WO2020070989A1 - 固体電池 - Google Patents
固体電池Info
- Publication number
- WO2020070989A1 WO2020070989A1 PCT/JP2019/032426 JP2019032426W WO2020070989A1 WO 2020070989 A1 WO2020070989 A1 WO 2020070989A1 JP 2019032426 W JP2019032426 W JP 2019032426W WO 2020070989 A1 WO2020070989 A1 WO 2020070989A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- electrode layer
- negative electrode
- positive electrode
- layer
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 85
- 239000007787 solid Substances 0.000 claims description 110
- 239000000463 material Substances 0.000 claims description 56
- 239000000470 constituent Substances 0.000 claims description 23
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 5
- 229910001416 lithium ion Inorganic materials 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 255
- 239000000758 substrate Substances 0.000 description 39
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 25
- 229910052744 lithium Inorganic materials 0.000 description 25
- 238000000034 method Methods 0.000 description 21
- -1 phosphate compound Chemical class 0.000 description 19
- 229910019142 PO4 Inorganic materials 0.000 description 15
- 239000010452 phosphate Substances 0.000 description 15
- 238000010304 firing Methods 0.000 description 14
- 239000011521 glass Substances 0.000 description 14
- 239000007773 negative electrode material Substances 0.000 description 13
- 239000007774 positive electrode material Substances 0.000 description 13
- 238000005245 sintering Methods 0.000 description 13
- 238000010030 laminating Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000011241 protective layer Substances 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 229920005989 resin Polymers 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 10
- 239000004020 conductor Substances 0.000 description 9
- 238000003825 pressing Methods 0.000 description 9
- 239000002994 raw material Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 238000007599 discharging Methods 0.000 description 7
- 239000011368 organic material Substances 0.000 description 7
- 229910000679 solder Inorganic materials 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 239000010931 gold Substances 0.000 description 6
- 239000011810 insulating material Substances 0.000 description 6
- 150000002500 ions Chemical class 0.000 description 6
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 239000003792 electrolyte Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052697 platinum Inorganic materials 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 239000002228 NASICON Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000007650 screen-printing Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 239000011135 tin Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910000733 Li alloy Inorganic materials 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000001989 lithium alloy Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229920002799 BoPET Polymers 0.000 description 2
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910012425 Li3Fe2 (PO4)3 Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910000416 bismuth oxide Inorganic materials 0.000 description 2
- 229910052810 boron oxide Inorganic materials 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 2
- 229910001947 lithium oxide Inorganic materials 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 2
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 2
- 229910001950 potassium oxide Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 2
- 229910001948 sodium oxide Inorganic materials 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910019271 La0.55Li0.35TiO3 Inorganic materials 0.000 description 1
- 229910007857 Li-Al Inorganic materials 0.000 description 1
- 229910010406 Li1.2Al0.2Ti1.8(PO4)3 Inorganic materials 0.000 description 1
- 229910012735 LiCo1/3Ni1/3Mn1/3O2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910008447 Li—Al Inorganic materials 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- ONVGHWLOUOITNL-UHFFFAOYSA-N [Zn].[Bi] Chemical compound [Zn].[Bi] ONVGHWLOUOITNL-UHFFFAOYSA-N 0.000 description 1
- 239000011354 acetal resin Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- XBJJRSFLZVLCSE-UHFFFAOYSA-N barium(2+);diborate Chemical compound [Ba+2].[Ba+2].[Ba+2].[O-]B([O-])[O-].[O-]B([O-])[O-] XBJJRSFLZVLCSE-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012461 cellulose resin Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- DQUIAMCJEJUUJC-UHFFFAOYSA-N dibismuth;dioxido(oxo)silane Chemical compound [Bi+3].[Bi+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O.[O-][Si]([O-])=O DQUIAMCJEJUUJC-UHFFFAOYSA-N 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000000462 isostatic pressing Methods 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- 150000002642 lithium compounds Chemical class 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000005365 phosphate glass Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- OJMIONKXNSYLSR-UHFFFAOYSA-N phosphorous acid Chemical compound OP(O)O OJMIONKXNSYLSR-UHFFFAOYSA-N 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/04—Hybrid capacitors
- H01G11/06—Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/26—Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/50—Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/56—Solid electrolytes, e.g. gels; Additives therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/74—Terminals, e.g. extensions of current collectors
- H01G11/76—Terminals, e.g. extensions of current collectors specially adapted for integration in multiple or stacked hybrid or EDL capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G2/00—Details of capacitors not covered by a single one of groups H01G4/00-H01G11/00
- H01G2/02—Mountings
- H01G2/06—Mountings specially adapted for mounting on a printed-circuit support
- H01G2/065—Mountings specially adapted for mounting on a printed-circuit support for surface mounting, e.g. chip capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/131—Primary casings; Jackets or wrappings characterised by physical properties, e.g. gas permeability, size or heat resistance
- H01M50/133—Thickness
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
- H01M50/548—Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/562—Terminals characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/40—Printed batteries, e.g. thin film batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a solid state battery. More specifically, the present invention relates to a stacked solid state battery.
- secondary batteries that can be repeatedly charged and discharged have been used for various purposes.
- secondary batteries are used as power supplies for electronic devices such as smartphones and notebook computers.
- a liquid electrolyte is generally used as a medium for ion transfer that contributes to charge and discharge. That is, a so-called electrolytic solution is used for the secondary battery.
- a so-called electrolytic solution is used for the secondary battery.
- safety is generally required in terms of preventing leakage of the electrolyte.
- organic solvents and the like used for the electrolyte are flammable substances, safety is also required in that respect.
- solid-state batteries have been proposed that are surface-mounted on the same substrate as electronic circuits.
- a solid battery suitable for surface mounting on a printed circuit board has been proposed (see Patent Document 1).
- a solid-state battery configured to have a small area in contact with a substrate, an exterior, an adjacent solid-state battery, and an electronic component has been proposed (see Patent Document 2).
- a solid battery is formed by stacking a plurality of electrode materials (for example, a positive electrode layer, an electrolyte layer, and a current collecting layer). Therefore, for example, as shown in FIG. 1, in the solid-state battery 500, the thickness of the portion where the positive electrode layer 10 and the negative electrode layer 30 overlap (the overlapping portion 40) is the portion where the layers do not overlap (the non-overlapping portion 50 ⁇ / b> A). And 50B).
- the electrode layers may expand / shrink as ions move between the positive and negative electrode layers via the solid electrolyte layer 20. For this reason, when using a solid-state battery, the thickness of the overlapping portion 40 may be even greater than the thickness of the non-overlapping portions 50A and 50B.
- a main object of the present invention is to provide a more suitable solid-state battery, particularly for surface mount products.
- one embodiment of the present invention provides: A solid state battery, Positive electrode layer, negative electrode layer, and a solid battery laminate including at least one battery structural unit including a solid electrolyte layer interposed between the positive electrode layer and / or the negative electrode layer along the laminating direction,
- the positive electrode layer and the negative electrode layer in the laminating direction are composed of overlapping portions that overlap each other and the non-overlapping portions where the positive electrode layer and the negative electrode layer do not overlap each other,
- Provide batteries Provide batteries.
- the solid-state battery of the present invention is a more suitable solid-state battery especially for surface mount products.
- the solid state battery of the present invention at least one main surface is provided with a recess, and the recess is positioned so as to overlap the overlapping portion.
- the main surface having the recess can be the surface on the mounting surface side, so that the separation distance between the main surface of the overlapping portion and the substrate surface can be further increased. That is, even when the electrode layer expands during charging and discharging, it is possible to prevent the contact between the main surface of the overlapping portion and the substrate.
- FIG. 1 is a cross-sectional view schematically showing a conventional solid battery stack.
- FIG. 2 is a cross-sectional view schematically showing a solid-state battery using the solid-state battery stack shown in FIG. 1 surface-mounted on a substrate.
- 3A to 3C are cross-sectional views schematically showing a solid state battery (a solid state battery having a step formed by a solid electrolyte material) according to an embodiment of the present invention.
- 4A and 4B are cross-sectional views schematically showing a solid state battery (a solid state battery having a step due to the thickness of an external terminal) according to an embodiment of the present invention.
- FIG. 5 is a cross-sectional view schematically showing the solid-state battery according to the embodiment of FIG. 3A surface-mounted on a substrate.
- FIG. 6 is a cross-sectional view schematically showing the solid-state battery according to the embodiment of FIG. 4A surface-mounted on a substrate.
- 7A and 7B are schematic diagrams of a solid-state battery (a solid-state battery in which a recess is provided at any edge of a main surface) according to an embodiment of the present invention (FIG. 7A: plan view, FIG. 7B). :Perspective view).
- 8A and 8B are schematic diagrams of a solid-state battery (a solid-state battery in which a recess is provided inside an edge of a main surface) according to an embodiment of the present invention (FIG. 8A: plan view, FIG. Perspective view).
- FIGS. 9A to 9C are diagrams illustrating a method of forming a depression on the main surface in the solid state battery according to the embodiment of FIGS. 7A and 7B (FIGS. 9A and 9B: a method by a green sheet method, FIG. 9C: Press method).
- ⁇ “ Plan view ”in this specification is based on a form in which an object is viewed from above or below along the thickness direction based on the stacking direction of each layer constituting the solid state battery.
- “cross-sectional view” refers to a form when viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of each layer constituting the solid state battery (in short, parallel to the thickness direction). Form when cut out on any surface).
- the “vertical direction” and the “horizontal direction” used directly or indirectly in this specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same reference numeral or symbol indicates the same member / part or the same meaning.
- the downward direction in the vertical direction that is, the direction in which gravity acts
- the opposite direction corresponds to “upward”.
- the “solid state battery” in the present invention refers to a battery whose constituent elements are composed of a solid in a broad sense, and its constituents (particularly preferably all constituents) are composed of a solid in a narrow sense. Refers to all solid state batteries.
- the solid state battery according to the present invention is a stacked solid state battery in which layers constituting a battery constituent unit are stacked on each other, and preferably, each such layer is formed of a sintered body.
- the “solid state battery” includes not only a so-called “secondary battery” capable of repeating charging and discharging, but also a “primary battery” capable of discharging only.
- the “solid state battery” is a secondary battery.
- the term “secondary battery” is not excessively limited by its name, and may include, for example, a "power storage device”.
- the solid-state battery has a solid-state battery stack including at least one battery constituent unit including a positive electrode layer, a negative electrode layer, and a solid electrolyte interposed therebetween along the stacking direction.
- the positive electrode layer, the negative electrode layer, the solid electrolyte layer, and the like form a sintered layer.
- each of the positive electrode layer, the negative electrode layer, and the solid electrolyte is integrally fired with each other, so that the battery constituent units form an integrated sintered body.
- the positive electrode layer is an electrode layer containing at least a positive electrode active material.
- the positive electrode layer may further include a solid electrolyte and / or a positive electrode current collecting layer.
- the positive electrode layer is formed of a sintered body including at least positive electrode active material particles, solid electrolyte particles, and a positive electrode current collecting layer.
- the negative electrode layer is an electrode layer containing at least a negative electrode active material.
- the negative electrode layer may further include a solid electrolyte and / or a negative electrode current collecting layer.
- the negative electrode layer is formed of a sintered body including at least negative electrode active material particles, solid electrolyte particles, and a negative electrode current collecting layer.
- the positive electrode active material and the negative electrode active material are substances involved in the transfer of electrons in the solid state battery.
- the ions move (conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and exchange of electrons is performed, whereby charging and discharging are performed.
- the positive electrode layer and the negative electrode layer are particularly preferably layers capable of inserting and extracting lithium ions. That is, it is preferable that the battery is an all-solid-state secondary battery in which lithium ions move between the positive electrode layer and the negative electrode layer via the solid electrolyte to charge and discharge the battery.
- Examples of the positive electrode active material included in the positive electrode layer include a lithium-containing phosphate compound having a NASICON-type structure, a lithium-containing phosphate compound having an olivine-type structure, a lithium-containing layered oxide, and a lithium-containing layered oxide having a spinel-type structure. At least one selected from the group consisting of oxides and the like is included.
- An example of a lithium-containing phosphate compound having a NASICON-type structure includes Li 3 V 2 (PO 4 ) 3 .
- Examples of the lithium-containing phosphate compound having an olivine type structure include Li 3 Fe 2 (PO 4 ) 3 and LiMnPO 4 .
- Examples of the lithium-containing layered oxide include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, and the like.
- Examples of the lithium-containing oxide having a spinel structure include LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 .
- Examples of the negative electrode active material included in the negative electrode layer include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo, graphite-lithium compounds, lithium alloys, Examples include at least one selected from the group consisting of a lithium-containing phosphate compound having a NASICON-type structure, a lithium-containing phosphate compound having an olivine-type structure, and a lithium-containing oxide having a spinel-type structure.
- An example of the lithium alloy includes Li-Al.
- An example of a lithium-containing phosphate compound having a NASICON-type structure includes Li 3 V 2 (PO 4 ) 3 .
- lithium-containing phosphate compound having an olivine type structure Li 3 Fe 2 (PO 4 ) 3 and the like can be given.
- Li 4 Ti 5 O 12 or the like can be given.
- the positive electrode layer and / or the negative electrode layer may include an electron conductive material.
- the electron conductive material contained in the positive electrode layer and / or the negative electrode layer include at least one kind of metal material such as silver, palladium, gold, platinum, aluminum, copper, and nickel, and carbon.
- metal material such as silver, palladium, gold, platinum, aluminum, copper, and nickel, and carbon.
- copper is preferable because it hardly reacts with the positive electrode active material, the negative electrode active material, the solid electrolyte material, and the like, and is effective in reducing the internal resistance of the solid battery.
- the positive electrode layer and / or the negative electrode layer may contain a sintering aid.
- the sintering aid include at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide.
- the thicknesses of the positive electrode layer and the negative electrode layer are not particularly limited, and may be, for example, independently 2 ⁇ m or more and 50 ⁇ m or less, particularly 5 ⁇ m or more and 30 ⁇ m or less.
- the solid electrolyte is a material that can conduct lithium ions.
- the solid electrolyte constituting a battery constituent unit in a solid battery forms a layer through which lithium ions can be conducted between the positive electrode layer and the negative electrode layer.
- the solid electrolyte may be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte may be present around the positive electrode layer and / or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer.
- the solid electrolyte examples include a lithium-containing phosphate compound having a NASICON structure, an oxide having a perovskite structure, and an oxide having a garnet-type or garnet-like structure.
- the lithium-containing phosphoric acid compound having a NASICON structure Li x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2,1 ⁇ y ⁇ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr Selected at least one).
- Examples of the lithium-containing phosphate compound having a NASICON structure include, for example, Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like.
- La 0.55 Li 0.35 TiO 3 and the like are given.
- an oxide having a garnet-type or garnet-like structure Li 7 La 3 Zr 2 O 12 and the like can be given.
- the solid electrolyte layer may include a sintering aid.
- the sintering aid included in the solid electrolyte layer may be selected from, for example, the same materials as the sintering aid that can be included in the positive electrode layer and / or the negative electrode layer.
- the thickness of the solid electrolyte layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 15 ⁇ m or less, particularly 1 ⁇ m or more and 5 ⁇ m or less.
- Positive electrode current collecting layer / negative electrode current collecting layer It is preferable to use a material having high conductivity as the positive electrode current collecting layer constituting the positive electrode current collecting layer and the negative electrode current collecting layer constituting the negative electrode current collecting layer, for example, silver, palladium, gold, platinum, aluminum, copper And at least one selected from the group consisting of nickel.
- copper is preferable because it hardly reacts with the positive electrode active material, the negative electrode active material, and the solid electrolyte material, and is effective in reducing the internal resistance of the solid battery.
- Each of the positive electrode current collecting layer and the negative electrode current collecting layer may have an electrical connection portion for electrically connecting to the outside, and may be configured to be electrically connectable to a terminal.
- the positive electrode current collecting layer and the negative electrode current collecting layer may each have the form of a foil, but preferably have the form of integral sintering from the viewpoint of improving electron conductivity and reducing manufacturing cost by integral sintering.
- the positive electrode current collecting layer and the negative electrode current collecting layer may be composed of a sintered body containing an electron conductive material and a sintering aid.
- the electron conductive material included in the positive electrode current collecting layer and the negative electrode current collecting layer may be selected, for example, from the same materials as the electron conductive material that can be included in the positive electrode layer and / or the negative electrode layer.
- the sintering aid included in the positive electrode current collecting layer and the negative electrode current collecting layer may be selected, for example, from the same material as the sintering aid that can be included in the positive electrode layer and / or the negative electrode layer.
- the thicknesses of the positive electrode current collecting layer and the negative electrode current collecting layer are not particularly limited, and may be, for example, each independently 1 ⁇ m or more and 5 ⁇ m or less, particularly 1 ⁇ m or more and 3 ⁇ m or less.
- the insulating layer is formed, for example, between one battery constituent unit and the other battery constituent unit adjacent to each other along the laminating direction. As a result, it is possible to avoid the movement of ions between adjacent battery constituent units, and to prevent excessive occlusion and release of ions.
- the insulating layer may be formed so as to be adjacent to the positive electrode layer and / or the negative electrode layer in a plan view of the solid state battery.
- the insulating layer refers to a layer made of a material that does not conduct electricity, that is, a non-conductive material in a broad sense, and a layer made of an insulating material in a narrow sense.
- the insulating layer can be made of, for example, a glass material, a ceramic material, or the like.
- a glass material may be selected as the insulating layer.
- the glass material is soda-lime glass, potash glass, borate-based glass, borosilicate-based glass, barium borosilicate-based glass, borate sub-salt-based glass, barium borate-based glass, At least one selected from the group consisting of bismuth borosilicate glass, bismuth zinc borosilicate glass, bismuth silicate glass, phosphate glass, aluminophosphate glass, and phosphite glass Can be mentioned.
- the protective layer can be generally formed on the outermost side of the solid state battery, and is for protecting electrically, physically and / or chemically. It is preferable that the material forming the protective layer is excellent in insulation, durability and / or moisture resistance, and is environmentally safe. For example, it is preferable to use glass, ceramics, a thermosetting resin, and / or a photocurable resin.
- An external terminal is generally provided in a solid-state battery.
- positive and negative external terminals are provided on the side surface of the solid battery so as to form a pair.
- an external terminal on the positive electrode side connected to the positive electrode layer and an external terminal on the negative electrode side connected to the negative electrode layer are provided as a pair. It is preferable to use a material having high conductivity for such external terminals.
- the material of the external terminal is not particularly limited, but may be at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel.
- the solid state battery of the present invention is a solid state battery including an overlapping portion in which the positive electrode layer and the negative electrode layer overlap each other and a non-overlapping portion in which the positive electrode layer and the negative electrode layer do not overlap each other, and have a normal in the stacking direction.
- the shape of at least one main surface is characterized.
- a dent is provided on at least one main surface having a normal in the stacking direction, and the dent is positioned so as to overlap the overlapping portion. Are positioned at the non-overlapping portions.
- the main surface having a recess particularly, one main surface of the two opposing main surfaces
- faces the mounting surface that is, directly faces the substrate.
- ⁇ The“ overlap portion ”in the present invention refers to a portion where both the positive electrode layer and the negative electrode layer exist in the electrode stacking direction.
- elements other than the positive electrode layer and the negative electrode layer for example, portions such as a solid electrolyte layer (material), an external terminal, and a protective layer May be included.
- the “non-overlapping portion” refers to a portion where either the positive electrode layer or the negative electrode layer exists in the stacking direction or where neither the positive electrode layer nor the negative electrode layer exists.
- the protection It may include portions such as layers.
- ⁇ The“ principal surface ”in the present invention refers to a surface having a normal in the direction of lamination of the electrodes in the solid state battery.
- At least one main surface refers to both or any of two opposing main surfaces.
- one of “at least one main surface” may be a surface on the mounting surface side.
- “Dent” refers to a shape in which a part of the main surface is depressed by a step positioned around the main surface. In other words, it means that there are portions having different thicknesses in the solid state battery, and the thickness of the “step” portion is larger than the thickness of the “dent” portion.
- the “step” in the main surface indicates a portion having a form in which the surface forming the main surface protrudes along the laminating direction.
- the “step” may be a portion having a form projecting so as to form a tapered slope (ie, form an angle with respect to the stacking direction).
- The“ solid battery stack ” includes at least one battery constituent unit including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and / or the negative electrode layer along the stacking direction.
- the solid battery stack 500 includes a plurality of battery constituent units in which a positive electrode layer 10, a solid electrolyte layer 20, and a negative electrode layer 30 are provided in this order in a sectional view.
- the solid battery stack 500 ′ includes a portion in which the positive electrode layer 10 and / or the negative electrode layer 30 are continuously stacked via the solid electrolyte layer 20 in a cross-sectional view, that is, a portion including a battery constituent unit. .
- the “solid electrolyte layer interposed between the positive electrode layer and / or the negative electrode layer” refers to a solid positioned between the positive electrode layer and the negative electrode layer. Refers to the electrolyte layer. In the exemplary embodiment shown in FIG. 3A, it indicates the solid electrolyte layer 20 between the positive electrode layer 10 and the negative electrode layer 30 in the overlapping portion 40.
- the “solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer” refers to a solid electrolyte layer positioned between the positive electrode layers or a solid electrolyte layer positioned between the negative electrode layers. In the example shown in FIG.
- the solid electrolyte layer 20A between two adjacent positive electrode layers 10 in the non-overlapping portion 50A is indicated, or the solid electrolyte layer 20A is positioned between two adjacent negative electrode layers 30 in the non-overlapping portion 50B.
- the solid electrolyte layer 20B is indicated, or the solid electrolyte layer 20A is positioned between two adjacent negative electrode layers 30 in the non-overlapping portion 50B.
- the solid-state battery laminate includes a solid electrolyte material present outside the battery constituent unit or a portion composed of the battery constituent unit.
- the “outside solid electrolyte material” refers to a portion composed of battery constituent units (that is, the positive electrode layer 10 and the negative electrode layer in the cross-sectional view of the solid battery stack 500 ′).
- 30 indicates a solid electrolyte material 20 'provided outside the solid electrolyte layer 20).
- FIG. 3A the “outside solid electrolyte material” refers to a portion composed of battery constituent units (that is, the positive electrode layer 10 and the negative electrode layer in the cross-sectional view of the solid battery stack 500 ′).
- a portion where the battery constituent unit exists that is, a portion of the positive electrode layer portion 10 ⁇ / b> A, the negative electrode layer portion 30 ⁇ / b> B, and the overlapping portion 40. It refers to the solid electrolyte material 20 'provided outside.
- the solid electrolyte material is provided such that the step in the non-overlapping portion exists at the outermost side in the stacking direction of the solid battery stack, and is formed by the solid electrolyte material.
- “outermost in the stacking direction” refers to a portion located outermost in the stacking direction when the solid battery stack is viewed in cross section.
- the positive electrode layer 10 and the negative electrode layer 30 extend so as to terminate at the positive end surface 500'A and the negative end surface 500'B, respectively.
- the positive electrode layer 10 and the negative electrode layer 30 are exposed at the positive end face 500'A and the negative end face 500'B, respectively.
- Such a solid-state battery 500 includes an overlapping portion 40 where the positive electrode layer 10 and the negative electrode layer 30 overlap, and a positive non-overlapping portion 50A and a negative non-overlapping portion 50B where the positive electrode layer 10 and the negative electrode layer 30 do not overlap. ing.
- the solid battery laminate 500 ' is provided with the solid electrolyte material 20' so as to exist at the outermost position in the stacking direction.
- a step 100 is formed by the solid electrolyte material 20 ′ in the non-overlapping portions 50 ⁇ / b> A and 50 ⁇ / b> B so that the main surface 550 of the solid battery 500 is provided with a recess.
- the step 100 may be formed at the boundary between the overlapping portion 40 and the non-overlapping portions 50A and / or 50B (see FIG. 3A), and as shown in FIG. 3B or 3C, any one of the non-overlapping portions 50A and 50B. It may be formed at a location. In addition, by forming such a step together with the form of the solid electrolyte material, the step can be easily installed.
- the step in the non-overlapping portion is formed by the thickness of the external terminal extending to at least one main surface of the solid state battery stack.
- the positive terminal electrically connected to the positive electrode layer 10 at the opposite side surface of the solid-state battery stack that is, at the ends of the positive-side non-overlapping portion 50A and the negative-side non-overlapping portion 50B.
- 60A and a negative electrode terminal 60B electrically connected to the negative electrode layer 30 extend so as to reach the main surface, respectively.
- a step 100 is formed by the thickness of the positive electrode terminal 60A and the negative electrode terminal 60B so that a recess is provided in the main surface of the solid state battery 500.
- a step 100 ′ (first sub-step) formed by the thickness of the external terminal reaching the main surface, and a step 100 ′ formed by the solid electrolyte material 20 ′.
- ' (Second sub-step) forms a step 100.
- the desired larger step size ie, “D” in FIG. 4B
- the “step size” in this specification corresponds to the separation distance between the main surface of the overlapping portion and the substrate in a solid-state battery, assuming that the solid-state battery is surface-mounted.
- the solid electrolyte material 20 ′ provided at the outermost side in the stacking direction of the solid battery stack may form the step 100 (see FIGS. 3A to 3C), and at least one of the solid batteries may be formed.
- the thickness of the external terminal (60A and / or 60B) extending to the main surface may form the step 100 (see FIG. 4A).
- the thickness of the solid electrolyte material 20 ′ provided on the outermost side in the stacking direction of the solid battery stack and the thickness of the external terminals (60 A and / or 60 B) extending so as to reach at least one main surface. May be combined to form the step 100 (see FIG. 4B).
- the thickness of the protective layer in the non-overlapping portion provided in the solid state battery stack may contribute to the formation of the step.
- the dimension of the step (ie, “D” in FIGS. 3 and 4) on the one main surface provided with the depression is the dimension of the overlapping portion (ie, FIGS. 3 and 4). 1% or more and 10% or less.
- the size of the step may be 2% or more and 5% or less of the size of the overlapping portion.
- a desired step size can be more easily achieved.
- the dimension in the stacking direction referred to in the present specification refers to a dimension measured based on a shape viewed in a cross-sectional view.
- the “dimension of the step” and the “dimension of the overlapping portion” described above may be measured nondestructively using a 3D shape measuring instrument (Keyence VK-X1000).
- a step may be positioned on both the positive side non-overlapping part and the negative side non-overlapping part, and the dimensions of the steps of the positive side non-overlapping part and the negative side non-overlapping part in the stacking direction are the same. There may be.
- a step may be positioned at the non-overlapping portion on the positive electrode side and the non-overlapping portion on the negative electrode side on both of the opposing main surfaces of the solid state battery so that mounting can be performed on either of the surfaces.
- steps are positioned at the non-overlapping portions 50A and 50B on both of the opposing main surfaces 550 of the solid state battery 500.
- the solid state battery having the above-described configuration When the solid-state battery having the above-described configuration is surface-mounted (see FIGS. 5 and 6), the separation distance between the main surface of the overlapping portion 40 and the substrate 90 can be increased, and the main portion of the expanded overlapping portion can be formed. The contact between the surface 40 ′ and the substrate 90 can be prevented.
- the solid state battery of the present invention can be said to be an SMD (Surface Mount Device) type battery.
- the solid state battery of the present invention can be suitably mounted on a substrate such as a printed wiring board.
- a solid state battery can be surface-mounted through solder reflow or the like.
- the substrate may be provided with a protection circuit or the like for protecting the solid state battery from overcharge / discharge or overcurrent.
- the substrate may be provided with a substrate terminal for electrically connecting the solid state battery.
- the depression is positioned so as to extend to any edge of at least one main surface of the solid-state battery stack.
- a portion including the positive electrode layer portion 10 ⁇ / b> A, the negative electrode layer portion 30 ⁇ / b> B, and the overlapping portion 40 that is, a portion where the battery constituent unit exists
- a solid electrolyte material 20 ' is provided outside such a portion.
- “Positive electrode layer portion 10A” refers to a portion of the electrode layer where only the positive electrode layer is present in plan view of solid battery stack 500 ′
- negative electrode layer portion 30B” means that only the negative electrode layer is present.
- the width dimension W 30B of the negative electrode layer section 30B is formed larger than the width dimension W 10A of the positive electrode layer section 10A.
- a step 100A is positioned at the boundary between the non-overlapping portion 50A and the overlapping portion 40 on the positive electrode side
- the step 100B is positioned at the boundary between the non-overlapping portion 50B and the overlapping portion 40 on the negative electrode side.
- the depression of the main surface is positioned so that the electrode layer extends to the opposite end surface (edge) that does not end outward.
- a space that is open to the outside is provided between the main surface of the solid-state battery and the substrate on the mounting surface side, so that the space is surrounded by the solid-state battery. It can be a flow path of the atmosphere. Without being bound by any particular theory, this can improve gas flow between the main surface of the solid state battery and the substrate on the mounting surface side, and can prevent overheating of the solid state battery. Further, in the solder reflow at the time of surface mounting, a space in which the solder expanded by melting and expanding can be more secured, so that a solder flash can be prevented.
- the recess is positioned inside the edge so as not to extend to the edge of at least one main surface of the solid-state battery stack.
- FIG. 8A and FIG. 8B in a plan view of the solid state battery 500, an end surface in which each of the electrode layers in the positive electrode layer portion 10 ⁇ / b> A and the negative electrode layer portion 30 ⁇ / b> B does not end outward (that is, 500 in FIG.
- the solid electrolyte material 20 ′ (the center-side non-overlapping portion 50 ⁇ / b> C) is provided between the overlapping portion 40 and the end surfaces of the 'C and 500 ′ D).
- the step 100A is positioned at the boundary between the non-overlapping portion 50A on the positive electrode side and the overlapping portion 40 in the solid battery 500
- the step 100B is positioned at the boundary between the non-overlapping portion 50B on the negative electrode side and the overlapping portion 40.
- a step 100C is positioned at the boundary between the central non-overlapping portion 50C and the overlapping portion 40.
- the recess is positioned inside the edge 110 so that the recess does not reach the edge 110 of the main surface.
- a smaller gap between the main surface of the solid-state battery and the substrate surface (that is, a gap between the entire main surface except for the overlapping portion 40 and the substrate) is formed around the periphery of the main surface. Can bring to the whole.
- the resin can be prevented from easily entering the space between the main surface of the overlapping portion of the solid battery and the substrate. That is, it is possible to prevent such an inconvenience that the clearance provided between the main surface of the overlapping portion of the solid state battery and the surface of the substrate is reduced by the flowing resin.
- the solid state battery of the present invention can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof.
- a predetermined laminate is formed by a green sheet method, and a solid electrolyte layer sheet or the like is provided by screen printing on a side region of the laminate in a formation stage, thereby finally relating to one embodiment of the present invention.
- Solid state batteries can be manufactured.
- description will be given on the premise of this aspect, but the present invention is not limited to this, and a predetermined laminate may be formed by a screen printing method or the like.
- a paste for a solid electrolyte layer a paste for a positive electrode active material layer, a paste for a positive electrode current collector layer, a paste for a negative electrode active material layer, a paste for a negative electrode current collector layer, a paste for an insulating layer on each base material (eg, a PET film) , And a protective layer paste.
- Each paste contains a predetermined constituent material of each layer appropriately selected from the group consisting of a positive electrode active material, a negative electrode active material, a conductive material, a solid electrolyte material, an insulating material, and a sintering aid, and a solvent.
- a positive electrode active material layer contains, for example, a positive electrode active material, a conductive material, a solid electrolyte material, an organic material, and a solvent.
- the negative electrode active material layer paste includes, for example, a negative electrode active material, a conductive material, a solid electrolyte material, an organic material, and a solvent.
- the positive electrode current collector layer paste / negative electrode current collector layer paste for example, at least one selected from the group consisting of silver, palladium, gold, platinum, aluminum, copper, and nickel may be selected.
- the solid electrolyte layer paste contains, for example, a solid electrolyte material, a sintering aid, an organic material, and a solvent.
- the protective layer paste contains, for example, an insulating material, an organic material, and a solvent.
- the insulating layer paste contains, for example, an insulating material, an organic material, and a solvent.
- a medium can be used, and specifically, a ball mill method or a biscomil method can be used.
- a wet mixing method using no media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
- the solid electrolyte material contained in the solid electrolyte layer paste includes, as described above, a lithium-containing phosphate compound having a NASICON structure, an oxide having a perovskite structure, and / or an oxide having a garnet-type or garnet-like structure. May be selected.
- Examples of the positive electrode active material contained in the positive electrode active material layer paste include a lithium-containing phosphate compound having a NASICON-type structure, a lithium-containing phosphate compound having an olivine-type structure, a lithium-containing layered oxide, and a spinel-type structure. At least one selected from the group consisting of lithium-containing oxides and the like.
- the insulating material contained in the insulating layer paste may be, for example, a glass material, a ceramic material, or the like.
- the insulating material contained in the protective layer paste for example, it is preferable to use at least one selected from the group consisting of a glass material, a ceramic material, a thermosetting resin material, a photocurable resin material, and the like.
- the organic material contained in the paste is not particularly limited, but includes at least one polymer material selected from the group consisting of polyvinyl acetal resin, cellulose resin, polyacrylic resin, polyurethane resin, polyvinyl acetate resin, polyvinyl alcohol resin, and the like. Can be used.
- the solvent is not particularly limited as long as it can dissolve the organic material, and for example, toluene and / or ethanol can be used.
- Examples of the negative electrode active material included in the negative electrode active material layer paste include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo;
- the sintering aid may be at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide.
- the coated paste is dried on a hot plate heated to 30 ° C. or higher and 50 ° C. or lower to form a solid electrolyte layer sheet having a predetermined shape and thickness on a substrate (eg, a PET film), a positive electrode / negative electrode sheet, And an insulating layer sheet.
- each sheet is peeled from the base material. After peeling, the sheets of each component of one of the battery constituent units are sequentially laminated along the laminating direction, and then the insulating layer sheet is laminated. Then, the sheets of the components of the other battery constituent unit are sequentially stacked on the insulating layer sheet along the stacking direction.
- a solid electrolyte layer sheet or an insulating layer sheet may be provided by screen printing on a side area of the electrode sheet.
- thermocompression bonding at a predetermined pressure (for example, 50 MPa or more and 100 MPa or less), and then perform isostatic pressing at a predetermined pressure (for example, 150 MPa or more and 300 MPa or less).
- a predetermined pressure for example, 50 MPa or more and 100 MPa or less
- isostatic pressing at a predetermined pressure (for example, 150 MPa or more and 300 MPa or less).
- a predetermined laminated body can be formed.
- the obtained predetermined laminate is fired.
- the calcination is performed by heating at, for example, 600 ° C. or more and 1000 ° C. or less in a nitrogen gas atmosphere or the air.
- At least one main surface having a normal line in the stacking direction is provided with a recess, and the recess is positioned so as to overlap at least the overlapping portion, and the step due to the recess is positioned at the non-overlapping portion.
- the first exemplary manufacturing method includes a step of laminating a concave or hollow solid electrolyte green sheet and another green sheet including an electrode layer and the like by coating, and a step of laminating the unfired laminate obtained in the laminating step with gold. It includes a step of pressing with a mold and a step of firing the unfired laminate after pressing.
- the range corresponding to the concave portion or the hollow portion in plan view of the concave or hollow solid electrolyte green sheet is the range corresponding to the overlapping portion of the positive electrode layer and the negative electrode layer in plan view of another green sheet. And are positioned so as to overlap.
- the concave or hollow solid electrolyte green sheet may be laminated at any position in the unfired laminate, but from the viewpoint of workability and uniformity of the laminate structure, the solid electrolyte green sheet is laminated on the outermost layer in the unfired laminate. Preferably. By using such a manufacturing method, a desired solid state battery in the present invention can be obtained.
- a flat green sheet 120A and a concave green sheet 120B are laminated such that the concave green sheet 120B is positioned on the outermost surface.
- the concave portion 125 of the concave green sheet 120B is positioned and stacked so as to overlap the range corresponding to the overlapping portion of the positive electrode layer and the negative electrode layer in the flat green sheet 120A.
- the desired solid battery according to the present invention can be obtained by pressing the obtained unsintered laminate with a mold and then firing.
- a resin raw material paste or resin filler in which a portion corresponding to the concave or hollow disappears during firing And a method using a green sheet formed by using the method.
- Other steps are the same as in the first manufacturing method.
- a flat green sheet 120A and a green sheet 120C using a raw material that disappears during firing are laminated such that the green sheet 120C using a raw material that disappears during firing is located on the outermost surface.
- the raw material portion 130 that disappears during firing in the green sheet 120C using the raw material that disappears during firing is positioned so as to overlap the range corresponding to the overlapping portion of the positive electrode layer and the negative electrode layer in the flat green sheet 120A.
- the obtained unsintered laminate is pressed with a mold, and then fired in an oven 140 while evaporating the raw material portion 130 that disappears during firing, thereby obtaining a desired solid state battery in the present invention.
- a third exemplary manufacturing method includes a step of laminating all the electrode layers and the solid electrolyte layers as a flat green sheet, and a step of pressing the unsintered laminate obtained in the laminating step with a convex-shaped mold. And a step of firing the unfired laminate after pressing.
- the pressing is performed by positioning the range of the convex portion in the convex mold so as to overlap the range corresponding to the overlapping portion of the positive electrode layer and the negative electrode layer in plan view of the green sheet.
- ⁇ This will be described with reference to the example shown in FIG. 9C.
- a flat green sheet 120A is laminated, and the obtained unsintered laminated body is pressed by a convex mold 150.
- the convex portion 155 of the convex mold is positioned and pressed so as to overlap the area corresponding to the overlapping portion of the positive electrode layer and the negative electrode layer in the flat green sheet 120A.
- the desired solid battery according to the present invention can be obtained by firing the pressed green laminate.
- external terminals are attached to the obtained solid state battery.
- the terminals are provided so as to be electrically connectable to the positive electrode layer and the negative electrode layer, respectively.
- the external terminal is preferably made of at least one selected from silver, gold, platinum, aluminum, copper, tin, and nickel.
- external terminals can be provided so as to reach the main surface of the solid-state battery. Further, the thickness of the external terminal can be adjusted so as to obtain a desired step size in the stacking direction.
- a protective layer is provided to such an extent that the terminal is not covered by sputtering, spray coating or the like.
- a protective layer is provided so as to extend at least to the main surface of the solid state battery, and the portion of the protective layer can be formed thicker than other portions.
- the solid-state battery By providing external terminals, the solid-state battery can be surface-mounted on a substrate and connected.
- the mounting of the solid battery on the substrate is performed by positioning the positive electrode terminal and the negative electrode terminal at positions where the bonding material is applied onto the substrate terminals of the substrate such that the main surface of the solid battery having the recess is the surface on the mounting surface side. And place them together.
- the bonding material may use solder for electric wiring.
- the positive electrode terminal and the negative electrode terminal are bonded to the substrate by a bonding material by a solder reflow, and a battery mounting substrate is obtained. Specifically, as shown in FIG.
- the solid-state battery 500 is arranged such that the positions of the positive electrode terminal 60A and the negative electrode terminal 60B are aligned with the position where the bonding material 70 is applied on the substrate terminal 80 of the substrate 90, By solder reflow, 60A and negative electrode terminal 60B and substrate 90 are joined by joining material 70.
- the present invention is not necessarily limited to this.
- a positive electrode layer, a negative electrode layer, a solid electrolyte layer, a dent is provided on at least one main surface having a normal in the stacking direction, and such a dent is positioned so as to overlap the overlapping portion and As long as the step caused by the dent is positioned in the non-overlapping portion, the present invention can be applied to any type of the step.
- the solid state battery of the present invention can be used in various fields where power storage is assumed.
- the solid state battery of the present invention can be used in the fields of electricity, information and communication where mobile devices and the like are used (for example, mobile phones, smartphones, notebook computers and digital cameras, activity meters, arm computers, electronic papers).
- Mobile equipment field mobile equipment field
- home and small industrial applications for example, electric tools, golf carts, home, nursing and industrial robots), large industrial applications (for forklifts, elevators, bay harbor cranes)
- Transportation systems eg, hybrid vehicles, electric vehicles, buses, trains, electric assist bicycles, electric motorcycles, etc.
- power system applications eg, various types of power generation, road conditioners, smart grids, general home-installed power storage systems, etc.
- Medical use medical equipment such as earphone hearing aids
- Pharmaceutical use fields such dosage management system
- IoT field space-deepwater applications (e.g., can be utilized spacecraft, etc. Areas), such as submersible.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Power Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
本発明の一実施形態では、固体電池が提供される。当該固体電池は、正極層、負極層、ならびに該正極層および/または該負極層の間に介在する固体電解質層を備える電池構成単位を積層方向に沿って少なくとも1つ備える固体電池積層体を有して成り、積層方向における正極層と負極層とが互いにオーバーラップする重なり部および正極層と負極層とが互いにオーバーラップしない非重なり部から成り、積層方向に法線を有する少なくとも1つの主面に凹みが設けられ、かかる凹みが重なり部にオーバーラップするように位置付けられていると共に、凹みに起因した段差が前記非重なり部に位置付けられていることを特徴とする。
Description
本発明は、固体電池に関する。より具体的には、本発明は、積層型固体電池に関する。
従前より、繰り返しの充放電が可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォンおよびノートパソコン等の電子機器の電源として用いられたりする。
二次電池においては、充放電に寄与するイオン移動のための媒体として液体の電解質が一般に使用されている。つまり、いわゆる電解液が二次電池に用いられている。しかしながら、そのような二次電池においては、電解液の漏出防止点で安全性が一般に求められる。また、電解液に用いられる有機溶媒等は可燃性物質ゆえ、その点でも安全性が求められる。
そこで、電解液に代えて、固体電解質を用いた固体電池について研究が進められている。
電子機器において、電子回路と同一の基板に表面実装する固体電池が提案されている。固体電池を表面実装する例として、プリント基板への表面実装に適した固体電池が提案されている(特許文献1参照)。また、基板や外装、隣接した固体電池や電子部品と接する面積が小さくなるように構成された固体電池も提案されている(特許文献2参照)。
本願発明者は、表面実装品用の固体電池において克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。
固体電池は、複数の電極材(例えば、正負極層、電解質層および集電層など)を積層させて形成される。それゆえ、例えば図1に示すように、固体電池500において、正極層10および負極層30がオーバーラップする部分(重なり部40)の厚みは、それらの層がオーバーラップしない部分(非重なり部50Aおよび50B)に比べ厚くなる場合がある。また、正極層10および負極層30は充放電の際、固体電解質層20を介した正負極層間のイオンの移動に伴い、電極層が膨張/収縮し得る。このため、固体電池の使用に際して、重なり部40の厚みが、非重なり部50Aおよび50Bの厚みに比べさらに厚くなる場合がある。
そのような固体電池が基板に表面実装された場合(図2参照)、充放電時に正極層10および/または負極層30が膨張することで、重なり部40の膨張を引き起こす。それによって、膨張した重なり部の主面40’と基板90とが接触して、固体電池500および/または基板90が破壊される虞がある。このように固体電池は、表面実装品用途では、好適に使用できない場合があることを本願発明者は見出した。
本発明はかかる課題に鑑みて為されたものである。すなわち、本発明の主たる目的は、特に表面実装品用途において、より好適な固体電池を提供することである。
本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された固体電池の発明に至った。
上記目的を達成するために、本発明の一実施形態は、
固体電池であって、
正極層、負極層、ならびに正極層および/または負極層の間に介在する固体電解質層から成る電池構成単位を積層方向に沿って少なくとも1つ備える固体電池積層体を有して成り、
積層方向における正極層と負極層とが互いにオーバーラップする重なり部および正極層と負極層とが互いにオーバーラップしない非重なり部から成り、
積層方向に法線を有する少なくとも1つの主面に凹みが設けられ、凹みが重なり部にオーバーラップするように位置付けられていると共に、凹みに起因した段差が非重なり部に位置付けられている、固体電池を提供する。
固体電池であって、
正極層、負極層、ならびに正極層および/または負極層の間に介在する固体電解質層から成る電池構成単位を積層方向に沿って少なくとも1つ備える固体電池積層体を有して成り、
積層方向における正極層と負極層とが互いにオーバーラップする重なり部および正極層と負極層とが互いにオーバーラップしない非重なり部から成り、
積層方向に法線を有する少なくとも1つの主面に凹みが設けられ、凹みが重なり部にオーバーラップするように位置付けられていると共に、凹みに起因した段差が非重なり部に位置付けられている、固体電池を提供する。
本発明の固体電池では、特に表面実装品用途において、より好適な固体電池となっている。
より具体的には、本発明の固体電池では、その少なくとも1つの主面に凹みが設けられ、かかる凹みが重なり部にオーバーラップするように位置付けられている。本発明の固体電池が表面実装品となる場合、凹みを有する主面が実装面側の面となり得ることで、重なり部の主面と基板表面との離隔距離をより大きくすることができる。すなわち、充放電時に電極層が膨張した場合であっても、重なり部の主面と基板との接触を防止することが可能となる。
以下、本発明の「固体電池」を詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。
本明細書でいう「平面視」とは、固体電池を構成する各層の積層方向に基づく厚み方向に沿って対象物を上側または下側から捉えた場合の形態に基づいている。又、本明細書でいう「断面視」とは、固体電池を構成する各層の積層方向に基づく厚み方向に対して略垂直な方向から捉えた場合の形態(端的にいえば、厚み方向に平行な面で切り取った場合の形態)に基づいている。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。
本発明でいう「固体電池」とは、広義にはその構成要素が固体から構成されている電池を指し、狭義にはその構成要素(特に好ましくは全ての構成要素)が固体から構成されている全固体電池を指す。ある好適な態様では、本発明における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼結体から成っている。なお、「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含する。本発明のある好適な態様では「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、「蓄電デバイス」なども包含し得る。
[固体電池の基本的構成]
固体電池は、正極層、負極層、およびそれらの間に介在する固体電解質から成る電池構成単位を積層方向に沿って少なくとも1つ備える固体電池積層体を有して成る。
固体電池は、正極層、負極層、およびそれらの間に介在する固体電解質から成る電池構成単位を積層方向に沿って少なくとも1つ備える固体電池積層体を有して成る。
固体電池は、それを構成する各層が焼成によって形成されるところ、正極層、負極層および固体電解質層などが焼結層を成している。好ましくは、正極層、負極層および固体電解質は、それぞれが互いに一体焼成されており、それゆえ電池構成単位が一体焼結体を成している。
正極層は、少なくとも正極活物質を含んで成る電極層である。正極層は、更に固体電解質および/または正極集電層を含んで成っていてよい。ある好適な態様では、正極層は、正極活物質粒子と固体電解質粒子と正極集電層とを少なくとも含む焼結体から構成されている。一方、負極層は、少なくとも負極活物質を含んで成る電極層である。負極層は、更に固体電解質および/または負極集電層を含んで成っていてよい。ある好適な態様では、負極層は、負極活物質粒子と固体電解質粒子と負極集電層とを少なくとも含む焼結体から構成されている。
正極活物質および負極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質を介してイオンは正極層と負極層との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極層および負極層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、固体電解質を介してリチウムイオンが正極層と負極層との間で移動して電池の充放電が行われる全固体型二次電池であることが好ましい。
(正極活物質)
正極層に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、および、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li3V2(PO4)3等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO4)3、LiMnPO4等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO2、LiCo1/3Ni1/3Mn1/3O2等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn2O4、LiNi0.5Mn1.5O4等が挙げられる。
正極層に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、および、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li3V2(PO4)3等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO4)3、LiMnPO4等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO2、LiCo1/3Ni1/3Mn1/3O2等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn2O4、LiNi0.5Mn1.5O4等が挙げられる。
(負極活物質)
負極層に含まれる負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、Nb、およびMoから成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li3V2(PO4)3等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO4)3等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、Li4Ti5O12等が挙げられる。
負極層に含まれる負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、Nb、およびMoから成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li3V2(PO4)3等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO4)3等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、Li4Ti5O12等が挙げられる。
なお、正極層および/または負極層は、電子伝導性材料を含んでいてもよい。正極層および/または負極層に含まれる電子伝導性材料としては、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケル等の金属材料、ならびに炭素などから成る少なくとも1種を挙げることができる。特に限定されるわけではないが、銅は、正極活物質、負極活物質および固体電解質材などと反応し難く、固体電池の内部抵抗の低減に効果を奏するのでその点で好ましい。
さらに、正極層および/または負極層は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。
正極層および負極層の厚みは特に限定されず、例えば、それぞれ独立して、2μm以上50μm以下、特に5μm以上30μm以下であってもよい。
(固体電解質)
固体電解質は、リチウムイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質は、正極層と負極層との間においてリチウムイオンが伝導可能な層を成している。なお、固体電解質は、正極層と負極層との間に少なくとも設けられていればよい。つまり、固体電解質は、正極層と負極層との間からはみ出すように当該正極層および/または負極層の周囲においても存在していてもよい。具体的な固体電解質としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、LixMy(PO4)3(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO4)3等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO3等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、Li7La3Zr2O12等が挙げられる。
固体電解質は、リチウムイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質は、正極層と負極層との間においてリチウムイオンが伝導可能な層を成している。なお、固体電解質は、正極層と負極層との間に少なくとも設けられていればよい。つまり、固体電解質は、正極層と負極層との間からはみ出すように当該正極層および/または負極層の周囲においても存在していてもよい。具体的な固体電解質としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、LixMy(PO4)3(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO4)3等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO3等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、Li7La3Zr2O12等が挙げられる。
固体電解質層は、焼結助剤を含んでいてもよい。固体電解質層に含まれる焼結助剤は、例えば、正極層および/または負極層に含まれ得る焼結助剤と同様の材料から選択されてもよい。
固体電解質層の厚みは特に限定されず、例えば、1μm以上15μm以下、特に1μm以上5μm以下であってもよい。
(正極集電層/負極集電層)
正極集電層を構成する正極集電層および負極集電層を構成する負極集電層としては、導電率が大きい材料を用いるのが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケルから成る群から選択される少なくとも1種を用いることが好ましい。特に、銅は正極活物質、負極活物質および固体電解質材と反応し難く、固体電池の内部抵抗の低減に効果があるため好ましい。正極集電層および負極集電層はそれぞれ、外部と電気的に接続するための電気的接続部を有し、端子と電気的に接続可能に構成されていてもよい。正極集電層および負極集電層はそれぞれ箔の形態を有していてもよいが、一体焼結による電子伝導性向上および製造コスト低減の観点から、一体焼結の形態を有することが好ましい。なお、正極集電層および負極集電層が焼結体の形態を有する場合、例えば、電子伝導性材料および焼結助剤を含む焼結体より構成されてもよい。正極集電層および負極集電層に含まれる電子伝導性材料は、例えば、正極層および/または負極層に含まれ得る電子伝導性材料と同様の材料から選択されてもよい。正極集電層および負極集電層に含まれる焼結助剤は、例えば、正極層および/または負極層に含まれ得る焼結助剤と同様の材料から選択されてもよい。
正極集電層を構成する正極集電層および負極集電層を構成する負極集電層としては、導電率が大きい材料を用いるのが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケルから成る群から選択される少なくとも1種を用いることが好ましい。特に、銅は正極活物質、負極活物質および固体電解質材と反応し難く、固体電池の内部抵抗の低減に効果があるため好ましい。正極集電層および負極集電層はそれぞれ、外部と電気的に接続するための電気的接続部を有し、端子と電気的に接続可能に構成されていてもよい。正極集電層および負極集電層はそれぞれ箔の形態を有していてもよいが、一体焼結による電子伝導性向上および製造コスト低減の観点から、一体焼結の形態を有することが好ましい。なお、正極集電層および負極集電層が焼結体の形態を有する場合、例えば、電子伝導性材料および焼結助剤を含む焼結体より構成されてもよい。正極集電層および負極集電層に含まれる電子伝導性材料は、例えば、正極層および/または負極層に含まれ得る電子伝導性材料と同様の材料から選択されてもよい。正極集電層および負極集電層に含まれる焼結助剤は、例えば、正極層および/または負極層に含まれ得る焼結助剤と同様の材料から選択されてもよい。
正極集電層および負極集電層の厚みは特に限定されず、例えば、それぞれ独立して、1μm以上5μm以下、特に1μm以上3μm以下であってもよい。
(絶縁層)
絶縁層は、例えば積層方向に沿って相互に隣接する一方の電池構成単位と他方の電池構成単位との間に形成される。それによって、かかる隣接する電池構成単位間のイオンの移動を回避し、過度のイオンの吸蔵放出を防止することができる。絶縁層は、固体電池の平面視において、正極層および/もしくは負極層と隣接するように形成されてもよい。絶縁層は、広義には電気を通さない材質、すなわち非導電性材から構成される層を指し、狭義には絶縁性物質材料から構成されるものを指す。特に限定されるものではないが、当該絶縁層は、例えば、ガラス材、セラミック材等から構成され得る。当該絶縁層として、例えばガラス材が選択されてよい。特に限定されるものではないが、ガラス材は、ソーダ石灰ガラス、カリガラス、ホウ酸塩系ガラス、ホウケイ酸塩系ガラス、ホウケイ酸バリウム系ガラス、ホウ酸亜塩系ガラス、ホウ酸バリウム系ガラス、ホウケイ酸ビスマス塩系ガラス、ホウ酸ビスマス亜鉛系ガラス、ビスマスケイ酸塩系ガラス、リン酸塩系ガラス、アルミノリン酸塩系ガラス、および、リン酸亜塩系ガラスからなる群より選択される少なくとも一種を挙げることができる。
絶縁層は、例えば積層方向に沿って相互に隣接する一方の電池構成単位と他方の電池構成単位との間に形成される。それによって、かかる隣接する電池構成単位間のイオンの移動を回避し、過度のイオンの吸蔵放出を防止することができる。絶縁層は、固体電池の平面視において、正極層および/もしくは負極層と隣接するように形成されてもよい。絶縁層は、広義には電気を通さない材質、すなわち非導電性材から構成される層を指し、狭義には絶縁性物質材料から構成されるものを指す。特に限定されるものではないが、当該絶縁層は、例えば、ガラス材、セラミック材等から構成され得る。当該絶縁層として、例えばガラス材が選択されてよい。特に限定されるものではないが、ガラス材は、ソーダ石灰ガラス、カリガラス、ホウ酸塩系ガラス、ホウケイ酸塩系ガラス、ホウケイ酸バリウム系ガラス、ホウ酸亜塩系ガラス、ホウ酸バリウム系ガラス、ホウケイ酸ビスマス塩系ガラス、ホウ酸ビスマス亜鉛系ガラス、ビスマスケイ酸塩系ガラス、リン酸塩系ガラス、アルミノリン酸塩系ガラス、および、リン酸亜塩系ガラスからなる群より選択される少なくとも一種を挙げることができる。
(保護層)
保護層は、一般に固体電池の最外側に形成され得るもので、電気的、物理的および/または化学的に保護するためのものである。保護層を構成する材料としては絶縁性、耐久性および/または耐湿性に優れ、環境的に安全であることが好ましい。例えば、ガラス、セラミックス、熱硬化性樹脂および/または光硬化性樹脂等を用いることが好ましい。
保護層は、一般に固体電池の最外側に形成され得るもので、電気的、物理的および/または化学的に保護するためのものである。保護層を構成する材料としては絶縁性、耐久性および/または耐湿性に優れ、環境的に安全であることが好ましい。例えば、ガラス、セラミックス、熱硬化性樹脂および/または光硬化性樹脂等を用いることが好ましい。
(外部端子)
固体電池には、一般に外部端子が設けられている。特に、固体電池の側面に正負極の外部端子が対を成すように設けられている。より具体的には、正極層と接続された正極側の外部端子と、負極層と接続された負極側の外部端子とが対を成すように設けられている。そのような外部端子は、導電率が大きい材料を用いることが好ましい。外部端子の材質としては、特に制限するわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。
固体電池には、一般に外部端子が設けられている。特に、固体電池の側面に正負極の外部端子が対を成すように設けられている。より具体的には、正極層と接続された正極側の外部端子と、負極層と接続された負極側の外部端子とが対を成すように設けられている。そのような外部端子は、導電率が大きい材料を用いることが好ましい。外部端子の材質としては、特に制限するわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。
[本発明の固体電池の特徴]
本発明の固体電池は、正極層と負極層とが互いにオーバーラップする重なり部および正極層と負極層とが互いにオーバーラップしない非重なり部から成る固体電池であるところ、積層方向に法線を有する少なくとも1つの主面の形状に特徴を有する。
本発明の固体電池は、正極層と負極層とが互いにオーバーラップする重なり部および正極層と負極層とが互いにオーバーラップしない非重なり部から成る固体電池であるところ、積層方向に法線を有する少なくとも1つの主面の形状に特徴を有する。
より具体的には、本発明の固体電池では、積層方向に法線を有する少なくとも1つの主面に凹みが設けられ、かかる凹みが重なり部にオーバーラップするように位置付けられていると共に、かかる凹みに起因した段差が非重なり部に位置付けられている。本発明の固体電池が表面実装品となる場合、凹みを有する主面(特に、対向する2つの主面のうちの一方の主面)が実装面側の面(すなわち、基板と直接的に対向する面)となり得ることで、重なり部の主面と基板表面との離隔距離をより大きくすることができる。それによって、充放電時に電極層が膨張した場合でも、重なり部の主面と基板との接触を防止することが可能となる。
本発明でいう「重なり部」とは、電極の積層方向において正極層および負極層の双方が存在する部分を指している。なお、「重なり部」において積層方向に正極層および負極層の双方が存在してさえすれば、正極層および負極層以外の要素、例えば固体電解質層(材)、外部端子、保護層等の部分を含んでいてもよい。また、「非重なり部」とは、積層方向において正極層および負極層のいずれかが存在するか、または正極層および負極層のいずれも存在しない部分を指している。なお、「非重なり部」において積層方向に正極層および負極層のいずれかが存在するか、または正極層および負極層のいずれも存在しなければ、例えば固体電解質層(材)、外部端子、保護層等の部分を含んでいてもよい。
本発明でいう「主面」とは、固体電池における電極の積層方向に法線を有する面を指す。また「少なくとも1つの主面」とは、対向する2つの主面の双方またはいずれかを指す。なお、本発明の固体電池が表面実装品となる場合、「少なくとも1つの主面」のうちの1つが実装面側の面となり得る。「凹み」とは、主面における一部分が周囲に位置付けられた段差によって窪んでいる形状を指す。換言すれば、固体電池において厚みの異なる部分が存在し、「段差」部分の厚みが、「凹み」部分の厚みよりも厚くなっていることを指す。ここで主面における「段差」とは、それを成す面が積層方向に沿って突出しているような形態を有する部分を指している。なお、「段差」は、テーパー状に斜面を成すように(すなわち、積層方向に対して角度を成すように)突出しているような形態を有する部分であってもよい。
本発明でいう「固体電池積層体」は、正極層、負極層、ならびに正極層および/または負極層の間に介在する固体電解質層から成る電池構成単位を積層方向に沿って少なくとも1つ備える。図3Aに示す例示態様でいえば、固体電池積層体500’は、断面視において正極層10、固体電解質層20、負極層30がこの順に設けられる電池構成単位を複数備えている。ここで、固体電池積層体500’は、断面視において正極層10および/または負極層30が固体電解質層20を介して連続して積層される部分、すなわち電池構成単位から成る部分を備えている。
「正極層および/または負極層の間に介在する固体電解質層」について、「正極層および負極層の間に介在する固体電解質層」とは、正極層と負極層との間に位置付けられた固体電解質層を指す。図3Aに示す例示態様でいえば、重なり部40における正極層10と負極層30との間の固体電解質層20を指す。一方で、「正極層または負極層の間に介在する固体電解質層」とは、正極層同士の間に位置付けられた固体電解質層、または負極層同士の間に位置付けられた固体電解質層を指す。図3Aに示す例示態様でいえば、非重なり部50Aにおける互いに隣り合う2つの正極層10の間の固体電解質層20Aを指すか、あるいは非重なり部50Bにおける互いに隣り合う2つの負極層30の間の固体電解質層20Bを指す。
固体電池積層体は、電池構成単位、または電池構成単位から成る部分の外側に存在する固体電解質材を含んで成る。ここで「外側に存在する固体電解質材」とは、図3Aに示す例示態様でいえば、固体電池積層体500’の断面視において、電池構成単位から成る部分(すなわち、正極層10および負極層30が固体電解質層20を介して連続して積層される部分)の外側に設けられる固体電解質材20’を指す。また、図7Aに示す例示態様でいえば、固体電池積層体500’の平面視において、電池構成単位が存在する部分(すなわち、正極層部10A、負極層部30Bおよび重なり部40の部分)の外側に設けられる固体電解質材20’を指す。
ある好適な態様では、非重なり部における段差は、固体電池積層体の積層方向における最外部に存在するように固体電解質材を設け、かかる固体電解質材によって形成されている。ここで「積層方向における最外部」とは、固体電池積層体を断面視で捉えた場合に、積層方向において最も外側に位置する部分を指す。
図3Aに示す例示態様でいえば、固体電池積層体500’の断面視において、正極層10、固体電解質層20、負極層30がこの順に設けられている。正極層10および負極層30は、正極側端面500’Aおよび負極側端面500’Bにてそれぞれ終端するように延在している。また、正極層10および負極層30は、正極側端面500’Aおよび負極側端面500’Bにおいてそれぞれ露出している。このような固体電池500は、正極層10および負極層30がオーバーラップする重なり部40、ならびに正極層10および負極層30がオーバーラップしない正極側非重なり部50Aおよび負極側非重なり部50Bから成っている。また、固体電池積層体500’には、その積層方向における最外部に存在するように固体電解質材20’が設けられている。ここで固体電池500の主面550に凹みが設けられるように、非重なり部50Aおよび50Bにおける固体電解質材20’によって段差100が形成されている。
段差100は、重なり部40と非重なり部50Aおよび/または50Bとの境界に形成されてもよく(図3A参照)、図3Bまたは図3Cに示すように、非重なり部50Aおよび50Bにおけるいずれの箇所に形成されてもよい。なお、このような段差を固体電解質材の形態と共に形成することで、段差設置をより簡易に成すことができる。
ある好適な態様では、非重なり部における段差は、固体電池積層体の少なくとも1つの主面にまで及ぶように延在する外部端子の厚みによって形成されている。図4Aに示す例示態様でいえば、固体電池積層体の対向する側面、すなわち正極側非重なり部50Aおよび負極側非重なり部50Bの端部において、正極層10と電気的に接続された正極端子60Aと、負極層30と電気的に接続された負極端子60Bとが、それぞれ主面にまで及ぶように延在している。図示する形態から分かるように、固体電池500の主面に凹みが設けられるように、正極端子60Aおよび負極端子60Bの厚みによって段差100が形成されている。
別の好適な態様では、図4Bに示すように、主面にまで及ぶ外部端子の厚みによって形成される段差100’(第1サブ段差)と、固体電解質材20’によって形成される段差100’’(第2サブ段差)とによって段差100が形成されている。そのように2つの要素から段差を形成することで、所望のより大きな段差の寸法(すなわち、図4B中の「D」)をより簡易に達成することができる。本明細書でいう「段差の寸法」は、固体電池が表面実装された場合を想定すると、固体電池における重なり部の主面と基板との離隔距離に相当する。
上述したように、固体電池積層体の積層方向における最外部に設けられた固体電解質材20’が、段差100を形成していてもよく(図3A~図3C参照)、固体電池の少なくとも1つの主面にまで及ぶように延在している外部端子(60Aおよび/または60B)の厚みが、段差100を形成していてもよい(図4A参照)。また、固体電池積層体の積層方向における最外部に設けられた固体電解質材20’と、少なくとも1つの主面にまで及ぶように延在している外部端子(60Aおよび/または60B)の厚みとが、組み合わされて段差100を形成していてもよい(図4B参照)。さらにいえば、固体電池積層体に設けられた、非重なり部における保護層の厚みが、段差の形成に寄与するものであってもよい。
ある好適な態様では、積層方向において、凹みが設けられている一方の主面における段差の寸法(すなわち、図3および図4における「D」)が重なり部の寸法(すなわち、図3および図4における重なり部40の断面視寸法)の1%以上10%以下である。かかる段差の寸法を重なり部の寸法の1%以上とすることで、充放電時に膨張する重なり部40が基板と接触することをより効果的に防止でき、10%以下とすることで、固体電池が実装された基板が過度に嵩高くなることを防止できる。好ましくは、かかる段差の寸法は、重なり部の寸法の2%以上5%以下であってもよい。なお、このような段差の寸法を固体電解質材の形態と共に形成することで、より容易に所望の段差寸法を達成することができる。
本明細書でいう積層方向における寸法は、断面視でみた形状に基づいて測定したもの寸法を指している。特に、上述した「段差の寸法」および「重なり部の寸法」は、3D形状測定器(キーエンス社VK-X1000)を用いて非破壊で計測するものであってもよい。
表面実装の観点から、正極側非重なり部および負極側非重なり部の双方に段差が位置付けられていてもよく、積層方向における正極側非重なり部および負極側非重なり部の段差の寸法が同じであってもよい。また、双方の面のいずれでも実装可能なように、固体電池の対向する主面の双方において、正極側非重なり部および負極側非重なり部に段差が位置付けられていてもよい。図3Aに示す例示態様でいえば、固体電池500の対向する主面550の双方において、非重なり部50Aおよび50Bに段差が位置付けられている。
上述したような構成とした固体電池を表面実装した場合(図5および図6参照)、重なり部40の主面と基板90との離隔距離をより大きくすることができ、膨張した重なり部の主面40’と基板90とが接触することを防止できる。なお、図5および図6に示す態様から分かるように、本発明の固体電池は、SMD(SMD:Surface Mount Device)タイプの電池であるといえる。
本発明の固体電池は、プリント配線板などの基板上に好適に実装することができる。例えば、半田リフローなどを通じて、固体電池を表面実装できる。基板には、固体電池を過充放電または過電流等から保護する保護回路等が設けられていてもよい。また、基板には、固体電池を電気的に接続する基板端子が設けられていてもよい。
ある好適な態様では、固体電池積層体の少なくとも1つの主面のいずれかのエッジにまで及ぶように、凹みが位置付けられている。図7Aおよび図7Bに例示するように、固体電池積層体500’の平面視において、正極層部10A、負極層部30Bおよび重なり部40から成る部分(つまり、電池構成単位が存在する部分)、ならびにかかる部分の外側に固体電解質材20’が設けられている。「正極層部10A」とは、固体電池積層体500’の平面視において、電極層のうち、正極層のみが存在している部分を指し、「負極層部30B」とは、負極層のみが存在している部分を指す。イオン伝導の観点から、負極層部30Bの幅寸法W30Bは、正極層部10Aの幅寸法W10Aよりも大きく形成されている。ここで、正極側非重なり部50Aと重なり部40との境界に段差100Aが位置付けられ、また負極側非重なり部50Bと重なり部40との境界に段差100Bが位置付けられている。これにより、電極層が外側に向かって終端していない対向する端面(エッジ)にまで及ぶように、主面の凹みが位置付けられている。
上述のような構成とすることで、固体電池が表面実装された場合、実装面側における固体電池の主面と基板との間に外部へ開放された空間が設けられることにより、かかる空間を周辺雰囲気の流路とすることができる。特定の理論に拘束されるわけではないが、それによって、実装面側における固体電池の主面と基板との間におけるガスフロー性が向上し、固体電池の過熱を防止することができる。また、表面実装時の半田リフローにおいて、溶融して膨張した半田の広がる空間がより確保できるため、半田フラッシュを防止することができる。
別のある好適な態様として、固体電池積層体の少なくとも1つの主面のエッジにまでは及ばないように、エッジよりも内側に凹みが位置付けられている。図8Aおよび図8Bに例示するように、固体電池500の平面視において、正極層部10Aおよび負極層部30Bにおける各々の電極層が外側に向かって終端していない端面(すなわち、図8Aにおける500’Cおよび500’Dの端面上)と重なり部40との間に固体電解質材20’(中央側非重なり部50C)が設けられている。この場合、固体電池500における正極側非重なり部50Aと重なり部40との境界に段差100Aが位置付けられ、また負極側非重なり部50Bと重なり部40との境界に段差100Bが位置付けられている。さらに、中央側非重なり部50Cと重なり部40との境界に段差100Cが位置付けられている。これにより、凹みが主面のエッジ110にまで及ばないように、エッジ110よりも内側に凹みが位置付けられている。
このような構成とすることで、固体電池の主面と基板表面との間のより小さなギャップ(すなわち、重なり部40以外の主面全域と基板との間の間隙)を、かかる主面の周縁全体にもたらすことができる。それによって、固体電池を表面実装した後で固体電池全体を樹脂でモールドする際に、固体電池の重なり部の主面と基板との間の空間に樹脂が入り込み難くすることができる。すなわち、流入した樹脂によって、固体電池の重なり部の主面と基板表面との間に設けられたクリアランスが減じられるような不都合な現象を防止することができる。
[固体電池の製造方法]
本発明の固体電池は、上述したように、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。一態様では、グリーンシート法により所定の積層体を形成し、形成段階の積層体の側部領域にスクリーン印刷により固体電解質層シートなどを供することにより、最終的に本発明の一実施形態に係る固体電池を製造することができる。なお、以下では、当該態様を前提として説明するが、これに限定されることなく、スクリーン印刷法等により所定の積層体を形成してもよい。
本発明の固体電池は、上述したように、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。一態様では、グリーンシート法により所定の積層体を形成し、形成段階の積層体の側部領域にスクリーン印刷により固体電解質層シートなどを供することにより、最終的に本発明の一実施形態に係る固体電池を製造することができる。なお、以下では、当該態様を前提として説明するが、これに限定されることなく、スクリーン印刷法等により所定の積層体を形成してもよい。
(未焼成積層体の形成工程)
まず、各基材(例えばPETフィルム)上に固体電解質層用ペースト、正極活物質層用ペースト、正極集電層用ペースト、負極活物質層用ペースト、負極集電層用ペースト、絶縁層用ペースト、および保護層用ペーストを塗工する。
まず、各基材(例えばPETフィルム)上に固体電解質層用ペースト、正極活物質層用ペースト、正極集電層用ペースト、負極活物質層用ペースト、負極集電層用ペースト、絶縁層用ペースト、および保護層用ペーストを塗工する。
各ペーストは、正極活物質、負極活物質、導電性材料、固体電解質材料、絶縁性物質材料、および焼結助剤から成る群から適宜選択される各層の所定の構成材料と、有機材料を溶剤に溶解した有機ビヒクルとを湿式混合することによって作製することができる。正極活物質層用ペーストは、例えば、正極活物質、導電材料、固体電解質材料、有機材料および溶剤を含む。負極活物質層用ペーストは、例えば、負極活物質、導電材料、固体電解質材料、有機材料および溶剤を含む。正極集電層用ペースト/負極集電層用ペーストとしては、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、およびニッケルから成る群から少なくとも一種選択されてよい。固体電解質層用ペーストは、例えば、固体電解質材料、焼結助剤、有機材料および溶剤を含む。保護層用ペーストは、例えば、絶縁性物質材料、有機材料および溶剤を含む。絶縁層用ペーストは、例えば絶縁性物質材料、有機材料および溶剤を含む。
湿式混合ではメディアを用いることができ、具体的には、ボールミル法またはビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法またはニーダー分散法等を用いることができる。
固体電解質層用ペーストに含まれる固体電解質材料としては、上述のようにナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、および/またはガーネット型またはガーネット型類似構造を有する酸化物からなる粉末を選択してよい。
正極活物質層用ペーストに含まれる正極活物質材としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から少なくとも一種を選択する。
絶縁層用ペーストに含まれる絶縁性物質材料としては、例えば、ガラス材、セラミック材等から構成され得る。保護層用ペーストに含まれる絶縁性物質材料としては、例えば、ガラス材、セラミックス材、熱硬化性樹脂材、光硬化性樹脂材等から成る群から選択される少なくとも1種を用いることが好ましい。
ペーストに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、ポリアクリル樹脂、ポリウレタン樹脂、ポリ酢酸ビニル樹脂およびポリビニルアルコール樹脂などから成る群から選択される少なくとも1種の高分子材料を用いることができる。溶剤は上記有機材料を溶解可能な限り特に限定されず、例えば、トルエンおよび/またはエタノールなどを用いることができる。
負極活物質層用ペーストに含まれる負極活物質材としては、例えば、Ti、Si、Sn、Cr、Fe、Nb、および、Moからなる群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から少なくとも一種から選択される負極活物質材、上記の固体電解質ペーストに含まれる材料、および導電材等から構成してよい。
焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマス、および酸化リンからなる群から選択される少なくとも1種であり得る。
塗工したペーストを、30℃以上50℃以下に加熱したホットプレート上で乾燥させることで、基材(例えばPETフィルム)上に所定の形状、厚みを有する固体電解質層シート、正極/負極シート、および絶縁層シートをそれぞれ形成する。
次に、各シートを基材から剥離する。剥離後、積層方向に沿って、一方の電池構成単位の各構成要素のシートを順に積層し、次いで絶縁層シートを積層する。その後、積層方向に沿って、当該絶縁層シート上に他方の電池構成単位の各構成要素のシートを順に積層する。積層後、後刻のプレス前に電極シートの側部領域にスクリーン印刷により固体電解質層シート又は絶縁層シートを供してよい。
(プレス工程)
次いで、所定圧力(例えば、50MPa以上100MPa以下)による熱圧着と、これに続く所定圧力(例えば、150MPa以上300MPa以下)での等方圧プレスを実施することが好ましい。上記により、所定の積層体を形成することができる。
次いで、所定圧力(例えば、50MPa以上100MPa以下)による熱圧着と、これに続く所定圧力(例えば、150MPa以上300MPa以下)での等方圧プレスを実施することが好ましい。上記により、所定の積層体を形成することができる。
(焼成工程)
得られた所定の積層体を焼成に付す。当該焼成は、窒素ガス雰囲気中または大気中で例えば600℃以上1000℃以下で加熱することで実施する。
得られた所定の積層体を焼成に付す。当該焼成は、窒素ガス雰囲気中または大気中で例えば600℃以上1000℃以下で加熱することで実施する。
(固体電解質層による本発明における特徴部分の作製について)
本発明における、積層方向に法線を有する少なくとも1つの主面に凹みが設けられ、凹みが少なくとも重なり部にオーバーラップするように位置付けられていると共に、凹みに起因した段差が非重なり部に位置付けられている固体電池を製造するための方法について、以下例示的に説明する。
本発明における、積層方向に法線を有する少なくとも1つの主面に凹みが設けられ、凹みが少なくとも重なり部にオーバーラップするように位置付けられていると共に、凹みに起因した段差が非重なり部に位置付けられている固体電池を製造するための方法について、以下例示的に説明する。
第1の例示的な製造方法は、塗工により凹型形状または中空の固体電解質グリーンシートと電極層等を含む他のグリーンシートとを積層する工程、積層工程で得られた未焼成積層体を金型でプレスする工程、およびプレス後の未焼成積層体を焼成する工程を含む。上述した積層工程において、凹型形状または中空の固体電解質グリーンシートの平面視における凹状部分または中空部分に相当する範囲を、他のグリーンシートの平面視における正極層および負極層の重なり部に相当する範囲にオーバーラップするように位置付けて積層する。凹型形状または中空の固体電解質グリーンシートは、未焼成積層体におけるいずれの位置に積層されていてもよいが、加工性や積層構造の均一性の観点から、未焼成積層体における最表層に積層されることが好ましい。このような製造方法を用いることで、本発明における所望の固体電池を得ることができる。
図9Aに示す例示態様を用いて説明する。図示するように、平板状のグリーンシート120Aと凹型形状のグリーンシート120Bとを、凹型形状のグリーンシート120Bが最外表面に位置するように積層する。このとき、凹型形状のグリーンシート120Bにおける凹状部分125を、平板状のグリーンシート120Aにおける正極層および負極層の重なり部に相当する範囲にオーバーラップするように位置付けて積層する。得られた未焼結積層体を金型でプレスし、次いで焼成することで本発明における所望の固体電池を得ることができる。
第2の例示的な製造方法として、上記第1の製造方法における凹型形状または中空の固体電解質グリーンシートに代えて、凹型または中空に相当する部分が焼成時に消失するような樹脂原料ペーストまたは樹脂フィラーを用いて形成したグリーンシートを用いる方法が挙げられる。その他の工程については、上記第1の製造方法と同様である。
図9Bに示す例示態様を用いて説明する。図示するように、平板状のグリーンシート120Aと焼成時に消失する原料を用いたグリーンシート120Cとを、焼成時に消失する原料を用いたグリーンシート120Cが最外表面に位置するように積層する。このとき、焼成時に消失する原料を用いたグリーンシート120Cにおける焼成時に消失する原料部分130を、平板状のグリーンシート120Aにおける正極層および負極層の重なり部に相当する範囲にオーバーラップするように位置付けて積層する。得られた未焼結積層体を金型でプレスし、次いでオーブン140にて焼成時に消失する原料部分130を気化させつつ焼成することで本発明における所望の固体電池を得ることができる。
第3の例示的な製造方法は、電極層および固体電解質層等を全て平板状のグリーンシートとして積層する工程、積層工程で得られた未焼成積層体を凸型形状の金型でプレスする工程、およびプレス後の未焼成積層体を焼成する工程を含む。上述したプレス工程において、グリーンシートの平面視における正極層および負極層の重なり部に相当する範囲をオーバーラップするように、凸型形状の金型における凸状部分の範囲を位置付けてプレスする。このような製造方法を用いることで、本発明における所望の固体電池を得ることができる。
図9Cに示す例示態様を用いて説明する。図示するように、平板状のグリーンシート120Aを積層させ、得られた未焼結積層体を凸型形状の金型150でプレスする。このとき、平板状のグリーンシート120Aにおける正極層および負極層の重なり部に相当する範囲をオーバーラップするように、凸型形状の金型における凸状部分155を位置付けてプレスする。次いで、プレス後の未焼成積層体を焼成することで本発明における所望の固体電池を得ることができる。
次いで、得られた固体電池に外部端子をつける。端子は正極層と負極層にそれぞれ電気的に接続可能に設ける。例えば、スパッタ等により外部端子を形成することが好ましい。特に限定されるものではないが、外部端子としては、銀、金、プラチナ、アルミニウム、銅、スズ、およびニッケルから選択される少なくとも一種から構成されることが好ましい。本発明における積層方向に法線を有する主面に凹みを設けるために、固体電池の主面にまで及ぶように外部端子を設けることができる。また、所望の積層方向における段差の寸法が得られるように、かかる外部端子の厚みを調整することができる。
更に、スパッタ、スプレーコート等により端子が覆われない程度で保護層を設けることが好ましい。本発明における積層方向に法線を有する凹みを設けるために、少なくとも固体電池の主面にまで及ぶように保護層を設け、かかる保護層の部分をその他の部分よりも厚く形成することができる。
(基板への表面実装)
固体電池は、外部端子を設けることで、基板に表面実装して接続することができる。固体電池の基板への実装は、固体電池において凹みを有する主面が実装面側の面となるように、基板の基板端子の上に接合材を塗布した位置に、正極端子および負極端子の位置を合わせて配置する。接合材は、電気配線用の半田を使用してもよい。その後、半田リフローによって、接合材により正極端子および負極端子と基板が接合され、電池実装基板が得られる。具体的には、図5に示すように、固体電池500を、基板90の基板端子80の上に接合材70を塗布した位置に、正極端子60Aおよび負極端子60Bの位置を合わせて配置し、半田リフローによって、接合材70により60Aおよび負極端子60Bと基板90とを接合する。
固体電池は、外部端子を設けることで、基板に表面実装して接続することができる。固体電池の基板への実装は、固体電池において凹みを有する主面が実装面側の面となるように、基板の基板端子の上に接合材を塗布した位置に、正極端子および負極端子の位置を合わせて配置する。接合材は、電気配線用の半田を使用してもよい。その後、半田リフローによって、接合材により正極端子および負極端子と基板が接合され、電池実装基板が得られる。具体的には、図5に示すように、固体電池500を、基板90の基板端子80の上に接合材70を塗布した位置に、正極端子60Aおよび負極端子60Bの位置を合わせて配置し、半田リフローによって、接合材70により60Aおよび負極端子60Bと基板90とを接合する。
以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、本発明の要旨を変更しない範囲において種々の態様が考えられることを当業者は容易に理解されよう。
例えば、上述した説明においては図3等で示される固体電池を中心にして説明したが、本発明は必ずしもこれに限定されない。本発明では正極層、負極層、固体電解質層を有し、積層方向に法線を有する少なくとも1つの主面において凹みが設けられ、かかる凹みが重なり部にオーバーラップするように位置付けられていると共に、凹みに起因した段差が非重なり部に位置付けられているものであれば、どのようなものであっても同様に適用することができる。
本発明の固体電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の固体電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
10 正極層
10A 正極層部
20 固体電解質層
20A 互いに対向する2つの正極層10の間の固体電解質層
20B 互いに対向する2つの負極層10の間の固体電解質層
20’ 固体電解質材
30 負極層
30B 負極層部
40 重なり部
40’ 膨張した重なり部の主面
50 非重なり部
50A 正極側非重なり部
50B 負極側非重なり部
50C 中央側非重なり部
60 外部端子
60A 正極端子
60B 負極端子
70 接合材
80 基板端子
90 基板
100 段差
100’ 第1サブ段差
100’’ 第2サブ段差
100A 正極側非重なり部と重なり部との段差
100B 負極側非重なり部と重なり部との段差
100C 中央側非重なり部と重なり部との段差
110 エッジ
120 グリーンシート
120A 平板状のグリーンシート
120B 凹型形状のグリーンシート
120C 焼成時に消失する原料を用いたグリーンシート
125 凹型形状のグリーンシートにおける凹状部分
130 焼成時に消失する原料ペースト
140 オーブン
150 凸型形状の金型
155 凸型形状の金型における凸状部分
500’ 固体電池積層体
500’A 正極側端面
500’B 負極側端面
500’C~D 電極層が終端していない端面
500 固体電池
550 固体電池の対向する主面
10A 正極層部
20 固体電解質層
20A 互いに対向する2つの正極層10の間の固体電解質層
20B 互いに対向する2つの負極層10の間の固体電解質層
20’ 固体電解質材
30 負極層
30B 負極層部
40 重なり部
40’ 膨張した重なり部の主面
50 非重なり部
50A 正極側非重なり部
50B 負極側非重なり部
50C 中央側非重なり部
60 外部端子
60A 正極端子
60B 負極端子
70 接合材
80 基板端子
90 基板
100 段差
100’ 第1サブ段差
100’’ 第2サブ段差
100A 正極側非重なり部と重なり部との段差
100B 負極側非重なり部と重なり部との段差
100C 中央側非重なり部と重なり部との段差
110 エッジ
120 グリーンシート
120A 平板状のグリーンシート
120B 凹型形状のグリーンシート
120C 焼成時に消失する原料を用いたグリーンシート
125 凹型形状のグリーンシートにおける凹状部分
130 焼成時に消失する原料ペースト
140 オーブン
150 凸型形状の金型
155 凸型形状の金型における凸状部分
500’ 固体電池積層体
500’A 正極側端面
500’B 負極側端面
500’C~D 電極層が終端していない端面
500 固体電池
550 固体電池の対向する主面
Claims (9)
- 固体電池であって、
正極層、負極層、ならびに該正極層および/または該負極層の間に介在する固体電解質層から成る電池構成単位を積層方向に沿って少なくとも1つ備える固体電池積層体を有して成り、
前記積層方向における前記正極層と前記負極層とが互いにオーバーラップする重なり部および該正極層と該負極層とが互いにオーバーラップしない非重なり部から成り、
前記積層方向に法線を有する少なくとも1つの主面に凹みが設けられ、該凹みが前記重なり部にオーバーラップするように位置付けられていると共に、該凹みに起因した段差が前記非重なり部に位置付けられている、固体電池。 - 前記固体電池積層体の積層方向における最外部に存在するように固体電解質材が設けられており、該固体電解質材が前記段差を形成している、請求項1に記載の固体電池。
- 前記固体電池積層体の対向する側面に外部端子が設けられており、該外部端子が前記少なくとも1つの主面にまで及ぶように延在しており、
前記少なくとも1つの主面にまで及ぶように延在する前記外部端子の厚みが、前記固体電解質材と共に前記段差を形成している、請求項2に記載の固体電池。 - 前記固体電池積層体の対向する側面に外部端子が設けられており、該外部端子が前記少なくとも1つの主面にまで及ぶように延在しており、
前記少なくとも1つの主面にまで及ぶように延在している前記外部端子の厚みが、前記段差を形成している、請求項1に記載の固体電池。 - 前記積層方向において、前記段差の寸法が前記重なり部の寸法の1%以上10%以下である、請求項1~4のいずれかに記載の固体電池。
- 前記段差の前記寸法が、前記固体電解質材で形成される段差の寸法に相当する、請求項2に従属する請求項5に記載の固体電池。
- 前記固体電池が、表面実装品である、請求項1~6のいずれかに記載の固体電池。
- 前記主面が、実装面側に位置する面に相当する、請求項7に記載の固体電池。
- 前記正極層および前記負極層がリチウムイオンを吸蔵放出可能な層となっている、請求項1~8のいずれかに記載の固体電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020550009A JP7180685B2 (ja) | 2018-10-02 | 2019-08-20 | 固体電池 |
EP19868616.4A EP3863098A4 (en) | 2018-10-02 | 2019-08-20 | SOLID STATE BATTERY |
CN201980064814.2A CN112805863B (zh) | 2018-10-02 | 2019-08-20 | 固体电池 |
US17/206,791 US11942605B2 (en) | 2018-10-02 | 2021-03-19 | Solid-state battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018187668 | 2018-10-02 | ||
JP2018-187668 | 2018-10-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/206,791 Continuation US11942605B2 (en) | 2018-10-02 | 2021-03-19 | Solid-state battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020070989A1 true WO2020070989A1 (ja) | 2020-04-09 |
Family
ID=70055757
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/032426 WO2020070989A1 (ja) | 2018-10-02 | 2019-08-20 | 固体電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11942605B2 (ja) |
EP (1) | EP3863098A4 (ja) |
JP (1) | JP7180685B2 (ja) |
CN (1) | CN112805863B (ja) |
WO (1) | WO2020070989A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024166451A1 (ja) * | 2023-02-08 | 2024-08-15 | Fdk株式会社 | 固体電池 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7180685B2 (ja) * | 2018-10-02 | 2022-11-30 | 株式会社村田製作所 | 固体電池 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000149892A (ja) * | 1998-09-11 | 2000-05-30 | Matsushita Electric Ind Co Ltd | 電池パック |
JP2014192041A (ja) * | 2013-03-27 | 2014-10-06 | Taiyo Yuden Co Ltd | 全固体二次電池 |
JP2015220107A (ja) | 2014-05-19 | 2015-12-07 | Tdk株式会社 | 全固体リチウムイオン二次電池 |
JP2016001601A (ja) | 2014-05-19 | 2016-01-07 | Tdk株式会社 | 固体電池及びそれを用いた組電池 |
WO2018123319A1 (ja) * | 2016-12-29 | 2018-07-05 | 株式会社 村田製作所 | 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両 |
WO2019167821A1 (ja) * | 2018-03-02 | 2019-09-06 | 株式会社村田製作所 | 全固体電池 |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000016416A1 (en) | 1998-09-11 | 2000-03-23 | Matsushita Electric Industrial Co., Ltd. | Battery pack |
JP5211447B2 (ja) * | 2005-08-18 | 2013-06-12 | パナソニック株式会社 | 全固体リチウム二次電池とその製造方法 |
US20110250485A1 (en) * | 2010-04-13 | 2011-10-13 | Yoshihiro Tsukuda | Secondary battery |
JP5987336B2 (ja) * | 2011-03-25 | 2016-09-07 | 日本電気株式会社 | 二次電池 |
JP6070236B2 (ja) * | 2012-02-29 | 2017-02-01 | ソニー株式会社 | リチウムイオン二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
JP2017143129A (ja) * | 2016-02-09 | 2017-08-17 | 株式会社村田製作所 | 積層セラミックコンデンサ |
CN109075377B (zh) * | 2016-04-28 | 2020-08-25 | 远景Aesc日本有限公司 | 非水电解质二次电池 |
JP6674885B2 (ja) * | 2016-12-06 | 2020-04-01 | 株式会社日立製作所 | 二次電池、及び二次電池の製造方法 |
JP7065323B2 (ja) * | 2017-02-09 | 2022-05-12 | パナソニックIpマネジメント株式会社 | 全固体電池およびその製造方法 |
JP6781074B2 (ja) * | 2017-02-28 | 2020-11-04 | 株式会社エンビジョンAescジャパン | 二次電池 |
WO2018163514A1 (ja) * | 2017-03-10 | 2018-09-13 | 株式会社村田製作所 | 全固体電池およびその製造方法、電子機器ならびに電子カード |
JP7070052B2 (ja) * | 2018-04-27 | 2022-05-18 | トヨタ自動車株式会社 | 全固体電池 |
JP7180685B2 (ja) * | 2018-10-02 | 2022-11-30 | 株式会社村田製作所 | 固体電池 |
US20220393265A1 (en) * | 2019-11-13 | 2022-12-08 | Kabushiki Kaisha Toyota Jidoshokki | Electrical storage device |
CN115461903A (zh) * | 2020-04-30 | 2022-12-09 | 株式会社丰田自动织机 | 蓄电单体、蓄电装置以及蓄电装置的制造方法 |
WO2021256403A1 (ja) * | 2020-06-15 | 2021-12-23 | 株式会社村田製作所 | 固体電池および固体電池の製造方法 |
-
2019
- 2019-08-20 JP JP2020550009A patent/JP7180685B2/ja active Active
- 2019-08-20 EP EP19868616.4A patent/EP3863098A4/en active Pending
- 2019-08-20 WO PCT/JP2019/032426 patent/WO2020070989A1/ja unknown
- 2019-08-20 CN CN201980064814.2A patent/CN112805863B/zh active Active
-
2021
- 2021-03-19 US US17/206,791 patent/US11942605B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000149892A (ja) * | 1998-09-11 | 2000-05-30 | Matsushita Electric Ind Co Ltd | 電池パック |
JP2014192041A (ja) * | 2013-03-27 | 2014-10-06 | Taiyo Yuden Co Ltd | 全固体二次電池 |
JP2015220107A (ja) | 2014-05-19 | 2015-12-07 | Tdk株式会社 | 全固体リチウムイオン二次電池 |
JP2016001601A (ja) | 2014-05-19 | 2016-01-07 | Tdk株式会社 | 固体電池及びそれを用いた組電池 |
WO2018123319A1 (ja) * | 2016-12-29 | 2018-07-05 | 株式会社 村田製作所 | 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両 |
WO2019167821A1 (ja) * | 2018-03-02 | 2019-09-06 | 株式会社村田製作所 | 全固体電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3863098A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024166451A1 (ja) * | 2023-02-08 | 2024-08-15 | Fdk株式会社 | 固体電池 |
Also Published As
Publication number | Publication date |
---|---|
US11942605B2 (en) | 2024-03-26 |
JP7180685B2 (ja) | 2022-11-30 |
CN112805863B (zh) | 2024-08-23 |
US20210210790A1 (en) | 2021-07-08 |
EP3863098A4 (en) | 2022-08-31 |
CN112805863A (zh) | 2021-05-14 |
JPWO2020070989A1 (ja) | 2021-09-02 |
EP3863098A1 (en) | 2021-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020195382A1 (ja) | 固体電池 | |
US12034123B2 (en) | Solid-state battery | |
US20220006068A1 (en) | Solid-state battery | |
JP7047934B2 (ja) | 固体電池 | |
WO2020116090A1 (ja) | 固体電池 | |
JPWO2020110666A1 (ja) | 固体電池 | |
WO2021070601A1 (ja) | 固体電池 | |
US11942605B2 (en) | Solid-state battery | |
WO2020195381A1 (ja) | 固体電池 | |
JP7120318B2 (ja) | 固体電池 | |
US20220021024A1 (en) | Solid-state battery | |
CN113016096B (zh) | 固体电池 | |
WO2020202928A1 (ja) | 固体電池 | |
JP2021150055A (ja) | 固体電池 | |
WO2022114155A1 (ja) | 固体電池および固体電池の製造方法 | |
WO2021235451A1 (ja) | 固体電池および固体電池用の外装体 | |
CN114270591B (zh) | 固体电池 | |
WO2020031810A1 (ja) | 固体電池 | |
JP7509195B2 (ja) | 固体電池 | |
WO2021045158A1 (ja) | 固体電池の製造方法および固体電池 | |
JP7548300B2 (ja) | 固体電池 | |
WO2022080404A1 (ja) | 固体電池 | |
WO2022114140A1 (ja) | 固体電池および固体電池の製造方法 | |
US20230163434A1 (en) | Solid state battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19868616 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020550009 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019868616 Country of ref document: EP Effective date: 20210503 |