JP2014500005A - トウモロコシ降圧活性ペプチドを調製するための工業的方法 - Google Patents

トウモロコシ降圧活性ペプチドを調製するための工業的方法 Download PDF

Info

Publication number
JP2014500005A
JP2014500005A JP2013536982A JP2013536982A JP2014500005A JP 2014500005 A JP2014500005 A JP 2014500005A JP 2013536982 A JP2013536982 A JP 2013536982A JP 2013536982 A JP2013536982 A JP 2013536982A JP 2014500005 A JP2014500005 A JP 2014500005A
Authority
JP
Japan
Prior art keywords
corn
antihypertensive
peptide
antihypertensive peptide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013536982A
Other languages
English (en)
Other versions
JP5763203B2 (ja
Inventor
ムウ−イー ツァイ、
ルイ−ズオン グウ、
ウェイ−シュエ イー、
ジュイン ルウ、
ヨン マー、
ジョー ドーン、
ヤー−グアン シュイ、
シン−チャン パン、
ヨン−チン マー、
フオン リン、
ジェン−タオ ジン、
リアン チェン、
ルウ ルウ、
ウェン−イン リウ、
Original Assignee
チャイナ ナショナル リサーチ インスティテュート オブ フード アンド ファーメンテーション インダストリーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チャイナ ナショナル リサーチ インスティテュート オブ フード アンド ファーメンテーション インダストリーズ filed Critical チャイナ ナショナル リサーチ インスティテュート オブ フード アンド ファーメンテーション インダストリーズ
Publication of JP2014500005A publication Critical patent/JP2014500005A/ja
Application granted granted Critical
Publication of JP5763203B2 publication Critical patent/JP5763203B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/06Preparation of peptides or proteins produced by the hydrolysis of a peptide bond, e.g. hydrolysate products
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/88Liliopsida (monocotyledons)
    • A61K36/899Poaceae or Gramineae (Grass family), e.g. bamboo, corn or sugar cane
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • A61K38/011Hydrolysed proteins; Derivatives thereof from plants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06026Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Botany (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Medical Informatics (AREA)
  • Mycology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

本発明は、トウモロコシ胚芽タンパク質を材料として用いるトウモロコシ降圧活性ペプチドを生産するための工業的方法を開示しており、食品栄養およびバイオテクノロジーの分野に属する。本発明に従って、トウモロコシ胚芽タンパク質を、アルカラーゼ2.4L、ならびにパパインおよびディスパーゼIIにより、逐次的に酵素加水分解し、次いで、遠心分離、限外濾過、濃縮および噴霧乾燥のプロセスを通じてトウモロコシ降圧活性ペプチドを調製する。得られる降圧活性ペプチド中、分子量が1000Da未満の構成成分は92%超を占め、特徴的な降圧性ペプチド断片であるアラニン−チロシン(Ala−Tyr、AY)は0.6%超を占める。試験によると、トウモロコシ降圧活性ペプチドは、in vitroにおいて良好なACE阻害活性、ならびに、温度、pHおよび主要な胃腸の消化酵素に対する安定性を有し、自然発症高血圧症ラットに対してin vivoにおける顕著な血圧低下作用を有する。本発明による生産方法は、生物活性が高く、加工処理費用が少なく、処理能力が大きく、工業生産に適用可能であるという利点を有し、この方法によって調製されるトウモロコシ血圧降下活性ペプチドは、食品、健康食品および医薬品の開発および生産のための新しい機能性栄養成分として応用することができ、広範な市場が見込まれる。

Description

本発明は、トウモロコシ胚芽タンパク質を原料として用いる降圧活性ペプチドを調製するための工業的方法に関し、生成物は、機能性食品、栄養および保健製品に適用することができる。したがって、本発明は、生物学的技術分野に属する。
タンパク質は、ヒトの体に必要な主要な栄養分である。従来のタンパク質代謝モデルでは、食物栄養として摂取されたタンパク質およびポリペプチドは、ヒトの体が吸収し利用することができるように、まず、胃および小腸において多数のプロテアーゼによって遊離アミノ酸に加水分解されなければならないとみなされている。現代の研究により、ヒトの体に取り込まれたタンパク質は、主にポリペプチドの形態で腸管内に直接吸収されることが示されている。アミノ酸とペプチドとでは、吸収および輸送の機構は異なり、ペプチドの吸収効率はより高く、飽和させることが難しく、例えば、ジペプチドおよびトリペプチドの吸収率は、同じ組成を有するアミノ酸の吸収率よりも高い。天然タンパク質が酵素加水分解された後に、タンパク質酵素巨大分子が小分子ペプチド断片に切断され、これにより、消化および吸収が促進されるだけでなく、種々の生物活性ペプチドを得ることができる。
生物学的に活性なペプチド(生物活性ペプチド)とは、生物体の生命活動に有益である、または生理作用を有するペプチド化合物を指す。タンパク質と比較して、活性ペプチドは小さいが高い生物活性を有し、また、少量のペプチドが非常に重要な生理的役割を果たし得る。1975年にHughesらにより、モルヒネと同様の活性を有する低分子ペプチドが動物組織から見いだされたことが最初に報告されてから、種々の生物活性ペプチドが動物、植物および微生物から単離されている。天然タンパク質の酵素加水分解後に得られる生物活性ペプチド生成物は、高吸収、抗酸化、抗疲労、脂質低下、血圧低下、免疫系の強化などを含めた種々の生理機能を有するが、原材料供給源が広範であること、毒性および副作用がないこと、規模生産が可能であること、低価格であることなどの利点も有する。したがって、近年、生物活性ペプチドの研究開発は、世界的な食物および栄養に関連する研究分野における主要な開発方針になっている。現在、適切な酵素加水分解分離プロセス条件下で、タンパク質含有量が高く比較的包括的な組成の天然食物資源を供給源として使用することにより、米国、ヨーロッパおよび日本で、いくつかの生物活性ペプチドの工業生産が実現され、何十億ドルもの年間生産高を有する新興の健康および食品加工産業が形成されている。
高血圧症は、ヒトの健康を著しく脅かす疾患であり、2007年に発行された世界的な高血圧症の影響の報告(hypertension impact report)では、高血圧症の罹患者数が世界中で増加傾向にあり、現在10億人にのぼり、有効な措置を取らなければ、そのような疾患の罹患者は2025年までに世界で15.6億人になるであろうという警告がなされた。高血圧患者の数は、中国を含めた一部の国では80%増加する可能性がある。アンジオテンシンI変換酵素(ACE)は多機能性ジペプチドカルボキシペプチダーゼの一種であり、生理活性のないアンジオテンシンIを、血圧上昇作用を有するアンジオテンシンIIに変換することができ、またブラジキニンを不活性な断片に分解することもでき、それにより血管収縮を導き、血圧を上昇させる。ACE阻害剤によりACE活性を阻害し、アンジオテンシンIのアンジオテンシンIIへの変換を妨げることが高血圧症予防の主要な手段になっている。
1960年代に、Ferreiraにより、ブラジルのハララカ(Bothrops Jararaca)の毒液のエタノール抽出物から、ブラジキニンの生理作用を増強し得るポリペプチドが最初に見いだされ、そのポリペプチドはブラジキニン増強因子(bradykinin potentiating factor)(BPF)と称された。その後、BakhleおよびOndettiらの研究により、BPFがACE阻害活性を有するポリペプチドであることが確認された。BPFの分子構造解析に基づいて、CheungおよびCushmanにより、初の人工の降圧性テプロチド(SQ20881)が合成された。このようなノニル−ペプチド(nonyl−peptide)は、in vivoにおいて強力なACE阻害活性および降圧作用を有するが、静脈注射によってのみ投与され、経口摂取することができず、従って適用が限られている。カプトプリルの出現以来、新しい種類のACE阻害剤が絶えず現れている。これまで、30種類を超える合成ACE阻害剤が臨床研究または臨床応用に入っている。これらの合成阻害剤は有意な血圧低下作用を有するが、多くの副作用、例えば、咳、アレルギー、皮疹、浮腫、心不整脈および腎障害などを引き起こす可能性がある。、したがって、より安全かつ有効なACE阻害剤の研究開発がますます急務となっている。
「自然回帰」の哲学および生物学的に活性なペプチドの研究の高まりとともに、天然の動植物資源から安全、有効かつ副作用のないACE阻害性ペプチドを抽出することが、高血圧症の予防および治療に対する研究におけるホットスポットになっている。Oshimaらにより食物タンパク質源由来のACE阻害性ペプチドが最初に得られ、強力な活性を有する6つの配列が、細菌性のコラゲナーゼを用いたゼラチン分解から得られ、Sephdex G−25により、ACE活性の阻害の大部分が主に低分子量部分にあることが確認された。食物タンパク質のin vitroプロテアーゼ分解によって生成された活性ペプチドが得られたのはこれが初めてであり、これにより、その後の食物タンパク質からのACE阻害性ペプチドの生成の基盤が築かれた。その後、他の新しいACE阻害性ペプチドが、イチジク、マグロ、日本酒、納豆、カゼイン、ニンニク、ダイズおよび他の天然源から単離された。Tang Jianらの研究により、ダイズペプチドが、SHR(自然発症高血圧症(spontaneous hypertension))ラットの血圧の調節にとって重要であることが示された。この薬剤を3日間服用した後に有意な降圧効果がある。Byunらにより、魚類の皮膚コラーゲン加水分解物の相対的な分子質量分布が0.9kDaから1.9kDaの範囲にある場合、その加水分解物はアンジオテンシン変換酵素(ACE)の活性の阻害において役割を果たすことが見いだされた。しかし、これらの研究の大部分は、実験室規模の予備実験であり、工業生産での応用の例は依然としてまれである。これまでに、国内外で、工業生産されている食用の食物由来のペプチドの大部分は、初期に研究されたダイズペプチド、乳ペプチド、海洋性ペプチドなどである。
三大食用作物のうちの1つとして、トウモロコシは、世界中の食物構造において重要な役割を果たしている。現在のところ、中国におけるトウモロコシの年間生産量は約11,000万トンであり、世界生産の20%を占めており、約400万トンはデンプン、デンプン糖およびアルコールなどを生産するために使用されている。トウモロコシ胚芽タンパク質粉末は、湿潤加工処理により生成されるトウモロコシデンプンの主要な副生成物であり、タンパク質に富み、無機塩および種々のビタミンならびに他の成分も含有している。中国では、トウモロコシ胚芽タンパク質粉末は、主に飼料産業に使用されるか自然へ排出される。年間の自然への排出量はトウモロコシタンパク質の10万トンにのぼり、これは貴重な食物資源の浪費となるだけでなく、深刻な環境汚染を引き起こす恐れもある。したがって、トウモロコシの利用率を改善すること、およびトウモロコシ胚芽タンパク質を最大限に回収することは、重要な社会的および経済的な意義を有する。現在、トウモロコシ胚芽タンパク質粉末から生物活性ペプチドを得ることについては依然として研究が不足している。本発明によると、タンパク質分解の技術を用いて、トウモロコシ胚芽タンパク質粉末からトウモロコシ降圧活性ペプチドを得るための工業化された方法が確立され、その生成物は、明確な特徴的な構成成分および生物活性を有し、本発明は、中国におけるトウモロコシの豊富な資源を完全に使用するため、ならびに機能性食品および栄養保健製品を開発するための大きな実用価値および経済的利点を有する。
本発明の目的は、トウモロコシ胚芽タンパク質を加工処理し利用する方法を拡大すること、およびトウモロコシ胚芽タンパク質からトウモロコシ降圧活性ペプチドを得るための工業的方法を確立することである。
上記の目的を実現するために、本発明では、アルカリ加熱処理と連続的な酵素による加水分解とを組み合わせる方法が使用され、その方法では、トウモロコシ胚芽タンパク質粉末と水を、水とトウモロコシ胚芽タンパク質粉末の比率100:6〜12(L:kg)で混合し、pH9〜11に調整し、50〜80℃まで加熱し、この温度で20〜60分撹拌して、アルカリ性供給液を得る。次いで、反応槽内のアルカリ性供給液をディスク型遠心分離機内にポンプで送り込んで、アルカリ性供給液を透明な液体とスラグに分離する。スラグを回収した後、スラグを水で希釈し、50〜80℃まで加熱し、撹拌し、分離する。同じ加工処理を3回繰り返して精製スラグを得る。精製スラグを、水−スラグの比率100:40〜50で水と混合し、撹拌し、pH7〜9に調整し、40〜60℃まで加熱する。タンパク質1グラム当たり2000〜5000ユニットの酵素量で、アルカラーゼ2.4Lを加え、反応を3〜5時間持続させる。次いで、タンパク質1グラム当たり1000〜2000ユニットの酵素量で、パパインおよびディスパーゼ(Dispase)II(1:1)を45〜55℃の温度で加え、酵素による加水分解を1〜2時間持続させる。最後に、酵素の溶液を120℃まで加熱し、10分間の酵素失活処理を行う。
トウモロコシ胚芽タンパク質の酵素による加水分解物を、円筒型遠心分離機により、回転速度12000〜16000r/分で遠心分離する。透明な遠心分離液(centrifugal liquid)を保持し、圧力0.2〜0.4MPa、および温度30〜80℃の条件下で、孔径0.05〜0.1μmの精密濾過および限外濾過装置を通して濾過し、トウモロコシ降圧活性ペプチドの透明な濾液を得る。トウモロコシ降圧活性ペプチドの濾液を、二重効用流下膜式蒸発器(double−effect falling film evaporator)を用い、蒸気圧0.1±0.02MPa、および温度40〜80℃の条件で、濃縮溶液の固体含有量が20〜50%になるまで蒸発させる。脱色のために、濃縮溶液含有量の5%の割合で活性炭素粉末を加え、濃縮溶液を80℃まで加熱し、この温度で20〜40分撹拌し、次いで、ロールナノ濾過膜(roll nanofirtration membrane)を用いて濾過する。トウモロコシ降圧活性ペプチドの濃縮溶液を、遠心噴霧乾燥機により、入口温度160〜180℃、および出口温度80〜90℃の条件下で乾燥し、トウモロコシ降圧活性ペプチド粉末を調製する。
化学成分分析を使用して、調製したトウモロコシ降圧活性ペプチドの基本的な物理的組成および化学的組成を決定し、トウモロコシ降圧活性ペプチドの成分の分子量分布を高速液体クロマトグラフィー分析によって測定する。分子量が1000Da未満の構成成分が全体で92%超を占め、遊離アミノ酸の含有量は5%未満であることが分かる。In vitroにおける安定性試験により、温度範囲30〜100℃、pH変動範囲3〜11、ならびに、ペプシン消化、トリプシン消化、およびペプシン消化に続くトリプシン消化に対して、トウモロコシ降圧活性ペプチドが良好な安定性を有することが示されている。In vitro試験により、トウモロコシ降圧活性ペプチドが、in vitroで良好なACE阻害活性を有することが示されている。液体クロマトグラフィーによる分離および質量分析を用いて、トウモロコシ降圧活性ペプチドのペプチド断片の分離および構造的同定を行い、特徴的な降圧性ペプチド断片であるアラニン−チロシン(Ala−Tyr、AY)が0.6%超を占める、生理活性を有するペプチド断片7種が同定されている。
トウモロコシ降圧活性ペプチドのin vivoにおける血圧低下作用を、自然発症高血圧ラット(spontaneous hypertensive rat)(SHR)をモデルとして用いて検証し、トウモロコシ降圧活性ペプチドがin vivoにおいて良好な降圧作用を有し、保健健康食品および医薬の分野に適用することができることが確認されている。
以下は図面の簡単な説明である。
異なる条件下でのトウモロコシ降圧活性ペプチドの逆相クロマトグラフィーである。Aは、異なる温度条件下での逆相クロマトグラフィーである(上から下に、それぞれ、20℃、40℃、60℃、80℃、および100℃に対応する);Bは、異なるpH条件下での逆相クロマトグラフィーである(上から下に、それぞれ、pH3、5、7、9、および11に対応する);Cは、in vitroにおける異なる消化条件下での逆相クロマトグラフィーである(上から下に、それぞれ、ブランク対照、ペプシン消化、トリプシン消化、およびペプシン消化に続くトリプシン消化に対応する)。 トウモロコシ降圧活性ペプチドのアイコニックな成分AYの液体クロマトグラフィーおよび質量分析である。 トウモロコシ降圧活性ペプチドの、自然発症高血圧ラットの血清のアルドステロン濃度に対する作用を示し、n=8であり、**はブランク対照群と比較した有意差を示し、P<0.01である。
本発明を、図および具体的な実施形態を参照してさらに説明するが、これらは本発明の範囲を限定するものではない。
具体的なプロセス経路は、以下のステップからなる:
1.トウモロコシ降圧活性ペプチドの調製
トウモロコシ胚芽タンパク質粉末600kgを反応槽Iに加え、水と、水とトウモロコシ胚芽タンパク質粉末の比率100:9(L:kg)で混合し、pH9〜11に調整し、65℃まで加熱し、この温度で40分間撹拌する。反応槽内のアルカリ性供給液をディスク型遠心分離機内にポンプで送り込んで、透明な液体とスラグに分離する。回収したスラグを反応槽IIに加え、透明な液体を廃棄する。スラグを水で希釈し、65℃まで加熱し、撹拌し、分離する。油、デンプン、繊維および他の非タンパク質物質を除去するために、同じ加工処理を3回繰り返す。精製スラグを、水と、水−スラグの比率100:45で混合し、撹拌する。トウモロコシ胚芽タンパク質溶液をpH8に調整し、50℃まで加熱する。タンパク質1グラム当たり3500ユニットの酵素量で、アルカラーゼ2.4Lを加え、反応を4時間持続させる。次いで、タンパク質1グラム当たり1500ユニットの酵素量で、パパインおよびディスパーゼII(1:1)を50℃の温度で加え、酵素による加水分解を1.5時間持続させる。次いで、酵素の溶液を120℃まで加熱し、10分間の酵素失活処理を行う。
加水分解溶液を、円筒型遠心分離機により、回転速度14000r/分で遠心分離する。透明な液体とスラグを分離する。透明な遠心分離液を保持し、圧力0.3MPa、および温度55℃の条件下で孔径0.06μmの精密濾過および限外濾過装置を通して濾過して、トウモロコシ降圧活性ペプチドの透明な濾液を調製する。トウモロコシ降圧活性ペプチドの濾液を、二重効用流下膜式蒸発器を用い、蒸気圧0.1MPa、および温度60℃の条件で、濃縮溶液の固体含有量が40%になるまで蒸発させる。濃縮溶液含有量の5%の割合で活性炭素粉末を濃縮溶液に加え、濃縮溶液を80℃まで加熱し、この温度で30分間撹拌し、次いで、濾過する。トウモロコシ降圧活性ペプチドの濃縮溶液を、遠心噴霧乾燥機により、入口温度170℃、および出口温度85℃の条件下で乾燥させて、トウモロコシ降圧活性ペプチド116.25kgを調製する。
2.トウモロコシ降圧活性ペプチドの物理的および化学的組成の分析ならびに分子量分布(MWD)
トウモロコシ降圧活性ペプチドの物理的および化学的組成の分析結果:総タンパク質の含有量は89.28%であり、脂肪の含有量は0.05%であり、灰分の含有量は5.06%であり、水分の含有量は5.21%である。以上から分かるように、本発明で調製されるトウモロコシ降圧活性ペプチドの総タンパク質含有量は85%超であり、生成物の品質は高い。トウモロコシ降圧活性ペプチド試料をGEL−HPLCに注入した後、試料ペプチドの相対的な分子質量およびその分子量分布範囲を、液体クロマトグラフィーデータ処理ソフトウェアを用いてトウモロコシ降圧活性ペプチドのゲルクロマトグラフィーのデータを較正曲線方程式に代入することによって算出する。分子量が1000Da以下のジペプチドおよびトリペプチドはヒトの体内における吸収率および利用率が非常に高く、したがって、遊離アミノ酸よりも栄養価および生理機能が高い。本発明によると、最小のジペプチド(Gly−Gly)の分子量132Daおよび最大のトリペプチド(Trp−Trp−Trp)の分子量576Daを分子量範囲の境界値として使用し、また、ピーク面積比較法(peak area normalization method)を採用して、表1に示されているようにトウモロコシ降圧活性ペプチドの相対的な分子量分布範囲を算出する。分子量分布の結果から、分子量が1000Da未満の構成成分が全体で93.05%を占める。アミノ酸の平均分子量137Daに従って算出すると、分子量が1000Da以下の構成成分は、いくらかの遊離アミノ酸を含む、主に、オクタペプチドよりも低次のオリゴペプチドである。分子量が132Da〜576Daの構成成分が78.17%を占め、それが、分子量が1000Da未満である構成成分の大半を形成し、主にジペプチド、トリペプチドおよびテトラペプチドである。
Figure 2014500005
3.トウモロコシ降圧活性ペプチドのin vitroにおける安定性
20℃、40℃、60℃、80℃、および100℃のウォーターバスに2時間入れた後のトウモロコシ降圧活性ペプチド試料の分子量分布を表2に示す。異なる温度のウォーターバスに2時間入れた後、トウモロコシ降圧活性ペプチドにおける分子量が1000Da未満の構成成分の総含有量には実質的な変化はなく、約93%を占めている。各分子量範囲の比率の変化は2%以下である。異なる温度におけるトウモロコシ降圧活性ペプチドの逆相クロマトグラフィーを図1Aに示す。異なる温度でウォーターバスに2時間入れた後に、トウモロコシ降圧活性ペプチドの逆相クロマトグラフィーはほとんど変化せず、ピークの数とピーク時間はよく一致していることがわかる。同時に、類似性算出ソフトウェアにより算出された類似性は約0.99である。
Figure 2014500005
37℃で、それぞれpH3、5、7、9、および11のウォーターバスに2時間入れた後のトウモロコシ血圧降下活性ペプチド試料の分子量分布を表3に示す。異なるpH条件下で、37℃のウォーターバスに2時間入れた後、トウモロコシ降圧活性ペプチドにおける分子量が1000Da未満の構成成分の総含有量には実質的な変化はなく、約93%を占めている。各分子量範囲の比率の変化は、1%以下である。異なるpHの下でのトウモロコシ降圧活性ペプチドの逆相クロマトグラフィーを図1Bに示す。異なるpH条件下で37℃のウォーターバスに2時間入れた後に、トウモロコシ降圧活性ペプチドの逆相クロマトグラフィーはほとんど変化せず、ピークの数とピーク時間はよく一致していることがわかる。同時に、類似性算出ソフトウェアにより算出された類似性は0.99超であった。すなわち、分子極性の観点からすると、トウモロコシ血圧降下活性ペプチドの組成にはほとんど変化がない。
Figure 2014500005
ペプシン消化、トリプシン消化、および、ペプシン消化に続くトリプシン消化をそれぞれ行った後のトウモロコシ降圧活性ペプチドの分子量分布を表4に示す(C:ブランク対照;P:ペプシン消化;T:トリプシン消化;P+T:ペプシン消化に続くトリプシン消化)。異なる消化様式では、トウモロコシ降圧活性ペプチドにおける分子量が1000Da未満の構成成分の総含有量はわずかに増加するが、2%未満の増加である。分子量範囲が1000〜576Daである構成成分の割合はわずかに低下するが、1%未満の低下であり、これにより、酵素分解により消化されるペプチド断片は非常に少量であることが示されている。これに対応して、より分子量の小さい構成成分がわずかに増加し、この増加は主に132Da未満の範囲に集中しており、消化されたごく一部の構成成分は、主に低分子アミノ酸に分解されたことが示されている。
Figure 2014500005
ペプシン消化、トリプシン消化、およびペプシン消化に続くトリプシン消化によってそれぞれ消化された組成物の逆相クロマトグラフィーを図1Cに示す;異なる消化様式の後、トウモロコシ降圧活性ペプチドの逆相クロマトグラフィーではわずかな変化があるが、主要なピークの数とピーク時間はよく一致していることがわかる。対照群と比較して、類似性算出ソフトウェアにより算出された各クロマトグラフィーの類似性は0.93超である。すなわち、分子極性の観点からすると、トウモロコシ降圧活性ペプチドの組成はわずかに変化する、すなわち、変化は小さい。
4.トウモロコシ降圧活性ペプチドのin vitroにおけるACE阻害活性および象徴的なペプチド断片の分析
N−Hippuryl−His−Leu(HHL)法を用いて、in vitroにおけるACE阻害活性をHPLCにより検出する。降圧活性ペプチドを加える前と加えた後の馬尿酸生成物のクロマトグラフィーのピーク面積の差を測定する。この差は、降圧活性ペプチドの降圧活性の変化を反映する。ACE阻害率を以下の通り算出する:ACE阻害率(%)=(M−N)*100/N、Mはブランク対照群における馬尿酸のピーク面積(mAU・s)であり、Nは阻害剤を加えた群における馬尿酸のピーク面積である(mAU・s)。異なる濃度におけるトウモロコシ降圧活性ペプチド溶液のACE阻害率を表5に示す。測定、算出したトウモロコシ降圧活性ペプチドのIC50は1.02mg/mLであり、このトウモロコシ降圧活性ペプチドがin vitroにおける良好なACE阻害活性を有することが示されている。
Figure 2014500005
液体クロマトグラフィーによる分離および質量分析を用いることにより、トウモロコシ降圧活性ペプチドのペプチド断片の単離および構造同定を行う。現在のところ、53種のペプチド断片の構造が同定されている。トウモロコシプロテオミクスの配列データベースとの対照によると、32種のペプチド断片のアミノ酸配列が、トウモロコシプロテオミクスにおける既存の断片の配列と一致し、これにより、これらのペプチドが、トウモロコシタンパク質の加水分解によって生じることが示されている。生物活性ペプチドデータベースと比較することにより、降圧活性を有するアラニン−チロシン(Ala−Tyr、AY)が含まれていることが分かる。Yanjun Yangら(J.Agric.Food Chem.、2007年、55巻(19号))により、AYが降圧性ペプチド断片であり、そのin vitroにおける降圧活性IC50が14.2μMであることが見いだされた。SHRに用量50mg/kgで経口挿管した2時間後の血圧の降下は9.5mmHgである。
本発明者らは、AYの高速液体クロマトグラフィー分析による定量法を考案した。前処理した後、トウモロコシ降圧活性ペプチド試料を、逆相C18充填剤を固定相として使用して試料構成成分の分子極性の差異によって分離し、UV吸収波長220nmにおいて検出する。クロマトグラムおよびそのデータ(図2)を、外部標準法を用いて処理して数値化する。算出されたAY含有量は1.13%である。トウモロコシ降圧活性ペプチド試料の異なるバッチが全て0.6%超のAYを含有することを考慮して、AYをトウモロコシ降圧活性ペプチドの特徴的な構成成分として使用する。
5.トウモロコシ降圧活性ペプチドの、自然発症高血圧症ラットに対する降圧効果
自然発症高血圧症ラットをモデル動物として用いて、トウモロコシ降圧活性ペプチドを異なる用量(体重1kg当たり0.45g、1.35g、および4.05g)で胃管投与(gavage)する。ブランク対照群には、適切な用量の蒸留水を胃管投与する。陽性対照群には、体重1kg当たり10mgのカプトプリルを胃管投与する。8週間の連続的な胃管投与後、各群のラットの体重、心臓/体重比、心拍数に有意な変化はない(P>0.05)。
試験の間、対照群のラットの血圧はおよそ200mmHgであり、胃管投与期間にわたってわずかに上昇したが、差は有意ではない(P>0.05)。低用量群のラットの血圧は胃管投与期間にわたって徐々に低下した。第6週における血圧はブランク対照群と比較して有意に異なり(P<0.05)、そのような有意差は第7週および第8週において維持され(P<0.05)、血圧は15.6%低下した。中用量群のラットの血圧は胃管投与期間にわたって低下したが、わずかに緩やかであった;第8週まで、血圧はブランク対照群と比較して有意に異なり(P<0.05)、血圧は10.3%低下した。高用量群のラットの血圧は8週間においてわずかに低下したが、ブランク対照群と比較して差は有意ではない(P>0.05)(表6)。
高用量群およびカプトプリル群の血清アルドステロン濃度は、対照群よりも有意に低い(P<0.01、図4)。試験結果より、本発明のトウモロコシ降圧活性ペプチドが有意な降圧作用を有し、降圧薬および機能性食品の原料を開発するために使用することができ、開発に大きな見込みがあることが示されている。
Figure 2014500005

Claims (5)

  1. トウモロコシ胚芽タンパク質から降圧活性ペプチドを調製するための工業的な酵素による加水分解方法であって、
    1)反応槽にトウモロコシ胚芽タンパク質粉末を加え、水とトウモロコシ胚芽タンパク質粉末を、水とトウモロコシ胚芽タンパク質粉末の比率100:6〜12(L:kg)で混合し、pH9〜11に調整し、50〜80℃まで加熱し、この温度で20〜60分間撹拌して、アルカリ性供給液を得るステップと、
    2)反応槽内のアルカリ性供給液をディスク型遠心分離機内にポンプで送り込んでアルカリ性供給液を透明な液体とスラグに分離し、スラグを回収後、スラグを水で希釈し、50〜80℃まで加熱し、撹拌し、分離する同じ加工処理を3回繰り返して精製スラグを得るステップと、
    3)水−スラグの比率100:40〜50で精製スラグを水と混合し、撹拌し、pH7〜9に調整し、40〜60℃まで加熱し;タンパク質1グラム当たり2000〜5000ユニットの酵素量で、アルカラーゼ2.4Lを加え、反応を3〜5時間持続させ;次いで、タンパク質1グラム当たり1000〜2000ユニットの酵素量で、パパインおよびディスパーゼII(1:1)を45〜55℃の温度で加え、酵素による加水分解を1〜2時間持続させ;最後に、酵素による加水分解物を120℃まで加熱し、酵素を10分間の失活に供するステップと
    を含むことを特徴とする方法。
  2. トウモロコシ降圧活性ペプチド粉末が、酵素加水分解供給液から、分離、濃縮、脱色および乾燥を経て調製され、具体的なステップが、
    1)請求項1に記載のトウモロコシ胚芽タンパク質の酵素による加水分解物を、円筒型遠心分離機により、回転速度12000〜16000r/分で遠心分離し;透明な遠心分離液を保持し、この液を圧力0.2〜0.4MPaおよび温度30〜80℃の条件下で、孔径0.05〜0.1μmの精密濾過および限外濾過装置を通して濾過して、トウモロコシ降圧活性ペプチドの透明な濾液を得るステップと、
    2)濾液を、二重効用流下膜式蒸発器を用い、蒸気圧0.1±0.02MPa、および温度40〜80℃の条件下で濃縮溶液の固体含有量が20〜50%になるまで蒸発させ;脱色のために、濃縮溶液含有量の5%の割合で活性炭素粉末を加え、濃縮溶液を80℃まで加熱し、この温度で20〜40分撹拌し、次いで、ロールナノ濾過膜を用いて濾過するステップと、
    3)トウモロコシ降圧活性ペプチドの濃縮溶液を、遠心噴霧乾燥機により、入口温度160〜180℃および出口温度80〜90℃の条件下で乾燥させて、トウモロコシ降圧活性ペプチド粉末を得るステップと
    であることを特徴とする、請求項1に記載の工業的な酵素による加水分解方法。
  3. 分子量が1000Da未満の構成成分が92%超を占め、遊離アミノ酸の含有量が5%未満であることを特徴とする、請求項1または2に従って調製されるトウモロコシ降圧活性ペプチド。
  4. 少なくとも0.6%のアラニン−チロシン(Ala−Tyr、AY)配列のペプチド断片を含有することを特徴とする、請求項1または2に従って調製されるトウモロコシ降圧活性ペプチド。
  5. 請求項1または2に従って調製されるトウモロコシ降圧活性ペプチドの、健康機能性食品または医薬品における製品または原材料としての使用。
JP2013536982A 2011-05-17 2011-05-17 トウモロコシ降圧活性ペプチドを調製するための工業的方法 Active JP5763203B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/000862 WO2012155295A1 (zh) 2011-05-17 2011-05-17 一种工业化生产玉米降压活性肽的方法

Publications (2)

Publication Number Publication Date
JP2014500005A true JP2014500005A (ja) 2014-01-09
JP5763203B2 JP5763203B2 (ja) 2015-08-12

Family

ID=47176116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013536982A Active JP5763203B2 (ja) 2011-05-17 2011-05-17 トウモロコシ降圧活性ペプチドを調製するための工業的方法

Country Status (4)

Country Link
US (1) US8940685B2 (ja)
JP (1) JP5763203B2 (ja)
CN (1) CN103052717B (ja)
WO (1) WO2012155295A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK3052641T3 (da) * 2013-10-04 2020-09-28 Innoway Co Ltd Fremgangsmåde til fremstilling af et hydrolysat af animalsk protein
US9534026B2 (en) 2013-10-31 2017-01-03 China National Research Institute Of Food & Fermentation Industries Corn active peptide additive for cell culture medium
CN104593318B (zh) * 2013-10-31 2018-05-04 中国食品发酵工业研究院 一种用于细胞培养基的玉米活性肽添加剂
RU2761633C2 (ru) * 2015-11-17 2021-12-13 Пфайзер Инк. Среды и способы ферментации для производства полисахаридов в бактериальной клеточной культуре
CN108033995B (zh) * 2017-12-19 2020-12-29 渤海大学 两种来源于大黄鱼肌联蛋白的ace抑制肽
CN108130354A (zh) * 2017-12-25 2018-06-08 保龄宝生物股份有限公司 一种超声、热处理辅助双酶法制备玉米肽的方法
CN108251479A (zh) * 2018-02-08 2018-07-06 金华市艾力生物科技有限公司 一种玉米胚芽活性肽的制备方法
CN109400687B (zh) * 2018-07-25 2021-06-15 宁波大学 一种西兰花蛋白来源的ace抑制肽及其制备方法和应用
CN108866137B (zh) * 2018-08-09 2021-09-03 浙江工商大学 鱼皮/鱼鳞胶原蛋白肽的制备方法
CN108949882B (zh) * 2018-08-09 2021-09-03 浙江工商大学 提取鱼鳞胶原蛋白肽粉和羟基磷灰石的方法
CN109221601A (zh) * 2018-09-07 2019-01-18 南阳理工学院 一种玉米蛋白活性肽及其制备
CN109730187A (zh) * 2019-02-15 2019-05-10 张家界(中国)金驰大鲵生物科技有限公司 具有强身补肾壮阳作用的大鲵制品、制备方法及饮品
CN110037163A (zh) * 2019-04-24 2019-07-23 王书敏 一种复合植物蛋白肽的制备方法
CN110463888A (zh) * 2019-08-12 2019-11-19 河北科技大学 一种基于小麦胚芽蛋白ace肽的辅助调节血压功能性饮料的制备方法
CN110679953A (zh) * 2019-10-23 2020-01-14 吉林大学 一种包埋蛋清源活性肽的纳米脂质体的制备方法
CN110915980B (zh) * 2019-11-28 2023-03-14 湖北瑞邦生物科技有限公司 一种葵花盘肽粉、及其制备方法和应用
CN110810691A (zh) * 2019-12-06 2020-02-21 吉林大学 一种玉米蛋白抗氧化肽饮料配方及其制备方法
CN111019992A (zh) * 2019-12-16 2020-04-17 长春大学 一种动物蛋白质为原料生产免消化蛋白质的制备方法
CN111154824A (zh) * 2020-01-15 2020-05-15 润科生物工程(福建)有限公司 一种高浓度两步酶解获得螺旋藻抗氧化低聚肽的工业生产方法
CN112592949A (zh) * 2020-12-22 2021-04-02 赵素英 一种葵花盘小分子肽的制备方法
CN112760350A (zh) * 2021-02-06 2021-05-07 巨野恒丰果蔬有限公司 一种大蒜降压肽的制备方法
CN113061633A (zh) * 2021-03-08 2021-07-02 汕尾市五丰海洋生物科技有限公司 一种新型活性肽及其制备工艺
CN113040391A (zh) * 2021-03-12 2021-06-29 广州市金龟寿药品有限公司 一种植物肽组合物及其复合果饮
CN113481271B (zh) * 2021-06-22 2023-07-25 中国科学院南海海洋研究所 一种可有效减轻皮肤晒伤的海洋生物活性肽及其制备方法和应用
CN115247197B (zh) * 2021-11-29 2023-05-12 齐齐哈尔大学 一种具有拮抗幽门螺旋杆菌粘附活性的玉米蛋白水解物及其制备方法和应用
CN114107421A (zh) * 2021-12-27 2022-03-01 山东省鲁洲食品集团有限公司 玉米精深加工副产物制备功能性肽的工艺
CN114480541B (zh) * 2022-01-20 2023-05-09 广东省农业科学院蚕业与农产品加工研究所 一种具有辅助降血压功效的牛肉营养酶解液、粉及生物活性肽
CN117603308B (zh) * 2024-01-19 2024-04-12 齐齐哈尔大学 一种抗幽门螺旋杆菌粘附的玉米肽及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687886A (ja) * 1990-02-27 1994-03-29 Agency Of Ind Science & Technol 新規オリゴペプチド、アンジオテンシン変換酵素阻害 剤及び血圧降下剤
JPH07502416A (ja) * 1991-12-26 1995-03-16 オプタ・フード・イングリージエンツ・インコーポレーテツド コーングルテンミールからのゼインの精製
JP2000290292A (ja) * 1998-05-29 2000-10-17 Ichiban Shokuhin Kk アンジオテンシン変換酵素阻害性ペプチド
JP2001233789A (ja) * 1990-02-27 2001-08-28 Natl Inst Of Advanced Industrial Science & Technology Meti アンジオテンシン変換酵素阻害剤及び血圧降下剤
JP2005097269A (ja) * 2003-08-18 2005-04-14 Nagase Chemtex Corp アンジオテンシン変換酵素阻害活性及び活性酸素除去活性を有する緑豆蛋白分解物含有組成物
JP2006512371A (ja) * 2002-12-24 2006-04-13 ハー マジェスティ ザ クイーン イン ライト オブ カナダ アズ リプレゼンティッド バイ ザ ミニスター オブ アグリカルチャー アンド アグリ−フード カナダ 植物材料由来のace阻害ペプチド
JP2011522210A (ja) * 2007-06-01 2011-07-28 アンセルム(アンスチチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル) ポリペプチドを絶対定量化するための方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69124274T2 (de) 1990-02-27 1997-08-14 Agency Ind Science Techn Oligopeptide, sie enthaltende pharmazeutische und Futterzusammensetzung und Benützung von Oligopeptiden
CN1526299A (zh) * 2003-09-23 2004-09-08 江苏大学 一种小麦胚芽蛋白水解物及其制备方法与用途
CN100589702C (zh) * 2005-09-20 2010-02-17 中国食品发酵工业研究院 一种高纯度、低分子量的大豆低聚肽粉的工业生产方法
CN100352835C (zh) * 2005-12-30 2007-12-05 深圳职业技术学院 玉米蛋白粉多肽与分离方法及其应用
CN100376597C (zh) * 2005-12-30 2008-03-26 深圳职业技术学院 一种降血压多肽与分离方法及其应用
CN100369928C (zh) * 2005-12-30 2008-02-20 深圳职业技术学院 玉米蛋白粉降血压多肽与分离方法及其应用
CN101130801A (zh) * 2007-08-29 2008-02-27 王丽萍 一种降血压活性肽产品的制备
KR100962578B1 (ko) * 2007-11-05 2010-06-11 한국식품연구원 항고혈압용 난백 가수분해물-당 반응조성물의 제조방법
CN101531700B (zh) * 2008-03-12 2010-12-08 中国食品发酵工业研究院 一种玉米低聚肽的制备方法
WO2010012845A1 (es) * 2008-08-01 2010-02-04 Natraceutical, S.A. Obtención de extractos de cacao ricos en peptidos bioactivos con actividad inhibidora de las enzimas eca y pep
CN101514355B (zh) * 2009-03-31 2012-01-18 江苏大学 连续酶解与超滤分离偶联制备麦胚蛋白ace抑制肽的方法
CN101890151A (zh) * 2009-05-18 2010-11-24 北京大学 一种玉米寡肽制剂在制备降血压药物、保健食品中的用途
CN101798587B (zh) * 2010-03-22 2012-07-25 黑龙江八一农垦大学 玉米降血压肽的分离纯化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0687886A (ja) * 1990-02-27 1994-03-29 Agency Of Ind Science & Technol 新規オリゴペプチド、アンジオテンシン変換酵素阻害 剤及び血圧降下剤
JP2001233789A (ja) * 1990-02-27 2001-08-28 Natl Inst Of Advanced Industrial Science & Technology Meti アンジオテンシン変換酵素阻害剤及び血圧降下剤
JPH07502416A (ja) * 1991-12-26 1995-03-16 オプタ・フード・イングリージエンツ・インコーポレーテツド コーングルテンミールからのゼインの精製
JP2000290292A (ja) * 1998-05-29 2000-10-17 Ichiban Shokuhin Kk アンジオテンシン変換酵素阻害性ペプチド
JP2006512371A (ja) * 2002-12-24 2006-04-13 ハー マジェスティ ザ クイーン イン ライト オブ カナダ アズ リプレゼンティッド バイ ザ ミニスター オブ アグリカルチャー アンド アグリ−フード カナダ 植物材料由来のace阻害ペプチド
JP2005097269A (ja) * 2003-08-18 2005-04-14 Nagase Chemtex Corp アンジオテンシン変換酵素阻害活性及び活性酸素除去活性を有する緑豆蛋白分解物含有組成物
JP2011522210A (ja) * 2007-06-01 2011-07-28 アンセルム(アンスチチュ ナショナル ドゥ ラ サンテ エ ドゥ ラ ルシェルシュ メディカル) ポリペプチドを絶対定量化するための方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014036082; Journal of Agricultural and Food Chemistry Vol.56, 2008, p.2620-2623 *

Also Published As

Publication number Publication date
WO2012155295A1 (zh) 2012-11-22
JP5763203B2 (ja) 2015-08-12
US8940685B2 (en) 2015-01-27
CN103052717A (zh) 2013-04-17
US20130252877A1 (en) 2013-09-26
WO2012155295A8 (zh) 2013-05-10
CN103052717B (zh) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5763203B2 (ja) トウモロコシ降圧活性ペプチドを調製するための工業的方法
Lin et al. Angiotensin-I-converting enzyme (ACE)-inhibitory and antihypertensive properties of squid skin gelatin hydrolysates
TW202113085A (zh) 一種核桃低聚肽粉、含彼之組合物、製備方法及其用途
CN102190706A (zh) 一种新型泥鳅蛋白降压肽及其制备方法
CN101906135A (zh) 一种新型螺旋藻源降血压肽及其制备方法
CN108484723A (zh) 浒苔来源的血管紧张素转化酶抑制肽及其制备方法和应用
CN102286591A (zh) 一种酵母来源活性多肽的制备方法
CN114106092B (zh) 一种具有ace抑制作用的活性多肽及其应用
CN107674905A (zh) 螺旋藻活性肽、组合物及制备方法
JP6190999B2 (ja) アルコール代謝促進剤として有効なオリゴペプチドの製造方法
CN100369928C (zh) 玉米蛋白粉降血压多肽与分离方法及其应用
CN104877007A (zh) 牦牛乳乳清蛋白源ace抑制肽及其制备方法
CN101130801A (zh) 一种降血压活性肽产品的制备
JPWO2003055901A1 (ja) 新規ペプチドsy
CN113072621B (zh) 一种牦牛骨降血压肽及其制备方法与应用
CN109402206B (zh) 一种疣荔枝螺降压肽的制备方法
JP3739992B2 (ja) アンギオテンシン変換酵素阻害剤として用いられる新規ペプチド及びその製造方法
CN102787154A (zh) 一种乌鸡低聚肽的制备及其活性肽段分离、鉴定方法
CN113087773A (zh) 一种具有降血糖和抗氧化功能的牦牛骨肽及其制备方法
CN100376597C (zh) 一种降血压多肽与分离方法及其应用
JP4934369B2 (ja) 血圧低下作用を有するペプチド
CN102127580A (zh) 一种贻贝酶解ace抑制肽的提取技术
KR102535328B1 (ko) 흑후추 추출물을 함유하여 글루타치온의 체내 흡수율을 높인 건강기능 식품용 조성물 및 이의 제조방법
KR20030015537A (ko) 혈중 지질 농도 저하용 펩타이드의 제조 방법
Liu et al. Production, analysis and in vivo antihypertensive evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from porcine brain

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140826

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141125

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20141202

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150610

R150 Certificate of patent or registration of utility model

Ref document number: 5763203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250