JP2016157709A - 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法 - Google Patents

蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法 Download PDF

Info

Publication number
JP2016157709A
JP2016157709A JP2015032397A JP2015032397A JP2016157709A JP 2016157709 A JP2016157709 A JP 2016157709A JP 2015032397 A JP2015032397 A JP 2015032397A JP 2015032397 A JP2015032397 A JP 2015032397A JP 2016157709 A JP2016157709 A JP 2016157709A
Authority
JP
Japan
Prior art keywords
mixed
vapor
mixed liquid
steam
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015032397A
Other languages
English (en)
Other versions
JP6543481B2 (ja
Inventor
洋祐 塙
Yosuke Hanawa
洋祐 塙
宮 勝彦
Katsuhiko Miya
勝彦 宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2015032397A priority Critical patent/JP6543481B2/ja
Priority to US15/000,532 priority patent/US9976804B2/en
Priority to TW105101710A priority patent/TWI630364B/zh
Priority to KR1020160011638A priority patent/KR101813360B1/ko
Publication of JP2016157709A publication Critical patent/JP2016157709A/ja
Priority to US15/959,738 priority patent/US10612844B2/en
Application granted granted Critical
Publication of JP6543481B2 publication Critical patent/JP6543481B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B5/00Drying solid materials or objects by processes not involving the application of heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/263Drying gases or vapours by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/268Drying gases or vapours by diffusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B21/00Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects
    • F26B21/14Arrangements or duct systems, e.g. in combination with pallet boxes, for supplying and controlling air or gases for drying solid materials or objects using gases or vapours other than air or steam, e.g. inert gases
    • F26B21/145Condensing the vapour onto the surface of the materials to be dried
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/24Hydrocarbons

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)

Abstract

【課題】微細パターンが形成された基板の蒸気乾燥において、貯留される元々のIPAに水分が含有されることに起因するパターン倒壊防止が課題であった。
【解決手段】混合液体貯留部11に貯留された混合液体を気化させて、IPAと水(水蒸気)を含む混合蒸気を発生させる。その後、混合蒸気が送られる蒸気供給管に接続された蒸気脱水手段100により、混合蒸気に含まれる水を除去する。これにより、貯留される元々のIPAに含有される水分濃度を、基板に供給する前に低下でき、パターン倒壊を抑制できる。

【選択図】 図1

Description

この発明は、基板の蒸気乾燥装置、基板の蒸気乾燥方法、基板の蒸気乾燥処理に用いる蒸気生成装置および蒸気生成方法に関するものである。なお、当該基板には、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(電界放出ディスプレイ:Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光電磁気ディスク用基板などの各種基板が含まれる。
半導体装置や液晶表示装置などの電子部品の製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板に対して処理液を用いた処理が行われる。具体的には、基板の主面に薬液による湿式処理が行われることで、基板主面の洗浄やエッチング等が実行され、その後、薬液が供給された基板の主面に脱イオン水(De Ionized Water、以下、「DIW」と記載する)等の純水が供給されて、当該基板の主面における薬液を洗い流すリンス処理が行われる。
リンス処理が行われた後は、基板主面に残留している純水を除去して基板を乾燥させる乾燥処理が行われる。この乾燥処理を行う方法として、例えば基板の回転による遠心力で純水を振りきって除去するスピン乾燥や、基板の主面に窒素ガスを吹き付けて、基板主面の純水を吹き飛ばし、または蒸発させて除去する吹付乾燥が、従来行われている。
しかし、上述の乾燥方法は、基板の主面に微細な凹凸からなるパターンが形成されている場合には、乾燥の進行により基板主面のパターンが純水の液面から露出すると、パターンの凹部等のパターン内部に取り残された純水の表面張力によってパターン倒壊が発生するおそれがある。特に、基板主面に形成されるパターンの微細化が進む近年において、パターン倒壊の防止は重要な課題となっている。
そこで、リンス処理後の基板の主面に、純水よりも表面張力の低い有機溶剤であるイソプロピルアルコール(Isopropyl Alcohol、以下、「IPA」と記載する)の液体または蒸気を供給することにより基板主面に付着した純水をIPAに置換し、その後、当該IPAを基板主面から除去することにより当該基板を乾燥させる技術がある。
IPAの蒸気を基板主面に供給することにより、基板主面に付着した純水をIPAに置換し、その後、IPAを基板主面から除去することで乾燥を行う技術は、特許文献1や特許文献2に開示されている。
IPAの蒸気を発生させる方法としては、特許文献3のようにN2ガスをIPAタンク内に貯留されたIPAにバブリングすることで、IPA蒸気を含有する混合気体を生成するバブリング方式や、特許文献4のように2流体ノズルを用いて、IPA液体とN2ガスとの混合流体を生成し、その後当該混合流体を加熱してIPA蒸気を生成する2流体ノズル方式や、特許文献5のように、槽内に貯留した液体のIPAをヒータブロックで加熱して蒸発させる液体加熱方式などが知られている。
また、半導体デバイス製造工程で使用した廃IPAを回収し、半導体デバイス製造工程用として購入したときと同程度にまでIPAを精製して再利用するために、回収したIPAに対して、イオン交換樹脂によりIPA中のイオン成分を除去するイオン交換処理、浸透気化膜による脱水処理、および蒸留処理を順次実行して、アルコール濃度が所定値以上になるまで循環ラインで廃IPAに上述の精製処理を施し、その後、精製後のIPAを供給タンクに供給する技術が、特許文献6に開示されている。
特開平4−155924号公報 特開2008−198741号公報 特開2003−168668号公報 特開2007−46838号公報 特開平5−90240号公報 特開2013−23440号公報 特開2008−112971号公報
半導体デバイス製造工程では、上述のように基板乾燥時において基板主面のパターン内部に残留した水分の表面張力に起因するパターン倒壊の防止が課題となっている。この課題に対し、従来は、パターン内部の水分を表面張力の低いIPA等の物質に置換する対策を採っていた。しかしながら、パターンがより微細化する近年において、基板主面に供給するIPA自体に含有される水分の影響により、IPA置換を行った後もなお基板主面に水分が残留した状態となり、パターン倒壊が抑制できなくなる事態が生じている。
より詳しくは、基板主面に水分が残留した状態となると、基板の表面に形成されたパターン間にも水分が充填されることとなる。充填される水分が、パターンの凸部の高さに対し、表面張力を及ぼしうる十分な高さである場合、パターン間の当該水分が気化するにつれて水分の表面張力がパターンに作用し、パターンの倒壊が発生することとなる。パターンが微細であるほど、パターン間の体積も小さくなるため、基板主面に残留する水分が微量であっても、表面張力を及ぼしうる十分な高さまで水分がパターン間に充填される。
したがって、パターン倒壊防止のためには、基板主面に残留する水分は、パターンが微細であるほど少量にする必要がある。
例えば、特許文献6に記載の脱水用の循環ラインは、基板処理後のIPAを回収するラインに設けられている。そのため、特許文献6では、供給タンクに補充用アルコールとして投入されたIPAに元々含まれている水分を除去できず、前記水分によるパターン倒壊が発生してしまうおそれがある。
例えば、特許文献7には、ウエハを処理するチャンバー内の処理空間を、CDA(Clean Dried Air:低露点清浄空気)で満たした状態で、IPA液をウエハに供給してウエハの上面における純水をIPAに置換することにより、ウエハの表面に供給されるIPA液に水分が溶けこむことを抑制する技術が開示されている。
しかし、基板に供給する前段階のIPA、すなわち、タンクに貯留され、基板に対しノズルから供給される前の液体のIPAに、水分が多く含有される場合がある。この場合にIPA蒸気による基板乾燥を行っても、生成したIPAの蒸気中に既に水分が含有されることとなり、当該蒸気を基板に吹き付けることで基板を乾燥させると、当該水分が原因でパターン倒壊が生じてしまう。
ここで、IPAは吸湿性が高く、例えばIPAを搬入してタンクに流入する際や、タンクでの貯留中に、IPAが湿気を含む外気に触れ、吸湿することで、基板処理前から既に水分濃度が所定濃度値以上となる事態が生じ得る。
また、上述のようなIPAの搬入時等における吸湿がほとんど生じない場合であっても、パターンの微細化が進む近年においては、購入時にもともと含まれていたIPA中の水分に起因してパターンの倒壊が生じるおそれがある。
市販のIPAには、用途等に応じてグレードが設定されており、グレードごとに含有水分量等、各不純物についての規格値が定められている。半導体デバイス製造工程など、より高純度なIPAが要求される電子工業用途では、いわゆる「ELグレード(高純度品)」のIPAが用いられており、当該グレードのIPA濃度は、各社の規格値によって異なるものの、およそ99.9%以上である。しかし、ELグレードのIPAであっても水分が0.01%ないし0.1%程含まれている場合があり、このような微量な水分であっても、パターン倒壊に影響するおそれがある。
本発明は、上記課題に鑑みなされたものであり、基板に供給するIPA蒸気に含まれる水分量を低減することで、処理室へ高濃度なIPA蒸気を供給する蒸気供給方法および蒸気供給装置、また、当該蒸気供給装置により供給されるIPA蒸気により、基板の乾燥処理を実行する蒸気乾燥方法および蒸気乾燥装置を提供することを目的とする。
本願の第1発明は、処理液が付着した基板の主面に、前記処理液の表面張力以下の表面張力を有する低表面張力液体の蒸気を供給する蒸気乾燥処理に用いられる蒸気供給装置であって、前記低表面張力液体と水を含む混合液体を貯留する混合液体貯留部と、前記混合液体貯留部に貯留された前記混合液体から、前記混合液体の蒸気である混合蒸気を生成する蒸気生成手段と、前記混合液体貯留部に接続され、前記蒸気生成手段により生成された前記混合蒸気を前記基板に供給する蒸気供給管と、前記蒸気供給管に介挿され、前記蒸気供給管を通過する前記混合蒸気に含まれる水分を除去する蒸気脱水手段とを備える。
本願の第2発明は、第1発明の蒸気供給装置であって、前記蒸気脱水手段は、前記混合蒸気中の水を分離する分離部と、前記混合蒸気中の水を吸着する吸着部とを有することを特徴とする。
本願の第3発明は、第2発明の蒸気供給装置であって、前記蒸気脱水手段は、前記分離部および前記吸着部の少なくとも一方に窒素ガスを供給するガス供給部を有することを特徴とする。
本願の第4発明は、第2発明の蒸気供給装置であって、前記蒸気脱水手段は、前記分離部および前記吸着部の少なくとも一方と接続し、前記前記分離部および前記吸着部の少なくとも一方において前記混合蒸気が凝集して生じた前記混合液体を排出する排液管を有することを特徴とする。
本願の第5発明は、第2発明から第4発明のいずれかの蒸気供給装置であって、前記蒸気脱水手段は、前記分離部および前記吸着部が前記蒸気供給管と着脱可能に設けられることを特徴とする。
本願の第6発明は、第2発明の蒸気供給装置であって、前記混合液体貯留部に前記混合液体を供給する混合液体供給手段をさらに備え、前記混合液体供給手段は、前記混合液体貯留部に水の割合が0.1重量%以下である前記混合液体を供給することを特徴とする。
本願の第7発明は、第1発明から第6発明のいずれかの蒸気供給装置であって、前記混合液体貯留部に貯留された前記混合液体を導入して脱水し、前記脱水された前記混合液体を前記混合液体貯留部に帰還させる循環脱水手段と、前記蒸気生成手段により生成された前記混合蒸気を前記混合液貯留部の外の排気機構へ排気する排気手段をさらに備える。
本願の第8発明は、第7発明の蒸気供給装置であって、前記混合液体貯留部に前記混合蒸気を供給する混合蒸気供給手段をさらに備え、前記混合蒸気供給手段が前記混合液貯留部に供給する前記混合蒸気は、当該混合蒸気に含まれる低表面張力液体の蒸気による前記低表面張力液体の湿度の方が、当該混合蒸気に含まれる水蒸気による水分の湿度よりも高いことを特徴とする。
本願の第9発明は、第8発明の蒸気供給装置であって、前記混合蒸気供給手段は、前記混合蒸気を貯留する混合蒸気貯留部を有し、前記混合蒸気貯留部は、前記蒸気供給管と接続し、前記蒸気供給管は、前記蒸気生成手段により生成された前記混合蒸気を、前記基板または前記混合蒸気貯留部の少なくともいずれか一方に供給することを特徴とする。
本願の第10発明は、第7発明から第9発明のいずれかの蒸気供給装置であって、前記混合液体貯留部に貯留される前記混合液体に含まれる前記低表面張力液体または水分の濃度を検知するセンサと、前記センサが検知した前記濃度にもとづいて、前記蒸気生成手段および前記排気手段を制御する制御部とをさらに備え、前記制御部は、前記混合液体貯留部に貯留される前記混合液体の水分濃度が第1所定値以下であり第2所定値より大きい値である場合に、前記蒸気生成手段により前記混合液体貯留部に貯留される前記混合液体から前記混合蒸気を生成し、前記排気手段により当該混合蒸気を前記排気機構へ排気し、前記混合液体貯留部に貯留される前記混合液体の水分濃度が前記第2所定値以下である場合に、前記蒸気生成手段により前記混合液体貯留部に貯留される前記混合液体から前記混合蒸気を生成し、当該混合蒸気を前記蒸気供給管へ供給し、前記第1所定値は、前記混合液体に含まれる前記低表面張力液体の濃度と、当該混合液体から生成される混合蒸気に含まれる前記低表面張力液体の蒸気の濃度とが等しくなる共沸濃度以下の値であり、前記第2所定値は、前記第1所定値よりも小さい値であることを特徴とする蒸気供給装置。
本願の第11発明は、第10発明の蒸気供給装置であって、前記混合液体貯留部に貯留される前記混合液体を流出させる流出用配管をさらに備え、前記センサは、前記流出用配管から流出された前記混合液体を用いて、前記混合液体に含まれる前記表面張力液体または水分の濃度を検知することを特徴とする。
本願の第12発明にかかる蒸気乾燥装置は、第1発明から第11発明のいずれかの蒸気供給装置と、前記基板を収容するチャンバと、前記蒸気供給管と管路接続し、前記混合蒸気を前記チャンバに収容された前記基板に供給するノズルとを備える。
本願の第13発明に係る蒸気供給方法は、処理液が付着した基板の主面に、前記処理液の表面張力以下の表面張力を有する低表面張力液体の蒸気を供給する蒸気乾燥処理に用いられる蒸気供給方法であって、前記低表面張力液体と水を含む混合液体を貯留する混合液体貯留部に前記混合液体を供給する貯留工程と、前記混合液体貯留部に貯留された前記混合液体から、前記混合液体の蒸気である混合蒸気を生成し、前記混合液体貯留部に接続され前記混合蒸気を前記基板へ供給する蒸気供給管へ、前記混合蒸気を供給する蒸気供給工程とを備え、前記蒸気供給工程は、前記蒸気供給管へ供給された前記混合蒸気に含まれる水分を除去する蒸気脱水工程を含むことを特徴とする。
本願の第14発明は、第13発明の蒸気供給方法であって、前記貯留工程は、前記混合液体貯留部に水の割合が0.1重量%以下であり、かつ前記混合液体貯留部に水の割合が第1所定値よりも大きい値の前記混合液体を供給し、前記混合液体貯留部に貯留された前記混合液体を、前記混合液体貯留部と管路接続された循環脱水部へ導入して脱水し、前記脱水された前記混合液体を前記循環脱水部から前記混合液体貯留部に帰還させる循環脱水工程と、前記循環脱水工程により前記混合液体貯留部に貯留される前記混合液体の水分濃度が前記第1所定値以下であり第2所定値より大きい値となった後、前記混合液体貯留部に貯留される前記混合液体から前記混合蒸気を生成し、当該混合蒸気を前記混合液体貯留部の外の排気機構へ排気する気化脱水工程とをさらに備え、前記蒸気供給工程は、前記気化脱水工程により前記混合液体の水分濃度が前記第2所定値以下になった後、前記混合液体貯留部に貯留される前記混合液体から前記混合蒸気を生成し、当該混合蒸気を前記蒸気供給管へ供給し、前記第1所定値は、前記混合液体に含まれる前記低表面張力液体の濃度と、当該混合液体から生成される混合蒸気に含まれる前記低表面張力液体の蒸気の濃度とが等しくなる共沸濃度以下の値であり、前記第2所定値は、前記第1所定値よりも小さい値であることを特徴とする。
本願の第15発明にかかる蒸気乾燥方法は、処理液が付着した基板の主面に、前記処理液の表面張力以下の表面張力を有する低表面張力液体の蒸気を供給する蒸気乾燥方法であって、前記低表面張力液体と水を含む混合液体を貯留する混合液体貯留部に前記混合液体を供給する貯留工程と、前記混合液体貯留部に貯留された前記混合液体から、前記混合液体の蒸気である混合蒸気を生成し、前記混合液体貯留部に接続される蒸気供給管を介して、前記処理液が付着した前記基板の主面に前記混合蒸気を供給する蒸気供給工程とを備え、前記蒸気供給工程は、前記蒸気供給管へ供給された前記混合蒸気に含まれる水分を除去する蒸気脱水工程を含むことを特徴とする。
本発明によれば、基板に供給するIPA蒸気に含まれる水分量を低減し、高濃度なIPA蒸気を生成、供給することができる。
また、本発明によれば、上記の高濃度なIPA蒸気を基板に供給して、基板の乾燥処理を実行することで、基板の良好な乾燥を実現することができる。
第1実施形態にかかる蒸気乾燥装置の全体構成を示す模式図である。 第1実施形態にかかる循環脱水部の構成を示す模式図である。 第1実施形態にかかる蒸気脱水手段の構成を示す模式図である。 第1実施形態にかかる制御部の構成を示す模式図である。 第1実施形態にかかる蒸気乾燥方法のフローチャートである。 IPA水溶液における気液平衡曲線を示すグラフである。 混合液体を脱水した際の経過時間ごとの水分濃度を示すイメージ図である。 第2実施形態にかかる異物除去部の構成を示す模式図である。
以下の説明において、基板とは、半導体基板、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラズマ表示用ガラス基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などの各種基板をいう。
以下の説明においては、一方主面のみに回路パターン等(以下「パターン」と記載する)が形成されている基板を例として用いる。ここで、パターンが形成されている一方主面を「表面」と称し、その反対側のパターンが形成されていない他方主面を「裏面」と称する。また、下方に向けられた基板の面を「下面」と称し、上方に向けられた基板の面を「上面」と称する。なお、以下においては上面を表面(一方主面)として説明する。
以下、本発明の実施の形態を、半導体基板の処理に用いられる基板処理装置を例に採って図面を参照して説明する。なお、本発明は、半導体基板の処理に限らず、液晶表示器用のガラス基板などの各種の基板の処理にも適用することができる。
<第1実施形態>
<1−1.装置構成>
図1は、第1実施形態に係る蒸気乾燥装置の概略構成を示す図である。蒸気乾燥装置1は半導体基板等の基板W(以下、単に「基板W」と記載する)に付着しているDIW等の付着液を除去するために、基板Wに付着液よりも表面張力が低い低表面張力液体の蒸気を供給する蒸気乾燥処理に用いられる枚葉式の装置である。
ここで、低表面張力液体としては、IPA、HFE(ハイドロフルオロエーテル)、エタノール、メタノール等の有機溶剤が用いられる。以下、第1実施形態では、低表面張力液体をIPAとして説明する。
なお、低表面張力液体としては、上記の液体に限られず、DIWよりも表面張力が低く、DIWよりも揮発性の高い液体であれば、上記液体に代えて用いることができる。
また、基板Wの付着液は、DIWに限られず、例えば低表面張力液体として選択される液体と同一の液体であってもよい。
蒸気乾燥装置1は、基板Wの乾燥処理を行う基板処理部90と、IPA蒸気を生成し、当該IPA蒸気を基板処理部90へ供給する蒸気供給装置10と、蒸気乾燥装置1の制御を行う制御部70を備える。制御部70は、蒸気乾燥装置1の各部と電気的に接続し、各部へ指令を行うことで蒸気乾燥装置1の制御を行う。
図2は、蒸気乾燥装置1における後述の循環脱水部33の詳細構成を示す図である。図4は、制御部70と蒸気乾燥装置1の各部との接続関係を示すブロック図である。以下、図1、図2および図4を適宜用いて、蒸気乾燥装置1の構成について説明する。
蒸気供給装置10は、主に、混合液体貯留部11と、蒸気供給管13と、蒸気生成手段20と、循環脱水手段30と、排気手段40と、混合蒸気供給手段50と、を備える。蒸気供給装置10における各部の詳説については、後述する。
基板処理部90は、主に、基板Wを収容するチャンバ91と、蒸気供給装置10から供給されるIPA蒸気と窒素ガスを混合する窒素ガス混合手段60と、IPA蒸気を基板Wに吹き付けるノズル92と、を備える。基板処理部90における各部の詳説については、後述する。
次に、蒸気供給装置10における各部の構成について説明する。
蒸気供給装置10は、水分を含む液体のIPA(以下、「混合液体」と記載する)を貯留する混合液体貯留部11と、混合液体貯留部11に混合液体供給源から混合液体を供給するための配管12と、当該配管12に介挿され、混合液体供給源と、混合液体貯留部11との連通を制御するバルブV1とを備える。
バルブV1は、制御部70と電気的に接続し、制御部70の動作指令により開閉するバルブである。制御部70がバルブV1に動作指令を行い、バルブV1が開成されると、混合液体供給源から配管12を介して混合液体貯留部11に混合液体が供給される。また、制御部70がバルブV1に動作指令を行い、バルブV1が閉成されると、混合液体供給源からの混合液体貯留部11への混合液体の供給が停止される。
ここで、第1実施形態において混合液体供給源から供給される混合液体は、水分を0.1重量%含み、IPAを99.9重量%含む液体である。混合液体供給源は、蒸気乾燥装置1内に設けられたタンクであってもよいし、蒸気乾燥装置1外であって工場内に設けた大型タンク等の工場設備や、工場外から持ち込まれる可動式タンクであってもよい。
混合液体貯留部11は、混合液体を貯留するタンクである。混合液体貯留部11は、その内部に貯留された混合液体の量を検知するため、液面センサ(図示省略)が備えられる。液面センサは、制御部70と電気的に接続し、混合液体貯留部11内の液面が所定高さ以上であるときに、検出信号を制御部70へ出力する。
なお、本発明の実施に関しては液面センサの設置は必須ではなく、混合液体貯留部内の混合液体の貯留量がオペレータに把握できるように、当該タンクに窓を設ける構成としてもよい。
また、蒸気供給装置10は、混合液体貯留部11に貯留された混合液体に含まれる水分濃度を測定するセンサ14を備える。一般に、水分濃度測定用のセンサには、オフライン用センサとインライン用センサがある。オフライン用センサは、貯留部から実際に外部へ取り出して測定を行うものであり、インライン用センサは、液体を、貯留部内や管路内から取り出さずに測定を行うものである。第1実施形態において用いるセンサ14は、混合液体貯留部11の外部であるオフライン上に設置され、水分濃度をppm(parts per million)オーダー、すなわち0.0001%のオーダーにて測定できるオフライン用センサであり、本実施形態ではセンサ14としてカール・フィッシャー法を利用した水分測定装置を用いる。
センサ14は、制御部70と電気的に接続し、センサ14で測定した水分濃度を電気信号として制御部70へ出力する。制御部70に入力された当該電気信号は、データとして、後述する記憶部72に記憶される。以上により、混合液体貯留部11に貯留される水分濃度を、センサ14および制御部70によって監視することができる。
なお、第1実施形態では上述のように水分濃度を測定するセンサ14を用いるが、本発明の実施に関してはこれに限られず、IPA濃度を測定するセンサをセンサ14として用いてもよい。また、第1実施形態ではセンサ14としてオフライン用センサを用いたが、インライン用センサを用いる構成としてもよい。
さらに、蒸気供給装置10は、混合液体貯留部11に接続される配管15と、配管15に介挿されるバルブV11を備える。配管15は、混合液体貯留部11に貯留される混合液体を、センサ14に所望の量だけ滴下するためのドレンラインであり、一端は混合液体貯留部11に接続され、他端はセンサ14へ滴下可能に開放されている開放端である。
バルブV11は、制御部70と電気的に接続し、制御部70の動作指令により開閉するバルブである。制御部70がバルブV11に動作指令を行い、バルブV11が開成されると、混合液体貯留部11から配管15を介して、配管15の他端である開放端から混合液体が流出(あるいは、滴下)する。また、制御部70がバルブV11に動作指令を行い、バルブV11が閉成されると、配管15の開放端からの混合液体の流出が停止される。
なお、センサ14への混合液体の供給は、配管15の開放端から直接滴下されるよう構成されても良いし、開放端から流出した混合液体を他の容器に流入し、当該容器からスポイト等で混合液体を取得してから当該スポイトからセンサ14へ滴下するように構成してもよい。本実施形態では、配管15の開放端から直接滴下されるように構成する。
また、蒸気供給装置10は、混合液体貯留部11に貯留された混合液体から、混合液体の蒸気を含む混合蒸気を生成する蒸気生成手段20を備える。
蒸気生成手段20は、窒素ガス供給源から混合液体貯留部11に貯留される混合液体中へ窒素ガスを供給するための配管21と、配管21に介挿され、窒素ガス供給源と混合液体貯留部11との連通を制御するバルブV2と、混合液体貯留部11に貯留された混合液体を加熱する加熱部22とを備える。
バルブV2は、制御部70と電気的に接続し、制御部70の動作指令により開閉するバルブである。制御部70がバルブV2に動作指令を行い、バルブV2が開成されると、窒素ガス供給源から配管21を介して混合液体貯留部11の混合液体中に窒素ガスが供給される。また、制御部70がバルブV2に動作指令を行い、バルブV2が閉成されると、窒素ガス供給源からの混合液体貯留部11への窒素ガスの供給が停止される。
ここで、第1実施形態において窒素ガス供給源から供給される窒素ガスは、図示しない乾燥手段等により含有水分が除去され、露点が−40℃以下、より好ましくは−80℃以下に調整された窒素ガスである。窒素ガス供給源は、蒸気乾燥装置1内に設けられたタンクであってもよいし、蒸気乾燥装置1外であって工場内に設けた大型タンク等の工場設備や、工場外から持ち込まれる可動式タンクであってもよい。
なお、第1実施形態の蒸気生成手段20では、上述のように窒素ガスを用いるが、本発明の実施に関してはこれに限られず、アルゴンガスや、窒素80%および酸素20%を含み、露点が−40℃以下である清浄乾燥空気(CDA)を、窒素ガスに代えて、供給する構成としてもよい。
加熱部22は、公知の抵抗加熱ヒータであり、制御部70と電気的に接続し、制御部70の動作指令により混合液体貯留部11に貯留された混合液体の加熱を実行する。加熱の温度は制御部70の動作指令によって調整され、少なくとも常温以上から100℃程度まで混合液体貯留部11に貯留された混合液体を加熱することが可能である。
蒸気生成手段20により混合液体の蒸気を生成する際には、制御部70の動作指令により、バルブV2を開成して混合液体中に窒素ガスを供給し、加熱部22を動作させて混合液体貯留部11に貯留された混合液体を、沸騰しない程度に加熱する。
具体的には、加熱部22により混合液体を50℃ないし60℃程度に加熱する。混合液体において、IPAの沸点は82.6℃であり、純水の沸点は100℃であり、IPAと水とを混合した混合液体の共沸点は約87℃であるため、上述のように50℃ないし60℃程度に加熱することで、混合液体を沸騰させることなく、混合液体の蒸気圧を常温時以上に高めることができる。これにより、窒素ガス供給源から供給された窒素ガスへの混合液体の蒸気の混入を促進でき、IPAおよび水蒸気を含む混合蒸気と、窒素ガスとの混合気体が生成される。以下、当該混合気体に含まれるIPAおよび水蒸気のことを、「混合蒸気」と称する。
第1実施形態では、上述のように、混合蒸気の生成手法として、バブリング方式と液体加熱方式を併せて採用する。
なお、本発明の実施に関して、混合蒸気の生成手段としては、上述した方式に限られず、2流体ノズル方式を用いてもよいし、バブリング方式、液体加熱方式を併用せず、それぞれ単独で用いても良い。また、第1実施形態では、上述のように加熱部22によって混合液体を沸点より低い温度に加熱して気化を促進するが、本発明の実施に関してはこれに限られず、沸点以上の温度に加熱してもよい。
また、蒸気供給装置10は、混合液体貯留部11に貯留された混合液体を導入して、当該混合液体に含まれる水分を除去、すなわち、脱水し、当該脱水された混合液体を混合液体貯留部11に帰還させる循環脱水手段30を備える。
循環脱水手段30は、配管31と、バルブV3と、ポンプ32と、循環脱水部33と、配管34とを備える。循環脱水部33は、混合液体に含まれる水分を除去する部位であり、詳細については後述する。
配管31は、混合液体貯留部11と循環脱水部33における後述の分離部331とを接続し、混合液体貯留部11に貯留された混合液体を循環脱水部33へ導入する。配管31には、バルブV3とポンプ32が介挿される。配管34は、循環脱水部33と混合液体貯留部11とを接続する、配管31とは別途設けられる配管であり、循環脱水部33を通過し、循環脱水部33により脱水処理がされた混合液体を混合液体貯留部11へ送り戻す。
バルブV3は、制御部70と電気的に接続し、制御部70の動作指令により開閉するバルブである。また、ポンプ32は、制御部70と電気的に接続し、制御部70の動作指令により配管31内の液体をバルブV3側から循環脱水部33側へ送るポンプである。制御部70がポンプ32およびバルブV3に動作指令を行い、ポンプ32の動作が開始され、バルブV3が開成されると、混合液体貯留部11から配管31を介して循環脱水部33に混合液体が供給される。さらに、循環脱水部33を通過し、循環脱水部33により脱水処理がされた混合液体が、配管34を介して混合液体貯留部11に供給される。
また、制御部70がポンプ32およびバルブV3に動作指令を行い、ポンプ32の動作が停止され、バルブV3が閉成されると、配管31を介して行われる混合液体貯留部11から循環脱水部33への混合液体の供給、および配管34を介して行われる循環脱水部33から混合液体貯留部11への混合液体の供給が停止される。
次に、循環脱水手段30における循環脱水部33について、図2を用いて説明する。図2は、循環脱水部33の構成を示す模式図である。
循環脱水部33は、配管31に直接接続する分離部331と、ポンプ32からみて分離部331の後段に設けられる吸着部332と、ポンプ32からみて吸着部332の後段に設けられ、配管34と接続するフィルタ333と、を備える。
また、循環脱水部33は、配管34において、混合液体貯留部11とフィルタ333との間に介挿され、混合液体貯留部11とフィルタ333との連通を制御するバルブV10を備える。バルブV10は、配管34を介して混合液体貯留部11から循環脱水部33へ混合液体が逆流しないように設けられるバルブである。
なお、本発明の実施に関してはバルブV10の位置に設けられるのはバルブに限られず、逆流防止弁を配管34内に設けてもよい。
分離部331は、混合液体に含まれるIPAと水分とを分離する分離膜により構成され、浸透気化(Pervaporation:PV)法により、分離対象である混合液体中の水分を、IPAから分離する。分離膜としては、ゼオライト膜、ポリイミド系分離膜、またはセルロース系分離膜を用いることができ、第1実施形態では、アルコールからの脱水用の分離膜として広く用いられ、きわめて強い吸湿性を有するゼオライト膜を用いる。
吸着部332は、混合液体に含まれる水分を吸着する吸着部材により構成され、吸着部材の吸湿性を利用して、混合液体から水分を選択的に吸着除去し、混合液体におけるIPAの濃度を高める。吸着部材の材質には、第1実施形態では、ゼオライトを用いる。なお、本発明の実施に関してはゼオライトに限られず、アルコール中の水分を選択的に吸着する材質であれば、用いることができる。
フィルタ333は、多孔質なろ材により構成され、混合液体を分離部331および吸着部332に通すことにより生じる不純物粒子(例えば、ゼオライト片)を取り除く。ろ材としては、ガラス繊維フィルタ、またはメンブレンフィルタの他、公知の溶剤用フィルタを用いることができる。第1実施形態では、半導体洗浄工程で広く用いられ、有機溶剤耐性を有するメンブレンフィルタを用いる。
図1に戻る。蒸気供給装置10は、混合液体貯留部11において、蒸気生成手段20により生成された混合蒸気を排気機構へ排気する排気手段40をさらに備える。
排気手段40は、混合液体貯留部11と排気機構とを接続する配管41と、配管41に介挿され、混合液体貯留部11と排気機構との連通を制御するバルブV4とを備える。
バルブV4は、制御部70と電気的に接続し、制御部70の動作指令により開閉するバルブである。制御部70がバルブV4に動作指令を行い、バルブV4が開成されると、混合液体貯留部11から配管41を介して排気機構へ混合蒸気が排気される。また、制御部70がバルブV4に動作指令を行い、バルブV4が閉成されると、混合液体貯留部11からの排気機構への混合蒸気の排気が停止される。
なお、配管41に、さらにポンプを介挿して、混合蒸気を積極的に排出する構成としてもよい。
ここで、排気機構は、混合液体貯留部11の外に設けられ、配管41を介して混合液体貯留部11から排出された混合蒸気をそのまま貯留、または混合蒸気に公知の液化処理を施して液体状態として貯留するタンクであり、蒸気乾燥装置1内に設けられたタンクであってもよいし、蒸気乾燥装置1外であって工場内に設けた大型タンク等の工場設備や、工場外へ持ち出し可能な可動式タンクであってもよい。当該タンクに貯留された混合蒸気は、工場内外で廃棄され、または公知のIPA精製処理が施されることで再利用される。
また、蒸気供給装置10は、混合液体貯留部11と基板処理部90における配管61とを接続する蒸気供給管13と、蒸気供給管13に介挿され、混合液体貯留部11と配管61との連通を制御するバルブV5と、蒸気供給管13に介挿され、蒸気供給管13内を通過する混合蒸気から水分を除去する蒸気脱水手段100を備える。
蒸気供給管13を介して、混合液体貯留部11において、蒸気生成手段20により生成された混合蒸気が、蒸気脱水手段100により脱水された後、基板処理部90または後述の混合蒸気貯留部52へ供給される。
バルブV5は、制御部70と電気的に接続し、制御部70の動作指令により開閉するバルブである。制御部70がバルブV5に動作指令を行い、バルブV5が開成されると、蒸気供給管13を介して、混合液体貯留部11と、後述の配管51または基板処理部90における配管61とが、接続する。
このバルブV5が開成され、後述のバルブV6が開成されると、蒸気供給管13および配管61を介して、混合液体貯留部11と基板処理部90におけるノズル92が接続する。また、バルブV5が開成され、後述のバルブV7が開成されると、蒸気供給管13および配管51を介して、混合液体貯留部11と混合蒸気貯留部52が接続する。
また、制御部70がバルブV5に動作指令を行い、バルブV5が閉成されると、混合液体貯留部11と、配管51または配管61との接続が遮断される。
図3に、蒸気脱水手段100の内部構成についての模式図を示す。蒸気脱水手段100は、分離部110と、吸着部120と、異物除去部130を有し、蒸気供給管13内を通過する混合蒸気に含まれる水分を除去する。
蒸気供給管13において、混合液体貯留部11と接続する一端側を上流側、他端を下流側とすると、上流側から、分離部110、吸着部120、そして異物除去部130の順に、それぞれ蒸気供給管13に介挿される。
分離部110は、混合蒸気に含まれるIPAと水分とを分離する分離膜により構成され、浸透気化(Pervaporation:PV)法により、分離対象である混合蒸気中の水分を、IPAから分離する。分離膜としては、ゼオライト膜、ポリイミド系分離膜、またはセルロース系分離膜を用いることができ、第1実施形態では、アルコールからの脱水用の分離膜として広く用いられ、きわめて強い吸湿性を有するゼオライト膜を用いる。
吸着部120は、混合蒸気に含まれる水分を吸着する吸着部材により構成され、吸着部材の吸湿性を利用して、混合蒸気から水分を選択的に吸着除去し、混合蒸気におけるIPAの濃度を高める。吸着部材の材質には、第1実施形態では、ゼオライトを用いる。なお、本発明の実施に関してはゼオライトに限られず、アルコール中の水分を選択的に吸着する材質であれば、用いることができる。
異物除去部130は、多孔質なろ材により構成され、混合蒸気を分離部110および吸着部120に通すことにより生じる不純物粒子(例えば、ゼオライト片)を取り除く。ろ材としては、ガラス繊維フィルタ、またはメンブレンフィルタの他、公知の溶剤用フィルタを用いることができる。第1実施形態では、半導体洗浄工程で広く用いられ、有機溶剤耐性を有するメンブレンフィルタを用いる。
また、蒸気脱水手段100は、分離部110、吸着部120および異物除去部130にそれぞれ接続するガス供給管101を有する。ガス供給管101は、一端を窒素ガス供給源と接続し、他端を分離部110、吸着部120および異物除去部130にそれぞれ接続する。また、ガス供給管101には図示しないバルブが介挿され、分離部110、吸着部120および異物除去部130への窒素ガスの供給を当該バルブにより制御する。
窒素ガス供給源から供給する窒素ガスは、露点が−40℃以下、より好ましくは−80℃以下に調整された窒素ガスである。また、窒素ガスの温度は、常温、または常温よりも高い温度に調整された窒素ガスであり、第1実施形態では40℃の窒素ガスを用いる。
窒素ガス供給源は、蒸気乾燥装置1内に設けられたタンクであってもよいし、蒸気乾燥装置1外であって工場内に設けた大型タンク等の工場設備や、工場外から持ち込まれる可動式タンクであってもよい。
分離部110や吸着部120において、混合蒸気の脱水を行う際、これらの各部において混合蒸気が凝集することで、基板処理部90への混合蒸気の流量の低下や、分離部110および吸着部120における脱水能力の低下が生じるおそれがある。
そこで、図3のようにガス供給管101を設けることにより、後述の蒸気乾燥処理の終了後等において、露点が低く、温度が高い窒素ガスを蒸気脱水手段100の各部に供給し、凝集した混合液体を乾燥させたり、これら内部に残留する混合蒸気を除去したりすることで、常に一定以上の流量や脱水能力を確保することができる。
なお、第1実施形態において、ガス供給管101は、分離部110、吸着部120および異物除去部130にそれぞれ接続する構成としているが、本発明の実施に関してはこれに限られず、分離部110のみ、または吸着部120のみ、または分離部110および吸着部120のみに接続する構成としてもよい。
また、第1実施形態において、ガス供給管101から分離部110、吸着部120および異物除去部130に供給される気体は窒素ガスであったが、本発明の実施に関してはこれに限られず、アルゴンガスや、窒素80%および酸素20%を含み、露点が−40℃以下である清浄乾燥空気(CDA)を、窒素ガスに代えて、供給する構成としてもよい。
また、蒸気脱水手段100は、分離部110、吸着部120および異物除去部130にそれぞれ接続する排液管102を有する。排液管102は、一端を排液機構と接続し、他端を分離部110、吸着部120および異物除去部130の下方にそれぞれ接続し、これら蒸気脱水手段100の各部において凝集した混合液体を排液機構へ排液する。排液管102には図示しないバルブが介挿され、分離部110、吸着部120および異物除去部130からの混合液体の排出を当該バルブにより制御する。
なお、第1実施形態において、排液管102は、分離部110、吸着部120および異物除去部130にそれぞれ接続する構成としているが、本発明の実施に関してはこれに限られず、分離部110のみ、または吸着部120のみ、または分離部110および吸着部120のみに接続する構成としてもよい。
なお、蒸気供給管13は、さらにポンプが介挿される構成としてもよい。ポンプを介挿することで、蒸気供給管13内の混合蒸気が積極的に基板処理部90へ供給される構成とすることができる。
また、混合液体貯留部11で生成された混合蒸気が蒸気供給管13に供給された後、混合蒸気が蒸気供給管13や蒸気脱水手段100の内部で冷却されると、混合蒸気がこれらの内部で凝集して混合液体に戻ることがある。
凝集の生じる場所によっては、基板Wへの混合液体の液だれが発生したり、蒸気脱水手段100内の混合蒸気の通り道が閉塞されて、基板Wへ供給される混合蒸気の流量が減少するおそれがある。これを防止するため、蒸気供給管13や蒸気脱水手段100に、これらの内部を50〜60℃程度に温調する温調機構を設けてもよい。
図1に戻る。蒸気供給装置10は、混合蒸気を混合液体貯留部11に供給する混合蒸気供給手段50をさらに備える。
混合蒸気供給手段50は、混合蒸気を貯留する混合蒸気貯留部52と、混合蒸気貯留部52と蒸気供給管13とを接続する配管51と、配管51に介挿され、蒸気供給管13と混合蒸気貯留部52との連通を制御するバルブV7と、混合蒸気貯留部52と混合液体貯留部11とを接続する配管53と、配管53に介挿され、混合蒸気貯留部52と混合液体貯留部11との連通を制御するバルブV8と、を有する。
混合蒸気貯留部52は、内部に混合蒸気を貯留するタンクである。混合蒸気への外の空気や水分の混入を防止するため、混合蒸気貯留部52は、配管51、配管53と接続する他は密閉されている。よって、外部雰囲気と混合蒸気貯留部52内の混合蒸気は、遮断されている。
バルブV7は、制御部70と電気的に接続し、制御部70の動作指令により開閉するバルブである。制御部70がバルブV7に動作指令を行い、バルブV7が開成されると、蒸気供給管13と混合蒸気貯留部52とが連通する。このとき、バルブV5が開成されており、混合液体貯留部11から蒸気供給管13へ混合蒸気が供給されている場合、配管51を介して混合蒸気が混合蒸気貯留部52に供給され、混合蒸気が混合蒸気貯留部52に貯留される。また、制御部70がバルブV7に動作指令を行い、バルブV7が閉成されると、蒸気供給管13と混合蒸気貯留部52との連通が遮断され、蒸気供給管13内を流れる混合蒸気は、混合蒸気貯留部52には供給されない。
なお、配管51におけるバルブV7と混合蒸気貯留部52との間に、さらにポンプを介挿して、蒸気供給管13内の混合蒸気を積極的に混合蒸気貯留部52へ供給する構成としてもよい。
また、配管51に、さらに逆流防止弁を介挿して、混合蒸気貯留部52から蒸気供給管13への混合蒸気の逆流を防止する構成としてもよい。
バルブV8は、制御部70と電気的に接続し、制御部70の動作指令により開閉するバルブである。制御部70がバルブV8に動作指令を行い、バルブV8が開成されると、混合蒸気貯留部52と混合液体貯留部11とが連通し、混合蒸気貯留部52に混合蒸気が貯留されていれば、混合蒸気が配管53を介して混合液体貯留部11に供給される。
ここで、後述するように、混合蒸気貯留部52に混合蒸気を供給する際には、蒸気生成手段20における窒素ガス供給源からの高圧な窒素ガスを利用することで、混合蒸気貯留部52に、混合蒸気が大気圧よりも高い正圧状態にて貯留される。したがって、バルブV8を開成した際、混合液体貯留部11の内部が大気圧であり、混合蒸気貯留部52の内部が大気圧よりも高い正圧状態であれば、混合蒸気貯留部52から混合蒸気が配管53を介して混合液体貯留部11に供給される。
また、制御部70がバルブV8に動作指令を行い、バルブV8が閉成されると、混合蒸気貯留部52と混合液体貯留部11との連通が遮断され、混合蒸気貯留部52に貯留される混合蒸気は、混合液体貯留部11には供給されない。
なお、配管51、混合蒸気貯留部52または配管53において、混合蒸気が冷却されると、これらの内部において凝集して混合液体に戻り、配管や貯留部内部で混合液体の液だれが発生するおそれがある。これを防止するため、配管51、混合蒸気貯留部52または配管53に、これらの内部を50〜60℃程度に温調する温調機構を設けて、混合蒸気の凝集を抑制する構成としてもよい。
次に、基板処理部90における各部の構成について説明する。
基板処理部90は、基板Wを収容するチャンバ91を備える。チャンバ91は、側壁、天井および底面によって基板Wを処理するための処理空間を形成する。
また、基板処理部90は、チャンバ91において、基板Wの搬入出を行うためのシャッタ93、搬入された基板Wを保持する保持部(図示省略)、および当該保持部に保持された基板Wの主面に混合蒸気を供給するノズル92を備える。
ノズル92には図示省略する移動機構が備えられ、当該移動機構は制御部70と電気的に接続しており、制御部70の動作指令によって、ノズル92は基板Wの主面と対向する位置に位置決めされる。また、シャッタ93および保持部も、それぞれ制御部70と電気的に接続しており、制御部70の動作指令によって、シャッタ93の開閉、および保持部による基板Wの保持状態が制御される。
また、基板処理部90は、蒸気供給装置10から供給されるIPA蒸気に、窒素ガスを混合する窒素ガス混合手段60を備える。窒素ガス混合手段60は、蒸気供給管13とノズル92とを接続する配管61と、配管61に介挿され、蒸気供給管13とノズル92との連通を制御するバルブV6とを備える。
さらに、窒素ガス混合手段60は、配管61におけるバルブV6とノズル92の間に分岐接続し、配管61と窒素ガス供給源とを接続する配管62と、配管62に介挿され、配管61と窒素ガス供給源との連通を制御するバルブV9とを備える。
窒素ガス供給源は、配管62へ窒素ガスを供給する気体供給源(例えば、窒素ガスが圧縮されて貯留されるガスボンベ)である。窒素ガス供給源は、蒸気乾燥装置1内に設けられたボンベであってもよいし、蒸気乾燥装置1外であって工場内に設けた大型ボンベ等の工場設備や、工場外から持ち込まれる可動式ボンベであってもよい。第1実施形態において窒素ガス供給源から供給される気体は、露点が−40℃以下、好ましくは、露点が−100℃以下であり、99.999体積%濃度以上の窒素ガスである。
バルブV6は、制御部70と電気的に接続し、制御部70の動作指令により開閉するバルブである。制御部70がバルブV6に動作指令を行い、バルブV6が開成されると、蒸気供給管13とノズル92とが連通し、蒸気供給管13内を流れる混合蒸気が配管61を介してノズル92に供給される。また、制御部70がバルブV6に動作指令を行い、バルブV6が閉成されると、蒸気供給管13とノズル92との連通が遮断され、蒸気供給管13内を流れる混合蒸気は、ノズル92には供給されない。
また、バルブV5が開成した状態でバルブV6が開成されると、混合液体貯留部11と基板処理部90におけるノズル92とが、蒸気供給管13および配管61を介して接続する。
バルブV9は、制御部70と電気的に接続し、制御部70の動作指令により開閉するバルブである。制御部70がバルブV9に動作指令を行い、バルブV9が開成されると、窒素ガス供給源と配管61とが連通し、窒素ガスが窒素ガス供給源から配管62を介して配管61およびノズル92に供給される。また、制御部70がバルブV9に動作指令を行い、バルブV9が閉成されると、窒素ガス供給源と配管61との連通が遮断され、窒素ガス供給源からの窒素ガスの配管61およびノズル92への供給が停止する。
なお、配管61において、混合蒸気が冷却されると、配管61内において凝集して混合液体に戻り、基板Wへの混合液体の液だれが発生するおそれがある。これを防止するため、配管61に、内部を50〜60℃程度に温調する温調機構を設けて、混合蒸気の凝集を抑制する構成としてもよい。また、配管62は配管61と管路接続するため、混合蒸気が流入する可能性がある。したがって、配管62においても、上記温調機構を設けて、混合蒸気の凝集を抑制する構成としてもよい。
次に、制御部70の構成について図4を用いて説明する。図4は制御部70の構成と、制御部70と蒸気乾燥装置1との各部の関係を示すブロック図である。制御部70は、蒸気乾燥装置1の各部、すなわち、センサ14、加熱部22、ポンプ32、基板処理部90および各バルブV1乃至V11と電気的に接続しており、各部の動作を制御する。
制御部70は、各種演算処理を行うCPU71や記憶部72を有するコンピュータにより構成されている。記憶部72は、基本プログラムを記憶する読み出し専用のメモリであるROM721、各種情報を記憶する読み書き自在のメモリであるRAM722および制御用ソフトウェアやデータなどを記憶しておく磁気ディスク723を備える。磁気ディスク723には、基板Wに応じた基板処理条件が、プログラム73(レシピとも呼ばれる)として予め格納されおり、CPU71がその内容をRAM722に読み出し、RAM722に読み出されたプログラムの内容に従ってCPU71が蒸気乾燥装置1の各部を制御する。
制御部70は、変更・追加用プログラムを記憶した記憶媒体74を読み取る読取手段75をさらに備える。外部から記憶媒体74を読取手段75に挿入し、読取手段75で読み取った記憶媒体74内の変更・追加用プログラムは、記憶部72にプログラム73として記憶される。
また、制御部70には、オペレータに現在選択されているプログラム73や蒸気乾燥装置1の状態等を報知する表示部76と、オペレータがプログラム73の作成・変更や、複数のプログラム73の中から所望のものを選択するために用いる入力部77が、接続されている。
<1−2.処理工程>
次に、上記のように構成された蒸気乾燥装置1における蒸気供給および基板処理の工程について説明する。ここで、基板Wの主面には、凹凸のパターンが予め形成されている。パターンは、凸部および凹部を備えている。本実施形態において、凸部は、100〜200nmの範囲の高さであり、10〜20nmの範囲の幅である。また、隣接する凸部間の距離(凹部の幅)は、10〜1000nmの範囲である。また、基板Wの主面には、予め実行される湿式処理によって、例えばリンス液としてのDIWが付着している。
なお、本実施形態では上記のようなスケールのパターンが形成された基板Wを用いるが、本発明の実施に関してはこれに限られず、上記の範囲に含まれないスケールのパターンを用いてもよいし、表面に凹凸のパターンが形成されていない基板Wに対して後述の基板処理を行ってもよい。
以下、図5を参照して、第1実施形態における蒸気供給方法を説明する。図5は第1実施形態における蒸気供給装置10の、基板処理部90への蒸気供給動作を示すフローチャートである。
まず、所定の基板Wに応じたプログラム73が入力部77(図4参照)でオペレータにより選択され、実行指示される。その後、蒸気供給装置10における各部の動作が、制御部70の動作指令によって実行される。
基板処理部90へ含有水分をより少なくした混合蒸気を供給するために、蒸気供給装置10では、以下の蒸気供給工程を実行する。すなわち、まず混合液体貯留部11に混合液体を混合液体供給源から供給し、貯留する貯留工程(S11)と、混合液体貯留部11に貯留される混合液体を循環脱水手段30へ導入し、循環脱水部33にて脱水を行った混合液体を混合液体貯留部11に帰還させる循環脱水工程(S12)と、循環脱水工程により混合液体中の水分濃度が第1所定値以下(本実施形態では、0.001重量%以下)になったことがセンサ14で検知された後、加熱部22により混合液体貯留部11に貯留される混合液体を加熱して混合蒸気を発生させ、発生した混合蒸気を排気手段40によって混合液体貯留部11の外部に排気する気化脱水工程(S13)と、気化脱水工程により混合液体中の水分濃度が第2所定値以下(本実施形態では、0.0005重量%以下)になったことがセンサ14で検知された後、配管21を介して窒素ガス供給源から混合液体貯留部11の混合液体中に窒素ガスを供給することで混合蒸気を発生させ、発生した混合蒸気を蒸気供給管13を介して基板処理部90に送る蒸気供給工程(S14)と、を実行する。
以上の各工程(S11〜S14)の詳細について、図1、図2および図4を適宜参照しながら説明する。
まず、プログラム73がオペレータにより選択・実行指示がなされると、制御部70は、蒸気乾燥装置1における各部が、初期状態となっているかを確認し、初期状態となっていない部分があれば、動作指令により各部を初期状態とする。初期状態として、蒸気乾燥装置1はすべてのバルブV1〜V11を閉成し、ポンプ32等、各部のポンプは動作を停止している。また、加熱部22は動作を停止しており、混合液体貯留部11への加熱は行われていない。当該初期状態が確認された後、制御部は各工程(S11〜S14)を順次実行する。
貯留工程(S11)が制御部70の動作指令により開始されると、まず、制御部70は、混合液体貯留部11に設けられた液面センサからの検出信号の有無を確認する。検出信号が無く、液面が所定高さよりも低いことを検知すると、制御部70は、バルブV1に動作指令を行い、バルブV1を開成して、混合液体供給源から混合液体を混合液体貯留部11へ、配管12を介して供給する。
混合液体供給源からの混合液体の供給により、混合液体貯留部11内の混合液体の液面が上昇し、液面センサが検知する所定高さ以上に液面が達すると、液面センサが制御部70へ検出信号を送信する。制御部70は、当該検出信号を受信すると、バルブV1に制御指令を行い、バルブV1を閉成して、混合液体貯留部11への混合液体供給源からの混合液体の供給を停止する。
ここで、混合液体供給源から供給される混合液体は、水分を0.1重量%含み、IPAを99.9重量%含む液体である。
なお、混合液体貯留部11内や配管12内の雰囲気に、水蒸気が含まれている場合には、IPAによる吸湿が生じるため、混合液体供給源から供給する混合液体よりも、混合液体貯留部11に貯留される混合液体の方がIPA濃度が低くなり、水分濃度が高くなる。
また、混合液体貯留部11内に、既に混合液体が貯留されている場合には、混合液体供給源から新しく混合液体を供給した後の、混合液体貯留部11内の混合液体のIPA濃度および水分濃度は、既に貯留されていた混合液体のIPA濃度や水分濃度に依存する。
液面センサが所定高さ以上であり、バルブV1が閉成していることを制御部70が確認すると、次に、循環脱水工程(S12)が開始される。循環脱水工程が開始されると、制御部70は、循環脱水手段30に動作指令を行い、ポンプ32を動作させ、バルブV3およびバルブV10(図2参照)を開成する。
制御部70の動作指令により、ポンプ32が動作し、バルブV3およびバルブV10が開成すると、混合液体貯留部11に貯留される混合液体が、配管31から循環脱水部33に導入される。
循環脱水部33では、混合液体が分離部331、吸着部332を順次通過することで、混合液体に含まれる水分の分離、吸着が行われ、混合液体に含まれる水分が除去される、すなわち脱水処理がなされる。そして、フィルタ333では、分離部331および吸着部332において生じた不純物微粒子をろ過により除去する。これにより、循環脱水部33を通過させることで、循環脱水部33への導入前の混合液体よりも水分濃度が低下し、IPA濃度が上昇した混合液体を得ることができる。
循環脱水部33を通過し、脱水処理された混合液体は、配管34を通って混合液体貯留部11に戻される。脱水処理され、IPA濃度が高くなった混合液体が、混合液体貯留部11に貯留され、脱水処理がなされる前の混合液体と混ざることで、混合液体貯留部11に貯留される混合液体全体のIPA濃度が高くなる。
なお、循環脱水工程(S12)において、制御部70は、循環脱水手段30への動作指令の前に、センサ14により、混合液体貯留部11に貯留される混合液体における水分濃度を確認してもよい。この場合、制御部70がセンサ14で検知された水分濃度を確認し、センサ14で検知された水分濃度が第1所定値以上である場合に、循環脱水手段30へ動作指令を行う。これにより、既に水分濃度が第1所定値以下である場合に、循環脱水工程(S12)を省略することができる。
第1実施形態において、第1所定値は、0.001重量%(すなわち10ppm)である。また、センサ14がIPA濃度を検知する場合には、センサ14で検知されたIPA濃度が第3所定値以下である場合に、制御部70は、循環脱水手段30に動作指令を行い、ポンプ32を動作させ、バルブV3を開成するように構成してもよい。ここで、第3所定値は、99.999重量%である。
なお、第1所定値としては、0.001重量%に限られないが、混合液体供給源から供給される混合液体における水分濃度以下の値に設定されることが好ましく、第1実施形態では0.01重量%以下の値が第1所定値として選ばれることが好ましい。
また、同様に、第3所定値としては、99.999重量%に限られないが、混合液体供給源から供給される混合液体におけるIPA濃度以上の値に設定されることが好ましく、第1実施形態では99.99重量%以上の値が第3所定値として選ばれることが好ましい。
制御部70は、循環脱水工程(S12)の開始後、所定時間が経過する毎に、バルブV11に動作指令を行い、配管15を介して所定容量の混合液体をセンサ14へ滴下し、センサ14により検出される混合液体の水分濃度を確認する。センサ14において検出される水分濃度が第1所定値以下になったことを確認すると、気化脱水工程(S13)を開始する。本実施形態では、気化脱水工程(S13)の開始後も、継続して所定時間、循環脱水工程(S12)が行われ、所定時間経過後に循環脱水工程が終了する。
すなわち、制御部70がセンサ14から第1所定値以下の信号を受信してから制御部70に備えられる図示省略のタイマがカウントを行い、所定の時間が経過した後に、制御部70の動作指令により、ポンプ32が停止され、バルブV3およびバルブV10が閉成され、循環脱水部33への混合液体貯留部11からの混合液体の導入、および循環脱水部33からの混合液体貯留部11への混合液体の帰還が停止する。
気化脱水工程(S13)が開始されると、制御部70は蒸気生成手段20に動作指令を行い、加熱部22を動作させ、加熱部22による混合液体貯留部11内の混合液体の加熱を開始する。第1実施形態では、加熱部22により混合液体は50℃ないし60℃程度に加熱される。これにより、混合液体の蒸気圧が高くなることで、混合液体の液面から、IPA蒸気および水蒸気を含む混合蒸気が発生する。
また、制御部70は、排気手段40に動作指令を行い、バルブV4を開成する。これにより、加熱部22によって生成された混合蒸気は、配管41を通って排気機構に排気される。
ここで、加熱部22により生成される混合蒸気におけるIPA蒸気と水蒸気の割合と、混合液体貯留部11内に貯留される混合液体におけるIPAと水分の割合について、説明する。図6に、IPAと純水に係る気液平衡曲線を示す。
図6は、IPAと純水の混合液体(すなわち、液相)におけるIPA濃度を横軸に、当該混合液体を蒸発させた際に生成されるIPA蒸気と水蒸気の混合蒸気(すなわち、気相)におけるIPA(蒸気)濃度を縦軸に、それぞれ示している。
例えば、IPA濃度が61重量%であり、純水が39重量%である十分な量の混合液体の一部を蒸発させると、IPA蒸気の濃度が82重量%であり、水蒸気が18重量%である混合蒸気が生成される。すなわち、IPA濃度が61重量%である混合液体から混合蒸気を生成すると、混合液体のIPA濃度よりも高い濃度のIPA蒸気が得られることを意味する。これは、一般に、IPAの方が純水よりも蒸気圧が高く、揮発しやすい特性に起因する。
このような性質は、図6の気液平衡曲線に示すように、IPA濃度が87重量%以下である混合液体において見られる。IPA濃度が87重量%の混合液体を蒸発させると、IPA蒸気の濃度が87重量%である混合蒸気が生成される。すなわち、混合液体におけるIPA濃度が87重量%のとき、混合液体と、その混合液体から生成される混合蒸気との、IPA濃度が等しくなる、いわゆる共沸状態となる。本願では、このように混合液体のIPA濃度(すなわち、低表面張力液体濃度)と、その混合液体から生成される混合蒸気のIPA蒸気濃度(すなわち、低表面張力液体の蒸気濃度)とが等しくなるときの、IPA濃度のことを、「共沸濃度」と称する。
そして、混合液体において、この共沸濃度よりもIPA濃度が高くなると、混合蒸気におけるIPA蒸気濃度は、混合液体におけるIPA濃度よりも低くなる。換言すると、混合液体において、この共沸濃度よりも水分濃度が低くなると、混合蒸気における水蒸気濃度は、混合液体における水分濃度よりも高くなる。
例えば、IPA濃度が97重量%であり、純水が3重量%である十分な量の混合液体の一部を蒸発させると、IPA蒸気の濃度が95重量%であり、水蒸気が5重量%である混合蒸気が生成される。すなわち、共沸濃度よりも高いIPA濃度である混合液体から混合蒸気を生成すると、混合液体の水分濃度よりも高い濃度の水蒸気が得られることを意味する。そして、混合蒸気として、より多くの割合の水蒸気が混合液体から除去されることで、混合蒸気を生成した後の混合液体のIPA濃度は高くなる。
気化脱水工程(S13)は、上記のメカニズムを利用する。すなわち、循環脱水工程(S12)によって混合液体における水分濃度を第1所定値以下(第1実施形態では0.001重量%以下、すなわちIPA濃度は共沸濃度以上)まで低くした後、加熱部22によって混合液体の液面から混合蒸気を生成することで、当該混合蒸気に含まれる水蒸気の濃度が、混合液体に含まれる水分の濃度よりも高くなり、混合蒸気生成後に混合液体の水分濃度が低くなることを利用する。
気化脱水工程では、さらに制御部70が混合蒸気供給手段50に動作指令を行い、バルブV8を開成して、混合蒸気貯留部52から配管53を介して混合液体貯留部11へ、混合蒸気を供給する。混合蒸気貯留部52から供給される当該混合蒸気の詳細については後述するが、当該混合蒸気は、気化脱水工程において、混合液体貯留部11に貯留される混合液体のIPA濃度よりも高いIPA蒸気濃度を有する混合蒸気である。
このように、IPA蒸気濃度が、混合液体貯留部11に貯留される混合液体のIPA濃度よりも高い混合蒸気を、気化脱水工程中に混合液体貯留部11へ供給することで、混合液体の周りの雰囲気をIPA蒸気濃度が高い雰囲気とすることができる。これにより、混合液体貯留部11における混合液体からIPAが蒸発し、排気機構へ排気されるのを抑制しつつ、混合液体中に含まれる水分を優先的に脱水させることができる。
なお、混合液体貯留部11における混合液体からのIPA蒸発を抑制しつつ、混合液体に含まれる水分の蒸発を促進するには、上記のようにIPA蒸気濃度が、混合液体貯留部11に貯留される混合液体のIPA濃度よりも高い混合蒸気を、気化脱水工程中に混合液体貯留部11へ供給することがより好適であるが、本発明の実施に関してはこれに限られず、混合蒸気におけるIPA濃度はこれより低くてもよい。
液体からの蒸気の気化には、液体を取り巻く雰囲気における当該蒸気のいわゆる湿度が関係する。当該蒸気の湿度は、当該蒸気の液面における蒸気圧に対する液体を取り巻く雰囲気における当該蒸気の分圧の比によって表現される。当該雰囲気における湿度が高いほど、液体からの当該蒸気の気化は生じにくくなる。また、湿度は蒸気の種類によって独立して与えられる値であり、例えば、本実施形態において、混合液体を取り巻く雰囲気におけるIPAの湿度が100%(混合液体の液面におけるIPA蒸気圧に対する、混合蒸気を取り巻く雰囲気におけるIPA蒸気の分圧の比が1.0)である場合であっても、水蒸気の湿度が100%でなければ、混合液体から水分の蒸発による混合液体の水分除去を行いえる。
上記より、混合蒸気としては、IPAの湿度の方が、水蒸気の湿度よりも高ければ、混合液体中に含まれるIPAの蒸発を抑制し、水分を優先的に脱水させることができる。湿度という表現を換言すれば、混合液体の液面におけるIPA蒸気圧に対する混合液体を取り巻く雰囲気、すなわち供給する混合蒸気を含む混合気体におけるIPA蒸気の分圧の比の方が、混合液体の液面における水蒸気圧に対する混合気体における水蒸気の分圧の比よりも高ければ、混合液体中に含まれるIPAの蒸発を抑制し、水分を優先的に脱水させることができる。
気化脱水工程(S13)により、混合液体貯留部11に貯留される混合液体のIPA濃度が高くなり、水分濃度が低くなる。
制御部70は、気化脱水工程(S13)の開始後も、所定時間が経過する毎に、バルブV11に動作指令を行い、配管15を介して所定容量の混合液体をセンサ14へ滴下し、センサ14により検出される混合液体の水分濃度を確認する。制御部70は、混合液体貯留部11に貯留される混合液体の水分濃度が第2所定値以下になったことを確認すると、排気手段40に動作指令を行い、バルブV4およびバルブV8を閉成する。続いて、制御部70は、蒸気供給工程(S14)を開始する。
第1実施形態において、第2所定値は、0.0005重量%(すなわち5ppm)である。また、センサ14がIPA濃度を検知する場合には、センサ14で検知されたIPA濃度が第4所定値以上である場合に、制御部70は、排気手段40に動作指令を行い、バルブV4およびバルブV8を閉成すればよい。ここで、第4所定値は、99.9995重量%である。
なお、第2所定値としては、0.0005重量%に限られないが、第1所定値よりも小さい値に設定される。また、同様に、第4所定値としては、99.9995重量%に限られないが、第3所定値よりも大きい値に設定される。
ここで、混合液体貯留部11には、貯留工程(S11)の時点で既に、IPA濃度が共沸点濃度以上の混合液体(99.9%)が貯留されているため、この混合液体が第1所定値(0.001重量%)以上の水分濃度であったとしても、循環脱水工程(S12)により第1所定値以下の水分濃度にすることなく、気化脱水工程(S13)を行うことで共沸濃度を利用する効果は得られる。
しかし、気化脱水工程を行うと、上述のように混合液体貯留部11からのIPAのロスが生じる。そこで、気化脱水工程の前に、予め循環脱水工程を行い、IPA濃度をある程度高めてから、気化脱水工程を行う。これにより、IPAのロスを抑制しつつ、混合液体貯留部11内に微量に残留する水分を除去することができる。
また、循環脱水工程のみを継続しても、第2所定値以下まで水分濃度を低くすることは可能である。しかしながら、水分濃度がある程度低くなると、循環脱水部33による脱水効率が低下することから、貯留工程(S11)の後、第2所定値以下となる低い水分濃度が得られるまでの所要時間が長くなる。
図7に、循環脱水部33の水分除去による水分濃度の低下と、循環脱水工程開始からの経過時間との関係を示す。図7に示すように、グラフ線の傾きは水分濃度が低くなるごとに緩やかになり(すなわち、水分除去効率が低下し)、混合液体貯留部11内の混合液体が、ある程度低い水分濃度になると、循環脱水部33による水分濃度の低下の度合いは飽和する。
循環脱水部33における分離部331、吸着部332およびフィルタ333は、一般に消耗品であり、上記のように長時間使用すると、交換のサイクルが早くなることで、装置のメンテナンス負担が増加する。
そこで、第1実施形態では、混合液体貯留部11内の混合液体が、循環脱水部33による水分除去の効率が低くなりはじめる水分濃度(第1実施形態の場合には、第1所定値)以下になったところで、気化脱水工程を行う。これにより、循環脱水部33の使用時間を抑制しつつ(すなわち、装置のメンテナンス負担を抑制しつつ)、混合液体貯留部11内に微量に残留する水分を除去することができる。
したがって、第1所定値の値の最適値は、循環脱水部33の機能に依存する。予め循環脱水部33を用いて図7に示す関係を取得し、所定傾きに対応する水分濃度を第1所定値と規定するようにしてもよい。
図5に戻る。次に、蒸気供給工程(S14)について説明する。
ここで、基板処理部90では、制御部70により、蒸気供給工程(S14)に並行して、または先行して、基板Wの搬入・保持工程が行われる。
基板Wの搬入・保持工程では、制御部70が基板処理部90の各部に動作指令を行うことで、シャッタ93が開状態とされ、基板Wがチャンバ91に搬入されて、保持部(図示省略)に基板Wが保持される。その後、シャッタ93は閉状態とされる。そして、ノズル92が基板Wの主面に対向する位置に位置決めされる。ここで、基板Wの主面には、チャンバ91への搬入前から、またはチャンバ91への搬入後に図示省略するチャンバ91内の湿式処理部により基板Wに湿式処理がなされることで、薬液やリンス液等の処理液(以下、単に「処理液」と記す)が付着している。
蒸気供給工程(S14)は、混合液体貯留部11において生成した混合蒸気を蒸気供給管13へ供給する工程である。蒸気供給工程(S14)が開始されると、制御部70は、蒸気生成手段20に動作指令を行い、加熱部22による混合液体貯留部11内の混合液体への加熱を維持し、バルブV2を開成する。これにより、窒素ガス供給源から窒素ガスが、配管21を介して、混合液体貯留部11の混合液体中に供給される。これにより、混合液体貯留部11において、混合蒸気と窒素ガスの混合気体が生成される。
また、制御部70は、バルブV5に動作指令を行い、バルブV5を開成する。これにより、混合液体貯留部11で生成された混合蒸気が、蒸気供給管13内へ供給される。
これにより、混合蒸気は、混合液体貯留部11から蒸気供給管13を介して蒸気脱水手段100へ導入される。混合蒸気は、分離部110および吸着部120を通過することで、混合蒸気に含まれる水分が除去され、IPA濃度がより高濃度となる。そして、分離部110および吸着部120の通過の際に混入したゼオライト片などの異物を、異物除去部130を通過することにより除去する。これにより、混合液体貯留部11から発生した混合蒸気のIPA濃度をより高濃度化することができる。
続いて、制御部70は、バルブV6に動作指令を行い、バルブV6を開成する。これにより、蒸気脱水手段100を通過した混合蒸気が、配管61を介してチャンバ91内のノズル92から基板Wに供給される。すなわち、混合蒸気の供給により、基板Wの表面に付着した処理液と混合蒸気が置換することで、基板Wの表面の処理液の除去が実行される。
基板Wの表面の処理液が混合蒸気と置換し、基板Wの表面が混合液体で覆われると、次に、制御部70は、バルブV9に動作指令を行い、バルブV9を開成する。また、バルブV6に動作指令を行い、バルブV6を閉成する。これにより、ノズル92と混合液体貯留部11との連通が遮断され、混合蒸気の基板Wへの供給が停止する。また、配管61へ窒素ガス供給源から窒素ガスが供給され、基板Wの表面からの混合液体の気化が実行される。
以上により、基板Wの表面の混合液体が除去され、基板Wの蒸気乾燥処理が完了する。
ここで、基板Wの表面を覆う混合液体の元となる混合蒸気は、循環脱水工程(S12)および気化脱水工程(S13)により、含有する水分濃度が5ppm以下となっており、循環脱水工程や気化脱水工程を行わなかった場合と比べ、水分濃度が低くなっている。これにより、基板Wの表面を覆う混合液体を基板Wから除去する際にも、基板Wの表面に残留する水分が少なくなり、当該混合液体に含まれる水分に起因して基板Wの表面のパターン倒壊が生じるのを防止することができる。
さらに、基板Wの表面を覆う混合液体の元となる混合蒸気は、蒸気供給工程(S14)において蒸気脱水手段100を通過することにより、水分濃度が混合液体貯留部11に貯留される混合液体よりも低くなっている。これにより、基板Wの表面を覆う混合液体を基板Wから除去する際にも、基板Wの表面に残留する水分が少なくなり、当該混合液体に含まれる水分に起因して基板Wの表面のパターン倒壊が生じるのを防止することができる。
また、バルブV6が閉成された後、制御部70がバルブV7に動作指令を行い、バルブV7を開成する。また、蒸気生成手段20における窒素ガス供給源からの混合液体貯留部11への窒素ガスの供給は継続する。ここで、窒素ガス供給源から混合液体貯留部11へ供給される窒素ガスの圧力は、大気圧よりも高い正圧である。いま、バルブV2,V5,V7のみが開成しているため、混合液体貯留部11の混合液体に窒素ガスを通過させて生成される混合蒸気は大気圧よりも高い正圧状態で、蒸気供給管13、蒸気脱水手段100および配管51を通り、混合蒸気貯留部52に正圧状態で貯留される。
これにより、含有する水分濃度が第2所定値以下の混合蒸気を次の気化脱水工程に向けて混合蒸気貯留部52に貯留できる。
蒸気供給工程において、基板Wの蒸気乾燥処理が終了した後、制御部70が蒸気乾燥装置1の各部に動作指令を行い、バルブV9、バルブV5、バルブV2、バルブV7を閉成し、加熱部22の動作を停止させ、シャッタ93を開状態として、チャンバ91から基板Wを搬出する。その後、シャッタ93を閉状態とする。
最後に、蒸気供給工程において、蒸気脱水手段100の復旧処理を実行する。分離部110や吸着部120において、混合蒸気の脱水を行った後には、これらの各部において混合蒸気が凝集しているおそれがある。これにより、基板処理部90への混合蒸気の流量の低下や、分離部110および吸着部120における脱水能力の低下が生じるおそれがある。
そこで、第1実施形態では、基板Wの蒸気乾燥処理が終了した後、窒素ガス供給源(図3参照)からガス供給管101を介して、露点が−40℃であり、温度が40℃の窒素ガスを分離部110、吸着部120および異物除去部130に供給することで、これら内部において凝集した混合蒸気を乾燥除去する。
また、分離部110、吸着部120および異物除去部130にそれぞれ接続する排液管102に設けられたバルブ(図示省略)を開成し、これら蒸気脱水手段100の各部において凝集した混合液体を排液機構へ排液するとともに、ガス供給管101から供給された窒素ガスを排気する。
以上により、蒸気脱水手段100の復旧処理が完了すると、ガス供給管101への窒素ガス供給源からの窒素ガス供給を停止し、バルブ(図示省略)を閉成して排液管102からの排液を停止して、一連の蒸気乾燥工程が終了する。
以上のS11ないしS14が、第1実施形態における蒸気乾燥工程である。
第1実施形態では、気化脱水工程の前に、予め循環脱水工程を行い、IPA濃度をある程度高めてから、気化脱水工程を行うことで、IPAのロスを抑制しつつ、混合液体貯留部11内に微量に残留する水分を除去することができる。
さらに、第1実施形態では、循環脱水工程と併せて気化脱水工程を行うことで、脱水部の使用時間を抑制して、装置のメンテナンス負担を抑制しつつ、混合液体貯留部内に微量に残留する水分を除去することができる。
そして、これら循環脱水工程、気化脱水工程により、基板Wに供給される混合蒸気の水分濃度を低下させることで、処理液と置換し、基板Wの表面を覆う混合液体を基板Wから除去する際にも、基板Wの表面に残留する水分が少なくなり、当該混合液体に含まれる水分に起因して基板Wの表面のパターン倒壊が生じるのを防止することができる。
また、第1実施形態では、混合液体貯留部に循環脱水手段が接続し、混合液体貯留部に混合液体の貯留を行った後、すなわち貯留工程の後に、循環脱水工程や気化脱水工程を実行する。これにより、混合液体貯留部に外部から供給される混合液体内に、元々含まれている水分を除去することができ、当該混合液体に含まれる水分に起因して基板Wの表面のパターン倒壊が生じるのを防止することができる。
また、第1実施形態では、蒸気供給管に蒸気脱水手段が接続して、混合液体貯留部から発生した混合蒸気に含まれる水分を除去する。これにより、基板Wへ供給する混合蒸気の水分濃度をより低くすることができ、基板Wの表面のパターン倒壊を抑制することができる。
また、第1実施形態では、蒸気脱水手段は、窒素ガスを分離部、吸着部へ供給するガス供給管を有する。露点が低く、温度が高い窒素ガスをガス供給管を介して蒸気脱水手段の各部に供給し、凝集した混合液体を乾燥させたり、これら内部に残留する混合蒸気を除去したりすることで、常に一定以上の流量や脱水能力を確保することができる。
<2.第2実施形態>
第1実施形態では、異物除去部130(図3参照)としてメンブレンフィルタを用いた。しかしながら、本発明の実施に関してはこれに限られず、気体中から粉粒状の異物を除去する各種の手段を用いてよい。
図8に、本願の第2実施形態にかかる異物除去部131を示す。第2実施形態において、第1実施形態との相違点は、異物除去部130が異物除去部131に置換するのみであり、他の構成は第1実施形態と同じであるから、第2実施形態の説明において、異物除去部131以外の構成の説明は省略する。
異物除去部131は、内部に空間を形成する壁部132および異物回収部133を有し、重力を利用して粒子等の異物Pを気流の流れ(流れ方向F)から分離する。壁部132の下部に設けられた導入口134が、蒸気供給管13の上流側(混合液体貯留部11側)に接続され、壁部132の上部に設けられた流出口135が、蒸気供給管13の下流側に接続される。
また、壁部132は内部に障壁136を有する。導入された混合蒸気に含まれる粒子などの異物Pは、重力により、または障壁136への衝突により、混合蒸気と分離され、壁部132の下方に設けられた異物回収部133に集まる。
異物回収部133は、壁部132の内部の空間において混合蒸気から分離された粒子などの異物Pを回収する。異物回収部133は、壁部132の下方に着脱可能に設けられる。
なお、本発明の実施に関して、異物除去部131は、上記のように重力方式の異物除去部に限られず、遠心力を利用して粒子を気体から分離する、いわゆるサイクロン方式の異物除去部であってもよいし、整流板などにより混合蒸気の気流の向きを転換することにより混合蒸気と粒子などの異物を分離する慣性力方式の異物除去部であってもよい。また、これら複数の方式を採用し、異物除去部を多段に配列して、混合蒸気に含まれる粒子などの異物を除去する構成としてもよい。
<3.変形例>
第1実施形態では、本発明における実施の形態に関し、最も実行する工程の多い実施形態を示した。本発明の実施に関してはこれに限られず、第1実施形態で示した全ての工程を実行しなくても、本発明が解決すべき課題は解決されうる。
<3−1.循環脱水工程および気化脱水工程の省略>
本発明の実施に関しては、循環脱水工程および気化脱水工程をせず、貯留工程の後すぐに蒸気供給工程を行っても良い。これによっても、混合液体貯留部に外部から供給される混合液体内に、元々含まれている水分を除去することができ、当該混合液体に含まれる水分に起因して基板Wの表面のパターン倒壊が生じるのを防止することができる。
ここで、必要なIPA濃度の高さは、基板処理部90にて処理を行う基板Wに形成されるパターンのスケールに依存する。混合液体貯留部11に貯留される混合液体が、必要なIPA濃度の高さに満たない場合でも、混合蒸気発生手段20により混合液体貯留部11から混合蒸気を発生させ、蒸気供給管13から蒸気脱水手段100へ当該混合蒸気を導入することで、蒸気脱水手段100により混合蒸気に含まれる水分を除去し、必要なIPA濃度を有する混合蒸気を得ることが可能であれば、循環脱水工程および気化脱水工程を省略してもよいし、循環脱水手段30、排気手段40および混合蒸気供給手段50を蒸気供給装置10から省略してもよい。
<3−2.気化脱水工程の省略>
本発明の実施に関しては、気化脱水工程をせず、貯留工程の後、循環脱水工程を行い、その後蒸気供給工程を行っても良い。必要なIPA濃度の高さは、基板処理部90にて処理を行う基板Wに形成されるパターンのスケールに依存し、含有する水分濃度が10ppmであっても、パターン倒壊が生じるのを防止できるような場合には、図5に示す循環脱水工程(S12)の後、気化脱水工程(S13)を行わずに蒸気供給工程(S14)を行っても良い。
これにより、気化脱水工程において生じるIPAのロスなく、混合液体貯留部11内の混合液体に残留する水分を除去することができ、基板Wの蒸気乾燥処理におけるパターン倒壊を防止できる。
<3−3.気化脱水工程における混合蒸気貯留部からの混合蒸気供給の省略>
本発明の実施に関しては、気化脱水工程において、混合蒸気貯留部52からの混合液体貯留部11への混合蒸気の供給は必須ではなく、当該混合蒸気の供給を行わずに、加熱部22による混合液体の加熱による混合液体の気化を実行してもよい。
これにより、混合蒸気貯留部52を用意する必要が無いため、装置コストの増加や装置の大型化を抑制することができる。
<3−4.超音波発生部>
第1実施形態において、蒸気生成手段20は加熱部22を備えていた。しかしながら、本発明の実施に関してはこれに限られず、加熱部22に代えて、または加熱部22に加えて、混合液体貯留部11に貯留される混合液体に対し超音波振動を付与する超音波発生部を備えても良い。超音波発生部は、制御部70と電気的に接続し、制御部70の動作指令によって混合液体に対し超音波振動を付与する。
混合液体は、超音波振動によって液面が霧状となる。この状態で、窒素ガス供給源から窒素ガスを混合液体貯留部11に供給することで、窒素ガス中に当該霧状の混合液体を含ませられ、混合液体は霧状となることで表面積が大きくなることに起因し、窒素ガス中で気化する。これにより、混合液体の蒸気を含む混合蒸気が生成される。
上述のように、加熱部22に代えて超音波発生部を用いると、常温のまま混合蒸気を生成できる。加熱部22を用いて、混合液体を50℃ないし60℃程度に加熱した上でバブリングを行って混合蒸気を得ると、常温よりも高温の混合蒸気が蒸気供給管13にて常温に冷却され、蒸気供給管13内に混合液体の凝集が生じるおそれがある。第1実施形態では、これを防止するために蒸気供給管13に温調機構を設ける必要が生じる場合があったが、加熱部22に代えて超音波発生部を用いれば、混合液体を加熱することなく混合蒸気を得ることができるため、高温から常温に冷却されることに起因する混合液体の凝集が生じるおそれがなく、当該凝集対策のための部品コストを削減でき、装置を簡易化することができる。
<3−5.混合蒸気に含まれるIPA蒸気の濃度>
第1実施形態では、蒸気脱水手段100において、異物除去部130としてメンブレンフィルタを用いた。混合蒸気がフィルタを通過する構成とすると、フィルタ通過の際に、窒素ガス、IPA蒸気および水蒸気を含む混合蒸気のうち、凝集しやすいIPA蒸気や水蒸気が捕捉されることで、単位時間あたりに基板Wに供給できるIPA蒸気の量が減少することがある。
このように、異物除去部130を通過することで混合蒸気に含まれるIPA蒸気の量が減少しても、基板Wに与えられるIPA蒸気の量を所定の値になるように、予め所望の値よりも高濃度のIPA蒸気が含まれる混合蒸気を混合液体貯留部11において発生させる構成としてもよい。
具体的には、加熱部22による混合液体の加熱温度をより高く設定したり、蒸気発生手段20の窒素ガス供給源から供給される窒素ガスの流量を低く設定したりすることで、混合蒸気に含まれるIPA蒸気をより高濃度にすることができる。
<3−6.蒸気脱水手段の交換>
第1実施形態において、蒸気脱水手段100の分離部110および吸着部120は、それぞれ継手を介して蒸気供給管13と着脱可能に接続し、各部をそれぞれ交換可能な構成としてもよい。
また、分離部110および吸着部120の交換時期を可視化するために、分離部110と吸着部120の間の蒸気供給管13、および吸着部120と異物除去部130の間の蒸気供給管13に、それぞれ水分濃度センサを介挿してもよい。
この発明は、半導体ウエハ、フォトマスク用ガラス基板、液晶表示用ガラス基板、プラ
ズマ表示用ガラス基板、FED(Field Emittion Display)用基
板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板などを含む基板全般
の表面を蒸気乾燥させる蒸気乾燥方法及び蒸気乾燥装置、及びこれら基板全般の表面に供給するための蒸気を生成・供給する蒸気供給方法、及び蒸気供給装置に適用することができる。
1 蒸気乾燥装置
10 蒸気供給装置
11 混合液体貯留部
12 配管
13 蒸気供給管
14 センサ
20 蒸気生成手段
21 配管
22 加熱部
30 循環脱水手段
31 配管
32 ポンプ
33 循環脱水部
34 配管
40 排気手段
41 配管
50 混合蒸気供給手段
51 配管
52 混合蒸気貯留部
53 配管
60 窒素ガス混合手段
61 配管
62 配管
70 制御部
71 CPU
72 記憶部
73 プログラム
74 記録媒体
75 読取部
90 基板処理部
100 蒸気脱水手段
V1〜V11 バルブ
W 基板

Claims (15)

  1. 処理液が付着した基板の主面に、前記処理液の表面張力以下の表面張力を有する低表面張力液体の蒸気を供給する蒸気乾燥処理に用いられる蒸気供給装置であって、
    前記低表面張力液体と水を含む混合液体を貯留する混合液体貯留部と、
    前記混合液体貯留部に貯留された前記混合液体から、前記混合液体の蒸気である混合蒸気を生成する蒸気生成手段と、
    前記混合液体貯留部に接続され、前記蒸気生成手段により生成された前記混合蒸気を前記基板に供給する蒸気供給管と、
    前記蒸気供給管に介挿され、前記蒸気供給管を通過する前記混合蒸気に含まれる水分を除去する蒸気脱水手段と、
    を備える、蒸気供給装置。
  2. 請求項1に記載の蒸気供給装置であって、
    前記蒸気脱水手段は、前記混合蒸気中の水を分離する分離部と、前記混合蒸気中の水を吸着する吸着部と、を有することを特徴とする蒸気供給装置。
  3. 請求項2に記載の蒸気供給装置であって、
    前記蒸気脱水手段は、前記分離部および前記吸着部の少なくとも一方に窒素ガスを供給するガス供給部、を有することを特徴とする蒸気供給装置。
  4. 請求項2に記載の蒸気供給装置であって、
    前記蒸気脱水手段は、前記分離部および前記吸着部の少なくとも一方と接続し、前記前記分離部および前記吸着部の少なくとも一方において前記混合蒸気が凝集して生じた前記混合液体を排出する排液管、を有することを特徴とする蒸気供給装置。
  5. 請求項2から請求項4までのいずれか1項に記載の蒸気供給装置であって、
    前記蒸気脱水手段は、前記分離部および前記吸着部が前記蒸気供給管と着脱可能に設けられることを特徴とする蒸気供給装置。
  6. 請求項2に記載の蒸気供給装置であって、
    前記混合液体貯留部に前記混合液体を供給する混合液体供給手段、
    をさらに備え、
    前記混合液体供給手段は、前記混合液体貯留部に水の割合が0.1重量%以下である前記混合液体を供給することを特徴とする蒸気供給装置。
  7. 請求項1から請求項6までのいずれか1項に記載の蒸気供給装置であって、
    前記混合液体貯留部に貯留された前記混合液体を導入して脱水し、前記脱水された前記混合液体を前記混合液体貯留部に帰還させる循環脱水手段と、
    前記蒸気生成手段により生成された前記混合蒸気を前記混合液貯留部の外の排気機構へ排気する排気手段をさらに備える、蒸気供給装置。
  8. 請求項7に記載の蒸気供給装置であって、
    前記混合液体貯留部に前記混合蒸気を供給する混合蒸気供給手段をさらに備え、
    前記混合蒸気供給手段が前記混合液貯留部に供給する前記混合蒸気は、当該混合蒸気に含まれる低表面張力液体の蒸気による前記低表面張力液体の湿度の方が、当該混合蒸気に含まれる水蒸気による水分の湿度よりも高いことを特徴とする蒸気供給装置。
  9. 請求項8に記載の蒸気供給装置であって、
    前記混合蒸気供給手段は、前記混合蒸気を貯留する混合蒸気貯留部を有し、
    前記混合蒸気貯留部は、前記蒸気供給管と接続し、
    前記蒸気供給管は、前記蒸気生成手段により生成された前記混合蒸気を、前記基板または前記混合蒸気貯留部の少なくともいずれか一方に供給する、ことを特徴とする蒸気供給装置。
  10. 請求項7から請求項9までのいずれか1項に記載の蒸気供給装置であって、
    前記混合液体貯留部に貯留される前記混合液体に含まれる前記低表面張力液体または水分の濃度を検知するセンサと、
    前記センサが検知した前記濃度にもとづいて、前記蒸気生成手段および前記排気手段を制御する制御部と、
    をさらに備え、
    前記制御部は、
    前記混合液体貯留部に貯留される前記混合液体の水分濃度が第1所定値以下であり第2所定値より大きい値である場合に、前記蒸気生成手段により前記混合液体貯留部に貯留される前記混合液体から前記混合蒸気を生成し、前記排気手段により当該混合蒸気を前記排気機構へ排気し、
    前記混合液体貯留部に貯留される前記混合液体の水分濃度が前記第2所定値以下である場合に、前記蒸気生成手段により前記混合液体貯留部に貯留される前記混合液体から前記混合蒸気を生成し、当該混合蒸気を前記蒸気供給管へ供給し、
    前記第1所定値は、前記混合液体に含まれる前記低表面張力液体の濃度と、当該混合液体から生成される混合蒸気に含まれる前記低表面張力液体の蒸気の濃度とが等しくなる共沸濃度以下の値であり、
    前記第2所定値は、前記第1所定値よりも小さい値であることを特徴とする蒸気供給装置。
  11. 請求項10に記載の蒸気供給装置であって、
    前記混合液体貯留部に貯留される前記混合液体を流出させる流出用配管をさらに備え、
    前記センサは、前記流出用配管から流出された前記混合液体を用いて、前記混合液体に含まれる前記表面張力液体または水分の濃度を検知することを特徴とする蒸気供給装置。
  12. 請求項1から請求項11までのいずれか1項に記載の蒸気供給装置と、
    前記基板を収容するチャンバと、
    前記蒸気供給管と管路接続し、前記混合蒸気を前記チャンバに収容された前記基板に供給するノズルと、
    を備える、蒸気乾燥装置。
  13. 処理液が付着した基板の主面に、前記処理液の表面張力以下の表面張力を有する低表面張力液体の蒸気を供給する蒸気乾燥処理に用いられる蒸気供給方法であって、
    前記低表面張力液体と水を含む混合液体を貯留する混合液体貯留部に前記混合液体を供給する貯留工程と、
    前記混合液体貯留部に貯留された前記混合液体から、前記混合液体の蒸気である混合蒸気を生成し、前記混合液体貯留部に接続され前記混合蒸気を前記基板へ供給する蒸気供給管へ、前記混合蒸気を供給する蒸気供給工程と、
    を備え、
    前記蒸気供給工程は、前記蒸気供給管へ供給された前記混合蒸気に含まれる水分を除去する蒸気脱水工程を含む、ことを特徴とする蒸気供給方法。
  14. 請求項13に記載の蒸気供給方法であって、
    前記貯留工程は、前記混合液体貯留部に水の割合が0.1重量%以下であり、かつ前記混合液体貯留部に水の割合が第1所定値よりも大きい値の前記混合液体を供給し、
    前記混合液体貯留部に貯留された前記混合液体を、前記混合液体貯留部と管路接続された循環脱水部へ導入して脱水し、前記脱水された前記混合液体を前記循環脱水部から前記混合液体貯留部に帰還させる循環脱水工程と、
    前記循環脱水工程により前記混合液体貯留部に貯留される前記混合液体の水分濃度が前記第1所定値以下であり第2所定値より大きい値となった後、前記混合液体貯留部に貯留される前記混合液体から前記混合蒸気を生成し、当該混合蒸気を前記混合液体貯留部の外の排気機構へ排気する気化脱水工程と、
    をさらに備え、
    前記蒸気供給工程は、前記気化脱水工程により前記混合液体の水分濃度が前記第2所定値以下になった後、前記混合液体貯留部に貯留される前記混合液体から前記混合蒸気を生成し、当該混合蒸気を前記蒸気供給管へ供給し、
    前記第1所定値は、前記混合液体に含まれる前記低表面張力液体の濃度と、当該混合液体から生成される混合蒸気に含まれる前記低表面張力液体の蒸気の濃度とが等しくなる共沸濃度以下の値であり、
    前記第2所定値は、前記第1所定値よりも小さい値であることを特徴とする蒸気供給方法。
  15. 処理液が付着した基板の主面に、前記処理液の表面張力以下の表面張力を有する低表面張力液体の蒸気を供給する蒸気乾燥方法であって、
    前記低表面張力液体と水を含む混合液体を貯留する混合液体貯留部に前記混合液体を供給する貯留工程と、
    前記混合液体貯留部に貯留された前記混合液体から、前記混合液体の蒸気である混合蒸気を生成し、前記混合液体貯留部に接続される蒸気供給管を介して、前記処理液が付着した前記基板の主面に前記混合蒸気を供給する蒸気供給工程と、
    を備え、
    前記蒸気供給工程は、前記蒸気供給管へ供給された前記混合蒸気に含まれる水分を除去する蒸気脱水工程を含む、ことを特徴とする蒸気乾燥方法。
JP2015032397A 2015-02-23 2015-02-23 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法 Active JP6543481B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2015032397A JP6543481B2 (ja) 2015-02-23 2015-02-23 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法
US15/000,532 US9976804B2 (en) 2015-02-23 2016-01-19 Vapor supplying apparatus, vapor drying apparatus, vapor supplying method, and vapor drying method
TW105101710A TWI630364B (zh) 2015-02-23 2016-01-20 蒸氣供給裝置、蒸氣乾燥裝置、蒸氣供給方法及蒸氣乾燥方法
KR1020160011638A KR101813360B1 (ko) 2015-02-23 2016-01-29 증기 공급 장치, 증기 건조 장치, 증기 공급 방법 및 증기 건조 방법
US15/959,738 US10612844B2 (en) 2015-02-23 2018-04-23 Vapor supplying apparatus, vapor drying apparatus, vapor supplying method, and vapor drying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015032397A JP6543481B2 (ja) 2015-02-23 2015-02-23 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法

Publications (2)

Publication Number Publication Date
JP2016157709A true JP2016157709A (ja) 2016-09-01
JP6543481B2 JP6543481B2 (ja) 2019-07-10

Family

ID=56690187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015032397A Active JP6543481B2 (ja) 2015-02-23 2015-02-23 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法

Country Status (4)

Country Link
US (2) US9976804B2 (ja)
JP (1) JP6543481B2 (ja)
KR (1) KR101813360B1 (ja)
TW (1) TWI630364B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089112A (ja) * 2019-12-05 2021-06-10 株式会社Screen Spe テック 気化器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6543481B2 (ja) * 2015-02-23 2019-07-10 株式会社Screenホールディングス 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法
CN106546088A (zh) * 2015-09-16 2017-03-29 泰科电子(上海)有限公司 风干系统
JP2018053299A (ja) * 2016-09-28 2018-04-05 株式会社日立国際電気 基板処理装置、及び断熱配管構造
KR102025983B1 (ko) * 2017-05-11 2019-09-26 주식회사 뉴파워 프라즈마 세정장치
CN110197801A (zh) * 2019-05-14 2019-09-03 清华大学 一种基板处理液的存储装置和基板后处理设备
JP7408445B2 (ja) * 2020-03-17 2024-01-05 キオクシア株式会社 半導体製造装置および半導体装置の製造方法
TWI776399B (zh) * 2021-02-22 2022-09-01 頂程國際股份有限公司 濕式處理設備與濕式處理方法
JP2023022938A (ja) * 2021-08-04 2023-02-16 東京エレクトロン株式会社 基板水蒸気処理方法、および基板水蒸気処理システム
US20240091823A1 (en) * 2022-09-20 2024-03-21 Applied Materials, Inc. Fluid vapor mixing and delivery system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155923A (ja) * 1990-10-19 1992-05-28 Ube Ind Ltd 蒸気乾燥方法及びその装置
JPH06114245A (ja) * 1992-10-01 1994-04-26 Daicel Chem Ind Ltd 有機物分離用半透膜およびその製造方法
JPH06216105A (ja) * 1993-01-20 1994-08-05 Hitachi Ltd ベーパ乾燥装置
JPH07228545A (ja) * 1994-02-18 1995-08-29 Yamazaki Kagaku Kogyo Kk アルコール中の水分除去方法
JPH08189768A (ja) * 1994-11-07 1996-07-23 Ryoden Semiconductor Syst Eng Kk 蒸気乾燥装置、それを組込んだ洗浄装置および蒸気乾燥方法
JP2000002676A (ja) * 1998-06-16 2000-01-07 Dainippon Screen Mfg Co Ltd 有機溶剤中の純水濃度管理方法及び乾燥装置
US6128830A (en) * 1999-05-15 2000-10-10 Dean Bettcher Apparatus and method for drying solid articles
US20050091874A1 (en) * 2003-10-16 2005-05-05 Taiwan Semiconductor Manufacturing Co., Ltd. Method to improve post wafer etch cleaning process
JP2012009705A (ja) * 2010-06-25 2012-01-12 Tokyo Electron Ltd 高温、高圧処理方法及び高温、高圧処理装置並びに記憶媒体

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105556A (en) * 1987-08-12 1992-04-21 Hitachi, Ltd. Vapor washing process and apparatus
JP2752001B2 (ja) 1990-10-19 1998-05-18 株式会社日立製作所 蒸気乾燥装置
US5243768A (en) 1991-02-18 1993-09-14 Mitsubishi Kasei Corporation Vapor drier
JPH0590240A (ja) 1991-02-18 1993-04-09 Mitsubishi Kasei Corp 蒸気乾燥装置
JP3230051B2 (ja) * 1997-05-16 2001-11-19 東京エレクトロン株式会社 乾燥処理方法及びその装置
JPH10321585A (ja) * 1997-05-22 1998-12-04 Mitsubishi Electric Corp 乾燥装置および乾燥方法
JP3897404B2 (ja) * 1997-07-22 2007-03-22 オメガセミコン電子株式会社 ベーパ乾燥装置及び乾燥方法
US6108932A (en) * 1998-05-05 2000-08-29 Steag Microtech Gmbh Method and apparatus for thermocapillary drying
JP4011900B2 (ja) 2001-12-04 2007-11-21 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP3560962B1 (ja) * 2003-07-02 2004-09-02 エス・イー・エス株式会社 基板処理法及び基板処理装置
JP3592702B1 (ja) * 2003-08-12 2004-11-24 エス・イー・エス株式会社 基板処理方法及び基板処理装置
JP2005167089A (ja) 2003-12-04 2005-06-23 Shimada Phys & Chem Ind Co Ltd 基板洗浄装置および基板洗浄方法
JP4662352B2 (ja) 2005-08-10 2011-03-30 東京エレクトロン株式会社 蒸気乾燥方法及びその装置並びにその記録媒体
US7637029B2 (en) 2005-07-08 2009-12-29 Tokyo Electron Limited Vapor drying method, apparatus and recording medium for use in the method
WO2007084952A2 (en) * 2006-01-18 2007-07-26 Akrion Technologies, Inc. Systems and methods for drying a rotating substrate
JP5143498B2 (ja) 2006-10-06 2013-02-13 東京エレクトロン株式会社 基板処理方法、基板処理装置、プログラムならびに記録媒体
JP4884180B2 (ja) * 2006-11-21 2012-02-29 東京エレクトロン株式会社 基板処理装置および基板処理方法
JP4886544B2 (ja) 2007-02-09 2012-02-29 大日本スクリーン製造株式会社 基板処理方法および基板処理装置
KR101266620B1 (ko) * 2010-08-20 2013-05-22 다이닛뽕스크린 세이조오 가부시키가이샤 기판처리방법 및 기판처리장치
US20140290090A1 (en) * 2010-08-24 2014-10-02 Jst Manufacturing, Inc. System and method for drying substrates
US20120260517A1 (en) 2011-04-18 2012-10-18 Lam Research Corporation Apparatus and Method for Reducing Substrate Pattern Collapse During Drying Operations
JP5762861B2 (ja) 2011-07-15 2015-08-12 オルガノ株式会社 アルコールの精製方法及び装置
CN108155133B (zh) * 2014-02-27 2022-04-15 斯克林集团公司 基板处理装置
JP6543481B2 (ja) * 2015-02-23 2019-07-10 株式会社Screenホールディングス 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法
EP3340280A1 (en) * 2016-12-26 2018-06-27 SCREEN Holdings Co., Ltd. Substrate treating apparatus and substrate treating method
JP6932017B2 (ja) * 2017-03-27 2021-09-08 株式会社Screenホールディングス 基板処理装置および基板処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155923A (ja) * 1990-10-19 1992-05-28 Ube Ind Ltd 蒸気乾燥方法及びその装置
JPH06114245A (ja) * 1992-10-01 1994-04-26 Daicel Chem Ind Ltd 有機物分離用半透膜およびその製造方法
JPH06216105A (ja) * 1993-01-20 1994-08-05 Hitachi Ltd ベーパ乾燥装置
JPH07228545A (ja) * 1994-02-18 1995-08-29 Yamazaki Kagaku Kogyo Kk アルコール中の水分除去方法
JPH08189768A (ja) * 1994-11-07 1996-07-23 Ryoden Semiconductor Syst Eng Kk 蒸気乾燥装置、それを組込んだ洗浄装置および蒸気乾燥方法
JP2000002676A (ja) * 1998-06-16 2000-01-07 Dainippon Screen Mfg Co Ltd 有機溶剤中の純水濃度管理方法及び乾燥装置
US6128830A (en) * 1999-05-15 2000-10-10 Dean Bettcher Apparatus and method for drying solid articles
US20050091874A1 (en) * 2003-10-16 2005-05-05 Taiwan Semiconductor Manufacturing Co., Ltd. Method to improve post wafer etch cleaning process
JP2012009705A (ja) * 2010-06-25 2012-01-12 Tokyo Electron Ltd 高温、高圧処理方法及び高温、高圧処理装置並びに記憶媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021089112A (ja) * 2019-12-05 2021-06-10 株式会社Screen Spe テック 気化器
JP7278204B2 (ja) 2019-12-05 2023-05-19 株式会社Screen Spe テック 気化器

Also Published As

Publication number Publication date
US20160243461A1 (en) 2016-08-25
JP6543481B2 (ja) 2019-07-10
US20180238621A1 (en) 2018-08-23
TW201638542A (zh) 2016-11-01
TWI630364B (zh) 2018-07-21
KR101813360B1 (ko) 2017-12-28
KR20160102884A (ko) 2016-08-31
US9976804B2 (en) 2018-05-22
US10612844B2 (en) 2020-04-07

Similar Documents

Publication Publication Date Title
JP6543481B2 (ja) 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法
US20120048304A1 (en) Supercritical drying method and supercritical drying system
JP2008066351A (ja) 基板処理装置
KR102253559B1 (ko) 분리 재생 장치 및 기판 처리 장치
JP6342343B2 (ja) 基板処理装置
KR101932035B1 (ko) 기판 처리용 유체 공급 시스템 및 방법
TW200846095A (en) Cleaning and drying device
KR20180049103A (ko) 액체 이산화탄소를 사용하여 반도체 기판을 건조시키는 방법 및 장치
JP5572198B2 (ja) 基板処理装置及び薬液再生方法
JP6481995B2 (ja) 蒸気供給装置、蒸気乾燥装置、蒸気供給方法および蒸気乾燥方法
JP2007175643A (ja) 乾燥空気生成装置、基板処理システムおよび乾燥空気生成方法
KR102101105B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101344915B1 (ko) 기판 처리 장치 및 약액 재생 방법
KR102478750B1 (ko) 기판 처리장치
JP5996424B2 (ja) 基板処理装置および基板処理方法
JP2020141052A (ja) 基板処理装置、半導体製造装置、および基板処理方法
KR101927939B1 (ko) 기판 처리 장치
JP2004230265A (ja) 排ガス中の水より高沸点の物質を濃縮する方法と装置
JP2007014919A (ja) 排ガス処理装置および排ガス処理システム
JP2008211139A (ja) 基板処理装置および基板処理方法
JP6668166B2 (ja) フッ素含有有機溶剤の回収装置および基板処理装置
JP2610063B2 (ja) 蒸気乾燥方法及びその装置
JP2002231687A (ja) ウェーハ乾燥機
JP2016223636A (ja) 容器内面の乾燥方法
JP2013046889A (ja) 有機溶剤脱水装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181009

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181207

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190617

R150 Certificate of patent or registration of utility model

Ref document number: 6543481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250