WO2024009963A1 - 固体電池 - Google Patents

固体電池 Download PDF

Info

Publication number
WO2024009963A1
WO2024009963A1 PCT/JP2023/024668 JP2023024668W WO2024009963A1 WO 2024009963 A1 WO2024009963 A1 WO 2024009963A1 JP 2023024668 W JP2023024668 W JP 2023024668W WO 2024009963 A1 WO2024009963 A1 WO 2024009963A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
solid
electrode layer
layer
external electrode
Prior art date
Application number
PCT/JP2023/024668
Other languages
English (en)
French (fr)
Inventor
圭輔 清水
彰佑 伊藤
友裕 加藤
彰 馬場
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024009963A1 publication Critical patent/WO2024009963A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to solid state batteries.
  • Secondary batteries that can be repeatedly charged and discharged have been used for a variety of purposes.
  • secondary batteries are used as power sources for electronic devices such as smartphones and notebook computers.
  • a liquid electrolyte is generally used as a medium for ion movement that contributes to charging and discharging.
  • electrolytes are used in secondary batteries.
  • safety is generally required in terms of preventing electrolyte leakage.
  • organic solvent used in the electrolyte is a flammable substance, safety is also required in this respect. Based on this point, research is underway on solid batteries that use solid electrolytes instead of electrolytes.
  • Such a solid battery includes a battery element including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, and an external electrode on the positive electrode side and an external electrode on the negative electrode side provided on the end face of the battery element. and an external electrode.
  • the electrode layer which is a component, expands and contracts during charging and discharging of a solid-state battery.
  • Such expansion and contraction generates stress inside the battery, which may cause damage to the electrode layer and separation of the connecting portion between the battery element (corresponding to the battery stack) and the external electrode provided on the end face.
  • These problems are more likely to occur on the negative electrode side, where the amount of expansion and contraction is relatively large. As a result, it can be difficult to maintain suitable charge and discharge characteristics over and over again for solid state batteries.
  • an object of the present disclosure is to provide a solid-state battery that can repeatedly maintain suitable charge-discharge characteristics.
  • a battery element comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, an external electrode on the positive electrode side and an external electrode on the negative electrode side provided on the end surface of the battery element. Equipped with A solid-state battery is provided, in which the external electrode on the negative electrode side and the external electrode on the positive electrode side are arranged asymmetrically, and the external electrode on the negative electrode side is in contact with at least two sides of the negative electrode layer.
  • the solid state battery according to an embodiment of the present disclosure, it is possible to maintain suitable charge/discharge characteristics repeatedly.
  • FIG. 1 is a perspective view schematically showing the configuration of a solid-state battery according to an embodiment of the present disclosure.
  • FIG. 2 is a partially exploded perspective view schematically showing the configuration of a solid-state battery according to an embodiment of the present disclosure.
  • FIG. 3 is a plan view schematically showing an overlapping state of a positive electrode layer and a negative electrode layer in contact with external electrodes of a solid battery according to an embodiment of the present disclosure (a solid electrolyte between a positive electrode layer and a negative electrode layer (The insulating layer surrounding the positive electrode layer is not shown).
  • FIG. 4 is a top view schematically showing a solid state battery according to an embodiment of the present disclosure.
  • FIG. 4 is a top view schematically showing a solid state battery according to an embodiment of the present disclosure.
  • FIG. 5 shows a combination of a negative electrode layer in which two or more side surfaces are in contact with a negative external electrode and a positive electrode layer in which one side surface is in contact with a positive external electrode in a solid battery according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic plan view.
  • FIG. 6 shows a combination of a negative electrode layer in which two or more side surfaces are in contact with a negative external electrode and a positive electrode layer in which one side surface is in contact with a positive external electrode in a solid battery according to another embodiment of the present disclosure.
  • FIG. 2 is a plan view schematically showing.
  • FIG. 7 is an exploded plan view schematically showing a method for manufacturing a solid-state battery (in the middle of manufacturing a battery element) according to an embodiment of the present disclosure.
  • FIG. 8 is a perspective view schematically showing a method for manufacturing a solid-state battery (when manufacturing of a battery element is completed) according to an embodiment of the present disclosure.
  • FIG. 9 is a perspective view schematically showing a method for manufacturing a solid-state battery (when forming external electrodes) according to an embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view schematically showing a packaged solid state battery according to an embodiment of the present disclosure.
  • FIG. 11 is a perspective view schematically showing a solid state battery according to an embodiment of the present disclosure mounted on an external base material.
  • FIG. 12 is a perspective view schematically showing the configuration of a conventional solid state battery.
  • FIG. 13 is a plan view schematically showing the overlapping state of the positive electrode layer and the negative electrode layer in contact with the external electrodes of a conventional solid-state battery (the solid electrolyte layer between the positive electrode layer and the negative electrode layer and the solid electrolyte layer surrounding the positive electrode layer (Insulating layer not shown).
  • cross-sectional view refers to the shape viewed from a direction substantially perpendicular to the stacking direction in the stacked structure of a solid-state battery (simply put, the cross-sectional view when cut along a plane parallel to the thickness direction of the layers) form).
  • planar view or “planar view shape” as used in this specification is based on a sketch when the object is viewed from above or below along the thickness direction of such layers (i.e., the above-mentioned lamination direction). ing.
  • a “solid-state battery” refers to a battery whose constituent elements are made of solid matter, and in a narrow sense it refers to an all-solid-state battery whose constituent elements (especially preferably all constituent elements) are made of solid matter.
  • the solid-state battery of the present disclosure is a stacked solid-state battery configured such that layers constituting battery structural units are stacked on each other, and preferably each layer is made of a fired body.
  • a “solid battery” includes not only a so-called “secondary battery” that can be repeatedly charged and discharged, but also a "primary battery” that can only be discharged.
  • the “solid battery” is a secondary battery.
  • the term “secondary battery” is not excessively limited by its name, and may include, for example, power storage devices.
  • a solid-state battery includes at least positive and negative electrode layers and a solid electrolyte.
  • the solid state battery 100 includes a solid state battery stack including a battery element consisting of a positive electrode layer 110, a negative electrode layer 120, and at least a solid electrolyte layer 130 interposed therebetween.
  • each layer constituting it may be formed by firing, and the positive electrode layer, negative electrode layer, solid electrolyte layer, etc. may form the fired layers.
  • the positive electrode layer, the negative electrode layer, and the solid electrolyte layer are each integrally fired, and therefore it is preferable that the solid battery laminate forms an integrally fired body.
  • the positive electrode layer 110 is an electrode layer containing at least a positive electrode active material.
  • the positive electrode layer may further include a solid electrolyte.
  • the positive electrode layer is composed of a fired body containing at least positive electrode active material particles and solid electrolyte particles.
  • the negative electrode layer is an electrode layer containing at least a negative electrode active material.
  • the negative electrode layer may further include a solid electrolyte.
  • the negative electrode layer is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
  • a positive electrode active material and a negative electrode active material are substances that participate in the transfer of electrons in a solid battery. Ions move (conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and electrons are exchanged to perform charging and discharging. It is particularly preferable that each electrode layer of the positive electrode layer and the negative electrode layer is a layer capable of intercalating and deintercalating lithium ions or sodium ions. That is, the solid battery is preferably an all-solid-state secondary battery in which lithium ions or sodium ions move between a positive electrode layer and a negative electrode layer via a solid electrolyte to charge and discharge the battery.
  • Examples of the positive electrode active material contained in the positive electrode layer 110 include a lithium-containing phosphoric acid compound having a Nasicon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and a lithium-containing lithium-containing layered oxide. At least one selected from the group consisting of oxides and the like can be mentioned.
  • An example of a lithium-containing phosphoric acid compound having a Nasicon type structure includes Li 3 V 2 (PO 4 ) 3 and the like.
  • Examples of lithium-containing phosphoric acid compounds having an olivine structure include Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4 , and/or LiMnPO 4 .
  • lithium-containing layered oxide examples include LiCoO 2 and/or LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .
  • lithium-containing oxides having a spinel structure examples include LiMn 2 O 4 and/or LiNi 0.5 Mn 1.5 O 4 .
  • the type of lithium compound is not particularly limited, but may be, for example, a lithium transition metal composite oxide or a lithium transition metal phosphate compound.
  • Lithium transition metal composite oxide is a general term for oxides containing lithium and one or more types of transition metal elements as constituent elements
  • lithium transition metal phosphate compounds are oxides containing lithium and one or more types of transition metal elements as constituent elements. It is a general term for phosphoric acid compounds containing transition metal elements as constituent elements.
  • the type of transition metal element is not particularly limited, and examples thereof include cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe).
  • sodium-containing phosphoric acid compounds having a Nasicon-type structure sodium-containing phosphoric acid compounds having an olivine-type structure, sodium-containing layered oxides, and spinel-type structures are used. At least one selected from the group consisting of sodium-containing oxides and the like can be mentioned.
  • the sodium-containing layered oxide may include at least one selected from the group consisting of 2FeP2O7 , Na4Fe3 ( PO4 ) 2 ( P2O7 ) , and NaFeO2 as the sodium - containing layered oxide.
  • the positive electrode active material may be, for example, an oxide, a disulfide, a chalcogenide, or a conductive polymer.
  • the oxide may be, for example, titanium oxide, vanadium oxide or manganese dioxide.
  • the disulfide is, for example, titanium disulfide or molybdenum sulfide.
  • the chalcogenide may be, for example, niobium selenide.
  • the conductive polymer may be, for example, disulfide, polypyrrole, polyaniline, polythiophene, polyparastyrene, polyacetylene or polyacene.
  • the negative electrode active material contained in the negative electrode layer 120 includes, for example, titanium (Ti), silicon (Si), tin (Sn), chromium (Cr), iron (Fe), niobium (Nb), and molybdenum (Mo). oxides containing at least one element selected from the group, carbon materials such as graphite, graphite-lithium compounds, lithium alloys, lithium-containing phosphoric acid compounds having a Nasicon-type structure, lithium-containing phosphoric acid compounds having an olivine-type structure, and , a lithium-containing oxide having a spinel structure, and the like.
  • An example of a lithium alloy is Li-Al.
  • lithium-containing phosphoric acid compounds having a Nasicon type structure examples include Li 3 V 2 (PO 4 ) 3 and/or LiTi 2 (PO 4 ) 3 .
  • examples of the lithium-containing phosphoric acid compound having an olivine structure include Li 3 Fe 2 (PO 4 ) 3 and/or LiCuPO 4 .
  • An example of a lithium-containing oxide having a spinel structure is Li 4 Ti 5 O 12 and the like.
  • negative electrode active materials capable of intercalating and releasing sodium ions include sodium-containing phosphoric acid compounds having a Nasicon-type structure, sodium-containing phosphoric acid compounds having an olivine-type structure, and sodium-containing oxides having a spinel-type structure. At least one selected from the group consisting of:
  • the positive electrode layer and the negative electrode layer may be made of the same material.
  • the positive electrode layer and/or the negative electrode layer may contain a conductive material.
  • the conductive material contained in the positive electrode layer and the negative electrode layer include at least one metal material such as silver, palladium, gold, platinum, aluminum, copper, and nickel, and carbon.
  • the positive electrode layer and/or the negative electrode layer may contain a sintering aid.
  • the sintering aid include at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide.
  • the thickness of the positive electrode layer and the negative electrode layer is not particularly limited, but may be, for example, independently 2 ⁇ m or more and 50 ⁇ m or less, particularly 5 ⁇ m or more and 30 ⁇ m or less.
  • the positive electrode layer 110 and the negative electrode layer 120 may each include a positive electrode current collecting layer and a negative electrode current collecting layer.
  • the positive electrode current collecting layer and the negative electrode current collecting layer may each have a foil form. However, if more emphasis is placed on improving electronic conductivity through integral firing, reducing manufacturing costs of solid-state batteries, and/or reducing internal resistance of solid-state batteries, then the positive electrode current collecting layer and the negative electrode current collecting layer should each form a fired body. It may have.
  • the positive electrode current collector constituting the positive electrode current collector layer and the negative electrode current collector constituting the negative electrode current collector it is preferable to use a material with high electrical conductivity, such as silver, palladium, gold, platinum, aluminum, copper, etc. , and/or nickel may be used.
  • the positive electrode current collector and the negative electrode current collector may each have an electrical connection part for electrically connecting with the outside, and may be configured to be electrically connectable to the end surface electrode. Note that when the positive electrode current collecting layer and the negative electrode current collecting layer have the form of fired bodies, they may be constituted by fired bodies containing a conductive material and a sintering aid.
  • the conductive material contained in the positive electrode current collection layer and the negative electrode current collection layer may be selected from the same materials as the conductive materials that may be contained in the positive electrode layer and the negative electrode layer, for example.
  • the sintering aid contained in the positive electrode current collecting layer and the negative electrode current collecting layer may be selected from the same materials as the sintering aid that may be contained in the positive electrode layer and the negative electrode layer, for example.
  • a positive electrode current collecting layer and a negative electrode current collecting layer are not necessarily required in a solid state battery, and a solid state battery that is not provided with such a positive electrode current collecting layer and a negative electrode current collecting layer is also conceivable. That is, the solid state battery included in the package of the present disclosure may be a solid state battery without a current collecting layer.
  • a solid electrolyte is a material that can conduct lithium ions or sodium ions.
  • the solid electrolyte 130 that constitutes a battery constituent unit in a solid battery may form a layer between the positive electrode layer 110 and the negative electrode layer 120 that can conduct lithium ions.
  • the solid electrolyte only needs to be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte may be present around the positive electrode layer and/or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer.
  • Specific solid electrolytes include, for example, one or more of a crystalline solid electrolyte, a glass-based solid electrolyte, a glass-ceramic solid electrolyte, and the like.
  • Examples of the crystalline solid electrolyte include oxide-based crystal materials and sulfide-based crystal materials.
  • oxide-based crystal materials include lithium-containing phosphate compounds having a Nasicon structure, oxides having a perovskite structure, oxides having a garnet type or garnet-like structure, oxide glass ceramics-based lithium ion conductors, etc. It will be done.
  • Lithium-containing phosphoric acid compounds having a Nasicon structure include Li x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is titanium (Ti), germanium (Ge), aluminum (Al ), gallium (Ga), and zirconium (Zr).
  • An example of a lithium-containing phosphoric acid compound having a Nasicon structure includes Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like.
  • oxides having a perovskite structure include La 0.55 Li 0.35 TiO 3 and the like.
  • oxides having a garnet type or garnet type similar structure includes Li 7 La 3 Zr 2 O 12 and the like.
  • the sulfide-based crystal material include thio-LISICON, such as Li 3.25 Ge 0.25 P 0.75 S4 and Li 10 GeP 2 S 12 .
  • the crystalline solid electrolyte may include a polymeric material (eg, polyethylene oxide (PEO), etc.).
  • Examples of the glass-based solid electrolyte include oxide-based glass materials and sulfide-based glass materials.
  • oxide glass material include 50Li 4 SiO 4 .50Li 3 BO 3 .
  • Sulfide glass materials include , for example, 30Li 2 S.26B 2 S 3.44LiI, 63Li 2 S.36SiS 2.1Li 3 PO 4 , 57Li 2 S.38SiS 2.5Li 4 SiO 4 and 70Li 2 S. Examples include 30P 2 S 5 and 50Li 2 S.50GeS 2 .
  • the glass-ceramic solid electrolyte examples include oxide-based glass-ceramic materials and sulfide-based glass-ceramic materials.
  • oxide-based glass-ceramic material for example, a phosphoric acid compound (LATP) containing lithium, aluminum, and titanium as constituent elements, and a phosphoric acid compound (LAGP) containing lithium, aluminum, and germanium as constituent elements can be used.
  • LATP is, for example, Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) 3 .
  • LAGP is, for example, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ).
  • examples of the sulfide-based glass ceramic materials include Li 7 P 3 S 11 and Li 3.25 P 0.95 S 4 .
  • Examples of the solid electrolyte that can conduct sodium ions include sodium-containing phosphoric acid compounds having a Nasicon structure, oxides having a perovskite structure, and oxides having a garnet type or garnet type similar structure.
  • the sodium-containing phosphate compound having a Nasicon structure includes Na x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr). at least one selected type).
  • the solid electrolyte may contain a sintering aid.
  • the sintering aid contained in the solid electrolyte may be selected from, for example, the same materials as the sintering aid that may be contained in the positive electrode layer and the negative electrode layer.
  • the thickness of the solid electrolyte is not particularly limited.
  • the thickness of the solid electrolyte layer located between the positive electrode layer and the negative electrode layer may be, for example, 1 ⁇ m or more and 15 ⁇ m or less, particularly 1 ⁇ m or more and 5 ⁇ m or less.
  • Solid state batteries are generally provided with external electrodes.
  • external electrodes are provided on the end faces of the solid state battery. More specifically, a positive external electrode 140A connected to the positive electrode layer 110 and a negative external electrode 140B connected to the negative electrode layer 120 are provided (see FIG. 1).
  • such external electrodes comprise a material with high electrical conductivity.
  • Specific materials for the external electrodes are not particularly limited, but may include at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin, and nickel.
  • the inventors of the present invention have conducted extensive studies on a structure for maintaining suitable charge/discharge characteristics over repeated cycles of solid-state batteries. Specifically, the inventor of the present application aims to suppress damage to the electrode layer caused by stress generation inside the battery due to expansion and contraction of the electrode layer during charging and discharging of the solid-state battery, and to suppress damage to the battery element (corresponding to a battery stack). We conducted extensive research on a configuration for suppressing peeling of the connection portion with the external electrode provided on this end face.
  • the inventor of the present application has determined that the area of contact between the negative electrode layer and the external electrode on the negative side, which expands and contracts with a relatively large amount during charging and discharging of the battery, is smaller than the contact area between the positive electrode layer and the external electrode on the positive side.
  • the present disclosure has been devised based on the technical idea of "increasing the amount of data" (see FIGS. 1 to 6).
  • FIG. 1 is a perspective view schematically showing the configuration of a solid-state battery according to an embodiment of the present disclosure.
  • FIG. 2 is a partially exploded perspective view schematically showing the configuration of a solid-state battery according to an embodiment of the present disclosure.
  • FIG. 3 is a plan view schematically showing an overlapping state of a positive electrode layer and a negative electrode layer in contact with external electrodes of a solid battery according to an embodiment of the present disclosure (a solid electrolyte between a positive electrode layer and a negative electrode layer (The insulating layer surrounding the positive electrode layer is not shown).
  • FIG. 4 is a top view schematically showing a solid state battery according to an embodiment of the present disclosure.
  • FIG. 4 is a top view schematically showing a solid state battery according to an embodiment of the present disclosure.
  • FIG. 5 shows a combination of a negative electrode layer in which two or more side surfaces are in contact with a negative external electrode and a positive electrode layer in which one side surface is in contact with a positive external electrode in a solid battery according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic plan view.
  • FIG. 6 shows a combination of a negative electrode layer in which two or more side surfaces are in contact with a negative external electrode and a positive electrode layer in which one side surface is in contact with a positive external electrode in a solid battery according to another embodiment of the present disclosure.
  • FIG. 2 is a plan view schematically showing.
  • the negative external electrode 140B and the positive external electrode 140A are arranged asymmetrically, and the negative external electrode 140B contacts at least two side surfaces 121 of the negative electrode layer 120.
  • the positive electrode layer 110 and the negative electrode layer 120 may have a rectangular shape in plan view.
  • the positive electrode layer 110 and the negative electrode layer 120 are square shaped" means that both electrode layers have four corner portions in plan view.
  • the contact portion Y between the positive electrode side external electrode 140A and the positive electrode layer 110 extends in one direction, while the contact portion between the negative electrode side external electrode 140B and the negative electrode layer 120 Z may have a bent configuration.
  • the negative external electrode 140B which is arranged asymmetrically with respect to the positive external electrode 140A, can contact at least two side surfaces 121 of the negative electrode layer 120.
  • the external electrode 140A on the positive electrode side may be in contact with one side surface of the positive electrode layer 110. From the above, the total contact area between the negative external electrode 140B and the negative electrode layer 120 can be larger than the total contact area between the positive external electrode 140A and the positive electrode layer 110.
  • the number of points where the outline 101X of the battery element 100X and the outline 111 of the positive electrode layer 110 overlap is one, whereas the outline 101X of the battery element 100X and the outline 111 of the negative electrode layer 120 overlap.
  • the number of locations where the outline 121 of the outline 121 overlaps may be at least two.
  • the negative electrode layer 120 can be located on the outer surface of the battery element 100X.
  • the negative electrode layer may be exposed on the outer surface of the battery element 100X located at the separated portion S between the positive external electrode 140A and the negative external electrode 140B.
  • the size of the negative external electrode 140B can be larger than the size of the positive external electrode 140A.
  • the negative external electrode 140B may be arranged to face the positive external electrode 140A on the premise that it is separated from the positive external electrode 140A.
  • the separated portion S between the positive external electrode 140A and the negative external electrode 140B may be unevenly located on the positive external electrode 140A side.
  • both the positive electrode layer 110'' and the negative electrode layer 120'' is in contact with the external electrodes 140A'' and 140B'', and the remaining three side surfaces are insulating parts that can be formed in the same plane area as each electrode layer.
  • a configuration in which it is in contact with the solid electrolyte section 180'' may be normally adopted (see FIGS. 12 and 13).
  • at least two side surfaces 121 of the negative electrode layer 120 are in contact with the external electrode 140B on the negative electrode side, so that the negative electrode layer 120, which has a relatively large amount of expansion and contraction during battery charging and discharging, and the negative electrode side
  • the contact area with the external electrode 140B can be increased compared to before.
  • the external electrode 140B on the negative electrode side can suppress peeling of the connection portion with the negative electrode layer 120, secure the connection portion, and suppress damage to the electrode layer (negative electrode layer 120/positive electrode layer 110).
  • the electrode layer negative electrode layer 120/positive electrode layer 110.
  • the number of non-contact side surfaces that did not contact the external electrode for both electrode layers was small. There were three (see Figures 12 and 13).
  • the number of side surfaces of the negative electrode layer 120 that come into contact with the external electrode 14B on the negative electrode side can be increased.
  • the number of non-contact side surfaces of the negative electrode layer 120 with the external electrode 14B on the negative electrode side can be less than three, specifically one or two.
  • the planar size of the negative electrode layer 120 that occupies a predetermined planar size of the battery element 100X can be increased. Accordingly, the planar size of the other positive electrode layer 110 can also be increased. Therefore, the overlapping area between the positive electrode layer 110 and the negative electrode layer 120 can be made larger than before, and thereby the battery capacity can be increased.
  • the contact area between the negative electrode layer 120 and the negative external electrode 140B can be increased compared to before, the area where current can be collected can be increased. Therefore, current collection resistance can be lowered, and alternating current impedance can be reduced.
  • the negative electrode side external electrode 140B is in contact with three mutually continuous side surfaces of the negative electrode layer 120 in plan view. That is, in plan view, three mutually continuous side surfaces of the negative electrode layer 120 can be surrounded by the negative external electrode 140B. From another perspective, in plan view, the external electrode 140B on the negative electrode side can contact only the negative electrode layer without contacting an insulating layer or solid electrolyte layer that may be formed in the same plane area as the negative electrode layer 120.
  • the number of contact points between the two side surfaces 121 of the negative electrode layer 120 and the external electrode 140B on the negative electrode side can be increased by one, compared to the case where the two side surfaces 121 and the external electrode 140B on the negative electrode side contact each other.
  • the planar size of the negative electrode layer 120 that occupies a predetermined planar size of the battery element 100X can be increased, the overlapping area between the positive electrode layer 110 and the negative electrode layer 120 can be increased, and as a result, the battery capacity can be increased. can do. Furthermore, since the area where current can be collected becomes larger, the current collection resistance can be lowered, and AC impedance can be further reduced.
  • the negative electrode side external electrode intersects with the stacking direction of the electrode layers and extends in a direction (first direction) toward the positive electrode side external electrode 140A in plan view.
  • the length L of the first portion of the positive electrode 140B may be longer than the length of the first portion L1 of the positive external electrode 140A that extends in the direction toward the negative external electrode 140B.
  • the length of the first portion L is set in the first direction from the viewpoint of suitably suppressing peeling of the connection portion with the negative electrode layer 120. It is preferable that the length W of the second portion of the external electrode 140B on the negative electrode side is longer than the length W of the second portion of the external electrode 140B on the negative electrode side in the second direction intersecting with the negative electrode.
  • the length L of the first portion of the external electrode 140B on the negative electrode side is determined by the length L of the first portion of the external electrode 140B on the negative electrode side in the first battery in the above-mentioned first direction, from the viewpoint of suitably suppressing peeling of the connection portion with the negative electrode layer 120. It may be 25% or more of the length of element 100X. Further, the length L of the first portion of the negative external electrode 140B may be 80% or less of the length of the battery element 100X from the viewpoint of avoiding contact with the positive external electrode 140A (see FIG. 5). ).
  • the length L of the portion may be approximately 50% of the length of the battery element 100X in the first direction.
  • the thickness of the positive electrode layer can be 4 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the solid electrolyte layer can be 5 ⁇ m or more and 20 ⁇ m or less.
  • the thickness of the negative electrode layer can be 6 ⁇ m or more and 25 ⁇ m or less.
  • the energy density of the solid-state battery can be improved.
  • the output density of the solid-state battery can be improved.
  • the solid electrolyte layer when the solid electrolyte layer is relatively thick, self-discharge of the solid battery can be reduced. When the thickness of the solid electrolyte layer is relatively thin, the energy density of the solid battery can be improved.
  • the stress generated during charging and discharging can be alleviated by lowering the volume ratio of the positive electrode layer and the negative electrode layer, which change in volume due to charging and discharging, than the volume ratio of the solid electrolyte layer, which does not change in volume. As a result, it is possible to suppress the occurrence of cracks inside the solid-state battery due to charging and discharging.
  • the solid battery according to the embodiment of the present disclosure described above can be used in the following electronic devices.
  • FIG. 10 is a cross-sectional view schematically showing a packaged solid state battery according to an embodiment of the present disclosure.
  • FIG. 11 is a perspective view schematically showing a solid state battery according to an embodiment of the present disclosure mounted on an external base material.
  • the solid state battery according to an embodiment of the present disclosure can be packaged and used.
  • the solid state battery according to an embodiment of the present disclosure can be used by being mounted on an external substrate (or secondary substrate) 2000 via solder or the like.
  • a solid state battery package can be provided that includes a mountable substrate and has a configuration in which the solid state battery is protected from the external environment.
  • the term "solid battery package” used herein refers to a solid battery device configured to protect a solid battery from the external environment, and in a narrow sense, it refers to a solid battery device that includes a board that facilitates mounting. This refers to solid-state batteries that are protected from the external environment.
  • the solid state battery package 1000 includes a substrate 200 so that the solid state battery 100 is supported.
  • the solid state battery package 1000 includes a mountable substrate 200 and a solid state battery 100 provided on the substrate 200 and protected from the external environment.
  • the substrate 200 has a main surface larger than that of the solid battery 100, for example.
  • the substrate 200 may be a resin substrate or a ceramic substrate.
  • the board 200 may fall into the categories of a printed wiring board, a flexible board, an LTCC board, or an HTCC board.
  • the substrate 200 may be a substrate configured to include resin as a base material, for example, a layered structure of the substrate may include a resin layer.
  • the resin material of such a resin layer may be any thermoplastic resin and/or any thermosetting resin.
  • the resin layer may be formed by, for example, impregnating glass fiber cloth with a resin material such as epoxy resin.
  • the substrate is preferably a member for an external terminal or external electrode of the packaged solid state battery.
  • the substrate serves as a terminal substrate for the external terminal or external electrode of the solid-state battery.
  • a solid-state battery package including such a substrate allows the solid-state battery to be mounted on another secondary substrate such as a printed wiring board with the substrate interposed therebetween.
  • a solid state battery can be surface mounted via a substrate through solder reflow or the like.
  • the solid state battery package of the present disclosure is preferably an SMD (Surface Mount Device) type battery package.
  • Such a substrate can also be understood as a support substrate, as it can be provided to support a solid-state battery.
  • the board since the board is a terminal board, it is preferable that the board has wiring or an electrode layer.
  • the board electrode layer is electrically connected to the upper main surface 230 and the lower main surface 240, respectively. It is preferable to have the following.
  • the substrate 200 includes substrate electrode layers (upper substrate electrode layer 210, lower substrate electrode layer 220) electrically connected to an upper main surface 230 and a lower main surface 240, and is packaged. It is a member for the external terminal or external electrode of a solid-state battery.
  • the substrate electrode layer 210 itself can be electrically connected to the solid state battery 100, it can be made of a metal layer with relatively high strength.
  • This metal layer may be composed of, for example, copper plated with gold, or copper plated with nickel and gold.
  • the thickness of the substrate electrode layer 210 can be 2 to 50 ⁇ m, for example 30 ⁇ m.
  • the substrate electrode layer and the external electrode of the solid battery are connected to each other. Specifically, the substrate electrode layers of the same polarity and the external electrodes of the solid state battery are electrically connected to each other.
  • the external electrode 140A on the positive side of the solid state battery is electrically connected to the upper substrate positive electrode layer 210A.
  • the external electrode 140B on the negative side of the solid-state battery is electrically connected to the upper substrate negative electrode layer 210B.
  • the upper substrate electrode layer 210 and the lower substrate electrode layer 220 are configured to be electrically connected via a conductive portion provided inside the substrate 200.
  • the conductive portion may be made of at least one metal material selected from the group consisting of copper, aluminum, stainless steel, nickel, silver, gold, tin, etc., for example.
  • the lower substrate electrode layer 220 (corresponding to the substrate electrode layer located on the bottom surface of the substrate) or the land connected to the lower substrate electrode layer serves as an external electrode or external terminal of the battery package.
  • the external electrode 140 of the solid battery 100 and the substrate electrode layer 210 of the substrate 200 are connected via the bonding member 600. can do.
  • This joining member 600 is responsible for at least the electrical connection between the external electrode 140 of the solid state battery 100 and the substrate 200, and may include, for example, a conductive adhesive.
  • the bonding member 600 may be made of an epoxy conductive adhesive containing a metal filler such as Ag.
  • the solid state battery package 1000 can be covered with the covering part 150 so that the solid state battery 100 provided on the substrate 200 is completely surrounded.
  • the solid battery 100 on the substrate 200 may be packaged so that the main surface 100A and the side surface 100B are surrounded by the covering portion 150. According to this configuration, all surfaces forming the solid state battery 100 are not exposed to the outside, and water vapor permeation can be prevented.
  • water vapor as used herein is not particularly limited to water in a gaseous state, but also includes water in a liquid state.
  • water vapor is used to broadly encompass water in a gaseous state, water in a liquid state, etc., regardless of its physical state. Therefore, “water vapor” can also be referred to as moisture, and in particular, water in a liquid state may also include condensed water, which is water in a gaseous state condensed. Since the infiltration of water vapor into a solid-state battery causes deterioration of battery characteristics, the form of the solid-state battery packaged as described above contributes to extending the life of the battery characteristics of the solid-state battery.
  • the covering portion 150 includes a covering insulating layer 160 and a covering inorganic layer 170.
  • the covering inorganic layer 170 is provided to cover the covering insulating layer 160. Since the covering inorganic layer 170 is positioned on the covering insulating layer 160, the covering inorganic layer 170 has a shape that largely envelops the solid battery 100 on the substrate 200 together with the covering insulating layer 160. Furthermore, the covering inorganic layer 170 may also cover the side surface 250 of the substrate 200.
  • Coating inorganic layer 170 preferably functions as a water vapor barrier layer. That is, the covering inorganic layer covers at least the top and side surfaces of the solid-state battery so as to suitably serve as a barrier to prevent water from entering the solid-state battery.
  • the term "barrier” is broadly defined as having the property of preventing water vapor permeation to the extent that water vapor in the external environment does not pass through the coating inorganic layer and cause characteristic deterioration that is disadvantageous to the solid state battery. In a narrow sense, it means that the water vapor permeability is less than 1.0 ⁇ 10 ⁇ 3 g/(m 2 ⁇ Day).
  • the water vapor barrier layer preferably has a water vapor permeability of 0 g/(m 2 ⁇ Day) or more and less than 1.0 ⁇ 10 ⁇ 3 g/(m 2 ⁇ Day).
  • water vapor permeability is the permeation rate obtained using a gas permeability measuring device manufactured by Advance Riko Co., Ltd., model GTms-1, under the measurement conditions of 40°C, 90% RH, and a differential pressure of 1 atm. It refers to the rate.
  • the covering insulating layer 160 and the covering inorganic layer 170 are integrated with each other.
  • the covering inorganic layer forms a water vapor barrier for the solid-state battery together with the covering insulating layer. That is, the combination of the integrated covering insulating layer and covering inorganic layer suitably prevents water vapor from the external environment from entering the solid state battery.
  • the covering inorganic layer may include, for example, a dry plating layer and a wet plating layer formed on the dry plating layer.
  • the wet plating layer may contain at least one member selected from the group consisting of Cu, Ni, and Cr as a main component, but is not particularly limited as long as it is possible to suppress water vapor from the external environment from entering the solid-state battery. may contain metals.
  • the dry plating layer may be, for example, a sputtered film.
  • a sputtered film is a thin film obtained by sputtering. In other words, a film deposited by sputtering ions onto a target and knocking out the atoms can be used as the dry plating layer.
  • the sputtered film has a very thin form on the nano- or micro-order, it becomes a relatively dense and/or homogeneous layer, so it can contribute to preventing water vapor permeation for solid-state batteries. Furthermore, since the sputtered film is formed by atomic deposition, it can be suitably attached to the target. Therefore, the sputtered film can be suitably used as a barrier that prevents water vapor in the external environment from entering the solid state battery. Therefore, when the covering inorganic layer further includes a sputtered film as a dry plating layer, it is possible to further improve the ability to prevent water vapor from permeating into the solid-state battery.
  • the dry plating layer may be formed by other dry plating methods such as a vacuum evaporation method or an ion plating method.
  • the dry plating layer may contain, for example, at least one selected from the group consisting of Al (aluminum), Cu (copper), Ti (titanium), and stainless steel (SUS).
  • the film In film formation by sputtering, the film is formed so as to bite into the insulating covering layer, so that the sputtered film can suitably adhere to the insulating covering layer. Therefore, the sputtered film, together with the covering insulating layer, can suitably contribute to preventing the permeation of water vapor for the solid-state battery. Further, by providing a dry plating layer inside the wet plating layer, it becomes possible to more preferably prevent the plating solution used for forming the wet plating layer from entering the solid state battery. Therefore, by providing a dry plating layer on the covering insulating layer, a more reliable solid state battery package can be provided.
  • FIG. 7 is an exploded plan view schematically showing a method for manufacturing a solid-state battery (in the middle of manufacturing a battery element) according to an embodiment of the present disclosure.
  • FIG. 8 is a perspective view schematically showing a method for manufacturing a solid-state battery (when manufacturing of a battery element is completed) according to an embodiment of the present disclosure.
  • FIG. 9 is a perspective view schematically showing a method for manufacturing a solid-state battery (when forming external electrodes) according to an embodiment of the present disclosure.
  • a solid battery (corresponding to a pre-packaged battery described below) can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a combination thereof. That is, the solid-state battery itself may be manufactured according to a conventional manufacturing method. Therefore, raw materials such as the solid electrolyte, organic binder, solvent, arbitrary additives, positive electrode active material, and negative electrode active material described below may be those used in the production of known solid-state batteries.
  • laminate block formation First, a laminate block is formed.
  • a solid electrolyte, an organic binder, a solvent, and any additives are mixed to prepare a slurry.
  • a sheet comprising a solid electrolyte is then formed from the prepared slurry.
  • a positive electrode paste is prepared by mixing the positive electrode active material, solid electrolyte, conductive material, organic binder, solvent, and optional additives.
  • a negative electrode paste is prepared by mixing a negative electrode active material, a solid electrolyte, a conductive material, an organic binder, a solvent, and optional additives.
  • a positive electrode paste is printed on the sheet, and an insulating material or solid electrolyte material 180A' is printed so as to surround three sides of the positive electrode paste. Print a current collecting layer if necessary.
  • a negative electrode paste is printed on the sheet, and an insulating material or solid electrolyte material 180B' is printed so as to be in contact with one or two sides of the negative electrode paste. Print a current collecting layer if necessary.
  • a sheet containing a positive electrode paste 110' and an insulating material or a solid electrolyte material 180A', a sheet 130' containing a solid electrolyte, and a sheet containing a negative electrode paste 120' and an insulating material or a solid electrolyte material 180B' are laminated alternately. to obtain a laminate.
  • the uppermost layer and the lowermost layer of the laminate may be an electrolyte layer or an insulating layer.
  • a protective layer sheet 190' may be further positioned on the electrolyte or insulating layer as the top and/or bottom layer of the stack (see FIG. 7).
  • the laminate is crimped and integrated, and then cut to a predetermined size.
  • the obtained cut laminate is subjected to degreasing and firing.
  • a fired laminate (corresponding to a battery element) is obtained (see FIG. 8). Note that the laminate may be degreased and fired before cutting, and then the laminate may be cut.
  • external electrodes are formed. Specifically, the external electrode on the positive electrode side is formed by applying a conductive paste or forming a sputtered film on the exposed side surface of the positive electrode in the fired laminate. Further, an external electrode on the negative electrode side is formed by applying a conductive paste and/or forming a sputtered film on the exposed side surface of the negative electrode in the fired laminate (see FIG. 9).
  • both external electrodes are formed so that the external electrode on the negative electrode side is larger than the external electrode on the positive electrode side by adjusting the area during printing or adjusting the extent to which the fired laminate is immersed in the dipping liquid during dipping. do.
  • the external electrode on the positive electrode side is formed so as to be in contact with one side of the exposed positive electrode layer.
  • the external electrode on the negative electrode side is formed so as to be in contact with at least two sides of the exposed negative electrode layer.
  • the component of the end electrode may be selected from at least one selected from silver, gold, platinum, aluminum, copper, tin, and nickel. Further, the end electrodes on the positive electrode side and the negative electrode side are not limited to being formed after firing the laminate, but may be formed before firing and subjected to simultaneous firing.
  • Example 1 (Laminated block formation) First, a laminate block was formed. Specifically, a slurry was prepared by mixing a solid electrolyte, an organic binder, a solvent, and any additives, and a sheet containing the solid electrolyte was formed from the prepared slurry.
  • a positive electrode paste was prepared by mixing a positive electrode active material, a solid electrolyte, a conductive material, an organic binder, a solvent, and optional additives.
  • a negative electrode paste was prepared by mixing a negative electrode active material, a solid electrolyte, a conductive material, an organic binder, a solvent, and optional additives. Thereafter, a positive electrode paste was printed on the sheet, and an insulating material was printed to surround three sides of the positive electrode paste. On the other hand, a negative electrode paste was printed on the sheet, and an insulating material was printed so as to be in contact with only one side of the negative electrode paste.
  • a laminate was obtained by alternately laminating a sheet containing a positive electrode paste and an insulating material, a sheet containing a solid electrolyte, and a sheet containing a negative electrode paste and an insulating material. Note that a protective layer sheet was further positioned on the electrolyte layer as the uppermost layer and/or the lowermost layer of the laminate (see FIG. 7).
  • the laminate was crimped and integrated, then cut into a predetermined size, and the resulting cut laminate was degreased and fired. As a result, a fired laminate (corresponding to a battery element) was obtained (see FIG. 8).
  • External electrode formation After forming the battery fired body, external electrodes were formed. Specifically, the external electrode on the positive electrode side was formed by applying a conductive Ag paste to the exposed positive electrode side surface (one side) of the fired laminate. On the other hand, an external electrode on the negative electrode side was formed by applying a conductive Ag conductive paste to the surface of the fired laminate including at least the exposed negative electrode side surfaces (three sides) (see FIG. 9).
  • the first direction of the negative electrode side external electrode extends in the first direction, which is perpendicular to the stacking direction of the negative electrode layer and toward the arrangement side of the positive electrode side external electrode.
  • the length of one portion was adjusted to be 80% of the length of the battery element in the first direction.
  • a negative electrode was formed so as to cover not only the side surfaces but also the main surface of the fired laminate.
  • Comparative example 1 Compared to Example 1, in the stage of forming the laminate block, a positive electrode paste was printed on a sheet, and an insulating material was printed so as to surround three sides of the positive electrode paste. Similarly, a negative electrode paste was printed on the sheet, and an insulating material was printed to surround three sides of the negative electrode paste.
  • a sheet containing a positive electrode paste and an insulating material, a sheet containing a solid electrolyte, and a sheet containing a negative electrode paste and an insulating material are alternately laminated to obtain a laminate, and then fired to obtain a battery fired body.
  • the external electrode on the positive electrode side was formed by applying a conductive Ag paste to the exposed positive electrode side surface (one side) of the fired laminate.
  • an external electrode on the negative electrode side was formed by applying a conductive Ag conductive paste to the negative electrode exposed side surface (one side) of the fired laminate.
  • Example 2 Compared to Example 1, after forming the battery fired body, at the stage of forming the external electrode, the external electrode on the negative electrode side was coated with a sputtered film of Au material on at least the exposed negative electrode side surfaces (three sides) of the fired laminate. and subsequent application of a conductive Ag conductive paste.
  • the first direction extends in a direction perpendicular to the stacking direction of the negative electrode layer and toward the side where the external electrode is arranged on the positive electrode side in plan view.
  • the length of the first portion of the external electrode on the negative electrode side was adjusted to be 80% of the length of the battery element in the first direction.
  • a negative electrode was formed so as to cover not only the side surfaces but also the main surface of the fired laminate.
  • Example 3 Compared to Example 1 and Example 2, after forming the battery fired body, at the stage of forming the external electrode, the external electrode on the negative electrode side was coated with Au on at least the negative electrode exposed side surfaces (three sides) of the fired laminate. It was formed through the formation of a sputtered film using a material.
  • the first direction of the negative electrode side external electrode extends in the first direction, which is perpendicular to the stacking direction of the negative electrode layer and toward the arrangement side of the positive electrode side external electrode.
  • the length of one portion was adjusted to be 50% of the length of the battery element in the first direction.
  • Example 4 Compared to Example 1, the negative electrode was formed only on the side surface of the fired laminate in the step of forming the external electrode.
  • Example 5 Compared to Example 1, in the step of forming the external electrode, the first direction is perpendicular to the stacking direction of the negative electrode layer and toward the side where the external electrode is arranged on the positive electrode side in plan view. The length of the first portion of the external electrode on the negative electrode side extending in the direction was adjusted to be 50% of the length of the battery element in the first direction.
  • Example 6 Compared to Example 1, in the step of forming the external electrode, the first direction is perpendicular to the stacking direction of the negative electrode layer and toward the side where the external electrode is arranged on the positive electrode side in plan view. The length of the first portion of the external electrode on the negative electrode side extending in the direction was adjusted to be 25% of the length of the battery element in the first direction.
  • Example 1 compared to Comparative Example 1, the number of sides of the negative electrode layer surrounded by the insulating part was reduced from three to one, so that the negative electrode side made of conductive paste The contact area between the external electrode and the negative electrode layer has increased.
  • the coverage of the side surface of the negative electrode layer with respect to the length of the battery element in the first direction of the conductive paste constituting the negative electrode side external electrode in contact with the negative electrode layer was 80%. It was set to %.
  • the "first direction” herein refers to the direction in which the external electrode on the negative electrode side extends, which is perpendicular to the stacking direction of the electrode layers and toward the external electrode on the positive electrode side.
  • Example 1 the battery failure rate was reduced from 50% to 0%, the battery capacity ratio was increased from 1 to 1.4, and the AC impedance was reduced from 1 to 0.9. Do you get it. From the above, as the contact area between the external electrode on the negative electrode side and the negative electrode layer increases, compared to Comparative Example 1, peeling of the external terminal on the negative electrode side and damage to the electrode due to expansion and contraction of the negative electrode during charging and discharging cycles. It was found that it was possible to suppress It has been found that this makes it possible to maintain suitable charge/discharge characteristics over repeated cycles. It has also been found that it is possible to increase the battery capacity ratio and reduce AC impedance.
  • Example 2 compared to Example 1, the AC impedance was further reduced from 0.9 to 0.8 due to the formation of sputtering on the negative electrode side and the subsequent formation of conductive paste. I found out that From this, it was found that when the external electrode on the negative side that contacts the negative electrode layer has a two-layer structure of a sputtered film and a conductive paste, it is possible to further reduce the AC impedance.
  • Example 3 compared to Comparative Example 1, the number of side surfaces of the negative electrode layer surrounded by the insulating part was reduced from three to one, thereby reducing the contact between the external electrode on the negative electrode side made of a sputtered film and the negative electrode layer. The area has increased.
  • the external electrode on the negative electrode side that contacts the negative electrode layer is made of a sputtered film made of Pt material instead of a conductive paste, and the sputtered film is used in the battery in the first direction.
  • the coverage of the side surface of the negative electrode layer with respect to the element length was set to 50%.
  • the battery failure rate decreased from 50% to 20%, and the battery capacity ratio It was found that the AC impedance increased from 1 to 1.4 and the AC impedance decreased from 1 to 0.85. That is, it has been found that the sputtered film is effective in reducing the battery failure rate, increasing the battery capacity ratio, and lowering the AC impedance.
  • Example 4 compared to Example 1, there was no further formation of conductive paste on the upper and lower surfaces of the battery element (sintered laminate), but the same results as in Example 1 were obtained. From the above, it is possible to reduce the battery failure rate, increase the battery capacity ratio, and reduce AC impedance without the need to further form negative external electrodes on the upper and lower surfaces of the battery element (sintered laminate). It was found that there was no change in the proportion of
  • Example 5 compared to Example 1, the coverage of the side surface of the negative electrode layer with respect to the length of the battery element in the first direction of the conductive paste constituting the external electrode on the negative electrode side was reduced from 80% to 50%. Ta. As a result, as in Example 1, the battery failure rate decreased from 50% to 0%, the battery capacity ratio increased from 1 to 1.4, and the AC impedance decreased from 1 to 0.95. It turned out that this was done. From the above, it was found that if the coverage of the side surface of the negative electrode layer of the conductive paste with respect to the length of the battery element in the first direction was 50%, it was possible to ensure a battery failure rate of 0%.
  • Example 3 the main difference between Example 3 and Example 5 is whether the external electrode on the negative side that contacts the negative electrode layer is composed of a sputtered film made of Pt material or a conductive paste. Regarding this point, it was found that, compared to the case of Example 3, the failure rate of the battery was lower when the negative electrode side external electrode in contact with the negative electrode layer was made of conductive paste. Ta. From the above, it was found that this method is effective in suppressing peeling of the connection portion between the negative electrode layer and the external electrode on the negative side, securing the same connection portion, and suppressing damage to the negative electrode layer.
  • Example 6 compared to Example 5, the coverage of the side surface of the negative electrode layer with respect to the length of the battery element in the first direction of the conductive paste constituting the external electrode on the negative electrode side was reduced from 80% to 50%. Ta. As a result, it was found that the battery failure rate decreased from 50% to 30%, the battery capacity ratio increased from 1 to 1.4, and the AC impedance decreased from 1 to 0.95. . From the above, it was found that if the coverage of the side surface of the negative electrode layer of the conductive paste with respect to the length of the battery element in the first direction is 25%, it is possible to suppress the battery failure rate to less than 50%. Ta.
  • a battery element comprising a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer, and a positive external electrode and a negative external electrode provided on the surface of the battery element. Equipped with A solid-state battery, wherein the external electrode on the negative electrode side and the external electrode on the positive electrode side are arranged asymmetrically, and the external electrode on the negative electrode side is in contact with at least two sides of the negative electrode layer.
  • the number of locations where the outline of the battery element and the outline of the positive electrode layer overlap is one
  • the number of locations where the outline of the battery element and the outline of the negative electrode layer overlap is at least two.
  • ⁇ 3> The solid battery according to ⁇ 1> or ⁇ 2>, wherein the size of the external electrode on the negative electrode side is larger than the size of the external electrode on the positive electrode side.
  • ⁇ 4> The solid battery according to any one of ⁇ 1> to ⁇ 3>, wherein the total contact area between the negative electrode side external electrode and the negative electrode layer is larger than the total contact area between the positive electrode side external electrode and the positive electrode layer.
  • a contact portion between the positive electrode side external electrode and the positive electrode layer has a form extending in one direction, and a contact portion between the negative electrode side external electrode and the negative electrode layer has a bent form.
  • ⁇ 6> The solid battery according to any one of ⁇ 1> to ⁇ 5>, wherein the negative external electrode is arranged to be separated from the positive external electrode and toward the positive external electrode. .
  • ⁇ 7> The solid battery according to any one of ⁇ 1> to ⁇ 6>, wherein the external electrode on the negative electrode side is in contact with three mutually continuous side surfaces of the negative electrode layer in plan view.
  • ⁇ 8> The solid battery according to ⁇ 7>, wherein three mutually continuous side surfaces of the negative electrode layer are surrounded by the external electrode on the negative electrode side in plan view.
  • the positive electrode side external electrode that is in contact with the positive electrode layer in plan view is in contact with the positive electrode layer and an insulating layer or solid electrolyte layer that is formed in the same plane area as the positive electrode layer and surrounds the positive electrode layer, and in plan view , the solid battery according to any one of ⁇ 1> to ⁇ 8>, wherein the external electrode on the negative electrode side that is in contact with the negative electrode layer is in contact only with the negative electrode layer.
  • the length of the first portion of the external electrode on the negative electrode side which extends in a first direction that intersects with the stacking direction of the electrode layers and goes toward the external electrode on the positive electrode side, is the length of the first portion of the external electrode on the negative electrode side.
  • the length of the first portion on the negative electrode side is longer than the length of the second portion of the external electrode on the negative electrode side extending in a second direction intersecting the first direction.
  • ⁇ 13> The solid battery according to any one of ⁇ 10> to ⁇ 12>, wherein the length of the first portion of the external electrode on the negative electrode side is 80% or less of the length of the battery element in the first direction.
  • ⁇ 14> ⁇ 1> to ⁇ 13, wherein a separation portion is formed in which the positive electrode side external electrode and the negative electrode side external electrode are separated from each other, and the separation portion is unevenly distributed on the positive electrode side external electrode side.
  • ⁇ 15> The solid battery according to any one of ⁇ 1> to ⁇ 14>, wherein the negative electrode layer is located on the outer surface of the battery element.
  • ⁇ 16> ⁇ 1> to ⁇ 1> wherein a separation part is formed in which the positive electrode side external electrode and the negative electrode side external electrode are separated from each other, and the negative electrode layer is located on the outer surface of the battery element located in the separation part.
  • the solid battery according to any one of the above ⁇ 17> The solid battery according to any one of ⁇ 1> to ⁇ 16>, wherein the negative electrode layer has one or two side surfaces that are not in contact with the external electrode on the negative electrode side.
  • ⁇ 18> The solid battery according to any one of ⁇ 1> to ⁇ 17>, wherein the number of non-contact side surfaces with the external electrode on the positive electrode side of the positive electrode layer is three.
  • ⁇ 19> The solid battery according to any one of ⁇ 1> to ⁇ 18>, wherein the number of corner portions of the electrode layers of the positive electrode layer and the negative electrode layer is four in plan view.
  • ⁇ 20> The solid battery according to any one of ⁇ 1> to ⁇ 19>, wherein the positive electrode layer and the negative electrode layer are layers capable of intercalating and deintercalating lithium ions or sodium ions.
  • An electronic device comprising the solid battery according to any one of ⁇ 1> to ⁇ 20>.
  • a solid-state battery according to an embodiment of the present disclosure can be used in various fields where battery use or power storage is expected.
  • the solid state battery of the present disclosure can be used in the electrical, information, and communication fields where mobile devices are used (e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, electronic paper electrical/electronic equipment field or mobile equipment field, including small electronic devices such as RFID tags, card-type electronic money, and smart watches), home/small industrial applications (e.g., power tools, golf carts, household/nursing care equipment, etc.); industrial robots), large industrial applications (e.g. forklifts, elevators, harbor cranes), transportation systems (e.g.
  • mobile devices e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, electronic paper electrical/electronic equipment field or mobile equipment field, including small electronic devices such as RFID tags, card-type electronic money, and smart watches
  • home/small industrial applications e.g., power tools, golf carts, household/
  • hybrid vehicles electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.
  • power system applications e.g., various power generation, road conditioners, smart grids, home-installed energy storage systems, etc.
  • medical applications medical equipment such as earphones and hearing aids
  • pharmaceutical applications such as medication management systems.
  • IoT field and space/deep sea applications (for example, in the fields of space probes, underwater research vessels, etc.).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本開示の一実施形態では、正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備えた電池素子と、電池素子の端面に設けられた正極側の外部電極および負極側の外部電極とを備え、前記負極側の外部電極と前記正極側の外部電極とが非対称配置であり、および前記負極側の外部電極が前記負極層の少なくとも2つの側面と接する、固体電池が提供される。

Description

固体電池
 本開示は、固体電池に関する。
 従前より、繰り返しの充放電が可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォンおよびノートパソコン等の電子機器の電源として用いられたりする。
 二次電池においては、充放電に寄与するイオン移動のための媒体として液体の電解質が一般に使用されている。つまり、いわゆる電解液が二次電池に用いられている。しかしながら、そのような二次電池においては、電解液の漏出防止点で安全性が一般に求められる。また、電解液に用いられる有機溶媒等は可燃性物質ゆえ、その点でも安全性が求められる。かかる点をふまえ、電解液に代えて、固体電解質を用いた固体電池について研究が進められている。
 かかる固体電池は、正極層、負極層、および正極層と負極層との間に介在する固体電解質層を備えた電池素子と、電池素子の端面に設けられた正極側の外部電極および負極側の外部電極とを備え得る。
WO2020/145226号
 ここで、固体電池の充放電時において、構成要素である電極層が膨張収縮することが知られている。かかる膨張収縮により電池内部に応力が発生し、それによって電極層の損傷および、電池素子(電池積層体に相当)とこの端面に設けられた外部電極との接続部分の剥離が生じる虞がある。これらの問題は膨張収縮量が相対的に大きい負極側でより生じやすい。その結果、固体電池の繰り返しの好適な充放電特性を維持することが困難となり得る。
 本開示はかかる事情に鑑みて為されたものである。即ち、本開示の目的は、繰り返しの好適な充放電特性を維持可能な固体電池を提供することである。
 上記目的を達成するために、本開示の一実施形態では、
 正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備えた電池素子と、電池素子の端面に設けられた正極側の外部電極および負極側の外部電極とを備え、
 前記負極側の外部電極と前記正極側の外部電極とが非対称配置であり、および前記負極側の外部電極が前記負極層の少なくとも2つの側面と接する、固体電池が提供される。
 本開示の一実施形態に係る固体電池によれば、繰り返しの好適な充放電特性を維持可能である。
図1は、本開示の一実施形態に係る固体電池の構成を模式的に示した斜視図である。 図2は、本開示の一実施形態に係る固体電池の構成を模式的に示した部分分解斜視図である。 図3は、本開示の一実施形態に係る固体電池の、外部電極とそれぞれ接する正極層と負極層の重なり状態を模式的に示した平面図である(正極層と負極層の間の固体電解質層および正極層を囲む絶縁層については図示せず)。 図4は、本開示の一実施形態に係る固体電池を模式的に示した上面図である。 図5は、本開示の一実施形態に係る固体電池における、2つ以上の側面が負極側の外部電極と接する負極層と、1つの側面が正極側の外部電極と接する正極層との組合せを模式的に示した平面図である。 図6は、本開示の別の実施形態に係る固体電池における、2つ以上の側面が負極側の外部電極と接する負極層と、1つの側面が正極側の外部電極と接する正極層との組合せを模式的に示した平面図である。 図7は、本開示の一実施形態に係る固体電池の製造方法(電池素子の作製途中)を模式的に示した分解平面図である。 図8は、本開示の一実施形態に係る固体電池の製造方法(電池素子の作製完了時)を模式的に示した斜視図である。 図9は、本開示の一実施形態に係る固体電池の製造方法(外部電極の形成時)を模式的に示した斜視図である。 図10は、本開示の一実施形態に係る固体電池がパッケージ化された状態を模式的に示した断面図である。 図11は、本開示の一実施形態に係る固体電池が外部基材に実装された状態を模式的に示した斜視図である。 図12は、従前の固体電池の構成を模式的に示した斜視図である。 図13は、従前の固体電池の、外部電極とそれぞれ接する正極層と負極層の重なり状態を模式的に示した平面図である(正極層と負極層の間の固体電解質層および正極層を囲む絶縁層については図示せず)。
 以下、本開示の一実施形態に係る固体電池について具体的に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本開示の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。
 本明細書でいう「断面視」とは、固体電池の積層構造における積層方向に対して略垂直な方向から捉えた形態(端的にいえば、層の厚み方向に平行な面で切り取った場合の形態)に基づいている。また、本明細書で用いる「平面視」または「平面視形状」とは、かかる層の厚み方向(即ち、上記の積層方向)に沿って対象物を上側または下側からみた場合の見取図に基づいている。
 本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」/「底面側」に相当し、その逆向きが「上方向」/「頂面側」に相当すると捉えることができる。
 本開示でいう「固体電池」は、広義にはその構成要素が固体から成る電池を指し、狭義にはその構成要素(特に好ましくは全ての構成要素)が固体から成る全固体電池を指している。ある好適な態様では、本開示における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼成体から成っている。「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含する。本開示のある好適な態様に従うと「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、蓄電デバイスなども包含し得る。
[固体電池の基本的構成]
 固体電池は、正極・負極の電極層と固体電解質とを少なくとも備える。具体的には図2に示すように、固体電池100は、正極層110、負極層120、およびそれらの間に少なくとも介在する固体電解質層130から成る電池素子を含んだ固体電池積層体を備える。
 固体電池は、それを構成する各層が焼成によって形成されていてもよく、正極層、負極層および固体電解質層などが焼成層をなしていてもよい。好ましくは、正極層、負極層および固体電解質層は、それぞれが互いに一体焼成されており、それゆえ固体電池積層体が一体焼成体を成していることが好ましい。
 正極層110は、少なくとも正極活物質を含んで成る電極層である。正極層は、更に固体電解質を含んで成っていてよい。ある好適な態様では、正極層は、正極活物質粒子と固体電解質粒子とを少なくとも含む焼成体から構成されている。一方、負極層は、少なくとも負極活物質を含んで成る電極層である。負極層は、更に固体電解質を含んで成っていてよい。ある好適な態様では、負極層は、負極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。
 正極活物質および負極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質を介してイオンは正極層と負極層との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極層および負極層の各電極層は特にリチウムイオンまたはナトリウムイオンを吸蔵放出可能な層であることが好ましい。つまり、固体電池は、固体電解質を介してリチウムイオンまたはナトリウムイオンが正極層と負極層との間で移動して電池の充放電が行われる全固体型二次電池であることが好ましい。
(正極活物質)
 正極層110に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、および、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li32(PO43等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO43、LiFePO4、および/またはLiMnPO4等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO2、および/またはLiCo1/3Ni1/3Mn1/32等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn24、および/またはLiNi0.5Mn1.54等が挙げられる。リチウム化合物の種類は、特に限定されないが、例えば、リチウム遷移金属複合酸化物およびリチウム遷移金属リン酸化合物としてよい。リチウム遷移金属複合酸化物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含む酸化物の総称であると共に、リチウム遷移金属リン酸化合物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含むリン酸化合物の総称である。遷移金属元素の種類は、特に限定されないが、例えば、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)および鉄(Fe)などである。
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物、および、スピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。例えば、ナトリウム含有リン酸化合物の場合、Na(PO、NaCoFe(PO、NaNiFe(PO、NaFe(PO、NaFeP、NaFe(PO(P)、およびナトリウム含有層状酸化物としてNaFeOから成る群から選択される少なくとも一種が挙げられる。
 この他、正極活物質は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子等でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガン等でもよい。二硫化物は、例えば、二硫化チタンまたは硫化モリブデン等である。カルコゲン化物は、例えば、セレン化ニオブ等でもよい。導電性高分子は、例えば、ジスルフィド、ポリピロール、ポリアニリン、ポリチオフェン、ポリパラスチレン、ポリアセチレンまたはポリアセン等でもよい。
(負極活物質)
 負極層120に含まれる負極活物質としては、例えば、チタン(Ti)、ケイ素(Si)、スズ(Sn)、クロム(Cr)、鉄(Fe)、ニオブ(Nb)およびモリブデン(Mo)から成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛などの炭素材料、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li32(PO43、および/またはLiTi2(PO43等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO43、および/またはLiCuPO4等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、Li4Ti512等が挙げられる。
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、および、スピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。
 なお、固体電池において、正極層と負極層とが同一材料から成っていてもよい。
 正極層および/または負極層は、導電性材料を含んでいてもよい。正極層および負極層に含まれる導電性材料として、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケル等の金属材料、ならびに炭素などから成る少なくとも1種を挙げることができる。
 さらに、正極層および/または負極層は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。
 正極層および負極層の厚みは特に限定されないが、例えば、それぞれ独立して2μm以上50μm以下、特に5μm以上30μm以下であってよい。
(正極集電層/負極集電層)
 電極層の必須要素ではないものの、正極層110および負極層120は、それぞれ正極集電層および負極集電層を備えていてもよい。正極集電層および負極集電層はそれぞれ箔の形態を有していてもよい。しかしながら、一体焼成による電子伝導性向上、固体電池の製造コスト低減および/または固体電池の内部抵抗低減などの観点をより重視するならば、正極集電層および負極集電層はそれぞれ焼成体の形態を有していてもよい。正極集電層を構成する正極集電体および負極集電体を構成する負極集電体としては、導電率が大きい材料を用いることが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、および/またはニッケルなどを用いてよい。正極集電体および負極集電体はそれぞれ、外部と電気的に接続するための電気接続部を有してよく、端面電極と電気的に接続可能に構成されていてよい。なお、正極集電層および負極集電層が焼成体の形態を有する場合、それらは導電性材料および焼結助剤を含む焼成体により構成されてもよい。正極集電層および負極集電層に含まれる導電性材料は、例えば、正極層および負極層に含まれ得る導電性材料と同様の材料から選択されてよい。正極集電層および負極集電層に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。上述したように、固体電池において、正極集電層および負極集電層が必須というわけではなく、そのような正極集電層および負極集電層が設けられていない固体電池も考えられる。つまり、本開示のパッケージに含まれる固体電池は、集電層レスの固体電池であってもよい。
(固体電解質)
 固体電解質は、リチウムイオンまたはナトリウムイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質130は、正極層110と負極層120との間においてリチウムイオンが伝導可能な層を成していてよい。なお、固体電解質は、正極層と負極層との間に少なくとも設けられていればよい。つまり、固体電解質は、正極層と負極層との間からはみ出すように当該正極層および/または負極層の周囲において存在していてもよい。具体的な固体電解質としては、例えば、結晶性固体電解質、ガラス系固体電解質およびガラスセラミックス系固体電解質等のうちのいずれか1種類または2種類以上を含んでいる。
 結晶性固体電解質は、例えば酸化物系結晶材および硫化物系結晶材などである。酸化物系結晶材は、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物、酸化物ガラスセラミックス系リチウムイオン伝導体等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、チタン(Ti)、ゲルマニウム(Ge)、アルミニウム(Al)、ガリウム(Ga)およびジルコニウム(Zr)から成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。また、硫化物系結晶材は、thio-LISICONが挙げられ、例えばLi3.25Ge0.250.75S4およびLi10GeP12などである。結晶性固体電解質は、高分子材(例えば、ポリエチレンオキシド(PEO)など)を含んでいてもよい。
 ガラス系固体電解質は、例えば、酸化物系ガラス材および硫化物系ガラス材などがある。酸化物系ガラス材は、例えば、50LiSiO・50LiBOなどがある。また、硫化物系ガラス材は、例えば、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、70LiS・30Pおよび50LiS・50GeSなどがある。
 ガラスセラミックス系固体電解質は、例えば、酸化物系ガラスセラミックス材および硫化物系ガラスセラミックス材などである。酸化物系ガラスセラミックス材としては、例えば、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)を用いることができる。LATPは、例えばLi1.07Al0.69Ti1.46(POなどである。また、LAGPは、例えばLi1.5Al0.5Ge1.5(PO)などである。また、硫化物系ガラスセラミックス材としては、例えば、Li11およびLi3.250.95などがある。
 また、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、Naxy(PO43(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。
 固体電解質は、焼結助剤を含んでいてもよい。固体電解質に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。
 固体電解質の厚みは特に限定されない。正極層と負極層との間に位置する固体電解質層の厚みは、例えば1μm以上15μm以下、特に1μm以上5μm以下であってよい。
(外部電極)
 固体電池には、一般に外部電極が設けられている。特に、固体電池の端面に外部電極が設けられている。より具体的には、正極層110と接続された正極側の外部電極140Aと、負極層120と接続された負極側の外部電極140Bとが設けられている(図1参照)。そのような外部電極は、導電率が大きい材料を含んで成ることが好ましい。外部電極の具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。
[本開示の特徴部分]
 本願発明者は、固体電池の繰り返しの好適な充放電特性を維持するための構成について鋭意検討した。具体的には、本願発明者は、固体電池の充放電時における電極層の膨張収縮による電池内部における応力発生に起因する、電極層の損傷抑制、および、電池素子(電池積層体に相当)とこの端面に設けられた外部電極との接続部分の剥離抑制を行うための構成について鋭意検討した。
 その結果、本願発明者は、「電池の充放電時に相対的に膨張収縮量が大きい負極層と負極側の外部電極との接触領域を、正極層と正極側の外部電極との接触領域よりも増やす」という技術的思想に基づき本開示を案出するに至った(図1~図6参照)。
 図1は、本開示の一実施形態に係る固体電池の構成を模式的に示した斜視図である。図2は、本開示の一実施形態に係る固体電池の構成を模式的に示した部分分解斜視図である。図3は、本開示の一実施形態に係る固体電池の、外部電極とそれぞれ接する正極層と負極層の重なり状態を模式的に示した平面図である(正極層と負極層の間の固体電解質層および正極層を囲む絶縁層については図示せず)。図4は、本開示の一実施形態に係る固体電池を模式的に示した上面図である。図5は、本開示の一実施形態に係る固体電池における、2つ以上の側面が負極側の外部電極と接する負極層と、1つの側面が正極側の外部電極と接する正極層との組合せを模式的に示した平面図である。図6は、本開示の別の実施形態に係る固体電池における、2つ以上の側面が負極側の外部電極と接する負極層と、1つの側面が正極側の外部電極と接する正極層との組合せを模式的に示した平面図である。
 本開示の一実施形態では、負極側の外部電極140Bと正極側の外部電極140Aとが非対称配置であり、および負極側の外部電極140Bが負極層120の少なくとも2つの側面121と接する。なお、この場合において、平面視にて、正極層110および負極層120は四角形状を有し得る。また、「正極層110および負極層120が四角形状である」とは、両電極層が平面視で4つのコーナー部分を有することを意味する。
 一実施形態では、平面視で、正極側の外部電極140Aと正極層110との接触部分Yが一方向に延在する形態を有する一方、負極側の外部電極140Bと負極層120との接触部分Zが屈曲形態を有し得る。
 かかる構成によれば、正極側の外部電極140Aとは非対称配置である負極側の外部電極140Bが、負極層120の少なくとも2つの側面121と接し得る。一方、正極側の外部電極140Aは、正極層110の1つの側面と接し得る。以上のことから、負極側の外部電極140Bと負極層120の総接触面積は正極側の外部電極140Aと正極層110の総接触面積よりも大きくなり得る。
 別の観点からいえば、平面視で、電池素子100Xの輪郭101Xと正極層110の輪郭111とが重なる箇所の数が1つであるのに対して、電池素子100Xの輪郭101Xと負極層120の輪郭121とが重なる箇所の数が少なくとも2つとなり得る。
 これらの特徴的構成を採ることで、電池素子100Xの外表面に負極層120が位置し得る。この場合、正極側の外部電極140Aと負極側の外部電極140Bとの離隔部分Sに位置する電池素子100Xの外表面に負極層が露出し得る。
 又、負極側の外部電極140Bと負極層120の少なくとも2つの側面121との接触構成により、負極側の外部電極140Bのサイズは正極側の外部電極140Aのサイズよりも大きくなり得る。具体的には、負極側の外部電極140Bが、正極側の外部電極140Aと離隔することを前提として、正極側の外部電極140Aへと向かうように配置され得る。かかる配置を採る場合、正極側の外部電極140Aと負極側の外部電極140Bとの離隔部分Sが正極側の外部電極140A側に偏在して配置され得る。
 従前では、正極層110’’および負極層120’’ともに1つの側面が外部電極140A’’、140B’’と接し、残りの3つの側面は各電極層と同一平面領域に形成され得る絶縁部又は固体電解質部180’’と接する構成が通常採られ得る(図12および図13参照)。これに対して、一実施形態では、負極層120の少なくとも2つの側面121が負極側の外部電極140Bと接するため、電池の充放電時に相対的に膨張収縮量が大きい負極層120と負極側の外部電極140Bとの接触領域を従前よりも増やすことができる。
 これにより、負極側の外部電極140Bによって、負極層120との接続部分の剥離抑制、同接続部分の確保、および電極層(負極層120/正極層110)の損傷抑制が可能となる。その結果、本開示の一実施形態によれば、固体電池100の繰り返しの好適な充放電特性を維持可能となる。
 又、従前では、正極層110’’および負極層120’’ともに1つの側面にて外部電極140A’’、140B’’と接するため、両電極層共に、外部電極と接触しない非接触側面の数が3つであった(図12および図13参照)。これに対して、本開示の一実施形態では、上述のとおり、負極層120のうち負極側の外部電極14Bとの接触側面の数を増やすことができる。換言すれば、負極層120のうち負極側の外部電極14Bとの非接触側面の数を3つよりも少なく、具体的には1つ又は2つにすることができる。
 これにより、電池素子100Xの所定の平面サイズに占める負極層120の平面サイズを大きくすることができる。これに伴い、相手方の正極層110の平面サイズも大きくすることができる。それ故、従前よりも正極層110と負極層120との重なり領域を大きくすることができ、それによって電池容量を大きくすることができる。
 又、負極層120と負極側の外部電極140Bとの接触領域を従前よりも増やすことができることで、集電可能な領域を大きくとることができる。それ故、集電抵抗を低くすることができ、交流インピーダンスの低減が可能となる。
 なお、好ましくは、平面視で、負極側の外部電極140Bが負極層120の相互に連続する3つの側面と接する。即ち、平面視で、負極層120の相互に連続する3つの側面が負極側の外部電極140Bにより囲まれ得る。別の観点から言えば、平面視で、負極側の外部電極140Bは、負極層120と同一平面領域に形成され得る絶縁層又は固体電解質層と接することなく、負極層にのみ接し得る。
 以上の構成が採られる場合、負極層120の2つの側面121と負極側の外部電極140Bとが接触する場合と比べて、両者の接触ポイントを1つ増やすことができる。その結果、上述の、負極層120との接続部分の剥離抑制、同接続部分の確保、および電極層(負極層120/正極層110)の損傷抑制をより好適に行うことが可能となる。
 電池素子100Xの所定の平面サイズに占める負極層120の平面サイズをより大きくすることができるため、正極層110と負極層120との重なり領域をより大きくし得る、その結果、電池容量をより大きくすることができる。更に、集電可能な領域がより大きくなるため、集電抵抗をより低くすることができ、交流インピーダンスの更なる低減が可能となる。
上記の本開示の特徴によれば、平面視で、電極層の積層方向に対して交差し、かつ正極側の外部電極140Aへと向かう方向(第1方向)に延在する負極側の外部電極140Bの第1部分の長さLが、負極側の外部電極140Bへと向かう方向に延在する正極側の外部電極140Aの第1部分Lの長さよりも長くなり得る。また、一例では、負極層120が長尺形態を有する場合、負極層120との接続部分の剥離抑制等を好適に発揮する観点から、上記の第1部分Lの長さは、第1方向に対して交差する第2方向における負極側の外部電極140Bの第2部分の長さWよりも長いことが好ましい。
 なお、平面視で、負極側の外部電極140Bの第1部分の長さLは、負極層120との接続部分の剥離抑制等を好適に発揮する観点から、上記の第1方向における第1電池素子100Xの長さの25%以上であり得る。又、この負極側の外部電極140Bの第1部分の長さLは、正極側の外部電極140Aとの接触回避の観点から、電池素子100Xの長さの80%以下であり得る(図5参照)。一例では、負極層120との接続部分の剥離抑制等と正極側の外部電極140Aとの接触回避との好適な両立の観点から、図6に示すように、負極側の外部電極140Bの第1部分の長さLは、上記の第1方向における電池素子100Xの長さの約50%であり得る。
 本開示の一実施形態では、正極層の厚みは4μm以上20μm以下であることができる。固体電解質層の厚みは5μm以上20μm以下であることができる。負極層の厚みは6μm以上25μm以下であることができる。
 正極層および負極層の厚さが相対的に厚い場合、固体電池のエネルギー密度を向上させることができる。正極層および負極層の厚さが相対的に薄い場合、固体電池の出力密度を向上させることができる。
 又、固体電解質層の厚さが相対的に厚い場合、固体電池の自己放電を低減できる。固体電解質層の厚さが相対的に薄い場合、固体電池のエネルギー密度を向上させることができる。
 なお、充放電により体積変化する正極層および負極層の体積比率を体積変化しない固体電解質層の体積比率よりも下げることで充放電時に生じる応力を緩和することができる。その結果、充放電による固体電池の内部でのクラック発生を抑制することができる。
 以上の本開示の一実施形態に係る固体電池については、下記の電子デバイスにおいて用いることができる。
 図10は、本開示の一実施形態に係る固体電池がパッケージ化された状態を模式的に示した断面図である。図11は、本開示の一実施形態に係る固体電池が外部基材に実装された状態を模式的に示した斜視図である。
 図10に示すように、本開示の一実施形態に係る固体電池についてはパッケージ化して用いることができる。又、別例では、図11に示すように、本開示の一実施形態に係る固体電池をはんだ等を介して外部基板(又は二次基板)2000に実装して用いることができる。
 以下では、主として図10に示す固体電池パッケージについて説明する。具体的には、実装可能な基板を備え、外部環境から固体電池が保護された構成を有する固体電池パッケージが供され得る。本明細書でいう「固体電池パッケージ」は、広義には、外部環境から固体電池が保護されるように構成された固体電池デバイスのことを指しており、狭義には、実装に資する基板を備えると共に外部環境から固体電池が保護されたものを指している。
 図10に示すように、固体電池パッケージ1000は、固体電池100が支持されるように基板200を備えている。具体的には、固体電池パッケージ1000は、実装可能な基板200と、基板200に設けられかつ外部環境から保護された固体電池100とを含む。
 基板200は、例えば固体電池100よりも大きい主面を有している。基板200は、樹脂基板であってよく、あるいは、セラミック基板であってもよい。端的にいえば、基板200は、プリント配線基板、フレキシブル基板、LTCC基板、またはHTCC基板などの範疇に入るものであってもよい。基板200が樹脂基板である場合、基板200は母材として樹脂を含むように構成された基板、例えば基板の積層構造に樹脂層が含まれたものであり得る。そのような樹脂層の樹脂材料は、いずれの熱可塑性樹脂、および/または、いずれの熱硬化性樹脂であってもよい。また、樹脂層は、例えば、ガラス繊維布にエポキシ樹脂などの樹脂材料を含浸して構成されたものであってよい。
 基板は、好ましくは、パッケージ化された固体電池の外部端子または外部電極のための部材となっている。つまり、基板が固体電池の外部端子または外部電極のための端子基板となっているともいえる。このような基板を備えた固体電池パッケージは、基板が介在するような形態で固体電池をプリント配線板などの別の2次基板上に実装できる。例えば、半田リフローなどを通じて、基板を介して固体電池を表面実装できる。このようなことから、本開示の固体電池パッケージは、好ましくは、SMD(SMD:Surface Mount Device)タイプの電池パッケージとなっている。
 かかる基板は、固体電池を支持するように設けられ得るところ、支持基板と解することもできる。また、上記のとおり、基板は、端子基板ゆえ、配線または電極層などを有していることが好ましく、特に、上側主面230と下側主面240にそれぞれ電気的に結線された基板電極層を備えていることが好ましい。具体的には、基板200は、上側主面230と下側主面240に電気的に結線された基板電極層(上側基板電極層210、下側基板電極層220)を備え、パッケージ化された固体電池の外部端子または外部電極のための部材となっている。
 基板電極層210自体は、固体電池100との電気接続が可能なものであることから、相対的に高い強度の金属層から構成され得る。この金属層は、例えば、銅に金がめっきされたもの、又は銅にニッケルおよび金がめっきされたもの等から構成され得る。特に限定されるものではないが、基板電極層210の厚みは、2~50μm、例えば30μmであることができる。
 このような基板を備えた固体電池パッケージでは、基板電極層と固体電池の外部電極とが互いに接続されている。具体的には、同極の基板電極層と固体電池の外部電極同士が互いに電気的に接続されている。固体電池の正極側の外部電極140Aは上側基板正極層210Aと電気的に接続されている。固体電池の負極側の外部電極140Bは上側基板負極層210Bと電気的に接続されている。
 上側基板電極層210と下側基板電極層220とは、基板200の内部に設けられた導電部分を介して電気接続可能に構成されている。導電部分は、例えば、銅、アルミニウム、ステンレス、ニッケル、銀、金およびスズなどから成る群から選択される少なくとも1種の金属材料から成るものであってよい。これにより、下側基板電極層220(基板の底面に位置する基板電極層に相当)または同下側基板電極層に接続されたランドが電池パッケージの外部電極または外部端子として供される。
 又、上記の固体電池100と基板200の基板電極層210との電気接続を可能とするために、固体電池100の外部電極140と基板200の基板電極層210とを接合部材600を介して接続することができる。この接合部材600は、固体電池100の外部電極140と基板200との電気的接続を少なくとも担うものであり、例えば導電性接着剤を含むものであり得る。一例としては、接合部材600は、Agなどの金属フィラーを含有したエポキシ系導電性接着剤から構成されていてよい。
 更に、基板200のみならず固体電池パッケージ1000自体が、全体として水蒸気透過を防止できるように構成され得る。例えば、固体電池パッケージ1000は、基板200上に設けられた固体電池100が全体的に包囲されるように被覆部150で覆うことができる。具体的には、基板200上の固体電池100の主面100Aおよび側面100Bが被覆部150で包囲されるようにパッケージ化され得る。かかる構成によれば、固体電池100を成す全ての面は外部に露出することがなく、水蒸気の透過防止を図ることができる。
 なお、本明細書でいう「水蒸気」は、特に気体状態の水に限定されず、液体状態の水なども包含している。つまり、物理的な状態を問わず、気体状態の水、液体状態の水などを広く包含するものとして「水蒸気」といった用語を用いている。よって、「水蒸気」は、水分などとも称すことができ、特に液体状態の水には、気体状態の水が凝縮した結露水なども包含され得る。固体電池への水蒸気の浸入は電池特性の劣化の要因となることから、上述のようにパッケージ化された固体電池の形態は、固体電池の電池特性の長寿命化に資する。
 又、被覆部150は、被覆絶縁層160および被覆無機層170を含む構成となっている。被覆無機層170は、被覆絶縁層160を覆うように設けられている。被覆無機層170は、被覆絶縁層160上に位置付けられるので、被覆絶縁層160とともに、基板200上の固体電池100を全体として大きく包み込む形態を有している。更に、被覆無機層170は、基板200の側面250も覆う形態を採ることができる。
 被覆無機層170は、好ましくは、水蒸気バリア層として機能する。つまり、固体電池への水分浸入を阻止するバリアとして好適に供されるように、被覆無機層が少なくとも固体電池の天面および側面を覆っている。本明細書でいう「バリア」とは、広義には、外部環境の水蒸気が被覆無機層を通過して固体電池にとって不都合な特性劣化を引き起す、といったことがない程度の水蒸気透過の阻止特性を有することを意味しており、狭義には、水蒸気透過率が1.0×10-3g/(m・Day)未満となっていることを意味している。よって、端的にいえば、水蒸気バリア層は、好ましくは0g/(m2・Day)以上1.0×10-3g/(m・Day)未満の水蒸気透過率を有しているといえる。なお、ここでいう「水蒸気透過率」は、アドバンス理工(株)社製、型式GTms-1のガス透過率測定装置を用いて、測定条件は40℃ 90%RH 差圧1atmによって得られた透過率のことを指している。
 被覆絶縁層160と被覆無機層170とは互いに一体化している。これにより、被覆無機層は、被覆絶縁層とともに固体電池のための水蒸気バリアを成している。つまり、一体化した被覆絶縁層と被覆無機層との組合せによって、外部環境の水蒸気の固体電池への浸入が好適に防止されている。
 被覆無機層は、例えば、乾式めっき層と乾式めっき層上に形成された湿式めっき層とを有し得る。外部環境の水蒸気の固体電池への浸入を抑制可能ならば、特に限定されるものではないが、湿式めっき層は、例えば、主成分としてCu、Ni、およびCrから成る群から選択される少なくとも一種の金属が含まれていてよい。乾式めっき層は、例えばスパッタ膜であってよい。スパッタ膜は、スパッタリングによって得られる薄膜である。つまり、ターゲットにイオンをスパッタリングしてその原子を叩き出して堆積させた膜が乾式めっき層として用いられ得る。
 スパッタ膜は、ナノオーダーないしはマイクロオーダーの非常に薄い形態を有しつつも、比較的緻密および/または均質な層となるため、固体電池のための水蒸気透過防止に寄与し得る。また、スパッタ膜は、原子堆積により成膜されたものゆえ、ターゲット上に好適に付着し得る。そのため、スパッタ膜は、外部環境の水蒸気が固体電池へと浸入することを防ぐバリアとして好適に供され得る。そのため、被覆無機層が乾式めっき層としてスパッタ膜をさらに有することで、固体電池への水蒸気の透過防止性をより向上させることが可能となる。なお、乾式めっき層は、他の乾式めっきである真空蒸着法、またはイオンプレーティング法等によって形成されてもよい。乾式めっき層は、例えばAl(アルミニウム)、Cu(銅)、Ti(チタン)、およびステンレス鋼(SUS)から成る群から選択される少なくとも1種を含んでいてよい。
 スパッタリングによる製膜では、膜が被覆絶縁層に食い込むように形成されることで、スパッタ膜は被覆絶縁層に対して好適に密着し得る。よって、スパッタ膜は、被覆絶縁層とともに、固体電池のための水蒸気の透過防止において好適に寄与し得る。又、湿式めっき層の内側に乾式めっき層を設けることで、湿式めっき層の形成に用いられるめっき液の固体電池への浸入をより好適に防止可能となる。したがって、被覆絶縁層上に乾式めっき層を設けることで、より信頼性の高い固体電池パッケージが供され得る。
[本開示の固体電池の製造方法]
 以下、本開示の一実施形態にかかる固体電池の製造方法について説明する(図7~図19参照)。
 図7は、本開示の一実施形態に係る固体電池の製造方法(電池素子の作製途中)を模式的に示した分解平面図である。図8は、本開示の一実施形態に係る固体電池の製造方法(電池素子の作製完了時)を模式的に示した斜視図である。図9は、本開示の一実施形態に係る固体電池の製造方法(外部電極の形成時)を模式的に示した斜視図である。
 固体電池(後述のパッケージ前電池に相当)は、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。つまり、固体電池自体は、常套的な製法に準じて作製してよい。よって、下記で説明する固体電解質、有機バインダ、溶剤、任意の添加剤、正極活物質、負極活物質などの原料物質は、既知の固体電池の製造で用いられるものを使用してよい。
 以下では、本開示のより良い理解のために、ある1つの製法を例示説明するが、本開示は当該方法に限定されない。また、以下の記載順序など経時的な事項は、あくまでも説明のための便宜上のものにすぎず、必ずしもそれに拘束されない。
(積層体ブロック形成)
 まず、積層体ブロックの形成を行う。
 具体的には、固体電解質、有機バインダ、溶剤および任意の添加剤を混合してスラリーを調製する。次いで、調製されたスラリーから、固体電解質を含んで成るシートを形成する。
 又、正極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して正極用ペーストを作製する。更に、負極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して負極用ペーストを作製する。
 その後、シート上に正極用ペーストを印刷し、正極用ペーストの3辺を取り囲むように絶縁材または固体電解質材180A’を印刷する。必要に応じて集電層を印刷する。一方、シート上に負極用ペーストを印刷し、負極用ペーストの1辺または2辺と接するように絶縁材または固体電解質材180B’を印刷する。必要に応じて集電層を印刷する。
  正極用ペースト110’と絶縁材または固体電解質材180A’を含むシートと、固体電解質を含むシート130’と、負極用ペースト120’と絶縁材または固体電解質材180B’を含むシートとを交互に積層して積層体を得る。なお、積層体の最上層および最下層についていえば、電解質層でも絶縁層でもよい。任意には、積層体の最上層および/または最下層として、上記電解質層または絶縁層上に保護層シート190’を更に位置付けてよい(図7参照)。
(電池焼成体形成)
 積層体を圧着一体化させ、その後、所定のサイズにカットする。得られたカット済み積層体を脱脂および焼成に付す。これにより、焼成積層体(電池素子に相当)を得る(図8参照)。なお、カット前に積層体を脱脂および焼成に付し、その後にカットを行ってもよい。
(外部電極形成)
 電池焼成体の形成後、外部電極の形成を行う。具体的には、正極側の外部電極を、焼成積層体における正極露出側面に対して導電性ペーストの塗布またはスパッタ膜の形成を通じて形成する。又、負極側の外部電極を、焼成積層体における負極露出側面に対して導電性ペーストの塗布および/またはスパッタ膜の形成を通じて形成する(図9参照)。
 本開示では、印刷時の面積調整、又はディップ時の焼成積層体をディップ液に浸ける程度の調整により、正極側の外部電極よりも負極側の外部電極が大きくなるように、両外部電極を形成する。具体的には、正極側の外部電極については、露出する正極層の1辺と接するように形成する。負極側の外部電極については、露出する負極層の少なくとも2辺と接するように形成する。
 なお、焼成積層体の側面のみならず主面にまで及ぶように設けてよい。端面電極の成分としては、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから選択される少なくとも一種から選択され得る。また、正極側および負極側の端面電極については、積層体の焼成後に形成することに限らず、焼成前に形成し、同時焼成に付してもよい。
 以下、本開示の実施例について説明する。
(条件)
実施例1
 (積層体ブロック形成)
 まず、積層体ブロックの形成を行った。具体的には、固体電解質、有機バインダ、溶剤および任意の添加剤を混合してスラリーを調製し、調製されたスラリーから、固体電解質を含んで成るシートを形成した。
 又、正極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して正極用ペーストを作製した。更に、負極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して負極用ペーストを作製した。その後、シート上に正極用ペーストを印刷し、正極用ペーストの3辺を取り囲むように絶縁材を印刷した。一方、シート上に負極用ペーストを印刷し、負極用ペーストの1辺のみと接するように絶縁材を印刷した。
  正極用ペーストと絶縁材を含むシートと、固体電解質を含むシートと、負極用ペーストと絶縁材を含むシートとを交互に積層して積層体を得た。なお、積層体の最上層および/または最下層として、上記電解質層上に保護層シートを更に位置付けた(図7参照)。
(電池焼成体形成)
 積層体を圧着一体化させ、その後、所定のサイズにカットし、得られたカット済み積層体を脱脂および焼成に付した。これにより、焼成積層体(電池素子に相当)を得た(図8参照)。
(外部電極形成)
 電池焼成体の形成後、外部電極の形成を行った。具体的には、正極側の外部電極を、焼成積層体における正極露出側面(1面)に対して導電性Agペーストの塗布を通じて形成した。一方、負極側の外部電極を、焼成積層体における少なくとも負極露出側面(3面)を含む面に対して導電性Ag導電性ペーストの塗布を通じて形成した(図9参照)。
 この場合、平面視で、負極層の積層方向に対して垂直方向であってかつ正極側の外部電極の配置側へと向かうこととなる、第1方向に延在する負極側の外部電極の第1部分の長さを、上記第1方向における電池素子の長さの80%となるように調整した。また、焼成積層体の側面のみならず主面にまで及ぶように負極電極を形成した。
比較例1
 実施例1と比べて、積層体ブロックの形成段階において、シート上に正極用ペーストを印刷し、正極用ペーストの3辺を取り囲むように絶縁材を印刷した。同様にして、シート上に負極用ペーストを印刷し、負極用ペーストの3辺を取り囲むように絶縁材を印刷した。
 その後、正極用ペーストと絶縁材を含むシートと、固体電解質を含むシートと、負極用ペーストと絶縁材を含むシートとを交互に積層して積層体を得た後、焼成により電池焼成体を得た。電池焼成体の形成後の外部電極の形成段階においては、正極側の外部電極を、焼成積層体における正極露出側面(1面)に対して導電性Agペーストの塗布を通じて形成した。同様に、負極側の外部電極を、焼成積層体における負極露出側面(1面)に対して導電性Ag導電性ペーストの塗布を通じて形成した。
実施例2
 実施例1と比べて、電池焼成体の形成後、外部電極の形成を行う段階で、負極側の外部電極を、焼成積層体における少なくとも負極露出側面(3面)に対してAu材によるスパッタ膜の形成とその後の導電性Ag導電性ペーストの塗布を通じて形成した。
 この場合、実施例1と同様に、平面視で、負極層の積層方向に対して垂直方向であってかつ正極側の外部電極の配置側へと向かうこととなる、第1方向に延在する負極側の外部電極の第1部分の長さを、上記第1方向における電池素子の長さの80%となるように調整した。また、実施例1と同様に、焼成積層体の側面のみならず主面にまで及ぶように負極電極を形成した。
実施例3
 実施例1および実施例2と比べて、電池焼成体の形成後、外部電極の形成を行う段階で、負極側の外部電極を、焼成積層体における少なくとも負極露出側面(3面)に対してAu材によるスパッタ膜の形成を通じて形成した。
 この場合、平面視で、負極層の積層方向に対して垂直方向であってかつ正極側の外部電極の配置側へと向かうこととなる、第1方向に延在する負極側の外部電極の第1部分の長さを、上記第1方向における電池素子の長さの50%となるように調整した。
実施例4
 実施例1と比べて、外部電極の形成段階で、焼成積層体の側面にのみ負極電極を形成した。
実施例5
 実施例1と比べて、外部電極の形成段階で、平面視で、負極層の積層方向に対して垂直方向であってかつ正極側の外部電極の配置側へと向かうこととなる、第1方向に延在する負極側の外部電極の第1部分の長さを、上記第1方向における電池素子の長さの50%となるように調整した。
実施例6
 実施例1と比べて、外部電極の形成段階で、平面視で、負極層の積層方向に対して垂直方向であってかつ正極側の外部電極の配置側へと向かうこととなる、第1方向に延在する負極側の外部電極の第1部分の長さを、上記第1方向における電池素子の長さの25%となるように調整した。
(測定結果)
 まず、比較例1について、設計電圧、設計電流で、放電容量測定ならびに1MHzでの交流インピーダンス測定を行い、その後、室温でのサイクル試験を実施した。その際の比較例1の電池容量および交流インピーダンス(1MHz)を1とした際の、比較例1および各実施例1~6の50サイクル時での電池の故障発生率、電池容量、および交流インピーダンス(1MHz)をそれぞれ評価した。なお、本件では、短絡の発生又は電池容量が80%以下にまで低下したもの、具体的には、50%未満の電池の故障発生率を、本開示の対象範囲内として評価した。
 その結果を表1に示す。
[表1]
Figure JPOXMLDOC01-appb-I000001

 表1から分かるように、実施例1では、比較例1と比べて、絶縁部に囲まれる負極層の側面の数が3つ→1つに減ったことで、導電性ペーストからなる負極側の外部電極と負極層との接触領域が増えた。なお、実施例1では、比較例1と比べて、負極層と接触する負極側の外部電極を構成する導電性ペーストの、第1方向における電池素子長さに対する負極層の側面の被覆率を80%に設定した。ここでいう「第1方向」とは、電極層の積層方向に対して垂直方向であってかつ正極側の外部電極へと向かう、負極側の外部電極の延在方向を指す。
 実施例1では、電池の故障発生率の50%→0%への減少、電池容量比の1→1.4への増大、交流インピーダンスの1→0.9への低下がされていることが分かった。以上の事から、負極側の外部電極と負極層との接触領域が増えることで、比較例1と比べて、充放電サイクル時に負極の膨張収縮による負極側の外部端子の剥がれおよび電極の損傷などを抑制できることが分かった。これにより、繰り返しの好適な充放電特性を維持可能であることが分かった。又、電池容量比の増大と交流インピーダンスの低下も可能となることが分かった。
 実施例2では、実施例1と比べて、負極側のスパッタの形成とその後の導電性ペーストの形成とがなされたことで、交流インピーダンスの0.9→0.8への更なる低下がされていることが分かった。この事から、負極層と接触する負極側の外部電極がスパッタ膜と導電性ペーストの2層構造である場合、交流インピーダンスの更なる低下が可能となることが分かった。
 実施例3では、比較例1と比べて、絶縁部に囲まれる負極層の側面の数が3つ→1つに減ったことで、スパッタ膜からなる負極側の外部電極と負極層との接触領域が増えた。又、実施例3では、実施例1と比べて、負極層と接触する負極側の外部電極を、導電性ペーストではなくPt材からなるスパッタ膜から構成し、かかるスパッタ膜を第1方向における電池素子長さに対する負極層の側面の被覆率を50%に設定した。
 その結果、負極層と接触する負極側の外部電極を、導電性ペーストではなくPt材からなるスパッタ膜から構成したとしても、電池の故障発生率の50%→20%への減少、電池容量比の1→1.4への増大、交流インピーダンスの1→0.85への低下がされていることが分かった。即ち、電池の故障発生率の減少、電池容量比の増大、交流インピーダンスの低下に、スパッタ膜が有効であることが分かった。
 実施例4では、実施例1と比べて、電池素子(焼結積層体)の上下面への更なる導電性ペーストの形成が無かったが、実施例1と同じ結果が得られた。以上の事から、電池素子(焼結積層体)の上下面への負極側の外部電極の更なる形成をしなくとも、電池の故障発生率の減少、電池容量比の増大、交流インピーダンスの低下の割合に変わりはないことが分かった。
 実施例5では、実施例1と比べて、負極側の外部電極を構成する導電性ペーストの、第1方向における電池素子長さに対する負極層の側面の被覆率を80%→50%に減少させた。その結果、実施例1と同じく、電池の故障発生率の50%→0%への減少、電池容量比の1→1.4への増大の一方、交流インピーダンスの1→0.95への低下がされていることが分かった。以上の事から、第1方向における電池素子長さに対する導電性ペーストの負極層の側面の被覆率が50%あれば、電池の故障発生率0%が確保可能であることが分かった。
 又、実施例3と実施例5の主たる相違点は、負極層と接触する負極側の外部電極がPt材からなるスパッタ膜から構成されるか導電性ペーストから構成されるかの点である。この点につき、実施例3の場合と比べると、負極層と接触する負極側の外部電極が導電性ペーストから構成される場合の方が、電池の故障発生率がより低くなっていることが分かった。以上の事から、負極層と負極側の外部電極との接続部分の剥離抑制、同接続部分の確保、および負極層の損傷抑制に有効であることが分かった。
 実施例6では、実施例5と比べて、負極側の外部電極を構成する導電性ペーストの、第1方向における電池素子長さに対する負極層の側面の被覆率を80%→50%に減少させた。その結果、電池の故障発生率の50%→30%への減少、電池容量比の1→1.4への増大、交流インピーダンスの1→0.95への低下がされていることが分かった。以上の事から、第1方向における電池素子長さに対する導電性ペーストの負極層の側面の被覆率が25%あれば、電池の故障発生率を50%未満に抑えることが可能であることが分かった。
 以上、本開示の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。本開示はこれに限定されず、本開示の要旨を変更しない範囲において種々の態様が考えられることを当業者は容易に理解されよう。
 なお、本開示は下記態様をとり得る。
<1>
 正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備えた電池素子と、電池素子の表面に設けられた正極側の外部電極および負極側の外部電極とを備え、
 前記負極側の外部電極と前記正極側の外部電極とが非対称配置であり、および前記負極側の外部電極が前記負極層の少なくとも2つの側面と接する、固体電池。

<2>
 平面視で、前記電池素子の輪郭と前記正極層の輪郭とが重なる箇所の数が1つであり、前記電池素子の輪郭と前記負極層の輪郭とが重なる箇所の数が少なくとも2つである、<1>に記載の固体電池。 

<3>
 前記負極側の外部電極のサイズが前記正極側の外部電極のサイズよりも大きい、<1>又は<2>に記載の固体電池。

<4>
 前記負極側の外部電極と前記負極層の総接触面積が前記正極側の外部電極と前記正極層の総接触面積よりも大きい、<1>~<3>のいずれかに記載の固体電池。

<5>
 平面視で、前記正極側の外部電極と前記正極層との接触部分が一方向に延在する形態を有し、前記負極側の外部電極と前記負極層との接触部分が屈曲形態を有する、<1>~<4>のいずれかに記載の固体電池。
<6>
 前記負極側の外部電極が、前記正極側の外部電極と離隔し、かつ前記前記正極側の外部電極へと向かうように配置される、<1>~<5>のいずれかに記載の固体電池。

<7>
 平面視で、前記負極側の外部電極が、前記負極層の相互に連続する3つの側面と接する、<1>~<6>のいずれかに記載の固体電池。

<8>
 平面視で、前記負極層の相互に連続する3つの側面が前記負極側の外部電極により囲まれる、<7>に記載の固体電池。

<9>
 平面視で、前記正極層と接する前記正極側の外部電極は、前記正極層と、前記正極層と同一平面領域に形成されかつ前記正極層を取り囲む絶縁層又は固体電解質層と接し、平面視で、前記負極層と接する前記負極側の外部電極は前記負極層にのみ接する、<1>~<8>のいずれかに記載の固体電池。

<10>
平面視で、電極層の積層方向に対して交差し、かつ前記正極側の外部電極へと向かう第1方向に延在する前記負極側の外部電極の第1部分の長さが、前記負極側の外部電極へと向かう第1方向に延在する前記正極側の外部電極の第1部分の長さよりも長い、<1>~<9>のいずれかに記載の固体電池。

<11>
 前記負極側の前記第1部分の長さが、前記第1方向に対して交差する第2方向に延在する前記負極側の外部電極の第2部分の長さよりも長い、<10>に記載の固体電池。

<12>
 前記負極側の外部電極の第1部分の長さが前記第1方向における前記電池素子の長さの25%以上である、<10>又は<11>に記載の固体電池。

<13>
 前記負極側の外部電極の第1部分の長さが前記第1方向における前記電池素子の長さの80%以下である、<10>~<12>のいずれかに記載の固体電池。

<14>
 前記正極側の外部電極と前記負極側の外部電極とが相互に離隔する離隔部分が形成され、前記離隔部分が前記正極側の外部電極側に偏在して配置される、<1>~<13>のいずれかに記載の固体電池。

<15>
 前記電池素子の外表面に前記負極層が位置する、<1>~<14>のいずれかに記載の固体電池。

<16>
 前記正極側の外部電極と前記負極側の外部電極とが相互に離隔する離隔部分が形成され、前記離隔部分に位置する前記電池素子の外表面に前記負極層が位置する、<1>~<15>のいずれかに記載の固体電池。

<17>
 前記負極層のうち前記負極側の外部電極との非接触側面の数が1つ又は2つである、<1>~<16>のいずれかに記載の固体電池。

<18>
 前記正極層のうち前記正極側の前記外部電極との非接触側面の数が3つである、<1>~<17>のいずれかに記載の固体電池。

<19>
 平面視で、前記正極層および前記負極層の電極層のコーナー部分の数が4つである、<1>~<18>のいずれかに記載の固体電池。 

<20>
 前記正極層および前記負極層がリチウムイオン又はナトリウムイオンを吸蔵放出可能な層となっている、<1>~<19>のいずれかに記載の固体電池。

<21>
 <1>~<20>のいずれかに記載の固体電池を備える、電子デバイス。
 本開示の一実施形態にかかる固体電池は、電池使用または蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本開示の固体電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどや、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
 100   固体電池
 100X  電池素子
 101X  電池素子の輪郭
 110   正極層
 110’  正極用ペースト
 111   正極層の輪郭
 120   負極層
 120’  負極用ペースト
 121   負極層の側面
 130   固体電解質
 130’  固体電解質を含むシート
 140   外部電極
 140A  正極側の外部電極
 140B  負極側の外部電極
 150   被覆部
 160   被覆絶縁層
 170   被覆無機層
 180A  正極側の固体電解質部又は絶縁部
 180A’ 絶縁材または固体電解質材
 180B  負極側の固体電解質部又は絶縁部
 190   保護層
 190’  保護層シート
 200   基板
 210   基板電極層(基板上側)
 210A  基板正極層
 210B  基板負極層
 220   実装側基板電極層(基板下側)
 220A  実装側基板正極層
 220B  実装側基板負極層
 230   基板の上側主面
 240   基板の下側主面
 250   基板の側面
 600   接合部材
 1000  固体電池パッケージ
 2000  外部基板(又は二次基板)
 L      負極側の外部電極の第1部分の長さ
 L1      正極側の外部電極の第1部分の長さ
 W     負極側の外部電極の第2部分の長さ
 S     正極側の外部電極と負極側の外部電極との離隔部分

Claims (21)

  1.  正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備えた電池素子と、電池素子の表面に設けられた正極側の外部電極および負極側の外部電極とを備え、
     前記負極側の外部電極と前記正極側の外部電極とが非対称配置であり、および前記負極側の外部電極が前記負極層の少なくとも2つの側面と接する、固体電池。
  2.  平面視で、前記電池素子の輪郭と前記正極層の輪郭とが重なる箇所の数が1つであり、前記電池素子の輪郭と前記負極層の輪郭とが重なる箇所の数が少なくとも2つである、請求項1に記載の固体電池。 
  3.  前記負極側の外部電極のサイズが前記正極側の外部電極のサイズよりも大きい、請求項1又は2に記載の固体電池。
  4.  前記負極側の外部電極と前記負極層の総接触面積が前記正極側の外部電極と前記正極層の総接触面積よりも大きい、請求項1~3のいずれかに記載の固体電池。
  5.  平面視で、前記正極側の外部電極と前記正極層との接触部分が一方向に延在する形態を有し、前記負極側の外部電極と前記負極層との接触部分が屈曲形態を有する、請求項1~4のいずれかに記載の固体電池。
  6.  前記負極側の外部電極が、前記正極側の外部電極と離隔し、かつ前記前記正極側の外部電極へと向かうように配置される、請求項1~5のいずれかに記載の固体電池。
  7.  平面視で、前記負極側の外部電極が、前記負極層の相互に連続する3つの側面と接する、請求項1~6のいずれかに記載の固体電池。
  8.  平面視で、前記負極層の相互に連続する3つの側面が前記負極側の外部電極により囲まれる、請求項7に記載の固体電池。
  9.  平面視で、前記正極層と接する前記正極側の外部電極は、前記正極層と、前記正極層と同一平面領域に形成されかつ前記正極層を取り囲む絶縁層又は固体電解質層と接し、平面視で、前記負極層と接する前記負極側の外部電極は前記負極層にのみ接する、請求項1~8のいずれかに記載の固体電池。
  10.  平面視で、電極層の積層方向に対して交差し、かつ前記正極側の外部電極へと向かう第1方向に延在する前記負極側の外部電極の第1部分の長さが、前記負極側の外部電極へと向かう第1方向に延在する前記正極側の外部電極の第1部分の長さよりも長い、請求項1~9のいずれかに記載の固体電池。
  11.  前記負極側の前記第1部分の長さが、前記第1方向に対して交差する第2方向に延在する前記負極側の外部電極の第2部分の長さよりも長い、請求項10に記載の固体電池。
  12.  前記負極側の外部電極の第1部分の長さが前記第1方向における前記電池素子の長さの25%以上である、請求項10又は11に記載の固体電池。
  13.  前記負極側の外部電極の第1部分の長さが前記第1方向における前記電池素子の長さの80%以下である、請求項10~12のいずれかに記載の固体電池。
  14.  前記正極側の外部電極と前記負極側の外部電極とが相互に離隔する離隔部分が形成され、前記離隔部分が前記正極側の外部電極側に偏在して配置される、請求項1~13のいずれかに記載の固体電池。
  15.  前記電池素子の外表面に前記負極層が位置する、請求項1~14のいずれかに記載の固体電池。
  16.  前記正極側の外部電極と前記負極側の外部電極とが相互に離隔する離隔部分が形成され、前記離隔部分に位置する前記電池素子の外表面に前記負極層が位置する、請求項1~15のいずれかに記載の固体電池。
  17.  前記負極層のうち前記負極側の外部電極との非接触側面の数が1つ又は2つである、請求項1~16のいずれかに記載の固体電池。
  18.  前記正極層のうち前記正極側の前記外部電極との非接触側面の数が3つである、請求項1~17のいずれかに記載の固体電池。
  19.  平面視で、前記正極層および前記負極層の電極層のコーナー部分の数が4つである、請求項1~18のいずれかに記載の固体電池。
  20.  前記正極層および前記負極層がリチウムイオン又はナトリウムイオンを吸蔵放出可能な層となっている、請求項1~19のいずれかに記載の固体電池。
  21.  請求項1~20のいずれかに記載の固体電池を備える、電子デバイス。
PCT/JP2023/024668 2022-07-08 2023-07-03 固体電池 WO2024009963A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022110625 2022-07-08
JP2022-110625 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024009963A1 true WO2024009963A1 (ja) 2024-01-11

Family

ID=89453369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024668 WO2024009963A1 (ja) 2022-07-08 2023-07-03 固体電池

Country Status (1)

Country Link
WO (1) WO2024009963A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031156Y2 (ja) * 1980-02-07 1985-09-18 日立マクセル株式会社 扁平形電池
JP2016001602A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 固体電池
JP2019185973A (ja) * 2018-04-06 2019-10-24 Fdk株式会社 全固体電池
JP2021064584A (ja) * 2019-10-17 2021-04-22 マクセルホールディングス株式会社 固体電解質電池
WO2021230055A1 (ja) * 2020-05-12 2021-11-18 株式会社村田製作所 全固体電池および組電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6031156Y2 (ja) * 1980-02-07 1985-09-18 日立マクセル株式会社 扁平形電池
JP2016001602A (ja) * 2014-05-19 2016-01-07 Tdk株式会社 固体電池
JP2019185973A (ja) * 2018-04-06 2019-10-24 Fdk株式会社 全固体電池
JP2021064584A (ja) * 2019-10-17 2021-04-22 マクセルホールディングス株式会社 固体電解質電池
WO2021230055A1 (ja) * 2020-05-12 2021-11-18 株式会社村田製作所 全固体電池および組電池

Similar Documents

Publication Publication Date Title
WO2020195382A1 (ja) 固体電池
JP7047934B2 (ja) 固体電池
JP7405151B2 (ja) 固体電池
JP7259980B2 (ja) 固体電池
US20230163365A1 (en) Solid state battery
US20210384549A1 (en) All-solid-state battery
JP2020115450A (ja) 全固体電池
US20220238913A1 (en) Solid state battery
WO2024009963A1 (ja) 固体電池
JP7359224B2 (ja) 固体電池
WO2022004733A1 (ja) 固体電池
WO2021117827A1 (ja) 固体電池
WO2021235451A1 (ja) 固体電池および固体電池用の外装体
WO2020203877A1 (ja) 固体電池
JP7115559B2 (ja) 固体電池
WO2023243489A1 (ja) 固体電池パッケージ
WO2024014260A1 (ja) 固体電池および電子デバイス
WO2023167100A1 (ja) 固体電池パッケージ
WO2022114140A1 (ja) 固体電池および固体電池の製造方法
JP7435623B2 (ja) 固体電池
WO2022230901A1 (ja) 固体電池パッケージ
JP7131298B2 (ja) 電子部品
CN114788086B (zh) 固体电池
JP7416195B2 (ja) 固体電池
WO2024014261A1 (ja) パッケージ化された固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835495

Country of ref document: EP

Kind code of ref document: A1