JP2014192041A - 全固体二次電池 - Google Patents

全固体二次電池 Download PDF

Info

Publication number
JP2014192041A
JP2014192041A JP2013067440A JP2013067440A JP2014192041A JP 2014192041 A JP2014192041 A JP 2014192041A JP 2013067440 A JP2013067440 A JP 2013067440A JP 2013067440 A JP2013067440 A JP 2013067440A JP 2014192041 A JP2014192041 A JP 2014192041A
Authority
JP
Japan
Prior art keywords
layer
solid
secondary battery
electrode unit
phosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013067440A
Other languages
English (en)
Inventor
Masaki Mochigi
雅希 持木
Daigo Ito
大悟 伊藤
Toshimasa Suzuki
利昌 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2013067440A priority Critical patent/JP2014192041A/ja
Publication of JP2014192041A publication Critical patent/JP2014192041A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】多層構造においても適用でき、また、材質の選択の余地が大きい、層間剥離や反りが生じにくい全固体二次電池を提供すること。
【解決手段】正負の電極単位層20が固体電解質層11を介して交互に積層された積層構造を有し、固体電解質層11はリチウムを含みNASICON構造をもつリン酸塩からなり、電極単位層20は、電極領域21、22とサイドマージン領域30とからなり、サイドマージン領域30にはX線回折により観測される程度にMOおよびML(PO4−c(但し、Mは両化学式において共通する金属元素であり、Lは前記NASICON構造をもリン酸塩に含まれる金属元素であり、a>0、b≧0、4>c≧0、d>0である。)が含まれる、全固体二次電池1。
【選択図】図1

Description

本発明は固体電解質を有する全固体二次電池に関する。
近年、大容量の電気化学デバイスとしてリチウムイオン二次電池や電気二重層キャパシタの開発が盛んに行われ、民生機器、産業機械、自動車など様々な分野にて利用され始めている。電気化学デバイスに求められる特性としては、高エネルギー密度、高パワー密度など大容量で応答性が高いものが挙げられる。さらには、発火事故などの事例もあることから、電気化学デバイスにおける安全性についても高度化が求められている。とりわけ車載用、医療用の電気化学デバイスにおける事故は人命に直結するため、より高い安全性が問われる。電気化学デバイスでの発火事故の原因のひとつとして、内部に電解液と呼ばれる燃焼性の液体が含まれていることが挙げられる。不測の事態においても、破裂や発火が起きないデバイスが求められており、近年、電気化学デバイスの全固体化が望まれている。
電気化学デバイスの全固体化にとって重要となるのは固体電解質の適用である。例えば従来のリチウムイオン二次電池では電解液中にリチウムイオンが解離する電解質が溶解しており、充放電において正負極間の電解液中をリチウムイオンがセパレータを介して自由に行き来できる。他方、全固体化して特性を維持するためには、リチウムイオン伝導性の高い固体電解質材料が必要である。一般的に高いリチウムイオン伝導率を示す材料系としては酸化物系や硫化物系、構造としてはLISICON型結晶やNASICON型結晶などの無機物質が挙げられる。これらの無機系固体電解質が高い伝導率を示すためには製造プロセスが非常に重要であり、多くの場合、高温で緻密化させるという焼結プロセスを伴う。緻密化させることで粒界抵抗を小さく抑え、電解液に近い特性を発現させることを目指している。このように安全性の高く、工業的に採用しうる量産可能な方法で安定的に製造でき、かつ優れた二次電池性能を有する全固体電気化学デバイスが求められている。
従来技術として、特許文献1には、正極単位層と負極単位層とイオン伝導性無機物質層との積層体を一括焼成してなる全固体二次電池の発明が開示されており、焼成における各層の収縮量の差異を小さくするように材料選択することにより、クラックのない積層体が得られるとのことである。別の従来技術として、特許文献2には、固体電解質グリーンシート又は固体電解質層と電極グリーンシートとを積層・焼成してなるリチウム電池において、固体電解質グリーンシート又は固体電解質層の少なくとも一面に、高融点の無機物質の粉末を含む収縮抑制層とを設けることにより、各層の割れや層間剥離が生じにくくすることが開示されている。
国際公開WO2007/135790号 特開2009−181882号公報
全固体二次電池における層間剥離や反りなどを低減させることについて、上記参照した従来技術によれば、材質選択において厳しい制限がかかったり、多層の積層構造では効果が期待できなかったり、という懸念があり、十分な解決策が提示されているとは言いがたい。
これらのことを考慮し、本発明は、多層構造においても適用でき、材質の選択の余地が大きく、層間剥離や反りが生じにくい全固体二次電池を提供することを課題とする。
本発明によれば、全固体二次電池は、正極単位層と負極単位層とが固体電解質層を介して交互に積層された積層構造を有し、この固体電解質層はリチウムを含みNASICON構造をもつリン酸塩からなる。正極単位層および負極単位層は、集電体を少なくとも備える電極領域とサイドマージン領域とからなる。正極単位層および負極単位層の少なくとも一層におけるサイドマージン領域にはMOおよびML(PO4−cが含まれる。上式において、Mは両化学式において共通する金属元素であり、Lは前記固体電解層を構成するリン酸塩に含まれる金属元素であり、a>0、b≧0、4>c≧0、d>0である。好ましくは、前記MがAl、Zr、Ti、Si、Y、Ca及びGeからなる群から選ばれる少なくとも一種の金属元素である。別途好ましくは、前記MOおよびML(PO4−cが含まれるサイドマージン領域に、さらに、固体電解質層に含まれるリン酸塩が含まれる。
本発明によれば、収縮しにくく緻密性が高く、固体電解質層との結着性に優れるサイドマージン領域の存在により、全固体二次電池において層間剥離や反りが生じにくくなる。本発明の全固体二次電池では、サイドマージン領域においてNASICON構造ではない絶縁材料が存在するため、リーク電流の低下も期待される。
全固体二次電池の模式断面図である。 全固体二次電池の部分拡大模式図である。
図面を適宜参照しながら本発明を詳述する。但し、本発明は図示された態様に限定されるわけでなく、また、図面においては発明の特徴的な部分を強調して表現することがあるので、図面各部において縮尺の正確性は必ずしも担保されていない。
図1は本発明に係る全固体二次電池の模式断面図である。全固体二次電池1は、正極単位層と負極単位層20とが固体電解質層11を介して交互に積層された積層構造を有する。後述するように、負極単位層20は負極としての電極領域21を有し、この負極単位層20における電極領域21以外の領域をサイドマージン領域30と呼ぶ。これに準じて、正極単位層も正極としての電極領域22とサイドマージン領域とを有する。
全固体二次電池1が有する典型的な積層単位として、固体電解質層/負極単位層/固体電解質層/正極単位層、という積層構造が挙げられる。全固体二次電池1は、この積層単位を1つだけ有してもよいし、好適には、この積層単位を複数、好ましくは10〜200程度有していてもよい。前述の積層単位又はその繰り返しによる積層構造の上下には、好ましくはさらに、固体電解質層10がカバー層として設けられる。図示された態様では、負極としての電極領域21は、全固体二次電池1の一側面(図1では紙面左側)にまで設けられており、正極としての電極領域22は、前記一側面に対向する側面(図1では紙面右側)にまで設けられている。なお、全体的な積層構造については、全固体二次電池における従来技術を適宜参照することができる。
固体電解質層11はリチウムを含みNASICON構造をもつリン酸塩からなる。このようなリン酸塩は固体電解質用の材料として従来公知であり、特に限定なく援用することができる。典型例として、例えば、Tiとの複合リン酸リチウム塩などが挙げられ、Al、Ge、Sn、Hf、Zr、Y、Laなどといった金属元素を、前記Tiに置き換えて用いたり、追加したりすることも可能である。リチウムを含みNASICON構造をもつリン酸塩は、より具体的には、例えば、下記の組成のものが挙げられる。
LiTi(PO
Li(1+x)AlTi(2−x)(PO(0≦x≦2、望ましくては0<x≦1さらに望ましくは0≦x≦0.7)、
LiGe(PO
Li(1+x)AlGe(2−x)(PO(0≦x≦2、望ましくは0<x≦1、さらに望ましくは0≦x≦0.7)
Li(1+x+y)AlTi(2−x)Si3―y12(望ましくは0<x≦1、0≦y≦0.6)
Li(1+x+y)AlGe(2−x)Si3―y12(望ましくは0<x≦1、0≦y≦0.6)
固体電解質層11の形成方法は特に限定なく、従来技術を適宜参照することができる。例えば、上述のリン酸塩の材料を適切な粒度分布をもつように調製し、結着材、分散剤、可塑剤などとともに、水性溶媒あるいは有機溶媒に均一に分散させて、スラリーを得る。このとき、ビーズミル、湿式ジェットミル、各種混錬機、高圧ホモジナイザーなどを用いることができ、中でも、粒度分布の調整と分散とを同時に行うことができることからビーズミルの使用が好ましい。得られたスラリーを塗工して所望の厚さをもつグリーンシート得る。塗工方法は特に限定なく、従来技術を適宜参照することができ、スロットダイ方式、リバースコート方式、グラビアコート方式、バーコート方式、ドクターブレード方式などが非限定的に挙げられる。
正極単位層及び負極単位層(以下、両者を特に区別しない場合、「電極単位層」と総称する。)20は、電極領域21(又は22)とサイドマージン領域30とを有する。電極領域21(又は22)は、電気化学デバイスを構成する一部材として電子伝導を担うものであり、必要に応じて正極活物質又は負極活物質を含有してもよいし、あるいは、導電性金属からなる集電体のみをもって電極領域21(又は22)を構成してもよい。サイドマージン領域30は、電極単位層20のうち、電極領域を除いた領域である。サイドマージン領域30の材料構成(後述)が、本発明の大きな特徴の一つである。電極単位層20の主面に占める電極領域21(又は22)の面積割合は特に限定はなく、好ましくは30〜80%である。本態様では、固体電解質層11の面に、集電体を少なくとも備える電極領域とサイドマージン領域を有する正極単位層、ならびに、別の固体電解質層11の面に、集電体を少なくとも備える電極領域とサイドマージン領域を有する負極単位層と備えている。また、カバー層10は、固体電解質と同一の材料が使用されていてもよい。
電極の活物質については、二次電池における従来技術を適宜参照することができる。例えば、正極活物質として、リチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウムニッケルコバルト複合酸化物、リチウムマンガンニッケル複合化合物、スピネル型リチウムマンガンニッケル複合酸化物、リチウムマンガンコバルト複合酸化物、リチウムリン酸鉄などの粉末を用いてもよい。負極活物質としては、チタン酸化物、リチウムチタン複合酸化物、カーボン、リン酸バナジウムリチウムなどの粉末を用いてもよい。これら活物質に加えて、固体電解質材料や、カーボンや金属といった導電性材料などをさらに用いてもよい。これらの部材とバインダーと可塑剤を水あるいは有機溶剤に均一分散させることで正(負)極活物質層ペーストを得ることができる。
集電体の導電性金属としては、Ni、Cu、Pd、Ag、Pt、Au、Al、Feなどの金属の単体あるいは合金あるいは酸化物を非限定的に挙げることができる。上述の正(負)極活物質層ペーストと集電体用の導電性金属ペーストを用いることで、電極領域21、22を形成させることができる。形成方法の一例として、上述した固体電解質層用のグリーンシート上に正(負)極活物質層ペーストを印刷し、次いで、導電性金属ペーストを印刷し、さらに、その上に、再度、正(負)極活物質層を印刷することで、正(負)極活物質層/集電極体/正(負)極活物質層という積層構造をもつ電極領域21、22を製造することができる。印刷の方法は特に限定はされず、スクリーン印刷法、凹版印刷法、凸版印刷法、カレンダロール法などといった従来公知の印刷法を適用できる。薄層かつ高積層の積層デバイスを作製するにはスクリーン印刷がもっとも一般的と考えられる一方、ごく微細な電極パターンや特殊形状が必要な場合はインクジェット印刷を適用する方が好適な場合もある。
図2は全固体二次電池の部分拡大模式図であり、一層の電極単位層20を表現している。電極単位層20における電極領域21、22以外の領域がサイドマージン領域30である。図示された態様では、長方形状の電極領域21とその周囲にコの字状に形成されたサイドマージン領域30とが描写されている。サイドマージン領域30の少なくとも一部にはMOおよびML(PO4−cが含まれる。両化学式においてMは共通する金属元素であり、好ましくは、Al、Zr、Ti、Si、Y、Ca及びGeからなる群から選ばれる。Lは存在しなくてもよく(つまり、b=0でもよい。)、Lが存在する場合は、LはMとは異なる金属元素であり、上述の固体電解質層11を構成するリン酸塩に含まれる金属元素である。
上記MOは「単一金属元素の酸化物」を意味する。したがって、aについては、a>0であり、具体的な数値は金属元素Mの価数に依存する。例えば、MがAlである場合には、AlO3/2(Alと同義)のように記述することができ、aは整数でなくてもよい。
上記ML(PO4−cは「上記金属Mを含むリン酸塩又はその類縁物」を意味する。bとcはいずれもゼロであってもよく、この場合は、M(POのように記述可能であり、「上記金属Mが単一金属元素であるリン酸塩」であると評価できる。dの値は上記金属元素Mの価数に依存し、d>0であり、整数に限定されない。リン酸塩は複数の金属元素を含む複合リン酸塩であってもよく、この場合、b>0であり、金属元素Lは上述の固体電解質層11に含まれるリン酸塩に含まれる金属元素である。Lが珪素である場合などは、リン酸骨格の一部が置き換わる可能性がある。この場合、化学式としては、「PO」の組成が変動すること、つまりc>0を意味し、そのような場合であっても本発明の範疇に属する。このようなML(PO4−cはNASICON構造を持たない。
以上まとめると、MOおよびML(PO4−cの存在については、「サイドマージン領域30には単一金属元素の酸化物と、前記単一金属元素のリン酸塩とが共存し、前記リン酸塩には固体電解質層11の材料に由来する他の金属元素が含まれたり、リン酸骨格の一部が珪素などで置換されていてもよい。」という評価も可能である。
このようなサイドマージン領域30の存在により、当該領域30が収縮しにくく緻密性が高くなり、かつ、固体電解質層11との結着性に優れる。これにより、全固体二次電池において層間剥離(デラミネーション)や反りが生じにくくなる。とりわけ、電極単位層20にサイドマージン領域30を設けたため、当該領域30による特性の劣化が生じにくくなるから、製品の高特性化と薄型化とが両立される。また、サイドマージン領域30においてNASICON構造ではない絶縁材料が存在するため、リーク電流の低下も期待される。
好適態様においては、サイドマージン領域30にはMOおよびML(PO4−cに加えて、固体電解質層11に含まれる「リチウムを含みNASICON構造をもつリン酸塩」と同一のリン酸塩も共存する。この共存により、サイドマージン領域30と固体電解質層11との結着性がさらに高まることが期待される。
サイドマージン領域30におけるMOおよびML(PO4−cの存在、さらに好適には前記リン酸塩の存在については、X線回折により確認することができる。典型的には、サイドマージン領域30の一部をサンプリングして、粉末X線回折により、MOおよびML(PO4−c、さらにリチウムを含みNASICON構造を持つリン酸塩の回折ピークの有無によりこれらの化学種の存在を確認することができる。ここで、サイドマージン領域30にNASICON構造を持つリン酸塩が含まれる場合、そのX線回折像におけるNASICON構造を持つリン酸塩のピーク強度は、MOおよび非NASICON構造のML(PO4−cのピーク強度の合計値よりも小さいことが好ましい。なお、X線回折により観測される程度とは、最強線を100としたときに、3以上のピーク強度を有するものである。
サイドマージン領域30の製法は特に限定は無く、好適例として、MOに相当する酸化物と固体電解質層11の製造のためのリン酸塩とが共存するグリーンシートを作製する方法が挙げられる。具体的には、固体電解質層11の製造のためのリン酸塩とMOに相当する酸化物とを水性溶媒や有機溶媒に均一に分散させ、場合によってはバインダーや可塑剤を添加してペーストを得て、このペーストを、上述した固体電解質層用のグリーンシート上における、電極領域21、22以外の領域に印刷する。印刷方法としては、スクリーン印刷が一般であるが、その手段は問わない。このとき、電極領域21、22の形成のための印刷とサイドマージン領域30の形成のための印刷との順序は問わない。
上述のサイドマージン領域30の形成のためのペーストに含まれる、MOに相当する酸化物と固体電解質層11の製造のためのリン酸塩との合計量に対するMOに相当する酸化物の量は、好ましくは40〜80vol%である。
積層体の製造については公知技術を適宜援用することができる。典型的には、電極領域21、22及びサイドマージン領域30のためのパターン印刷を施した固体電解質層11のためのグリーンシートを適宜積層して、各種手法で圧着し、チップ状にカットする。カットしてなる積層体の上下には電気的絶縁体であるグリーンシートを多層に積層させたカバー層を設けることができる。必要に応じて外部電極を形成させた後、焼成を行う。焼成の条件は酸化性雰囲気下あるいは非酸化性雰囲気下で、最高温度を好ましくは400℃〜1000℃、より好ましくは500℃〜900℃で行う。最高温度での保持時間は好ましくは10min〜10hrであり、より好ましくは30min〜5hrであり、さらに好ましくは1hr〜3hrである。短時間の保持だと構造体の内部と外側での焼成ムラの懸念が生じ、保持時間が長すぎると生産性が悪くなりプロセスコストが嵩む。最高温度に達するまでにバインダーを十分に除去するために酸化性雰囲気において最高温度より低い温度で保持する工程を設けてもよい。プロセスコストを低減するためにはできるだけ低温で焼成することが望ましい。焼成後に、再酸化処理を施してもよい。
以下、実施例により本発明をより具体的に説明する。ただし、本発明はこれらの実施例に記載された態様に限定されるわけではない。
[実施例1]
Li1.3Al0.3Ti1.7(PO(以下、LATP)からなる固体電解質を使用した。LATP、バインダー、可塑剤をエタノールとトルエンの混合液からなる有機溶剤中に均一に分散させ、LATPスラリーを得た。LATPスラリーをリバースコート方式にてPETフィルム上に塗工し、固体電解質用のLATPグリーンシートを作製した。
このLATPグリーンシート上に、スクリーン印刷法によりLiMnPOとバインダーからなる正極活物質ペーストを塗布し、その上からPdの導電性ペーストを塗布し、さらにその上に先の正極活物質ペーストを塗布することで、正極領域用のパターンをLATPグリーンシート上に形成した。同様に、別のLATPグリーンシート上に、負極領域用のパターンを形成した。このとき、負極活物質としてLiTiPOを用いた。
LATPとAlを、LATP/Alの体積比が4/6となるように、バインダーと伴にエタノール中に分散させることにより、サイドマージン領域用のペーストを得た。得られたペーストを、スクリーン印刷法によって、上述の正極領域用のパターンおよび負極領域用のパターンが形成されていないコの字状の領域に塗布し、サイドマージン領域用のパターンを得た。
正極領域用のパターン及びサイドマージン領域用のパターンが形成されたグリーンシートと、負極領域用のパターン及びサイドマージン領域用のパターンが形成されたグリーンシートとを、交互に合計20層積層し、その後、所定の大きさにカットして、カットした積層体を焼成炉にて大気下にて最高温度800℃(180分間保持)の焼成を行った。カットした後の積層体における各層の主面は24.6mm×16.5mmの寸法であり、正負の電極領域21、22は20.8mm×9.0mmの寸法の長方形であった。
焼成により得られた構造体について、構造不具合の有無を走査型電子顕微鏡(SEM)により観察した。その結果、反りや層間剥離がないことが確認された。また、サイドマージン領域について粉末XRD(リガク製、Ultima IV、ターゲットCu、加速電圧40KV、放電電流40mA、発散スリット幅1°、発散縦スリット幅10mm)にて測定を行った。粉末X線回折において各化学種の回折ピークを以下のように同定した。
LATP 2θ=14.7°、20.9°、24.5°
Al 2θ=25.6°、35.1°、43.3°
AlPO 2θ=20.3°、21.5°、23.0°
粉末X線回折の測定では、LATP、Al及びAlPOの全ての回折ピークが観測され、強度の強い順に、Al、AlPO、LATPであった。
[実施例2]
LATPとAlを、LATP/Alの体積比が8/2となるように、バインダーと伴にエタノール中に分散させることにより、サイドマージン領域用のペーストを得たこと以外は、実施例1と同様に構造体を作製・評価した。SEM観察の結果、反りや層間剥離がないことが確認された。粉末X線回折の測定において、LATP、Al及びAlPOの全ての回折ピークが観測され、強度の強い順に、AlPO、LATP、Alであった。
[比較例1]
サイドマージン領域用のパターンを設けないこと以外は実施例1と同様に構造体を作製・評価した。SEMの結果、反りと層間剥離の存在が確認された。
[比較例2]
サイドマージン領域用のペーストを、負極領域用のパターン及び正極領域用のパターンの周囲には塗布せず、上述の合計20層からなる積層体を形成した後の焼成前に、この積層体上下にサイドマージン領域用のペーストを塗布したこと以外は実施例1と同様に構造体を作製・評価した。SEMの結果、反りはなかったが、層間剥離の存在が確認された。
[比較例3]
サイドマージン領域用のペーストとして、Alを共存させずにLATPのみを用いたこと以外は、実施例1と同様に構造体を作製・評価した。SEMの結果、層間剥離はなかったが、反りの存在が確認された。粉末X線回折の測定では、LATPのピークのみが観測された。
1 全固体二次電池
10、11 固体電解質層
20 電極単位層
21、22 電極領域
30 サイドマージン領域

Claims (3)

  1. 正極単位層と負極単位層とが固体電解質層を介して交互に積層された積層構造を有し、
    固体電解質層はリチウムを含みNASICON構造をもつリン酸塩からなり、
    正極単位層および負極単位層は、集電体を少なくとも備える電極領域とサイドマージン領域とからなり、
    正極単位層および負極単位層の少なくとも一層におけるサイドマージン領域にはMOおよびML(PO4−c(但し、Mは両化学式において共通する金属元素であり、Lは前記固体電解層を構成するリン酸塩に含まれる金属元素であり、a>0、b≧0、4>c≧0、d>0である。)が含まれる、
    全固体二次電池。
  2. 前記MがAl、Zr、Ti、Si、Y、Ca及びGeからなる群から選ばれる少なくとも一種の金属元素である請求項1記載の全固体二次電池。
  3. 前記MOおよびML(PO4−cが含まれるサイドマージン領域に、さらに、固体電解質層に含まれるリン酸塩が含まれる請求項1又は2記載の全固体二次電池。
JP2013067440A 2013-03-27 2013-03-27 全固体二次電池 Pending JP2014192041A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013067440A JP2014192041A (ja) 2013-03-27 2013-03-27 全固体二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013067440A JP2014192041A (ja) 2013-03-27 2013-03-27 全固体二次電池

Publications (1)

Publication Number Publication Date
JP2014192041A true JP2014192041A (ja) 2014-10-06

Family

ID=51838103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013067440A Pending JP2014192041A (ja) 2013-03-27 2013-03-27 全固体二次電池

Country Status (1)

Country Link
JP (1) JP2014192041A (ja)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207540A (ja) * 2015-04-24 2016-12-08 ナミックス株式会社 高多層全固体型リチウムイオン二次電池の製造方法
CN109755653A (zh) * 2017-11-02 2019-05-14 太阳诱电株式会社 全固体电池
JP2019087347A (ja) * 2017-11-02 2019-06-06 太陽誘電株式会社 全固体電池
JP2019087348A (ja) * 2017-11-02 2019-06-06 太陽誘電株式会社 全固体電池
WO2019167821A1 (ja) * 2018-03-02 2019-09-06 株式会社村田製作所 全固体電池
WO2020070989A1 (ja) * 2018-10-02 2020-04-09 株式会社村田製作所 固体電池
US10700377B2 (en) 2017-01-17 2020-06-30 Samsung Electronics Co., Ltd. Solid electrolyte for a negative electrode of a secondary battery including first and second solid electrolytes with different affinities for metal deposition electronchemical cell and method of manufacturing
WO2020138040A1 (ja) * 2018-12-25 2020-07-02 Tdk株式会社 全固体電池
CN111566867A (zh) * 2018-01-10 2020-08-21 Tdk株式会社 全固体锂离子二次电池
WO2020184476A1 (ja) * 2019-03-08 2020-09-17 Tdk株式会社 全固体二次電池
US10840513B2 (en) 2018-03-05 2020-11-17 Samsung Electronics Co., Ltd. Solid electrolyte for a negative electrode of a secondary battery and methods for the manufacture of an electrochemical cell
WO2021079700A1 (ja) * 2019-10-23 2021-04-29 Tdk株式会社 全固体電池
WO2021095757A1 (ja) * 2019-11-12 2021-05-20 Tdk株式会社 固体電解質層、およびそれを用いた全固体電池
DE112019005965T5 (de) 2018-11-30 2021-08-12 Tdk Corporation Festkörpersekundärbatterie
CN113273015A (zh) * 2019-01-10 2021-08-17 Tdk株式会社 全固体电池
DE112020001211T5 (de) 2019-03-12 2021-12-02 Tdk Corporation Laminierte Festkörper-Sekundärzelle und Verfahren zur Herstellung derselben
WO2023214476A1 (ja) * 2022-05-02 2023-11-09 太陽誘電株式会社 全固体電池およびその製造方法

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016207540A (ja) * 2015-04-24 2016-12-08 ナミックス株式会社 高多層全固体型リチウムイオン二次電池の製造方法
US10700377B2 (en) 2017-01-17 2020-06-30 Samsung Electronics Co., Ltd. Solid electrolyte for a negative electrode of a secondary battery including first and second solid electrolytes with different affinities for metal deposition electronchemical cell and method of manufacturing
JP7042058B2 (ja) 2017-11-02 2022-03-25 太陽誘電株式会社 全固体電池
CN109755653A (zh) * 2017-11-02 2019-05-14 太阳诱电株式会社 全固体电池
JP2019087347A (ja) * 2017-11-02 2019-06-06 太陽誘電株式会社 全固体電池
US11056716B2 (en) 2017-11-02 2021-07-06 Taiyo Yuden Co., Ltd. All solid battery
JP7042059B2 (ja) 2017-11-02 2022-03-25 太陽誘電株式会社 全固体電池
US11908995B2 (en) 2017-11-02 2024-02-20 Taiyo Yuden Co., Ltd. All solid battery
CN109755653B (zh) * 2017-11-02 2023-09-29 太阳诱电株式会社 全固体电池
JP2019087348A (ja) * 2017-11-02 2019-06-06 太陽誘電株式会社 全固体電池
CN111566867B (zh) * 2018-01-10 2023-09-01 Tdk株式会社 全固体锂离子二次电池
CN111566867A (zh) * 2018-01-10 2020-08-21 Tdk株式会社 全固体锂离子二次电池
CN111480260B (zh) * 2018-03-02 2023-07-25 株式会社村田制作所 全固体电池
CN111480260A (zh) * 2018-03-02 2020-07-31 株式会社村田制作所 全固体电池
WO2019167821A1 (ja) * 2018-03-02 2019-09-06 株式会社村田製作所 全固体電池
US11424487B2 (en) 2018-03-02 2022-08-23 Murata Manufacturing Co., Ltd. Solid-state battery
JP7047896B2 (ja) 2018-03-02 2022-04-05 株式会社村田製作所 全固体電池
JPWO2019167821A1 (ja) * 2018-03-02 2020-12-03 株式会社村田製作所 全固体電池
US10840513B2 (en) 2018-03-05 2020-11-17 Samsung Electronics Co., Ltd. Solid electrolyte for a negative electrode of a secondary battery and methods for the manufacture of an electrochemical cell
US11942605B2 (en) * 2018-10-02 2024-03-26 Murata Manufacturing Co., Ltd. Solid-state battery
WO2020070989A1 (ja) * 2018-10-02 2020-04-09 株式会社村田製作所 固体電池
US20210210790A1 (en) * 2018-10-02 2021-07-08 Murata Manufacturing Co., Ltd. Solid-state battery
JP7180685B2 (ja) 2018-10-02 2022-11-30 株式会社村田製作所 固体電池
JPWO2020070989A1 (ja) * 2018-10-02 2021-09-02 株式会社村田製作所 固体電池
DE112019005965T5 (de) 2018-11-30 2021-08-12 Tdk Corporation Festkörpersekundärbatterie
CN113228375A (zh) * 2018-12-25 2021-08-06 Tdk株式会社 全固体电池
WO2020138040A1 (ja) * 2018-12-25 2020-07-02 Tdk株式会社 全固体電池
CN113228375B (zh) * 2018-12-25 2023-11-28 Tdk株式会社 全固体电池
CN113273015B (zh) * 2019-01-10 2023-11-21 Tdk株式会社 全固体电池
CN113273015A (zh) * 2019-01-10 2021-08-17 Tdk株式会社 全固体电池
CN113544891A (zh) * 2019-03-08 2021-10-22 Tdk株式会社 全固体二次电池
CN113544891B (zh) * 2019-03-08 2023-11-28 Tdk株式会社 全固体二次电池
WO2020184476A1 (ja) * 2019-03-08 2020-09-17 Tdk株式会社 全固体二次電池
DE112020001211T5 (de) 2019-03-12 2021-12-02 Tdk Corporation Laminierte Festkörper-Sekundärzelle und Verfahren zur Herstellung derselben
WO2021079700A1 (ja) * 2019-10-23 2021-04-29 Tdk株式会社 全固体電池
CN114556615A (zh) * 2019-10-23 2022-05-27 Tdk株式会社 全固体电池
WO2021095757A1 (ja) * 2019-11-12 2021-05-20 Tdk株式会社 固体電解質層、およびそれを用いた全固体電池
CN114651357A (zh) * 2019-11-12 2022-06-21 Tdk株式会社 固体电解质层、以及使用其的全固体电池
WO2023214476A1 (ja) * 2022-05-02 2023-11-09 太陽誘電株式会社 全固体電池およびその製造方法

Similar Documents

Publication Publication Date Title
JP2014192041A (ja) 全固体二次電池
TWI443888B (zh) 鋰離子電池
US11258095B2 (en) Solid-state rechargeable battery
WO2013175993A1 (ja) 全固体電池
JP6262129B2 (ja) 全固体電池およびその製造方法
WO2013008677A1 (ja) 全固体電池およびその製造方法
JPWO2013137224A1 (ja) 全固体電池およびその製造方法
JP5811191B2 (ja) 全固体電池およびその製造方法
JP6248498B2 (ja) 全固体電池およびその製造方法
JP6305862B2 (ja) 全固体二次電池及びその製造方法
JP6197495B2 (ja) 全固体電池
JP7027125B2 (ja) 全固体電池およびその製造方法
JP2019087348A (ja) 全固体電池
WO2014042083A1 (ja) 全固体電池、全固体電池用未焼成積層体、および全固体電池の製造方法
JP6748557B2 (ja) 全固体電池
US20140004417A1 (en) Active material, method for manufacturing active material, electrode, and lithium ion secondary battery
WO2013100002A1 (ja) 全固体電池およびその製造方法
JP2016066550A (ja) 全固体二次電池
JP7048466B2 (ja) 全固体電池
JP6801778B2 (ja) 全固体電池
JP6264807B2 (ja) 全固体電池およびその製造方法
CN110494931B (zh) 固体电解质和全固体二次电池
US11563236B2 (en) All-solid battery and manufacturing method of the same
JP6213340B2 (ja) 固体電解質及び全固体電池
WO2013035526A1 (ja) 全固体電池用積層成形体、全固体電池およびその製造方法