アライメント方法によって、RIPファミリーの自然に生じた及び/又は新しいメンバーで予測が可能である(例えばHusain J et al., FEBS Lett 342: 154-8 (1994)、Ren J et al., Structure 2: 7-16 (1994)、Lebeda F, Olson M, Int J Biol Macromol 24: 19-26 (1999)、Ma Q et al., Acta Crystallogr D Biol Crystallogr 56: 185-6 (2000)、Savino C et al., FEBS Lett 470: 239-43 (2000)、Robertus J, Monzingo A, Mini Rev Med Chem 4: 477-86 (2004)、Mishra V et al., J Biol Chem 280: 20712-21 (2005)、Zhou C et al., Bioinformatics 21: 3089-96 (2005)、Lubelli C et al., Anal Biochem 355: 102-9 (2006)、Touloupakis E et al., FEBS J 273: 2684-92 (2006)、Hou X et al., BMC Struct Biol 7: 29 (2007)、Meyer A et al., Biochem Biophys Res Commun 364: 195-200 (2007)、Ruggiero A et al., Protein Pept Lett 14: 97-100 (2007)、Wang T et al., Amino Acids 34: 239-43 (2008)を参照)。
アブリンのAサブユニットにおいて、例えば、チロシン−74、チロシン−113、グルタミン酸−164、アルギニン−167、及びトリプトファン−198などの触媒活性にとって重要な数種のアミノ酸残基がある(Hung C et al., Eur J Biochem 219: 83-7 (1994)、Chen J et al., Protein Eng 10: 827-33 (1997)、Xie L et al., Eur J Biochem 268: 5723-33 (2001))。
カリブディン(charybdin)において、例えば、バリン−79、チロシン−117、グルタミン酸−167、及びアルギニン−170などの触媒活性にとって重要な数種のアミノ酸残基がある(Touloupakis E et al., FEBS J 273: 2684-92 (2006))。
シナモミン(cinnamomin)のAサブユニットにおいて、例えば、チロシン−75、チロシン−115、グルタミン酸−167、アルギニン−170、及びトリプトファン−201などの触媒活性にとって重要な数種のアミノ酸残基がある(Hung C et al., Eur J Biochem 219: 83-7 (1994)、Chen J et al., Protein Eng 10: 827-33 (1997))。
ルファクリン(luffaculin)において、例えば、チロシン−70、グルタミン酸−85、チロシン−110、グルタミン酸−159、及びアルギニン−162などの触媒活性にとって重要な数種のアミノ酸残基がある(Hou X et al., BMC Struct Biol 7: 29 (2007))。
ルフィン(luffin)において、例えば、チロシン−71、グルタミン酸−86、チロシン−111、グルタミン酸−160、及びアルギニン−163などの触媒活性にとって重要な数種のアミノ酸残基がある(Ma Q et al., Acta Crystallogr D Biol Crystallogr 56: 185-6 (2000))。
トウモロコシのRIPにおいて、例えば、チロシン−79、チロシン−115、グルタミン酸−167、アルギニン−170、及びトリプトファン−201などの触媒活性にとって重要な数種のアミノ酸残基がある(Robertus J, Monzingo A, Mini Rev Med Chem 4: 477-86 (2004)、Yang Y et al., J Mol Biol 395: 897-907 (2009))。
PD−Lにおいて、PDL−1では、例えば、チロシン−72、チロシン−122、グルタミン酸−175、アルギニン−178、及びトリプトファン−207などの触媒活性にとって重要な数種のアミノ酸残基がある(Ruggiero A et al., Biopolymers 91: 1135-42 (2009))。
ヤドリギのRIPのAサブユニットにおいて、例えば、チロシン−66、フェニルアラニン−75、チロシン−110、グルタミン酸−159、アルギニン−162、グルタミン酸−166、アルギニン−169、及びトリプトファン−193などの触媒活性にとって重要な数種のアミノ酸残基がある(Langer M et al., Biochem Biophys Res Commun 264: 944-8 (1999)、Mishra V et al., Act Crystallogr D Biol Crystallogr 60: 2295-2304 (2004)、Mishra V et al., J Biol Chem 280: 20712-21 (2005)、Wacker R et al., J Pept Sci 11: 289-302 (2005))。
ヤマゴボウ抗ウイルスタンパク質(PAP)において、例えば、リシン−48、チロシン−49、アルギニン−67、アルギニン−68、アスパラギン−69、アスパラギン−70、チロシン−72、フェニルアラニン−90、アスパラギン−91、アスパラギン酸−92、アルギニン−122、チロシン−123、グルタミン酸−176、アルギニン−179、トリプトファン−208、及びリシン−210などの触媒活性にとって重要な数種のアミノ酸残基がある(Rajamohan F et al., J Biol Chem 275: 3382-90 (2000)、Rajamohan F et al., Biochemistry 40: 9104-14 (2001))。
リシンのA鎖において、例えば、アルギニン−48、チロシン−80、アスパラギン−122、チロシン−123、グルタミン酸−177、アルギニン−180、セリン−203、アスパラギン−209、トリプトファン−211、グリシン−212、アルギニン−213、セリン−215、及びイソロイシン−252などの触媒活性にとって重要であることが公知の数種のアミノ酸残基がある(Frankel A et al., Mol Cell Biol 9: 415-20 (1989)、Schlossman D et al., Mol Cell Biol 9: 5012-21 (1989)、Gould J et al., Mol Gen Genet 230: 91-90 (1991)、Ready M et al., Proteins 10: 270-8 (1991)、Rutenber E et al., Proteins 10: 240-50 (1991)、Monzingo A, Robertus, J, J Mol Biol 227: 1136-45 (1992)、Day P et al., Biochemistry 35: 11098-103 (1996)、Marsden C et al., Eur J Biochem 27: 153-62 (2004)、Pang Y et al., PLoS One 6: e17883 (2011))。リシンにおいて、例えば、N24、F25、A28、V29、Y81、V82、V83、G84、E146、E147、A148、I149、S168、F169、I170、I171、C172、I173、Q174、M175、I176、S177、E178、A179、A180、R181、F182、Q183、Y184、D202、P203、I206、T207、N210、S211、W212、及びG213などの欠失している場合にリシンの触媒活性を損なうことが公知の数種のアミノ酸残基がある(Munishkin A, Wool I, J Biol Chem 270: 30581-7 (1995)、Berrondo M, Gray J, Proteins 79: 2844-60 (2011))。
サポリンにおいて、例えば、チロシン−16、チロシン−72、チロシン−120、グルタミン酸−176、アルギニン−179、及びトリプトファン−208などの触媒活性にとって重要であることが公知の数種のアミノ酸残基がある(Bagga S et al., J Biol Chem 278: 4813-20 (2003)、Zarovni N et al., Canc Gene Ther 14: 165-73 (2007)、Lombardi A et al., FASEB J 24: 253-65 (2010))。加えて、触媒活性を低下させるために、シグナルペプチドが包含される場合もある(Marshall R et al., Plant J 65: 218-29 (2011))。
トリコサンチンにおいて、例えば、チロシン−70、チロシン−111、グルタミン酸−160、アルギニン−163、リシン−173、アルギニン−174、リシン−177、及びトリプトファン−192などの触媒活性にとって重要であることが公知の数種のアミノ酸残基がある(Wong et al., Eur J Biochem 221: 787-91 (1994)、Li et al., Protein Eng 12: 999-1004 (1999)、Yan et al., Toxicon 37: 961-72 (1999)、Ding et al., Protein Eng 16: 351-6 (2003)、Guo Q et al., Protein Eng 16: 391-6 (2003)、Chan D et al., Nucleic Acid Res 35: 1660-72 (2007))。
真菌性リボトキシンは、RIPファミリーのメンバーと同じ普遍的に保存されたSRLのリボソーム構造を酵素的に標的化し、ほとんどの真菌性リボトキシンは、RNAアーゼT1タイプの触媒ドメイン配列及び二次構造を共有する(Lacadena J et al., FEMS Microbiol Rev 31: 212-37 (2007))。ほとんどの真菌性リボトキシン及び関連する酵素は、触媒作用に関する3つの高度に保存されたアミノ酸残基、2つのヒスチジン残基及びグルタミン酸残基(RNAアーゼT1において、例えばヒスチジン−40、グルタミン酸−58、及びヒスチジン−92)を共有する。DSKKPモチーフは、SRLとの特異的な結合のために真菌性リボトキシンに存在することが多い(Kao R, Davies J, J Biol Chem 274: 12576-82 (1999))。真菌性リボトキシンの触媒ドメインは重ね合わせることが可能であるため、触媒活性に必要なアミノ酸残基は、熟練した作業者に公知の1又は2以上の配列アライメント方法を使用して、自然に生じた及び/又は新しい真菌性リボトキシンで予測が可能である。
Aspf1の場合、16アミノ酸残基(7〜22位)の内部欠失は、そのリボ核酸溶解活性(ribonucleolytic activity)及び細胞毒性を著しく損なった(Garcia-Ortega L et al., FEBS J 272: 2536-44 (2005))。
ミトギリンにおいて、例えば、アスパラギン−7、ヒスチジン−49、グルタミン酸−95、リシン−111、アルギニン−120、及びヒスチジン−136などの触媒活性にとって重要であることが公知の数種のアミノ酸残基がある(Kao R et al., Mol Microbiol 29: 1019-27 (1998); Kao R, Davies J, FEBS Lett 466: 87-90 (2000))。
レストリクトシンにおいて、例えば、チロシン−47、ヒスチジン−49、グルタミン酸−95、リシン−110、リシン−111、リシン−113、アルギニン−120、及びヒスチジン−136などの触媒活性にとって重要であることが公知の数種のアミノ酸残基がある(Nayak S, Batra J, Biochemistry 36: 13693-9 (1997)、Nayak S et al., Biochemistry 40: 9115-24 (2001)、Plantinga M et al., Biochemistry 50: 3004-13 (2011))。
α−サルシンにおいて、例えば、トリプトファン−48、ヒスチジン−49、ヒスチジン−50、トリプトファン−51、アスパラギン−54、イソロイシン−69、グルタミン酸−95、グルタミン酸−96、リシン−11、リシン−112、リシン−114、アルギニン−121、ヒスチジン−136、ヒスチジン−137、リシン−145などの触媒活性にとって重要であることが公知の数種のアミノ酸残基がある(Lacadena J et al., Biochem J 309: 581-6 (1995)、Lacadena J et al., Proteins 37: 474-84 (1999)、Martinez-Ruiz A et al., Toxicon 37: 1549-63 (1999)、de Antonio C et al., Proteins 41: 350-61 (2000)、Masip M et al., Eur J Biochem 268: 6190-6 (2001))。
志賀毒素ファミリーのメンバーのAサブユニットの細胞毒性は、変異又はトランケーションによって変更、低減、又は消去され得る。チロシン−77、グルタミン酸−167、アルギニン−170、チロシン−114、及びトリプトファン−203と名付けられた位置は、Stx、Stx1、及びStx2の触媒活性にとって重要であることが示されている(Hovde C et al., Proc Natl Acad Sci USA 85: 2568-72 (1988)、Deresiewicz R et al., Biochemistry 31: 3272-80 (1992)、Deresiewicz R et al., Mol Gen Genet 241: 467-73 (1993)、Ohmura M et al., Microb Pathog 15: 169-76 (1993)、Cao C et al., Microbiol Immunol 38: 441-7 (1994)、Suhan M, Hovde C, Infect Immun 66: 5252-9 (1998))。無細胞リボソーム不活性化アッセイにおいて、グルタミン酸−167とアルギニン−170の両方を変異させると、Slt−I A1の酵素活性が消去された(LaPointe, J Biol Chem 280: 23310-18 (2005))。小胞体でSlt−I A1のデノボ発現を使用する別のアプローチにおいて、グルタミン酸−167とアルギニン−170の両方を変異させると、Slt−I A1フラグメントの細胞毒性がその発現レベルで消去された(LaPointe, J Biol Chem 280: 23310-18 (2005))。トランケーション分析から、残基75から268までのStxAのフラグメントが、インビトロで有意な酵素活性をなお保持していることが実証された(Haddad, J Bacteriol 175: 4970-8 (1993))。残基1〜239を含有するSlt−I A1のトランケートされたフラグメントは、インビトロにおいて有意な酵素活性及びサイトゾルにおいてデノボ発現による細胞毒性を示した(LaPointe, J Biol Chem 280: 23310-18 (2005))。小胞体中の残基1〜239にトランケートされたSlt−I A1フラグメントの発現は、サイトゾルにレトロ転移(retrotranslocate)することができないことから、細胞毒性ではなかった(LaPointe, J Biol Chem 280: 23310-18 (2005))。
志賀毒素のAサブユニットにおける酵素活性及び/又は細胞毒性にとって最も重要な残基は、なかでも以下の残基位置:アスパラギン−75、チロシン−77、チロシン−114、グルタミン酸−167、アルギニン−170、アルギニン−176、及びトリプトファン−203にマッピングされた(Di, Toxicon 57: 535-39 (2011))。特定には、グルタミン酸−E167からリシン、及びアルギニン−176からリシンの変異を含有するStx2Aの二重ミュータントコンストラクトは完全に不活性化され、それに対して、Stx1及びStx2における多くの単一の変異は細胞毒性の10分の1の低下を示した。さらに、Stx1Aの1〜239又は1〜240へのトランケーションは、その細胞毒性を低下させ、同様に、Stx2Aの保存された疎水性残基へのトランケーションは、その細胞毒性を低下させた。志賀毒素のAサブユニットにおける真核性リボソーム及び/又は真核性リボソーム阻害の結合にとって最も重要な残基は、なかでも以下の残基位置、アルギニン−172、アルギニン−176、アルギニン−179、アルギニン−188、チロシン−189、バリン−191、及びロイシン−233にマッピングされている(McCluskey A et al., PLoS One 7: e31191 (2012))。
志賀毒素様毒素1のAサブユニットのトランケーションは、インビトロでリボソームを酵素的に不活性化することが可能な場合、触媒活性を示し、細胞内で発現される場合、細胞毒性である(LaPointe, J Biol Chem 280: 23310-18 (2005))。完全な酵素活性を示す最小の志賀毒素のAサブユニットフラグメントは、Slt1Aの残基1〜239で構成されるポリペプチドである(LaPointe, J Biol Chem 280: 23310-18 (2005))。実質的な触媒活性を保持すると報告された志賀毒素のAサブユニットの最小のフラグメントは、StxAの75〜247残基であるにもかかわらず(Al-Jaufy, Infect Immun 62: 956-60 (1994))、真核細胞内でデノボ発現されたStxAのトランケーションは、サイトゾルに到達してリボソームを触媒的に不活性化させるのに、わずか240残基しか必要としない(LaPointe, J Biol Chem 280: 23310-18 (2005))。
SLT−1A(配列番号1)又はStxA(配列番号2)に由来する本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクターポリペプチド及び/又は細胞標的化分子の特定の実施形態において、これらの変化は、75位におけるアスパラギン、77位におけるチロシン、114位におけるチロシン、167位におけるグルタミン酸、170位におけるアルギニン、176位におけるアルギニンの置換、及び/又は203位におけるトリプトファンの置換を包含する。このような置換の例は、従来技術に基づき熟練した作業者に公知であると予想され、例えば、75位におけるアスパラギンからアラニンへの置換、77位におけるチロシンからセリンへの置換、114位におけるチロシンからセリンへの置換、167位におけるグルタミン酸からグルタミン酸への置換、170位におけるアルギニンからアラニンへの置換、176位におけるアルギニンからリシンへの置換、及び/又は203位におけるトリプトファンからアラニンへの置換である。志賀毒素の酵素活性及び/又は細胞毒性を強化するか又は低下させるかのいずれかの他の変異は本発明の範囲内であり、周知の技術及び本明細書で開示されたアッセイを使用して決定され得る。
本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又は細胞標的化分子は、1又は2以上の追加の薬剤にコンジュゲートされていてもよく、このような薬剤としては、本明細書で説明されるような薬剤を含む当業界において公知の治療剤及び/又は診断剤を挙げることができる。
V.本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド並びにそれを含む細胞標的化分子の一般的な機能
本発明は、細胞を標的化する細胞毒性分子及び診断用組成物などの様々な物質の組成物の成分として使用することができる、様々なCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドを説明する。特定には、CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドは、がん、免疫障害、及び微生物感染を含む様々な疾患を治療するための特異的な細胞型の標的化された殺滅のための、例えば免疫毒素及びリガンド−毒素融合体などの様々なタンパク質治療剤の成分としての用途を有する。
本発明のいずれのCD8+T細胞の高度免疫化されたポリペプチドも、例えば両生類、鳥類、魚類、哺乳動物、爬虫類、又はサメなどの脊索動物内の特異的な細胞型への細胞の内在化を標的化する細胞標的化部分の付加により、有用な可能性がある治療用細胞標的化分子に加工することができる。同様に、本発明のいずれのB細胞エピトープの脱免疫化されたポリペプチドも、脊索動物内の特異的な細胞型への細胞の内在化を標的化する細胞標的化部分の付加により、有用な可能性がある治療用細胞標的化分子に加工することができる。本発明は、細胞毒性細胞標的化分子が、T細胞エピトープを選択的に送達する、特異的な細胞型を殺滅する、その成長を阻害する、それに外因性物質を送達する、及び/又はそれを検出するように細胞標的化を引き起こすための結合領域と機能的に関連するCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドを含む様々な細胞毒性細胞標的化分子を提供する。この系は、本発明のあらゆるCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドを多様な細胞型に標的化するために、あらゆる数の多様な結合領域を使用することができるモジュール式構造である。
MHCクラスI複合体によるT細胞の免疫原性エピトープペプチドの提示は、CTL媒介細胞崩壊によって殺滅するために提示細胞を標的化する。MHCクラスIペプチドを、標的細胞に内在化する治療剤のエフェクターポリペプチド成分を送達するプロテアソームに加工することによって、免疫刺激抗原の標的化された送達及び提示は、脊椎動物の標的細胞の内因性MHCクラスI経路を利用することにより達成することができる。例えば高い免疫原性を有する公知のウイルスエピトープ−ペプチドなどの免疫刺激性の非自己抗原の標的化された細胞による提示は、標的細胞を破壊して生物内の標的細胞部位により多くの免疫細胞を補充するための他の免疫細胞へのシグナルであり得る。
したがって、すでに細胞毒性を有する分子、例えば細胞毒性の毒素エフェクター領域を含む可能性のある治療剤などは、本発明の方法を使用してより細胞毒性の分子に加工したり、及び/又はエフェクターT細胞を介して作動する追加の細胞毒性メカニズムを有するように加工したりしてもよい。これらの複数の細胞毒性メカニズムは、相互に補完する可能性があり(例えば、直接の標的細胞殺滅と間接的な(CTL媒介)細胞殺滅の両方を提供することによって)、互いに重複してバックアップする可能性があり(例えば、一方の細胞殺滅メカニズムを他方の非存在下で提供することによって)、及び/又は治療耐性の発生から保護する可能性がある(悪性又は感染細胞が進化して2種の異なる細胞殺滅メカニズムを同時にブロックする可能性がより低い状況に耐性を制限することによって)。
加えて、細胞毒性に関して毒素及び/又は酵素領域を頼る親の細胞毒性分子は、組み込まれたT細胞エピトープを用いるか、又は独立して変異若しくはトランケーションなどの他の手段によってT細胞エピトープを組み込むことと親分子の酵素活性を不活性化することの両方による、T細胞エピトープのサイトゾルへの送達及び提示のみを介して、細胞毒性になるように加工してもよい。このアプローチは、1つの細胞毒性メカニズムを除去し、それと同時に別の細胞毒性メカニズムを追加し、局所領域への免疫刺激能力を追加する。さらに、細胞毒性に関して毒素及び/又は酵素領域を頼る親の細胞毒性分子は、異種T細胞エピトープを作製する配列変化によって酵素活性が低下されるか又は消去されるように親分子の酵素ドメインにT細胞エピトープを組み込むことにより、T細胞エピトープのサイトゾルへの送達及び提示のみを介して、細胞毒性になるように加工してもよい。これは、細胞に内在化させてサイトゾルに経路決定する能力を有する酵素的に細胞毒性の分子を、細胞毒性及び局所的な免疫刺激に関するT細胞エピトープのプロテアソーム送達及び提示を頼る酵素的に不活性な細胞毒性分子に一段階で改変することを可能にする。
A.細胞表面上のMHCクラスI提示のためのT細胞エピトープの送達
本発明の特定のCD8+T細胞の高度免疫化されたポリペプチド及び細胞標的化分子の1つの機能は、細胞による1又は2以上のMHCクラスI提示のためのT細胞エピトープの送達である。標的細胞のMHCクラスI系への外因性T細胞エピトープペプチドの送達は、細胞表面上のMHCクラスI分子と関連してT細胞エピトープペプチドを提示するように標的細胞を誘導するのに使用することができ、その後それによってCD8+エフェクターT細胞の活性化が引き起こされて標的細胞が攻撃される。
本発明のCD8+T細胞の高度免疫化されたポリペプチド及び細胞標的化分子の特定の実施形態は、標的細胞のプロテアソームに1又は2以上のT細胞エピトープを送達することが可能である。次いで送達されたT細胞エピトープは、タンパク質分解処理されて、MHCクラスI経路によって標的細胞の外部表面上に提示される。
本発明のCD8+T細胞の高度免疫化されたポリペプチド及び細胞標的化分子のこれらのT細胞エピトープ提示機能の適用は莫大である。哺乳類の生物におけるいずれの有核細胞も、MHCクラスI分子に複合化したそれらの細胞外面上における免疫原性T細胞エピトープペプチドのMHCクラスI経路の提示が可能な場合がある。加えて、T細胞エピトープ認識の感度は、提示にMHC−Iペプチド複合体をごくわずかしか要しないほど優れており、すなわちエフェクターT細胞による認識にとって単一の複合体の提示で十分であり得る(Sykulev Y et al., Immunity 4: 565-71 (1996))。
異種T細胞エピトープを標的細胞表面上に提示させるには、T細胞エピトープを含むペプチドフラグメントが作製されて、MHCクラスI分子へのローディングのためにER内腔に輸送されるように、異種T細胞エピトープペプチドを送達するポリペプチドは標的細胞中のプロテアソームによって分解されなければならない。
加えて、CD8+T細胞の高度免疫化されたポリペプチドは、まず標的細胞の内部に到達し、次いで標的細胞中でプロテアソームと接触しなければならない。標的細胞の内部に本発明のCD8+T細胞の高度免疫化されたポリペプチドを送達するために、本発明の細胞を標的化する分子は、標的細胞への内在化が可能でなければならない。本発明のCD8+T細胞の高度免疫化されたポリペプチドが細胞を標的化する分子の成分として内在化されたら、CD8+T細胞の高度免疫化されたポリペプチドは、典型的には、例えばエンドサイトーシス小胞などの初期エンドソーム区画中に存在するようになる。次いでCD8+T細胞の高度免疫化されたポリペプチドは、少なくとも1つの無傷の異種T細胞エピトープと共に標的細胞のプロテアソームに到達する必要がある。
これらの機能は、当業界において熟練した作業者に公知の様々な標準的な方法によって検出及びモニターすることができる。例えば、T細胞エピトープペプチドを送達して、標的細胞のMHCクラスI系によるエピトープペプチドの提示を促進する本発明の細胞標的化分子の能力は、様々なインビトロ及びインビボのアッセイ、例えば、MHCクラスI/ペプチド複合体の直接の検出/可視化、異種T細胞エピトープペプチドのMHCクラスI分子への結合親和性の測定、及び/又はCTL応答をモニターすることによる標的細胞上でのMHCクラスI−エピトープペプチド複合体提示の機能的な結果の測定などを使用して調査することができる。
この本発明のポリペプチド及び分子の機能をモニターするための特定のアッセイは、インビトロ又はエクスビボでの特異的なMHCクラスI/ペプチド抗原複合体の直接の検出を含む。ペプチド−MHCクラスI複合体の直接の可視化及び定量化にとって一般的な方法は、熟練した作業者に公知の様々な免疫検出試薬を含む。例えば、特異的なモノクローナル抗体を、特定のMHC/クラスI/ペプチド抗原複合体を認識するように開発することができる(Porgador A et al, Immunity 6: 715-26 (1997))。同様に、可溶性で多量体のT細胞受容体、例えばTCR-STAR試薬(Altor社、Mirmar、FL、U.S.)は、特異的なMHC I/抗原複合体を直接可視化又は定量化するのに使用することができる(Zhu X et al., J Immunol 176: 3223-32 (2006))。これらの特異的なmAb又は可溶性で多量体のT細胞受容体は、例えば免疫組織化学、フローサイトメトリー、及び酵素結合免疫測定法(ELISA,enzyme-linked immuno assay)などの様々な検出方法と共に使用され得る。
MHC I/ペプチド複合体を直接同定及び定量化するための代替方法は、例えば、細胞表面からペプチド−MCHクラスI複合体を抽出し、次いでペプチドを精製し、配列決定と質量分析によって同定するProPresent抗原提示アッセイ(ProImmune, Inc.社、Sarasota、FL、U.S.)(Falk K et al., Nature 351: 290-6 (1991))などの質量分析法を含む。
本発明のポリペプチド及び分子のT細胞エピトープの送達及びMHCクラスI提示機能をモニターするための特定のアッセイは、MHCクラスI及びペプチドの結合と安定性をモニターするためのコンピューターによる方法及び/又は実験的方法を含む。MHCクラスI対立遺伝子へのエピトープペプチドの結合応答の予測に熟練した作業者が使用するための数種のソフトウェアプログラムが利用可能であり、例えば、免疫エピトープデータベース及び分析資源(IEDB、Immune Epitope Database and Analysis Resource)分析資源MHC−I結合予測統一ツール(Kim Y et al., Nucleic Acid Res 40: W525-30 (2012)などがある。数種の実験的アッセイが慣習的に適用されており、例えば結合速度を定量化及び/又は比較するための細胞表面結合アッセイ及び/又は表面プラズモン共鳴アッセイなどがある(Miles K et al., Mol Immunol 48: 728-32 (2011))。加えて、公知の対照と比較した、所与のMHCクラスI対立遺伝子に関する三次元のMHC−ペプチド複合体を安定化させるペプチドの能力の測定に基づく他のMHC−ペプチド結合アッセイも開発されている(例えば、ProImmmune, Inc.社製のMHC-ペプチド結合アッセイ)。
その代わりに、細胞表面上でのMHCクラスI/ペプチド抗原複合体の提示の結果の測定は、特異的な複合体に対する細胞傷害性T細胞(CTL,cytotoxic T cell)応答をモニターすることによって行うことができる。これらの測定としては、MHCクラスI四量体又は五量体試薬によるCTLの直接の標識付けが挙げられる。四量体又は五量体は、主要組織適合複合体(MHC,Major Histocompatibility Complex)対立遺伝子及びペプチドの組合せによって決定された特定の特異性を有するT細胞受容体に直接結合する。加えて、特異的なCTL応答を同定するために、ELISA又は酵素結合免疫スポット(ELIspot,enzyme-linked immunospot)による放出されたサイトカイン、例えばインターフェロンガンマ又はインターロイキンの定量化が一般的にアッセイされる。CTLの細胞毒性能力は、古典的な51クロム(Cr)放出アッセイ又は代替の非放射性細胞毒性アッセイ(例えば、Promega社、Madison、WI、U.S.から入手可能な、CytoTox96(登録商標)非放射性キット及びCellTox(商標)CellTiter-GLO(登録商標)キット)、グランザイムB ELISpot、カスパーゼアッセイ又はLAMP−1トランスロケーションフローサイトメトリーアッセイなどの多数のアッセイを使用して測定することができる。標的細胞の殺滅を特異的にモニターするために、カルボキシフルオレセインジアセテートスクシンイミジルエステル(CFSE,Carboxyfluorescein diacetate succinimidyl ester)が、エピトープ特異的なCSFE標識標的細胞の殺滅をモニターするためのインビトロ又はインビボでの調査にとって所望の細胞集団を容易且つ迅速に標識するのに使用することができる(Durward M et al., J Vis Exp 45 pii 2250 (2010))。
インビボにおけるMHCクラスI提示に対する応答に続いて、MHCクラスI/抗原促進物質(antigen promoting agent)(例えば、ペプチド、タンパク質又は不活性化/弱毒化ウイルスワクチン)を投与し、続いて活性薬剤(例えばウイルス)で負荷を与え、その物質に対する応答を、典型的にはワクチン非接種の対照と比較してモニターすることができる。エクスビボのサンプルは、CTL活性に関して、これまでに説明した方法(例えばCTL細胞毒性アッセイ及びサイトカイン放出の定量化)に類似した方法でモニターすることができる。
HLA−A、HLA−B、及び/又はHLA−C分子は、免疫親和性(例えば、抗MHC抗体の「プルダウン」精製)を使用して溶解後に毒素を受けた細胞から単離され、精製された複合体から関連するペプチド(すなわち、単離されたMHC分子によって提示されるペプチド)が回収される。回収されたペプチドは、配列決定と質量分析によって分析される。質量分析データは、外因性(非自己)ペプチド(T細胞エピトープX)の配列からなるタンパク質データベースライブラリー及びヒトの国際的なタンパク質インデックス(代表的な「自己」又は非免疫原性ペプチド)と比較される。ペプチドは、確率データベースに従って有意性により格付けされる。全ての検出された抗原性(非自己)ペプチド配列が列挙される。データは、スクランブル化したデコイデータベースを検索して誤ったヒットを減らすことによって検証される(例えばMa B, Johnson R, Mol Cell Proteomics 11: O111.014902 (2012)を参照)。その結果は、T細胞エピトープXからのペプチドが、毒素を受けた標的細胞の表面上でMHC複合体において提示されることを実証することになる。
提示されたペプチド−抗原−MHC複合体のセットは、発現された抗原特異的なHLA分子によって細胞間で異なっている可能性がある。そのためT細胞は、異なる抗原特異性を有する異なるTCR分子を使用して細胞表面上に表示された特異的なペプチド−抗原−MHC複合体を認識する可能性がある。
複数のT細胞エピトープは、本発明の細胞標的化分子によって送達されてもよく、例えば単一のプロテアソームが送達するエフェクターポリペプチド中に2又は3以上の異なるT細胞エピトープを組み込むことによって送達されてもよいことから、本発明の単一の細胞標的化分子は、異なるMHCクラスバリアントを有する同じ種の有効な脊索動物のものであってもよく、例えば異なるHLA対立遺伝子を有するヒトにおけるものなどである。これは、MHC複合体タンパク質の多様性及び多型に基づき、対象の異なる部分集団において異なるT細胞エピトープと異なる有効性とを同時に組み合わせることを可能にする(例えばYuhki N et al., J Hered 98: 390-9 (2007)を参照)。例えば、ヒトMHC複合体タンパク質、HLAタンパク質は、遺伝学的先祖、例えばアフリカ人(サハラ以南)、アメリカインディアン、コーカソイド、モンゴロイド、ニューギニア人及びオーストラリア人、又は太平洋諸島の人々をベースとするヒト間でも様々である(例えばWang M, Claesson M, Methods Mol Biol 1184: 309-17 (2014)を参照)。
T細胞応答の活性化は、特定の抗がん、抗新生物、抗腫瘍及び/又は抗微生物性の生物学的薬物にとって、標的化された細胞に対する患者自身の免疫系を刺激するのに望ましい特徴である。またロバストで強力なT細胞応答の活性化も、多くのワクチンの望ましい特徴である(Aly HA, J Immunol Methods 382: 1-23 (2012))。生物内での標的細胞によるT細胞エピトープの提示は、標的細胞及び/又はその生物内の一般的な場所に対するロバストな免疫応答の活性化をもたらすことができる。したがって、提示のためのT細胞エピトープの標的化された送達は、治療レジメン中にT細胞応答の活性化を操作するために利用される可能性がある。
B.標的化された細胞毒性及び/又はCTL補充を介した細胞殺滅
本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドを含む本発明の細胞標的化分子は、以下の両方:1)MHCクラスI提示のための細胞型特異的なT細胞エピトープの送達及び2)有力な細胞毒性を提供することができる。加えて、本発明の細胞標的化分子の特定の実施形態はまた、哺乳動物に投与した場合に特定の免疫応答が起こる可能性を低下させる脱免疫化も提供する。
本発明の細胞標的化分子の特定の実施形態において、細胞標的化部分(例えば細胞標的化結合領域)の細胞外標的生体分子と物理的に組み合わされた細胞を接触させるときに、本発明の細胞標的化分子は、細胞の死を引き起こすことが可能である。細胞殺滅のメカニズムは、例えば毒素エフェクター領域の酵素活性を介した直接のメカニズムであってもよいし、又はCTL媒介細胞崩壊を介した間接的なメカニズムであってもよく、さらに、エクスビボで操作された標的細胞、インビトロで培養された標的細胞、インビトロで培養された組織サンプル中の標的細胞、又はインビボの標的細胞などの標的細胞の様々な条件下にあってもよい。
1.T細胞エピトープの送達及びMHCクラスI提示を介した間接的な細胞殺滅
本発明の、B細胞エピトープの脱免疫化がなされた又はなされていないT細胞エピトープを送達するCD8+T細胞の高度免疫化されたポリペプチドは、間接的な細胞殺滅のための細胞標的化分子の成分として使用することができる。本発明の細胞標的化分子の特定の実施形態は、細胞標的化分子の標的内在化の際に標的細胞のMHCクラスI提示経路に1又は2以上のT細胞エピトープを送達する本発明のポリペプチドを提示するCD8+T細胞エピトープを含むことから、それらは細胞毒性である。
本発明の細胞標的化分子の特定の実施形態において、細胞標的化部分(例えば細胞標的化結合領域)の細胞外標的生体分子と物理的に組み合わされた細胞を接触させるときに、本発明の細胞標的化分子は、例えば標的細胞による1又は2以上のT細胞エピトープの提示とそれに続くCTL補充を介して、細胞の死を間接的に引き起こすことが可能である。
2.細胞標的化毒素の細胞毒性を介した直接の細胞殺滅
本発明のT細胞エピトープを送達するCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドは、直接の細胞殺滅のための細胞標的化分子の成分として使用することができる。
多くの天然に存在する毒素は真核細胞を殺滅するようになっているため、毒素によって誘導されたプロテアソームを送達するエフェクター領域を使用して設計された細胞毒性タンパク質は、有力な細胞殺滅活性を示すことができる。特定には、プロテアソームを送達するエフェクター領域は、リボトキシンの毒素エフェクターポリペプチドも含む可能性もある。しかしながら、他の毒素エフェクター領域は、本発明の細胞標的化分子、例えば、リボソームを触媒的に不活性化しないが他のメカニズムにより細胞毒性である毒素からのポリペプチドなどでの使用に検討される。例えば、コリックス毒素、易熱性エンテロトキシン、及びGsアルファサブユニットを攻撃することによる百日咳毒素のヘテロ三量体Gタンパク質である。
ABx毒素スーパーファミリーの多くのメンバーのAサブユニットは、細胞のサイトゾルに一度入れば真核細胞を殺滅することが可能な酵素ドメインを含む。複数のABx毒素によって誘導された毒素酵素ドメインを含むポリペプチド内でのT細胞エピトープでのB細胞エピトープの置き換えは、それらの酵素活性を有意に変更しない。したがって、本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドは、潜在的に、2つの細胞殺滅メカニズムを提供することができる。
本発明の細胞標的化分子の特定の実施形態は、活性な毒素成分を含む本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドを含むことから、それらは細胞毒性である。
本発明の細胞標的化分子の特定の実施形態において、細胞標的化部分(例えば細胞標的化結合領域)の細胞外標的生体分子と物理的に組み合わされた細胞を接触させるときに、本発明の細胞標的化分子は、例えば毒素エフェクター領域の酵素活性などを介して、細胞の死を直接引き起こすことが可能である。
C.脱免疫化は、哺乳動物への投与を含む適用を改善する
本発明のポリペプチド及び細胞標的化分子は、哺乳動物において望ましくない免疫応答が生じる可能性を低下させながら哺乳動物において望ましい免疫応答が生じる可能性を増加させるために、治療剤及び/又は診断剤のいずれかとしての哺乳動物種への投与に関する改善された有用性を有する。
本発明の特定のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された毒素によって誘導されたポリペプチドは、様々な哺乳動物に投与される場合、それらの抗原性プロファイルの点で異なっている可能性があるが、B細胞及び/又はCD4+T細胞の抗原性及び/又は免疫原性の低下を示すと予測される。特定の実施形態において、脱免疫化されたCD8+T細胞の高度免疫化されたポリペプチドを誘導した元の毒素ポリペプチドの所望の生物学的機能は、B細胞エピトープを破壊してCD8+T細胞エピトープを付加した後でも本発明のポリペプチドにおいて保存される。加えて、B細胞エピトープは、成熟CD4+T細胞のエピトープと同時に存在するか又は重複することが多いことから、B細胞エピトープの破壊は、同時にCD4+T細胞エピトープを崩壊することが多い。
D.細胞型間で選択的な細胞毒性
本発明の特定の細胞標的化分子は、非標的化バイスタンダー細胞の存在下における特異的な標的細胞の選択的な殺滅において用途を有する。標的細胞のMHCクラスI経路への免疫原性T細胞エピトープの送達を標的化することによって、それに続く本発明の細胞標的化分子により誘導されたT細胞エピトープの提示及び標的細胞のCTL媒介細胞崩壊を、非標的化細胞の存在下で選択された細胞型を優先的に殺滅することに限定することができる。加えて、様々な毒素エフェクター領域の有力な細胞毒性活性による標的細胞の殺滅は、免疫原性T細胞エピトープと細胞毒性の毒素エフェクターポリペプチドの同時送達により標的細胞を優先的に殺滅することに限定することができる。
特定の実施形態において、細胞型の混合物に本発明の細胞標的化分子を投与するとき、細胞標的化分子は、細胞外標的生体分子と物理的に組み合わされていない細胞型と比較して、細胞外標的生体分子と物理的に組み合わされた細胞を選択的に殺滅することが可能である。多くの毒素、例えばABx及びリボトキシンファミリーのメンバーなどは真核細胞の殺滅に適していることから、毒素エフェクター領域を使用して設計された細胞毒性タンパク質は、有力な細胞毒性活性を示す可能性がある。高親和性の結合領域を使用して特異的な細胞型への酵素的に活性な毒素エフェクター領域の送達を標的化することによって、この有力な細胞殺滅活性を、標的化が望ましい細胞型と選ばれた結合領域の標的生体分子との物理的な関連によってそのような細胞型のみを殺滅することに限定することができる。
特定の実施形態において、本発明の細胞毒性細胞標的化分子は、2又は3以上の異なる細胞型の混合物内で特異的な細胞型の死を選択的又は優先的に引き起こすことが可能である。これは、高い優先性で、例えば標的生体分子を発現しない「バイスタンダー」細胞型に対して3倍の細胞毒性作用で、細胞毒性活性を特異的な細胞型に標的化することを可能にする。その代わりに、標的生体分子が十分低い量で発現されるか及び/又は標的化されるべきではない細胞型と少量で物理的に組み合わされる場合、結合領域の標的生体分子の発現は、1つの細胞型に限られない場合がある。これは、高い優先性で、例えば有意な量の標的生体分子を発現しないか、又は有意な量の標的生体分子と物理的に組み合わされない「バイスタンダー」細胞型に対して3倍の細胞毒性作用で、細胞殺滅を特異的な細胞型に標的化することを可能にする。
特定のさらなる実施形態において、2種の異なる細胞型集団に細胞毒性細胞標的化分子を投与するとき、細胞毒性細胞標的化分子は、そのメンバーが細胞毒性タンパク質の結合領域の細胞外標的生体分子を発現する標的細胞集団に対する半最大細胞毒性濃度(CD50、half-maximal cytotoxic concentration)が、そのメンバーが細胞毒性タンパク質の結合領域の細胞外標的生体分子を発現しない細胞集団に対する同じ細胞毒性タンパク質のCD50用量の少なくとも3分の1の用量であることによって定義されるような細胞死を引き起こすことが可能である。
特定の実施形態において、細胞外標的生体分子と物理的に組み合わされた細胞型集団に対する細胞毒性活性は、結合領域のいかなる細胞外標的生体分子とも物理的に組み合わされていない細胞型集団に対する細胞毒性活性より少なくとも3倍高い。本発明によれば、選択的な細胞毒性は、(a)結合領域の標的生体分子と物理的に組み合わされた特異的な細胞型の細胞集団に対する細胞毒性の、(b)結合領域の標的生体分子と物理的に組み合わされていない細胞型の細胞集団に対する細胞毒性に対する比率(a/b)に関して定量化されてもよい。特定の実施形態において、細胞毒性の比率は、結合領域の標的生体分子と物理的に組み合わされた細胞集団又は細胞型について、結合領域の標的生体分子と物理的に組み合わされていない細胞集団又は細胞型と比較して、少なくとも3倍、5倍、10倍、15倍、20倍、25倍、30倍、40倍、50倍、75倍、100倍、250倍、500倍、750倍、又は1000倍高い選択的な細胞毒性であることを示す。
この優先的な細胞殺滅機能は、様々な条件下で、非標的化バイスタンダー細胞の存在下で、例えばエクスビボで操作された細胞型の混合物、インビトロで細胞型の混合物と共に培養された組織、又はインビボの複数の細胞型の存在下で(例えばインサイチュで、又は多細胞生物内におけるその天然位置で)本発明の特定の細胞毒性細胞標的化分子によって、標的化された細胞を殺滅することを可能にする。
E.標的化細胞内部への追加の外因性物質の送達
細胞毒性及び細胞増殖抑制性の適用に加えて、本発明の細胞標的化分子は、情報収集及び診断機能のために使用されてもよい。さらに、本発明の細胞毒性細胞標的化分子の非毒性バリアント、又は毒性バリアントは、細胞毒性タンパク質の細胞外標的生体分子と物理的に組み合わされた細胞に追加の外因性物質を送達すること、及び/又はそのような細胞の内部を標識することに使用されてもよい。少なくとも1つの細胞表面に標的生体分子を発現する様々な種類の細胞及び/又は細胞集団は、外因性物質を受け取るために本発明の細胞標的化分子によって標的化されてもよい。本発明の機能的な成分は、モジュール式構造であり、それにおいて、様々な毒素エフェクター領域及び追加の外因性物質が、腫瘍細胞の非侵襲的なインビボでのイメージングなどの多様な適用を提供するために様々な結合領域に連結されていてもよい。
本発明の細胞標的化分子は、それらの非毒性形態を含めて、その結合領域によって認識される細胞外標的生体分子と物理的に組み合わされた細胞に侵入することが可能であることから、本発明の細胞標的化分子の特定の実施形態は、標的化された細胞型の内部に追加の外因性物質を送達するのに使用することができる。ある意味では、本発明の細胞標的化分子全体が細胞に侵入する外因性物質であり、したがって「追加の」外因性物質は、コアの細胞標的化分子そのもの以外に連結される異種物質である。T細胞エピトープ付加後に非毒性になるCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドは、それでもなお細胞に外因性物質を送達するのに有用であり得る(例えばT細胞エピトープの置き換えが、毒素エフェクター領域の触媒機能にとって重要なアミノ酸残基と重複する)。
「追加の外因性物質」は、本明細書で使用される場合、一般的にネイティブの標的細胞内に提示されないことが多い1又は2以上の分子を指し、本発明のタンパク質は、細胞の内部にこのような材料を特異的に輸送するのに使用することができる。追加の外因性物質の非限定的な例は、ペプチド、ポリペプチド、タンパク質、ポリヌクレオチド、小分子の化学療法剤、及び検出促進剤である。
特定の実施形態において、追加の外因性物質は、酵素を含むタンパク質又はポリペプチドを含む。特定の他の実施形態において、追加の外因性物質は、核酸であり、例えば低分子阻害RNA(siRNA,small inhibiting RNA)又はマイクロRNA(miRNA,microRNA)として機能するリボ核酸などである。特定の実施形態において、追加の外因性物質は、抗原であり、例えば、細菌タンパク質、ウイルスタンパク質、がんにおいて変異したタンパク質、がんにおいて異常に発現されたタンパク質、又はT細胞相補性決定領域に由来する抗原などである。例えば、外因性物質としては、抗原、例えば細菌感染した抗原提示細胞に特徴的な抗原、及び外因性抗原として機能することが可能なT細胞相補性決定領域が挙げられる。外因性物質のさらなる例としては、酵素などの抗原性ペプチドよりも大きいポリペプチド及びタンパク質が挙げられる。ポリペプチド又はタンパク質を含む外因性物質は、熟練した作業者にとって公知か又は未知かにかかわらず1又は2以上の抗原を含んでいてもよい。
F.診断機能のための情報収集
本発明の特定の細胞標的化分子は、インビトロ及び/又はインビボにおける特異的な細胞、細胞型、及び/又は細胞集団の検出において用途を有する。特定の実施形態において、本明細書で説明されるタンパク質は、診断と治療の両方、又は診断単独に使用される。診断と治療の両方に同じ細胞毒性タンパク質が使用される場合、診断のための検出促進剤を取り入れている細胞毒性タンパク質バリアントは、本明細書で説明される例示的な置換などの1又は2以上のアミノ酸置換を介した毒素エフェクター領域の触媒による不活性化によって非毒性にされてもよい。検出促進剤にコンジュゲートされる本発明の細胞毒性細胞標的化分子の非毒性形態は、診断機能に、例えば同じ又は関連する結合領域を含む治療レジメンと共に使用されるコンパニオン診断に使用されてもよい。
当業界において公知の検出促進剤を様々な本発明の細胞標的化分子にコンジュゲートする能力は、がん、腫瘍、免疫及び感染細胞の検出に有用な組成物を提供する。これらの本発明の細胞標的化分子の診断の実施形態は、当業界において公知の様々なイメージング技術及びアッセイを介した情報収集に使用される可能性がある。例えば、本発明の細胞標的化分子の診断の実施形態は、患者又は生検サンプルにおける個々のがん細胞、免疫細胞、又は感染細胞の細胞内のオルガネラ(例えばエンドサイトーシス、ゴルジ、小胞体、及びサイトゾル区画)のイメージングを介した情報収集に使用される可能性がある。
様々な種類の情報は、診断での使用のためか又は他の使用のためかにかかわらず、本発明の細胞標的化分子の診断の実施形態を使用して収集することができる。この情報は、例えば、新生細胞のタイプを診断すること、患者の疾患の治療感受性を決定すること、経時的に抗新生物療法の進行をアッセイすること、経時的に免疫調節療法の進行をアッセイすること、経時的に抗菌療法の進行をアッセイすること、移植材料中の感染細胞の存在を評価すること、移植材料中の不要な細胞型の存在を評価すること、及び/又は腫瘤の外科的切除後に残留した腫瘍細胞の存在を評価することにおいて有用であり得る。
例えば、本発明の細胞標的化分子の診断用バリアントを使用して収集された情報を使用して患者の部分集団を確認できる可能性があり、そうなれば、個々の患者を、そのような診断の実施形態を使用して解明されたそれらの固有の特徴に基づき部分集団に類別することができる。例えば、具体的な医薬品又は療法の有効性が、患者の部分集団を定義するのに使用される基準の1つのタイプとなる可能性がある。例えば、本発明の特定の細胞毒性細胞標的化分子の非毒性の診断用バリアントは、どの患者が、同じ本発明の細胞標的化分子の細胞毒性バリアントに対して陽性に応答すると予測される患者のクラス又は部分集団に属するのかを識別するのに使用することができる。したがって、本発明の細胞毒性細胞標的化分子の非毒性バリアントを含む本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された細胞標的化分子を使用した患者の同定、患者の層別化、及び診断のための関連方法は、本発明の範囲内であるとみなされる。
VII.本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及びそれを含む細胞標的化分子の産生、製造、及び精製
本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び細胞標的化分子は、当業者に周知の生化学工学の技術を使用して産生され得る。例えば、本発明のポリペプチド及び細胞標的化分子は、標準的な合成方法、組換え発現系の使用、又は他のあらゆる好適な方法によって製造され得る。したがって、本発明のポリペプチド及び細胞標的化タンパク質は、多数の方法で合成することが可能であり、このような方法としては、例えば、(1)標準的な固相又は液相の手法を使用して、段階的に又はフラグメントのアセンブリのいずれかによってタンパク質のポリペプチド又はポリペプチド成分を合成するステップと、最終的なペプチド化合物生成物を単離し精製するステップとを含む方法;(2)宿主細胞中の本発明の細胞標的化タンパク質のポリペプチド又はポリペプチド成分をコードするポリヌクレオチドを発現させるステップと、宿主細胞又は宿主細胞培養から発現生成物を回収するステップとを含む方法;又は(3)インビトロで本発明の細胞標的化タンパク質のポリペプチド又はポリペプチド成分をコードするポリヌクレオチドを無細胞発現させるステップと、発現生成物を回収するステップとを含む方法;又は(1)、(2)又は(3)の方法のあらゆる組合せによって、ペプチド成分のフラグメントを得て、その後フラグメントを合体させ(例えばライゲートして)ペプチド成分を得て、ペプチド成分を回収する方法が挙げられる。
本発明のCD8+T細胞の高度免疫化された及び/若しくはB細胞/CD4+T細胞の脱免疫化されたポリペプチド又は細胞標的化タンパク質のタンパク質若しくはポリペプチド成分を、固相又は液相ペプチド合成の手段によって合成することが好ましい場合がある。本発明のポリペプチド及び細胞標的化分子は、好適には、標準的な合成方法によって製造されてもよい。したがって、ペプチドは、例えば、標準的な固相又は液相手法で、段階的に又はフラグメントのアセンブリのいずれかによってペプチドを合成するステップと、最終的なペプチド生成物を単離し精製するステップとを含む方法によって合成されてもよい。これに関して、国際公開第1998/11125号パンフレット、又はとりわけFields G et al., Principles and Practice of Solid-Phase Peptide Synthesis (Synthetic Peptides, Grant G, ed., Oxford University Press, U.K., 2nd ed., 2002)及びそこに記載された合成の実施例を参照してもよい。
本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び細胞毒性の細胞標的化タンパク質は、当業界において周知の組換え技術を使用して調製(産生及び精製)されてもよい。一般的に、コード化ポリヌクレオチドを含むベクターで形質転換又はトランスフェクトされた宿主細胞を培養すること、及び細胞培養からポリペプチドを回収することによってポリペプチドを調製するための方法は、例えばSambrook J et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, NY, U.S., 1989)、Dieffenbach C et al., PCR Primer: A Laboratory Manual (Cold Spring Harbor Laboratory Press, N.Y., U.S., 1995)で説明されている。本発明のポリペプチド及び/又は細胞標的化タンパク質を産生するために、あらゆる好適な宿主細胞を使用することができる。宿主細胞は、本発明のポリペプチドの発現を駆動させる1又は2以上の発現ベクターで安定して若しくは一時的にトランスフェクションされた、形質転換された、形質導入された、又は感染した細胞であり得る。加えて、本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又は細胞標的化タンパク質は、変化した細胞毒性、変化した細胞増殖抑制作用、及び/又は変化した血清中半減期などの所望の特性を達成するために、1又は2以上のアミノ酸の変更又は1又は2以上のアミノ酸の欠失若しくは挿入をもたらす本発明のポリペプチド又は細胞標的化タンパク質をコードするポリヌクレオチドの改変によって産生されてもよい。
本発明のポリペプチド又は細胞標的化タンパク質を産生するために選ばれる可能性がある多種多様の発現系がある。例えば、本発明の細胞標的化タンパク質の発現のための宿主生物としては、原核生物、例えば大腸菌(E. coli)及び枯草菌(B. subtilis)、真核細胞、例えば酵母及び糸状菌(S.セレビジエ(S. cerevisiae)、P.パストリス(P. pastoris)、黒麹菌(A. awamori)、及びK.ラクティス(K. lactis)など)、藻類(コナミドリムシ(C. reinhardtii)など)、昆虫細胞株、哺乳動物細胞(CHO細胞など)、植物細胞株、並びに真核生物、例えばトランスジェニック植物(シロイスナズナ(A. thaliana)及びベンサミアナタバコ(N. benthamiana)など)が挙げられる。
したがって、本発明はまた、上記で列挙した方法に従って、本発明の細胞標的化タンパク質の本発明のポリペプチド若しくはポリペプチド成分の一部若しくは全てをコードするポリヌクレオチド、宿主細胞に導入される場合は本発明のポリペプチドの一部若しくは全てをコードすることが可能な本発明の少なくとも1つのポリヌクレオチドを含む発現ベクター、及び/又は本発明のポリヌクレオチド若しくは発現ベクターを含む宿主細胞を使用して、本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又は細胞標的化タンパク質を産生するための方法も提供する。
組換え技術を使用して宿主細胞又は無細胞系中でポリペプチド又はタンパク質が発現される場合、高純度を有するか又は実質的に均一な調製物を得るために、宿主細胞の要素などの他の成分から所望のポリペプチド又はタンパク質を分離(又は精製)することが有利である。精製は、当業界において周知の方法、例えば遠心分離技術、抽出技術、クロマトグラフ及び画分化技術(例えばゲルろ過によるサイズ分離、イオン交換カラム、疎水性相互作用クロマトグラフィー、逆相クロマトグラフィー、シリカでのクロマトグラフィー又はカチオン交換樹脂、例えばDEAEなどによる電荷分離、クロマトフォーカシング、及び汚染物質を除去するためのプロテインAセファロースクロマトグラフィー)、並びに沈殿技術(例えばエタノール沈殿又は硫酸アンモニウム沈殿)によって達成することができる。本発明のCD8+T細胞の高度免疫化された及び/若しくはB細胞/CD4+T細胞の脱免疫化されたポリペプチド並びに/又は細胞標的化分子の純度を増加させるために、相当数の生化学精製技術を使用することができる。特定の実施形態において、本発明のポリペプチド及び細胞標的化分子は、ホモ多量体の形態(すなわち2又は3以上の本発明の同一なポリペプチド又は細胞標的化分子のタンパク質複合体)で精製されてもよい。
以下の実施例は、本発明のポリペプチド又は細胞標的化分子を産生するための方法の非限定的な例、加えて本発明の例示的な細胞標的化分子の産生の具体的な、ただし非限定的な態様の説明である。
VIII.本発明のT細胞の高度免疫化された及び/若しくはB細胞/CD4+T細胞の脱免疫化されたポリペプチド又はそれを含む細胞標的化分子を含む医薬及び診断用組成物
本発明は、以下のさらなる詳細で説明される状態、疾患、障害、又は症状(例えばがん、悪性腫瘍、非悪性腫瘍、成長異常、免疫障害、及び微生物感染)の治療又は防止のための医薬組成物において、単独で、又は1又は2以上の追加の治療剤と組み合わせて使用するためのポリペプチド及びタンパク質を提供する。本発明はさらに、本発明に従って、少なくとも1つの薬学的に許容される担体、賦形剤、又は媒体と共に、本発明のポリペプチド若しくは細胞標的化分子、又はそれらの薬学的に許容される塩若しくは溶媒和物を含む医薬組成物を提供する。特定の実施形態において、本発明の医薬組成物は、本発明のポリペプチド又は細胞標的化分子のホモ多量体及び/又はヘテロ多量体の形態を含んでいてもよい。医薬組成物は、以下のさらなる詳細で説明される疾患、状態、障害、又は症状を治療、緩和又は予防する方法において有用であると予想される。このような疾患、状態、障害、又は症状はそれぞれ、本発明に係る医薬組成物の使用に対して別の実施形態であると想定される。本発明は、さらに、以下でより詳細に説明されるように、少なくとも1つの本発明に係る治療方法で使用するための医薬組成物を提供する。
用語「患者」及び「対象」は、本明細書で使用される場合、同義的に使用され、あらゆる生物、一般的に脊椎動物、例えば少なくとも1つの疾患、障害、又は状態の症状、症候、及び/又は徴候を示すヒト及び動物を指す。これらの用語は、哺乳動物、例えば霊長類の非限定的な例、家畜動物(例えばウシ、ウマ、ブタ、ヒツジ、ヤギなど)、コンパニオンアニマル(例えばネコ、イヌなど)及び実験動物(例えばマウス、ウサギ、ラットなど)を包含する。
本明細書で使用される場合、「治療する」、「治療すること」、又は「治療」及びそれらの文法上の変化形は、有益な又は所望の臨床結果を得るためのアプローチを指す。この用語は、状態、障害若しくは疾患の発病又は進行速度を遅延させること、それに関連する症状を低減又は軽減すること、状態の完全又は部分退縮をもたらすこと、又は上記いずれかのいくつかの組合せを指す場合もある。本発明の目的に関して、有益な又は所望の臨床結果としては、これらに限定されないが、検出可能か又は検出不可能かにかかわらず、症状の低減又は軽減、疾患の程度の減少、疾患の状況の安定化(例えば悪化しないこと)、疾患進行の遅延又は減速、病状の緩和又は一時的緩和、及び寛解(部分又は完全にかかわらず)が挙げられる。「治療する」、「治療すること」、又は「治療」はまた、治療を受けない場合に予測される生存時間と比べて生存を長くすることを意味する場合もある。したがって治療が必要な対象(例えばヒト)は、すでに問題の疾患又は障害に罹っている対象であり得る。用語「治療する」、「治療すること」、又は「治療」は、治療しない場合と比較して病理学的状況又は症状の重症度の増加を阻害又は低減することを包含し、関連する疾患、障害、又は状態の完全な停止を暗に示すことを必ずしも意味するわけではない。腫瘍及び/又はがんに関して、治療は、全体的な腫瘍負荷量及び/又は個々の腫瘍サイズの低減を包含する。
本明細書で使用される場合、用語「予防する」、「予防すること」、「予防」及びそれらの文法上の変化形は、状態、疾患、若しくは障害の発症を予防する、又はその病状を変更するためのアプローチを指す。したがって、「予防」は、防止的又は予防的措置を指す場合もある。本発明の目的に関して、有益な又は所望の臨床結果としては、これらに限定されないが、検出可能か又は検出不可能かにかかわらず、疾患の症状、進行又は発症の予防又は減速が挙げられる。したがって予防が必要な対象(例えばヒト)は、まだ問題の疾患又は障害に罹っていない対象であり得る。用語「予防」は、治療しない場合と比較して疾患の発病を減速させることを包含し、関連する疾患、障害又は状態の永続的な予防を暗に示すことを必ずしも意味するわけではない。したがって状態を「予防すること」又は状態の「予防」は、特定の状況において、状態を発症する危険を低下させること、又は状態に関連する症状の発症を予防若しくは遅延することを指す場合がある。
「有効量」又は「治療有効量」は、本明細書で使用される場合、標的の状態を予防若しくは治療すること、又は状態に関連する症状を有利に軽減することなどの対象における少なくとも1つの望ましい治療効果を生じる組成物(例えば治療用組成物又は薬剤)の量又は用量である。最も望ましい治療有効量は、それを必要とする所与の対象について当業者によって選択された特定の治療の望ましい効能を生じると予想される量である。この量は、これらに限定されないが、治療化合物の特徴(活性、薬物動態学、薬力学、及び生物学的利用率など)、対象の生理学的状態(年齢、性別、疾患のタイプ、疾患の段階、全般的な身体状態、所与の投薬量に対する反応性、及び薬物療法のタイプなど)、製剤中の薬学的に許容される1又は複数の担体の性質、及び投与経路などの熟練した作業者によって理解されている様々な要因に応じて異なると予想される。臨床及び薬理学分野における熟練者は、慣例的な実験を介して、すなわち化合物の投与に対する対象の応答をモニターし、それに応じて投薬量を調整することによって治療有効量を決定することが可能であると予想される(例えばRemington: The Science and Practice of Pharmacy (Gennaro A, ed., Mack Publishing Co., Easton, PA, U.S., 19th ed., 1995)を参照)。
診断用組成物は、本発明のポリペプチド又は細胞標的化分子及び1又は2以上の検出促進剤を含む。同位体、色素、比色法用の薬剤、コントラスト増強剤、蛍光剤、生物発光剤、及び磁気性の薬剤などの様々な検出促進剤が当業界において公知である。これらの薬剤は、本発明のポリペプチド又は細胞標的化分子にあらゆる位置で取り込まれていてもよい。薬剤の取り込みは、タンパク質のアミノ酸残基を介して、又はリンカー及び/又はキレート化剤を介した連結などの当業界において公知のいくつかのタイプの連結を介していてもよい。薬剤の取り込みは、スクリーニング、アッセイ、診断手順、及び/又はイメージング技術において診断用組成物の存在の検出が可能になるような方法でなされる。
本発明の診断用組成物を生産又は製造する場合、本発明の細胞標的化分子は、1又は2以上の検出促進剤に直接的又は間接的に連結されてもよい。情報収集方法のために、例えば生物の疾患、障害、又は状態に対する診断及び/又は予後の適用のために、本発明のポリペプチド又は細胞標的化分子に機能するように連結できる、熟練した作業者に公知の極めて多くの検出促進剤がある(例えばCai W et al., J Nucl Med 48: 304-10 (2007)、Nayak T, Brechbiel M, Bioconjug Chem 20: 825-41 (2009)、Paudyal P et al., Oncol Rep 22: 115-9 (2009)、Qiao J et al., PLoS ONE 6: e18103 (2011)、Sano K et al., Breast Cancer Res 14: R61 (2012)を参照)。例えば、検出促進剤としては、画像を強調する造影剤、例えば蛍光色素(例えばAlexa680、インドシアニングリーン、及びCy5.5)、同位体及び放射性核種、例えば11C、13N、15O、18F、32P、51Mn、52mMn、52Fe、55Co、62Cu、64Cu,67Cu、67Ga、68Ga、72As、73Se、75Br、76Br、82mRb、83Sr、86Y、90Y、89Zr、94mTc、94Tc、99mTc、110In、111In、120I、123I、124I、125I、131I、154Gd、155Gd、156Gd、157Gd、158Gd、177Lu、186Re、188Re、及び223R;常磁性イオン、例えばクロム(III)、マンガン(II)、鉄(III)、鉄(II)、コバルト(II)、ニッケル(II)、銅(II)、ネオジム(III)、サマリウム(III)、イッテルビウム(III)、ガドリニウム(III)、バナジウム(II)、テルビウム(III)、ジスプロシウム(III)、ホルミウム(III)又はエルビウム(III);金属、例えばランタン(III)、金(III)、鉛(II)、及びビスマス(III);超音波コントラスト増強剤、例えばリポソーム;放射線不透物質、例えばバリウム、ガリウム、及びタリウム化合物が挙げられる。検出促進剤は、中間官能基、例えば2−ベンジルDTPA、PAMAM、NOTA、DOTA、TETA、それらの類似体、及び前述のもののいずれかの機能的な均等物のようなキレート化剤を使用することによって直接的又は間接的に取り込まれていてもよい(Leyton J et al., Clin Cancer Res 14: 7488-96 (2008)を参照)。
タンパク質に、特に免疫グロブリン及び免疫グロブリンに由来するドメインに様々な検出促進剤を取り込む、取り付ける、及び/又はコンジュゲートするための、熟練した作業者に公知の極めて多くの標準的な技術がある(Wu A, Methods 65: 139-47 (2014))。同様に、医療分野で一般的に使用される非侵襲的なインビボでのイメージング技術などの熟練した作業者に公知の極めて多くのイメージングアプローチがあり、例えば、コンピューター断層撮影イメージング(CTスキャニング)、光学的イメージング(直接の、蛍光による、及び生物発光によるイメージングなど)、磁気共鳴映像法(MRI,magnetic resonance imaging)、ポジトロンエミッショントモグラフィー(PET,positron emission tomography)、単光子放射型コンピューター断層撮影法(SPECT,single-photon emission computed tomography)、超音波、及びX線コンピューター断層撮影イメージングである(総論については、Kaur S et al., Cancer Lett 315: 97-111 (2012)を参照)。
IX.本発明のT細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド又は細胞標的化分子を含む医薬及び/又は診断用組成物の生産又は製造
本発明のポリペプチド及び細胞標的化分子のいずれかの薬学的に許容される塩又は溶媒和物も、同様に本発明の範囲内である。
本発明の内容における用語「溶媒和物」は、溶質(この場合、本発明に係るポリペプチド化合物又はそれらの薬学的に許容される塩)と溶媒との間で形成された規定の化学量論の複合体を指す。それに関して、溶媒は、例えば、水、エタノール、又は別の薬学的に許容される、典型的には小分子の有機種、例えば、これらに限定されないが、酢酸又は乳酸などであり得る。問題の溶媒が水である場合、このような溶媒和物は通常、水和物と称される。
本発明のポリペプチド及びタンパク質又はそれらの塩は、典型的には薬学的に許容される担体中に治療有効量の本発明の化合物又はそれらの塩を含む、貯蔵又は投与のために調製された医薬組成物として製剤化されてもよい。用語「薬学的に許容される担体」は、あらゆる標準的な医薬用担体を包含する。治療用途のための薬学的に許容される担体は薬学分野において周知であり、例えば、Remington's Pharmaceutical Sciences (Mack Publishing Co. (A. Gennaro, ed., 1985)で説明される。「薬学的に許容される担体」としては、本明細書で使用される場合、ありとあらゆる生理学的に許容できる、すなわち適合する溶媒、分散媒、コーティング、抗菌剤、等張剤及び吸収遅延剤などが挙げられる。薬学的に許容される担体又は希釈剤としては、経口、直腸、経鼻又は非経口(皮下、筋肉内、静脈内、皮内、及び経皮など)投与に好適な製剤で使用されるものが挙げられる。例示的な薬学的に許容される担体としては、滅菌水溶液又は分散液、及び滅菌注射用溶液又は分散液を即時調製するための滅菌粉末が挙げられる。本発明の医薬組成物で採用される可能性がある好適な水性及び非水性担体の例としては、水、エタノール、ポリオール(例えばグリセロール、プロピレングリコール、ポリエチレングリコールなど)、及びそれらの好適な混合物、植物油、例えばオリーブ油、並びに注射可能な有機エステル、例えばエチルオレエートが挙げられる。適切な流動性は、例えば、レシチンなどのコーティング材料の使用によって、分散液のケースで求められる粒度の維持によって、及び界面活性剤の使用によって維持することができる。特定の実施形態において、担体は、静脈内、筋肉内、皮下、非経口、脊髄又は表皮投与(例えば注射又は点滴による)に好適である。選択された投与経路に応じて、タンパク質又は他の医薬成分は、特定の投与経路によって患者に投与されたときに活性タンパク質が遭遇する可能性がある低いpH及び他の天然の不活性化条件の作用から化合物を保護することを意図した材料でコーティングされていてもよい。
本発明の医薬組成物の製剤は、単位剤形で便利なように提供されてもよいし、薬学分野において周知の方法のいずれかによって調製されてもよい。このような形態において、組成物は、適切な量の活性成分を含有する単位用量に分割される。単位剤形は、パッケージ化された調製物、別々の量の調製物を含有するパッケージ、例えば、バイアル又はアンプル中にパケット化された錠剤、カプセル、及び粉末であってもよい。また単位剤形は、カプセル剤、カシェ剤、又は錠剤そのものであってもよいし、又は適切な数のこれらのパッケージ化された形態のいずれかであってもよい。単位剤形は、単回用量の注射可能な形態で、例えばペンの形態で提供されてもよい。組成物は、あらゆる好適な経路及び投与手段に合わせて製剤化されてもよい。皮下又は経皮の投与様式は、本明細書で説明される治療用タンパク質に特に好適であり得る。
本発明の医薬組成物はまた、保存剤、湿潤剤、乳化剤及び分散剤などのアジュバントを含有していてもよい。微生物の存在の防止は、滅菌手順と、様々な抗菌剤及び抗真菌剤、例えば、パラベン、クロロブタノール、フェノールソルビン酸などの包含との両方によって確実にすることができる。組成物への等張剤、例えば糖、塩化ナトリウムなども望ましい場合がある。加えて、注射可能な医薬の形態の持続吸収は、モノステアリン酸アルミニウム及びゼラチンなどの吸収を遅延させる物質の包含によって達成することができる。
また本発明の医薬組成物は、薬学的に許容される抗酸化剤を包含していてもよい。例示的な薬学的に許容される抗酸化剤は、水溶性抗酸化剤、例えばアスコルビン酸、塩酸システイン、硫酸水素ナトリウム、メタ重亜硫酸ナトリウム、亜硫酸ナトリウムなど;油溶性抗酸化剤、例えばパルミチン酸アスコルビル、ブチルヒドロキシアニソール(BHA,butylated hydroxyanisole)、ブチルヒドロキシトルエン(BHT,butylated hydroxytoluene)、レシチン、没食子酸プロピル、アルファ−トコフェロールなど;及び金属キレート剤、例えばクエン酸、エチレンジアミン四酢酸(EDTA,ethylenediamine tetraacetic acid)、ソルビトール、酒石酸、リン酸などである。
別の態様において、本発明は、本発明の異なるポリペプチド及び/若しくは細胞標的化分子、又は前述のもののいずれかのエステル、塩若しくはアミドの1つ又は組合せと、少なくとも1つの薬学的に許容される担体とを含む医薬組成物を提供する。
治療用組成物は、典型的には滅菌されており、製造及び貯蔵条件下で安定である。組成物は、溶液、マイクロエマルジョン、リポソーム、又は高い薬物濃度に好適な他の秩序ある構造として製剤化されてもよい。担体は、例えば、水、アルコール、例えばエタノール、ポリオール(例えばグリセロール、プロピレングリコール、及び液体ポリエチレングリコール)、又はあらゆる好適な混合物を含有する溶媒又は分散媒であり得る。適切な流動性は、当業界において周知の調合の化学に従って、例えば、レシチンなどのコーティングの使用によって、分散液のケースで求められる粒度の維持によって、及び界面活性剤の使用によって維持することができる。特定の実施形態において、等張剤、例えば糖、マンニトール、ソルビトールなどの多価アルコール、又は塩化ナトリウムが組成物において望ましい可能性がある。注射用組成物の持続吸収は、組成物中に、例えばモノステアリン酸塩及びゼラチンなどの吸収を遅延させる物質を包含させることによって達成することができる。
皮内又は皮下適用に使用される溶液又は懸濁液は、典型的には、滅菌希釈剤、例えば注射用水、食塩水、不揮発性油、ポリエチレングリコール、グリセリン、プロピレングリコール又は他の合成溶媒;抗菌剤、例えばベンジルアルコール又はメチルパラベン;抗酸化剤、例えばアスコルビン酸又は重亜硫酸ナトリウム;キレート剤、例えばエチレンジアミン四酢酸;緩衝剤、例えば酢酸塩、クエン酸塩又はリン酸塩;及び張度調節剤、例えば塩化ナトリウム又はデキストロースなどの1又は2以上を包含する。pHは、酸又は塩基、例えば塩酸若しくは水酸化ナトリウム、又はクエン酸塩、リン酸塩、酢酸塩を含む緩衝剤などで調整することができる。このような調製物は、ガラス又はプラスチックで製作された、アンプル、使い捨てのシリンジ又は複数回用量用のバイアル中に封入されていてもよい。
滅菌注射用溶液は、必要に応じて上述した成分の1つ又は組合せを含む適切な溶媒中に本発明のポリペプチド又は細胞標的化分子を必要な量で取り込み、続いて滅菌精密ろ過することによって調製されてもよい。分散液は、分散媒及び上述したものなどの他の成分を含有する滅菌媒体に活性化合物を取り込むことによって調製されてもよい。滅菌注射用溶液を調製するための滅菌粉末のケースにおいて、調製方法は、それらの滅菌ろ過溶液から任意の追加の望ましい成分に加えて活性成分の粉末を生じる真空乾燥及びフリーズドライ(凍結乾燥)である。
本発明のポリペプチド又は細胞標的化分子の治療有効量が、例えば静脈内、皮膚又は皮下注射によって投与するために設計される場合、結合剤は、パイロジェンフリーの非経口的に許容できる水溶液の形態であると予想される。適切なpH、等張性、安定性などを検討して非経口的に許容できるタンパク質溶液を調製するための方法は、当業界における能力の範囲内である。静脈内、皮膚、又は皮下注射にとって好ましい医薬組成物は、結合剤に加えて、等張の媒体、例えば塩化ナトリウム注射液、リンゲル注射液、デキストロース注射液、デキストロース及び塩化ナトリウム注射液、乳酸加リンゲル注射液、又は当業界で公知の他の媒体を含有すると予想される。また本発明の医薬組成物は、安定剤、保存剤、緩衝液、抗酸化剤、又は当業者に周知の他の添加剤を含有していてもよい。
本明細書の他所で説明されるように、本発明のポリペプチド又は細胞標的化分子は、インプラント、経皮パッチ、及びマイクロカプセル化された送達系を含む放出制御製剤などの、急速な放出から化合物を保護すると予想される担体を用いて調製されてもよい。生分解性の生体適合性ポリマー、例えばエチレン酢酸ビニル、ポリ無水物、ポリグリコール酸、コラーゲン、ポリオルトエステル、及びポリ乳酸を使用することができる。このような製剤を調製するための多くの方法は特許化されているか、又は一般的に当業者に公知である(例えばSustained and Controlled Release Drug Delivery Systems (Robinson J, ed., Marcel Dekker, Inc., NY, U.S., 1978)を参照)。
特定の実施形態において、本発明の医薬組成物は、インビボにおいて望ましい分布を確実にするように製剤化されてもよい。例えば、血液脳関門は、多くの大きい及び/又は親水性の化合物を排除する。特定のインビボにおける配置に本発明の治療化合物又は組成物を標的化するために、それらを例えばリポソーム中に製剤化してもよく、ここでリポソームは、特定の細胞又は臓器に選択的に輸送されることにより標的化された薬物送達を強化する1又は2以上の部分を含んでいてもよい。例示的な標的化部分は、葉酸塩又はビオチン;マンノシド;抗体;界面活性プロテインA受容体;p120カテニンなどを包含する。
医薬組成物は、インプラント又は微粒子系として使用するように設計された非経口製剤を包含する。インプラントの例は、エマルジョン、イオン交換樹脂、及び可溶性塩溶液などの高分子又は疎水性成分で構成されるデポ製剤である。微粒子系の例は、マイクロスフェア、微粒子、ナノカプセル、ナノスフェア、及びナノ粒子である(例えばHonda M et al., Int J Nanomedicine 8: 495-503 (2013)、Sharma A et al., Biomed Res Int 2013: 960821 (2013)、Ramishetti S, Huang L, Ther Deliv 3: 1429-45 (2012)を参照)。放出制御製剤は、イオンに対する感受性を有するポリマー、例えばリポソーム、ポロキサマー407、及びヒドロキシアパタイトなどを使用して調製されてもよい。
X.ポリヌクレオチド、発現ベクター、及び宿主細胞
本発明のポリペプチド及びタンパク質のほかにも、本発明のポリペプチド及び細胞標的化分子、又はそれらの機能的な部分をコードするポリヌクレオチドも、本発明の範囲内に包含される。用語「ポリヌクレオチド」は、用語「核酸」と同等であり、そのそれぞれが、デオキシリボ核酸(DNA,deoxyribonucleic acid)のポリマー、リボ核酸(RNA,ribonucleic acid)のポリマー、ヌクレオチド類似体を使用して生成されたこれらのDNA又はRNAの類似体、並びにそれらの誘導体、フラグメント及びホモログの1又は2以上を包含する。本発明のポリヌクレオチドは、一本鎖、二本鎖、又は三本鎖であり得る。このようなポリヌクレオチドは、例えば、RNAコドンの第三の位置で許容されるが異なるRNAコドンとして同じアミノ酸をコードすることが公知のゆらぎを考慮に入れて、例示的なタンパク質をコードすることが可能な全てのポリヌクレオチドを包含するように具体的に開示されている(Stothard P, Biotechniques 28: 1102-4 (2000)を参照)。
一態様において、本発明は、本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又は細胞標的化タンパク質、又はそれらのフラグメント若しくは誘導体をコードするポリヌクレオチドを提供する。ポリヌクレオチドは、例えば、タンパク質のアミノ酸配列の1つを含むポリペプチドに対して、少なくとも50%、55%、60%、65%、70%、75%、80%、85%、90%、95%、99%又はそれよりより高い同一性を有するポリペプチドをコードする核酸配列を包含し得る。また本発明は、本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又は細胞標的化タンパク質、又はそれらのフラグメント若しくは誘導体をコードするポリヌクレオチドにストリンジェントな条件下でハイブリダイズするヌクレオチド配列、又はあらゆるこのような配列のアンチセンス若しくは相補物を含むポリヌクレオチドも包含する。
本発明の分子(例えば、CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又はそれを含む細胞標的化タンパク質)の誘導体又は類似体は、とりわけ、例えば、同じサイズのポリヌクレオチド又はポリペプチド配列に対して、又は当業界において公知のコンピューター相同性プログラムによってアライメントが行われる並べられた配列と比較した場合に、少なくとも約45%、50%、70%、80%、95%、98%、又は99%もの同一性で(好ましい同一性は80〜99%である)、本発明のポリヌクレオチド、CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド、又は細胞標的化タンパク質に実質的に相同な領域を有するポリヌクレオチド(又はポリペプチド)分子を包含する。例示的なプログラムは、Smith T, Waterman M, Adv. Appl. Math. 2: 482-9 (1981)のアルゴリズムを使用するデフォルト設定を使用した、GAPプログラム(Wisconsin Sequence Analysis Package、UNIX用バージョン8、Genetics Computer Group、University Research Park、Madison、WI、U.S.)である。また、ストリンジェントな条件下で本発明の細胞標的化タンパク質をコードする配列の相補物にハイブリダイズすることが可能なポリヌクレオチドも包含される(例えばAusubel F et al., Current Protocols in Molecular Biology (John Wiley & Sons, New York, NY, U.S., 1993)、及び以下を参照)。ストリンジェントな条件は当業者公知であり、例えば、Current Protocols in Molecular Biology (John Wiley & Sons, NY, U.S., Ch. Sec. 6.3.1-6.3.6 (1989))で見出すことができる。
本発明はさらに、本発明の範囲内のポリヌクレオチドを含む発現ベクターを提供する。本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又は細胞標的化タンパク質をコードすることが可能なポリヌクレオチドは、発現ベクターを生産するための当業界において周知の材料及び方法を使用して、細菌プラスミド、ウイルスベクター及びファージベクターなどの公知のベクターに挿入されてもよい。このような発現ベクターは、いずれかの選択された宿主細胞又は無細胞発現系(例えば以下の実施例で説明されるpTxb1及びpIVEX2.3)内での検討される本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又は細胞標的化タンパク質の産生を維持するのに必要なポリヌクレオチドを包含すると予想される。特定のタイプの宿主細胞又は無細胞発現系と共に使用するための発現ベクターを含む具体的なポリヌクレオチドは当業者周知であり、それらを慣例的な実験を使用して決定してもよいし、又は購入してもよい。
用語「発現ベクター」は、本明細書で使用される場合、1又は2以上の発現単位を含む直鎖状又は環状のポリヌクレオチドを指す。用語「発現単位」は、所望のポリペプチドをコードし、宿主細胞中で核酸セグメントの発現をもたらすことが可能なポリヌクレオチドセグメントを示す。発現単位は、典型的には、転写プロモーター、所望のポリペプチドをコードするオープンリーディングフレーム、及び転写ターミネーターを含み、全て機能できるように配置される。発現ベクターは、1又は2以上の発現単位を含有する。したがって、本発明の内容において、単一のポリペプチド鎖を含む、CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又はタンパク質(例えば、CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化された志賀毒素エフェクター領域が遺伝子組換えされたscFv)をコードする発現ベクターは、少なくとも単一のポリペプチド鎖のための発現単位を包含し、それに対して例えば2又は3以上のポリペプチド鎖(例えばVドメインを含む1つの鎖及び毒素エフェクター領域に連結されたVドメインを含む第二の鎖)を含むタンパク質は、そのタンパク質の2つのポリペプチド鎖それぞれにつき1つずつの少なくとも2つの発現単位を包含する。本発明の多重鎖の細胞標的化タンパク質を発現させるために、各ポリペプチド鎖のための発現単位が、異なる発現ベクターに別々に含有されていてもよい(例えば発現は、各ポリペプチド鎖のための発現ベクターが導入された単一の宿主細胞で達成され得る)。
ポリペプチド及びタンパク質の一過性の又は安定な発現を指示することが可能な発現ベクターは当業界において周知である。発現ベクターは、一般的に、これらに限定されないが、以下:それぞれ当業界において周知の、異種シグナル配列又はペプチド、複製起点、1又は2以上のマーカー遺伝子、エンハンサー要素、プロモーター、及び転写終結配列の1又は2以上を包含する。任意の調節制御配列、統合配列、及び採用される可能性がある有用なマーカーは、当業界において公知である。
用語「宿主細胞」は、発現ベクターの複製又は発現を維持することができる細胞を指す。宿主細胞は、原核細胞、例えば大腸菌又は真核細胞(例えば酵母、昆虫、両生類、鳥類、又は哺乳動物細胞)であり得る。本発明のポリヌクレオチドを含むか又は本発明のポリペプチド及び/若しくは細胞標的化タンパク質を産生することが可能な宿主細胞株の作出及び単離は、当業界において公知の標準的な技術を使用して達成することができる。
本発明の範囲内のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド及び/又はタンパク質は、宿主細胞でのより最適な発現などの所望の特性を達成するのにより好適にすることができる、1又は2以上のアミノ酸の変更又は1又は2以上のアミノ酸の欠失若しくは挿入によってポリペプチド及び/又はタンパク質をコードするポリヌクレオチドを改変することによって生産される、本明細書で説明されるポリペプチド及びタンパク質のバリアント又は誘導体であってもよい。
XI.送達デバイス及びキット
特定の実施形態において、本発明は、1又は2以上の本発明の物質の組成物、例えばそれを必要とする対象に送達するための医薬組成物を含むデバイスに関する。したがって、1又は2以上の本発明の化合物を含む送達デバイスを使用して、静脈内、皮下、筋肉内又は腹膜内注射;経口投与;経皮投与;肺内又は経粘膜投与;インプラント、浸透圧ポンプ、カートリッジ又はマイクロポンプによる投与;又は当業者によって認識される他の手段による投与などの様々な送達方法によって本発明の物質の組成物を患者に投与することができる。
また、少なくとも1つの本発明の物質の組成物を含み、包装及び使用説明書を含んでいてもよいキットも本発明の範囲内である。キットは、薬物の投与及び/又は診断の情報収集に有用であり得る。本発明のキットは、少なくとも1つの追加の試薬(例えば、標準、マーカーなど)を含んでいてもよい。キットは、典型的には、キット内容物の意図した使用を表示するラベルを包含する。キットは、サンプル又は対象中で細胞型(例えば腫瘍細胞)を検出するための、又は患者が、本明細書で説明されるような本発明の化合物、組成物又は関連する方法を利用する治療方策に応答するグループに属するかどうかを診断するための試薬及び他のツールをさらに含んでいてもよい。
XII.本発明のT細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドを生成する方法
本発明は、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定がすでに可能なポリペプチドを改変することによって、本発明のT細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドを作製する方法であって、異種T細胞エピトープをポリペプチドに付加するステップを含む方法を提供する。本発明の特定のさらなる方法において、異種T細胞エピトープは、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定が可能なポリペプチド内に組み込まれるか又は挿入される。
本発明の方法の特定の実施形態において、本発明のCD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドは、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定がすでに可能なポリペプチドを改変することによって作製され、本方法は、ポリペプチドに異種T細胞エピトープを付加するステップを含む。本発明の特定のさらなる方法において、異種T細胞エピトープは、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定が可能なポリペプチド内に組み込まれるか又は挿入される。
本発明の方法の特定の実施形態において、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定がすでに可能なポリペプチドが、本発明のT細胞の高度免疫化されたポリペプチドに作製され、本方法は、ポリペプチドに異種T細胞エピトープを付加するステップを含む。本発明の方法の特定のさらなる実施形態において、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定がすでに可能なポリペプチドが、本発明のCD8+T細胞の高度免疫化されたポリペプチドに作製され、本方法は、ポリペプチドに異種T細胞エピトープを付加するステップを含む。本発明の特定のさらなる方法において、異種T細胞エピトープは、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定が可能なポリペプチド内に組み込まれるか又は挿入される。
本発明の方法の特定の実施形態において、MHCクラスI分子による提示のためにT細胞エピトープを送達することが可能なポリペプチドが作製され、本方法は、細胞のエンドソーム区画から細胞のプロテアソームへのT細胞エピトープの細胞内送達が可能なポリペプチドに、異種T細胞エピトープを付加するステップを含む。本発明の特定のさらなる方法において、異種T細胞エピトープは、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定が可能なポリペプチド内に組み込まれるか又は挿入される。
本発明の方法の特定の実施形態において、T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドが作製され、本方法は、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定がすでに可能なポリペプチドの内因性B細胞エピトープ領域に、異種T細胞エピトープを挿入するか又は組み込むステップを含む。
本発明の方法の特定の実施形態において、本発明のCD8+T細胞の高度免疫化された及びB細胞/CD4+T細胞の脱免疫化されたポリペプチドが作製され、本方法は、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定がすでに可能なポリペプチドの内因性B細胞エピトープ領域に、異種T細胞エピトープを組み込むか又は挿入するステップを含む。
本発明の方法の特定の実施形態において、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定がすでに可能なポリペプチドが、本発明のT細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチドに作製され、本方法は、ポリペプチドの内因性B細胞エピトープ領域に、異種T細胞エピトープを組み込むか又は挿入するステップを含む。本発明の方法の特定のさらなる実施形態において、細胞のエンドソーム区画から細胞のサイトゾル、ER、又はリソソームへの細胞内の経路決定がすでに可能なポリペプチドが、本発明のCD8+T細胞の高度免疫化されたポリペプチドに作製され、本方法は、ポリペプチドの内因性B細胞エピトープ領域に、異種T細胞エピトープを組み込むか又は挿入するステップを含む。
本発明の方法の特定の実施形態において、MHCクラスI分子による提示のためにT細胞エピトープを送達することが可能な脱免疫化されたポリペプチドが作製され、本方法は、細胞のエンドソーム区画から細胞のプロテアソームへのT細胞エピトープの細胞内送達が可能なポリペプチドの内因性B細胞エピトープ領域に、異種T細胞エピトープを組み込むか又は挿入するステップを含む。
本発明の方法の特定の実施形態において、脊索動物に投与される際のB細胞の免疫原性を低下させた、脱免疫化されたポリペプチドが作製される。本発明の方法の特定の実施形態は、ポリペプチドにおいてB細胞の免疫原性を低下させるための方法であって、ポリペプチドに付加された異種T細胞エピトープに含まれる1又は2以上のアミノ酸残基でポリペプチド内のB細胞エピトープ領域を破壊するステップを含む方法である。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープ領域中に1又は2以上のアミノ酸置換を作製することをさらに含む。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープ領域中に1又は2以上のアミノ酸挿入を作製することをさらに含む。
本発明の方法の特定の実施形態は、脊索動物への投与後に、ポリペプチドにおいてB細胞の免疫原性を低下させ、同時にCD8+T細胞の免疫原性を増加させるための方法であって、ポリペプチドに付加された異種CD8+T細胞エピトープに含まれる1又は2以上のアミノ酸残基でポリペプチド内のB細胞エピトープ領域を破壊するステップを含む方法である。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープ領域中に1又は2以上のアミノ酸置換を作製することをさらに含む。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープ領域中に1又は2以上のアミノ酸挿入を作製することをさらに含む。
本発明の方法の特定の実施形態は、脊索動物への投与後に、ポリペプチドにおいてB細胞の免疫原性を低下させ、同時にCD8+T細胞の免疫原性を増加させるための方法であって、1)ポリペプチド中のB細胞エピトープを同定するステップ;及び2)ポリペプチドに付加された異種CD8+T細胞エピトープに含まれる1又は2以上のアミノ酸残基で同定されたB細胞エピトープを破壊するステップを含む方法である。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープ領域中に1又は2以上のアミノ酸置換を作製することをさらに含む。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープ領域中に1又は2以上のアミノ酸挿入を作製することをさらに含む。
本発明の方法の特定の実施形態は、脊索動物への投与後に、ポリペプチドにおいてB細胞の免疫原性を低下させ、同時にCD8+T細胞の免疫原性を増加させるための方法であって、1)ポリペプチド中のB細胞エピトープを同定するステップと、2)ポリペプチドに付加された異種CD8+T細胞エピトープに含まれる1又は2以上のアミノ酸残基で同定されたB細胞エピトープを破壊するステップとを含む方法である。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープ領域中に1又は2以上のアミノ酸置換を作製することをさらに含む。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープ領域中に1又は2以上のアミノ酸挿入を作製することをさらに含む。
本発明の方法の特定の実施形態において、脊索動物に投与される際のCD4+T細胞の免疫原性を低下させた、CD4+T細胞の脱免疫化されたポリペプチドが作製される。本発明の方法の特定の実施形態は、ポリペプチドにおいてCD4+T細胞の免疫原性を低下させるための方法であって、ポリペプチドに付加された異種CD8+T細胞エピトープに含まれる1又は2以上のアミノ酸残基でポリペプチド内のCD4+T細胞エピトープ領域を破壊するステップを含む方法である。特定のさらなる実施形態において、破壊するステップは、B細胞エピトープ領域中に1又は2以上のアミノ酸置換を作製することをさらに含む。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープ領域中に1又は2以上のアミノ酸挿入を作製することをさらに含む。
本発明の方法の特定の実施形態は、脊索動物への投与後に、ポリペプチドにおいてCD4+T細胞の免疫原性を低下させ、同時にCD8+T細胞の免疫原性を増加させるための方法であって、ポリペプチドに付加された異種CD8+T細胞エピトープに含まれる1又は2以上のアミノ酸残基でポリペプチド内のCD4+T細胞エピトープ領域を破壊するステップを含む方法である。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープ領域中に1又は2以上のアミノ酸置換を作製することをさらに含む。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープ領域中に1又は2以上のアミノ酸挿入を作製することをさらに含む。
本発明の方法の特定の実施形態は、脊索動物への投与後に、ポリペプチドにおいてCD4+T細胞の免疫原性を低下させ、同時にCD8+T細胞の免疫原性を増加させるための方法であって、1)ポリペプチド中のCD4+T細胞エピトープを同定するステップ;及び2)ポリペプチドに付加された異種CD8+T細胞エピトープに含まれる1又は2以上のアミノ酸残基で同定されたCD4+T細胞エピトープを破壊するステップを含む方法である。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープ領域中に1又は2以上のアミノ酸置換を作製することをさらに含む。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープ領域中に1又は2以上のアミノ酸挿入を作製することをさらに含む。
本発明の方法の特定の実施形態は、脊索動物への投与後に、ポリペプチドにおいてCD4+T細胞の免疫原性を低下させ、同時にCD8+T細胞の免疫原性を増加させるための方法であって、1)ポリペプチド中のCD4+T細胞エピトープを同定するステップと、2)ポリペプチドに付加された異種CD8+T細胞エピトープに含まれる1又は2以上のアミノ酸残基で同定されたCD4+T細胞エピトープを破壊するステップとを含む方法である。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープ領域中に1又は2以上のアミノ酸置換を作製することをさらに含む。特定のさらなる実施形態において、破壊するステップは、CD4+T細胞エピトープ領域中に1又は2以上のアミノ酸挿入を作製することをさらに含む。
XIII.本発明のT細胞の高度免疫化された及び/若しくはB細胞/CD4+T細胞の脱免疫化されたポリペプチド、それを含む細胞標的化分子、又はそれらの医薬及び/若しくは診断用組成物を使用するための方法
一般的に、本発明の目的は、特定のがん、腫瘍、成長異常、免疫障害、又は本明細書で述べられるさらなる病的状態などの疾患、障害、及び状態の予防及び/又は治療において使用することができる薬理活性薬剤、加えてそれを含む組成物を提供することである。したがって、本発明は、標的細胞のMHCクラスI提示経路にT細胞エピトープを送達するために、標的化された細胞の殺滅のために、標的化された細胞に追加の外因性物質を送達するために、標的化された細胞の内部を標識するために、診断の情報を収集するために、及び本明細書で説明されるような疾患、障害、及び状態を治療するために、本発明のポリペプチド、細胞標的化分子、及び医薬組成物を使用する方法を提供する。
例えば細胞毒性の毒素領域ポリペプチドを含む可能性のある治療剤などのすでに細胞毒性の分子は、より高い細胞毒性を示すか、及び/又は重複してバックアップする細胞毒性を完全に異なるメカニズムを介して作動させるように加工してもよい。これらの複数の細胞毒性メカニズムは、相互に補完する可能性があり(例えば、直接及び間接的な細胞殺滅の2つのメカニズム、加えて局所領域への免疫刺激のメカニズムの両方を提供することによって)、互いに重複してバックアップする可能性があり(例えば、他方の非存在下で直接の細胞殺滅を提供することによって)、及び/又は発生した耐性から保護する可能性がある(悪性又は感染細胞が2種の異なるメカニズムを同時にブロックする可能性がより低い状況に耐性を制限することによって)。
加えて、細胞毒性に関して毒素エフェクター及び/又は酵素領域を頼る親の細胞毒性分子は、酵素的に不活性になるが、標的細胞のT細胞エピトープのMHCクラスI系への送達とそれに続く標的細胞表面への提示によって細胞毒性になるように親分子を変異させることによって加工してもよい。このアプローチは、1つの細胞毒性メカニズムを除去しつつも別のメカニズムを追加して、T細胞エピトープ提示によって標的細胞が局所領域に免疫刺激する能力を追加する。さらに、細胞毒性に関して酵素領域を頼る親の細胞毒性分子は、酵素活性が低下されるか又は消去されるように親分子の酵素ドメインにT細胞エピトープを組み込むことにより、T細胞エピトープのMHCクラスI系への送達のみを介して、細胞毒性になるように加工してもよい。これは、エンドソーム区画中に入ったらサイトゾル及び/又はERに経路決定する能力を有する酵素的に細胞毒性の分子を、標的細胞のT細胞エピトープのMHCクラスI系への送達とそれに続く細胞毒性のための標的細胞表面での提示を頼る酵素的に不活性な細胞毒性分子に一段階で改変することを可能にする。本発明のポリペプチドのいずれも、例えば生物内などの2又は3以上の細胞型の混合物内の特異的な細胞型を標的化する様々な細胞を標的化する結合領域を連結することによって、治療剤としての可能性を有する細胞を標的化する細胞毒性分子に加工することができる。
特定には、本発明の目的は、現在のところ当業界において公知の薬剤、組成物、及び/又は方法と比較して一定の利点を有するこのような薬理活性薬剤、組成物、及び/又は方法を提供することである。したがって、本発明は、ポリペプチド配列を特徴とするポリペプチド及びタンパク質並びにそれらの医薬組成物を使用する方法を提供する。例えば、配列番号1〜60のポリペプチド配列のいずれかが、以下の方法で使用される細胞標的化分子の成分として具体的に利用される可能性がある。
本発明は、細胞を殺滅する方法であって、細胞を、インビトロ又はインビボのいずれかで本発明のポリペプチド、タンパク質、又は医薬組成物と接触させるステップを含む方法を提供する。本発明のポリペプチド、タンパク質、及び医薬組成物を使用して、1つ又は複数の細胞を特許請求された物質の組成物の1つと接触させたときに特異的な細胞型を殺滅することができる。特定の実施形態において、本発明の細胞毒性ポリペプチド、タンパク質、又は医薬組成物を使用して、がん細胞、感染細胞、及び/又は血液学的な細胞を含む混合物などの異なる細胞型の混合物中の特異的な細胞型を殺滅することができる。特定の実施形態において、本発明の細胞毒性ポリペプチド、タンパク質、又は医薬組成物を使用して、異なる細胞型の混合物中のがん細胞を殺滅することができる。特定の実施形態において、本発明の細胞毒性ポリペプチド、タンパク質、又は医薬組成物を使用して、移植前の組織などの異なる細胞型の混合物中の特異的な細胞型を殺滅することができる。特定の実施形態において、本発明のポリペプチド、タンパク質、又は医薬組成物を使用して、治療目的の投与前の組織材料などの細胞型の混合物中の特異的な細胞型を殺滅することができる。特定の実施形態において、本発明のポリペプチド、タンパク質、又は医薬組成物を使用して、ウイルス又は微生物に感染した細胞を選択的に殺滅するか、又はそれとは別に細胞表面生体分子などの特定の細胞外標的生体分子を発現する細胞を選択的に殺滅することができる。本発明のポリペプチド、タンパク質、及び医薬組成物は、例えば、インビトロ又はインビボのいずれかで組織から不要な細胞型を枯渇させることにおける使用、移植片対宿主反応を治療するために免疫応答をモジュレートすることにおける使用、抗ウイルス剤としての使用、抗寄生虫剤としての使用、及び移植組織から不要な細胞型を取り除くことにおける使用などの様々な適用を有する。
特定の実施形態において、本発明の細胞毒性ポリペプチド、タンパク質、又は医薬組成物は、単独で、又は他の化合物又は医薬組成物と組み合わせて、インビトロで、又は対象において、例えば治療が必要な患者においてインビボで細胞集団に投与されると、有力な細胞殺滅活性を示すことができる。特異的な細胞型に対して高親和性の結合領域を使用して酵素的に活性な毒素領域及びT細胞エピトープの送達を標的化することによって、生物内の、例えば特定のがん細胞、新生細胞、悪性細胞、非悪性腫瘍細胞、又は感染細胞内の特定の細胞型を特異的且つ選択的に殺滅することに、この有力な細胞殺滅活性を限定することができる。
本発明は、それを必要とする患者において細胞を殺滅する方法であって、患者に、少なくとも1つの本発明の細胞毒性ポリペプチド若しくはタンパク質、又はそれらの医薬組成物を投与するステップを含む方法を提供する。
細胞毒性ポリペプチド、タンパク質、又はそれらの医薬組成物の特定の実施形態を使用して、がん又は腫瘍細胞と物理的に組み合わされていることが見出された細胞外生体分子を標的化することによって、患者におけるがん細胞を殺滅することができる。用語「がん細胞」又は「癌細胞」は、異常に速い速度の様式で成長し分裂する様々な新生細胞を指し、当業者には明らかであると予想される。用語「腫瘍細胞」は、悪性及び非悪性細胞の両方を包含する。一般的に、がん及び/又は腫瘍は、治療及び/又は予防を受けることが可能な疾患、障害、又は状態と定義することができる。本発明の方法及び組成物によって利益を得る可能性があるがん細胞及び/又は腫瘍細胞で構成されるがん及び腫瘍(悪性又は良性のどちらも)は、当業者には明らかであると予想される。新生細胞は、以下:制御不能な成長、分化の欠如、局所的な組織浸潤、血管新生、及び転移の1又は2以上を伴うことが多い。
本発明の細胞毒性ポリペプチド若しくは細胞標的化分子、又はそれらの医薬組成物の特定の実施形態を使用して、免疫細胞と物理的に組み合わされていることが見出された細胞外生体分子を標的化することによって、患者における免疫細胞(健康か又は悪性かどうかにかかわらず)を殺滅することができる。
本発明の細胞毒性ポリペプチド若しくは細胞標的化分子、又はそれらの医薬組成物の特定の実施形態を使用して、感染細胞と物理的に組み合わされていることが見出された細胞外生体分子を標的化することによって、患者における感染細胞を殺滅することができる。
悪性、新生物、又はそれとは別の意味で不要なT細胞及び/又はB細胞の細胞集団(例えば骨髄)を患者から取り出し、次いでT細胞及び/又はB細胞が枯渇した材料を患者に再注入する目的のために、本発明の細胞標的化分子又はそれらの医薬組成物を利用することは、本発明の範囲内である(例えばvan Heeckeren W et al., Br J Haematol 132: 42-55 (2006)を参照;例えばAlpdogan O, van den Brink M, Semin Oncol 39: 629-42 (2012)を参照)。
患者から取り出された単離された細胞集団からT細胞及び/又はB細胞をエクスビボで枯渇させる目的で、本発明の細胞標的化分子又はそれらの医薬組成物を利用することは、本発明の範囲内である。1つの非限定的な例において、本発明の細胞標的化分子は、臓器及び/又は組織の移植による拒絶反応を防止するための方法で使用することができ、ここでドナーの臓器又は組織は、臓器からドナーのT細胞及び/又はB細胞を取り除くために、移植前に、本発明の細胞毒性細胞標的化分子又はそれらの医薬組成物で潅流される(例えばAlpdogan O, van den Brink M, Semin Oncol 39: 629-42 (2012)を参照)。
また、骨髄及び又は幹細胞移植を受けようとする患者における移植片対宿主病及び耐性の誘発に対する防止策として、ドナー細胞集団からT細胞及び/又はB細胞を枯渇させる目的で本発明の細胞標的化分子又はそれらの医薬組成物を利用することも本発明の範囲内である(例えばvan Heeckeren W et al., Br J Haematol 132: 42-55 (2006)を参照;例えばAlpdogan O, van den Brink M, Semin Oncol 39: 629-42 (2012)を参照)。
本発明の細胞毒性のポリペプチド若しくは細胞標的化分子、又はそれらの医薬組成物の特定の実施形態を使用して、感染細胞と物理的に組み合わされていることが見出された細胞外生体分子を標的化することによって、患者における感染細胞を殺滅することができる。
本発明の細胞標的化分子、又はそれらの医薬組成物の特定の実施形態は、免疫系を活性化して場所の秩序を保つために、非自己のT細胞エピトープペプチド提示細胞を生物内の場所に「接種」するのに使用することができる。この本発明の「接種」方法の特定のさらなる実施形態において、場所は、腫瘤又は感染組織の部位である。この本発明の「接種」方法の好ましい実施形態において、非自己のT細胞エピトープペプチドは、細胞標的化分子の標的細胞によってまだ提示されていないペプチド、標的細胞によって発現されるいずれのタンパク質内でも提示されていないペプチド、標的細胞のプロテオーム内で提示されていないペプチド、接種しようとする部位の細胞外の微環境中で提示されていないペプチド、及び標的化しようとする腫瘤又は感染組織の部位中で提示されていないペプチドからなる群より選択される。
この「接種」方法は、エフェクターT細胞による認識及び下流の免疫応答の活性化のために、1又は2以上のMHCクラスIで提示されたT細胞エピトープで脊索動物内の1又は2以上の標的細胞を標識するように機能する。本発明の細胞標的化分子の、細胞の内在化、細胞内の経路決定、及びT細胞エピトープ送達の機能を利用することによって、送達されたT細胞エピトープを表示する標的細胞は、宿主T細胞による提示標的細胞の認識の誘導及びCTLによる標的細胞殺滅を含むさらなる免疫応答の誘導に利用される。この本発明の細胞標的化分子を使用する「接種」方法は、細胞標的化分子によって送達されたT細胞エピトープを提示するか否かにかかわらず、例えば腫瘤又は感染組織の部位などの接種された微環境内で適応免疫応答を誘導して細胞を攻撃することによって、一時的なワクチン接種作用を提供することができる。この「接種」方法はまた、生物内の標的細胞集団、腫瘤、及び/又は感染組織の部位に対する免疫寛容の破壊を誘導する場合もある。
加えて、本発明は、患者において疾患、障害又は状態を治療する方法であって、それを必要とする患者に、本発明の細胞毒性ポリペプチド若しくは細胞標的化分子、又はそれらの医薬組成物の少なくとも1つの治療有効量を投与するステップを含む方法を提供する。本方法を使用して治療が可能な検討される疾患、障害、及び状態としては、がん、悪性腫瘍、非悪性腫瘍、成長異常、免疫障害、及び微生物感染が挙げられる。本発明の化合物の「治療上有効な投薬量」の投与は、疾患の症状の重症度の減少、疾患の症状がない期間の頻度及び持続時間の増加、又は疾患の苦しみによる損傷若しくは能力障害の予防をもたらすことができる。
本発明の化合物の治療有効量は、投与経路、治療される哺乳動物のタイプ、及び検討される具体的な患者の身体的特性によって決まると予想される。この量を決定するためのこれらの要因及びそれらの関係は、医療分野における熟練した技術者に周知である。この量及び投与方法は、最適な効能を達成するように調整されてもよく、体重、食事、並行して行われる薬物療法のような要因、及び医療分野における当業者に周知の他の要因によって決めてもよい。ヒトでの使用にとって最も適切な投薬量及び用量レジメンは、本発明により得られた結果から導くことができ、適切に設計された臨床試験で確認してもよい。有効な投薬量及び治療プロトコールは、実験動物において低用量で開始して、次いで作用をモニターしながら投薬量を増加させ、同様に投薬レジメンを系統的に変更するという従来の手段によって決定してもよい。所与の対象ごとの最適な投薬量を決定する際に、臨床医により極めて多くの要因を検討に入れることができる。このような検討は当業者公知である。
許容できる投与経路は、これらに限定されないが、エアロゾル、経腸、経鼻、眼、経口、非経口、直腸、経膣、又は経皮(例えばクリーム、ゲル又は軟膏の局所投与、又は経皮パッチ手段による)などの当業界において公知のあらゆる投与経路を指す場合がある。「非経口投与」は、典型的には、作用が意図される部位での注射又はそのような部位と連通する注射に関連し、眼窩下、点滴、動脈内、嚢内、心臓内、皮内、筋肉内、腹膜内、肺内、脊髄内、胸骨内、髄腔内、子宮内、静脈内、クモ膜下、被膜下、皮下、経粘膜、又は経気管投与などが挙げられる。
本発明の医薬組成物の投与のために、投薬量範囲は、一般的には、宿主の体重に対して、約0.0001〜100ミリグラム/キログラム(mg/kg)及びそれより多く、通常は0.01〜5mg/kgであると予想される。例示的な投薬量は、体重1kg当たり0.25mg、体重1kg当たり1mg、体重1kg当たり3mg、体重1kg当たり5mg若しくは体重1kg当たり10mg、又は1〜10mg/kgの範囲内であり得る。例示的な治療計画は、1日1回若しくは2回の投与、又は週1回若しくは2回の投与、2週毎に1回、3週毎に1回、4週毎に1回、月1回、2若しくは3ヶ月毎に1回、又は3〜6ヶ月毎に1回である。投薬量は、特定の患者ごとに治療的有用性を最大化するために必要に応じて、熟練した健康管理の専門家によって選択及び再調整が可能である。
本発明の医薬組成物は、典型的には、同じ患者に複数の機会で投与されると予想される。1回の投薬間の間隔は、例えば2〜5日、1週間、1ヶ月、2若しくは3ヶ月、6ヶ月、又は1年であり得る。また投与間の間隔は、対象又は患者における血中濃度又は他のマーカーの調節に基づいて不規則であってもよい。本発明の化合物のための投薬レジメンは、体重1kg当たり1mg又は体重1kg当たり3mgの静脈内投与を包含し、ここで本化合物は、2〜4週間毎に6回の投薬、次いで3ヶ月毎に体重1kg当たり3mg又は体重1kg当たり1mgで投与される。
本発明の医薬組成物は、当業界において公知の様々な方法の1又は2以上を使用する1又は2以上の投与経路を介して投与してもよい。熟練した作業者は認識しているものと予想されるように、投与の経路及び/又は様式は、所望の結果に応じて様々であると予想される。本発明のポリペプチド、タンパク質、及び医薬組成物のための投与経路としては、例えば、静脈内、筋肉内、皮内、腹膜内、皮下、脊髄、又は他の非経口投与経路、例えば注射又は点滴による投与経路が挙げられる。他の実施形態において、本発明のポリペプチド、タンパク質、又は医薬組成物は、非経口経路、例えば、局所、表皮又は粘膜の投与経路、例えば、鼻腔内、口腔、経膣、直腸、舌下、若しくは局所での投与経路などによって投与され得る。
本発明の治療用ポリペプチド、タンパク質、又は医薬組成物は、当業界において公知の様々な医療用デバイスの1又は2以上を用いて投与されてもよい。例えば、一実施形態において、本発明の医薬組成物は、無針皮下注射デバイスを用いて投与されてもよい。本発明において有用な周知のインプラント及びモジュールの例は、当業界において、例えば、制御された速度で送達するための組み込み型マイクロ点滴ポンプ;経皮投与するためのデバイス;正確な点滴速度で送達するための点滴ポンプ;連続的に薬物送達するための流量可変の組み込み型点滴デバイス;及び浸透性薬物の送達系などが挙げられる。これらの及び他のこのようなインプラント、送達系、及びモジュールは、当業者公知である。
本発明のポリペプチド、タンパク質、又は医薬組成物は、単独で、又は1又は2以上の他の治療剤又は診断剤と組み合わせて投与されてもよい。組合せ療法は、治療しようとする特定の患者、疾患又は状態に基づき選択された少なくとも1つの他の治療剤と組み合わされた、本発明の細胞毒性細胞標的化分子又はそれらの医薬組成物を包含していてもよい。他のこのような薬剤の例としては、とりわけ、細胞毒性の抗がん剤若しくは化学療法剤、抗炎症剤若しくは増殖抑制剤、抗微生物剤若しくは抗ウイルス剤、成長因子、サイトカイン、鎮痛薬、治療活性を有する小分子若しくはポリペプチド、単鎖抗体、古典的な抗体若しくはそれらのフラグメント、又は1又は2以上のシグナル伝達経路をモジュレートする核酸分子、及び治療的又は予防的処置レジメンを補足するか又は別の方法でそのようなレジメンにおいて有益な可能性がある類似のモジュレートする治療剤が挙げられる。
本発明のポリペプチド、タンパク質、又は医薬組成物を用いた患者の治療は、好ましくは、標的化された細胞の細胞死及び/又は標的化された細胞の成長の阻害をもたらす。そのようなものとして、本発明の細胞毒性細胞標的化分子、及びそれらを含む医薬組成物は、標的細胞の殺滅又は枯渇が有益であり得る様々な病理学的障害、例えば、とりわけ、がん、腫瘍、他の成長異常、免疫障害、及び感染細胞を治療するための方法において有用であると予想される。本発明は、細胞増殖を抑制し、新形成、過剰に活性なB細胞、及び過剰に活性なT細胞などの細胞の障害を治療するための方法を提供する。
特定の実施形態において、本発明のポリペプチド、タンパク質、及び医薬組成物は、がん、腫瘍(悪性及び良性)、成長異常、免疫障害、及び微生物感染を治療又は予防するのに使用することができる。さらなる態様において、上記のエクスビボの方法を上記のインビボの方法と組み合わせて、骨髄移植のレシピエントにおける拒絶を治療又は予防する方法、及び免疫寛容を達成するための方法を提供することができる。
特定の実施形態において、本発明は、ヒトなどの哺乳動物の対象において悪性腫瘍又は新生物及び他の血液細胞に関連するがんを治療するための方法であって、それを必要とする対象に本発明の細胞毒性タンパク質又は医薬組成物の治療有効量を投与するステップを含む方法を提供する。
本発明の細胞毒性ポリペプチド、タンパク質、及び医薬組成物は、例えば、不要なT細胞を除去することにおける使用、免疫応答をモジュレートして移植片対宿主反応を治療することにおける使用、抗ウイルス剤としての使用、抗菌剤としての使用、及び移植組織から不要な細胞型を取り除くことにおける使用などの様々な適用を有する。本発明の細胞毒性ポリペプチド、タンパク質、及び医薬組成物は、一般的に抗新生物剤であり、すなわちそれらは、がん又は腫瘍細胞の成長を阻害すること及び/又はそれらの死を引き起こすことによって、新生物又は悪性細胞の発生、成熟、又は蔓延の治療及び/又は予防が可能であることを意味する。
特定の実施形態において、本発明のポリペプチド、タンパク質、又は医薬組成物は、B細胞、形質細胞又は抗体が媒介する疾患又は障害、例えば白血病、リンパ腫、骨髄腫、ヒト免疫不全ウイルス関連の疾患、アミロイド症、溶血尿毒症症候群、多発性動脈炎、敗血症性ショック、クローン病、リウマチ様関節炎、強直性脊椎炎、乾癬性関節炎、潰瘍性大腸炎、乾癬、喘息、シェーグレン症候群、移植片対宿主疾患、移植片拒絶反応、糖尿病、血管炎、強皮症、及び全身性エリテマトーデスなどを治療するのに使用される。
別の態様において、本発明のポリペプチド、タンパク質、及び医薬組成物の特定の実施形態は、抗菌剤であり、すなわちそれらは、例えばウイルス、細菌、菌類、プリオン、又は原生動物によって引き起こされる微生物学的な病原性感染の獲得、発達、又は結果の治療及び/又は予防が可能であることを意味する。
患者におけるT細胞又はB細胞を殺滅する目的で本発明の細胞毒性タンパク質、又はそれらの医薬組成物を患者に投与することによるT細胞又はB細胞が媒介する疾患又は状態の予防又は治療を提供することは、本発明の範囲内である。この使用法は、移植される材料の源、例えばヒト又はヒト以外の源であるかどうかに関係なく、骨髄移植、幹細胞移植、組織移植、又は臓器移植のために患者を準備又は調整することに適合する。
本発明の細胞毒性ポリペプチド、タンパク質、又は医薬組成物を使用して宿主T細胞の標的化された細胞を殺滅することによって、宿主対移植片病の予防又は治療のために骨髄のレシピエントを提供することは、本発明の範囲内である。
本発明の細胞毒性ポリペプチド、タンパク質、及び医薬組成物は、本発明の細胞毒性ポリペプチド、タンパク質、又は医薬組成物の治療有効量をそれを必要とする患者に投与することを含むがんの治療方法に利用することができる。本発明の方法の特定の実施形態において、治療されるがんは、骨がん(例えば多発性骨髄腫又はユーイング肉腫)、乳がん、中枢/末梢神経系のがん(例えば脳がん、神経線維腫症、又は膠芽腫)、消化器がん(例えば胃がん又は結腸直腸がん)、生殖細胞がん(例えば卵巣がん及び睾丸がん)、腺がん(例えば膵臓がん、副甲状腺がん、褐色細胞腫、唾液腺がん、又は甲状腺がん)、頭頸部がん(例えば鼻咽頭がん、口腔がん、又は咽頭がん)、血液がん(例えば白血病、リンパ腫、又は骨髄腫)、腎臓から尿道のがん(例えば腎臓がん及び膀胱がん)、肝臓がん、肺/胸膜がん(例えば中皮腫、小細胞肺癌、又は非小細胞肺癌)、前立腺がん、肉腫(例えば血管肉腫、線維肉腫、カポジ肉腫、又は滑膜肉腫)、皮膚がん(例えば基底細胞癌、扁平上皮癌、又は黒色腫)、及び子宮がんからなる群より選択される。
本発明のポリペプチド、タンパク質、及び医薬組成物は、本発明の細胞毒性タンパク質又は医薬組成物の治療有効量をそれを必要とする患者に投与することを含む免疫障害の治療方法に利用することができる。本発明の方法の特定の実施形態において、免疫障害は、アミロイド症、強直性脊椎炎、喘息、クローン病、糖尿病、移植片拒絶反応、移植片対宿主病、橋本甲状腺炎、溶血尿毒症症候群、HIV関連の疾患、紅斑性狼瘡、多発性硬化症、多発性動脈炎、乾癬、乾癬性関節炎、リウマチ様関節炎、強皮症、敗血症性ショック、シェーグレン症候群、潰瘍性大腸炎、及び血管炎からなる群より選択される疾患に関連する炎症に関する。
本発明の特定の実施形態は、がん、腫瘍、他の成長異常、免疫障害、及び/又は微生物感染を治療又は予防するための医薬組成物又は医薬品の成分として、本発明のポリペプチド又は細胞標的化分子を使用することである。例えば、患者の皮膚上に現れる免疫障害は、炎症を低下させようとする努力において、このような医薬品で治療され得る。別の例において、皮膚の腫瘍は、腫瘍サイズを低下させるか又は腫瘍を完全になくそうとする努力において、このような医薬品で治療され得る。
本発明の特定の細胞毒性ポリペプチド、タンパク質、及び医薬組成物は、免疫の破壊(immunolesioning)及びニューロンのトレースなどの分子神経外科適用で使用することができる(総論については、Wiley R, Lappi D, Adv Drug Deliv Rev 55: 1043-54 (2003)を参照)。例えば、標的化ドメインは、様々なリガンド、例えば神経回路に特異的なGタンパク質共役受容体などのニューロン表面の受容体と結合することによって特異的な神経細胞型を標的化する神経伝達物質及び神経ペプチドから選択又は誘導されてもよい。同様に、標的化ドメインは、ニューロン表面の受容体と結合する抗体から選択又は誘導されてもよい。特定の毒素がそれら自身の逆行性軸索輸送をロバストに指示することから、本発明の特定の細胞毒性細胞標的化分子を使用して、細胞体から遠位の細胞毒性タンパク質注射部位で細胞外標的を発現するニューロンを殺滅することができる(Llewellyn-Smith I et al., J Neurosci Methods 103: 83-90 (2000)を参照)。これらの神経細胞型特異的な標的化細胞毒性ポリペプチド及びタンパク質は、例えば感覚のメカニズムを解明するための神経科学の調査(例えばMishra S, Hoon M, Science 340: 968-71 (2013)を参照)、及びパーキンソン及びアルツハイマーなどの神経変性疾患のモデル系を作製すること(例えばHamlin A et al., PLoS One e53472 (2013)を参照)において用途を有する。
本発明の特定の実施形態は、新生細胞及び/又は免疫細胞型の内部を標識又は検出するために、本発明のポリペプチド、タンパク質、医薬組成物、及び/又は診断用組成物を使用する方法である。本発明の特定のポリペプチド、タンパク質、及び医薬組成物の、逆行性細胞内輸送を介して細胞内の特異的な細胞型及び経路に侵入する能力に基づいて、特異的な細胞型の内部区画が、検出のために標識される。これは、患者内のインサイチュの細胞に、又は生物から取り出された細胞及び組織、例えば生検材料に行うことができる。
本発明の特定の実施形態は、疾患、状態及び/又は障害に関する情報収集の目的で細胞型の存在を検出するために、本発明のポリペプチド、タンパク質、医薬組成物、及び/又は診断用組成物を使用する方法である。本方法は、細胞を診断に十分な量の細胞毒性分子と接触させて、アッセイ又は診断技術によって細胞毒性分子を検出するステップを含む。成句「診断に十分な量」は、利用される特定のアッセイ又は診断技術によって情報収集目的で十分な検出及び正確な測定がもたらされる量を指す。一般的に、インビボでの診断での使用における生物全体にとって診断に十分な量は、対象1kg当たり0.1mg〜100mgの非累積用量の、検出促進剤が連結された本発明の細胞標的化分子と予想される。典型的には、これらの情報収集方法で使用される本発明のポリペプチド又は細胞標的化分子の量は、なお診断に十分な量であるという条件で、可能な限り低いと予想される。例えば、生物におけるインビボでの検出の場合、対象に投与される本発明のポリペプチド、タンパク質、又は医薬組成物の量は、実行可能なレベルで可能な限り低いと予想される。
検出促進剤と組み合わされた本発明のポリペプチド及び細胞標的化分子の細胞型特異的な標的化は、本発明の分子の結合領域の細胞外標的生体分子と物理的に組み合わされた細胞を検出及びイメージングする方法を提供する。本発明のポリペプチド又は細胞標的化分子を使用する細胞のイメージングは、当業界において公知のあらゆる好適な技術によってインビトロ又はインビボで行ってもよい。診断の情報は、生物の全身イメージングなどの当業界において公知の様々な方法を使用して、又は生物から採取したエクスビボのサンプルを使用して収集してもよい。本明細書において使用される用語「サンプル」は、これらに限定されないが、流体、例えば血液、尿、血清、リンパ液、唾液、肛門の分泌物、膣の分泌物、及び精液、並びに生検手順により得られた組織などのあらゆるものを指す。例えば、様々な検出促進剤は、磁気共鳴映像法(MRI)、光学的方法(例えば直接の、蛍光による、及び生物発光によるイメージング)、ポジトロンエミッショントモグラフィー(PET)、単光子放射型コンピューター断層撮影法(SPECT)、超音波、X線コンピューター断層撮影、及び上述のものの組合せなどの技術による、非侵襲的なインビボでの腫瘍イメージングために利用することができる(総論については、Kaur S et al., Cancer Lett 315: 97-111 (2012)を参照)。
本発明の特定の実施形態は、がん、腫瘍、及び/又は免疫細胞型の内部を標識又は検出するための診断用組成物として、本発明のポリペプチド、タンパク質、又は医薬組成物を使用する方法である(例えば、Koyama Y et al., Clin Cancer Res 13: 2936-45 (2007)、Ogawa M et al., Cancer Res 69: 1268-72 (2009)、Yang L et al., Small 5: 235-43 (2009)を参照)。本発明の特定のポリペプチド、タンパク質、及び医薬組成物の、逆行性細胞内輸送を介して細胞内の特異的な細胞型及び経路に侵入する能力に基づいて、特異的な細胞型の内部区画が、検出のために標識される。これは、患者内のインサイチュの細胞に、又は生物から取り出された細胞及び組織、例えば生検材料に行うことができる。
本発明の診断用組成物は、疾患、障害、又は状態を本発明の関連医薬組成物によって潜在的に治療可能であると特徴付けるのに使用することができる。本発明の特定の物質の組成物は、患者が、本明細書で説明されるような本発明の化合物、組成物又は関連方法を利用する治療方策に応答するグループに属するのかどうか、又は本発明の送達デバイスの使用に十分な適正があるのかどうかを決定するのに使用することができる。
本発明の診断用組成物は、疾患、例えばがんが検出された後、その疾患をより十分に特徴付けるために、例えば遠隔転移、不均質性、及びがん進行のステージをモニターするために使用することができる。疾患、障害又は感染の表現型の評価は、治療の意思決定をする間の予後及び予測の役に立つ可能性がある。疾患の再発において、本発明の特定の方法は、局所的な問題か又は全身性の問題かを決定するのに使用することができる。
本発明の診断用組成物は、治療剤のタイプ、例えば小分子薬物、生物学的薬物、又は細胞ベースの療法に関係なく、治療剤に対する応答を評価するのに使用することができる。例えば、本発明の診断の特定の実施形態は、腫瘍サイズの変化、数及び分布などの抗原陽性細胞集団の変化を測定すること、又はすでに患者に施された療法によって標的化された抗原とは異なるマーカーをモニターすることに使用することができる(Smith-Jones P et al., Nat. Biotechnol 22: 701-6 (2004)、Evans M et al., Proc. Natl. Acad. Sci. U.S.A. 108: 9578-82 (2011)を参照)。
細胞型の存在を検出するのに使用される方法の特定の実施形態は、例えば骨がん(例えば多発性骨髄腫又はユーイング肉腫)、乳がん、中枢/末梢神経系のがん(例えば脳がん、神経線維腫症、又は膠芽腫)、消化器がん(例えば胃がん又は結腸直腸がん)、生殖細胞がん(例えば卵巣がん及び睾丸がん)、腺がん(例えば膵臓がん、副甲状腺がん、褐色細胞腫、唾液腺がん、又は甲状腺がん)、頭頸部がん(例えば鼻咽頭がん、口腔がん、又は咽頭がん)、血液がん(例えば白血病、リンパ腫、又は骨髄腫)、腎臓から尿道のがん(例えば腎臓がん及び膀胱がん)、肝臓がん、肺/胸膜がん(例えば中皮腫、小細胞肺癌、又は非小細胞肺癌)、前立腺がん、肉腫(例えば血管肉腫、線維肉腫、カポジ肉腫、又は滑膜肉腫)、皮膚がん(例えば基底細胞癌、扁平上皮癌、又は黒色腫)、子宮がん、AIDS、アミロイド症、強直性脊椎炎、喘息、自閉症、心臓発生、クローン病、糖尿病、エリテマトーデス、胃炎、移植片拒絶反応、移植片対宿主病、グレーブス病、橋本甲状腺炎、溶血尿毒症症候群、HIV関連の疾患、紅斑性狼瘡、リンパ増殖性障害、多発性硬化症、重症筋無力症、神経炎症、多発性動脈炎、乾癬、乾癬性関節炎、リウマチ様関節炎、強皮症、敗血症性ショック、シェーグレン症候群、全身性エリテマトーデス、潰瘍性大腸炎、血管炎、細胞増殖、炎症、白血球活性化、白血球接着、白血球走化性、白血球成熟、白血球遊走、ニューロンの分化、急性リンパ芽球性白血病(ALL,acute lymphoblastic leukemia)、T急性リンパ性白血病/リンパ腫(ALL)、急性骨髄性白血病、急性骨髄性白血病(AML,acute myeloid leukemia)、B細胞慢性リンパ球性白血病(B−CLL,B-cell chronic lymphocytic leukemia)、B細胞前リンパ球性リンパ腫、バーキットリンパ腫(BL,Burkitt's lymphoma)、慢性リンパ球性白血病(CLL,chronic lymphocytic leukemia)、慢性骨髄性白血病(CML−BP,chronic myelogenous leukemia)、慢性骨髄性白血病(CML,chronic myeloid leukemia)、びまん性大細胞型B細胞リンパ腫、濾胞性リンパ腫、ヘアリーセル白血病(HCL,hairy cell leukemia)、ホジキンリンパ腫(HL,Hodgkin's Lymphoma)、血管内大細胞型B細胞リンパ腫、リンパ腫様肉芽腫症、リンパ形質細胞性リンパ腫、MALTリンパ腫、マントル細胞リンパ腫、多発性骨髄腫(MM,multiple myeloma)、ナチュラルキラー細胞白血病、節性辺縁帯B細胞リンパ腫、非ホジキンリンパ腫(NHL,Non-Hodgkin's lymphoma)、プラズマ細胞性白血病、形質細胞腫、原発性滲出液リンパ腫、前リンパ球性白血病、前骨髄球性白血病、小リンパ球性リンパ腫、脾性辺縁帯リンパ腫、T細胞リンパ腫(TCL,T-cell lymphoma)、重鎖病、単クローン性免疫グロブリン血症、単クローン性免疫グロブリン沈着症、骨髄異形成症候群(MDS,myelodusplastic syndrome)、くすぶり型多発性骨髄腫、及びワルデンシュトレーム型マクログロブリン血症などの疾患、障害、及び状態に関する情報を収集するのに使用することができる。
特定の実施形態において、本発明のポリペプチド及び細胞標的化分子、又はそれらの医薬組成物は、診断及び治療の両方に、又は診断単独に使用される。いくつかの状況において、治療のために本発明のポリペプチド又は細胞標的化分子を選択する前に、対象及び/又は例えば治療が必要な患者などの対象からの罹患組織で発現されたHLAバリアント及び/又はHLA対立遺伝子を決定又は検証することが望ましいと予想される。
以下の、1)CD8+T細胞の高度免疫化された及び/又はB細胞/CD4+T細胞の脱免疫化されたポリペプチド、2)CD8+T細胞エピトープを提示する毒素によって誘導されたポリペプチド、及び3)上述のポリペプチドを含み、特定の細胞型を特異的に標的化することが可能な、選択的に細胞毒性の細胞標的化タンパク質の非限定的な実施例によって、本発明をさらに例示する。
[実施例]
以下の実施例は、本発明のいくつかの実施形態を証明する。しかしながら、これらの実施例は例示目的のためのものに過ぎず、本発明の条件及び範囲に関して全体的に明確であると意図されるものではなく、解釈されるべきでもないと理解される。以下の実施例における実験は、そうでなければ詳細に説明される場合を除いて、当業者には周知であり、日常的である標準的な技術を用いて実行された。
MHCクラスIシステムによるT細胞免疫原性エピトープペプチドの提示はCTL介在溶解による殺滅のために提示細胞を標的とし、局所微小環境での免疫刺激を引き起こす。標的細胞内在化治療学での毒素エフェクターポリペプチド成分内の免疫原性エピトープ配列を加工することによって、免疫刺激抗原の標的送達及び提示を達成することができる。例えば、高免疫原性を有する既知のウイルス抗原などの免疫刺激非自己抗原の提示は、他の免疫細胞への標的細胞シグナルによって、標的細胞を破壊し、より多くの免疫細胞をエリアに補充する。
本実施例において、1又は2以上のT細胞エピトープを含ませるために内部領域を加工することによって、T細胞エピトープは志賀毒素エフェクターポリペプチド及びジフテリア毒素エフェクターポリペプチドに組み込まれ又は挿入され、標的細胞内在化分子の成分としての機能を果たすことができる。従って、出発ポリペプチドへのアミノ酸残基、ペプチド、又はポリペプチド成分が付加された末端融合はない。
本実施例において、複数のアミノ酸置換を加工することによって、元の毒素エフェクターポリペプチドと比較して、例示的毒素エフェクターポリペプチドのアミノ酸残基の総数が変化せずに、多くのT細胞エピトープが標的細胞内在化分子の毒素エフェクターポリペプチド成分に組み込まれた。従って、本実施例で試験した全てのジフテリア毒素エフェクターポリペプチド及び多くの志賀毒素エフェクターポリペプチドについて、追加のアミノ酸挿入はなく、存在するアミノ酸置換のみの結果、元のポリペプチドの元の長さが維持された。
細胞標的化分子の成分(例えば、抗毒素及びリガンド毒素融合など)として機能することができる、新規の毒素由来エフェクターポリペプチドが作製され、細胞内在化、細胞質ゾルへの細胞内ルーティング、及びCTLにシグナルを送るために、MHCクラスI経路によって標的細胞表面に提示するための、細胞質ゾルへのT細胞エピトープの送達を促進することができる。
いくつかの新規の毒素由来エフェクターポリペプチドはまた、1又は2以上の本発明の方法を用いて、B細胞エピトープ領域にT細胞エピトープを組み込み又は挿入することによって、脱免疫化された。脱免疫化と同時に、同じ毒素ポリペプチド領域内の標的細胞の表面にT細胞エピトープを提示させるために、予測されたB細胞エピトープ領域を、MHCクラスI分子と結合すると予測された既知のT細胞エピトープに置換することによって破壊した。毒素由来ポリペプチドのアミノ酸配列を、コンピューターで抗原性及び/又は免疫原性B細胞エピトープを予測するために分析した。様々なT細胞エピトープが組み込まれた毒素由来ポリペプチドを、毒素エフェクター機能の保持について実験した。
本発明の毒素エフェクターポリペプチドを提示する例示的T細胞エピトープの毒素エフェクター機能の保持について試験し、本明細書で「野生型」又は「WT」と呼ばれる、野生型毒素ポリペプチド配列を含む毒素エフェクターポリペプチドと比較し、毒素エフェクター領域にいかなる内部改変又は変異も起こらなかった。
本発明の志賀毒素由来ポリペプチドを提示する例示的CD8+T細胞エピトープについての以下の実施例は、MHCクラスI提示のためのT細胞エピトープの送達及び、1又は2以上の志賀毒素エフェクター機能の保持を同時に提供する方法を証明する。さらに、本発明の例示的CD8+T細胞エピトープを提示する及び/又はB細胞/CD4+T細胞が脱免疫化された志賀毒素由来ポリペプチドについての以下の実施例は、1)MHCクラスI提示のためのT細胞エピトープの送達、2)1又は2以上の毒素エフェクター機能の保持、3)毒素エフェクター領域の脱免疫化を同時に提供する方法を証明する。
標的生体分子に結合する本発明の例示的細胞標的化分子は標的細胞タイプによって発現し、標的細胞に進入した。本発明の内在化された例示的細胞標的化タンパク質は、効果的に脱免疫化毒素エフェクター領域を細胞質ゾルに届け、標的細胞のMHCクラスI経路に免疫原性T細胞エピトープを効果的に送達した結果、標的細胞領域の表面にT細胞エピトープペプチドが提示された。
細胞標的化分子のポリペプチド成分内へのT細胞エピトープの組み込み又は挿入
本実施例において、T細胞エピトープ配列はヒトウイルスタンパク質から選択され、志賀毒素エフェクターポリペプチドに組み込まれ又は挿入された。いくつかのバリアントにおいて、T細胞エピトープは、天然由来のB細胞エピトープを破壊するためにB細胞エピトープ領域に組み込まれ又は挿入された。他のバリアントにおいて、T細胞エピトープは、いかなるB細胞エピトープも含まれることが予測されない領域に組み込まれ、従って、これらの改変がいかなる主なB細胞エピトープも破壊することは予測されない。いくつかの上記のバリアントにおいて、T細胞エピトープは触媒活性を破壊することが予測される領域に組み込まれる。
A.組み込み又は挿入のためのT細胞エピトープペプチドの選択
本実施例において、既知のT細胞エピトープペプチドが、細胞質ゾルに細胞内に届ける固有の能力を有する志賀毒素エフェクター領域に組み込む又は挿入するために選択された。例えば、多くの既知の免疫原性ウイルスタンパク質、並びにヒトインフルエンザAウイルス及びヒトCMVウイルスなどのヒトウイルスのウイルスタンパク質のペプチド成分がある。ヒトMHCクラスI分子と結合及び/又はヒトCTL介在応答を誘発することができる免疫原性ウイルスペプチドが選択された。
免疫エピトープデーターベース(IEDB、Immune Epitope Database)分析資源MHC−I結合予測コンセンサスツール及び推奨されるパラメーター(Kim Y et al., Acids Res 40: W252-30 (2012))を用いて、ヒト個体群により多く見られる対立遺伝子にコードされる共通のヒトMHCクラスIヒト白血病抗原(HLA、human leukocyte antigen)バリアントに結合する能力について、T細胞エピトープ(配列番号4〜10)と予測される7つのペプチドを評価した。IEDB MHC−I結合予測分析は「ANN親和性」を予測した。「ANN親和性」は入力されたペプチドと選択されたヒトHLAバリアント間での推定される結合親和性であり、50ナノモル(nM)未満であるIC50値が高親和性とみなされ、50〜500nMのIC50値が中程度の親和性とみなされ、500〜5000nMのIC50値が低親和性とみなされる。IEDB MHC−I結合予測分析では、最も低いパーセンタイル順位が、最も良いバインダーであることを示した。表1は、選択されたヒトHLAバリアントに結合する、7つの被検T細胞エピトープペプチド(配列番号4〜10)の、IEDB MHC−I結合予測パーセンタイル順位及び予測される結合親和性を示す。
IEDB MHC−I結合予測分析の結果は、いくつかのペプチドは複数のヒトMHCクラスI分子と高親和性で結合することが予測された一方で、他のペプチドは分析されたヒトMHCクラスI分子とより中間(more moderate)の親和性で結合することが予測されたことを示す。
B.毒素及び毒素エフェクターポリペプチド中のB細胞エピトープ領域の同定
プロテアソーム送達に適する固有の細胞内ルーティング特性を有する毒素由来ポリペプチドは、例えば抗毒素抗体の産生などの、脊索動物への投与後の望ましくない免疫応答の可能性を下げるために、脱免疫化のために選択された。毒素及び毒素由来ポリペプチドのアミノ酸配列を分析し、抗原性及び/又は免疫原性B細胞エピトープをコンピューターで予測した。
志賀毒素及びジフテリア毒素由来のポリペプチドエフェクターを、B細胞エピトープについて分析した。
志賀毒素由来エフェクターポリペプチド
初めに、志賀毒素Aサブユニット内のB細胞エピトープ領域を同定した。計算法を利用して、投与後の哺乳類の免疫システムによる応答を誘発する可能性がある志賀毒素Aサブユニット配列中の抗原性及び/又は免疫原性B細胞エピトープを予測した。
ポリペプチド配列、志賀様毒素A鎖の3D構造データ(PDB番号:1DM0_A)及びProImmune社(Sarasota, FL, U.S.)が提供するREVEAL(登録商標)システムを使って、志賀毒素のAサブユニット内の直鎖状B細胞エピトープを予測した。同時に、BcePredウェブサーバー(Saha S, Raghava G, Lecture Notes in Comput Sci 3239: 197-204 (2004))、Bepipred直鎖状エピトープ予測(Larsen J et al., Immunome Res 2: 2 (2006))、ElliPro抗体エピトープ予測(Haste Andersen P et al., Protein Sci 15: 2558-67 (2006)、Ponomarenko J, Bourne P, BMC Struct Biol 7: 64 (2007))、及び/又はEpitopiaサーバー(Rubinstein N et al., BMC Bioinformatics 10: 287 (2009))を用いて、志賀毒素のAサブユニットのアミノ酸配列内のB細胞エピトープを予測した。Epitopiaサーバー予測を使って、免疫原性B細胞エピトープを同定し、Epitopiaの免疫原性スケールで多数の残基を含む直鎖状アミノ酸残基の範囲を「高」(4又は5のスコア)とした。様々な計算法によって、3つの典型的な志賀毒素Aサブユニットで、B細胞エピトープ領域についての同様の予測が明らかになった(表2〜4)。
細胞内在化を誘導し、細胞質ゾルへの細胞内ルーティングを誘導することができる、志賀毒素由来毒素エフェクターポリペプチドに加えて、他のタンパク質からの細胞質ゾルルーティングエフェクター領域は、例えば他のタンパク質毒素などの、本発明のポリペプチドの改変のためのポリペプチド源として選択することができる。
ジフテリア毒素由来エフェクターポリペプチド
ジフテリア毒素は、抗毒素及びリガンド毒素融合分子を設計するために用いられており、ジフテリア由来成分は細胞内在化及び細胞質ゾルルーティングエフェクター機能を提供することができる。計算法を利用して、哺乳類の免疫システムによる応答を誘発する可能性があるジフテリア毒素Aサブユニット中の抗原性及び/又は免疫原性B細胞エピトープを予測した。BcePredウェブサーバー(Saha S, Raghava G, Lecture Notes in Comput Sci 3239: 197-204 (2004))を使って、ジフテリア毒素のAサブユニット(配列番号44)中のB細胞エピトープ領域を予測した。この計算法で、典型的なジフテリア毒素Aサブユニット中に7つの推定されるB細胞エピトープ領域があることが明らかになった(表5)。さらに、米国立アレルギー感染病調査所(NIAID、National Institutes of Allergy and Infectious Diseases of the U.S.)が管理する免疫エピトープデーターベース(IEDB)は、全ての実験で特徴づけられたジフテリア毒素のB細胞及びT細胞エピトープを提供すると言われている。現在、IEDBは、本実施例で使用されるジフテリア毒素Aサブユニット及びジフテリア毒素エフェクターポリペプチド配列番号44に関連するペプチドエピトープに関する少なくとも1つの陽性測定を有する7つのエピトープを提供する(表5、並びに配列番号44の領域182〜201及び225〜238を参照されたい)。
C.毒素及び毒素エフェクターポリペプチド中のCD4+T細胞エピトープ領域の同定
志賀毒素AサブユニットにいかなるCD4+T細胞エピトープが存在するか分析した。T細胞エピトープを、ProImmune社(Sarasota, FL, U.S.)によるREVEAL(商標)免疫原性システム(IS、immunogenicity System)T細胞アッセイによって、志賀様毒素1の成熟Aサブユニット(配列番号1)について予測した。このアッセイは、対象タンパク質の複数の重複するペプチド配列を使って、CD8+T細胞が枯渇された健康なドナーの細胞試料のCD4+T細胞による免疫応答の誘発について試験した。以下の天然に配置されるアミノ酸残基群で同定された7つのT細胞エピトープ領域をこのアッセイで使用した:CD4+T細胞エピトープ領域#1:4〜33、CD4+T細胞エピトープ領域#2:34〜78、CD4+T細胞エピトープ領域#3:77〜103、CD4+T細胞エピトープ領域#4:128〜168、CD4+T細胞エピトープ領域#5:160〜183、CD4+T細胞エピトープ領域#6:236〜258、及びCD4+T細胞エピトープ領域#7:274〜293。
本実施例において、ジフテリア毒素エフェクターポリペプチドの生成のための元のポリペプチドとして用いられるジフテリア毒素Aサブユニット及び野生型ジフテリア毒素エフェクターポリペプチドを、T細胞エピトープについてNIADのIEDBで調査した。現在、IEDBは、本実施例のジフテリア毒素Aサブユニット及びジフテリア毒素エフェクターポリペプチドに関連するT細胞免疫原性に関する少なくとも1つの陽性測定を有する25を超えるペプチドエピトープを提供する。IEDBによって、ジフテリア毒素中で同定された、いくつかのT細胞エピトープ領域は、例えば、配列番号45のポリペプチドのアミノ酸残基の位置で重複する免疫原性ペプチドに対応する以下の領域などである:2〜21、22〜41、32〜71、72〜91、82〜221、212〜231、232〜251、及び251〜301。
D.内因性B細胞エピトープ領域及び/又は内因性CD4+T細胞エピトープ領域を破壊する、組み込まれた又は挿入されたT細胞エピトープを有する毒素エフェクターポリペプチドの生成
本発明の例示的毒素由来エフェクターポリペプチドは、志賀毒素及びジフテリア毒素を用いて作製した。
志賀毒素由来エフェクターポリペプチド
志賀毒素エフェクター領域、及び細胞標的化のための免疫グロブリン型結合領域を含む細胞毒性タンパク質をコードする核酸は、当技術分野で既知の技術を用いて産生した。本実施例の元の細胞毒性タンパク質中の志賀毒素エフェクター領域は配列番号1のアミノ酸1〜251を含んでいた。
当技術分野で既知の標準的な技術を用いて、元の細胞毒性タンパク質をコードする核酸に一連の変異を加工し、元の細胞毒性タンパク質と比較して複数のアミノ酸置換を含む細胞毒性タンパク質のバリアントを産生した。変異を選択し、表1に記載の少なくとも1つのT細胞エピトープペプチドを組み込むことによって、表2に記載の少なくとも1つの予測されたB細胞エピトープ領域を破壊した。本実施例に記載される本発明の多くの例示的ポリペプチドに対して、各T細胞エピトープのアミノ酸配列を、バリアント中のコードされるアミノ酸残基の総数が元の細胞毒性タンパク質のアミノ酸残基の総数から変化しないように、核酸を操作することによって組み込んだ。異なる本発明の例示的志賀毒素エフェクターポリペプチド成分を含む異なる本発明の例示的細胞毒性、細胞標的化タンパク質をコードする、10個の異なるポリヌクレオチドを生成した。これらの例示的ポリヌクレオチドを使って、当技術分野で既知の標準的な技術を使用して、10個の本発明の例示的細胞毒性、細胞標的化タンパク質を産生した。いくつかの実験において、本実施例の細胞毒性タンパク質の全長コード配列は、Strep-tag(登録商標)IIをコードするポリヌクレオチドで開始又は終止し、検出及び精製を容易にした。タンパク質は当業者に既知の方法を用いて精製した。
11個の細胞毒性タンパク質は元の細胞毒性タンパク質に由来し、それぞれ本発明の例示的志賀毒素エフェクターポリペプチド(配列番号11〜21から選択される)を含み、表1に記載のT細胞エピトープを用いて表2の少なくとも1つの予測されたB細胞エピトープ領域が破壊された。各11個の細胞毒性タンパク質についての、元の志賀毒素エフェクターポリペプチドへの正確な改変は表6に示される。表6には、各組み込まれたT細胞エピトープの配列、改変がある志賀毒素Aサブユニットの天然の位置、及びB細胞エピトープ領域の破壊されたアミノ酸の範囲が列挙されている。
最初の9つの細胞毒性タンパク質はそれぞれ、組み込まれたT細胞エピトープを含む志賀毒素エフェクターポリペプチドを含んでいた(表6を参照されたい)、これは元の細胞毒性タンパク質の志賀毒素エフェクターポリペプチド成分のアミノ酸残基全体の総数が変化していないことを意味する。表6に列挙されたそれぞれの最初の9つの改変は、B細胞エピトープ領域を破壊する、組み込まれたT細胞エピトープを例示している。これら9つの改変は正確な置換であるので、T細胞エピトープ配列及び破壊されたB細胞エピトープ領域配列は長さが同じであり、列挙された各アミノ酸と、アミノ末端からカルボキシ末端へ順に1対1で一致している。表6の10番目の志賀毒素エフェクターポリペプチドである53−61−F2は、一部の置換と、位置61の1つのアミノ酸が挿入され、残りのカルボキシ末端がWTから1つの位置ずつアミノ酸残基が移動している。表6の11番目の志賀毒素エフェクターポリペプチドは、天然に配置されるアミノ酸残基245及び246の間にT細胞エピトープ全体が完全に挿入されている。この挿入は、SLT−1Aのアミノ酸243〜259に天然に配置されるB細胞エピトープ領域#9内にある。
コンピューターによる計算分析は、野生型志賀毒素に存在する少なくとも1つのB細胞エピトープが、8つのT細胞エピトープが組み込まれた又は挿入された志賀毒素エフェクターポリペプチドバリアントから削除されたことを予測し、表6のいかなる例示的志賀毒素エフェクターポリペプチド中の組み込まれた又は挿入されたT細胞エピトープによっても、新しいB細胞エピトープが生成されなかったことが予測された(以下の実施例3を参照されたい)。
さらに、配列番号11〜17及び19〜21で表される志賀毒素エフェクターポリペプチド全てで予測された内因性CD4+T細胞エピトープが破壊されている。
ジフテリア毒素由来エフェクターポリペプチド
上記改変と同様に、志賀毒素由来ポリペプチド、T細胞エピトープはプロテアソーム送達エフェクター機能を有するジフテリア毒素由来ポリペプチドに組み込まれ、本発明のT細胞エピトープが組み込まれた、例示的ジフテリア毒素エフェクターポリペプチドが作製された。T細胞エピトープは表1のペプチドから選択され、表5に記載される少なくとも1つの予測されるB細胞エピトープ領域を破壊するために組み込まれた。
本実施例の全てのジフテリア毒素由来ポリペプチドは、ジフテリア毒素Bサブユニットの転移ドメインに連結するジフテリア毒素Aサブユニットの触媒ドメイン、毒素エフェクターポリペプチド領域に由来する、A及びBサブユニット間のフリン切断モチーフ、及び毒素エフェクターポリペプチド領域に由来する、A及びBサブユニットのシステイン間で予測されるジスルフィド結合を含んでいた。従って、本実施例におけるジフテリア毒素由来ポリペプチドは、プロテアソーム送達エフェクター領域及びリボ毒素エフェクターポリペプチドの両方を含む。本発明の例示的T細胞エピトープが組み込まれたジフテリア毒素エフェクターポリペプチドのポリペプチド配列は、配列番号46、47、及び48として示される。
標準的な技術を用いて、ジフテリア毒素エフェクターポリペプチドに一連の変異が作製され、予測されたB細胞エピトープ領域が重複する位置にT細胞エピトープを組み込んだ(表5を参照されたい)。表7は、T細胞エピトープが組み込まれたジフテリア毒素エフェクターポリペプチドの例が、配列番号44の天然ジフテリア毒素ポリペプチド配列を基にした組み込まれたT細胞エピトープの位置、T細胞エピトープ名、T細胞エピトープペプチド配列、破壊された、予測されたB細胞エピトープ領域、及び天然ジフテリア毒素ポリペプチド配列中の置換されたアミノ酸配列によって示されている。
T細胞エピトープが組み込まれたジフテリア毒素エフェクターポリペプチドバリアント(配列番号46、47、及び48)を、上記のように、予測されたB細胞エピトープの変化について分析した。全ての3つのT細胞エピトープが組み込まれたジフテリア毒素エフェクターポリペプチドバリアントにおいて、野生型ジフテリア毒素アミノ酸配列中の予測されたB細胞エピトープは削除されており、新しいB細胞エピトープは予測されなかった(表7)。
3つのT細胞エピトープが組み込まれたジフテリア毒素エフェクターポリペプチドバリアント(配列番号46、47、及び48)、及び野生型毒素アミノ酸配列(配列番号45)のみを含む元のジフテリア毒素エフェクターポリペプチドはそれぞれ、発現及び精製を容易にするために、アミノ末端メチオニン及びカルボキシ末端ポリヒスチジンタグ(6×Hisタグ)と共に設計された。本発明の例示的T細胞エピトープが組み込まれたジフテリア毒素エフェクターポリペプチドバリアント及び野生型毒素アミノ酸配列のみを含む元のジフテリア毒素エフェクターポリペプチド共に当技術分野で既知の細菌系によって産生し、例えばニッケル−ニトリロ三酢酸(Ni−NTA、nickel-nitrilotriacetic acid)樹脂クロマトグラフィーなどの当技術分野で既知の条件の下で精製した。
E.いかなるB細胞エピトープ領域も破壊しない、組み込まれたT細胞エピトープを有する志賀毒素エフェクターポリペプチドの生成
本実施例に記載の全ての方法からの全てのB細胞エピトープ領域予測からみて(表2)、いかなるB細胞エピトープも含むことが予測されなかったSLT−1Aの領域を同定した。表1からのT細胞エピトープペプチド配列は、表8に示される本発明の3つの異なる例示的志賀毒素エフェクターポリペプチドを作製するために、天然アミノ酸を置換してB細胞エピトープが欠損していると同定された領域に組み込まれる。表8は、成熟かつ天然SLT−1Aポリペプチド配列の同定された領域及びT細胞エピトープ配列の置換は、志賀毒素エフェクターポリペプチドに構築されたことを示している(配列番号22〜39を参照されたい)。
正確な置換として、表8の組み込まれたT細胞エピトープを含む志賀毒素エフェクターポリペプチド配列を、BcePredプログラムを用いて分析した。正確な置換として、表8の組み込まれたT細胞エピトープのいずれも、そのプログラムによって予測された6つのエピトープ領域を破壊しなかった。表8の組み込まれたT細胞エピトープ置換配列の1つである、バリアント75−83−F3は、新しいB細胞エピトープの予測をもたらした。領域(66〜74)及び/又は(157〜165)の近くに組み込まれているT細胞エピトープは、SLT−1A触媒活性に必要であると知られている少なくとも1つのアミノ酸(例えば、Y77及びE167)に近接していることより、志賀毒素エフェクター機能である触媒活性を妨げることができる。
さらに、配列番号22〜39で表される志賀毒素エフェクターポリペプチドは全て、位置221〜229に組み込まれた異種T細胞エピトープを有するポリペプチド(配列番号26、32及び38で表される)を除いて、予測された内因性CD4+T細胞エピトープが破壊されている。
F.毒素触媒機能を破壊する組み込まれたT細胞エピトープを有する毒素エフェクターポリペプチドの生成
志賀毒素Aサブユニットの酵素活性に最も重要な残基としてチロシン77(Y77)及びグルタミン酸167(E167)を含む(Di, Toxicon 57: 535-39 (2011))。表1のT細胞エピトープペプチド配列は、志賀毒素エフェクターポリペプチドに組み込まれ、Y77又はE167の一方が志賀毒素酵素活性を減らす又は削除するために変異される。触媒アミノ酸残基を破壊する異種T細胞エピトープを含む、6つの異なる本発明の例示的志賀毒素エフェクターポリペプチドが表9に示される。表9は、成熟かつ天然SLT−1Aポリペプチド配列の組み込まれたT細胞エピトープの位置、組み込まれた置換T細胞エピトープ配列、成熟かつ天然SLT−1Aポリペプチド配列の置換された配列、及び生じた触媒残基の破壊(配列番号23、29、40、41、42、及び43も参照されたい)を示す。
配列番号23、29、40、42、及び43で表される志賀毒素エフェクターポリペプチドは全て、予測された内因性CD4+T細胞エピトープが破壊されている。さらに、表8に示される、いかなるB細胞エピトープ領域も破壊しない組み込まれたT細胞エピトープを有する例示的志賀毒素エフェクターポリペプチドの中で、少なくとも8つが志賀毒素エフェクター領域の触媒アミノ酸残基を破壊する(配列番号23、25、29、31、35、及び37を参照されたい)。
さらに、単一箇所への組み込み及び挿入のために、MHCクラスI提示のための複数の免疫原性T細胞エピトープが、同じ志賀毒素由来ポリペプチド又はジフテリア毒素由来ポリペプチド内に組み込まれ及び/又は挿入され、例えば最初に組み込まれたT細胞エピトープでB細胞エピトープ領域を破壊する、2番目に組み込まれたT細胞エピトープで毒素触媒機能を破壊するなど、同時に複数のT細胞エピトープを標的送達するために用いられる。しかしながら、注目すべきは、単一の組み込まれたT細胞エピトープは、B細胞エピトープ領域及び毒素触媒機能を同時に破壊することができることである。
リボ毒素エフェクター機能の保持についての毒素由来エフェクターポリペプチドの試験
本発明の例示的毒素由来エフェクターポリペプチドを、リボ毒素エフェクター機能の保持について試験した。
志賀毒素由来エフェクターポリペプチドのリボ毒素の保持
1又は2以上のT細胞エピトープを組み込み又は挿入後、元の志賀毒素エフェクターポリペプチドの酵素活性の保持は、リボソーム阻害アッセイを用いて決定した。本実施例において、このアッセイの結果は細胞毒性タンパク質の成分としての各志賀毒素エフェクターポリペプチドでのアッセイの実施を基にした。異なる志賀毒素エフェクターポリペプチドを含む異なる細胞毒性タンパク質の特異的な細胞毒性は、組織培養細胞に基づく毒性試験を用いて測定した。本発明の例示的細胞毒性、細胞標的化タンパク質の酵素及び細胞毒性活性は、元の志賀毒素エフェクターポリペプチドのみ(細胞標的化結合領域なし)、及び野生型志賀毒素エフェクター領域を含む同じ細胞標的化ドメイン(例えば、細胞外標的生体分子と高親和性で結合することができる免疫グロブリン型結合領域を含む結合領域)を含む「WT」細胞毒性タンパク質と比較した。
組み込まれた又は挿入されたT細胞エピトープを含む細胞毒性タンパク質のリボソームの不活性化能力は、TNT(登録商標)Quick Coupled Transcription/Translationキット(L1170 Promega社、Madison、WI、U.S.)を用いた無細胞の、インビトロでのタンパク質翻訳アッセイを用いて決定した。このキットには、Luciferase T7 Control DNA(L4821 Promega社、Madison、WI、U.S.)及びTNT(登録商標)Quick Master Mixが含まれる。リボソーム活性反応は製造業者の説明書に従って調製した。変異した志賀毒素エフェクターポリペプチド領域又はWT領域の一方を含む、被検タンパク質の10倍希釈系列は適切な緩衝液中で調製し、同一のTNT反応混合物成分系列を各希釈液について作製した。希釈系列中の各試料は、Luciferase T7 Control DNAと共に各TNT反応混合物と合わせた。被験試料を30℃で1.5時間インキュベートした。インキュベーション後、Luciferase Assay試薬(E1483 Promega社、Madison、WI、U.S.)を全ての被験試料に添加し、ルシフェラーゼタンパク質翻訳量を製造業者の説明書に従って発光により測定した。翻訳阻害のレベルを、相対発光単位に対する総タンパク質の対数変換された濃度の非線形回帰分析により決定した。統計ソフトウェア(GraphPad Prism社、San Diego、CA、U.S.)を用いて、見出し用量応答阻害の下でlog(阻害剤)対応答(3つのパラメータ)のPrismソフトウェア関数[Y=最低値+((最高値−最低値)/(1+10^(X−LogIC50)))]を用いて最大半量阻害濃度(IC50)値を各試料について計算した。B細胞エピトープ置換/破壊志賀毒素エフェクターポリペプチド領域を含む脱免疫化タンパク質及び野生型志賀毒素エフェクター領域を含む対照タンパク質それぞれのIC50値を計算した。
表10に示したように、本発明の例示的志賀毒素エフェクターポリペプチド領域は、野生型志賀毒素エフェクターポリペプチドに匹敵するリボソーム阻害を示した。表10に報告されるように、野生型志賀毒素エフェクター領域を含む陽性対照構築物の10倍以内のIC50を示した、本発明の志賀毒素エフェクターポリペプチドを含むいかなる構築物も、野生型に匹敵するリボソーム阻害活性を示すとみなされた。
T細胞エピトープの組み込み/挿入後の、本発明の例示的志賀毒素エフェクターポリペプチドによる細胞毒性の保持を、細胞毒性タンパク質の成分としての志賀毒素エフェクターポリペプチドのコンテキストの細胞殺滅アッセイによって決定した。組み込まれた又は挿入されたT細胞エピトープを含む、志賀毒素エフェクターポリペプチドを含むタンパク質の細胞毒性レベルを、細胞外標的発現細胞を使用して、標的生体分子の細胞毒性タンパク質の結合領域を発現しない細胞と比較して決定した。細胞を384ウェルプレート中の20μLの細胞培養液に播種した(接着細胞はウェル当たり2×10細胞、タンパク質追加の前の日に播種し、浮遊細胞はウェル当たり7.5×10細胞、タンパク質追加と同じ日に播種した)。試験対象の変異志賀毒素エフェクターポリペプチド領域を含む各タンパク質の10倍希釈系列を適切な緩衝液で調製し、5μLの希釈液又は緩衝液対照を細胞に加えた。培地のみを含む対照のウェルを、ベースライン補正に用いた。細胞試料を、タンパク質又は緩衝液のみと共に、37℃で3日間、5%二酸化炭素(CO)の雰囲気中でインキュベートした。全細胞生存又は生存率を、製造業者の説明書に従って、CellTiter-Glo(登録商標)Luminescent Cell Viability Assay(G7573 Promega社、Madison、WI、U.S.)を用いる発光読み出しを用いて決定した。
実験ウェルの生存率を、以下の式:(試験RLU−平均培地RLU)/(平均細胞RLU−平均培地RLU)*100を用いて計算した。Logポリペプチド濃度対生存率を、Prism(GraphPad Prism社、San Diego、CA、U.S.)中にプロットし、log(阻害剤)対応答(3つのパラメーター)分析を用いて、被検タンパク質に関する最大半量細胞毒性濃度(CD50)値を決定した。CD50を表10の本発明の例示的志賀毒素エフェクターポリペプチド、野生型志賀毒素エフェクター領域を含む陽性対照細胞毒性タンパク質、SLT−1のAサブユニットのみ(標的ドメインを含まない)を含む各タンパク質について計算した。
表10に示されるように、本発明の例示的志賀毒素エフェクターポリペプチドを含むタンパク質は、野生型志賀毒素エフェクターポリペプチドに匹敵する細胞特異的な細胞毒性を示した。表10で報告されるように、特異的な細胞毒性に関して、「WTに匹敵」は組み込まれた又は挿入されたT細胞エピトープを含む志賀毒素エフェクターポリペプチドを含むタンパク質であり、標的陽性細胞集団に対するCD50が野生型志賀毒素エフェクター領域を含むタンパク質の10倍以内及び/又はSLT−1Aサブユニットのみの50倍未満であるタンパク質であることを意味する。
さらに、本発明の例示的志賀毒素エフェクターポリペプチドを含む同じタンパク質構築物は、生体分子標的陰性細胞(すなわち、細胞表面で、タンパク質構築物の細胞標的結合領域の生体分子標的を発現しない細胞)と比較して、生体分子標的陽性細胞に対して特異的な細胞毒性を示した。従って、表10の例示的志賀毒素エフェクターポリペプチドを含む全てのタンパク質は、野生型に匹敵する志賀毒素エフェクター機能を示す細胞毒性タンパク質であり、各細胞毒性タンパク質は、1又は2以上の予測されたB細胞エピトープ領域が破壊された。
リボ毒素のジフテリア毒素由来エフェクターポリペプチドの保持
例示的T細胞エピトープが組み込まれたジフテリア毒素エフェクターポリペプチドの触媒活性を、本明細書で「野生型」又は「WT」と呼ばれる、野生型アミノ酸配列のみを含むジフテリア毒素エフェクターポリペプチドと比較した。T細胞エピトープが組み込まれたジフテリア毒素エフェクターポリペプチドバリアントは共に、リボソームの不活性化活性を保持していた。
細胞標的化分子のコンテキスト中に組み込まれたT細胞エピトープを有するジフテリア毒素エフェクターポリペプチドバリアントの酵素活性の保持について、リボソーム阻害アッセイを用い、野生型ジフテリア毒素エフェクターポリペプチドを陽性対照として、試験した。これらの毒素エフェクターポリペプチドのリボソームの不活性化能力を、特に断りのない限り、上記のように、TNT(登録商標)Quick Coupled Transcription/Translationキット(L1170 Promega社、Madison、WI、U.S.)を用いた無細胞のインビトロでのタンパク質翻訳アッセイを用いて決定した。初めに、ジフテリア毒素エフェクターポリペプチドを標準的な条件下で、フリン(New England Biolabs社、Ipswich、MA、U.S.)を用いて、インビトロで切断した。そして切断したタンパク質を緩衝液で希釈し、各試料の希釈系列を作製した。各希釈系列は上記のように、Luciferase T7 Control DNAと共にTNT反応混合物と組み合わせ、リボソームの不活性化活性について試験した。
上記のように、ジフテリア毒素エフェクターポリペプチドのIC50を計算した。図2及び表11は、本発明の例示的、T細胞が組み込まれたジフテリア毒素エフェクターポリペプチドによるジフテリアリボ毒素エフェクター機能の保持についての、このインビトロでのアッセイの結果を示す。IC50値が野生型ジフテリア毒素エフェクターポリペプチド対照の10倍以内であったので、T細胞が組み込まれたジフテリア毒素エフェクターポリペプチドの活性が野生型陽性対照に匹敵した(図2、表11)。
T細胞エピトープが組み込まれた毒素エフェクターポリペプチド中のB細胞エピトープ領域及びCD4+T細胞エピトープ領域の破壊による脱免疫化効果の試験
組み込まれた又は挿入されたT細胞エピトープを用いた、志賀毒素エフェクターポリペプチド中のB細胞エピトープ領域の破壊を、野生型アミノ酸配列のみを含む野生型志賀毒素エフェクターポリペプチドと比較した抗原性及び/又は免疫原性のレベルを調査することによって、脱免疫化について試験した。
ウェスタン分析による脱免疫化の試験
脱免疫化を分析するために、志賀毒素エフェクターポリペプチドの抗原性又は免疫原性のレベルを、コンピューター及び野生型志賀毒素エフェクターポリペプチドを認識する予め形成された抗体を用いたウェスタンブロッティングで試験した。
表6に記載の各志賀毒素エフェクターポリペプチド(配列番号11〜21)を、以下のパラメーターを用いたBcePredウェブサーバーを用いて予測されたB細胞エピトープの破壊について確認した:親水性の初期設定と共に読み出された柔軟性2、接近可能性2、露出面2.4、抗原性傾向1.8、柔軟性1.9、回転1.9、極性2.3、及び結合1.9(Saha S, Raghava G, Lecture Notes in Comput Sci 3239: 197-204 (2004))。他のプログラムによって野生型SLT−1Aサブユニット内で同定された3つの予測された免疫原性エピトープ領域(表2を参照されたい)は、初期設定でのBcePred柔軟性アプローチによって予測されず、分析できなかった。
配列番号11〜21の、本発明のT細胞エピトープが組み込まれている又は挿入されている例示的志賀毒素エフェクターポリペプチドは、いかなるデノボでのエピトープ(ネオエピトープ)も導入されず、破壊されたと考えられる予測されたB細胞エピトープが削除された(表12)。試験された本発明の例示的志賀毒素エフェクターポリペプチドは、BcePred柔軟性アプローチによっていかなるデノボでの予測されたB細胞エピトープも生成しなかった(表12)。初期設定でのBcePred柔軟性アプローチで予測されなかったいかなるB細胞エピトープ領域も「同定されなかった」と示され、T細胞エピトープの組み込み又は挿入後の結果は、「該当なし(not applicable)」を意味する「N/A」で示した。
志賀毒素エフェクターポリペプチドの相対抗原性レベルを、予め形成された抗体である、配列番号1のアミノ酸1〜251を含む野生型志賀毒素エフェクターポリペプチドを認識するポリクローナル及びモノクローナル抗体の両方を用いたウェスタンブロッティングによって、脱免疫化について試験した。
野生型志賀毒素配列のみ又はT細胞エピトープとの置換によるB細胞エピトープ領域が破壊された様々な改変志賀毒素配列の1つ(配列番号11〜19)を含む細胞毒性タンパク質についてウェスタンブロッティングを行った。これらの細胞毒性タンパク質は複製するために等量を4〜20%ドデシル硫酸ナトリウム(SDS、sodium dodecyl sulfate)ポリアミドアクリルゲル(Lonza社、Basel、CH)にロードし、変性条件下で電気泳動した。得られたゲルはクマシー染色により分析するか、製造業者の説明書に従って、iBlot(登録商標)(Life Technologies社、Carlsbad、CA、U.S.)システムを用いてポリビニルジフルオライド(PVDF、polyvinyl difluoride)膜に転写した。得られた膜は以下の抗体を用いた標準的な条件下でプローブした:Streptag(登録商標)IIとして既知の、ポリペプチドNWSHPQFEKを認識するウサギポリクローナルα−NWSHPQFEK(A00626, Genscript社、Piscataway、NJ、U.S.)、マウスモノクローナルα−Stx(mAb1又は抗SLT−1A mAb1)(BEI NR-867 BEI Resources社、Manassas、VA、U.S.:志賀毒素及び志賀様毒素1Aサブユニットと交差反応性を有する)、ウサギポリクローナル抗体α−SLT−1A(pAb1又は抗SLT−1A pAb1)(Harlan Laboratories社、Indianapolis、IN、U.S.、SLT−1Aアミノ酸1〜251に対する注文によって産生された抗体)、及びペプチドRGIDPEEGRFNN及びHGQDSVRVGRに対するウサギポリクローナル抗体α−SLT−1A(pAb2又は抗SLT−1A pAb2)(Genscript社、Piscataway、NJ、U.S.、注文によって産生された抗体)。ペプチド配列RGIDPEEGRFNNはSLT−1A及びStxAのアミノ酸55〜66に位置して予測されたB細胞エピトープにわたり、ペプチド配列HGQDSVRVGRはSLT−1A及びStxAの214〜223に位置して予測されたB細胞エピトープにわたる。
抗体に結合した膜は標準的な条件下で検出し、適切な場合は西洋ワサビペルオキシダーゼ(HRP、horseradish peroxidase)合成二次抗体(ヤギ抗ウサギHRP又はヤギ抗マウスHRP、Thermo Scientific社、Rockford、IL、U.S.)を用いた。図3〜4は、ゲル及び/又は膜のレーンに番号が付けられたウェスタンブロットの画像と、同じそれぞれの番号についての図の説明が示され、志賀毒素エフェクターポリペプチドは各レーンにロードされた細胞毒性タンパク質試料の成分だった。各ゲルに対し、クマシー染色及び/又は抗streptag IIウェスタンブロットシグナルは総細胞毒性タンパク質ロード対照とする。全ての改変された志賀毒素エフェクターポリペプチドは、野生型SLT−1Aを認識することができる1又は2以上の抗体による認識が減少又は破壊され、抗原性が減少し、脱免疫化が成功したことを示している。図3及び4に示されるウェスタンブロット分析の結果は表13で要約する。
CD4+T細胞脱免疫化の試験
CD4+T細胞エピトープ領域で予測される破壊を、体外から投与されたポリペプチドの存在下でのヒトCD4+T細胞増殖アッセイ、及び投与されたポリペプチドで処理されたヒト単球存在下でのヒトCD4+樹状T細胞刺激アッセイを用いて、CD4+T細胞免疫原性の減少について試験する。
当業者に既知のT細胞増殖アッセイを用いて、予測されたCD4+T細胞エピトープに組み込まれた又は挿入されたT細胞エピトープを含む例示的毒素エフェクターポリペプチドでのCD4+T細胞エピトープの脱免疫化の有効性を試験した。本実施例のT細胞増殖アッセイには、CD4+T細胞を標識し、フローサイトメトリー法を用いて、異種CD8+T細胞エピトープ(例えば、配列番号11〜43)を組み込み又は挿入する方法を用いたポリペプチドの脱免疫化、又はそれと関連がない、いかなる異種T細胞エピトープも含まない参照ポリペプチドに由来する、異なるペプチドの投与に応答する増殖の変化を測定することを含む。
ポリペプチドに由来する一連の重複するペプチドを合成し、CFSE CD4+T細胞増殖アッセイ(ProImmune社, Sarasota、FL、U.S)で試験した。CFSEで標識した、ヒトCD8+T細胞を枯渇させた末梢血単核細胞(PBMCs、peripheral blood mononuclear cells)を各5μMの所望のペプチドと共に7日間、6つの複製ウェルで培養する。各アッセイプレートには未処理対照ウェルのセットを含む。このアッセイには既知のMHCIIクラス抗原として既知の合成ペプチドを含む参照抗体対象も組み込まれている。
投与されたペプチドによって増幅される、CD8+T細胞が枯渇されたPBMCは、フローサイトメトリーによって直接測定されるCFSE蛍光強度が減少され得る。薬を投与していないT細胞分析について、各刺激された試料についてのバックグラウンド以上の刺激割合は、蛍光シグナルに対して、陰性、弱い、又は高いと順位をつけるなど、未刺激試料と比較することによって決定する。各試料のCD4+T細胞のCFSEが弱い集団の数は全CD4+T細胞集団の割合として表す。再現値をバックグラウンド以上の刺激割合を計算するために用いる(抗原刺激によるCD4+T細胞のCFSEが弱い細胞の割合、抗原刺激なしのCD4+T細胞のCFSEが弱い細胞の負の割合)。平均及び平均の標準誤差を再現値から計算する。バックグラウンド以上の刺激割合が0.5より大きく、バックグラウンド以上の標準誤差が2倍以上大きい場合、結果は「陽性」とみなされる。ペプチドを比較できるように、応答項目を計算する。この項目は各ペプチドについての応答の大きさ(バックグラウンド以上の刺激割合)に各ペプチドに対して応答するドナーの数(抗原性の割合)を乗じることを基にしている。
相対CD4+T細胞免疫原性の決定
本発明の例示的全長ポリペプチドの相対CD4+T細胞免疫原性を以下の樹状細胞(DC、dendritic cell)T細胞増殖アッセイを用いて決定する。このDC T細胞アッセイは、体外から投与されたポリペプチド又はタンパク質に応答するCD4+T細胞を測定する。DC T細胞アッセイはProImmune社のDC T細胞アッセイサービスを用いて行い、ポリペプチド、タンパク質、及び本発明の細胞標的化分子間のCD4+T細胞誘導免疫原性の相対レベルを、いかなる異種T細胞エピトープも付加されていない出発原料である元のポリペプチド、タンパク質、又は細胞標的化分子と比較することによって決定する。本実施例のDC T細胞アッセイは、投与されたポリペプチド、タンパク質、又は細胞標的化分子試料に由来するペプチドの抗原提示についてヒト樹状細胞を試験することを含む。
簡単に述べると、健康的なヒトドナー組織を用いて、高分解能(high-resolution)MHCクラスII組織分類を基に分類される試料を単離する。20、40又は50名のドナーのコホートを使用する。最初に、ヒトドナーPBMCから得られた単球を規定の培地で培養し、未成熟樹状細胞を生成する。そして、未成熟樹状細胞を特定の対照抗原で刺激し、規定の培地でさらに培養することによって成熟表現型を誘導する。次に、同じヒトドナー試料のCD8+T細胞を枯渇させたドナーのPBMCをCFSEで標識する。CFSEで標識された、CD8+T細胞を枯渇させたPBMCを、抗原に感作された樹状細胞と共に7日間培養し、CD4+樹状細胞を刺激し、各試料の8つの複製を試験する。陰性対象として、各樹状細胞培養系列には、未処理樹状細胞のセットを含む。陽性対照として、このアッセイには、全長タンパク質を含む2つの特定の参照抗原が組み込まれている。
免疫原性に基づく樹状細胞を評価するため、ドナー細胞応答の数をコホート研究で分析する。このアッセイの陽性応答は、インビボでのCD4+T細胞応答の可能性を示しているとみなされる。バックグラウンド以上の刺激割合として測定された陽性応答は、2又は3以上の独立したドナー試料で0.5%より大きい割合と定義される。陽性ドナー細胞応答の強度を、各試料の許容されたドナーから得られたバックグラウンド以上の平均刺激割合を考慮して決定する。応答項目を、各試料のCD4+T細胞免疫原性レベルを決定するため、応答強度の値に応答するドナーの数を乗じて計算する。さらに、相対CD4+T細胞免疫原性を表す応答項目を、予測されたCD4+T細胞エピトープ領域に組み込まれたCD8+T細胞エピトープを含む2つの試料、及び同じ予測されたCD4+T細胞領域でいかなる破壊もない、第2のバリアントの結果を比較することによって、破壊がヒトドナー細胞のCD4+T細胞応答を減少するかを決定する。
インビボでの相対免疫原性による脱免疫化の試験
志賀毒素エフェクターポリペプチドの相対免疫原性レベルを、ヒト免疫システムの哺乳類モデルを用いて、脱免疫化について試験する。マウスに細胞毒性タンパク質、又は野生型若しくは脱免疫化型の志賀毒素エフェクターポリペプチド成分を含むポリペプチドを週に3回、2週間以上静脈内投与する。注射されたマウスから血液試料を回収し、細胞毒性タンパク質及び/又は志賀毒素エフェクターポリペプチドの反応性について酵素結合免疫吸着検査法(ELISA、enzyme-linked immunosorbent assay)で試験した。減少した免疫原性応答が、野生型志賀毒素エフェクターポリペプチド又はそのポリペプチドを含む組成物のみを注射したマウスと比較して、脱免疫化志賀毒素エフェクターポリペプチド又はそのポリペプチドを含む組成物を注射したマウスで誘発され得る。比較的減少した免疫原性応答は、哺乳類に投与後の減少した免疫原性の可能性及び哺乳類の免疫システムの応答に関し、脱免疫化志賀毒素エフェクターポリペプチドは脱免疫化されることを示し得る。
さらに、本発明のジフテリア毒素エフェクターポリペプチド(例えば、配列番号46〜48)を、組み込まれた又は挿入されたT細胞エピトープを含む各ジフテリア毒素エフェクターポリペプチドでの1又は2以上のB細胞エピトープ領域の破壊を検証するために、本実施例の方法を用いて、脱免疫化について試験する。
本発明の例示的志賀毒素エフェクターポリペプチドによる、標的細胞の表面に組み込まれたT細胞エピトープの内在化、細胞内ルーティング及び提示の試験
本実施例において、標的細胞の表面への提示のための、標的細胞のMHCクラスI経路のT細胞エピトープの送達のための、本発明の例示的志賀毒素エフェクターポリペプチドをそれぞれ含む、本発明の例示的細胞標的化タンパク質の能力を調査した。さらに、本発明のジフテリア毒素エフェクターポリペプチドを含む細胞標的化タンパク質(例えば、配列番号46〜48)を、本実施例の方法を用いて、MHCクラスI提示系への組み込まれたT細胞エピトープを送達する能力を検証するために試験した。
当技術分野で既知の標準的な技術を用いて、本発明の様々な例示的細胞標的化タンパク質が作製され、それらは細胞型標的領域及び本発明の志賀毒素エフェクターポリペプチドをそれぞれ含む(例えば、国際公開第2014/164680号パンフレット及び国際公開第2014/164693号パンフレットを参照されたい)。本発明の細胞標的化タンパク質は本発明の志賀毒素エフェクターポリペプチド、及び特異的な細胞型の表面に物理的に結合する細胞外標的生体分子に高親和性で結合することができる細胞標的化結合領域を含む。本発明の細胞標的化タンパク質は、標的生体分子の細胞標的化結合領域に発現する細胞を選択的に標的化して、これらの標的細胞に内在化することができる。
フローサイトメトリー法を用いて、標的細胞の表面でMHCクラスI分子と複合体を形成するT細胞エピトープ(志賀毒素エフェクター領域に挿入された又は組み込まれた)の送達及び細胞外提示を証明した。このフローサイトメトリー法において、異なるエピトープとヒトHLAとの複合体と高親和性で結合する、可溶ヒトT細胞受容体(TCR、T-cell receptor)多量体試薬(Soluble T-Cell Antigen Receptor STAR(商標)Multimer、Altor Bioscience社、Miramar、FL、U.S.)を利用する。
各STAR(商標)TCR多量体試薬は、特異的なT細胞受容体に由来し、特定のMHCクラスI分子のコンテキストに存在する特異的なペプチドを認識するために選択されたTCRの能力を基に、特異的なペプチドとMHCとの複合体を検出することができる。TCR多量体はビオチン化及び多量体化した組み換えヒトTCR、並びにストレプトアビジンで構成される。TCR多量体をフィコエリスリン(PE、phycoerythrin)で標識する。これらのTCR多量体試薬は、各可溶性TCR多量体タイプは多様な条件下で特異的なペプチドとMHCとの複合体を認識し安定して結合するので、ヒト細胞の表面に提示される特異的なペプチドとMHCクラスIとの複合体を検出することができる(Zhu X et al., J Immunol 176: 3223-32 (2006))。これらのTCR多量体試薬は細胞の表面に存在するペプチドとMHCクラスIとの複合体の、フローサイトメトリーによる同定及び定量を可能にする。
本実施例において、TCR CMV−pp65−PE STAR(商標)多量体試薬(Altor Bioscience社、Miramar、FL、U.S.)を使用した。HLA−A2を発現するヒト細胞によるCMV C2ペプチド(NLVPMVATV)のMHCクラスI経路提示は、TCR CMV−pp65−PE STAR(商標)多量体試薬で検出することができ、ヒトHLA−A2と複合体を形成するCMV−pp65エピトープペプチド(残基495〜503、NLVPMVATV)を高親和性で認識し、PEで標識する。
本実施例において用いた標的細胞は、ATCC(Manassas VA、U.S.)から得られるヒトがん細胞で不死化した。当技術分野で既知の標準フローサイトメトリー法を使用して、HLA−A2 MHCクラスI分子及び本実施例において用いられる細胞外標的生体分子のタンパク質の両方が細胞表面で発現されるか標的細胞を確かめた。
標的細胞を、予測されたB細胞エピトープ領域に組み込まれたT細胞エピトープを含む異なる志賀毒素エフェクターポリペプチドをそれぞれ含む、本発明の例示的細胞標的化タンパク質で処理した。各本発明の例示的細胞標的化タンパク質の1つは、本実施例において、以下の志賀毒素エフェクターポリペプチドの1つを含んでいた:43−51−C2(配列番号13)、53−61−C2(配列番号17)、及び104−112−C2(配列番号18)。標的細胞のセットは、本発明の異なる例示的細胞標的化タンパク質を、志賀毒素への細胞型特異的な感受性を考慮した濃度と同様の濃度での外因性投与によって処理した(例えば、Noakes K et al., FEBS Lett 453: 95-9 (1999)を参照されたい)。処理した細胞は、37℃で5%二酸化炭素の雰囲気下での標準的な条件で6時間インキュベートし、志賀毒素エフェクター領域の媒介による中毒化を引き起こした。そして細胞を細胞培養液で洗浄し、新しい細胞培養液に再懸濁し、TCR CMV−pp65−PE STAR(商標)多量体試薬での染色前に20時間インキュベートした。
対照として、標的細胞のセットを3つの条件で処理した:1)処理なし(「未処理」)、いかなる外因性分子も加わっていないことを意味する、2)体外から投与されたCMV C2ペプチド(CMV−pp65、アミノ酸495〜503:配列NLVPMVATV、BioSynthesis社、Lewisville、TX、U.S.によって合成された)で処理、及び3)体外から投与されたPeptide Loading Enhancer(「PLE」、 Altor Biosicence社、Miramar、FL)と組み合わせたCMV C2ペプチド(上記のNLVPMVATV)で処理。PLEと組み合わせたC2ペプチド処理は、外因性ペプチドローディングを可能にし、陽性対照とした。適切なMHCクラスIハプロタイプを提示する細胞は、細胞外空間(すなわち、適用されるペプチドの細胞内在化の非存在下)から又はPLEの存在下での適切な細胞外からの適用されるペプチドのロードを強制的に行うことができ、B2−ミクログロブリン及び他の成分との混合物である。
処理後、細胞セット全てを洗浄し、TCR CMV−pp65−PE STAR多量体試薬と共に氷上で1時間インキュベートした。細胞を洗浄し、試料の蛍光をAccuri(商標)C6 flow cytometer(BD Biosciences社、San Jose、CA、U.S.)を使ったフローサイトメトリーによって測定し、集団中の細胞に結合したTCR CMV−pp65−PE STAR(商標)多量体の存在を検出し、定量した(ときどき本明細書において「染色(staining)」と呼ばれる)。
一連の異なる処理細胞のフローサイトメトリー分析結果は図5及び表14に示される。未処理対照を用いて、ゲートを利用して陽性及び陰性細胞集団を同定し、「陽性」ゲートの未処理対照から1%未満の細胞が得られた(バックグラウンドシグナルで表す)。そして同じゲートを他の試料に適用し、各試料の陽性集団を特徴づけた。図5において、フローサイトメトリーヒストグラムのY軸は数(細胞数)を示し、X軸(logスケール)は相対蛍光単位(RFU、relative fluorescent unit)を示す。全てのヒストグラムの灰色の線は、未処理細胞のプロファイルを示し、示された処理に従って処理された細胞のプロファイルを示す。表14において、C2エピトープペプチドとHLA−A2との複合体に対しての染色が陽性だった処理セットにおける細胞の割合を示す。このアッセイにおける陽性細胞は、TCR−CMV−pp65−PE STAR試薬に結合した細胞であり、上記の陽性ゲートとしてカウントされた。表14はまた、各セットの対応する、インデックス化平均蛍光強度(iMFI、indexed, mean, fluorescent intensity)(陽性の割合で乗じた陽性集団の蛍光)をRFUで示している。
43−51−C2、53−61−C2、及び104−112−C2を含む外因性タンパク質が投与された細胞では、それぞれC2ペプチドとHLA−A2との複合体が7.6%、4.5%、及び6.7%の陽性シグナルで細胞表面に示された。対照的に、「未処理」及び「C2ペプチドのみ」で処理した細胞集団は、1%未満の陽性細胞を含んでいた(それぞれ0.96及び0.95パーセント)。測定されなかった処理効率及び動態によって、「細胞標的化タンパク質」処理試料中の一点で検出されたC2ペプチドとHLA−A2との複合体の存在割合は、これらの本発明の例示的細胞標的化タンパク質によって、正確に最大提示可能性に影響を与えない可能性がある。
陽性対照である「C2ペプチド及びPLE」集団は、36.7%の陽性細胞を含んでいたが、細胞外空間(「細胞外(exogenously)」)からのみ表面にペプチドをロードでき、PLEの存在下では、「C2ペプチドのみ」と比較すると、未処理対照と同様のバックグラウンド染色レベル(0.95%)であった。
中毒性標的細胞の細胞表面のヒトMHCクラスI分子と複合体を形成する、体外から投与された、組み込まれたT細胞エピトープC2(C2エピトープペプチド/HLA−A2)の検出によって、例示的志賀毒素エフェクター領域43−51−C2、53−61−C2、又は104−112−C2を含む細胞標的化タンパク質は、標的細胞に進入し、十分な細胞内ルーティングを行い、標的細胞の表面での表面提示のために、MHCクラスI経路への十分な組み込まれたT細胞エピトープの送達をすることができることが証明された。
中毒性標的細胞の細胞毒性T細胞媒介細胞崩壊、及び本発明のタンパク質による送達されたT細胞エピトープのMHCクラスI提示によって引き起こされた他の免疫応答の試験
本実施例において、当技術分野で既知の標準アッセイを用いて、本発明の例示的細胞標的化タンパク質によって送達されたT細胞エピトープのMHCクラスI提示による機能結果を調査する。調査する機能結果には、CTL活性化、CTL介在標的細胞殺滅、及びCTLによるCTLサイトカイン放出が含まれる。
CTLに基づく細胞毒性アッセイを用いて、エピトープ提示による結果を査定する。このアッセイには、組織培養された標的細胞及びT細胞を含む。標的細胞は実施例4に記載されるように、中毒化される。簡単に述べると、標的細胞は異なる体外から投与されたタンパク質と共に、標準的な条件で6時間インキュベートし、いくつかのタンパク質は本発明の志賀毒素エフェクターポリペプチド又は本発明のジフテリア毒素エフェクターポリペプチドを含む。次にCTLを中毒性標的細胞に加えてインキュベーションし、T細胞がエピトープペプチド/MHCクラスI複合体を示すいかなる標的細胞も認識及び結合できるようにする。そして、いくつかの機能的結果は、標的細胞へのCTL結合、CTL介在細胞崩壊による標的細胞殺滅、及びELISA又はELIspotによるインターフェロンガンマ又はインターロイキンなどのサイトカインの放出を含む、当業者に既知の標準方法を用いて調査する。
エピトープペプチド/MHCクラスI複合体を示す標的細胞によるCTLの活性化は、市販のCTL応答アッセイ、例えば、CytoTox96(登録商標)非放射性アッセイ(Promega社、Madison、WI、U.S.)、グランザイムB ELISpotアッセイ(Mabtech社、Cincinnati、OH、U.S.)、カスパーゼ活性アッセイ、及びLAMP−1転移フローサイトメトリーアッセイを用いて定量する。詳細に標的細胞のCTL介在殺滅をモニターするために、カルボキシフルオレセインスクシンイミジルエステル(CFSE、carboxyfluorescein succinimidyl ester)を標的細胞に使用し、当技術分野に記載されるように(例えば、Durward M et al., J Vis Exp 45 pii 2250 (2010)を参照されたい)、インビトロ及びインビボでの調査を行う。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチド、並びにCD20に特異的な結合領域を含む細胞毒性タンパク質(SLT−1Aと融合したαCD20)
本実施例において、T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクター領域は、上記のように、志賀様毒素1のAサブユニット(SLT−1A)に由来する。免疫グロブリン型結合領域αCD20抗原は、ヒトCD20を認識する免疫グロブリン型ドメインに由来し(例えば、Haisma et al., Blood 92: 184-90 (1999)、Geng S et al., Cell Mol Immunol 3: 439-43 (2006)、Olafesn T et al., Protein Eng Des Sel 23: 243-9 (2010)を参照されたい)、CD20の細胞外部分に結合することができる免疫グロブリン型結合領域を含む。CD20は、例えば、B細胞リンパ腫細胞、有毛細胞白血病細胞、B細胞慢性リンパ球性白血病細胞、及びメラノーマ細胞などの複数のがん細胞型で発現する。さらに、CD20はいくつかの自己免疫疾患、障害、及び過活動B細胞を含む状態を治療するための治療学への魅力的な標的である。
細胞毒性タンパク質SLT−1A::αCD20の構築、産生、及び精製
免疫グロブリン型結合領域αCD20及び志賀毒素エフェクター領域(例えば、配列番号11〜43など)を共に連結した。例えば、融合タンパク質は、αCD20抗原結合タンパク質SLT−1A::αCD20をコードするポリヌクレオチドを発現させることによって産生される(例えば、配列番号49、50、及び51を参照されたい)。細胞毒性タンパク質SLT−1A::αCD20の発現を、前記の実施例において上記のように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αCD20のインビトロでの特性の決定
CD20+細胞及びCD20−細胞に対する、本実施例の細胞毒性タンパク質の結合特性、最大特異的結合(Bmax)及び平衡結合定数(K)は、蛍光に基づくフローサイトメトリーにより決定する。CD20+細胞へのSLT−1A::αCD20のBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはCD20−細胞への有意な結合はない。
細胞毒性タンパク質SLT−1A::αCD20のリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対するSLT−1A::αCD20のIC50は約0.1〜100pMである。
CD20+細胞殺滅アッセイを用いた細胞毒性タンパク質SLT−1A::αCD20の細胞毒性の決定
SLT−1A::αCD20の細胞毒性特性を、CD20+細胞を用いて前記の実施例において上記のように、一般的な細胞殺滅アッセイにより決定する。さらに、SLT−1A::αCD20の選択的細胞毒性特性を、CD20+細胞と比較してCD20−細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株に応じて、CD20+細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にCD20を発現する細胞と比較して細胞表面上にCD20を発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、SLT−1A::αCD20の細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
動物モデルを使用した細胞毒性タンパク質SLT−1A::αCD20のインビボでの効果の決定
動物モデルを用いて、新生物細胞に対する細胞毒性タンパク質SLT−1A::αCD20のインビボでの効果を決定する。様々なマウス株を用いて、細胞表面上にCD20を発現するヒト新生物細胞のマウスへの注射から得られるマウスにおける異種移植腫瘍に対する静脈内投与後の細胞毒性タンパク質の効果を試験する。細胞殺滅をT細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチド、並びにHER2に特異的な結合領域を含む細胞毒性タンパク質(「SLT−1Aと融合したαHER2−VH」)
本実施例において、CD8+T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクター領域は、上記のように、志賀様毒素1のAサブユニット(SLT−1A)に由来する。免疫グロブリン型結合領域は、米国特許出願第2011/0059090号に記載される、ラクダ抗体の単ドメイン可変領域(VH)であるタンパク質5F7に由来するαHER2 VHである。
細胞毒性タンパク質「SLT−1Aと融合したαHER2−VH」の構築、産生、及び精製
免疫グロブリン型結合領域及び志賀毒素エフェクター領域(例えば、配列番号11〜43など)は共に連結して、融合タンパク質を形成した(例えば、配列番号52、53、及び54を参照されたい)。本実施例において、タンパク質5F7に由来するαHER2−VH可変領域をコードするポリヌクレオチドは、当技術分野で既知のリンカーをコードするポリヌクレオチドを有するフレーム、及び配列番号11〜43のアミノ酸を含む志賀毒素エフェクター領域をコードするポリヌクレオチドを有するフレームにクローニングすることができる。細胞毒性タンパク質「SLT−1Aと融合したαHER2−VH」のバリアントは、結合領域を志賀毒素エフェクター領域のアミノ末端の隣に配置していてもよく、カルボキシ末端にKDELファミリーの小胞体シグナルモチーフを含んでいてもよいように作製した。細胞毒性タンパク質バリアント「SLT−1Aと融合したαHER2−VH」の発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質「SLT−1Aと融合したαHER2−VH」のインビトロでの特性の決定
HER2+細胞及びHER2−細胞に対する、本実施例の細胞毒性タンパク質の結合特性は、蛍光に基づくフローサイトメトリーにより決定する。HER2+細胞への「SLT−1Aと融合したαHER2−VH」のBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはHER2−細胞への有意な結合はない。
細胞毒性タンパク質「SLT−1Aと融合したαHER2−VH」のリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対する「SLT−1Aと融合したαHER2−VH」のIC50は約0.1〜100pMである。
HER2+細胞殺滅アッセイを用いた細胞毒性タンパク質「SLT−1Aと融合したαHER2−VH」の細胞毒性の決定
「SLT−1Aと融合したαHER2−VH」バリアントの細胞毒性特性を、HER2+細胞を用いて前記の実施例において上記のように、一般的な細胞殺滅アッセイにより決定する。さらに、「SLT−1Aと融合したαHER2−VH」の選択的細胞毒性特性を、HER2+細胞と比較してHER2−細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株に応じて、HER2+細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にHER2を発現する細胞と比較して細胞表面上にHER2を発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、「SLT−1Aと融合したαHER2−VH」の細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
動物モデルを使用した細胞毒性タンパク質SLT−1Aと融合したαHER2−VHのインビボでの効果の決定
動物モデルを用いて、新生物細胞に対する細胞毒性タンパク質SLT−1Aと融合したαHER2−VHのインビボでの効果を決定する。様々なマウス株を用いて、細胞表面上にHER2を発現するヒト新生物細胞のマウスへの注射から得られるマウスにおける異種移植腫瘍に対する静脈内投与後の細胞毒性タンパク質の効果を試験する。細胞殺滅をT細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチド、並びに抗体αエプスタイン・バー抗原に由来する結合領域を含む細胞毒性タンパク質
本実施例において、CD8+T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクター領域は、上記のように、志賀様毒素1のAサブユニット(SLT−1A)に由来する。免疫グロブリン型結合領域αエプスタイン・バー抗原は、エプスタイン・バー抗原に対するモノクローナル抗体(Fang C et al., J Immunol Methods 287: 21-30 (2004))に由来し、エプスタイン・バーウイルスに感染したヒト細胞又はエプスタイン・バー抗原を発現する形質転換細胞に結合することができる免疫グロブリン型結合領域を含む。エプスタイン・バー抗原は、エプスタイン・バーウイルスに感染した細胞やがん細胞(例えば、リンパ腫及び上咽頭がん細胞)などの複数の細胞型で発現する。さらに、エプスタイン・バー感染は、他の疾患、例えば、多発性硬化症を伴う。
細胞毒性タンパク質SLT−1A::αエプスタイン・バー::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αエプスタイン・バー抗原及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDELを付加し、タンパク質を形成する。例えば、融合タンパク質は、αエプスタイン・バー抗原結合タンパク質SLT−1A::αエプスタイン・バー::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αエプスタイン・バー::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αエプスタイン・バー::KDELのインビトロでの特性の決定
エプスタイン・バー抗原陽性細胞及びエプスタイン・バー抗原陰性細胞に対する、本実施例の細胞毒性タンパク質の結合特性は、蛍光に基づくフローサイトメトリーにより決定する。エプスタイン・バー抗原陽性細胞へのSLT−1A::αエプスタイン・バー::KDELのBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはエプスタイン・バー抗原陰性細胞への有意な結合はない。
細胞毒性タンパク質SLT−1A::αエプスタイン・バー::KDELのリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対するSLT−1A::αエプスタイン・バー::KDELのIC50は約0.1〜100pMである。
細胞殺滅アッセイを用いた細胞毒性タンパク質SLT−1A::αエプスタイン・バー::KDELの細胞毒性の決定
SLT−1A::αエプスタイン・バー::KDELの細胞毒性特性を、エプスタイン・バー抗原陽性細胞を用いて、前記の実施例において上記のように、一般的な細胞殺滅アッセイにより決定する。さらに、SLT−1A::αエプスタイン・バー::KDELの選択的細胞毒性特性を、エプスタイン・バー抗原陽性細胞と比較してエプスタイン・バー抗原陰性細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株に応じて、エプスタイン・バー抗原陽性細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にエプスタイン・バー抗原を発現する細胞と比較して細胞表面上にエプスタイン・バー抗原を発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、SLT−1A::αエプスタイン・バー::KDELの細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
動物モデルを使用した細胞毒性タンパク質SLT−1A::αエプスタイン・バー::KDELのインビボでの効果の決定
動物モデルを用いて、新生物細胞に対する細胞毒性タンパク質SLT−1A::αエプスタイン・バー::KDELのインビボでの効果を決定する。様々なマウス株を用いて、細胞表面上にエプスタイン・バー抗原を発現するヒト新生物細胞のマウスへの注射から得られるマウスにおける異種移植腫瘍に対する静脈内投与後の細胞毒性タンパク質の効果を試験する。細胞殺滅をT細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチド、並びに抗体αリーシュマニア抗原に由来する結合領域を含む細胞毒性タンパク質
本実施例において、志賀毒素エフェクター領域は、上記のように、志賀様毒素1のAサブユニット(SLT−1A)に由来する、CD8+T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチドである。免疫グロブリン型結合領域αリーシュマニア抗原は、当技術分野で既知の技術を用いて生成された、細胞内トリパノソーマ原虫を保有するヒト細胞に存在する細胞表面のリーシュマニア抗原への抗体に由来する(Silveira T et al., Int J Parasitol 31: 1451-8 (2001)、Kenner J et al., J Cutan Pathol 26: 130-6 (1999)、Berman J and Dwyer, Clin Exp Immunol 44: 342-348 (1981)を参照されたい)。
細胞毒性タンパク質SLT−1A::αリーシュマニア::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αリーシュマニア抗原及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDELを付加し、タンパク質を形成する。例えば、融合タンパク質は、リーシュマニア抗原結合タンパク質SLT−1A::αリーシュマニア::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αリーシュマニア::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αリーシュマニア::KDELのインビトロでの特性の決定
リーシュマニア抗原陽性細胞及びリーシュマニア抗原陰性細胞に対する、本実施例の細胞毒性タンパク質の結合特性は、蛍光に基づくフローサイトメトリーにより決定する。リーシュマニア抗原陽性細胞へのSLT−1A::αリーシュマニア::KDELのBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはリーシュマニア抗原陰性細胞への有意な結合はない。
細胞毒性タンパク質SLT−1A::αリーシュマニア::KDELのリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対するSLT−1A::αリーシュマニア::KDELのIC50は約0.1〜100pMである。
細胞殺滅アッセイを用いた細胞毒性タンパク質SLT−1A::αリーシュマニア::KDELの細胞毒性の決定
SLT−1A::αリーシュマニア::KDELの細胞毒性特性を、リーシュマニア抗原陽性細胞を用いて前記の実施例において上記のように、一般的な細胞殺滅アッセイにより決定する。さらに、SLT−1A::αリーシュマニア::KDELの選択的細胞毒性特性を、リーシュマニア抗原陽性細胞と比較してリーシュマニア抗原陰性細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株に応じて、リーシュマニア抗原陽性細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にリーシュマニア抗原を発現する細胞と比較して細胞表面上にリーシュマニア抗原を発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、SLT−1A::αリーシュマニア::KDELの細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチド、並びに免疫グロブリン型結合領域αニューロテンシン受容体に由来する結合領域を含む細胞毒性タンパク質
本実施例において、志賀毒素エフェクター領域は、上記のように、志賀様毒素1のAサブユニット(SLT−1A)に由来する、CD8+T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチドである。免疫グロブリン型結合領域αニューロテンシン受容体は、DARPin(商標)(GenBank受託番号:2P2C_R)又はヒトニューロテンシン受容体と結合するモノクローナル抗体(Ovigne J et al., Neuropeptides 32: 247-56 (1998))に由来する。ニューロテンシン受容体は、乳がん、結腸がん、肺がん、メラノーマ、及び膵臓がん細胞など様々ながん細胞で発現する。
細胞毒性タンパク質SLT−1A::αニューロテンシンR::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αニューロテンシンR及び志賀毒素エフェクター領域を共に連結した、カルボキシ末端にKDELを付加し、タンパク質を形成する。例えば、融合タンパク質は、ニューロテンシン受容体結合タンパク質SLT−1A::αニューロテンシンR::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αニューロテンシンR::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成した。
細胞毒性タンパク質SLT−1A::αニューロテンシンR::KDELのインビトロでの特性の決定
ニューロテンシン受容体陽性細胞及びニューロテンシン受容体陰性細胞に対する、本実施例の細胞毒性タンパク質の結合特性は、蛍光に基づくフローサイトメトリーにより決定する。ニューロテンシン受容体陽性細胞へのSLT−1A::αニューロテンシンR::KDELのBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはニューロテンシン受容体陰性細胞への有意な結合はない。
細胞毒性タンパク質SLT−1A::αニューロテンシンR::KDELのリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対するSLT−1A::αニューロテンシンR::KDELのIC50は約0.1〜100pMである。
細胞殺滅アッセイを用いた細胞毒性タンパク質SLT−1A::αニューロテンシンR::KDELの細胞毒性の決定
SLT−1A::αニューロテンシンR::KDELの細胞毒性特性を、ニューロテンシン受容体陽性細胞を用いて、前記の実施例において上記のように、一般的な細胞殺滅アッセイにより決定する。さらに、SLT−1A::αニューロテンシンR::KDELの選択的細胞毒性特性を、ニューロテンシン受容体陽性細胞と比較してニューロテンシン受容体陰性細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株に応じて、ニューロテンシン受容体陽性細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にニューロテンシン受容体を発現する細胞と比較して細胞表面上にニューロテンシン受容体を発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、SLT−1A::αニューロテンシンR::KDELの細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
動物モデルを使用した細胞毒性タンパク質SLT−1A::αニューロテンシンR::KDELのインビボでの効果の決定
動物モデルを用いて、新生物細胞に対する細胞毒性タンパク質SLT−1A::αニューロテンシンR::KDELのインビボでの効果を決定する。様々なマウス株を用いて、細胞表面上にニューロテンシン受容体を発現するヒト新生物細胞のマウスへの注射から得られるマウスにおける異種移植腫瘍に対する静脈内投与後の細胞毒性タンパク質の効果を試験する。細胞殺滅をT細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチド、並びに免疫グロブリン型結合領域αEGFRに由来する結合領域を含む細胞毒性タンパク質
本実施例において、志賀毒素エフェクター領域は、志賀様毒素1のAサブユニット(SLT−1A)に由来する、CD8+T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクター領域である。結合領域αEGFRは、AdNectin(商標)(GenBank受託番号:3QWQ_B)、Affibody(商標)(GenBank受託番号:2KZI_A;米国特許第8,598,113号明細書)、又は、その全てが1又は2以上のヒト上皮増殖因子受容体に結合する抗体に由来する。上皮増殖因子受容体の発現は、例えば、肺がん細胞、乳がん細胞、及び結腸がん細胞などのヒトがん細胞と関連がある。
細胞毒性タンパク質SLT−1A::αEGFR::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αEGFR及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDELを付加し、タンパク質を形成する。例えば、融合タンパク質は、EGFR結合タンパク質SLT−1A::αEGFR::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αEGFR::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αEGFR::KDELのインビトロでの特性の決定
EGFR+細胞及びEGFR−細胞に対する、本実施例の細胞毒性タンパク質の結合特性は、蛍光に基づくフローサイトメトリーにより決定する。EGFR+細胞へのSLT−1A::αEGFR::KDELのBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはEGFR−細胞への有意な結合はない。
細胞毒性タンパク質SLT−1A::αEGFR::KDELのリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対するSLT−1A::αEGFR::KDELのIC50は約0.1〜100pMである。
細胞殺滅アッセイを用いた細胞毒性タンパク質SLT−1A::αEGFR::KDELの細胞毒性の決定
SLT−1A::αEGFR::KDELの細胞毒性特性を、EGFR+細胞を用いて、前記の実施例において上記のように、一般的な細胞殺滅アッセイにより決定する。さらに、SLT−1A::αEGFR::KDELの選択的細胞毒性特性を、リーシュマニア抗原陽性細胞と比較してEGFR−細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株に応じて、EGFR+細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にEGFRを発現する細胞と比較して細胞表面上にEGFRを発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、SLT−1A::αEGFR::KDELの細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
動物モデルを使用した細胞毒性タンパク質SLT−1A::αEGFR::KDELのインビボでの効果の決定
動物モデルを用いて、新生物細胞に対する細胞毒性タンパク質SLT−1A::αEGFR::KDELのインビボでの効果を決定する。様々なマウス株を用いて、細胞表面上にEGFRを発現するヒト新生物細胞のマウスへの注射から得られるマウスにおける異種移植腫瘍に対する静脈内投与後の細胞毒性タンパク質の効果を試験する。細胞殺滅をT細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチド、並びに抗体αCCR5に由来する結合領域を含む細胞毒性タンパク質
本実施例において、志賀毒素エフェクター領域は、志賀様毒素1のAサブユニット(SLT−1A)に由来する、CD8+T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチドである。免疫グロブリン型結合領域αCCR5は、ヒトCCR5(CD195)に対するモノクローナル抗体(Bernstone L et al., Hybridoma 31: 7-19 (2012))に由来する。CCR5は主に、T細胞、マクロファージ、樹状細胞、及びミクログリアで発現する。さらに、CCR5はヒト免疫不全ウイルス(HIV、human immunodeficiency virus)の発症及び蔓延に影響を与える。
細胞毒性タンパク質SLT−1A::αCCR5::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αCCR5及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDELを付加し、タンパク質を形成する。例えば、融合タンパク質は、αCCR5結合タンパク質SLT−1A::αCCR5::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αCCR5::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αCCR5のインビトロでの特性の決定
CCR5+細胞及びCCR5−細胞に対する、本実施例の細胞毒性タンパク質の結合特性は、蛍光に基づくフローサイトメトリーにより決定する。CCR5+陽性細胞へのSLT−1A::αCCR5::KDELのBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはCCR5−細胞への有意な結合はない。
細胞毒性タンパク質SLT−1A::αCCR5::KDELのリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対するSLT−1A::αCCR5::KDELのIC50は約0.1〜100pMである。
細胞殺滅アッセイを用いた細胞毒性タンパク質SLT−1A::αCCR5::KDELの細胞毒性の決定
SLT−1A::αCCR5::KDELの細胞毒性特性を、CCR5+細胞を用いて前記の実施例において上記ように、一般的な細胞殺滅アッセイにより決定する。さらに、SLT−1A::αCCR5::KDELの選択的細胞毒性特性を、CCR5+細胞と比較してCCR5−細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株に応じて、CCR5+細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にCCR5を発現する細胞と比較して細胞表面上にCCR5を発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、SLT−1A::αCCR5::KDELの細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
動物モデルを使用した細胞毒性タンパク質SLT−1A::αCCR5::KDELのインビボでの効果の決定
動物モデルを用いて、ドナー材料のT細胞を枯渇し(Tsirigotis P et al., Immunotherapy 4: 407-24 (2012)を参照されたい)、細胞毒性タンパク質SLT−1A::αCCR5::KDELのインビボでの効果を決定する。非ヒト霊長類を用いて、SLT−1A::αCCR5のインビボでの効果を決定する。ドナー臓器をSLT−1A::αCCR5::KDELで前処理したとき(Weaver T et al., Nat Med 15: 746-9 (2009)を参照されたい)、腎臓移植後のアカゲザルの移植片対宿主病について分析する。異なる用量のSLT−1A::αCCR5::KDELの非経口投与後、霊長類カニクイザルの末梢血Tリンパ球のインビボでの枯渇を観察する。細胞殺滅をT細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。SLT−1A::αCCR5::KDELを使用したHIV感染の阻害は、サル免疫不全ウイルス(SIV、simian immunodeficiency virus)にさらされたときに循環するT細胞を大きく枯渇させるために、非ヒト霊長類に急性用量のSLT−1A::αCCR5::KDELを与えることによって試験する(Sellier P et al., PLoS One 5: e10570 (2010)を参照されたい)。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチド、並びに抗Env免疫グロブリンドメインに由来する結合領域を含む細胞毒性タンパク質
本実施例において、志賀毒素エフェクター領域は、志賀毒素のAサブユニット(StxA)に由来する、CD8+T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチドである。免疫グロブリン型結合領域αEnvは、GP41、GP120、GP140、又はGP160(例えば、Chen W et al., J Mol Bio 382: 779-89 (2008)、Chen W et al., Expert Opin Biol Ther 13: 657-71 (2013)、van den Kerkhof T et al., Retrovirology 10: 102 (2013)を参照されたい)などのHIVエンベロープ糖タンパク質(Env)に結合する既存の抗体、又は標準的な技術を用いて生成された抗体(Prabakaran et al., Front Microbiol 3: 277 (2012)を参照されたい)に由来する。EnvはHIV複製中のHIV感染細胞の細胞表面に提示される、HIV表面タンパク質である。Envは、主に感染細胞のエンドソーム区画に発現するが、本発明の強力な細胞毒性を有する細胞標的化タンパク質によって、十分な量のEnvが標的とされる細胞表面に存在させることができる。さらに、Env標的細胞毒性タンパク質は、HIVビリオンと結合でき、ビリオンと宿主細胞が融合する間に、感染細胞に新たに進入することができる。
HIVが高割合の変異を提示するので、複数株のHIVのEnvに結合する広域中和抗体(van den Kerkhof T et al., Retrovirology 10: 102 (2013))などの、Envの機能的束縛部分に結合する免疫グロブリンドメインを使用することが好ましい。感染細胞の表面に存在するEnvは立体的に制限されたエピトープを提示するとされているので(Chen W et al., J Virol 88: 1125-39 (2014))、sdAb又はVHドメインなどの100kDより小さい、理想的には25kDより小さいものを使用することが好ましい。
細胞毒性タンパク質SLT−1A::αEnv::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αEnv及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDELを付加し、細胞毒性タンパク質を形成する。例えば、融合タンパク質は、αEnv結合タンパク質SLT−1A::αEnv::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αEnv::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αEnv::KDELのインビトロでの特性の決定
Env+細胞及びEnv−細胞に対する、本実施例の細胞毒性タンパク質の結合特性は、蛍光に基づくフローサイトメトリーアッセイにより決定する。Env+陽性細胞へのSLT−1A::αEnv::KDELのBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはEnv−細胞への有意な結合はない。
細胞毒性タンパク質SLT−1A::αEnv::KDELのリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対するSLT−1A::αEnv::KDELのIC50は約0.1〜100pMである。
細胞殺滅アッセイを用いた細胞毒性タンパク質SLT−1A::αEnv::KDELの細胞毒性の決定
SLT−1A::αEnv::KDELの細胞毒性特性を、Env+細胞を用いて前記の実施例において上記のように、一般的な細胞殺滅アッセイにより決定する。さらに、SLT−1A::αEnv::KDELの選択的細胞毒性特性を、Env+細胞と比較してEnv−細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株及び/又は細胞に感染して、細胞をEnv+にするのに使用されるHIV株に応じて、Env+細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にEnvを発現する細胞と比較して細胞表面上にEnvを発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、SLT−1A::αEnv::KDELの細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
動物モデルを使用した細胞毒性タンパク質SLT−1A::αEnv::KDELのインビボでの効果の決定
SLT−1A::αEnv::KDELを使用したHIV感染の阻害は、サル免疫不全ウイルス(SIV)に感染した非ヒト霊長類(Sellier P et al., PLoS One 5: e10570 (2010)を参照されたい)に、SLT−1A::αEnv::KDELを投与することによって試験する。細胞殺滅をT細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチド、並びに抗体αUL18抗体に由来する結合領域を含む細胞毒性タンパク質
本実施例において、志賀毒素エフェクター領域は、志賀様毒素1のAサブユニット(SLT−1A)に由来する、CD8+T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチドである。免疫グロブリン型結合領域αUL18は、当技術分野で既知の技術を用いて、細胞表面サイトメガロウイルスタンパク質UL18に生成され、サイトメガロウイルスに感染したヒト細胞に存在する(Yang Z, Bjorkman P, Proc Natl Acad Sci USA 105: 10095-100 (2008))。ヒトサイトメガロウイルス感染は、様々ながん及び炎症性障害を伴う。
細胞毒性タンパク質SLT−1A::αUL18::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αUL18及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDELを付加し、タンパク質を形成する。例えば、融合タンパク質は、αUL18結合タンパク質SLT−1A::αUL18::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αUL18::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αUL18::KDELのインビトロでの特性の決定
サイトメガロウイルスUL18陽性細胞及びサイトメガロウイルスUL18陰性細胞に対する、本実施例の細胞毒性タンパク質の結合特性は、蛍光に基づくフローサイトメトリーにより決定する。サイトメガロウイルスタンパク質UL18陽性細胞へのSLT−1A::αUL18::KDELのBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはサイトメガロウイルスタンパク質UL18陰性細胞への有意な結合はない。
細胞毒性タンパク質SLT−1A::αUL18::KDELのリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対するSLT−1A::αUL18::KDELのIC50は約0.1〜100pMである。
細胞殺滅アッセイを用いた細胞毒性タンパク質SLT−1A::αUL18::KDELの細胞毒性の決定
SLT−1A::αUL18::KDELの細胞毒性特性を、サイトメガロウイルスタンパク質UL18陽性細胞を用いて、前記の実施例において上記のように、一般的な細胞殺滅アッセイにより決定する。さらに、SLT−1A::αUL18::KDELの選択的細胞毒性特性を、サイトメガロウイルスタンパク質UL18陽性細胞と比較してサイトメガロウイルスタンパク質UL18陰性細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株に応じて、サイトメガロウイルスタンパク質UL18陽性細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にサイトメガロウイルスタンパク質UL18を発現する細胞と比較して細胞表面上にサイトメガロウイルスタンパク質UL18を発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、SLT−1A::αUL18::KDELの細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化されたジフテリア毒素エフェクターポリペプチド、並びにCD20に特異的な結合領域を含む細胞毒性タンパク質(ジフテリア毒素と融合したαCD20)
本実施例において、CD8+T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化されたジフテリア毒素エフェクター領域は、上記のように、ジフテリア毒素1のAサブユニットに由来する。免疫グロブリン型結合領域αCD20抗原は、ヒトCD20を認識する免疫グロブリン型ドメインに由来し(例えば、Haisma et al., Blood 92: 184-90 (1999)、Geng S et al., Cell Mol Immunol 3: 439-43 (2006)、Olafesn T et al., Protein Eng Des Sel 23: 243-9 (2010)を参照されたい)、CD20の細胞外部分に結合することができる免疫グロブリン型結合領域を含む。CD20は、例えば、B細胞リンパ腫細胞、有毛細胞白血病細胞、B細胞慢性リンパ球性白血病細胞、及びメラノーマ細胞などの複数のがん細胞型で発現する。さらに、CD20はいくつかの自己免疫疾患、障害、及び過活動B細胞を含む状態を治療するための治療学への魅力的な標的である。
細胞毒性タンパク質ジフテリア毒素::αCD20の構築、産生、及び精製
免疫グロブリン型結合領域αCD20及びジフテリア毒素エフェクター領域(例えば、配列番号46、47、及び48など)を共に連結した。例えば、融合タンパク質は、αCD20抗原結合タンパク質ジフテリア毒素::αCD20をコードするポリヌクレオチドを発現させることによって産生される(例えば、配列番号55、56、及び57を参照されたい)。細胞毒性タンパク質SLTジフテリア毒素::αCD20の発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成した。
細胞毒性タンパク質ジフテリア毒素::αCD20のインビトロでの特性の決定
CD20+細胞及びCD20−細胞に対する、本実施例の細胞毒性タンパク質の結合特性は、前記の特許に記載のように、蛍光に基づくフローサイトメトリーアッセイにより決定する。CD20+細胞へのジフテリア毒素::αCD20のBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはCD20−細胞への有意な結合はない。
細胞毒性タンパク質ジフテリア毒素::αCD20のリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対するジフテリア毒素::αCD20のIC50は約0.1〜100pMである。
CD20+細胞殺滅アッセイを用いた細胞毒性タンパク質ジフテリア毒素::αCD20の細胞毒性の決定
ジフテリア毒素::αCD20の細胞毒性特性を、CD20+細胞を用いて前記の実施例において上記のように、一般的な細胞殺滅アッセイにより決定する。さらに、ジフテリア毒素::αCD20の選択的細胞毒性特性を、CD20+細胞と比較してCD20−細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株に応じて、CD20+細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にCD20を発現する細胞と比較して細胞表面上にCD20を発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、ジフテリア毒素::αCD20の細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
動物モデルを使用した細胞毒性タンパク質ジフテリア毒素::αCD20のインビボでの効果の決定
動物モデルを用いて、新生物細胞に対する細胞毒性タンパク質ジフテリア毒素::αCD20のインビボでの効果を決定する。様々なマウス株を用いて、細胞表面上にCD20を発現するヒト新生物細胞のマウスへの注射から得られるマウスにおける異種移植腫瘍に対する静脈内投与後の細胞毒性タンパク質の効果を試験する。細胞殺滅をT細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化されたジフテリア毒素エフェクターポリペプチド、並びにHER2に特異的な結合領域を含む細胞毒性タンパク質(「ジフテリア毒素と融合したαHER2−VH」)
本実施例において、CD8+T細胞が高度免疫化された及びB細胞/CD4+T細胞が脱免疫化されたジフテリア毒素エフェクター領域は、上記のように、ジフテリア毒素のAサブユニットに由来する。免疫グロブリン型結合領域は、米国特許出願第2011/0059090号に記載されるように、ラクダ抗体の単ドメイン可変領域(VH)であるタンパク質に由来するαHER2 VHである。
細胞毒性タンパク質「ジフテリア毒素と融合したαHER2−VH」の構築、産生、及び精製
免疫グロブリン型結合領域及びジフテリア毒素エフェクター領域を共に連結し、融合タンパク質を形成した(例えば、配列番号58、59、60など)。本実施例において、タンパク質5F7に由来するαHER2−VH可変領域をコードするポリヌクレオチドは、当技術分野で既知のリンカーをコードするポリヌクレオチドを有するフレーム、及び配列番号46、47、又は48のアミノ酸を含むジフテリア毒素エフェクター領域をコードするポリヌクレオチドを有するフレームにクローニングすることができる。細胞毒性タンパク質「ジフテリア毒素と融合したαHER2−VH」のバリアントは、結合領域をジフテリア毒素エフェクター領域のアミノ末端の隣に位置していてもよく、カルボキシ末端にKDELファミリーの小胞体シグナルモチーフを含んでいてもよいように作製した。細胞毒性タンパク質「ジフテリア毒素と融合したαHER2−VH」の発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成した。
細胞毒性タンパク質「ジフテリア毒素と融合したαHER2−VH」のインビトロでの特性の決定
HER2+細胞及びHER2−細胞に対する、本実施例の細胞毒性タンパク質の結合特性は、前記の特許に記載のように、蛍光に基づくフローサイトメトリーアッセイにより決定する。HER2+細胞への「ジフテリア毒素と融合したαHER2−VH」のBmaxは約50,000〜200,000MFI、Kは0.01〜100nMである一方、このアッセイにおいてはHER2−細胞への有意な結合はない。
細胞毒性タンパク質「ジフテリア毒素と融合したαHER2−VH」のリボソーム不活性化能力を、前記の実施例において上記のように、無細胞のインビトロでのタンパク質翻訳において決定する。無細胞タンパク質合成に対する本実施例の細胞毒性タンパク質の阻害効果は有意である。この無細胞アッセイにおけるタンパク質合成に対する「ジフテリア毒素と融合したαHER2−VH」のIC50は約0.1〜100pMである。
HER2+細胞殺滅アッセイを用いた細胞毒性タンパク質「ジフテリア毒素と融合したαHER2−VH」の細胞毒性の決定
「ジフテリア毒素と融合したαHER2−VH」の細胞毒性特性を、HER2+細胞を用いて前記の実施例において上記のように、一般的な細胞殺滅アッセイにより決定する。さらに、「ジフテリア毒素と融合したαHER2−VH」の選択的細胞毒性特性を、HER2+細胞と比較してHER2−細胞を用いる同じ一般的な細胞殺滅アッセイにより決定する。本実施例の細胞毒性タンパク質のCD50は、細胞株に応じて、HER2+細胞について約0.01〜100nMである。細胞毒性タンパク質のCD50は、細胞表面上にHER2を発現する細胞と比較して細胞表面上にHER2を発現しない細胞について約10〜10,000倍高い(細胞毒性が低い)。さらに、「ジフテリア毒素と融合したαHER2−VH」の細胞毒性を、T細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
動物モデルを使用した細胞毒性タンパク質「ジフテリア毒素と融合したαHER2−VH」のインビボでの効果の決定
動物モデルを用いて、新生物細胞に対する細胞毒性タンパク質「ジフテリア毒素と融合したαHER2−VH」のインビボでの効果を決定する。様々なマウス株を用いて、細胞表面上にHER2を発現するヒト新生物細胞のマウスへの注射から得られるマウスにおける異種移植腫瘍に対する静脈内投与後の細胞毒性タンパク質の効果を試験する。細胞殺滅をT細胞エピトープの送達による直接細胞毒性及び間接細胞毒性の両方、並びにCTL介在細胞毒性を導く提示について調査する。
様々な細胞型を標的とする、T細胞が高度免疫化された及び/又はB細胞/CD4+T細胞が脱免疫化された志賀毒素由来細胞毒性タンパク質
本実施例において、志賀毒素エフェクター領域は、1又は2以上の組み込まれた又は挿入されたT細胞エピトープを介して、1又は2以上の上記B細胞エピトープ領域が破壊された、志賀様毒素1、志賀毒素、及び/又は志賀様毒素2のAサブユニット(SLT−1A、StxA、SLT−2A)に由来する、T細胞が高度免疫化された及び/又はB細胞/CD4+T細胞が脱免疫化された志賀毒素エフェクターポリペプチドを含む。結合領域は表15の第1列から選択される分子の免疫グロブリンドメインに由来し、表15の第2列に示される細胞外標的生体分子と結合する。本実施例の例示的細胞毒性タンパク質は、カルボキシ末端にKDEL型シグナルモチーフを有し及び/又は当技術分野で既知の試薬及び技術を用いて作製していてもよい。本実施例の例示的細胞毒性タンパク質は、前記の実施例において記載したように、適切な細胞外標的生体分子を発現する細胞を用いて試験される。本実施例の例示的タンパク質は、例えば、表15の第3列に示される疾患、状態、及び/又は障害を診断及び治療するために用いることができる。
本発明のいくつかの実施形態を例示によって説明してきたが、本発明を多くの改変、変更及び適合化と共に実行することができ、本発明の精神から逸脱するか、又は特許請求の範囲を超えることなく、いくつかの等価物又は代替的な解決法の使用が当業者の範囲内にあることが明らかである。
全ての刊行物、特許、及び特許出願は、あたかもそれぞれ個々の刊行物、特許又は特許出願の全体が参照により組み込まれると具体的かつ個別的に示されたのと同程度に、その全体が参照により本明細書に組み込まれる。米国仮特許出願第61/777,130号明細書、第61/932,000号明細書、第61/951,110号明細書、第61/951,121号明細書、第62/010,918号明細書、及び第62/049,325号明細書の開示はそれぞれ、その全体が参照により組み込まれる。米国特許出願第2007/0298434A1号明細書、米国特許出願第2009/0156417A1号明細書、及び米国特許出願第2013/0196928A1号明細書の開示はそれぞれ、その全体が参照により組み込まれる。国際出願第PCT/US2014/023231号及び国際出願第PCT/US2014/023198号の開示はそれぞれ、その全体が参照により組み込まれる。本明細書で引用されるアミノ酸及び核酸配列に関するGenBank(National Center for Biotechnology Information、U.S.)からの全ての電子的に利用可能な生物学的配列情報の完全な開示は、その全体が参照により組み込まれる。
特定の実施形態において、本発明の細胞標的化分子は、細胞標的化部分又は細胞標的化剤と、本発明の任意のポリペプチドとを含む。特定のさらなる実施形態において、細胞標的化分子は結合領域をさらに含み、結合領域は、1つ又は2つ以上のポリペプチドを含み、少なくとも1つの細胞外標的生体分子に特異的に結合することができる。特定のさらなる実施形態において、結合領域は、相補性決定領域3(CDR3,complementary determining region 3)断片拘束FR3−CDR3−FR4(FR3−CDR3−FR4)ポリペプチド、シングルドメイン抗体(sdAb,single-domain antibody)断片、ナノボディ、ラクダ科動物に由来する重鎖抗体ドメイン(VH断片)、軟骨魚類に由来する重鎖抗体ドメイン、免疫グロブリン新規抗原受容体(IgNAR,immunoglobulin new antigen receptor)、VNAR断片、一本鎖可変断片(scFv,single-chain variable fragment)、抗体可変断片(Fv,variable fragment)、抗原結合断片(Fab,antigen-binding fragment)、Fd断片、小モジュラー免疫医薬(SMIP,small modular immunopharmaceutical)ドメイン、フィブロネクションから得られる第10フィブロネクチンIII型ドメイン(10Fn3,fibronection-derived 10th fibronectin type III domain)(例えばモノボディ)、テネイシンIII型ドメイン(例えばTNfn3)、アンキリン反復モチーフドメイン(ARD,ankyrin repeat motif domain)、低密度リポタンパク質受容体由来Aドメイン(LDLRのAドメイン又はLDLR−A,low-density-lipoprotein-receptor-derived A-domain)、リポカリン(アンチカリン)、Kunitzドメイン、プロテインA由来Zドメイン、ガンマ−B結晶由来ドメイン(アフィリン)、ユビキチン由来ドメイン、Sac7d由来ポリペプチド、Fyn由来SH2ドメイン(アフィチン)、ミニタンパク質、C型レクチン様ドメイン足場、工学的に操作された抗体模倣物、及び結合機能性を保持する前述のもののいずれかの遺伝子操作された任意の対応物からなる群から選択されるポリペプチドを含む。本発明の細胞標的化分子の特定のさらなる実施形態では、細胞標的化分子を結合領域の細胞外標的生体分子と物理的に結合されている細胞に投与すると、細胞標的化分子は細胞を死滅させることができる。本発明の細胞標的化分子の特定のさらなる実施形態では、細胞標的化分子を、メンバーが結合領域の細胞外標的生体合分子と物理的に結合されている第1の細胞集団、及びメンバーが前記結合領域のいかなる細胞外標的生体分子とも物理的に結合されていない第2の細胞集団に投与すると、前記第2の細胞集団のメンバーと比較して前記第1の細胞集団のメンバーに対する細胞標的化分子の細胞毒性効果は少なくとも3倍大きい。本発明の細胞標的化分子の特定のさらなる実施形態において、結合領域は、CD20、CD22、CD40、CD79、CD25、CD30、HER2/neu/ErbB2、EGFR、EpCAM、EphB2、前立腺特異的膜抗原、Cripto、エンドグリン、線維芽細胞活性化タンパク質、Lewis−Y、CD19、CD21、CS1/SLAMF7、CD33、CD52、EpCAM、CEA、gpA33、ムチン、TAG−72、炭酸脱水酵素IX、葉酸結合タンパク質、ガングリオシドGD2、ガングリオシドGD3、ガングリオシドGM2、ガングリオシドLewis−Y2、VEGFR、アルファVベータ3、アルファ5ベータ1、ErbB1/EGFR、Erb3、c−MET、IGF1R、EphA3、TRAIL−R1、TRAIL−R2、RANKL、FAP、テネイシン、CD64、メソセリン、BRCA1、MART−1/メランA、gp100、チロシナーゼ、TRP−1、TRP−2、MAGE−1、MAGE−3、GAGE−1/2、BAGE、RAGE、NY−ESO−1、CDK−4、ベータ−カテニン、MUM−1、カスパーゼ−8、KIAA0205、HPVE6、SART−1、PRAME、癌胎児抗原、前立腺特異的抗原、前立腺幹細胞抗原、ヒトアスパルチル(アスパラギニル)ベータ−ヒドロキシラーゼ、EphA2、HER3/ErbB−3、MUC1、MART−1/メランA、gp100、チロシナーゼ関連抗原、HPV−E7、エプスタイン・バーウイルス抗原、Bcr−Abl、アルファ−フェトプロテイン抗原、17−A1、膀胱腫瘍抗原、CD38、CD15、CD23、CD52、CD53、CD88、CD129、CD183、CD191、CD193、CD244、CD294、CD305、C3AR、FceRIa、ガレクチン−9、mrp−14、siglec−8、siglec−10、CD49d、CD13、CD44、CD54、CD63、CD69、CD123、CD193、TLR4、FceRIa、IgE、CD107a、CD203c、CD14、CD15、CD33、CD64、CD68、CD80、CD86、CD105、CD115、F4/80、ILT−3、ガレクチン−3、CD11a−c、GITRL、MHCクラスII、CD284−TLR4、CD107−Mac3、CD195−CCR5、HLA−DR、CD16/32、CD282−TLR2、CD11c、CD123、及び前述のもののいずれかの任意の免疫原性断片からなる群から選択される細胞外標的生体分子と結合することができる。本発明の細胞標的化分子の特定のさらなる実施形態において、細胞標的化分子は、KDELファミリーのメンバーのカルボキシ末端小胞体保留/回収シグナルモチーフをさらに含む。特定のさらなる実施形態では、KDEL(配列番号61)、HDEF(配列番号62)、HDEL(配列番号63)、RDEF(配列番号64)、RDEL(配列番号65)、WDEL(配列番号66)、YDEL(配列番号67)、HEEF(配列番号68)、HEEL(配列番号69)、KEEL(配列番号70)、REEL(配列番号71)、KAEL(配列番号72)、KCEL(配列番号73)、KFEL(配列番号74)、KGEL(配列番号75)、KHEL(配列番号76)、KLEL(配列番号77)、KNEL(配列番号78)、KQEL(配列番号79)、KREL(配列番号80)、KSEL(配列番号81)、KVEL(配列番号82)、KWEL(配列番号83)、KYEL(配列番号84)、KEDL(配列番号85)、KIEL(配列番号86)、DKEL(配列番号87)、FDEL(配列番号88)、KDEF(配列番号89)、KKEL(配列番号90)、HADL(配列番号91)、HAEL(配列番号92)、HIEL(配列番号93)、HNEL(配列番号94)、HTEL(配列番号95)、KTEL(配列番号96)、HVEL(配列番号97)、NDEL(配列番号98)、QDEL(配列番号99)、REDL(配列番号100)、RNEL(配列番号101)、RTDL(配列番号102)、RTEL(配列番号103)、SDEL(配列番号104)、TDEL(配列番号105)及びSKEL(配列番号106)からなる群から選択される、カルボキシ末端小胞体保留/回収シグナルモチーフ。
本発明は、本発明のポリペプチド及び/又は細胞標的化分子と、少なくとも1つの薬学的に許容される賦形剤又は担体とを含む医薬組成物、並びに本書の中でさらに説明するような本発明の方法におけるそのようなポリペプチド、細胞標的化分子、又は前記ポリペプチド又は細胞標的化分子を含む組成物の使用も提供する。本発明の特定の実施形態は、本発明の任意のポリペプチド及び/又は本発明の任意の細胞標的化分子と、少なくとも1つの薬学的に許容される賦形剤又は担体とを含む医薬組成物である。
本発明のポリペプチド、細胞標的化分子、タンパク質及び組成物の他に、本発明のポリペプチドを含む本発明のポリペプチド又は細胞標的化分子又はタンパク質を含むポリペプチドをコードすることができるポリヌクレオチド、並びに本発明のポリヌクレオチドを含む発現ベクター、及び本発明の発現ベクターを含む宿主細胞は、本発明の範囲内である。発現ベクターを含む宿主細胞は、例えば、本発明のポリペプチド及び/若しくは本発明のタンパク質又はそれらのポリペプチド成分若しくは断片を組換え発現によって産生する方法において、使用されることがある。
本発明は、それを必要とする患者において疾患、障害及び/又は状態を治療する方法であって、それを必要とする患者に、本発明のポリペプチドを含む組成物、ポリペプチド及び/若しくは前記ポリペプチドを含むタンパク質、又は前述のもののいずれかを含む組成物(例えば医薬組成物)の治療有効量を投与するステップを含む方法をさらに提供する。特定の実施形態において、本発明のこの方法を用いて治療される疾患、障害又は状態は、がん、腫瘍、免疫障害及び微生物感染から選択される。この方法の特定の実施形態において、治療されるがんは、骨がん、乳がん、中枢/末梢神経系がん、胃腸がん、胚細胞がん、腺がん、頭頸部がん、血液がん、腎・尿路癌、肝がん、肺/胸膜がん、前立腺がん、肉腫、皮膚がん及び子宮がんからなる群から選択される。この方法の特定の実施形態において、治療される免疫障害は、アミロイドーシス、強直性脊椎炎、喘息、クローン病、糖尿病、移植片拒絶、移植片対宿主病、橋本甲状腺炎、溶血性尿毒症症候群、HIV関連疾患、エリテマトーデス、多発性硬化症、多発動脈炎、乾癬、乾癬性関節炎、リウマチ様関節炎、強皮症、敗血症性ショック、シェーグレン症候群、潰瘍性大腸炎及び血管炎からなる群から選択される疾患に関連した免疫障害である。
本発明の特定の実施形態には、がん、腫瘍、免疫障害又は微生物感染の治療又は予防のための、本発明のポリペプチドを含む組成物、ポリペプチド及び/若しくは前記ポリペプチドを含む細胞標的化分子、又は前述のもののいずれかを含む組成物がある。本発明の特定の実施形態には、がん、腫瘍、免疫障害又は微生物感染の治療又は予防のための医薬品の製造における、本発明の組成物の使用がある。
本発明の特定の実施形態には、本発明のポリペプチド及び/若しくは前記ポリペプチドを含む細胞標的化分子、又は前述のもののいずれかを含む組成物と、細胞タイプ、組織、器官、疾患、障害、状態又は患者についての診断に有用な情報などの情報の収集のための検出促進剤とを含む、診断用組成物がある。
B細胞/CD4+T細胞脱免疫化バリアントを含む、エフェクターポリペプチドを提示する例示的T細胞エピトープ、及びそれを含む細胞標的化分子の一般的構造を示す図である。 毒素エフェクターポリペプチドのB細胞エピトープ領域へのT細胞エピトープの組み込みによって触媒活性は有意に損なわなかったことを示すグラフである。B細胞エピトープ領域に組み込まれたT細胞エピトープを含む2つの例示的ジフテリア毒素由来ポリペプチドは、野生型ジフテリア毒素に匹敵するリボソームの不活性化レベルを示した。 ウェスタンブロット分析による様々な抗SLT−1A抗体の認識により、B細胞エピトープ領域へのT細胞エピトープの組み込み又は挿入によってエピトープが破壊されたことを示す図である。 ウェスタン分析による様々な抗SLT−1A抗体の認識により、B細胞エピトープ領域へのT細胞エピトープの組み込みによってエピトープが破壊されたことを示す図である。 異なる処理(未処理、本発明の例示的細胞標的化タンパク質での処理、外因性エピトープペプチド及びPLEでの処理、並びに外因性エピトープペプチドのみでの処理)が行われた細胞のセットのフローサイトメトリー分析結果のオーバーレイを示すグラフである。B細胞エピトープ領域を破壊する組み込まれたT細胞エピトープを含む脱免疫化志賀毒素エフェクターポリペプチドを含む、本発明の3つの例示的細胞標的化タンパク質で処理された細胞の細胞表面で、MHC分子と複合体を形成する組み込まれたエピトープペプチドが提示された。
他の例は、特異的細胞内区画に局在する分子である。内質保持/回収シグナルモチーフ(例えばKDEL(配列番号61))を含む大部分のポリペプチドは、細胞内の異なる区画から真核生物細胞のERに局在することができる。
B.異種T細胞エピトープ
本発明のポリペプチド及び細胞標的化分子は、各々、1つ又は2つ以上の異種T細胞エピトープを含む。T細胞エピトープは、抗原が有する分子構造であり、ペプチド及び直鎖状アミノ酸配列によって表すことができる。異種T細胞エピトープは、本発明のT細胞高度免疫化された及び/又はB細胞/CD4+T細胞脱免疫化されたポリペプチドを生成するために本発明の方法を使用して修飾される出発プロテアソーム送達エフェクターポリペプチドであるソースポリペプチドにはまだ存在しないエピトープである。
カルボキシ末端リジン−アスパラギン−グルタメート−ロイシン(KDEL(配列番号61))配列は、真核生物細胞内の可溶性タンパク質のカノニカル小胞体保留及び回収シグナルモチーフであり、KDEL受容体によって認識される(Capitani M, Sallese M, FEBS Lett 583: 3863-71 (2009)を参照されたい)。シグナルモチーフのKDELファミリーは、多くのKDEL(配列番号61として開示されている「KDEL」)様モチーフ、例えば、HDEL(配列番号63)、RDEL(配列番号65)、WDEL(配列番号66)、YDEL(配列番号67)、HEEL(配列番号69)、KEEL(配列番号70)、REEL(配列番号71)、KFEL(配列番号74)、KIEL(配列番号86)、DKEL(配列番号87)、KKEL(配列番号90)、HNEL(配列番号94)、HTEL(配列番号95)、KTEL(配列番号96)及びHVEL(配列番号97)を含み、これらの全てが、系統発生学上の複数の界にわたって小胞体の内腔の常在物であることが公知であるタンパク質のカルボキシ末端において見出される(Munro S, Pelham H, Cell 48: 899-907 (1987)、Raykhel I et al., J Cell Biol 179: 1193-204 (2007))。KDELシグナルモチーフファミリーは、合成構築物を使用して証明された少なくとも46のポリペプチドバリアントを含む(Raykhel, J Cell Biol 179: 1193-204 (2007))。さらなるKDELシグナルモチーフは、ALEDEL(配列番号107)、HAEDEL(配列番号108)、HLEDEL(配列番号109)、KLEDEL(配列番号110)、IRSDEL(配列番号111)、ERSTEL(配列番号112)、及びRPSTEL(配列番号113)を含む(Alanen H et al., J Mol Biol 409: 291-7 (2011))。KDELシグナルモチーフを表す一般化コンセンサスモチーフは、[KRHQSA]−[DENQ]−E−Lと記載されている(Hulo N et al., Nucleic Acids Res 34: D227-30 (2006))。
タンパク質性リンカーを本発明の組換え融合細胞標的化分子への組み込みに選択してもよい。本発明の組換え融合細胞標的化タンパク質のためのリンカーは、約2〜50アミノ酸残基、好ましくは約5〜30アミノ酸残基を概して含む(Argos P, J Mol Biol 211: 943-58 (1990)、Williamson M, Biochem J 297: 240-60 (1994)、George R, Heringa J, Protein Eng 15: 871-9 (2002)、Kreitman R, AAPS J 8: E532-51 (2006))。一般に、タンパク質性リンカーは、例えばトレオニン、プロリン、グルタミン、グリシン及びアラニンなどの、極性、非荷電及び/又は荷電残基を有するアミノ酸残基の大部分を含む(例えば、Huston J et al.Proc Natl Acad Sci U.S.A.85: 5879-83 (1988)、Pastan I et al., Annu Rev Med 58: 221-37 (2007)、Li J et al., Cell Immunol 118: 85-99 (1989)、Cumber A et al.Bioconj Chem 3: 397-401 (1992)、Friedman P et al., Cancer Res 53: 334-9 (1993)、Whitlow M et al., Protein Engineering 6: 989-95 (1993)、Siegall C et al., J Immunol 152: 2377-84 (1994)、Newton et al.Biochemistry 35: 545-53 (1996)、Ladurner et al.J Mol Biol 273: 330-7 (1997)、Kreitman R et al., Leuk Lymphoma 52: 82-6 (2011)、米国特許第4,894,443号明細書を参照されたい)。タンパク質性リンカーの非限定的な例は、アラニン−セリン−グリシン−グリシン−プロリン−グルタメート(ASGGPE(配列番号114))、バリン−メチオニン(VM)、アラニン−メチオニン(AM)、AM(G2−4S)AM(この場合、Gはグリシンであり、Sはセリンであり、xは1〜10(配列番号115)の整数である)を含む。
可動性タンパク質性リンカーは、多くの場合、12アミノ酸残基長より長く、小さい非極性アミノ酸残基、極性アミノ酸残基及び/又は親水性アミノ酸残基、例えばグリシン、セリン及びトレオニンなどに富んでいる(例えば、Bird R et al., Science 242: 423-6 (1988)、Friedman P et al., Cancer Res 53: 334-9 (1993)、Siegall C et al., J Immunol 152: 2377-84 (1994)を参照されたい)。可動性タンパク質性リンカーは、成分間の空間的離隔を増すように選択されることもあり、及び/又は成分間の分子間相互作用を可能にするように選択されることもある。例えば、様々な「GS」リンカーが当業者に公知であり、複数のグリシン及び/又は1つ若しくは2つ以上のセリンで構成され、例えば(GS) (配列番号116)、(SG) (配列番号117)、(GGGGS) (配列番号118)及び(G) (配列番号119)(この場合、xは1〜6であり、nは1〜30である)などの反復単位で構成されることもある(例えば、国際公開第96/06641号パンフレットを参照されたい)。可動性タンパク質性リンカーの非限定的な例は、GKSSGSGSESKS(配列番号120)、GSTSGSGKSSEGKG(配列番号121)、GSTSGSGKSSEGSGSTKG(配列番号122)、GSTSGSGKPGSGEGSTKG(配列番号123)、EGKSSGSGSESKEF(配列番号124)、SRSSG(配列番号125)、及びSGSSC(配列番号126)を含む。
好適なリンカーは、成分のインビボ分離、例えば、切断及び/又は環境特異的不安定性に起因する成分のインビボ分離などを可能にするように、選択されうる(例えば、Dosio F et al., Toxins 3: 848-83 (2011)、Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013)を参照されたい)。インビボ切断性タンパク質性リンカーは、タンパク質プロセッシングによって結合解除することができる、及び/又は環境を、多くの場合、生物体内の若しくは特定の細胞タイプの内部の特異的部位の環境を、削減することができる(例えば、Doronina S et al., Bioconjug Chem 17: 144-24 (2006)、Erickson H et al., Cancer Res 66: 4426-33 (2006)を参照されたい)。インビボ切断性タンパク質性リンカーは、1つ又は2つ以上のシステイン対によって形成されるプロテアーゼ感受性モチーフ及び/又はジスルフィド結合を含むことが多い(例えば、Pietersz G et al., Cancer Res 48: 4469-76 (1998)、The J et al., J Immunol Methods 110: 101-9 (1998)を参照されたい;Chen X et al., Adv Drug Deliv Rev 65: 1357-69 (2013)を参照されたい)。インビボ切断性タンパク質性リンカーは、生物体内の特定の位置、細胞内の区画、のみに存在する及び/又は特定の生理若しくは病的条件下でのみ活性になるプロテアーゼ(例えば、異常に高レベルのプロテアーゼ、特定の疾患部位で過剰発現されるプロテアーゼ、及び病原性微生物によって特異的に発現されるプロテアーゼなど)に対して感受性であるように設計することができる。例えば、細胞内のみに存在するプロテアーゼ、特異的細胞タイプ内にのみ存在するプロテアーゼ、及びがん若しくは炎症のような病的条件下でのみ存在するプロテアーゼ、例えば、R−x−x−Rモチーフ及びAMGRSGGGCAGNRVGSSLSCGGLNLQAM(配列番号127)などによって切断されるタンパク質性リンカーは、当技術分野において公知である。
本発明の細胞標的化タンパク質の特定の実施形態において、タンパク質は、重鎖可変(V)ドメインと軽鎖可変(V)ドメインを接続するリンカーを有するscFvである結合領域を含む。例えば15残基(Gly4Ser)ペプチド(配列番号128)などの、この目的に好適な非常に多くのリンカーが当技術分野において公知である。非共有結合性多価構造の形成に使用することができる好適なscFvリンカーは、GGS、GGGS(配列番号129)、GGGGS(配列番号130)、GGGGSGGG(配列番号131)、GGSGGGG(配列番号132)、GSTSGGGSGGGSGGGGSS(配列番号133)及びGSTSGSGKPGSSEGSTKG(配列番号134)を含む(Pluckthun A, Pack P, Immunotechnology 3: 83-105 (1997)、Atwell J et al., Protein Eng 12: 597-604 (1999)、Wu A et al., Protein Eng 14: 1025-33 (2001)、Yazaki P et al., J Immunol Methods 253: 195-208 (2001)、Carmichael J et al., J Mol Biol 326: 341-51 (2003)、Arndt M et al., FEBS Lett 578: 257-61 (2004)、Bie C et al., World J Hepatol 2: 185-91 (2010))。
真菌性リボトキシンは、RIPファミリーのメンバーと同じ普遍的に保存されたSRLのリボソーム構造を酵素的に標的化し、ほとんどの真菌性リボトキシンは、RNAアーゼT1タイプの触媒ドメイン配列及び二次構造を共有する(Lacadena J et al., FEMS Microbiol Rev 31: 212-37 (2007))。ほとんどの真菌性リボトキシン及び関連する酵素は、触媒作用に関する3つの高度に保存されたアミノ酸残基、2つのヒスチジン残基及びグルタミン酸残基(RNAアーゼT1において、例えばヒスチジン−40、グルタミン酸−58、及びヒスチジン−92)を共有する。DSKKPモチーフ(配列番号135)は、SRLとの特異的な結合のために真菌性リボトキシンに存在することが多い(Kao R, Davies J, J Biol Chem 274: 12576-82 (1999))。真菌性リボトキシンの触媒ドメインは重ね合わせることが可能であるため、触媒活性に必要なアミノ酸残基は、熟練した作業者に公知の1又は2以上の配列アライメント方法を使用して、自然に生じた及び/又は新しい真菌性リボトキシンで予測が可能である。
複数のT細胞エピトープは、本発明の細胞標的化分子によって送達されてもよく、例えば単一のプロテアソームが送達するエフェクターポリペプチド中に2又は3以上の異なるT細胞エピトープを組み込むことによって送達されてもよいことから、本発明の単一の細胞標的化分子は、異なるMHCクラスバリアントを有する同じ種の脊索動物において有効であってもよく、例えば異なるHLA対立遺伝子を有するヒトにおけるものなどである。これは、MHC複合体タンパク質の多様性及び多型に基づき、対象の異なる部分集団において異なるT細胞エピトープと異なる有効性とを同時に組み合わせることを可能にする(例えばYuhki N et al., J Hered 98: 390-9 (2007)を参照)。例えば、ヒトMHC複合体タンパク質、HLAタンパク質は、遺伝学的先祖、例えばアフリカ人(サハラ以南)、アメリカインディアン、コーカソイド、モンゴロイド、ニューギニア人及びオーストラリア人、又は太平洋諸島の人々をベースとするヒト間でも様々である(例えばWang M, Claesson M, Methods Mol Biol 1184: 309-17 (2014)を参照)。
特定の実施形態において、本発明のポリペプチド、タンパク質、又は医薬組成物は、B細胞、形質細胞又は抗体が媒介する疾患又は障害、例えば白血病、リンパ腫、骨髄腫、ヒト免疫不全ウイルス関連の疾患、アミロイド症、溶血尿毒症症候群、多発性動脈炎、敗血症性ショック、クローン病、リウマチ様関節炎、強直性脊椎炎、乾癬性関節炎、潰瘍性大腸炎、乾癬、喘息、シェーグレン症候群、移植片対宿主病、移植片拒絶反応、糖尿病、血管炎、強皮症、及び全身性エリテマトーデスなどを治療するのに使用される。
A.組み込み又は挿入のためのT細胞エピトープペプチドの選択
本実施例において、既知のT細胞エピトープペプチドが、細胞質ゾルに細胞内に届ける内因性能力を有する志賀毒素エフェクター領域に組み込む又は挿入するために選択された。例えば、多くの既知の免疫原性ウイルスタンパク質、並びにヒトインフルエンザAウイルス及びヒトCMVウイルスなどのヒトウイルスのウイルスタンパク質のペプチド成分がある。ヒトMHCクラスI分子と結合及び/又はヒトCTL介在応答を誘発することができる免疫原性ウイルスペプチドが選択された。
B.毒素及び毒素エフェクターポリペプチド中のB細胞エピトープ領域の同定
プロテアソーム送達に適する内因性の細胞内ルーティング特性を有する毒素由来ポリペプチドは、例えば抗毒素抗体の産生などの、脊索動物への投与後の望ましくない免疫応答の可能性を下げるために、脱免疫化のために選択された。毒素及び毒素由来ポリペプチドのアミノ酸配列を分析し、抗原性及び/又は免疫原性B細胞エピトープをコンピューターで予測した。
3つのT細胞エピトープが組み込まれたジフテリア毒素エフェクターポリペプチドバリアント(配列番号46、47、及び48)、及び野生型毒素アミノ酸配列(配列番号45)のみを含む元のジフテリア毒素エフェクターポリペプチドはそれぞれ、発現及び精製を容易にするために、アミノ末端メチオニン及びカルボキシ末端ポリヒスチジンタグ(6×Hisタグ(配列番号146))と共に設計された。本発明の例示的T細胞エピトープが組み込まれたジフテリア毒素エフェクターポリペプチドバリアント及び野生型毒素アミノ酸配列のみを含む元のジフテリア毒素エフェクターポリペプチド共に当技術分野で既知の細菌系によって産生し、例えばニッケル−ニトリロ三酢酸(Ni−NTA、nickel-nitrilotriacetic acid)樹脂クロマトグラフィーなどの当技術分野で既知の条件の下で精製した。
野生型志賀毒素配列のみ又はT細胞エピトープとの置換によるB細胞エピトープ領域が破壊された様々な改変志賀毒素配列の1つ(配列番号11〜19)を含む細胞毒性タンパク質についてウェスタンブロッティングを行った。これらの細胞毒性タンパク質は複製するために等量を4〜20%ドデシル硫酸ナトリウム(SDS、sodium dodecyl sulfate)ポリアミドアクリルゲル(Lonza社、Basel、CH)にロードし、変性条件下で電気泳動した。得られたゲルはクマシー染色により分析するか、製造業者の説明書に従って、iBlot(登録商標)(Life Technologies社、Carlsbad、CA、U.S.)システムを用いてポリビニルジフルオライド(PVDF、polyvinyl difluoride)膜に転写した。得られた膜は以下の抗体を用いた標準的な条件下でプローブした:Streptag(登録商標)IIとして既知の、ポリペプチドNWSHPQFEK(配列番号156)を認識するウサギポリクローナルα−NWSHPQFEK(配列番号156)(A00626, Genscript社、Piscataway、NJ、U.S.)、マウスモノクローナルα−Stx(mAb1又は抗SLT−1A mAb1)(BEI NR-867 BEI Resources社、Manassas、VA、U.S.:志賀毒素及び志賀様毒素1Aサブユニットと交差反応性を有する)、ウサギポリクローナル抗体α−SLT−1A(pAb1又は抗SLT−1A pAb1)(Harlan Laboratories社、Indianapolis、IN、U.S.、SLT−1Aアミノ酸1〜251に対する注文によって産生された抗体)、及びペプチドRGIDPEEGRFNN(配列番号157)及びHGQDSVRVGR(配列番号158)に対するウサギポリクローナル抗体α−SLT−1A(pAb2又は抗SLT−1A pAb2)(Genscript社、Piscataway、NJ、U.S.、注文によって産生された抗体)。ペプチド配列RGIDPEEGRFNN(配列番号157)はSLT−1A及びStxAのアミノ酸55〜66に位置して予測されたB細胞エピトープにわたり、ペプチド配列HGQDSVRVGR(配列番号158)はSLT−1A及びStxAの214〜223に位置して予測されたB細胞エピトープにわたる。
本実施例において、TCR CMV−pp65−PE STAR(商標)多量体試薬(Altor Bioscience社、Miramar、FL、U.S.)を使用した。HLA−A2を発現するヒト細胞によるCMV C2ペプチド(NLVPMVATV(配列番号10))のMHCクラスI経路提示は、TCR CMV−pp65−PE STAR(商標)多量体試薬で検出することができ、ヒトHLA−A2と複合体を形成するCMV−pp65エピトープペプチド(残基495〜503、NLVPMVATV(配列番号10))を高親和性で認識し、PEで標識する。
対照として、標的細胞のセットを3つの条件で処理した:1)処理なし(「未処理」)、いかなる外因性分子も加わっていないことを意味する、2)体外から投与されたCMV C2ペプチド(CMV−pp65、アミノ酸495〜503:配列NLVPMVATV(配列番号10)、BioSynthesis社、Lewisville、TX、U.S.によって合成された)で処理、及び3)体外から投与されたPeptide Loading Enhancer(「PLE」、 Altor Biosicence社、Miramar、FL)と組み合わせたCMV C2ペプチド(上記のNLVPMVATV(配列番号10))で処理。PLEと組み合わせたC2ペプチド処理は、外因性ペプチドローディングを可能にし、陽性対照とした。適切なMHCクラスIハプロタイプを提示する細胞は、細胞外空間(すなわち、適用されるペプチドの細胞内在化の非存在下)から又はPLEの存在下での適切な細胞外からの適用されるペプチドのロードを強制的に行うことができ、B2−ミクログロブリン及び他の成分との混合物である。
細胞毒性タンパク質SLT−1A::αエプスタイン・バー::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αエプスタイン・バー抗原及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDEL(配列番号61)を付加し、タンパク質を形成する。例えば、融合タンパク質は、αエプスタイン・バー抗原結合タンパク質SLT−1A::αエプスタイン・バー::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αエプスタイン・バー::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αリーシュマニア::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αリーシュマニア抗原及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDEL(配列番号61)を付加し、タンパク質を形成する。例えば、融合タンパク質は、リーシュマニア抗原結合タンパク質SLT−1A::αリーシュマニア::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αリーシュマニア::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αニューロテンシンR::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αニューロテンシンR及び志賀毒素エフェクター領域を共に連結した、カルボキシ末端にKDEL(配列番号61)を付加し、タンパク質を形成する。例えば、融合タンパク質は、ニューロテンシン受容体結合タンパク質SLT−1A::αニューロテンシンR::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αニューロテンシンR::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成した。
細胞毒性タンパク質SLT−1A::αEGFR::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αEGFR及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDEL(配列番号61)を付加し、タンパク質を形成する。例えば、融合タンパク質は、EGFR結合タンパク質SLT−1A::αEGFR::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αEGFR::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αCCR5::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αCCR5及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDEL(配列番号61)を付加し、タンパク質を形成する。例えば、融合タンパク質は、αCCR5結合タンパク質SLT−1A::αCCR5::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αCCR5::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
細胞毒性タンパク質SLT−1A::αUL18::KDELの構築、産生、及び精製
免疫グロブリン型結合領域αUL18及び志賀毒素エフェクター領域を共に連結し、カルボキシ末端にKDEL(配列番号61)を付加し、タンパク質を形成する。例えば、融合タンパク質は、αUL18結合タンパク質SLT−1A::αUL18::KDELをコードするポリヌクレオチドを発現させることによって産生される。細胞毒性タンパク質SLT−1A::αUL18::KDELの発現を、前記の実施例において記載したように、細菌及び/又は無細胞のいずれかのタンパク質翻訳系を用いて達成する。
全ての刊行物、特許、及び特許出願は、あたかもそれぞれ個々の刊行物、特許又は特許出願の全体が参照により組み込まれると具体的かつ個別的に示されたのと同程度に、その全体が参照により本明細書に組み込まれる。米国仮特許出願第61/777,130号明細書、第61/932,000号明細書、第61/951,110号明細書、第61/951,121号明細書、第62/010,918号明細書、及び第62/049,325号明細書の開示はそれぞれ、その全体が参照により組み込まれる。米国特許出願第2007/0298434A1号明細書、米国特許出願第2009/0156417A1号明細書、及び米国特許出願第2013/0196928A1号明細書の開示はそれぞれ、その全体が参照により組み込まれる。国際出願第WO2014/164693号及び国際出願第WO2014164680号の開示はそれぞれ、その全体が参照により組み込まれる。本明細書で引用されるアミノ酸及び核酸配列に関するGenBank(National Center for Biotechnology Information、U.S.)からの全ての電子的に利用可能な生物学的配列情報の完全な開示は、その全体が参照により組み込まれる。

Claims (105)

  1. 組み込まれた又は挿入された異種T細胞エピトープを含むポリペプチドであって、前記ポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームに、前記T細胞エピトープを細胞内送達することができる、前記ポリペプチド。
  2. 毒素由来ポリペプチドが存在する細胞の、サイトゾル、小胞体及びリソソームからなる群から選択される細胞内区画に、経路指定することができる前記毒素由来ポリペプチドをさらに含む、請求項1に記載のポリペプチド。
  3. 異種T細胞エピトープが、毒素由来ポリペプチドに組み込まれている又は挿入されている、請求項2に記載のポリペプチド。
  4. 毒素由来ポリペプチドが、1又は2以上の毒素エフェクター機能を示すことができる毒素エフェクターポリペプチドを含む、請求項3に記載のポリペプチド。
  5. 毒素エフェクターポリペプチドが、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する、請求項2〜4のいずれかに記載のポリペプチド。
  6. 毒素エフェクターポリペプチドが、配列番号1、配列番号2若しくは配列番号3のアミノ酸75〜251、又は配列番号45のアミノ酸2〜389に由来する、請求項5に記載のポリペプチド。
  7. 毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する、請求項5に記載のポリペプチド。
  8. 毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する、請求項7に記載のポリペプチド。
  9. 毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する、請求項8に記載のポリペプチド。
  10. 組み込まれた又は挿入された異種CB8+T細胞エピトープを含むポリペプチドであって、前記ポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子に、前記T細胞エピトープを細胞内送達することができる、前記ポリペプチド。
  11. 毒素由来ポリペプチドが存在する細胞の、サイトゾル、小胞体及びリソソームからなる群から選択される細胞内区画に、経路指定することができる前記毒素由来ポリペプチドをさらに含む、請求項10に記載のポリペプチド。
  12. 異種CD8+T細胞エピトープが、毒素由来ポリペプチド中にある、請求項11に記載のポリペプチド。
  13. 毒素由来ポリペプチドが、1又は2以上の毒素エフェクター機能を示すことができる毒素エフェクターポリペプチドを含む、請求項12に記載のポリペプチド。
  14. 毒素エフェクターポリペプチドが、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する、請求項11〜13のいずれかに記載のポリペプチド。
  15. 毒素エフェクターポリペプチドが、配列番号1、配列番号2若しくは配列番号3のアミノ酸75〜251、又は配列番号45のアミノ酸2〜389に由来する、請求項14に記載のポリペプチド。
  16. 毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する、請求項14に記載のポリペプチド。
  17. 毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する、請求項16に記載のポリペプチド。
  18. 毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する、請求項17に記載のポリペプチド。
  19. 異種CD8+T細胞エピトープを含むポリペプチドであって、前記ポリペプチドが存在する細胞の表面でのMHCクラスI分子による提示のために、前記T細胞エピトープを細胞内送達することができる、前記ポリペプチド。
  20. 毒素由来ポリペプチドが存在する細胞の、サイトゾル、小胞体及びリソソームからなる群から選択される細胞内区画に、経路指定することができる前記毒素由来ポリペプチドをさらに含む、請求項19に記載のポリペプチド。
  21. 異種T細胞エピトープが、毒素由来ポリペプチド中にある、請求項20に記載のポリペプチド。
  22. 毒素由来ポリペプチドが、1又は2以上の毒素エフェクター機能を示すことができる毒素エフェクターポリペプチドを含む、請求項21に記載のポリペプチド。
  23. 毒素エフェクターポリペプチドが、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する、請求項20〜22のいずれかに記載のポリペプチド。
  24. 毒素エフェクターポリペプチドが、配列番号1、配列番号2若しくは配列番号3のアミノ酸75〜251、又は配列番号45のアミノ酸2〜389に由来する、請求項23に記載のポリペプチド。
  25. 毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する、請求項23に記載のポリペプチド。
  26. 毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する、請求項25に記載のポリペプチド。
  27. 毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する、請求項26に記載のポリペプチド。
  28. ポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子に、T細胞エピトープを細胞内送達することができる前記ポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、
    異種CD8+T細胞エピトープを前記ポリペプチドに組み込む又は挿入するステップ
    を含む、前記方法。
  29. 組み込み又は挿入が、ポリペプチドの内因性B細胞エピトープ、内因性CD4+T細胞エピトープ、及び/又は触媒ドメイン内への組み込み又は挿入である、請求項28に記載の方法。
  30. ポリペプチドが毒素に由来する、請求項28又は29に記載の方法。
  31. ポリペプチドが、毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームに、T細胞エピトープを細胞内送達することができる前記毒素エフェクターポリペプチドを含み、
    方法が、異種T細胞エピトープを前記毒素エフェクターポリペプチドに組み込む又は挿入するステップを含む、請求項30に記載の方法。
  32. 組み込む又は挿入するステップが、毒素エフェクターポリペプチドをもたらし、前記毒素エフェクターポリペプチドは、前記毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子へのT細胞エピトープの細胞内送達に加えて、1又は2以上の毒素エフェクター機能を示すことができる、請求項31に記載の方法。
  33. CD8+T細胞エピトープ送達分子を生成する方法であって、前記CD8+T細胞エピトープ送達分子は、前記送達分子が存在する細胞の初期エンドソーム区画からMHCクラスI分子にT細胞エピトープを細胞内送達することができ、
    前記方法が、
    プロテアソーム送達エフェクターポリペプチドに異種CD8+T細胞エピトープ送達分子を組み込む又は挿入するステップであって、前記プロテアソーム送達エフェクターポリペプチドは、前記プロテアソーム送達エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子にT細胞エピトープを細胞内送達することができる、ステップ
    を含む、前記方法。
  34. 組み込み又は挿入が、ポリペプチドの内因性B細胞エピトープ、内因性CD4+T細胞エピトープ、及び/又は触媒ドメインへの組み込み又は挿入である、請求項33に記載の方法。
  35. ポリペプチドが毒素に由来する、請求項34に記載の方法。
  36. ポリペプチドが、プロテアソーム送達エフェクターポリペプチドを含む毒素エフェクターポリペプチドを含み、
    方法が、異種T細胞エピトープを前記毒素エフェクターポリペプチドに組み込む又は挿入するステップを含む、請求項33〜35のいずれかに記載の方法。
  37. 組み込む又は挿入するステップが、毒素エフェクターポリペプチドをもたらし、前記毒素エフェクターポリペプチドは、前記毒素エフェクターポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子へのT細胞エピトープの細胞内送達に加えて、1又は2以上の毒素エフェクター機能を示すことができる、請求項36に記載の方法。
  38. 請求項28〜37のいずれかに記載の方法によって産生されるポリペプチド。
  39. 内因性B細胞エピトープ及び/又はCD4+T細胞エピトープを破壊する異種T細胞エピトープを含むポリペプチド。
  40. 内因性B細胞エピトープ及び/又は内因性CD4+T細胞エピトープを破壊する異種CD8+T細胞エピトープを含むポリペプチドであって、前記ポリペプチドが存在する細胞の初期エンドソーム区画からプロテアソームに、前記CD8+T細胞エピトープを細胞内送達することができる、前記ポリペプチド。
  41. 内因性B細胞エピトープ及び/又はCD4+T細胞エピトープを破壊する異種CD8+T細胞エピトープを含むポリペプチドであって、前記ポリペプチドが存在する細胞の初期エンドソーム区画からMHCクラスI分子に、前記CD8+T細胞エピトープを細胞内送達することができる、前記ポリペプチド。
  42. 内因性B細胞エピトープ及び/又はCD4+T細胞エピトープを破壊する異種CD8+T細胞エピトープを含むポリペプチドであって、
    前記ポリペプチドが存在する細胞の表面でのMHCクラスI分子による提示のために、前記CD8+T細胞エピトープを細胞内送達することができる、前記ポリペプチド。
  43. 毒素由来ポリペプチドをさらに含む、請求項39〜42のいずれかに記載のポリペプチド。
  44. 異種CD8+T細胞エピトープが、毒素由来ポリペプチド中にある、請求項43に記載のポリペプチド。
  45. 毒素由来ポリペプチドが、異種CD8+T細胞エピトープを含む毒素エフェクターポリペプチドを含む、請求項44に記載のポリペプチド。
  46. 毒素エフェクターポリペプチドが、1又は2以上の毒素エフェクター機能を示すことができる、請求項45に記載のポリペプチド。
  47. 毒素エフェクターポリペプチドが、ABx毒素、リボソーム不活性化タンパク質毒素、アブリン、炭疽毒素、Aspf1、ブーゲニン、ブリオジン、コリックス毒素、クローディン、ジフテリア毒素、ゲロニン、易熱性エンテロトキシン、ミトギリン、百日咳毒素、ヤマゴボウ抗ウイルスタンパク質、プルケリン、緑膿菌外毒素A、レストリクトシン、リシン、サポリン、サルシン、志賀毒素、及びスブチラーゼ細胞毒からなる群から選択される毒素に由来する、請求項45又は46に記載のポリペプチド。
  48. 毒素エフェクターポリペプチドが、ジフテリア毒素ファミリーの少なくとも1つのメンバーのA及びBサブユニットに由来するアミノ酸配列を含むジフテリア毒素エフェクターポリペプチドを含み、
    前記ジフテリア毒素エフェクターポリペプチドが、
    配列番号44の3〜10、配列番号44の15〜31、配列番号44の32〜54、配列番号44の33〜43、配列番号44の71〜77、配列番号44の93〜113、配列番号44の125〜131、配列番号44の138〜146、配列番号44の141〜167、配列番号44の165〜175、配列番号45の182〜201、配列番号44の185〜191、及び配列番号45の225〜238
    からなる天然位置のアミノ酸の群から選択されるアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、
    前記ジフテリア毒素エフェクターポリペプチドは、前記ジフテリア毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる、請求項47に記載のポリペプチド。
  49. ジフテリア毒素エフェクターポリペプチドが、配列番号45のアミノ酸2〜389に由来する、請求項48に記載のポリペプチド。
  50. 毒素エフェクターポリペプチドが、志賀毒素ファミリーの少なくとも1つのメンバーのAサブユニットに由来するアミノ酸配列を含む志賀毒素エフェクターポリペプチドを含み、
    前記志賀毒素エフェクターポリペプチドが、
    配列番号1又は配列番号2の1〜15、配列番号3の3〜14、配列番号3の26〜37、配列番号1又は配列番号2の27〜37、配列番号1又は配列番号2の39〜48、配列番号3の42〜48、配列番号1、配列番号2又は配列番号3の53〜66、配列番号1、配列番号2又は配列番号3の94〜115、配列番号1又は配列番号2の141〜153、配列番号3の140〜156、配列番号1又は配列番号2の179〜190、配列番号3の179〜191、配列番号3の204、配列番号1又は配列番号2の205及び配列番号3の210〜218、配列番号3の240〜260、配列番号1又は配列番号2の243〜257、配列番号1又は配列番号2の254〜268、配列番号3の262〜278、配列番号3の281〜297及び配列番号1又は配列番号2の285〜293のB細胞エピトープ領域と、配列番号1又は配列番号2の4〜33、配列番号1又は配列番号2の34〜78、配列番号1又は配列番号2の77〜103、配列番号1又は配列番号2の128〜168、配列番号1又は配列番号2の160〜183、配列番号1又は配列番号2の236〜258、及び配列番号1又は配列番号2の274〜293のCD4+T細胞エピトープ領域と
    からなる天然位置のアミノ酸の群から選択される志賀毒素Aサブユニットアミノ酸配列の少なくとも1つのB細胞エピトープ及び/又はCD4+T細胞エピトープ領域の破壊を含み、
    前記志賀毒素エフェクターポリペプチドは、前記志賀毒素エフェクターポリペプチドが存在する細胞のサイトゾル区画に経路指定することができる、請求項47に記載のポリペプチド。
  51. 志賀毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸75〜251に由来する、請求項50に記載のポリペプチド。
  52. 志賀毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜241に由来する、請求項50に記載のポリペプチド。
  53. 志賀毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜251に由来する、請求項52に記載のポリペプチド。
  54. 志賀毒素エフェクターポリペプチドが、配列番号1、配列番号2又は配列番号3のアミノ酸1〜261に由来する、請求項53に記載のポリペプチド。
  55. ポリペプチドのB細胞免疫原性を低減させる方法であって、
    B細胞エピトープを、前記ポリペプチドに付加されたT細胞エピトープの1又は2以上のアミノ酸残基で破壊するステップ
    を含む、前記方法。
  56. ポリペプチドのB細胞免疫原性を低減させる方法であって、
    ポリペプチド中のB細胞エピトープを同定するステップと、
    同定された前記B細胞エピトープを、ポリペプチドに付加されたT細胞エピトープ内の1又は2以上のアミノ酸残基で破壊するステップと
    を含む、前記方法。
  57. ポリペプチドのB細胞免疫原性を低減させると同時に前記ポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、
    B細胞エピトープを、前記ポリペプチドに付加された異種CD8+T細胞エピトープ内の1又は2以上のアミノ酸残基で破壊するステップ
    を含む、前記方法。
  58. ポリペプチドのB細胞免疫原性を低減させると同時に前記ポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、
    ポリペプチド中のCD4+T細胞エピトープを同定するステップと、
    同定された前記CD4+T細胞エピトープを、前記ポリペプチドに付加されたCD8+T細胞エピトープ内の1又は2以上のアミノ酸残基で破壊するステップと
    を含む、前記方法。
  59. 破壊するステップが、B細胞エピトープにおいて1又は2以上のアミノ酸置換を行うステップをさらに含む、請求項55〜58のいずれかに記載の方法。
  60. 破壊するステップが、B細胞エピトープへの1又は2以上のアミノ酸挿入を行うステップをさらに含む、請求項55〜58のいずれかに記載の方法。
  61. ポリペプチドのCD4+T細胞免疫原性を低減させる方法であって、
    CD4+T細胞エピトープを、前記ポリペプチドに付加されたCD8+T細胞エピトープ内の1又は2以上のアミノ酸残基で破壊するステップ
    を含む、前記方法。
  62. ポリペプチドのCD4+T細胞免疫原性を低減させる方法であって、
    ポリペプチド中のCD4+T細胞エピトープを同定するステップと、
    同定された前記CD4+T細胞エピトープを、前記ポリペプチドに付加されたCD8+T細胞エピトープ内の1又は2以上のアミノ酸残基で破壊するステップと
    を含む、前記方法。
  63. ポリペプチドのCD4+T細胞免疫原性を低減させると同時に前記ポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、
    前記ポリペプチドに付加された異種CD8+T細胞エピトープ内の1又は2以上のアミノ酸残基でCD4+T細胞エピトープを破壊するステップ
    を含む、前記方法。
  64. ポリペプチドのCD4+T細胞免疫原性を低減させると同時に前記ポリペプチドのCD8+T細胞免疫原性を増加させる方法であって、
    ポリペプチド中の前記CD4+T細胞エピトープを同定するステップと、
    同定された前記CD4+T細胞エピトープを、前記ポリペプチドに付加されたCD8+T細胞エピトープ内の1又は2以上のアミノ酸残基で破壊するステップと
    を含む、前記方法。
  65. 破壊するステップが、CD4+T細胞エピトープにおいて1又は2以上のアミノ酸置換を行うステップをさらに含む、請求項61〜64のいずれかに記載の方法。
  66. 破壊するステップが、CD4+T細胞エピトープへの1又は2以上のアミノ酸挿入を行うステップをさらに含む、請求項61〜64のいずれかに記載の方法。
  67. 請求項55〜66のいずれかに記載の方法によって産生されるポリペプチド。
  68. 配列番号11〜43及び46〜48のいずれか1つを含む、又は配列番号11〜43及び46〜48のいずれか1つから本質的になるポリペプチド。
  69. 請求項1〜27、38〜54及び67〜68のいずれかに記載のポリペプチドと、細胞標的化部分又は細胞標的化剤とを含む細胞標的化分子。
  70. 細胞標的化部分が結合領域を含み、
    前記結合領域は、1又は2以上のポリペプチドを含み、かつ、少なくとも1つの細胞外標的生体分子に特異的に結合することができる、請求項69に記載の細胞標的化分子。
  71. 結合領域が、相補性決定領域3断片、拘束FR3−CDR3−FR4ポリペプチド、シングルドメイン抗体断片、一本鎖可変領域、抗体可変断片、抗原結合断片、Fd断片、ブロネクションから得られる第10フィブロネクチンIII型ドメイン、テネイシンIII型ドメイン、アンキリン反復モチーフドメイン、低密度リポタンパク質受容体由来Aドメイン、リポカリン、Kunitzドメイン、プロテインA由来Zドメイン、ガンマ−B結晶由来ドメイン、ユビキチン由来ドメイン、Sac7d由来ポリペプチド、Fyn由来SH2ドメイン、ミニタンパク質、C型レクチン様ドメイン足場、工学的に操作された抗体模倣物、及び結合機能性を保持する前述のもののいずれかの遺伝子操作された任意の対応物からなる群から選択されるポリペプチドを含む、請求項70に記載の細胞標的化分子。
  72. 結合領域の細胞外標的化生体分子と物理的に結合されている細胞に投与すると、前記細胞を死滅させることができる、請求項70又は71に記載の細胞標的化分子。
  73. メンバーが結合領域の細胞外標的生体合分子と物理的に結合されている第1の細胞集団、及びメンバーが前記結合領域のいかなる細胞外標的生体分子とも物理的に結合されていない第2の細胞集団に投与すると、前記第2の細胞集団のメンバーと比較して前記第1の細胞集団のメンバーに対する細胞標的化分子の細胞毒性効果が少なくとも3倍大きい、請求項72に記載の細胞標的化分子。
  74. 結合領域が、CD20、CD22、CD40、CD79、CD25、CD30、HER2/neu/ErbB2、EGFR、EpCAM、EphB2、前立腺特異的膜抗原、Cripto、エンドグリン、線維芽細胞活性化タンパク質、Lewis−Y、CD19、CD21、CS1/SLAMF7、CD33、CD52、EpCAM、CEA、gpA33、ムチン、TAG−72、炭酸脱水酵素IX、葉酸結合タンパク質、ガングリオシドGD2、ガングリオシドGD3、ガングリオシドGM2、ガングリオシドLewis−Y2、VEGFR、アルファVベータ3、アルファ5ベータ1、ErbB1/EGFR、Erb3、c−MET、IGF1R、EphA3、TRAIL−R1、TRAIL−R2、RANKL、FAP、テネイシン、CD64、メソセリン、BRCA1、MART−1/メランA、gp100、チロシナーゼ、TRP−1、TRP−2、MAGE−1、MAGE−3、GAGE−1/2、BAGE、RAGE、NY−ESO−1、CDK−4、ベータ−カテニン、MUM−1、カスパーゼ−8、KIAA0205、HPVE6、SART−1、PRAME、癌胎児抗原、前立腺特異的抗原、前立腺幹細胞抗原、ヒトアスパルチル(アスパラギニル)ベータ−ヒドロキシラーゼ、EphA2、HER3/ErbB−3、MUC1、MART−1/メランA、gp100、チロシナーゼ関連抗原、HPV−E7、エプスタイン・バーウイルス抗原、Bcr−Abl、アルファ−フェトプロテイン抗原、17−A1、膀胱腫瘍抗原、CD38、CD15、CD23、CD52、CD53、CD88、CD129、CD183、CD191、CD193、CD244、CD294、CD305、C3AR、FceRIa、ガレクチン−9、mrp−14、siglec−8、siglec−10、CD49d、CD13、CD44、CD54、CD63、CD69、CD123、CD193、TLR4、FceRIa、IgE、CD107a、CD203c、CD14、CD15、CD33、CD64、CD68、CD80、CD86、CD105、CD115、F4/80、ILT−3、ガレクチン−3、CD11a−c、GITRL、MHCクラスII、CD284−TLR4、CD107−Mac3、CD195−CCR5、HLA−DR、CD16/32、CD282−TLR2、CD11c、CD123、及び前述のもののいずれかの任意の免疫原性断片からなる群から選択される細胞外標的生体分子と結合することができる、請求項70〜73のいずれかに記載の細胞標的化分子。
  75. KDELファミリーのメンバーのカルボキシ末端小胞体保留/回収シグナルモチーフをさらに含む、請求項70〜74のいずれかに記載の細胞標的化分子。
  76. KDEL、HDEF、HDEL、RDEF、RDEL、WDEL、YDEL、HEEF、HEEL、KEEL、REEL、KAEL、KCEL、KFEL、KGEL、KHEL、KLEL、KNEL、KQEL、KREL、KSEL、KVEL、KWEL、KYEL、KEDL、KIEL、DKEL、FDEL、KDEF、KKEL、HADL、HAEL、HIEL、HNEL、HTEL、KTEL、HVEL、NDEL、QDEL、REDL、RNEL、RTDL、RTEL、SDEL、TDEL、及びSKELからなる群から選択される、カルボキシ末端小胞体保留/回収シグナルモチーフをさらに含む、請求項75に記載の細胞標的化分子。
  77. 配列番号49〜60のいずれか1つのポリペプチドを含む、又は配列番号49〜60のいずれか1つのポリペプチドから本質的になる、請求項69〜76のいずれかに記載の細胞標的化分子。
  78. 酵素活性を有する毒素エフェクターポリペプチドに由来する毒素エフェクターポリペプチドをさらに含む、請求項69〜77のいずれかに記載の細胞標的化分子であって、前記毒素エフェクターポリペプチドが、天然に存在する毒素と比較して前記毒素エフェクターポリペプチドの酵素活性を変化させる変異を含む、前記細胞標的化分子。
  79. 変異が、毒素エフェクターポリペプチドの細胞毒性を低減させる又は除去する少なくとも1つのアミノ酸残基欠失、挿入及び置換から選択される、請求項78に記載の細胞標的化分子。
  80. 請求項1〜27、38〜54及び67〜68のいずれかに記載のポリペプチド、又は請求項69〜79のいずれかに記載の細胞標的化分子と、少なくとも1つの薬学的に許容される賦形剤又は担体とを含む医薬組成物。
  81. 請求項1〜27、38〜54及び67〜68のいずれかに記載のポリペプチド、請求項77に記載の細胞標的化分子、若しくはその補体、又は前述のもののいずれかの断片をコードすることができるポリヌクレオチド。
  82. 請求項81に記載のポリヌクレオチドを含む発現ベクター。
  83. 請求項81又は82に記載のポリヌクレオチド及び発現ベクターのうちのいずれか1つを含む宿主細胞。
  84. 細胞を、請求項1〜27、38〜54及び67〜68のいずれかに記載のポリペプチド、請求項69〜79のいずれかに記載の細胞標的化分子、又は請求項80に記載の医薬組成物と接触させるステップを含む、前記細胞を死滅させる方法。
  85. 接触させるステップがインビトロで行われる、請求項84に記載の方法。
  86. 接触させるステップがインビボで行われる、請求項84に記載の方法。
  87. それを必要とする患者に、請求項1〜27、38〜54及び67〜68のいずれかに記載のポリペプチド、請求項69〜79のいずれかに記載の細胞標的化分子、又は請求項80に記載の医薬組成物の治療有効量を投与するステップを含む、患者における疾患、障害又は状態を治療する方法。
  88. 疾患、障害又は状態が、がん、腫瘍、免疫障害及び微生物感染からなる群から選択される、請求項87に記載の方法。
  89. がんが、骨がん、乳がん、中枢/末梢神経系がん、胃腸がん、胚細胞がん、腺がん、頭頸部がん、血液がん、腎・尿路癌、肝がん、肺/胸膜がん、前立腺がん、肉腫、皮膚がん、及び子宮がんからなる群から選択される、請求項88に記載の方法。
  90. 関連する免疫障害が、アミロイドーシス、強直性脊椎炎、喘息、クローン病、糖尿病、移植片拒絶、移植片対宿主病、橋本甲状腺炎、溶血性尿毒症症候群、HIV関連疾患、エリテマトーデス、多発性硬化症、多発動脈炎、乾癬、乾癬性関節炎、リウマチ様関節炎、強皮症、敗血症性ショック、シェーグレン症候群、潰瘍性大腸炎、及び血管炎からなる群から選択される疾患に関連した免疫障害からなる群から選択される疾患と関連するものである、請求項88に記載の方法。
  91. がん、腫瘍、免疫障害若しくは微生物感染の治療又は予防のための、請求項1〜27、38〜54及び67〜68のいずれかに記載のポリペプチド又は請求項69〜79のいずれかに記載の細胞標的化分子を含む組成物。
  92. がん、腫瘍、免疫障害若しくは微生物感染の治療又は予防のための医薬品の製造における、請求項1〜27、38〜54及び67〜83のいずれかに記載の組成物の使用。
  93. 疾患、障害若しくは状態の診断、予後予測又は特性評価における、請求項1〜27、38〜54及び67〜83のいずれかに記載の組成物の使用。
  94. 請求項69〜79のいずれかに記載の細胞標的化分子と
    検出促進剤と
    を含む診断用組成物。
  95. 細胞を請求項80に記載の診断用組成物と接触させるステップと
    前記診断用組成物の存在を検出するステップと
    を含む、前記細胞を検出する方法。
  96. 接触させるステップがインビトロで行われる、請求項95に記載の方法。
  97. 接触させるステップがインビボで行われる、請求項95に記載の方法。
  98. 検出するステップがインビトロで行われる、請求項95に記載の方法。
  99. 検出するステップがインビボで行われる、請求項95に記載の方法。
  100. 哺乳動物の免疫処置及び/又はワクチン接種のための免疫原としての又は免疫原の成分としての、請求項1〜27、38〜54及び67〜83のいずれかに記載の組成物の使用。
  101. 脊索動物体内の組織部位に「接種」する方法であって、
    前記脊索動物に、請求項69〜79のいずれかに記載の細胞標的化分子、請求項80に記載の医薬組成物、又は請求項94に記載の診断用組成物を投与するステップ
    を含む、前記方法。
  102. 組織部位が、悪性、罹病又は炎症組織を含む、請求項101に記載の方法。
  103. 組織部位が、
    罹病組織、腫瘍塊、がん性腫瘍、腫瘍、感染組織及び異常細胞塊
    からなる群から選択される組織を含む、請求項102に記載の方法。
  104. 細胞標的化分子の異種T細胞エピトープが、
    MHCクラスI複合体中の前記細胞標的化分子の標的細胞によって自然に提示されないペプチド、前記標的細胞によって発現されるいずれのタンパク質中にも自然に存在しないペプチド、前記標的細胞のプロテオーム中に自然に存在しないペプチド、接種される部位の細胞外微小環境に自然に存在しないペプチド、及び標的にされる腫瘍塊又は感染組織に自然に存在しないペプチド
    からなる群から選択される、請求項101に記載の方法。
  105. 請求項1〜27、38〜54及び67〜83及び94のいずれかに記載の組成物と、さらなる試薬及び/又は医薬送達デバイスとを備えるキット。
JP2016546476A 2014-01-27 2015-01-26 Mhcクラスiエピトープ送達ポリペプチド Active JP6655017B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461932000P 2014-01-27 2014-01-27
US61/932,000 2014-01-27
US201462049325P 2014-09-11 2014-09-11
US62/049,325 2014-09-11
PCT/US2015/012968 WO2015113005A1 (en) 2014-01-27 2015-01-26 Mhc class i epitope delivering polypeptides

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020014954A Division JP2020079267A (ja) 2014-01-27 2020-01-31 Mhcクラスiエピトープ送達ポリペプチド

Publications (2)

Publication Number Publication Date
JP2017509317A true JP2017509317A (ja) 2017-04-06
JP6655017B2 JP6655017B2 (ja) 2020-02-26

Family

ID=52469328

Family Applications (8)

Application Number Title Priority Date Filing Date
JP2016546493A Active JP6646584B2 (ja) 2014-01-27 2015-01-26 哺乳動物への応用のための脱免疫化された志賀毒素aサブユニットエフェクターポリペプチド
JP2016546476A Active JP6655017B2 (ja) 2014-01-27 2015-01-26 Mhcクラスiエピトープ送達ポリペプチド
JP2020002993A Pending JP2020073569A (ja) 2014-01-27 2020-01-10 哺乳動物への応用のための脱免疫化された志賀毒素aサブユニットエフェクターポリペプチド
JP2020014954A Pending JP2020079267A (ja) 2014-01-27 2020-01-31 Mhcクラスiエピトープ送達ポリペプチド
JP2021092504A Active JP7229570B2 (ja) 2014-01-27 2021-06-01 Mhcクラスiエピトープ送達ポリペプチド
JP2021102325A Active JP7126729B2 (ja) 2014-01-27 2021-06-21 哺乳動物への応用のための脱免疫化された志賀毒素aサブユニットエフェクターポリペプチド
JP2022127059A Active JP7402556B2 (ja) 2014-01-27 2022-08-09 哺乳動物への応用のための脱免疫化された志賀毒素aサブユニットエフェクターポリペプチド
JP2023016832A Active JP7442879B2 (ja) 2014-01-27 2023-02-07 Mhcクラスiエピトープ送達ポリペプチド

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016546493A Active JP6646584B2 (ja) 2014-01-27 2015-01-26 哺乳動物への応用のための脱免疫化された志賀毒素aサブユニットエフェクターポリペプチド

Family Applications After (6)

Application Number Title Priority Date Filing Date
JP2020002993A Pending JP2020073569A (ja) 2014-01-27 2020-01-10 哺乳動物への応用のための脱免疫化された志賀毒素aサブユニットエフェクターポリペプチド
JP2020014954A Pending JP2020079267A (ja) 2014-01-27 2020-01-31 Mhcクラスiエピトープ送達ポリペプチド
JP2021092504A Active JP7229570B2 (ja) 2014-01-27 2021-06-01 Mhcクラスiエピトープ送達ポリペプチド
JP2021102325A Active JP7126729B2 (ja) 2014-01-27 2021-06-21 哺乳動物への応用のための脱免疫化された志賀毒素aサブユニットエフェクターポリペプチド
JP2022127059A Active JP7402556B2 (ja) 2014-01-27 2022-08-09 哺乳動物への応用のための脱免疫化された志賀毒素aサブユニットエフェクターポリペプチド
JP2023016832A Active JP7442879B2 (ja) 2014-01-27 2023-02-07 Mhcクラスiエピトープ送達ポリペプチド

Country Status (12)

Country Link
US (6) US20160347798A1 (ja)
EP (4) EP3868776A1 (ja)
JP (8) JP6646584B2 (ja)
KR (6) KR102514910B1 (ja)
CN (4) CN106414483A (ja)
AU (8) AU2015209063C1 (ja)
CA (2) CA2937395A1 (ja)
ES (2) ES2877356T3 (ja)
HK (2) HK1226083A1 (ja)
IL (8) IL302552B1 (ja)
MX (4) MX2016009807A (ja)
WO (2) WO2015113005A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527882A (ja) * 2015-05-30 2018-09-27 モレキュラー テンプレーツ, インク.Molecular Templates, Inc. 脱免疫化された志賀毒素aサブユニット足場及びそれを含む細胞標的化分子
JPWO2017195508A1 (ja) * 2016-05-09 2019-03-07 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティングされた基材
JP2021515588A (ja) * 2018-01-26 2021-06-24 ケンブリッジ エンタープライズ リミティッド ペプチド交換蛋白質
JP2021531732A (ja) * 2018-04-17 2021-11-25 モレキュラー テンプレーツ, インク.Molecular Templates, Inc. 脱免疫化志賀毒素aサブユニット足場を含むher2ターゲティング分子
JP2022523009A (ja) * 2019-01-23 2022-04-21 ミレニアム ファーマシューティカルズ, インコーポレイテッド 脱免疫化志賀毒素aサブユニットエフェクターを含むcd38結合性タンパク質

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11246915B2 (en) 2010-09-15 2022-02-15 Applied Molecular Transport Inc. Cholix toxin-derived fusion molecules for oral delivery of biologically active cargo
CN103249401B (zh) 2010-09-15 2016-01-20 兰德尔·J·米斯尼 使用细菌毒素衍生的转运序列递送生物活性剂的系统和方法
EP2639299A1 (en) 2012-03-16 2013-09-18 Invectys Universal cancer peptides derived from telomerase
JP6548630B2 (ja) 2013-03-12 2019-07-24 モレキュラー テンプレーツ, インク.Molecular Templates, Inc. 特定の細胞型の選択的死滅のための細胞標的化結合領域と志賀毒素aサブユニット領域とを含む細胞毒性タンパク質
US9931387B2 (en) 2013-03-28 2018-04-03 Invectys Cancer vaccine for cats
DK2978444T3 (en) 2013-03-28 2019-03-18 Invectys CANCERVACCINE FOR DOGS
SI3062824T1 (sl) * 2013-10-28 2020-04-30 Invectys Cepivo telomeraza kodirajoče DNA
ES2753412T3 (es) 2013-10-28 2020-04-08 Invectys Electrotransferencia génica a las células de la piel
EP3868776A1 (en) 2014-01-27 2021-08-25 Molecular Templates, Inc. Mhc class i epitope delivering polypeptides
ES2864124T3 (es) * 2014-03-11 2021-10-13 Molecular Templates Inc Proteínas que comprenden regiones de unión, regiones efectoras de la subunidad A de toxina Shiga y motivos señal de localización de retículo endoplasmático carboxi terminal
US11142584B2 (en) 2014-03-11 2021-10-12 Molecular Templates, Inc. CD20-binding proteins comprising Shiga toxin A subunit effector regions for inducing cellular internalization and methods using same
IL285716B (en) 2014-05-07 2022-09-01 Applied Molecular Transp Llc Compacted molecules derived from colic toxin for oral delivery of biologically active cargo
ES2717751T3 (es) 2014-06-11 2019-06-25 Molecular Templates Inc Polipéptidos efectores de la subunidad A de la toxina de Shiga resistentes a la escisión por proteasa y moléculas dirigidas a células que los comprenden
US10392425B2 (en) 2015-02-05 2019-08-27 Molecular Templates, Inc. Multivalent CD20-binding molecules comprising Shiga toxin A subunit effector regions and enriched compositions thereof
EP3325510A2 (en) 2015-07-26 2018-05-30 Molecular Templates, Inc. Cell-targeting molecules comprising shiga toxin a subunit effectors and cd8+ t-cell epitopes
WO2017059270A1 (en) * 2015-10-02 2017-04-06 Regents Of The University Of Minnesota Deimmunized therapeutic compositions and methods
TWI765875B (zh) * 2015-12-16 2022-06-01 美商磨石生物公司 新抗原辨識、製造及用途
IL302130A (en) * 2016-12-07 2023-06-01 Molecular Templates Inc Shiga toxin A subunit activator polypeptides, Shiga toxin activator scaffolds and cell-targeting molecules for site-specific conjugation
KR102590672B1 (ko) 2017-01-25 2023-10-18 몰레큘러 템플레이츠, 인코퍼레이션. 탈면역된 시가 독소 a 서브유닛 이펙터 및 cd8+ t-세포 에피토프를 포함하는 세포-표적화 분자
US20220193129A1 (en) * 2017-04-27 2022-06-23 Immusoft Corporation B cells for in vivo delivery of therapeutic agents and dosages thereof
EP3622078A1 (en) 2017-05-09 2020-03-18 Invectys Recombinant measles vaccine expressing htert
EP3694532A4 (en) 2017-10-10 2021-07-14 Gritstone Oncology, Inc. IDENTIFICATION OF NEOANTIGENS BY MEANS OF HOT SPOTS
JP2021503897A (ja) 2017-11-22 2021-02-15 グリットストーン オンコロジー インコーポレイテッド 新生抗原のためのジャンクションエピトープ提示の低減
EP4082558B1 (en) 2018-03-08 2023-08-23 Applied Molecular Transport Inc. Toxin-derived delivery constructs for oral delivery
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
CN109504683A (zh) * 2018-11-13 2019-03-22 广西壮族自治区水产科学研究院 罗非鱼的半乳糖凝集素-3基因序列及其克隆方法
WO2020154475A1 (en) 2019-01-23 2020-07-30 Molecular Templates, Inc. Proteins comprising modified immunoglobulin variable light chains
GB201910605D0 (en) * 2019-07-24 2019-09-04 Immetacyte Ltd Tumour infltracting lymphocyte therapy amd uses thereo
TW202120521A (zh) 2019-08-16 2021-06-01 美商應用分子運輸公司 組合物、配方及介白素生產及純化
WO2021055816A1 (en) 2019-09-18 2021-03-25 Molecular Templates, Inc. Pd-l1 binding molecules comprising shiga toxin a subunit scaffolds
KR20220081977A (ko) 2019-09-18 2022-06-16 몰레큘러 템플레이츠, 인코퍼레이션. 시가 독소 a 서브유닛 스캐폴드를 포함하는 pd-l1 결합분자(pd-l1 binding molecules comprising shiga toxin a subunit scaffolds)
US20210155671A1 (en) 2019-11-24 2021-05-27 Molecular Templates, Inc. Uses of cd20-binding molecules and additional therapeutic agents
CN113621030B (zh) * 2020-07-14 2023-05-26 上海科技大学 一种诱导蛋白质降解的多肽及其应用
WO2022133092A1 (en) 2020-12-16 2022-06-23 Molecular Templates, Inc. Clinical methods for use of a pd-l1-binding molecule comprising a shiga toxin effector
CA3213295A1 (en) 2021-03-17 2022-09-22 Molecular Templates, Inc. Pd-l1 binding proteins comprising shiga toxin a subunit scaffolds and cd8+ t cell antigens
WO2023172983A1 (en) * 2022-03-08 2023-09-14 Molecular Templates, Inc. Ctla-4 binding molecules comprising shiga toxin a subunit scaffolds and uses thereof
CN116554300B (zh) * 2023-04-27 2023-10-24 湖北医药学院 一种能与艰难拟梭菌毒素TcdB相互作用的多肽及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507389A (ja) * 1995-06-07 1999-06-29 ノババックス インコーポレイテッド 毒素を用いた腫瘍の治療用ワクチン
JP2012515551A (ja) * 2009-01-23 2012-07-12 ザ ヘンリー エム. ジャクソン ファウンデーション フォー ザ アドヴァンスメント オブ ミリタリー メディシン インコーポレイテッド 志賀毒素タイプ2タンパク質に基づいた方法と組成物

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5080898A (en) 1982-05-12 1992-01-14 The University Hospital Enzymatically active toxin coupled to a cell-specific ligand
US4894443A (en) 1984-02-08 1990-01-16 Cetus Corporation Toxin conjugates
US5668255A (en) 1984-06-07 1997-09-16 Seragen, Inc. Hybrid molecules having translocation region and cell-binding region
US6022950A (en) 1984-06-07 2000-02-08 Seragen, Inc. Hybrid molecules having translocation region and cell-binding region
US5091178A (en) 1986-02-21 1992-02-25 Oncogen Tumor therapy with biologically active anti-tumor antibodies
US4946778A (en) 1987-09-21 1990-08-07 Genex Corporation Single polypeptide chain binding molecules
US5135736A (en) 1988-08-15 1992-08-04 Neorx Corporation Covalently-linked complexes and methods for enhanced cytotoxicity and imaging
WO1991009871A1 (en) 1989-12-22 1991-07-11 Seragen Incorporated Hybrid molecules having translocation region and cell-binding region
US5635384A (en) 1990-06-11 1997-06-03 Dowelanco Ribosome-inactivating proteins, inactive precursor forms thereof, a process for making and a method of using
US5621083A (en) 1991-11-04 1997-04-15 Xoma Corporation Immunotoxins comprising ribosome-inactivating proteins
US6146850A (en) 1991-11-04 2000-11-14 Xoma Corporation Proteins encoding gelonin sequences
US5552144A (en) 1992-01-22 1996-09-03 Microcarb, Inc. Immunogenic shiga-like toxin II variant mutants
JPH08510642A (ja) 1993-05-12 1996-11-12 ゾマ コーポレイション ゲロニンおよび抗体から成る免疫毒素
US5612474A (en) 1994-06-30 1997-03-18 Eli Lilly And Company Acid labile immunoconjugate intermediates
AU3374795A (en) 1994-08-29 1996-03-22 Prizm Pharmaceuticals, Inc. Conjugates of vascular endothelial growth factor with targeted agents
JPH11506424A (ja) 1995-03-24 1999-06-08 オフィディアン ファーマシューティカルズ インコーポレーテッド ベロ毒素産生大腸菌に対する治療
US5858682A (en) 1996-08-02 1999-01-12 Pharmingen E2A/pbx1 fusion protein specific monoclonal antibodies
CA2265900C (en) 1996-09-09 2007-07-31 Zealand Pharmaceuticals A/S Improved solid-phase peptide synthesis and agent for use in such synthesis
AR010218A1 (es) 1996-09-10 2000-06-07 Military Henry M Jackson Foundation For The Advancement Of Una familia de proteinas bacterianas multi-unidad
US6306393B1 (en) 1997-03-24 2001-10-23 Immunomedics, Inc. Immunotherapy of B-cell malignancies using anti-CD22 antibodies
FR2766193B1 (fr) 1997-07-18 2001-09-14 Inst Curie Polypeptide chimerique comprenant le fragment b de la toxine shiga et des peptides d'interet therapeutique
CA2222993A1 (en) 1998-02-04 1999-08-04 The Ontario Cancer Institute A method for using a ribosome-inactivating protein complex as a structural template and a molecular search engine in the design, construction and screening of combinatorial protein libraries
AU770718B2 (en) 1998-06-05 2004-02-26 Mayo Foundation For Medical Education And Research Use of genetically engineered antibodies to CD38 to treat multiple myeloma
US7157418B1 (en) 1998-07-22 2007-01-02 Osprey Pharmaceuticals, Ltd. Methods and compositions for treating secondary tissue damage and other inflammatory conditions and disorders
DK1098664T3 (da) 1998-07-22 2003-11-17 Osprey Pharmaceuticals Ltd Sammensætninger og deres anvendelser til at behandle sekundær vævsskade og andre inflammatoriske tilstande og forstyrrelser
US6770456B1 (en) 1998-07-29 2004-08-03 Ludwig Institute For Cancer Research Endogenous retrovirus tumor associated nucleic acids and antigens
US7527787B2 (en) 2005-10-19 2009-05-05 Ibc Pharmaceuticals, Inc. Multivalent immunoglobulin-based bioactive assemblies
US7144991B2 (en) 1999-06-07 2006-12-05 Aletheon Pharmaceuticals, Inc. Streptavidin expressed gene fusions and methods of use thereof
US6492498B1 (en) 1999-11-15 2002-12-10 Regents Of The University Of Minnesota Multimeric immunotoxins
US7267973B2 (en) * 2000-03-22 2007-09-11 Sibtech, Inc. Nucleic acids encoding recombinant proteins containing Shiga-like toxin and vascular endothelial growth factor
US20010031485A1 (en) 2000-03-22 2001-10-18 Sibtech, Inc. Recombinant proteins containing Shiga-like toxin and vascular endothelial growth factor fragments
PL357939A1 (en) 2000-04-11 2004-08-09 Genentech, Inc. Multivalent antibodies and uses therefor
US20020127247A1 (en) 2000-11-17 2002-09-12 Allergen Sales, Inc. Modified clostridial neurotoxins with altered biological persistence
US7829084B2 (en) 2001-01-17 2010-11-09 Trubion Pharmaceuticals, Inc. Binding constructs and methods for use thereof
US20050163807A1 (en) 2002-02-04 2005-07-28 Xiaoyan Liu Anticancer agents using vero toxin variants
WO2003072746A2 (en) 2002-02-26 2003-09-04 Genencor International, Inc. Subtilisin carlsberg proteins with reduced immunogenicity
ATE477276T1 (de) 2002-03-01 2010-08-15 Immunomedics Inc Internalisierung von anti cd74 monoklonalen antikörpern und deren verwendungen
EP1944320A1 (en) 2002-12-16 2008-07-16 Genentech, Inc. Immunoglobulin variants and uses thereof
AU2003303374A1 (en) 2002-12-20 2004-07-22 The Johns Hopkins University Treatment of metastatic cancer with the b-subunit of shiga toxin
US7834258B2 (en) 2003-06-30 2010-11-16 Mu-Hyeon Choe Dimer of chimeric recombinant binding domain-functional group fusion formed via disulfide-bond-bridge and the processes for producing the same
US8147832B2 (en) 2003-08-14 2012-04-03 Merck Patent Gmbh CD20-binding polypeptide compositions and methods
US7585942B2 (en) 2003-11-25 2009-09-08 Anjin Corporation Diphtheria toxin variant
AU2004293471C1 (en) 2003-11-25 2011-02-24 The Government Of The United States, As Represented By The Secretary Of Health And Human Services Mutated anti-CD22 antibodies and immunoconjugates
CA2555185C (en) 2004-02-06 2020-03-24 Morphosys Ag Anti-cd38 human antibodies and uses therefor
DE602004027168D1 (de) 2004-03-26 2010-06-24 Molecular Templates Inc Bibliothek von toxin mutanten und deren verwendung
WO2006047517A2 (en) * 2004-10-26 2006-05-04 University Of Maryland Baltimore Live attenuated bacterial vaccine to reduce or inhibit carriage and shedding of enterohemorrhagic escherichia coli in cattle
SI2567976T1 (sl) 2005-03-23 2017-11-30 Genmab A/S Protitelesa usmerjena proti cd38 za zdravljenje multiplega mieloma
MX2007015942A (es) 2005-07-01 2008-03-07 Medarex Inc Anticuerpos monoclonales humanos para ligandos 1 (pd-l1) de muerte programada.
FI20055417A0 (fi) 2005-07-20 2005-07-20 Glykos Finland Oy Syöpäpesifiset glykaanit ja niiden käyttö
CA2616386A1 (en) 2005-07-25 2007-02-01 Trubion Pharmaceuticals Inc. Single dose use of cd20-specific binding molecules
ES2493465T3 (es) 2005-09-26 2014-09-11 Molecular Templates, Inc. Biblioteca a partir de toxinas mutantes y procesos de utilización de la misma
GB0524788D0 (en) 2005-12-05 2006-01-11 Affibody Ab Polypeptides
CN101389791A (zh) 2005-12-23 2009-03-18 维文蒂阿生物技术股份有限公司 融合蛋白文库的产生和筛选方法及其应用
EP1991565B1 (en) 2006-02-16 2015-01-21 The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Shiga toxoid chimeric proteins
US7373982B2 (en) 2006-03-21 2008-05-20 Halliburton Energy Services, Inc. Cements for use across formations containing gas hydrates
JP4954293B2 (ja) 2006-12-29 2012-06-13 オスプレイ・ファーマシューティカルズ・ユーエスエイ・インコーポレイテッド 改変毒素を選択および生産する方法、改変毒素を含む複合体、およびそれらの使用
CN101622352A (zh) * 2006-12-29 2010-01-06 美国奥斯普瑞医药公司 选择和产生修饰的毒素、含有修饰的毒素的缀合物的方法及其应用
GB2456904B8 (en) * 2007-03-22 2009-12-09 Heptares Therapeutics Ltd Stable neurotensin receptor mutants
EP2167528B1 (en) 2007-06-21 2018-01-10 Angelica Therapeutics, INC. Modified toxins
US7887801B2 (en) 2007-07-13 2011-02-15 Topotarget Germany Ag Optimized DNA and protein sequence of an antibody to improve quality and yield of bacterially expressed antibody fusion proteins
EP2187971A2 (en) 2007-08-01 2010-05-26 The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services A fold-back diabody diphtheria toxin immunotoxin and methods of use
CA2698357C (en) 2007-09-04 2017-06-06 The Government Of The United States Of America, As Represented By The Secretary Of The Department Of Health And Human Services Deletions in domain ii of pseudomonas exotoxin a that reduce non-specific toxicity
EP2207793A2 (en) 2007-10-08 2010-07-21 Rutgers, The State University Nontoxic shiga-like toxin mutant compositions and methods
EP2048896B1 (en) 2007-10-12 2011-12-21 STMicroelectronics Srl Method and circuit for testing an audio high-frequency loudspeaker being part of a loudspeaker system
EP2215247B1 (en) 2007-11-13 2014-09-24 The Scripps Research Institute Production of cytotoxic antibody-toxin fusion in eukaryotic algae
US8975382B2 (en) 2007-11-27 2015-03-10 Ablynx N.V. Amino acid sequences directed against HER2 and polypeptides comprising the same for the treatment of cancers and/or tumors
US8315343B2 (en) 2007-12-17 2012-11-20 Telefonaktiebolaget Lm Ericsson (Publ) Multi-antenna receiver interference cancellation method and apparatus
WO2009110944A1 (en) * 2008-02-29 2009-09-11 Angelica Therapeutics, Inc. Modified toxins
CN101629158A (zh) * 2008-07-17 2010-01-20 冯书章 出血性大肠杆菌o157重组疫苗
MX2011000891A (es) 2008-07-21 2011-06-01 Immunomedics Inc Variantes estructurales de anticuerpos para caracteristicas terapeuticas mejoradas.
AU2009293640A1 (en) 2008-09-22 2010-03-25 Calmune Corporation Methods and vectors for display of 2G12 -derived domain exchanged antibodies
KR101700972B1 (ko) * 2008-10-21 2017-01-31 국제백신연구소 신규한 시겔라 단백질 항원 및 방법
CA2757079C (en) 2009-04-20 2015-05-19 Pfizer Inc. Control of protein glycosylation and compositions and methods relating thereto
WO2011009624A1 (en) 2009-07-22 2011-01-27 Cenix Bioscience Gmbh Delivery system and conjugates for compound delivery via naturally occurring intracellular transport routes
EP2464836A2 (en) 2009-08-14 2012-06-20 Unifrax I LLC Mounting mat for exhaust gas treatment device
EP2371864A1 (en) 2010-03-23 2011-10-05 Ganymed Pharmaceuticals AG Monoclonal antibodies for treatment of cancer
CN107253992B (zh) 2010-05-27 2022-03-11 根马布股份公司 针对her2的单克隆抗体
GB201013989D0 (en) 2010-08-20 2010-10-06 Univ Southampton Biological materials and methods of using the same
PL219845B1 (pl) 2011-01-05 2015-07-31 Adamed Spółka Z Ograniczoną Odpowiedzialnością Przeciwnowotworowe białko fuzyjne
EP2476441A1 (en) * 2011-01-13 2012-07-18 Universitat Autònoma De Barcelona Methods and reagents for efficient and targeted delivery of therapeutic molecules to CXCR4 cells
WO2012101235A1 (en) 2011-01-26 2012-08-02 Cenix Bioscience Gmbh Delivery system and conjugates for compound delivery via naturally occurring intracellular transport routes
SG10201608138RA (en) 2011-02-01 2016-11-29 Genmab As Human antibodies and antibody-drug conjugates against cd74
WO2012109624A2 (en) 2011-02-11 2012-08-16 Zyngenia, Inc. Monovalent and multivalent multispecific complexes and uses thereof
US8895006B2 (en) * 2011-03-04 2014-11-25 Rutgers, The State University Of New Jersey Ricin ribosome binding protein compositions and methods of use thereof
CN103648525B (zh) 2011-05-06 2016-08-24 由卫生与公共服务部部长代表的美国政府 靶向间皮素的重组免疫毒素
PL397167A1 (pl) 2011-11-28 2013-06-10 Adamed Spólka Z Ograniczona Odpowiedzialnoscia Przeciwnowotworowe bialko fuzyjne
EP2817341A4 (en) 2012-02-23 2015-12-02 Harvard College MODIFIED MICROBIAL TOXIN RECEPTOR FOR ADMINISTERING AGENTS IN CELLS
JP2014021782A (ja) 2012-07-19 2014-02-03 Canon Inc 画像処理装置、その制御方法及びプログラム
EP2740493A1 (en) 2012-12-05 2014-06-11 Institut Curie Conjugates of the B-subunit of Shiga toxin for anticancer therapies
JP6548630B2 (ja) 2013-03-12 2019-07-24 モレキュラー テンプレーツ, インク.Molecular Templates, Inc. 特定の細胞型の選択的死滅のための細胞標的化結合領域と志賀毒素aサブユニット領域とを含む細胞毒性タンパク質
EP2778173A1 (en) 2013-03-15 2014-09-17 Laboratoire Français du Fractionnement et des Biotechnologies Antibody directed against anthrax toxins and its uses
GB2519786A (en) 2013-10-30 2015-05-06 Sergej Michailovic Kiprijanov Multivalent antigen-binding protein molecules
US20210138076A2 (en) 2014-01-27 2021-05-13 Molecular Templates, Inc. Cell-targeting molecules comprising shiga toxin a subunit effectors and cd8+ t-cell epitopes
US20160177284A1 (en) 2014-01-27 2016-06-23 Molecular Templates, Inc. Cell-targeted molecules comprising amino-terminus proximal or amino-terminal shiga toxin a subunit effector regions
EP3868776A1 (en) 2014-01-27 2021-08-25 Molecular Templates, Inc. Mhc class i epitope delivering polypeptides
JP6814634B2 (ja) 2014-02-05 2021-01-20 モレキュラー テンプレーツ,インク.Molecular Templates, Inc. リボ毒性の一時的な減少に基づき、細胞毒性組換えポリペプチドをスクリーニングし、選択し、同定する方法
ES2864124T3 (es) 2014-03-11 2021-10-13 Molecular Templates Inc Proteínas que comprenden regiones de unión, regiones efectoras de la subunidad A de toxina Shiga y motivos señal de localización de retículo endoplasmático carboxi terminal
US11142584B2 (en) 2014-03-11 2021-10-12 Molecular Templates, Inc. CD20-binding proteins comprising Shiga toxin A subunit effector regions for inducing cellular internalization and methods using same
HUE054529T2 (hu) 2014-03-11 2021-09-28 Molecular Templates Inc Amino-terminális proximális Shiga toxin A alegység effektor régiókat és sejtcélzó immunglobulin-típusú kötõrégiókat tartalmazó proteinek, amelyek képesek CD38 specifikus kötésére
WO2015136947A1 (en) 2014-03-14 2015-09-17 Raqualia Pharma Inc. Azaspiro derivatives as trpm8 antagonists
ES2717751T3 (es) 2014-06-11 2019-06-25 Molecular Templates Inc Polipéptidos efectores de la subunidad A de la toxina de Shiga resistentes a la escisión por proteasa y moléculas dirigidas a células que los comprenden
JP6666336B2 (ja) 2014-06-12 2020-03-13 シー・エス・ピー・シー ドフェン コーポレーションCspc Dophen Corporation 酵素的方法による均一抗体薬物コンジュゲート
AU2015276136A1 (en) 2014-06-18 2016-12-22 Chemotherapeutisches Forschungsinstitut Georg-Speyer-Haus Car-expressing NK-92 cells as cell therapeutic agents
CN105713087B (zh) 2014-11-12 2020-05-08 北京康乐卫士生物技术股份有限公司 人乳头瘤病毒58型单克隆抗体及其应用
US10392425B2 (en) 2015-02-05 2019-08-27 Molecular Templates, Inc. Multivalent CD20-binding molecules comprising Shiga toxin A subunit effector regions and enriched compositions thereof
SG11201707144VA (en) 2015-03-04 2017-09-28 Igm Biosciences Inc Cd20 binding molecules and uses thereof
RS60441B1 (sr) * 2015-05-30 2020-07-31 Molecular Templates Inc De-imunizovane, strukture shiga toksin a podjedinice i ciljani ćelijski molekuli koji sadrže isti
EP3325510A2 (en) 2015-07-26 2018-05-30 Molecular Templates, Inc. Cell-targeting molecules comprising shiga toxin a subunit effectors and cd8+ t-cell epitopes
ES2883297T3 (es) 2016-03-29 2021-12-07 Stcube Inc Anticuerpos de función doble específicos para PD-L1 glucosilado y métodos de uso de los mismos
US11326182B2 (en) 2016-04-29 2022-05-10 Voyager Therapeutics, Inc. Compositions for the treatment of disease
KR102543323B1 (ko) 2016-10-30 2023-06-14 상하이 헨리우스 바이오테크, 인크. 항-pd-l1 항체 및 변이체
IL302130A (en) 2016-12-07 2023-06-01 Molecular Templates Inc Shiga toxin A subunit activator polypeptides, Shiga toxin activator scaffolds and cell-targeting molecules for site-specific conjugation
US11597914B2 (en) 2016-12-26 2023-03-07 Dankook University Cheonan Campus Industry Academic Cooperation Foundation IgG type monoclonal antibodies specifically binding to odontoblast surface
KR102590672B1 (ko) 2017-01-25 2023-10-18 몰레큘러 템플레이츠, 인코퍼레이션. 탈면역된 시가 독소 a 서브유닛 이펙터 및 cd8+ t-세포 에피토프를 포함하는 세포-표적화 분자
EP3589640A4 (en) 2017-02-28 2020-12-30 Chugai Seiyaku Kabushiki Kaisha PROTEIN PURIFICATION WITH PROTEIN L
CA3055127A1 (en) 2017-03-09 2018-09-13 Genmab A/S Antibodies against pd-l1
CN111108113B (zh) 2017-09-25 2024-02-23 Jsr株式会社 免疫球蛋白结合蛋白质和使用其的亲和载体
WO2020081493A1 (en) 2018-10-16 2020-04-23 Molecular Templates, Inc. Pd-l1 binding proteins
WO2020154475A1 (en) 2019-01-23 2020-07-30 Molecular Templates, Inc. Proteins comprising modified immunoglobulin variable light chains
AU2020213103A1 (en) * 2019-01-23 2021-07-29 Millennium Pharmaceuticals, Inc. CD38-binding proteins comprising de-immunized Shiga toxin a subunit effectors
KR20220081977A (ko) 2019-09-18 2022-06-16 몰레큘러 템플레이츠, 인코퍼레이션. 시가 독소 a 서브유닛 스캐폴드를 포함하는 pd-l1 결합분자(pd-l1 binding molecules comprising shiga toxin a subunit scaffolds)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11507389A (ja) * 1995-06-07 1999-06-29 ノババックス インコーポレイテッド 毒素を用いた腫瘍の治療用ワクチン
JP2012515551A (ja) * 2009-01-23 2012-07-12 ザ ヘンリー エム. ジャクソン ファウンデーション フォー ザ アドヴァンスメント オブ ミリタリー メディシン インコーポレイテッド 志賀毒素タイプ2タンパク質に基づいた方法と組成物

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Abstract 1380: Engineered toxin bodies with specific activity against EGFR and HER2 expressing cells", CANCER RES 2011;71(8 SUPPL):ABSTRACT NR 1380, JPN6018050550, April 2011 (2011-04-01), ISSN: 0004108071 *
"CD20-Specific Engineered Toxin Body Demonstrates Direct Cell Kill Of Multiple B-Cell Non-Hodgkin's L", BLOOD VOLUME: 122 ISSUE: 21 PAGES: 5152, JPN6018050554, April 2013 (2013-04-01), ISSN: 0004108072 *
FEBS LETTERS, vol. 453, JPN6019004746, 1999, pages 95 - 99, ISSN: 0004108067 *
FEMS MICROBIOLOGY LETTERS, vol. 146, JPN6019004749, 1997, pages 91 - 96, ISSN: 0004108069 *
INFECTION AND IMMUNITY, vol. 74, no. 2, JPN6019004747, 2006, pages 1001 - 1008, ISSN: 0004108068 *
PNAS, vol. 77, no. 8, JPN6019004754, 1980, pages 4539 - 4543, ISSN: 0004108073 *
RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, vol. 38, no. 6, JPN6019004752, 2012, pages 565 - 577, ISSN: 0004108070 *
TOXINS, vol. 5, JPN6019004756, 2013, pages 1486 - 1502, ISSN: 0004108074 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018527882A (ja) * 2015-05-30 2018-09-27 モレキュラー テンプレーツ, インク.Molecular Templates, Inc. 脱免疫化された志賀毒素aサブユニット足場及びそれを含む細胞標的化分子
JPWO2017195508A1 (ja) * 2016-05-09 2019-03-07 信越化学工業株式会社 室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でコーティングされた基材
JP2021515588A (ja) * 2018-01-26 2021-06-24 ケンブリッジ エンタープライズ リミティッド ペプチド交換蛋白質
JP2021531732A (ja) * 2018-04-17 2021-11-25 モレキュラー テンプレーツ, インク.Molecular Templates, Inc. 脱免疫化志賀毒素aサブユニット足場を含むher2ターゲティング分子
JP7323200B2 (ja) 2018-04-17 2023-08-08 モレキュラー テンプレーツ,インク. 脱免疫化志賀毒素aサブユニット足場を含むher2ターゲティング分子
JP2022523009A (ja) * 2019-01-23 2022-04-21 ミレニアム ファーマシューティカルズ, インコーポレイテッド 脱免疫化志賀毒素aサブユニットエフェクターを含むcd38結合性タンパク質
JP7418756B2 (ja) 2019-01-23 2024-01-22 ミレニアム ファーマシューティカルズ, インコーポレイテッド 脱免疫化志賀毒素aサブユニットエフェクターを含むcd38結合性タンパク質

Also Published As

Publication number Publication date
JP2023062014A (ja) 2023-05-02
JP2022166140A (ja) 2022-11-01
MX2016009809A (es) 2016-12-02
ES2749862T3 (es) 2020-03-24
IL294746B1 (en) 2023-12-01
AU2015209065C1 (en) 2019-09-26
EP3099704A1 (en) 2016-12-07
US11312751B2 (en) 2022-04-26
CN111909278A (zh) 2020-11-10
WO2015113007A1 (en) 2015-07-30
AU2019210656C1 (en) 2023-06-22
AU2022287636A1 (en) 2023-02-02
AU2019204364B2 (en) 2020-10-22
HK1226082A1 (zh) 2017-09-22
JP7402556B2 (ja) 2023-12-21
IL285403B1 (en) 2023-06-01
AU2020294212A1 (en) 2021-01-28
AU2015209065B2 (en) 2019-04-18
AU2021200390C1 (en) 2023-06-22
IL246632A0 (en) 2016-08-31
US20160347798A1 (en) 2016-12-01
US20220275030A1 (en) 2022-09-01
MX2016009807A (es) 2017-02-28
CN112851769A (zh) 2021-05-28
IL285403A (en) 2021-09-30
AU2015209063A1 (en) 2016-09-08
AU2022287636B2 (en) 2024-01-04
EP3099705A1 (en) 2016-12-07
IL278586B (en) 2021-08-31
IL302552A (en) 2023-07-01
EP3868776A1 (en) 2021-08-25
JP7229570B2 (ja) 2023-02-28
JP2020073569A (ja) 2020-05-14
JP7442879B2 (ja) 2024-03-05
AU2019210656B2 (en) 2020-10-22
KR20160111951A (ko) 2016-09-27
US20210253648A1 (en) 2021-08-19
AU2021200390A1 (en) 2021-03-18
IL273035A (en) 2020-04-30
AU2022256081A1 (en) 2022-11-17
EP3099704B1 (en) 2021-03-17
KR102514910B1 (ko) 2023-03-29
KR20220011790A (ko) 2022-01-28
AU2015209063B2 (en) 2019-05-02
US20190153044A1 (en) 2019-05-23
IL273035B (en) 2021-12-01
KR20230028808A (ko) 2023-03-02
JP6646584B2 (ja) 2020-02-14
EP3099705B1 (en) 2019-06-19
WO2015113005A1 (en) 2015-07-30
MX2022010376A (es) 2022-09-21
AU2015209063C1 (en) 2020-06-25
JP6655017B2 (ja) 2020-02-26
AU2015209063B9 (en) 2019-08-15
IL246632B (en) 2020-03-31
KR102500408B1 (ko) 2023-02-16
CN106103489A (zh) 2016-11-09
JP2021129598A (ja) 2021-09-09
IL287490A (en) 2021-12-01
CN106414483A (zh) 2017-02-15
MX2021005131A (es) 2021-06-15
KR20220011792A (ko) 2022-01-28
IL246701A0 (en) 2016-08-31
IL287490B (en) 2022-08-01
US20160340394A1 (en) 2016-11-24
AU2021200390B2 (en) 2022-09-15
KR20230048153A (ko) 2023-04-10
IL294746A (en) 2022-09-01
KR20160113158A (ko) 2016-09-28
AU2015209065A1 (en) 2016-09-08
CA2937407A1 (en) 2015-07-30
IL302552B1 (en) 2024-05-01
IL285403B2 (en) 2023-10-01
JP7126729B2 (ja) 2022-08-29
JP2020079267A (ja) 2020-05-28
US20220306701A1 (en) 2022-09-29
AU2019210656A1 (en) 2019-08-22
JP2021151261A (ja) 2021-09-30
IL246701B (en) 2020-11-30
CA2937395A1 (en) 2015-07-30
EP3575312A1 (en) 2019-12-04
CN111909278B (zh) 2024-04-09
IL294746B2 (en) 2024-04-01
AU2020294212B2 (en) 2022-08-18
AU2019204364C1 (en) 2021-04-15
HK1226083A1 (zh) 2017-09-22
AU2022256081B2 (en) 2023-12-21
JP2017509318A (ja) 2017-04-06
AU2019204364A1 (en) 2019-07-11
ES2877356T3 (es) 2021-11-16
CN106103489B (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
JP7442879B2 (ja) Mhcクラスiエピトープ送達ポリペプチド
US20220354938A1 (en) Cell-targeting molecules comprising de-immunized, shiga toxin a subunit effectors and cd8+ t-cell epitopes
KR102647100B1 (ko) 탈면역된 시가 독소 a 서브유닛 스캐폴드 및 이를 포함하는 세포-표적화 분자
EP3514168B1 (en) Protease-cleavage resistant cytotoxic cell-targeting molecules
KR102673972B1 (ko) 탈면역된 시가 독소 a 서브유닛 스캐폴드 및 이를 포함하는 세포-표적화 분자

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161025

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200131

R150 Certificate of patent or registration of utility model

Ref document number: 6655017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250