WO2021235451A1 - 固体電池および固体電池用の外装体 - Google Patents

固体電池および固体電池用の外装体 Download PDF

Info

Publication number
WO2021235451A1
WO2021235451A1 PCT/JP2021/018858 JP2021018858W WO2021235451A1 WO 2021235451 A1 WO2021235451 A1 WO 2021235451A1 JP 2021018858 W JP2021018858 W JP 2021018858W WO 2021235451 A1 WO2021235451 A1 WO 2021235451A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state battery
positive electrode
negative electrode
laminated film
Prior art date
Application number
PCT/JP2021/018858
Other languages
English (en)
French (fr)
Inventor
潔 熊谷
友裕 加藤
圭輔 清水
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2021235451A1 publication Critical patent/WO2021235451A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • H01M50/126Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings; Jackets or wrappings characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a solid-state battery, more specifically, a solid-state battery using a laminated film having a metal foil in a resin film layer as an exterior body, and an exterior body for such a solid-state battery.
  • a heat-adhesive resin layer composed of a metal layer (aluminum foil, etc.) and a resin layer (polyethylene, polypropylene, etc., polyolefin resin, etc.)
  • a laminate of a heat-sealing resin layer or a surface layer composed of a polyamide resin, a polyester resin, or the like (for example, Patent Documents 1 and 2).
  • the exterior body for an all-solid battery is composed of, for example, a metal layer (aluminum foil or the like) and a resin layer (polyolefin resin layer such as polyethylene or polypropylene, and if necessary, a surface protective layer such as a polyamide resin layer).
  • a metal layer aluminum foil or the like
  • a resin layer polyolefin resin layer such as polyethylene or polypropylene, and if necessary, a surface protective layer such as a polyamide resin layer.
  • a surface protective layer such as a polyamide resin layer
  • an exterior body for an all-solid-state battery for example, an exterior body composed of an inorganic material capable of functioning as a waterproof layer, for example, an oxide film such as silicon or a nitride film is also known (for example, Patent Document 4).
  • the inventors of the present application noticed that the conventional exterior body for batteries, especially the exterior body for solid-state batteries, had a problem to be overcome, and found that it was necessary to take measures for that purpose. Specifically, the inventors of the present application have found that there are the following problems.
  • Patent Documents 1 to 3 It has been known from the past that a resin layer and a metal layer are used in combination as an exterior body of a battery such as a lithium ion secondary battery or a solid-state battery (for example, Patent Documents 1 to 3).
  • a laminated film in which a resin layer is laminated on an aluminum foil has low water vapor permeability and can be heat-bonded and sealed at a relatively low temperature, and therefore has been conventionally used as an exterior body of a solid-state battery (for example, Patent Document 3). ..
  • a solid-state battery such as a conventional all-solid-state lithium-ion secondary battery, for example, as shown in FIG. 8, two conductive tabs (leads) for taking out electrodes extending from the main body, specifically, extending from the positive electrode terminal A.
  • a structure having a tab T a on the positive electrode side to be output and a tab T b on the negative electrode side extending from the negative electrode terminal B was common (for example, Patent Documents 3 and 4).
  • Patent Documents 3 and 4 there are various variations in the arrangement of tabs and the extension direction.
  • a solid-state battery laminate 1100 including a solid-state battery main body (that is, a positive electrode layer, a negative electrode layer, a solid electrolyte layer, etc.) and a positive electrode terminal A and a negative electrode terminal B having two tabs (T a , T b ) extended as shown in FIG.
  • a solid-state battery main body that is, a positive electrode layer, a negative electrode layer, a solid electrolyte layer, etc.
  • T a , T b two tabs
  • FIG. 9A for example, two laminated films (L 1 and L 2 ) are used as the main body), and the thermoplastic resin such as polyethylene and polypropylene contained in the laminated film is used. It can be sealed by heat bonding (heat fusion).
  • Moisture such as water vapor easily invades the inside of the battery from the part where the battery is present, and the problem is that the performance of the solid-state battery deteriorates (the problem of deterioration of the solid-state battery due to the intrusion of moisture).
  • the solid battery body is conventionally sealed by heat bonding using such a laminated film, polyolefin resins such as polyethylene and polypropylene, which can be easily heat-bonded and sealed at a relatively low temperature, are heat-adhesive. It was generally used as a resin (for example, Patent Document 3).
  • the main body of a solid-state battery such as an all-solid-state lithium-ion secondary battery can be generally composed of a fired body or a sintered body, it can be handled at a high temperature and can be mounted on a substrate by reflow soldering (for example).
  • the above-mentioned laminated film, especially the heat-adhesive resin has a problem that it is difficult to withstand the reflow soldering process. There was (mounting problem due to reflow soldering).
  • a film made of an inorganic material for example, a silicon oxide film (SiO 2 film) or a nitride film (SiON film), was used as the exterior body instead of the laminated film.
  • an exterior body made of such an inorganic material the exterior body may be "cracked” or the exterior body may be “cracked” due to volume changes of the solid-state battery body during use, especially during charging and discharging, especially expansion and contraction. In such a case, moisture such as water vapor easily invades, resulting in deterioration of the performance of the solid-state battery (problem of "cracking" or "cracking" of the exterior body). ..
  • the present invention has been made in view of such a problem. That is, the main object of the present invention is to provide an exterior body that can prevent the intrusion of moisture such as water vapor, can withstand the reflow soldering process, and can prevent or avoid "cracks" and "cracks". It is to provide a solid state battery and an exterior body for such a solid state battery.
  • the inventors of the present application tried to solve the above-mentioned problems by dealing with them in a new direction, instead of dealing with them as an extension of the conventional technology. As a result, they have invented a solid-state battery and an exterior body for a solid-state battery that have achieved the above-mentioned main purpose.
  • a solid-state battery laminate having at least one battery building block including a positive electrode layer, a negative electrode layer, and a solid electrolyte or a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer along the stacking direction.
  • External terminals of the positive electrode terminal and the negative electrode terminal provided on the opposite side surfaces of the solid-state battery laminate are provided.
  • An exterior body comprising the solid-state battery laminate and a laminate film for covering the external terminals.
  • the laminated film has a metal foil in the resin film layer (or between the resin film layers).
  • the exterior body for a solid-state battery is arranged in a resin film layer containing a heat-adhesive resin having a melting point of 200 ° C. or higher, and in the resin film layer (or between resin film layers).
  • a resin film layer containing a heat-adhesive resin having a melting point of 200 ° C. or higher, and in the resin film layer (or between resin film layers).
  • an exterior body comprising a laminated film comprising with a metal foil.
  • a solid state battery comprising a capable exterior body and an exterior body for such a solid state battery are obtained. Therefore, the solid-state battery can be used in a high-temperature environment or a high-humidity environment, and the long-term reliability of the solid-state battery is further improved. It should be noted that the effects described in the present specification are merely exemplary and not limited, and may have additional effects.
  • FIG. 1 is a schematic view schematically showing a solid-state battery laminate that can be used in the solid-state battery according to the embodiment of the present invention.
  • FIG. 2 is a schematic view schematically showing a solid-state battery (first embodiment) according to an embodiment of the present invention.
  • FIG. 3 is a schematic view schematically showing a laminated film that can be used in the exterior body of the solid-state battery according to the embodiment of the present invention and its preparation.
  • FIG. 4 is a schematic diagram schematically showing a method for manufacturing a solid-state battery according to an embodiment of the present invention.
  • FIG. 5 is a schematic view schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 1 is a schematic view schematically showing a solid-state battery laminate that can be used in the solid-state battery according to the embodiment of the present invention.
  • FIG. 2 is a schematic view schematically showing a solid-state battery (first embodiment) according to an embodiment of the present invention.
  • FIG. 3 is a schematic
  • FIG. 6 is a schematic view schematically showing a solid-state battery (second embodiment) according to another embodiment of the present invention.
  • FIG. 7 is a schematic diagram schematically showing a solid-state battery according to another embodiment of the present invention.
  • FIG. 8 is a schematic view schematically showing a conventional solid-state battery.
  • FIG. 9 is a schematic diagram schematically showing a conventional method for manufacturing a solid-state battery.
  • the "cross-sectional view” referred to in the present specification is based on a form when viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction or the stacking direction of each layer that can constitute a solid-state battery. In other words, it is based on the form when cut out on a plane parallel to the thickness direction. In short, it is based on the form of the cross section of the object shown in FIGS. 1 and 2, for example.
  • the "vertical direction” and “horizontal direction” used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the figure, respectively. Unless otherwise specified, the same sign or symbol shall indicate the same member or part or the same meaning.
  • the vertical downward direction that is, the direction in which gravity acts
  • the opposite direction corresponds to the "upward direction” / "top surface side”. Can be done.
  • the “solid-state battery” as used in the present invention refers to a battery whose components can be composed of a solid in a broad sense, and in a narrow sense, an all-solid-state battery in which its components (particularly preferably all components) can be composed of a solid. Pointing to.
  • the solid-state battery in the present invention is a laminated solid-state battery in which each layer forming a battery building unit is configured to be laminated with each other, and preferably each such layer is made of a fired body or a sintered body. ing.
  • the "solid-state battery” may include not only a so-called “secondary battery” that can be repeatedly charged and discharged, but also a "primary battery” that can only be discharged.
  • a “solid-state battery” is a secondary battery.
  • the "secondary battery” is not overly bound by its name and may include, for example, a power storage device.
  • the solid-state battery comprises at least an electrode layer of a positive electrode and a negative electrode and a solid electrolyte layer (or a solid electrolyte).
  • the solid-state battery includes a positive electrode layer (101), a negative electrode layer (102), and a solid electrolyte layer (or solid electrolyte) (103) at least interposed between them. It comprises a solid-state battery laminate (100) including at least one battery building block (104) along the stacking direction.
  • each layer that can form the solid-state battery may be formed by firing or sintering, and the positive electrode layer, the negative electrode layer, the solid electrolyte layer, and the like may be a fired layer or a sintered layer, or a fired body or a sintered body. May be formed. More preferably, the positive electrode layer, the negative electrode layer and the solid electrolyte layer are integrally fired or integrally sintered with each other, and therefore the battery building blocks or the solid-state battery laminate form an integrally fired body or an integrally sintered body. May be.
  • the solid-state battery laminate (100) may have a box-shaped or rectangular parallelepiped shape having main surfaces at the top and bottom, as shown in FIGS. 1 and 2, for example.
  • the positive electrode layer (101) is an electrode layer including at least a positive electrode active material. Therefore, the positive electrode layer (101) may be a positive electrode active material layer mainly composed of the positive electrode active material. The positive electrode layer may further contain a solid electrolyte, if necessary. In some embodiments, the positive electrode layer may be composed of a fired or sintered body containing at least positive electrode active material particles and solid electrolyte particles.
  • the negative electrode layer (102) is an electrode layer including at least a negative electrode active material. Therefore, the negative electrode layer (102) may be a negative electrode active material layer mainly composed of a negative electrode active material. The negative electrode layer may further contain a solid electrolyte, if necessary. In some embodiments, the negative electrode layer may be composed of a fired or sintered body containing at least negative electrode active material particles and solid electrolyte particles.
  • the positive electrode active material and the negative electrode active material are substances that can be involved in the occlusion and release of ions and the transfer of electrons to and from an external circuit in a solid-state battery. Ions move (conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte.
  • the occlusion and release of ions to the active material involves the oxidation or reduction of the active material, and the electrons or holes for such a redox reaction move from the external circuit to the external terminal and further to the positive electrode layer or the negative electrode layer. Charging and discharging can proceed by the delivery.
  • the positive and negative layers are, for example, lithium ion, sodium ion, proton (H + ), potassium ion (K + ), magnesium ion (Mg 2+ ), aluminum ion (Al 3+ ), silver ion (Ag + ), and fluoride.
  • Examples of the positive electrode active material that can be contained in the positive electrode layer (101) include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and a spinel-type structure. Examples thereof include at least one selected from the group consisting of lithium-containing oxides and the like.
  • the lithium-containing phosphoric acid compound having a pear-con type structure Li 3 V 2 (PO 4 ) 3 and the like can be mentioned.
  • lithium-containing phosphoric acid compounds having an olivine-type structure examples include Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4 , LiMnPO 4 , and / or LiFe 0.6 Mn 0.4 PO 4 .
  • lithium-containing layered oxides include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and / or LiCo 0.8 Ni 0.15 Al 0.05 O 2 .
  • lithium-containing oxides having a spinel-type structure include LiMn 2 O 4 and / or LiNi 0.5 Mn 1.5 O 4 and the like.
  • the positive electrode active material capable of occluding and releasing sodium ions includes a sodium-containing phosphoric acid compound having a nacicon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and sodium having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned.
  • Examples of the negative electrode active material that can be contained in the negative electrode layer (102) include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, and carbon materials such as graphite. , At least selected from the group consisting of graphite-lithium compounds, lithium alloys, lithium-containing phosphoric acid compounds having a pearcon-type structure, lithium-containing phosphoric acid compounds having an olivine-type structure, lithium-containing oxides having a spinel-type structure, and the like. There is one kind. Examples of lithium alloys include Li-Al and the like.
  • lithium-containing phosphoric acid compounds having a pearcon-type structure examples include Li 3 V 2 (PO 4 ) 3 and / or LiTi 2 (PO 4 ) 3 .
  • lithium-containing phosphoric acid compounds having an olivine-type structure examples include Li 3 Fe 2 (PO 4 ) 3 and / or LiCuPO 4 .
  • Li 4 Ti 5 O 12 and the like can be mentioned.
  • the negative electrode active material that can occlude and release sodium ions includes a group consisting of a sodium-containing phosphoric acid compound having a nacicon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, and a sodium-containing oxide having a spinel-type structure. At least one selected from is mentioned.
  • the positive electrode layer and the negative electrode layer may be made of the same material.
  • the positive electrode layer and / or the negative electrode layer may contain a conductive material.
  • the conductive material that can be contained in the positive electrode layer and the negative electrode layer include at least one selected from the group consisting of metal materials such as silver, palladium, gold, platinum, aluminum, copper and nickel, and carbon. Can be done.
  • the positive electrode layer and / or the negative electrode layer may contain a firing aid or a sintering aid.
  • a firing aid or sintering aid at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide can be mentioned.
  • the thickness of the positive electrode layer and the negative electrode layer is not particularly limited.
  • the thickness of each of the positive electrode layer and the negative electrode layer may be 2 ⁇ m or more and 100 ⁇ m or less, and particularly may be 5 ⁇ m or more and 50 ⁇ m or less.
  • the solid electrolyte (or solid electrolyte layer) (103) is a material capable of conducting ions such as lithium ion or sodium ion.
  • the solid electrolyte forming a battery constituent unit in a solid-state battery may form, for example, a layer in which lithium ions can be conducted between the positive electrode layer and the negative electrode layer.
  • Specific examples of the solid electrolyte include a lithium-containing phosphoric acid compound having a pearcon-type structure, an oxide having a perovskite-type structure, an oxide having a garnet-type or garnet-type similar structure, and an oxide glass ceramics-based lithium ion conductor. And so on.
  • Li x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2,1 ⁇ y ⁇ 2, M is a group consisting of Ti, Ge, Al, Ga, and Zr It is at least one of the more selected).
  • Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like can be mentioned.
  • an oxide having a perovskite-type structure La 0.55 Li 0.35 TiO 3 and the like can be mentioned.
  • oxides having a garnet-type or garnet-type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
  • oxide glass ceramics-based lithium ion conductor for example, a phosphoric acid compound (LATP) containing lithium, aluminum and titanium as a constituent element, and a phosphoric acid compound (LAGP) containing lithium, aluminum and germanium as constituent elements are used.
  • LATP phosphoric acid compound
  • LAGP phosphoric acid compound
  • the solid electrolyte capable of conducting sodium ions include sodium-containing phosphoric acid compounds having a nacicon-type structure, oxides having a perovskite-type structure, oxides having a garnet-type or garnet-type similar structure, and the like.
  • the sodium-containing phosphate compound having a NASICON-type structure Na x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2,1 ⁇ y ⁇ 2, M is a group consisting of Ti, Ge, Al, Ga, and Zr It is at least one of the more selected).
  • the solid electrolyte layer may contain a firing aid or a sintering aid.
  • the firing aid or sintering aid that may be contained in the solid electrolyte layer may be selected from, for example, the same materials as the firing aid or sintering aid that may be contained in the positive electrode layer and / or the negative electrode layer.
  • the thickness of the solid electrolyte layer is not particularly limited.
  • the thickness of the solid electrolyte layer may be, for example, 1 ⁇ m or more and 15 ⁇ m or less, and particularly may be 1 ⁇ m or more and 5 ⁇ m or less.
  • the positive electrode layer (101) and the negative electrode layer (102) may include a positive electrode current collector layer and a negative electrode current collector layer, respectively.
  • the positive electrode current collector layer and the negative electrode current collector layer may each have the form of a foil.
  • the positive electrode current collector layer and the negative electrode current collector layer have the form of a fired body or a sintered body from the viewpoint of reducing the manufacturing cost of the solid-state battery and reducing the internal resistance of the solid-state battery by integrally firing or integrally sintering. You may.
  • the positive electrode current collector layer and / or the negative electrode current collector layer has the form of a fired body or a sintered body, it is composed of a fired body or a sintered body containing a conductive material and / or a firing aid or a sintering aid. May be done.
  • the conductive material that can be contained in the positive electrode current collector and / or the negative electrode current collector layer may be selected from, for example, the same materials as the conductive material that can be contained in the positive electrode layer and / or the negative electrode layer.
  • the firing aid or sintering aid that can be contained in the positive electrode current collector layer and / or the negative electrode current collector layer is, for example, the same material as the firing aid or sintering aid that can be contained in the positive electrode layer and / or the negative electrode layer. May be selected from.
  • the thickness of the positive electrode current collector layer and the negative electrode current collector layer is not particularly limited.
  • the thickness of each of the positive electrode current collector layer and the negative electrode current collector layer may be 1 ⁇ m or more and 10 ⁇ m or less, and particularly may be 1 ⁇ m or more and 5 ⁇ m or less.
  • the positive electrode collector layer and the negative electrode current collector layer are not indispensable, and a solid-state battery in which such a positive electrode current collector layer and a negative electrode current collector layer are not provided is also conceivable. That is, the solid-state battery in the present invention may be a “current collector-less” solid-state battery.
  • the solid-state battery laminate (100) is provided with a terminal for connecting to the outside (hereinafter, referred to as an “external terminal”).
  • a terminal for connecting to the outside is provided as an "end face electrode” on the side surface of the solid-state battery laminate (100).
  • the external terminal for example, as shown in FIG. 2, the positive electrode side terminal (positive electrode terminal) (1A) electrically connected to the positive electrode layer (101), the negative electrode layer (102), and electricity.
  • the solid-state battery laminate 100 may be provided with a terminal (negative electrode terminal) (1B) on the negative electrode side that is specifically connected to the solid-state battery.
  • Such terminals preferably include a material (or a conductive material) having a high conductivity.
  • the material of the terminal is not particularly limited, and examples thereof include at least one selected from the group consisting of gold, silver, platinum, aluminum, tin, nickel, copper, manganese, cobalt, iron, titanium and chromium. be able to.
  • the solid-state battery according to an embodiment of the present invention (hereinafter, may be referred to as “solid-state battery of the present disclosure” or simply “solid-state battery”) has a positive electrode as a basic component, for example, as shown in FIG.
  • the battery building block 104 including the layer 101, the negative electrode layer 102, and the solid electrolyte layer (or solid electrolyte) 103 interposed between the positive electrode layer 101 and the negative electrode layer 102 is stacked in the stacking direction (thickness direction or vertical direction). It comprises at least one solid-state battery laminate 100 along the line.
  • the solid-state battery according to the embodiment of the present invention includes positive electrode terminals 1A and negative electrode terminals 1B provided on opposite side surfaces of the solid-state battery laminate 100 as external terminals.
  • the "positive electrode terminal 1A” and the “negative electrode terminal 1B” are collectively referred to as an "external terminal 1", and the "external terminal 1" and the “solid-state battery laminate 100" are collectively referred to as a “solid-state battery main body” ("solid-state battery main body”). It may also be referred to as “the body of a solid-state battery”, “the body of a battery” or simply “the body”).
  • the solid-state battery of the present disclosure is, for example, as shown in FIG. 2, two laminated films for covering the solid-state battery laminate, that is, the solid-state battery laminate 100 and the external terminal 1 (both the positive electrode terminal 1A and the negative electrode terminal 1B). It is characterized by comprising an exterior body 2 having (more specifically, two laminated films 3a and 3b).
  • the "battery body" included in the solid-state battery of the present disclosure is characterized in that it is covered or wrapped with two laminated films (3a, 3b), and the entire circumference of the "battery body” is covered. It is preferably sealed or sealed with a laminated film.
  • the two laminated films (3a, 3b) are in the resin film layer (4a, 4b) (or between the resin film layers) as described in detail below. It has a structure having a metal foil (5a, 5b). At least a part of the metal foil (5a, 5b) is exposed to form a contact portion (6a, 6b) with an external terminal (1A, 1B), and another part of the metal foil (5a, 5b) is further exposed. It is exposed to form take-out electrode portions (7a, 7b).
  • laminated films (3a, 3b) are collectively referred to as “laminated film 3", and the resin film layers (4a, 4b) are collectively referred to as “resin film layer 4", and the metal foil (5a, 5b).
  • metal layer 5" the contact portions (6a, 6b) are collectively referred to as “contact portion 6”
  • take-out electrode portions (7a, 7b) are collectively referred to as “take-out electrode portion 7".
  • the metal foil 5 that can be contained in the resin film layer 4 of the laminated film 3 is exposed from the laminated film 3, so that the solid-state battery main body is exposed at the “contact portion 6”. It can be electrically connected to the terminals (1A, 1B) and further electrically connected to the outside (other components) of the solid-state battery 10 in the "take-out electrode portion 7".
  • the "take-out electrode portion 7" can function as an electrode of the solid-state battery 10 or an electrical contact or terminal.
  • a solid-state battery can be mainly composed of a "battery body” and a "laminated film". Therefore, for example, a tab for taking out an electrode, which is required for a conventional solid-state battery as shown in FIG. T a , T b ) may not be used. That is, the solid-state battery of the present disclosure is characterized in that a tab for taking out an electrode is not used. Therefore, the solid-state battery of the present disclosure may be a "tabless structure” or “laminated tabless structure” solid-state battery characterized by not having a tab connected to an external terminal (1A, 1B). ..
  • the solid-state battery of the present disclosure for example, by adopting a tabless structure as shown in FIG. 2, a laminated film is used as compared with the case where a tab (Ta, T b) for taking out an electrode as shown in FIG. 8 is present.
  • the thermal adhesion of (3a, 3b) becomes stronger at the interface (boundary) thereof, and in particular, the invasion of moisture such as water vapor can be further prevented or suppressed.
  • the solid-state battery has such a tabless structure, the number of parts of the solid-state battery as a whole can be reduced, and the production of the solid-state battery can be made easier.
  • water vapor referred to in the present specification is not particularly limited to water in a gaseous state, but also includes water in a liquid state.
  • water vapor is used to broadly include matters related to water regardless of the physical state. Therefore, “water vapor” can also be referred to as water or the like, and in particular, water in a liquid state may include dew condensation water in which water in a gaseous state is condensed.
  • the "laminated film” described in detail below is used as the "exterior body” of the solid-state battery, it can withstand, for example, reflow soldering, and is composed of an inorganic material. It is possible to prevent or avoid “cracking” and “cracking” as compared with an exterior body (for example, Patent Document 4) using a battery, for example, a silicon oxide film (SiO 2 film) or a nitride film (SiON film). can.
  • a battery for example, a silicon oxide film (SiO 2 film) or a nitride film (SiON film).
  • the exterior body (hereinafter, may be referred to as “the exterior body of the present disclosure”) that can be used in the solid-state battery of the present disclosure can be basically composed of two “laminated films”.
  • the "laminated film” is a structure in which at least one "metal foil” (metal layer) is arranged inside (inside) of at least one "resin film layer” or at least two “resin film layers”. It means a structure (laminated body) in which at least one "metal foil” (metal layer) is laminated between “”.
  • the laminated film has a structure in which the metal foil 5 is arranged inside (inside) the resin film layer 4, for example, as shown in FIG. 3A. It is preferable that the resin film layer 4 is arranged on the outside (upper and lower) of the metal foil 5. In particular, it is preferable that the resin film layer having heat adhesion (or heat fusion property) forms the heat adhesion surface of the laminated film.
  • the laminated film 3 at least a part of the metal foil 5 is exposed from the laminated film, specifically, the resin film layer, and the external terminals (positive electrode terminal 1A, negative electrode terminal) of the solid-state battery body are exposed. It is preferable that the contact portion 6 with the 1B) is provided, and the other part of the metal foil 5 is exposed from the laminated film to have the take-out electrode portion 7.
  • the position where the contact portion 6 and the take-out electrode portion 7 are arranged is not particularly limited, and may be appropriately determined according to the desired specifications of the solid-state battery (for example, the shape of the terminal and the position of the take-out electrode portion).
  • the laminated film can be manufactured by a conventionally known laminating technique, particularly a resin-metal laminating technique. For example, it can be produced by thermally adhering the resin film and the metal foil by heating in a state where the metal foil is sandwiched between two resin films.
  • the area of the resin film and the area of the metal foil may be the same or different. By making the area of the metal foil smaller than that of the resin film, the periphery of the resin film may be bonded to each other by heat adhesion.
  • the contact portion 6 and the take-out electrode portion 7 for example, as shown in FIG. 3B, masking portions 8 and 9 and the like are formed in advance on the laminated film by using a conventionally known masking technique, and then the masking is performed.
  • the contact portion 6 and the take-out electrode portion 7 can be formed by exposing the metal foil 5 by removing the portions.
  • the laminated film 3'shown in FIG. 3A may be laser-processed to form the contact portion 6 and the take-out electrode portion 7.
  • the contact portion 6 and the take-out electrode portion 7 may be formed by using a mold or the like.
  • the method for forming the contact portion 6 and the take-out electrode portion 7 is not limited to the above method.
  • the metal foil that can be contained in the laminated film can be used without particular limitation as long as it is made of a metal having electrical conductivity (conductivity). Specifically, gold foil, silver foil, copper foil, aluminum foil (aluminum foil), nickel foil, stainless steel foil and the like can be used. It is preferable to use aluminum foil, nickel foil or stainless steel foil as the metal foil, and it is particularly preferable to use aluminum foil.
  • the resin film layer that can be contained in the laminated film preferably contains a "heat-adhesive resin".
  • heat-adhesive resin refers to a resin or polymer that can impart properties such as water resistance and heat resistance to a laminated film as needed after heat-bonding as well as heat-adhesiveness (or heat-bonding property). Means material.
  • heat adhesiveness means, for example, the property that a resin (polymer material) is at least softened (or melted) by heating to exhibit adhesiveness and can adhere to, adhere to or bond with each other.
  • water resistance means, in a broad sense, a property capable of preventing or suppressing the intrusion of moisture such as water vapor. Specifically, it has the property of preventing or suppressing the intrusion of moisture such as water vapor to prevent deterioration of the solid-state battery body, or the property that water vapor in the external environment permeates the laminated film of the exterior body and is inconvenient for the solid-state battery. It means that it has a water vapor permeation blocking property that does not cause deterioration. In a narrow sense, it means that, for example, the water vapor permeability is less than 5.0 ⁇ 10 -3 g / (m 2 ⁇ Day).
  • the exterior body of the present disclosure preferably has a water vapor permeability of 0 or more and less than 5.0 ⁇ 10 -3 g / (m 2 ⁇ Day).
  • the "water vapor permeability" here refers to the transmittance obtained by the gas permeability measuring device of model WG-15S manufactured by MORESCO and the measurement conditions are 85 ° C and 85% RH MA method. ing.
  • the measurement condition is that the value of the water vapor permeability obtained by 40 ° C. 90% RH differential pressure 1 atm is 1.0 ⁇ 10. It may be less than -3 g / (m 2 ⁇ Day).
  • heat resistance means, for example, a property that can be handled in a heating environment and can withstand an environment such as mounting on a substrate by reflow soldering treatment, particularly surface mounting on a printed circuit board. Means. More specifically, it means that the resin does not melt, melt, or deform in such a mounting environment.
  • composition of the resin film layer on the side in contact with the solid-state battery body (particularly the composition of the resin) and the composition of the resin film layer on the side in contact with the outside (outside air) of the solid-state battery may be the same or different. It is preferable that each resin film layer has the same structure (particularly the same resin composition) from the viewpoint of thermal adhesiveness.
  • the laminated film contains a heat-adhesive resin, for example, heat-bonding having a melting point of 200 ° C. or higher, preferably 220 ° C. or higher and 400 ° C. or lower, and more preferably 250 ° C. or higher and 350 ° C. or lower. It is more preferable to use a laminated film having a resin film layer containing a sex resin and a metal foil that can be arranged in the resin film layer. By using a heat-adhesive resin having a melting point of 200 ° C. or higher, not only heat-adhesiveness but also more excellent heat resistance can be imparted to the laminated film.
  • a heat-adhesive resin for example, heat-bonding having a melting point of 200 ° C. or higher, preferably 220 ° C. or higher and 400 ° C. or lower, and more preferably 250 ° C. or higher and 350 ° C. or lower. It is more preferable to use a laminated
  • a heat-adhesive resin having a melting point of 200 ° C. or higher can be used without particular limitation, but it is preferable to use a resin having higher water resistance.
  • the solid-state battery of the present disclosure is a surface mount component (SMD) and the solid-state battery of the present disclosure is mounted by a reflow (solder) method, particularly when mounted on a printed circuit board, "reflow peak temperature ⁇ 50". It is preferable that the heat-adhesive resin has a melting point of ° C.
  • Reflow peak temperature means the peak temperature or maximum temperature that can be measured or calculated when a solid-state battery is mounted by the reflow (solder) method according to the preset reflow (solder) conditions.
  • the reflow peak temperature is, for example, 250 ° C. or higher, preferably 270 ° C. or higher.
  • the melting point of the reflow peak temperature ⁇ 50 ° C. is, for example, 200 ° C. or higher, preferably 220 ° C. or higher. When the melting point is within the above range, it can withstand the environment of mounting on a substrate in the reflow soldering treatment, particularly the environment of surface mounting on a printed circuit board.
  • a non-olefin resin (or a resin other than the olefin resin or a resin excluding the olefin resin) is used as the "heat-adhesive resin" contained in the "resin film layer" of the "laminate film”. Is preferable.
  • the problem of the prior art is solved by using a non-olefin resin which has not been used as the heat-adhesive resin in the prior art.
  • the heat-adhesive resin includes polychlorotrifluoroethylene (PCTFE) (melting point: 220 ° C.), polytetrafluoroethylene (PTFE) (melting point: 327 ° C.), and polyphenylene sulfide (PPS) (melting point: 280 ° C.). ° C.) and a resin selected from the group consisting of polyamide-imide (PAI) (melting point: 300 ° C.) and the like.
  • PCTFE polychlorotrifluoroethylene
  • PTFE polytetrafluoroethylene
  • PPS polyphenylene sulfide
  • PAI polyamide-imide
  • PCTFE polychlorotrifluoroethylene
  • PTFE polytetrafluoroethylene
  • PCTFE polychlorotrifluoroethylene
  • the blending amount of the heat-adhesive resin in the resin film layer is not particularly limited, and is, for example, in the range of 50% by weight or more and 100% by weight or less based on the weight of the resin film layer.
  • the resin film layer may further contain another resin, if necessary.
  • the other resin is not particularly limited, and it is preferable to use a resin having thermal adhesiveness.
  • a solid-state battery main body that can be basically composed of a solid-state battery laminate 100 and an external terminal 1 (positive electrode terminal 1A and negative electrode terminal 1B) is prepared. do.
  • the solid-state battery body can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof.
  • the solid-state battery manufacturing method of the present disclosure is not limited to the above method.
  • the laminated film (3a, 3b) has a contact portion and a take-out electrode portion formed in advance so as to correspond to the positive electrode terminal 1A and the negative electrode terminal 1B, respectively (see FIG. 3C).
  • the take-out electrode portion may be formed by exposing the metal foil by laser processing or the like after thermal bonding of the laminated film.
  • the solid-state battery main body is arranged between two laminated films (3a, 3b). At this time, it is preferable to position and arrange the positive electrode terminal 1A and the negative electrode terminal 1B so that the laminated film (3a, 3b) is appropriately engaged or fitted.
  • the resin film layer on the side in contact with the solid-state battery body (that is, the inner resin film layer) can be bonded by heat adhesion.
  • the heating temperature is, for example, 250 ° C. or higher and 350 ° C. or lower. In addition, such heating may be performed at the same time as the above pressurization.
  • the method for manufacturing a solid-state battery of the present disclosure is not limited to the above method, and the solid-state battery body can be appropriately placed between two laminated films by applying a conventionally known laminating or packaging technique. It should be sealed.
  • the solid-state battery 10 shown in FIG. 2 has at least one battery structural unit 104 including a positive electrode layer 101, a negative electrode layer 102, and a solid electrolyte layer 103 interposed between the positive electrode layer 101 and the negative electrode layer 102 along the stacking direction. It has a solid-state battery laminate 100 (see FIG. 1).
  • the solid-state battery 10 includes positive electrode terminals 1A and negative electrode terminals 1B provided on the left and right side surfaces of the solid-state battery laminate 100 facing each other as external terminals 1 (see FIG. 2).
  • the solid-state battery 10 includes an exterior body 2 having a solid-state battery laminate 100 and two laminated films (3a, 3b) for covering or wrapping the external terminal 1 (that is, the solid-state battery main body).
  • the laminated film (3a, 3b) may have a metal foil (5a, 5b) in the resin film layer (4a, 4b) (or between at least two resin film layers), respectively. At least a part of the metal foil (5a, 5b) is exposed to form a contact portion (6a, 6b) with the positive electrode terminal 1A or the negative electrode terminal 1B, and the other part of the metal foil (5a, 5b) is exposed.
  • the take-out electrode portion (7a, 7b) may be formed (see FIG. 3).
  • the laminated film 3a is a positive electrode side laminated film that is electrically connected or contacted with the positive electrode terminal 1A
  • the laminated film 3b is a negative electrode side laminated film that is electrically connected or contacted with the negative electrode terminal 1B.
  • At least a part of the metal foil 5a that can be contained in the positive electrode side laminated film 3a is exposed to form a contact portion 6a with the positive electrode terminal 1A, and the other part of the metal foil 5a is exposed and the take-out electrode portion on the positive electrode side is exposed. 7a can be formed.
  • the take-out electrode portion 7a on the positive electrode side can be electrically connected to the outside (other components) of the solid-state battery, so that it is connected to the positive electrode terminal 1A, which has been conventionally required, and is a positive electrode terminal. it is possible to eliminate the tab extending from 1A to the outside of the solid-state battery (see for example "tab T a" in FIG. 8).
  • At least a part of the metal foil 5b that can be contained in the negative electrode side laminated film 3b is exposed to form a contact portion 6b with the negative electrode terminal 1B, and the other part of the metal foil 5b is exposed and the take-out electrode portion on the negative electrode side is exposed. 7b can be formed.
  • the take-out electrode portion 7b on the negative electrode side can be electrically connected to the outside (other components) of the solid-state battery, so that it is connected to the negative electrode terminal 1B, which was conventionally required, and the negative electrode terminal. it is possible to eliminate the tab extending from 1B to the outside of the solid-state battery (see for example "tab T b" in FIG. 8).
  • the bond also referred to as adhesion, fusion or bonding
  • adhesion, fusion or bonding between the positive electrode side laminated film 3a and the negative electrode side laminated film 3b is to be more firmly secured. It is possible to further prevent or suppress the intrusion of moisture such as water vapor from the bonding surface of the two laminated films (3a, 3b).
  • the positive electrode side laminated film 3a and the negative electrode side laminated film 3b are each at at least one end of the laminated film (3a, 3b).
  • the laminated films (3a, 3b) are bonded at both ends.
  • the end of the laminated film means the left and / or right end of the solid-state battery body in a cross-sectional view.
  • the end portion of the laminated film may be an edge portion in the left direction and / or a right direction of the solid-state battery body in a top view.
  • the end portion of the laminated film has a take-out electrode portion.
  • the end portion (left end portion) of the laminated film 3a has the take-out electrode portion 7a
  • the end portion (right end portion) of the laminate film 3b has the take-out electrode portion 7b. Is more preferable.
  • the external terminal (1A, 1B) is, for example, as shown in FIG. 2, the main surface of one of the two main surfaces facing each other in the cross-sectional view of the solid-state battery laminate 100. It is preferable that it does not extend to the other main surface, whereas it extends to the other main surface. More specifically, as shown in FIG. 2, for example, the positive electrode terminal 1A extends to the lower main surface of the two main surfaces (upper and lower surfaces) facing each other in the cross-sectional view of the solid-state battery laminate 100. On the other hand, it is preferable that it does not extend to the upper main surface. For example, as shown in FIG.
  • the positive electrode terminal 1A may be arranged in an “L-shaped” shape in a cross-sectional view.
  • the negative electrode terminal 1B extends downward to the upper main surface of the two main surfaces (upper and lower surfaces) facing each other in the cross-sectional view of the solid-state battery laminate 100. It is preferable that it does not extend to the main surface of.
  • the negative electrode terminal 1B may be arranged in an “L-shaped” shape in a cross-sectional view.
  • a portion extending to one main surface of the external terminal (hereinafter, may be referred to as an “extended portion”) is in contact with the metal foil contained in the laminated film.
  • the portion (extending portion) extending to the lower main surface of the solid-state battery laminate 100 of the positive electrode terminal 1A is in contact with the metal foil 5a, and the solid-state battery laminate of the negative electrode terminal 1B. It is preferable that the portion extending to the main surface above 100 (extending portion) is in contact with the metal foil 5b.
  • the exposed metal foil of the laminated film and the terminals (1A, 1B) can be efficiently electrically and physically contacted (contact portions 6a, 6b). Further, since the metal foil is electrically conductive or conductive, it is possible to omit the tabs (Ta , T b) conventionally required, for example, as shown in FIG.
  • one of the contact portion and the take-out electrode portion is provided on one of the facing surfaces of the laminated film, and the other of the contact portion and the take-out electrode portion is provided on the other of the facing surfaces of the laminated film.
  • the contact portion 6a is provided on the upper surface of the laminated film 3a
  • the take-out electrode portion 7a is provided on the lower surface of the laminated film 3a.
  • the contact portion 6b is provided on the lower surface of the laminated film 3b
  • the take-out electrode portion 7b is provided on the upper surface of the laminated film 3b.
  • the take-out electrode portions 7a and 7b can be provided on the same side as the extending portions of the external terminals 1A and 1B.
  • the arrangement of the take-out electrode portion is not limited to the above aspect.
  • one of the take-out electrode portion on the positive electrode side and the take-out electrode portion on the negative electrode side is provided on one side of the two main surfaces facing each other in the cross-sectional view of the solid battery laminate, and the take-out electrode portion on the positive electrode side and the take-out electrode portion are provided.
  • the other side of the take-out electrode portion on the negative electrode side may be provided on the other side of the two main surfaces.
  • the take-out electrode portion on the positive electrode side and the take-out electrode portion on the negative electrode side may be arranged in opposite directions in the stacking direction of the solid-state battery laminate. More specifically, as shown in FIG.
  • the take-out electrode portion 7a on the positive electrode side is provided on the lower surface side of the two main surfaces (upper and lower surfaces) facing each other in the cross-sectional view of the solid-state battery laminate 100, and is on the negative electrode side.
  • the take-out electrode portion 7b is provided on the upper surface side of the two main surfaces (upper and lower surfaces).
  • the solid-state battery 10 of the first embodiment shown in FIG. 2 is characterized by having a so-called “tabless structure” or “laminated tabless structure” because it does not preferably have a tab connected to the external terminals 1A and 1B. And. Therefore, it is possible to further prevent or suppress the intrusion of moisture such as water vapor from the bonding interface between the laminated films 3a and 3b. In addition, the total number of parts of the solid-state battery is reduced, and the manufacturing of the solid-state battery becomes easier.
  • the positive electrode and the negative electrode may be reversed. That is, the terminal 1A may be the negative electrode terminal and the terminal 1B may be the positive electrode terminal.
  • FIG. 5 shows a modification (variation) of the solid-state battery 10 shown in FIG.
  • FIG. 5A shows a solid-state battery 10'characterized by a take-out electrode portion 7b' on the negative electrode side as a deformed portion or a modified portion of the solid-state battery 10 shown in FIG.
  • the right end portion of the laminated film 3b on the negative electrode side extends longer than the end portion of the laminated film 3a on the positive electrode side, and the metal foil 5b extends downward (that is, at such an end portion).
  • the take-out electrode portion 7b'on the negative electrode side is formed by being exposed to the take-out electrode portion 7a on the positive electrode side provided on the laminated film 3a on the positive electrode side).
  • both positive and negative electrodes can be taken out from the same side (that is, the lower side) of the solid-state battery 10', which is suitable for a surface mount device (SMD).
  • SMD surface mount device
  • FIG. 5B shows a solid-state battery 10 ′′ characterized by a take-out electrode portion 7b ′′ on the negative electrode side as a modified portion or a modified portion of the solid-state battery 10 shown in FIG.
  • the right end portion of the laminated film 3b on the negative electrode side extends longer than the end portion of the laminated film 3a on the positive electrode side, and the metal foil 5b completely extends at such an end portion.
  • the take-out electrode portion 7b'' on the negative electrode side is formed. In such a modification, the electrode can be taken out from both the upper side and the lower side in the take-out electrode portion 7b ′′ on the negative electrode side.
  • the take-out electrode portion on the negative electrode side is changed, but as another embodiment, the take-out electrode portion 7a on the positive electrode side may be changed in the same manner.
  • FIG. 6 Another preferred embodiment of the solid-state battery of the present disclosure shown in FIG. 6 is shown as a "second embodiment".
  • the solid-state battery main body that is, the solid-state battery laminate 200 and the positive electrode terminal 21A and the negative electrode terminal 21B
  • the two laminated films 23a and 23b are basically the solid-state battery main body (that is, the solid-state battery laminate 100 and the positive electrode terminal 1A and the negative electrode terminal 1B) shown in FIGS. 1 and 2 and the two laminated films 3a and 3b (resin films, respectively).
  • Layers 4a, 4b, including metal foils 5a, 5b) can be the same or similar.
  • the arrangement of the end portions of the laminated film and the arrangement of the take-out electrode portions 27a and 27b are different from those of the solid-state battery 10 of the first embodiment shown in FIG.
  • the end portion of the laminated film is bent along the solid-state battery body.
  • the bending direction and the number of times of bending of the laminated film are not particularly limited. More specifically, in the cross-sectional view (cross-sectional view of the solid-state battery laminate 200 in the thickness direction), the left end portion of the laminated film (23a, 23b) is the left side surface on which the positive electrode terminal 21A of the solid-state battery body is arranged. It is preferable that the battery is bent downward along the above (1 time of bending). The left end of the laminated film (23a, 23b) may be bent upward.
  • the right end portion of the laminated film (23a, 23b) is preferably bent downward along the right side surface and the lower surface on which the negative electrode terminal 21B of the solid-state battery body is arranged (number of times of bending 2). times).
  • the right end of the laminated film (23a, 23b) may be bent upward.
  • the take-out electrode portion 27a of the positive electrode side laminated film 23a is provided along the lower surface of the solid-state battery laminate 200 or the extending portion of the positive electrode terminal 21.
  • the position of the take-out electrode portion 27a that can be arranged on the positive electrode side laminated film 23a is not particularly limited, but a position that includes at least a part of the contact portion 26a of the metal foil 25a with the positive electrode terminal 21A is preferable. At such a position, it can be electrically connected to the positive electrode terminal 21A via the metal foil 25a at a short distance (or a vertical distance).
  • one of the take-out electrode portion 27a on the positive electrode side and the take-out electrode portion 27b on the negative electrode side is provided on one side of the two main surfaces facing each other in the cross-sectional view of the solid-state battery laminate 200, and is provided on the positive electrode side. It is preferable that the other of the take-out electrode portion 27a and the take-out electrode portion 27b on the negative electrode side is also provided on one of the two main surfaces. More specifically, as shown in FIG. 6, the take-out electrode portion 27a on the positive electrode side is provided on the lower surface side of the two main surfaces (upper and lower surfaces) facing each other in the cross-sectional view of the solid-state battery laminate 200, and is on the negative electrode side.
  • the take-out electrode portion 27b is also provided on the lower surface side of the two main surfaces (upper and lower surfaces). With such a configuration, both the take-out electrode portion 27a on the positive electrode side and the take-out electrode portion 27b on the negative electrode side can be arranged on the lower surface side of the solid-state battery laminate 200.
  • the distance between the metal foils 25a and 25b (distance in the stacking direction of the solid-state battery laminate 200) in the two extraction electrode portions 27a and 27b is, for example, 50 ⁇ m or more and 300 ⁇ m or less. The presence of such a step makes it possible to confirm the existence of the electrode without printing a mark or the like indicating the electrode.
  • both the take-out electrode portion 27a on the positive electrode side and the take-out electrode portion 27b on the negative electrode side can be arranged on either one of the upper and lower surfaces of the solid-state battery laminate 200.
  • Such an arrangement makes it easier to mount on a substrate (particularly a printed circuit board).
  • the take-out electrode portion 27b of the negative electrode side laminated film 23b is arranged by bending the right end portion of the laminated film 23b in a cross-sectional view. It is more preferable that the take-out electrode portion 27b is bent twice along the right side surface of the solid-state battery laminate (that is, the side surface and the lower surface on which the negative electrode terminal 21B is arranged) and arranged on the lower surface side of the solid-state battery laminate. By bending the end of the laminated film twice in this way, it is possible to further prevent or suppress the intrusion of moisture such as water vapor.
  • the solid-state battery 20 of the embodiment shown in FIG. 6 does not have a tab connected to the external terminals 21A and 21B, and thus has a so-called “tabless structure” or “laminated tabless structure”. Therefore, it is possible to further prevent the intrusion of moisture such as water vapor from the bonding interface of the laminated films 23a and 23b as compared with the first embodiment.
  • the positive electrode and the negative electrode may be reversed. That is, the terminal 21A may be a negative electrode terminal and the terminal 21B may be a positive electrode terminal.
  • FIG. 7 shows a modification (variation) of the solid-state battery 20 shown in FIG.
  • FIG. 7A shows a solid-state battery 20 ′ characterized by a take-out electrode portion 27a ′ on the positive electrode side as a deformed portion or a modified portion of the solid-state battery 20 shown in FIG.
  • the left side coupling end portion of the positive electrode side laminated film 23a and the negative electrode side laminated film 23b is bent to the opposite side (that is, upper side) to the right side coupling end portion in the same manner as the right coupling end portion.
  • the upper side of the metal foil 25a of the laminated film 23a on the positive electrode side that is, the opposite side of the take-out electrode portion 27b'on the negative electrode side provided on the laminated film 23b on the negative electrode side
  • the take-out electrode portion 27a'on the positive electrode side may be formed.
  • FIG. 7 (B) shows the solid-state battery 20 ′′, which is characterized by the take-out electrode portion 27a ′′ on the positive electrode side and the take-out electrode portion 27b ′′ on the negative electrode side as a modified portion or a modified portion of the solid-state battery 20 shown in FIG. Is shown.
  • the take-out electrode portion 27a ′′ on the positive electrode side and the take-out electrode portion 27b ′′ on the negative electrode side may be formed on the left and right side surfaces of the solid-state battery 20 ′′, respectively.
  • the positive and negative electrodes can be taken out facing each other on either the top, bottom, left or right of the solid-state battery by bending the end portion of the laminated film.
  • the solid-state battery of the present disclosure is not limited to the above embodiment.
  • solid-state battery of the present disclosure will be described in more detail by way of examples.
  • the solid-state battery of the present disclosure is not limited to the description of the following examples.
  • Example 1 The solid-state battery 10 of the first embodiment shown in FIG. 2 was manufactured.
  • (I) Preparation of solid-state battery laminate The solid-state battery laminate can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof. That is, the solid-state battery laminate may be manufactured according to a conventional solid-state battery manufacturing method (therefore, the solid electrolyte, the organic binder, the solvent, any additive, the positive electrode active material, the negative electrode active material, etc. described below, etc. As the raw material of the above, those used in the manufacture of known solid-state batteries may be used).
  • -A slurry was prepared by mixing a solid electrolyte, an organic binder, a solvent and any additive. Then, a sheet having a thickness of about 10 ⁇ m after firing was obtained by sheet molding from the prepared slurry.
  • -A positive electrode paste was prepared by mixing a positive electrode active material, a solid electrolyte, a conductive material, an organic binder, a solvent and any additive. Similarly, the negative electrode active material, the solid electrolyte, the conductive material, the organic binder, the solvent and any additive were mixed to prepare a paste for the negative electrode. -The positive electrode paste was printed on the sheet, and the current collector layer was printed as needed.
  • the negative electrode paste was printed on the sheet, and the current collector layer was printed as needed.
  • -A sheet on which the positive electrode paste was printed and a sheet on which the negative electrode paste was printed were alternately laminated to obtain a laminate.
  • the outermost layer (top layer and / or bottom layer) of the laminate even if it is an electrolyte layer, it is an insulating layer (a layer that does not conduct electricity, for example, a non-conductive material such as a glass material and / or a ceramic material). It may be a layer that can be constructed), or it may be an electrode layer.
  • the laminate was pressure-bonded and integrated, it was cut to a predetermined size.
  • the obtained pre-cut laminate was degreased and fired. As a result, a fired laminate was obtained.
  • the laminate may be subjected to degreasing and firing before cutting, and then cut.
  • the dimensions of the solid-state battery laminate 100 were 4 mm ⁇ 5 mm ⁇ 9 mm.
  • the solid-state battery laminate 100 was placed between the two laminated films (3a, 3b) (FIG. 4A). At this time, the solid-state battery main body was arranged by positioning the positive electrode terminal 1A and the negative electrode terminal 1B so that the positive electrode side laminated film 3a and the negative electrode side laminated film 3b were appropriately fitted.
  • the edge of the laminated film (3a, 3b) was cut to produce a solid-state battery 10 (about 4 mm ⁇ 5 mm ⁇ 17 mm).
  • Example 2 The solid-state battery 20 of the second embodiment shown in FIG. 6 was produced in the same manner as in Example 1. However, the take-out electrode portion 27a on the positive electrode side is provided on the lower side of the positive electrode terminal 21A as shown in FIG. 6 (3 mm ⁇ 3 mm). Further, the left end portion of the laminated film is folded downward (once) along the left side surface of the solid-state battery laminate 200, and the right end portion of the laminated film is folded along the right side surface and the lower surface of the solid-state battery laminate 200. Folded down (twice). In the solid-state battery 20, the take-out electrode portion 27a on the positive electrode side and the take-out electrode portion 27b on the negative electrode side are arranged on the same side (lower side). The dimensions of the solid-state battery 20 before folding the end of the laminated film were about 4 mm ⁇ 5 mm ⁇ 16 mm.
  • Comparative Example 1 The solid-state battery of Comparative Example 1 was produced in the same manner as in Example 1. However, polypropylene (PP) (manufactured by Daikin Industries, Ltd.) was used instead of the polychlorotrifluoroethylene (PCTFE) (manufactured by Daikin Industries, Ltd.) used in Example 1. Further, heating with a heat sealer was performed at 180 ° C. for 5 seconds.
  • PP polypropylene
  • PCTFE polychlorotrifluoroethylene
  • the solid-state batteries of Examples 1 and 2 of the present invention can be reflow soldered (for example, mounting a solid-state battery at 250 ° C.).
  • the solid-state batteries of Examples 1 and 2 of the present invention can maintain the hermeticity.
  • the water vapor permeability was less than 5.0 ⁇ 10 -3 g / (m 2 ⁇ Day) (water vapor permeability measured using a gas permeability measuring device of model WG-15S manufactured by MORESCO). (MA method, measurement conditions: 85 ° C. 85% RH)).
  • the solid-state battery of the present invention can be used in various fields where battery use or storage can be expected. Although only an example, the solid-state battery of the present invention is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, etc.) in which electric / electronic devices can be used.
  • the solid-state battery of the present invention is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, etc.) in which electric / electronic devices can be used.
  • Electrical / electronic equipment field or mobile equipment field including electronic paper, wearable devices, RFID tags, card-type electronic money, small electronic devices such as smart watches), household / small industrial applications (for example, electric tools, golf carts, households)
  • Industrial robots for / nursing / industrial robots large industrial applications (eg forklifts, elevators, bay port cranes), transportation systems (eg hybrid cars, electric cars, buses, trains, electric assisted bicycles, electric) (Fields such as motorcycles), power system applications (for example, various power generation, road conditioners, smart grids, general home-installed power storage systems, etc.), medical applications (medical equipment fields such as earphone hearing aids), pharmaceutical applications (dose management) It can be used in fields such as systems), IoT fields, and space / deep sea applications (for example, fields such as space explorers and submersible research vessels).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

固体電池を提供する。当該固体電池は、固体電池積層体を有して成り、前記固体電池積層体の対向する側面にそれぞれ設けられた正極端子および負極端子の外部端子を備え、前記固体電池積層体および前記外部端子を覆うためのラミネートフィルムを有して成る外装体を備える。前記ラミネートフィルムが樹脂フィルム層内に金属箔を有して成り、前記金属箔の少なくとも一部が露出して前記正極端子または前記負極端子との接触部を成す。前記金属箔の他の一部が露出して取り出し電極部を成す。固体電池用の外装体を提供する。当該外装体は、融点が200℃以上の熱接着性樹脂を含んで成る樹脂フィルム層と、該樹脂フィルム層内に配置される金属箔とを有して成るラミネートフィルムを有して成る。

Description

固体電池および固体電池用の外装体
 本発明は、固体電池、より具体的には樹脂フィルム層内に金属箔を有して成るラミネートフィルムを外装体として用いる固体電池およびこのような固体電池用の外装体に関する。
 従前よりリチウムイオン二次電池などの電池用の外装体(外装部)として例えば金属層(アルミニウム箔など)と樹脂層(ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂などから構成される熱接着性樹脂層(又は熱融着性樹脂層)や、ポリアミド系樹脂、ポリエステル系樹脂などから構成される表面層など)の積層体を用いることが知られている(例えば特許文献1、2)。
 全固体電池用の外装体として、例えば金属層(アルミニウム箔など)と樹脂層(ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂層、必要に応じてポリアミド系樹脂層などの表面保護層)とから構成されるラミネート外装体なども知られている(例えば特許文献3)。
 また、全固体電池用の外装体として、例えば防水層として機能し得る無機材料、例えばケイ素などの酸化膜または窒化膜から構成される外装体なども知られている(例えば特許文献4)。
特開2005-297448号公報 特開2018- 92886号公報 特開2015- 79719号公報 特開2015-220099号公報
 本願発明者らは、従前の電池用の外装体、特に固体電池用の外装体には克服すべき課題があることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者らは見出した。
 従前よりリチウムイオン二次電池や固体電池のなどの電池の外装体として樹脂層と金属層とを組み合わせて使用することが知られていた(例えば特許文献1~3)。特にアルミニウム箔に樹脂層を積層させたラミネートフィルムは水蒸気透過性が低く比較的低温での熱接着密封が可能であるため、固体電池の外装体として従来から使用されている(例えば特許文献3)。
 従来の全固体リチウムイオン二次電池などの固体電池では、例えば図8に示すように本体から延出する電極取り出し用の2つの導電性のタブ(リード)、具体的には正極端子Aから延出する正極側のタブT、負極端子Bから延出する負極側のタブTを有する構造が一般的であった(例えば特許文献3、4)。ただし、タブの配置や延出方向には様々なバリエーションがある。
 例えば図8に示す2つのタブ(T,T)が延出している固体電池本体(つまり正極層、負極層、固体電解質層などを含む固体電池積層体1100と正極端子Aおよび負極端子Bとから構成される本体)は、例えば図9(A)に示すように2枚のラミネートフィルム(L,L)を用いて、このラミネートフィルムに含まれるポリエチレンやポリプロピレンなどの熱可塑性樹脂の熱接着(熱融着)により密封することができる。
 しかし、図8および図9に示すような従来の固体電池では2枚のラミネートフィルム(L,L)の熱接着部分(すなわち界面)、特にタブ(T,T)が延出している部分から水蒸気などの水分が電池内部に侵入しやすく、固体電池の性能が低下することが問題であった(水分の侵入による固体電池の劣化の問題)。
 また、従来ではこのようなラミネートフィルムを用いて熱接着により固体電池本体を密封することから、比較的低温で熱接着密封を簡便に行うことのできるポリエチレンやポリプロピレンなどのポリオレフィン系樹脂を熱接着性樹脂として使用することが一般的であった(例えば特許文献3)。
 しかし、全固体リチウムイオン二次電池などの固体電池の本体は、概して焼成体または焼結体から構成され得るため、高温での取り扱いが可能であり、リフローはんだ処理での基板への実装(例えば250℃での実装)(特にプリント基板への表面実装)が可能であるという大きなメリットを有するにも関わらず、上述のラミネートフィルム、特に熱接着性樹脂がリフローはんだ処理に耐えることが難しいという問題があった(リフローはんだ処理による実装の問題)。
 尚、このような耐熱性や耐水性の観点から、外装体としてラミネートフィルムではなく、無機材料から構成された膜、例えばケイ素の酸化膜(SiO膜)や窒化膜(SiON膜)を使用したものも知られている(例えば特許文献4)。
 しかし、このような無機材料から構成された外装体では、その使用時、特に充放電時の固体電池本体の体積変化、特に膨張収縮などによって外装体が「割れ」たり、外装体に「ひび」が入ることがあり、このような場合にも水蒸気などの水分が侵入しやすくなるため、固体電池の性能が低下することが問題であった(外装体の「割れ」や「ひび」の問題)。
 本発明はかかる課題に鑑みて為されたものである。即ち、本発明の主たる目的は、水蒸気などの水分の侵入を防止することができ、リフローはんだ処理に耐えることができ、「割れ」や「ひび」なども防止または回避することができる外装体を有して成る固体電池およびそのような固体電池用の外装体を提供することである。
 本願発明者らは、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された固体電池および固体電池用の外装体の発明に至った。
 本発明では、固体電池であって、
 正極層、負極層、および該正極層と該負極層との間に介在する固体電解質または固体電解質層を備える電池構成単位を積層方向に沿って少なくとも1つ備える固体電池積層体を有して成り、
 前記固体電池積層体の対向する側面にそれぞれ設けられた正極端子および負極端子の外部端子を備え、
 前記固体電池積層体および前記外部端子を覆うためのラミネートフィルムを有して成る外装体を備え、
 前記ラミネートフィルムが樹脂フィルム層内(または樹脂フィルム層間)に金属箔を有して成り、
 前記金属箔の少なくとも一部が露出して前記正極端子または前記負極端子との接触部を成し、当該金属箔の他の一部が露出して取り出し電極部を成す、
固体電池が提供される。
 また、本発明では、固体電池用の外装体であって、融点が200℃以上の熱接着性樹脂を含んで成る樹脂フィルム層と、該樹脂フィルム層内(または樹脂フィルム層間)に配置される金属箔とを有して成るラミネートフィルムを有して成る外装体が提供される。
 本発明では、水蒸気などの水分の侵入を防止することができ、リフローはんだ処理、特にプリント基板への表面実装に耐えることができ、「割れ」や「ひび」なども防止(抑制)または回避することができる外装体を有して成る固体電池およびそのような固体電池用の外装体が得られる。従って、固体電池を高温環境下や高湿環境下で使用することができ、固体電池の長期信頼性がさらに向上する。尚、本明細書に記載された効果はあくまで例示であって限定されるものでなく、また、付加的な効果があってもよい。
図1は、本発明の一実施形態に係る固体電池において使用することのできる固体電池積層体を模式的に示す概略図である。 図2は、本発明の一実施形態に係る固体電池(第1実施形態)を模式的に示す概略図である。 図3は、本発明の一実施形態に係る固体電池の外装体において使用することのできるラミネートフィルムおよびその準備を模式的に示す概略図である。 図4は、本発明の一実施形態に係る固体電池の製造方法を模式的に示す概略図である。 図5は、本発明の他の実施形態に係る固体電池を模式的に示す概略図である。 図6は、本発明の別の実施形態に係る固体電池(第2実施形態)を模式的に示す概略図である。 図7は、本発明の他の実施形態に係る固体電池を模式的に示す概略図である。 図8は、従来の固体電池を模式的に示す概略図である。 図9は、従来の固体電池の製造方法を模式的に示す概略図である。
 以下、本発明の「固体電池」および「固体電池用の外装体」を詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本発明の理解のために模式的かつ例示的に示したに過ぎず、外観および/または寸法比などは実物と異なり得る。
 本明細書でいう「断面視」とは、固体電池を構成し得る各層の積層方向または重ねる方向に基づく厚み方向に対して略垂直な方向から捉えた場合の形態に基づいている。換言すれば、厚み方向に平行な面で切り取った場合の形態に基づいている。端的にいえば、例えば図1および図2などに示される対象物の断面の形態に基づく。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材もしくは部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」/「底面側」に相当し、その逆向きが「上方向」/「頂面側」に相当すると捉えることができる。
 本発明でいう「固体電池」は、広義にはその構成要素が固体から構成され得る電池を指し、狭義にはその構成要素(特に好ましくは全ての構成要素)が固体から構成され得る全固体電池を指している。ある好適な態様では、本発明における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼成体または焼結体から成っている。なお、「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含し得る。本発明のある好適な態様に従うと「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、蓄電デバイスなども包含し得る。
 以下では、まず、本発明の「固体電池」の基本的構成を説明したうえで、本発明の固体電池の特徴(特に「外装体」)について説明する。ここで説明される固体電池の基本的構成は、あくまでも発明の理解のための例示にすぎず、発明を限定するものではない。
[固体電池の基本的構成]
 固体電池は、正極および負極の電極層と固体電解質層(又は固体電解質)とを少なくとも有して成る。具体的には、例えば図1に示すように、固体電池は、正極層(101)、負極層(102)、およびそれらの間に少なくとも介在する固体電解質層(又は固体電解質)(103)を備える電池構成単位(104)を積層方向に沿って少なくとも1つ備える固体電池積層体(100)を有して成る。
 好ましくは、固体電池は、それを構成し得る各層が焼成または焼結によって形成されていてもよく、正極層、負極層および固体電解質層などが焼成層または焼結層あるいは焼成体または焼結体を成していてもよい。より好ましくは、正極層、負極層および固体電解質層は、それぞれが互いに一体焼成または一体焼結されており、それゆえ電池構成単位または固体電池積層体が一体焼成体または一体焼結体を成していてもよい。
 固体電池積層体(100)の形状および寸法に特に制限はない。固体電池積層体(100)は、例えば図1および図2に示すように、上下に主面を有する箱形または直方体の形状を有していてよい。
 正極層(101)は、少なくとも正極活物質を含んで成る電極層である。従って、正極層(101)は、主として正極活物質から成る正極活物質層であってもよい。正極層は、必要に応じて、更に固体電解質を含んで成っていてよい。ある態様では、正極層は、正極活物質粒子と固体電解質粒子とを少なくとも含む焼成体または焼結体から構成されていてよい。
 負極層(102)は、少なくとも負極活物質を含んで成る電極層である。従って、負極層(102)は、主として負極活物質から成る負極活物質層であってもよい。負極層は、必要に応じて、更に固体電解質を含んで成っていてよい。ある態様では、負極層は、負極活物質粒子と固体電解質粒子とを少なくとも含む焼成体または焼結体から構成されていてよい。
 正極活物質および負極活物質は、固体電池においてイオンの吸蔵放出および外部回路との電子の受け渡しに関与し得る物質である。固体電解質を介して、イオンは、正極層と負極層との間で移動(伝導)する。活物質へのイオンの吸蔵放出は、活物質の酸化もしくは還元を伴うが、このような酸化還元反応のための電子またはホールが、外部回路から外部端子へと、さらには正極層もしくは負極層へと受け渡しが行われることによって充放電が進行し得る。正極層および負極層は、例えば、リチウムイオン、ナトリウムイオン、プロトン(H)、カリウムイオン(K)、マグネシウムイオン(Mg2+)、アルミニウムイオン(Al3+)、銀イオン(Ag)、フッ化物イオン(F)または塩化物イオン(Cl)を吸蔵放出可能な層である。つまり、固体電池は、固体電解質を介して、上記イオンが正極層と負極層との間で移動して電池の充放電が行われ得る全固体型二次電池であることが好ましい。
(正極活物質)
 正極層(101)に含まれ得る正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、LiFePO、LiMnPO、および/またはLiFe0.6Mn0.4PO等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO、LiCo1/3Ni1/3Mn1/3、および/またはLiCo0.8Ni0.15Al0.05等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn、および/またはLiNi0.5Mn1.5等が挙げられる。
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。
(負極活物質)
 負極層(102)に含まれ得る負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、NbおよびMoから成る群から選ばれる少なくとも一種の元素を含む酸化物、黒鉛などの炭素材料、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびにスピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO、および/またはLiTi(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFe(PO、および/またはLiCuPO等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiTi12等が挙げられる。
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。
 尚、固体電池において、正極層と負極層とが同一材料から成っていてもよい。
 正極層および/または負極層は、導電性材料を含んでいてもよい。正極層および負極層に含まれ得る導電性材料として、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケル等の金属材料、ならびに炭素などから成る群から選択される少なくとも1種を挙げることができる。
 さらに、正極層および/または負極層は、焼成助剤または焼結助剤を含んでいてもよい。焼成助剤または焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。
 正極層および負極層の厚みは特に限定されない。例えば、正極層および負極層の各厚みは、2μm以上100μm以下であってよく、特に5μm以上50μm以下であってよい。
(固体電解質)
 固体電解質(又は固体電解質層)(103)は、例えば、リチウムイオンまたはナトリウムイオンなどのイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質は、正極層と負極層との間において、例えば、リチウムイオンが伝導可能な層を成していてよい。具体的な固体電解質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、ペロブスカイト型構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物、酸化物ガラスセラミックス系リチウムイオン伝導体等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種である)が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト型構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。
 酸化物ガラスセラミックス系リチウムイオン伝導体としては、例えば、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)を用いることができる。
 また、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン型構造を有するナトリウム含有リン酸化合物、ペロブスカイト型構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン型構造を有するナトリウム含有リン酸化合物としては、Na(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種である)が挙げられる。
 固体電解質層は、焼成助剤または焼結助剤を含んでいてもよい。固体電解質層に含まれ得る焼成助剤または焼結助剤は、例えば、正極層および/または負極層に含まれ得る焼成助剤または焼結助剤と同様の材料から選択されてよい。
 固体電解質層の厚みは特に限定されない。固体電解質層の厚みは、例えば1μm以上15μm以下であってよく、特に1μm以上5μm以下であってよい。
(正極集電層および負極集電層)
 正極層(101)および負極層(102)は、それぞれ正極集電層および負極集電層を備えていてもよい。正極集電層および負極集電層はそれぞれ箔の形態を有していてもよい。しかしながら、一体焼成または一体焼結による固体電池の製造コスト低減および固体電池の内部抵抗低減などの観点から、正極集電層および負極集電層は、焼成体または焼結体の形態を有していてもよい。なお、正極集電層および/または負極集電層が焼成体または焼結体の形態を有する場合、導電性材料および/または焼成助剤もしくは焼結助剤を含む焼成体または焼結体により構成されてもよい。正極集電層および/または負極集電層に含まれ得る導電性材料は、例えば、正極層および/または負極層に含まれ得る導電性材料と同様の材料から選択されてよい。正極集電層および/または負極集電層に含まれ得る焼成助剤もしくは焼結助剤は、例えば、正極層および/または負極層に含まれ得る焼成助剤もしくは焼結助剤と同様の材料から選択されてよい。
 正極集電層および負極集電層の厚みは特に限定されない。例えば、正極集電層および負極集電層の各厚みは、1μm以上10μm以下であってよく、特に1μm以上5μm以下であってよい。
 なお、本開示の固体電池において、正極集電層および負極集電層が必須というわけではなく、そのような正極集電層および負極集電層が設けられていない固体電池も考えられる。つまり、本発明における固体電池は“集電レス”の固体電池であってもよい。
(外部端子)
 固体電池積層体(100)には、外部との接続用の端子が設けられている(以下、「外部端子」と呼ぶ)。特に、固体電池積層体(100)の側面に“端面電極”として外部との接続用の端子が設けられていることが好ましい。より具体的には、外部端子1として、例えば図2に示す通り、正極層(101)と電気的に接続された正極側の端子(正極端子)(1A)と、負極層(102)と電気的に接続された負極側の端子(負極端子)(1B)とが固体電池積層体100に設けられていてよい。このような端子は、導電率が大きい材料(又は導電材料)を含んで成ることが好ましい。端子の材質としては、特に限定するわけではないが、例えば、金、銀、プラチナ、アルミニウム、スズ、ニッケル、銅、マンガン、コバルト、鉄、チタンおよびクロムから成る群から選択される少なくとも一種を挙げることができる。
[本開示の固体電池の特徴]
 本発明の一実施形態に係る固体電池(以下、「本開示の固体電池」あるいは単に「固体電池」と呼ぶ場合もある)は、例えば図1に示すように、基本的な構成要素として、正極層101と、負極層102と、この正極層101と負極層102との間に介在する固体電解質層(又は固体電解質)103とを備える電池構成単位104を積層方向(厚み方向または上下方向)に沿って少なくとも1つ備える固体電池積層体100を有して成る。さらに、本発明の一実施形態に係る固体電池は、例えば図2に示すように、固体電池積層体100の対向する側面にそれぞれ設けられた正極端子1Aおよび負極端子1Bを外部端子として備える。
 以下、「正極端子1A」と「負極端子1B」とをまとめて「外部端子1」と呼び、この「外部端子1」と「固体電池積層体100」とをまとめて「固体電池本体」(「固体電池の本体」、「電池本体」または単に「本体」)と呼ぶ場合もある。
 本開示の固体電池は、例えば図2に示すように、固体電池積層体、つまり固体電池積層体100および外部端子1(正極端子1Aおよび負極端子1Bの両方)を覆うための2枚のラミネートフィルム(より具体的には2枚のラミネートフィルム3a,3b)を有して成る外装体2を備えることを特徴として有する。換言すると、本開示の固体電池に含まれる「電池本体」は、2枚のラミネートフィルム(3a,3b)で覆われている又は包まれていることを特徴とし、「電池本体」の全周がラミネートフィルムで密閉または密封されていることが好ましい。
 例えば図2に示すように、本開示の固体電池では、2枚のラミネートフィルム(3a,3b)がそれぞれ以下にて詳しく説明する通り、樹脂フィルム層(4a,4b)内(または樹脂フィルム層間)に金属箔(5a,5b)を有して成る構造を有する。金属箔(5a,5b)の少なくとも一部が露出して外部端子(1A,1B)との接触部(6a,6b)を形成し、さらにこの金属箔(5a,5b)の他の一部が露出して取り出し電極部(7a,7b)を形成している。
 以下、2枚のラミネートフィルム(3a,3b)をまとめて「ラミネートフィルム3」と呼び、樹脂フィルム層(4a,4b)をまとめて「樹脂フィルム層4」と呼び、金属箔(5a,5b)をまとめて「金属層5」と呼び、接触部(6a,6b)をまとめて「接触部6」と呼び、取り出し電極部(7a,7b)をまとめて「取り出し電極部7」と呼ぶ場合もある。
 このような構成から、例えば図2に示す固体電池10では、ラミネートフィルム3の樹脂フィルム層4に含まれ得る金属箔5がラミネートフィルム3から露出することで「接触部6」において固体電池本体の端子(1A,1B)と電気的に接続し、さらに「取り出し電極部7」において固体電池10の外部(他の構成要素)へとさらに電気的に接続することができる。換言すると「取り出し電極部7」を固体電池10の電極または電気的な接点もしくは端子として機能させることができる。
 このように本開示では主に「電池本体」と「ラミネートフィルム」から固体電池を構成することができるので、例えば図8に示すような従来の固体電池で必要であった電極取り出し用のタブ(T,T)は使用しなくてもよい。つまり、本開示の固体電池では電極取り出し用のタブを使用しないことを特徴とする。従って、本開示の固体電池は、外部端子(1A,1B)に接続されるタブを有していないことを特徴とする「タブレス構造」または「ラミネート・タブレス構造」の固体電池であってもよい。
 本開示の固体電池では、例えば図2に示すようなタブレス構造をとることで、例えば図8に示すような電極取り出し用のタブ(T,T)が存在する場合と比べて、ラミネートフィルム(3a,3b)の熱接着がその界面(境界)においてより強固となり、特に水蒸気などの水分の侵入をより防止または抑制することができる。さらに、固体電池がこのようなタブレス構造をとることで固体電池全体の部品点数を減らすことができ、固体電池の製造をより簡便にすることができる。
 本明細書でいう「水蒸気」は、特に気体状態の水に限定されず、液体状態の水なども包含している。つまり、物理的な状態を問わず、水に関連する事項を広く包含するものとして「水蒸気」といった用語を用いている。よって、「水蒸気」は、水分などとも称すことができ、特に液体状態の水としては、気体状態の水が凝縮した結露水なども包含され得る。
 また、本開示の固体電池では、以下にて詳しく説明する「ラミネートフィルム」を固体電池の「外装体」として使用することから、例えばリフローはんだ処理にも耐えることができ、しかも無機材料から構成された膜、例えばケイ素の酸化膜(SiO膜)や窒化膜(SiON膜)を使用した外装体(例えば特許文献4)と比べて、「割れ」や「ひび」などを防止または回避することができる。以下、「固体電池用の外装体」について詳しく説明する。
 [固体電池用の外装体]
 本開示の固体電池において使用することができる外装体(以下、「本開示の外装体」と呼ぶ場合もある)は、基本的には2枚の「ラミネートフィルム」から構成することができる。
 (ラミネートフィルム)
 本開示において「ラミネートフィルム」とは、少なくとも1つの「樹脂フィルム層」の内部(内側)に少なくとも1枚の「金属箔」(金属層)が配置された構造体あるいは少なくとも2つの「樹脂フィルム層」の間に少なくとも1枚の「金属箔」(金属層)が積層された構造体(積層体)を意味する。
 ラミネートフィルムは、例えば図3(A)に示すように樹脂フィルム層4の内部(内側)に金属箔5が配置された構造を有する。樹脂フィルム層4が金属箔5の外側(上下)に配置されていることが好ましい。特に熱接着性(または熱融着性)を有する樹脂フィルム層がラミネートフィルムの熱接着面を形成していることが好ましい。
 例えば図3(C)に示すようにラミネートフィルム3は、金属箔5の少なくとも一部がラミネートフィルム、具体的には樹脂フィルム層から露出して固体電池本体の外部端子(正極端子1A,負極端子1B)との接触部6を有し、なおかつ金属箔5の他の一部がラミネートフィルムから露出して取り出し電極部7を有することが好ましい。接触部6および取り出し電極部7を配置する位置に特に制限はなく、所望の固体電池の仕様(例えば端子の形状や取り出し電極部の位置など)にあわせて適宜決定すればよい。
 ラミネートフィルムは、従来公知の積層化の技術、特に樹脂と金属のラミネート化の技術により製造することができる。例えば、金属箔を2枚の樹脂フィルムでサンドイッチ状に挟んだ状態で加熱により樹脂フィルムと金属箔とを熱接着させることで製造することができる。樹脂フィルムの面積と金属箔の面積は同一であっても異なっていてもよい。金属箔の面積を樹脂フィルムよりも小さくすることで樹脂フィルムの周囲を互いに熱接着により結合させてもよい。
 接触部6および取り出し電極部7については、例えば図3(B)に示すように、従来公知のマスキング技術などを利用することで予めラミネートフィルムにマスキング部8,9などを形成した後、このマスキング部の除去により金属箔5を露出させることで接触部6および取り出し電極部7を形成することができる。また、図3(A)に示すラミネートフィルム3’をレーザー加工などにより接触部6および取り出し電極部7を形成してもよい。あるいは型などを用いて接触部6および取り出し電極部7を形成してもよい。
 尚、接触部6および取り出し電極部7の形成方法については上記の方法に限定されるものではない。
 (金属箔)
 ラミネートフィルムに含まれ得る金属箔は、電気伝導性(導電性)を有する金属から構成されるものであれば特に制限なく使用することができる。具体的には、金箔、銀箔、銅箔、アルミニウム箔(アルミ箔)、ニッケル箔、ステンレス箔などを使用することができる。金属箔としてアルミニウム箔、ニッケル箔またはステンレス箔を使用することが好ましく、特にアルミニウム箔を使用することが好ましい。
 (樹脂フィルム層)
 ラミネートフィルムに含まれ得る樹脂フィルム層は「熱接着性樹脂」を含むことが好ましい。本開示において「熱接着性樹脂」とは、熱接着性(または熱融着性)とともに熱接着後に必要に応じて耐水性や耐熱性などの性質をラミネートフィルムに与えることができる樹脂または高分子材料を意味する。
 本開示において「熱接着性」とは、例えば加熱により樹脂(高分子材料)が少なくとも軟化(または溶融)して粘着性を示して互いに粘着、接着または結合することのできる性質を意味する。
 本開示において「耐水性」とは、広義には、水蒸気などの水分の侵入を防止又は抑制することのできる性質を意味する。具体的には水蒸気などの水分の侵入を防止又は抑制して固体電池本体の劣化を防止することができる性質、あるいは外部環境の水蒸気が外装体のラミネートフィルムを透過して固体電池にとって不都合な特性劣化を引き起す、といったことがない程度の水蒸気透過の阻止特性を有することを意味する。
 狭義には、例えば、水蒸気透過率が5.0×10-3g/(m・Day)未満となっていることを意味している。よって、端的にいえば、本開示の外装体は、好ましくは0以上5.0×10-3g/(m・Day)未満の水蒸気透過率を有しているといえる。なお、ここでいう「水蒸気透過率」は、MORESCO社製、型式WG-15Sのガス透過率測定装置を用いて、測定条件は85℃ 85%RH MA法によって得られた透過率のことを指している。
 あるいは、アドバンス理工(株)社製、型式GTms-1のガス透過率測定装置を用いて、測定条件は40℃ 90%RH 差圧1atmによって得られた水蒸気透過率の値が1.0×10-3g/(m・Day)未満であってもよい。
 本開示において「耐熱性」とは、例えば加熱環境下での取り扱いが可能であり、具体的にはリフローはんだ処理での基板への実装、特にプリント基板への表面実装などの環境に耐え得る性質を意味する。より具体的には、このような実装環境において樹脂が溶けたり又は溶解したり、変形したりしないことを意味する。
 固体電池本体に接する側の樹脂フィルム層の構成(特に樹脂の組成)と、固体電池の外側(外気)に接する側の樹脂フィルム層の構成は同じであっても異なっていてもよい。各樹脂フィルム層は、熱接着性の観点から同じ構成(特に同じ樹脂の組成)であることが好ましい。
 本開示の外装体において、ラミネートフィルムが熱接着性樹脂を含んで成ることが好ましく、例えば融点が200℃以上、好ましくは220℃以上400℃以下、より好ましくは250℃以上350℃以下の熱接着性樹脂を含んで成る樹脂フィルム層と、この樹脂フィルム層内に配置され得る金属箔とを有して成るラミネートフィルムを使用することがより好ましい。融点が200℃以上の熱接着性樹脂を使用することで熱接着性だけでなく、より優れた耐熱性をラミネートフィルムに与えることができる。より具体的には、250℃で1分程度の条件で行われるリフローはんだ処理での基板への実装の環境、特にプリント基板への表面実装の環境などに耐えることができる。融点が200℃以上の熱接着性樹脂であれば特に制限なく使用することができるがより高い耐水性を有する樹脂を使用することが好ましい。
 本開示の固体電池が表面実装用の部品(SMD)であり、本開示の固体電池がリフロー(はんだ)方式で実装される場合、特にプリント基板に実装される場合、「リフロー・ピーク温度±50℃の融点」を熱接着性樹脂が有することが好ましい。
 「リフロー・ピーク温度」とは、予め設定されたリフロー(はんだ)条件に従ってリフロー(はんだ)方式で固体電池を実装する場合に測定または計算することができるピーク温度または最大温度を意味する。
 リフロー・ピーク温度は、例えば250℃以上、好ましくは270℃以上である。
 リフロー・ピーク温度±50℃の融点は、例えば200℃以上、好ましくは220℃以上である。融点が上記の範囲内であるとリフローはんだ処理での基板への実装の環境、特にプリント基板への表面実装の環境などに耐えることができる。
 本開示の外装体において「ラミネートフィルム」の「樹脂フィルム層」に含まれる「熱接着性樹脂」として非オレフィン系樹脂(またはオレフィン系樹脂以外の樹脂、オレフィン系樹脂を除く樹脂)を使用することが好ましい。
 上述の通り、従来では、ラミネートフィルムの熱接着性や製造の簡便さを優先させて、例えば、オレフィン系樹脂(ポリエチレン(PE)(融点:95℃~140℃、耐熱温度:70~110℃)、ポリプロピレン(PP)(融点:135℃~165℃、耐熱温度:100~140℃)などの樹脂)を使用して比較的低温での熱接着密封を行っていたが、固体電池を表面実装用の部品(SMD)として使用する場合、リフロー(はんだ)の環境などに耐えることができず、ラミネートフィルムの樹脂部分が溶けたり又は溶解したり、変形したり、破れたり、穴が開くなどの問題があった。
 しかし、本開示の外装体では、従来技術において熱接着性樹脂として用いられていなかった非オレフィン系樹脂を使用することにより従来技術の問題を解決している。なかでも融点が200℃以上の非オレフィン系樹脂およびリフロー・ピーク温度±50℃の融点を有する非オレフィン系樹脂を使用することが好ましい。
 熱接着性樹脂として、より具体的には、ポリクロロトリフルオロエチレン(PCTFE)(融点:220℃)、ポリテトラフルオロエチレン(PTFE)(融点:327℃)、ポリフェニレンサルファイド(PPS)(融点:280℃)およびポリアミドイミド(PAI)(融点:300℃)からなる群から選択される樹脂などが挙げられる。熱接着性樹脂として、ポリクロロトリフルオロエチレン(PCTFE)またはポリテトラフルオロエチレン(PTFE)を使用することが好ましく、ポリクロロトリフルオロエチレン(PCTFE)を使用することがより好ましい。
 樹脂フィルム層における熱接着性樹脂の配合量に特に制限はなく、樹脂フィルム層の重量に基づいて、例えば50重量%以上100重量%以下の範囲内である。尚、樹脂フィルム層は、必要に応じてさらに他の樹脂を含んでいてもよい。他の樹脂として特に制限はなく、熱接着性を有する樹脂を使用することが好ましい。
 本開示の固体電池では、上記のようなラミネートフィルムを使用することから、固体電池本体への水蒸気などの水分の侵入を防止または抑制することができるだけでなく、リフローはんだ処理に耐えることもでき、「割れ」や「ひび」なども防止または回避することができる。
 (本開示の固体電池の製造方法)
 以下、本開示の固体電池の製造方法を簡単に説明する。
 (1)固体電池積層体の準備
 例えば図4(A)に示す通り、固体電池積層体100と外部端子1(正極端子1Aおよび負極端子1B)とから基本的に構成され得る固体電池本体を準備する。固体電池本体は、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。ただし、本開示の固体電池の製造方法は、上記の方法に限定されるものではない。
 (2)ラミネートフィルムの準備
 例えば図4(A)に示す通り2枚のラミネートフィルム(3a,3b)を準備する。ラミネートフィルム(3a,3b)は、それぞれ、正極端子1Aおよび負極端子1Bに対応するように接触部および取り出し電極部が予め形成されている(図3(C)参照)。尚、取り出し電極部は、ラミネートフィルムの熱接着の後にレーザー加工などにより金属箔を露出させることで形成してもよい。
 (3)配置および位置決め
 例えば図4(A)に示す通り2枚のラミネートフィルム(3a,3b)の間に固体電池本体を配置する。このとき正極端子1Aおよび負極端子1Bとラミネートフィルム(3a,3b)が適切に係合または嵌合するように位置決めして配置することが好ましい。
 (4)加圧
 例えば図4(A)に示す通りラミネートフィルム(3a,3b)を矢印の方向に両側から加圧する。このときラミネートフィルム(3a,3b)は、固体電池本体の形状に沿って変形することが好ましい(図4(B)参照)。
 (5)加熱
 ラミネートフィルム(3a,3b)を加熱することで固体電池本体に接する側の樹脂フィルム層(すなわち内側の樹脂フィルム層)を熱接着により結合させることができる。
 加熱温度は、例えば250℃以上350℃以下である。尚、このような加熱は上記の加圧と同時に行ってもよい。
 本開示の固体電池の製造方法は、上記の方法に限定されるものでなく、従来公知のラミネート化またはパッケージ化の技術を応用することで固体電池本体を2枚のラミネートフィルムの間で適切に密封すればよい。
 以下、本開示の固体電池用の外装体を有する固体電池の好ましい実施形態を説明する。
 [好ましい実施形態]
 (第1実施形態)
 図1および図2に示す本開示の固体電池の好ましい実施形態を「第1実施形態」として示す。
 図2に示す固体電池10は、正極層101、負極層102、および正極層101と負極層102との間に介在する固体電解質層103を備える電池構成単位104を積層方向に沿って少なくとも1つ備える固体電池積層体100を有する(図1参照)。
 固体電池10は、固体電池積層体100の対向する左右の側面にそれぞれ設けられた正極端子1Aおよび負極端子1Bを外部端子1として備える(図2参照)。
 固体電池10は、固体電池積層体100および外部端子1(すなわち固体電池本体)を覆うため又は包むための2枚のラミネートフィルム(3a,3b)を有して成る外装体2を備える。ラミネートフィルム(3a,3b)はそれぞれ樹脂フィルム層(4a,4b)内(または少なくとも2つの樹脂フィルム層の間)に金属箔(5a,5b)を有していてよい。金属箔(5a,5b)の少なくとも一部が露出して正極端子1Aまたは負極端子1Bとの接触部(6a,6b)を形成し、金属箔(5a,5b)の他の一部が露出して取り出し電極部(7a,7b)を形成していてよい(図3参照)。
 より具体的には、ラミネートフィルム3aは、正極端子1Aと電気的に接続または接触する正極側ラミネートフィルムであり、ラミネートフィルム3bは、負極端子1Bと電気的に接続または接触する負極側ラミネートフィルムである。
 正極側ラミネートフィルム3aに含まれ得る金属箔5aの少なくとも一部が露出して正極端子1Aとの接触部6aを形成し、金属箔5aの他の一部が露出して正極側の取り出し電極部7aを形成することができる。このような構成とすることで正極側の取り出し電極部7aを固体電池の外部(他の構成要素)と電気的に接続することができるので従来必要であった正極端子1Aに接続されて正極端子1Aから固体電池の外部まで延在するタブを排除することができる(例えば図8の「タブT」を参照のこと)。
 負極側ラミネートフィルム3bに含まれ得る金属箔5bの少なくとも一部が露出して負極端子1Bとの接触部6bを形成し、金属箔5bの他の一部が露出して負極側の取り出し電極部7bを形成することができる。このような構成とすることで負極側の取り出し電極部7bを固体電池の外部(他の構成要素)と電気的に接続することができるので従来必要であった負極端子1Bに接続されて負極端子1Bから固体電池の外部まで延在するタブを排除することができる(例えば図8の「タブT」を参照のこと)。
 このように本開示の固体電池ではタブを排除することができるので、正極側ラミネートフィルム3aと負極側ラミネートフィルム3bとの結合(接着、融着または接合ともいう)をより強固に確実にすることができ、2つのラミネートフィルム(3a,3b)の結合面からの水蒸気などの水分の侵入をより防止または抑制することができる。
 例えば図2に示すように断面視(固体電池積層体100の厚み方向での断面視)にて正極側ラミネートフィルム3aおよび負極側ラミネートフィルム3bがそれぞれ少なくとも一方の端部においてラミネートフィルム(3a,3b)が互いに結合していることが好ましい。両方の端部においてラミネートフィルム(3a,3b)が結合していることがより好ましい。
 本開示においてラミネートフィルムの端部とは、断面視における固体電池本体の左方向および/または右方向の端部を意味する。また、ラミネートフィルムの端部は、上面視における固体電池本体の左方向および/または右方向の縁部であってもよい。
 尚、本開示の固体電池においてラミネートフィルムは上記端部だけでなく固体電池本体の周囲または全周が熱接着(熱融着)されていることが好ましい。
 ラミネートフィルムの端部が取り出し電極部を有していることが好ましい。例えば図2に示すようにラミネートフィルム3aの端部(左端部)が取り出し電極部7aを有していることがより好ましく、ラミネートフィルム3bの端部(右端部)が取り出し電極部7bを有していることがより好ましい。
 ラミネートフィルムの金属箔と外部端子との接触に関して、外部端子(1A、1B)は、例えば図2に示す通り、固体電池積層体100の断面視で対向する2つの主面のうち一方の主面にまで延在するのに対して、他方の主面にまでは延在していないことが好ましい。
 より具体的には、正極端子1Aは、例えば図2に示す通り、固体電池積層体100の断面視で対向する2つの主面(上下面)のうち下方の主面にまで延在するのに対して、上方の主面にまでは延在していないことが好ましい。例えば図2に示すように断面視において「L字」の形状で正極端子1Aが配置されていてよい。
 また、負極端子1Bは、例えば図2に示す通り、固体電池積層体100の断面視で対向する2つの主面(上下面)のうち上方の主面にまで延在するのに対して、下方の主面にまでは延在していないことが好ましい。例えば図2に示すように断面視において「L字」の形状で負極端子1Bが配置されていてよい。
 特に外部端子の一方の主面まで延在する部分(以下、「延在部」とよぶ場合もある)がラミネートフィルムに含まれる金属箔と接触していることが好ましい。
 具体的には、正極端子1Aの固体電池積層体100の下方の主面まで延在する部分(延在部)が金属箔5aと接触していることが好ましく、負極端子1Bの固体電池積層体100の上方の主面まで延在する部分(延在部)が金属箔5bと接触していることが好ましい。
 このような端子の形状および配置を有することでラミネートフィルムの露出した金属箔と端子(1A,1B)とを効率よく電気的および物理的に接触させることができる(接触部6a,6b)。また、金属箔が電気伝導性または導電性であるため、例えば図8に示すような従来必要であったタブ(T,T)を省略することができる。
 ラミネートフィルムに関して、接触部および取り出し電極部の一方がラミネートフィルムの対向する面の一方に設けられ、接触部および取り出し電極部の他方が、ラミネートフィルムの対向する面の他方に設けられていることが好ましい。
 より具体的には、図2に示すラミネートフィルム3aに関して、接触部6aがラミネートフィルム3aの上面に設けられ、取り出し電極部7aがラミネートフィルム3aの下面に設けられている。
 図2に示すラミネートフィルム3bに関して、接触部6bがラミネートフィルム3bの下面に設けられ、取り出し電極部7bがラミネートフィルム3bの上面に設けられている。
 このような構成とすることで外部端子1A、1Bの延在部と同じ側に取り出し電極部7a、7bを設けることができる。ただし、取り出し電極部の配置は上記の態様に限定されるものではない。
 取り出し電極部に関して、正極側の取り出し電極部および負極側の取り出し電極部の一方が固体電池積層体の断面視で対向する2つの主面の一方の側に設けられ、正極側の取り出し電極部および負極側の取り出し電極部の他方が2つの主面の他方の側に設けられていてよい。換言すると、正極側の取り出し電極部と負極側の取り出し電極部が固体電池積層体の積層方向で互いに逆向きに配置されていてよい。
 より具体的には、図2に示す通り、正極側の取り出し電極部7aが固体電池積層体100の断面視で対向する2つの主面(上下面)のうち下面の側に設けられ、負極側の取り出し電極部7bが2つの主面(上下面)のうち上面の側に設けられている。
 このような構成とすることで、正極側の取り出し電極部7aと負極側の取り出し電極部7bを固体電池の上下面にそれぞれ別々に配置させることができる。また、固体電池積層体100に隣接して正負の取り出し電極部(7b,7b)を配置することができるので省スペース化を達成することもできる。
 図2に示す第1実施形態の固体電池10は、好ましくは外部端子1A,1Bに接続されるタブを有していないため、いわゆる「タブレス構造」または「ラミネート・タブレス構造」を有することを特徴とする。そのため、ラミネートフィルム3aと3bの結合界面からの水蒸気などの水分の侵入をさらに防止または抑制することができる。また、固体電池の総部品点数が少なくなる、固体電池の製造がより簡便となるなどの利点が得られる。
 図2に示す第1実施形態の固体電池10において正極および負極は逆であってもよい。つまり、端子1Aが負極端子であり、端子1Bが正極端子であってもよい。
 (変形例)
 図2に示す固体電池10の変形例(バリエーション)を図5に示す。
 図5(A)は、図2に示す固体電池10の変形部分又は変更箇所として、負極側の取り出し電極部7b’に特徴を有する固体電池10’を示す。固体電池10’では、負極側のラミネートフィルム3bの右側の端部が正極側のラミネートフィルム3aの端部よりも長く延在していて、このような端部において金属箔5bは下側(すなわち正極側のラミネートフィルム3aに設けられた正極側の取り出し電極部7aと同じ側)に露出することで負極側の取り出し電極部7b’が形成されている。このような変形例では、固体電池10’の同じ側(つまり下側)から正負の電極をともに取り出すことができるため、表面実装デバイス(SMD)に適している。
 図5(B)は、図2に示す固体電池10の変形部分又は変更箇所として、負極側の取り出し電極部7b’’に特徴を有する固体電池10’’を示す。固体電池10’’では、負極側のラミネートフィルム3bの右側の端部が正極側のラミネートフィルム3aの端部よりも長く延在していて、このような端部において、金属箔5bが完全に露出することで負極側の取り出し電極部7b’’が形成されている。このような変形例では、負極側の取り出し電極部7b’’において、上側および下側の両方から電極を取り出すことができる。
 図5(A)および(B)では負極側の取り出し電極部が変更されているが、別の態様として正極側の取り出し電極部7aが同様に変更されていてもよい。
 (第2実施形態)
 図6に示す本開示の固体電池の別の好ましい実施形態を「第2実施形態」として示す。
 図6に示す第2実施形態において、固体電池本体(すなわち固体電池積層体200ならびに正極端子21Aおよび負極端子21B)および2枚のラミネートフィルム23a,23b(それぞれ樹脂フィルム層24a,24b、金属箔25a,25bを含む)は、基本的には図1および図2に示す固体電池本体(すなわち固体電池積層体100ならびに正極端子1Aおよび負極端子1B)および2枚のラミネートフィルム3a,3b(それぞれ樹脂フィルム層4a,4b、金属箔5a,5bを含む)と同一または類似のものを使用することができる。
 図6に示す第2実施形態では、ラミネートフィルムの端部の配置および取り出し電極部27a,27bの配置が図2に示す第1実施形態の固体電池10とは異なる。
 図6に示す第2実施形態において、ラミネートフィルムの端部は、固体電池本体に沿って折り曲げられていることが好ましい。ここでラミネートフィルムの折り曲げ方向や折り曲げ回数に特に制限はない。
 より具体的には、断面視(固体電池積層体200の厚み方向での断面視)においてラミネートフィルム(23a,23b)の左側の端部は、固体電池本体の正極端子21Aが配置される左側面に沿って下方に折り曲げられていることが好ましい(折り曲げ回数1回)。ラミネートフィルム(23a,23b)の左側の端部は、上方に折り曲げられていてもよい。
 また、断面視においてラミネートフィルム(23a,23b)の右側の端部は、固体電池本体の負極端子21Bが配置される右側面および下面に沿って下方に折り曲げられていることが好ましい(折り曲げ回数2回)。尚、ラミネートフィルム(23a,23b)の右側の端部は、上方に折り曲げられていてもよい。
 このようにラミネートフィルムの端部を折り曲げることで水蒸気などの水分の侵入をさらに防止または抑制することができる。
 正極側ラミネートフィルム23aの取り出し電極部27aは、固体電池積層体200の下面または正極端子21の延在部に沿って設けられていることが好ましい。正極側ラミネートフィルム23aに配置され得る取り出し電極部27aの位置に特に制限はないが、金属箔25aの正極端子21Aとの接触部26aの少なくとも一部を含むような位置が好ましい。このような位置では金属箔25aを介して正極端子21Aと短い距離(または上下方向の距離)で電気的に接続することができる。
 第2の実施形態では、正極側の取り出し電極部27aおよび負極側の取り出し電極部27bの一方が固体電池積層体200の断面視で対向する2つの主面の一方の側に設けられ、正極側の取り出し電極部27aおよび負極側の取り出し電極部27bの他方が同じく2つの主面の上記の一方の側に設けられていることが好ましい。
 より具体的には、図6に示す通り、正極側の取り出し電極部27aが固体電池積層体200の断面視で対向する2つの主面(上下面)のうち下面の側に設けられ、負極側の取り出し電極部27bが同じく2つの主面(上下面)のうち下面の側に設けられている。
 このような構成により、正極側の取り出し電極部27aおよび負極側の取り出し電極部27bはいずれも固体電池積層体200の下面の側に配置させることができる。
 2つの取り出し電極部27a,27bにおいて、金属箔25aと25bとの間の距離(固体電池積層体200の積層方向の距離)は、例えば50μm以上300μm以下である。このような段差が存在することで電極を示すマークなどを印刷することなく電極の存在を確認することができる。
 このように固体電池積層体200の上下面のいずれか一方の面に正極側の取り出し電極部27aと負極側の取り出し電極部27bの両方を配置することができる。このような配置により基板(特にプリント基板)への実装がより簡便となる。
 図6に示す第2実施形態では、負極側ラミネートフィルム23bの取り出し電極部27bが断面視でラミネートフィルム23bの右側の端部を折り曲げることにより配置されていることが好ましい。取り出し電極部27bは固体電池積層体の右側面(すなわち負極端子21Bが配置される側面および下面)に沿って2回折り曲げられて固体電池積層体の下面側に配置されていることがより好ましい。このようにラミネートフィルムの端部を2回折り曲げることで水蒸気などの水分の侵入をさらに防止または抑制することができる。
 図6に示す実施形態の固体電池20は、外部端子21A,21Bに接続されるタブを有していないため、いわゆる「タブレス構造」または「ラミネート・タブレス構造」を有することを特徴とする。そのため、ラミネートフィルム23a,23bの結合界面からの水蒸気などの水分の侵入を第1実施形態と比べてさらに防止することができる。
 図6に示す第2実施形態の固体電池20においても正極および負極は逆であってもよい。つまり、端子21Aが負極端子であり、端子21Bが正極端子であってもよい。
 (変形例)
 図6に示す固体電池20の変形例(バリエーション)を図7に示す。
 図7(A)は、図6に示す固体電池20の変形部分又は変更箇所として、正極側の取り出し電極部27a’に特徴を有する固体電池20’を示す。固体電池20’では、正極側のラミネートフィルム23aおよび負極側のラミネートフィルム23bの左側の結合端部が右側の結合端部と同様に、右側の結合端部とは反対側(すなわち上側)に折り曲げられていて、このような端部において正極側のラミネートフィルム23aの金属箔25aの上側(すなわち負極側のラミネートフィルム23bに設けられた負極側の取り出し電極部27b’の反対側)が露出して正極側の取り出し電極部27a’が形成されていてよい。
 図7(B)は、図6に示す固体電池20の変形部分又は変更箇所として、正極側の取り出し電極部27a’’および負極側の取り出し電極部27b’’に特徴を有する固体電池20’’を示す。固体電池20’’では、固体電池20’’の左右の側面にそれぞれ正極側の取り出し電極部27a’’および負極側の取り出し電極部27b’’が形成されていてよい。
 このように図7(A)および(B)に示す変形例では、ラミネートフィルムの端部を折り曲げることで固体電池の上下および左右のいずれにおいても正負の電極を対向して取り出すことができる。
 尚、本開示の固体電池は、上記の実施形態に限定されるものではない。
 以下、実施例により、本開示の固体電池について、さらに詳しく説明する。尚、本開示の固体電池は、以下の実施例の記載に限定されるものではない。
 実施例1
 図2に示す第1実施形態の固体電池10を作製した。
 (i)固体電池積層体の準備
 固体電池積層体は、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。つまり、固体電池積層体は、常套的な固体電池の製法に準じて作製してよい(よって、下記で説明する固体電解質、有機バインダー、溶剤、任意の添加剤、正極活物質、負極活物質などの原料物質は、既知の固体電池の製造で用いられているものを用いてよい)。
 (積層体ブロック形成)
 ・固体電解質、有機バインダー、溶剤および任意の添加剤を混合してスラリーを調製した。次いで、調製されたスラリーからシート成形によって、焼成後の厚みが約10μmのシートを得た。
 ・正極活物質、固体電解質、導電性材料、有機バインダー、溶剤および任意の添加剤を混合して正極用ペーストを作成した。同様にして、負極活物質、固体電解質、導電性材料、有機バインダー、溶剤および任意の添加剤を混合して負極用ペーストを作成した。
 ・シート上に正極用ペーストを印刷し、また、必要に応じて集電層を印刷した。同様にして、シート上に負極用ペーストを印刷し、また、必要に応じて集電層を印刷した。
 ・正極用ペーストを印刷したシートと、負極用ペーストを印刷したシートとを交互に積層して積層体を得た。
 なお、積層体の最外層(最上層および/または最下層)についていえば、それが電解質層でも絶縁層(電気を通さない層、例えば、ガラス材および/またはセラミック材等の非導電性材から構成され得る層)でもよく、あるいは、電極層であってもよい。
 (電池焼成体形成)
 積層体を圧着一体化させた後、所定のサイズにカットした。得られたカット済み積層体を脱脂および焼成に付した。これにより、焼成された積層体を得た。
 なお、カット前に積層体を脱脂および焼成に付し、その後にカットを行ってもよい。
 固体電池積層体100の寸法は、4mm×5mm×9mmであった。
 (ii)外部端子の形成
 図2に示すように固体電池積層体100の左側の側面(端面)の全面および下面の一部(幅:1mm)と右側の側面(端面)の全面および上面の一部(幅:1mm)に銀(Ag)ペーストを塗布し、200℃のホットプレート上で30分間加熱硬化して銀(Ag)からなる外部端子(正極端子1A,負極端子1B)を形成した。
 (iii)ラミネートフィルムの準備
 アルミニウム箔(厚さ:35μm)の両面にポリクロロトリフルオロエチレン(PCTFE)(ダイキン工業株式会社製)のフィルム(厚さ:25μm)が配置された2枚のラミネートフィルム(3a,3b)を準備した。
 上記2枚のラミネートフィルムには正極端子1A,負極端子1Bに適合する接続部(2mm×2mm)および取り出し電極部(4mm×4mm)がそれぞれ形成されていた(図2、図3(C))。
 (iv)配置および位置決め(ポジショニング)
 2枚のラミネートフィルム(3a,3b)の間に固体電池積層体100を配置した(図4(A))。このとき正極端子1Aおよび負極端子1Bと正極側ラミネートフィルム3aおよび負極側ラミネートフィルム3bが適切に嵌合するように位置決めして固体電池本体を配置した。
 (v)加圧および加熱
 2枚のラミネートフィルム(3a,3b)の固体電池積層体100の周囲をヒートシーラーで加圧しながら加熱した(250℃、5秒間)。
 ラミネートフィルム(3a,3b)の縁部をカットして固体電池10を作製した(約4mm×5mm×17mm)。
 実施例2
 実施例1と同様にして図6に示す第2実施形態の固体電池20を作製した。
 ただし、正極側の取り出し電極部27aは図6に示す通り正極端子21Aの下側に設けた(3mm×3mm)。
 また、ラミネートフィルムの左側の端部を固体電池積層体200の左側面に沿って下方に折り(1回)、ラミネートフィルムの右側の端部を固体電池積層体200の右側面および下面に沿って下方に折り畳んだ(2回)。尚、固体電池20では正極側の取り出し電極部27aと負極側の取り出し電極部27bが同じ側(下側)に配置されている。固体電池20のラミネートフィルムの端部を折り畳む前の寸法は、約4mm×5mm×16mmであった。
 比較例1
 実施例1と同様にして比較例1の固体電池を作製した。
 ただし、実施例1で使用したポリクロロトリフルオロエチレン(PCTFE)(ダイキン工業株式会社製)の代わりにポリプロピレン(PP)(ダイキン工業株式会社製)を使用した。また、ヒートシーラーでの加熱は180℃で5秒間行った。
 [耐熱性評価]
 実施例1および実施例2ならびに比較例1で作製した固体電池をリフロー炉に入れ、リフロー模擬処理(250℃、2分間)を行うことで固体電池の耐熱性を評価した。結果を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上記の結果から、本発明の実施例1および実施例2の固体電池は、リフローはんだ処理(例えば250℃での固体電池の実装)が可能であることがわかった。
 上記の結果から、本発明の実施例1および実施例2の固体電池は密閉を保持できることがわかった。特に水蒸気透過率が5.0×10-3g/(m・Day)未満であることがわかった(MORESCO社製、型式WG-15Sのガス透過率測定装置を用いて測定した水蒸気透過率(MA法、測定条件:85℃ 85%RH))。
 以上、本開示の固体電池について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれらに限定されず、本発明の要旨を変更しない範囲において種々の態様が考えられることを当業者は容易に理解されよう。
 本発明の固体電池は、電池使用または蓄電が想定され得る様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の固体電池は、電気・電子機器などが使用され得る電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ウェアラブルデバイス、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド自動車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
    1             端子
    1A,21A        正極端子
    1B,21B        負極端子
    2,22          外装体
    3,3’,3’’       ラミネートフィルム
    3a,23a        ラミネートフィルム(正極側)
    3b,23b        ラミネートフィルム(負極側)
    4,24          樹脂フィルム層
    4a,24a        樹脂フィルム層(正極側)
    4b,24b        樹脂フィルム層(負極側)
    5,25          金属箔
    5a,25a        金属箔(正極側)
    5b,25b        金属箔(負極側)
    6,26          接触部
    6a,26a        接触部(正極側)
    6b,26b        接触部(負極側)
    7,27          取り出し電極部
    7a,27a        取り出し電極部(正極側)
    7b,27b        取り出し電極部(負極側)
    8            マスキング部(接触部用)
    9            マスキング部(取り出し電極部用)
    10,20         固体電池
    100,200       固体電池積層体
    101          正極層
    102          負極層
    103          固体電解質層(固体電解質)
    104          電池構成単位
    1000         従来の固体電池
    1100         従来の固体電池積層体
    A            正極端子
    B            負極端子
    T            タブ(正極側)
    T            タブ(負極側)
    L            ラミネートフィルム(上側)
    L            ラミネートフィルム(下側)
    M            金属箔(上側)
    M            金属箔(下側)
    R            樹脂フィルム層(上側)
    R            樹脂フィルム層(下側)

Claims (18)

  1.  固体電池であって、
     正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備える電池構成単位を積層方向に沿って少なくとも1つ備える固体電池積層体を有して成り、
     前記固体電池積層体の対向する側面にそれぞれ設けられた正極端子および負極端子の外部端子を備え、
     前記固体電池積層体および前記外部端子を覆うためのラミネートフィルムを有して成る外装体を備え、
     前記ラミネートフィルムが樹脂フィルム層内に金属箔を有して成り、
     前記金属箔の少なくとも一部が露出して前記正極端子または前記負極端子との接触部を成し、当該金属箔の他の一部が露出して取り出し電極部を成す、
    固体電池。
  2.  前記ラミネートフィルムが正極側ラミネートフィルムと負極側ラミネートフィルムとを有して成り、
     前記正極側ラミネートフィルムに含まれる前記金属箔の少なくとも一部が露出して前記正極端子との接触部を成し、当該金属箔の他の一部が露出して正極側の取り出し電極部を成し、
     前記負極側ラミネートフィルムに含まれる前記金属箔の少なくとも一部が露出して前記負極端子との接触部を成し、当該金属箔の他の一部が露出して負極側の取り出し電極部を成す、請求項1に記載の固体電池。
  3.  前記外部端子が、前記固体電池積層体の断面視で対向する2つの主面のうち一方の主面にまで延在するのに対して、他方の主面にまでは延在していない、請求項1または2に記載の固体電池。
  4.  前記外部端子の前記一方の主面まで延在する部分が前記金属箔と接触している、請求項3に記載の固体電池。
  5.  断面視にて前記正極側ラミネートフィルムおよび前記負極側ラミネートフィルムがそれぞれの少なくとも一方の端部において互いに結合している、請求項2~4のいずれかに記載の固体電池。
  6.  前記端部が前記取り出し電極部を有している、請求項5に記載の固体電池。
  7.  前記正極側の取り出し電極部および前記負極側の取り出し電極部の一方が前記固体電池積層体の断面視で対向する2つの主面の一方の側に設けられ、該正極側の取り出し電極部および該負極側の取り出し電極部の他方が同じく前記2つの主面の前記一方の側に設けられている、請求項2~6のいずれかに記載の固体電池。
  8.  前記取り出し電極部の少なくとも一方が、該取り出し電極部を有する前記ラミネートフィルムの端部を折り曲げることにより配置されている、請求項6または7に記載の固体電池。
  9.  前記外部端子に接続されるタブを有していない、請求項1~8のいずれかに記載の固体電池。
  10.  前記ラミネートフィルムが熱接着性樹脂を含んで成る、請求項1~9のいずれかに記載の固体電池。
  11.  前記固体電池が表面実装用の部品(SMD)であり、前記固体電池がリフロー方式で実装される場合、リフロー・ピーク温度±50℃の融点を前記熱接着性樹脂が有する、請求項10に記載の固体電池。
  12.  前記融点が200℃以上である、請求項11に記載の固体電池。
  13.  前記熱接着性樹脂が非オレフィン系樹脂である、請求項10~12のいずれかに記載の固体電池。
  14.  前記熱接着性樹脂が、ポリクロロトリフルオロエチレン(PCTFE)、ポリテトラフルオロエチレン(PTFE)、ポリフェニレンサルファイド(PPS)およびポリアミドイミド(PAI)からなる群から選択される、請求項10~13のいずれかに記載の固体電池。
  15.  固体電池用の外装体であって、融点が200℃以上の熱接着性樹脂を含んで成る樹脂フィルム層と、該樹脂フィルム層内に配置される金属箔とを有して成るラミネートフィルムを有して成る外装体。
  16.  前記熱接着性樹脂が非オレフィン系樹脂である、請求項15に記載の外装体。
  17.  前記熱接着性樹脂が、ポリクロロトリフルオロエチレン(PCTFE)、ポリテトラフルオロエチレン(PTFE)、ポリフェニレンサルファイド(PPS)およびポリアミドイミド(PAI)からなる群から選択される、請求項15または16に記載の外装体。
  18.  水蒸気透過率が5.0×10-3g/(m・Day)未満である、請求項15~17のいずれかに記載の外装体。
PCT/JP2021/018858 2020-05-20 2021-05-18 固体電池および固体電池用の外装体 WO2021235451A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020087859 2020-05-20
JP2020-087859 2020-05-20

Publications (1)

Publication Number Publication Date
WO2021235451A1 true WO2021235451A1 (ja) 2021-11-25

Family

ID=78708556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018858 WO2021235451A1 (ja) 2020-05-20 2021-05-18 固体電池および固体電池用の外装体

Country Status (1)

Country Link
WO (1) WO2021235451A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112503A1 (ja) * 2021-12-14 2023-06-22 株式会社村田製作所 外装材、ならびに固体電池および電子デバイス

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031272A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 電極積層型電池
WO2012077707A1 (ja) * 2010-12-08 2012-06-14 財団法人三重県産業支援センター リチウム二次電池の製造方法、積層電池の製造方法及び複合体の製造方法
JP2013243062A (ja) * 2012-05-22 2013-12-05 Hitachi Ltd 電池
JP2014067519A (ja) * 2012-09-25 2014-04-17 Jsr Corp 蓄電セルおよびその製造方法
JP2016001602A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 固体電池
JP2017217782A (ja) * 2016-06-06 2017-12-14 昭和電工パッケージング株式会社 ラミネート材
JP2019057473A (ja) * 2017-09-22 2019-04-11 セイコーインスツル株式会社 電気化学セル
JP2019212433A (ja) * 2018-06-01 2019-12-12 大日本印刷株式会社 電池用包装材料、その製造方法、電池用包装材料の巻取体、電池
JP2021005483A (ja) * 2019-06-26 2021-01-14 株式会社村田製作所 固体電池

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004031272A (ja) * 2002-06-28 2004-01-29 Nissan Motor Co Ltd 電極積層型電池
WO2012077707A1 (ja) * 2010-12-08 2012-06-14 財団法人三重県産業支援センター リチウム二次電池の製造方法、積層電池の製造方法及び複合体の製造方法
JP2013243062A (ja) * 2012-05-22 2013-12-05 Hitachi Ltd 電池
JP2014067519A (ja) * 2012-09-25 2014-04-17 Jsr Corp 蓄電セルおよびその製造方法
JP2016001602A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 固体電池
JP2017217782A (ja) * 2016-06-06 2017-12-14 昭和電工パッケージング株式会社 ラミネート材
JP2019057473A (ja) * 2017-09-22 2019-04-11 セイコーインスツル株式会社 電気化学セル
JP2019212433A (ja) * 2018-06-01 2019-12-12 大日本印刷株式会社 電池用包装材料、その製造方法、電池用包装材料の巻取体、電池
JP2021005483A (ja) * 2019-06-26 2021-01-14 株式会社村田製作所 固体電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023112503A1 (ja) * 2021-12-14 2023-06-22 株式会社村田製作所 外装材、ならびに固体電池および電子デバイス

Similar Documents

Publication Publication Date Title
US20230109891A1 (en) Solid state battery and method of manufacturing solid state battery
WO2021235451A1 (ja) 固体電池および固体電池用の外装体
WO2018198461A1 (ja) リチウムイオン二次電池
JP7206836B2 (ja) 電子部品の製造方法
US20230163365A1 (en) Solid state battery
JP2020115450A (ja) 全固体電池
US11942605B2 (en) Solid-state battery
US20220302507A1 (en) Solid-state battery
US20220013816A1 (en) Solid-state battery
WO2021256398A1 (ja) 固体電池
WO2022004733A1 (ja) 固体電池
WO2021132504A1 (ja) 固体電池
JP7115559B2 (ja) 固体電池
WO2023112503A1 (ja) 外装材、ならびに固体電池および電子デバイス
WO2023243489A1 (ja) 固体電池パッケージ
WO2024009963A1 (ja) 固体電池
JP7327496B2 (ja) 固体電池
WO2024014260A1 (ja) 固体電池および電子デバイス
US20230163434A1 (en) Solid state battery
WO2023171759A1 (ja) 固体電池モジュール
WO2022114140A1 (ja) 固体電池および固体電池の製造方法
JP7131298B2 (ja) 電子部品
WO2022230901A1 (ja) 固体電池パッケージ
WO2023127247A1 (ja) 固体電池
US20220302498A1 (en) Solid-state battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21809688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP