WO2024014260A1 - 固体電池および電子デバイス - Google Patents

固体電池および電子デバイス Download PDF

Info

Publication number
WO2024014260A1
WO2024014260A1 PCT/JP2023/023289 JP2023023289W WO2024014260A1 WO 2024014260 A1 WO2024014260 A1 WO 2024014260A1 JP 2023023289 W JP2023023289 W JP 2023023289W WO 2024014260 A1 WO2024014260 A1 WO 2024014260A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
solid
positive electrode
electrode layer
negative electrode
Prior art date
Application number
PCT/JP2023/023289
Other languages
English (en)
French (fr)
Inventor
貴 笠嶋
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2024014260A1 publication Critical patent/WO2024014260A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to solid state batteries and electronic devices.
  • Secondary batteries that can be repeatedly charged and discharged have been used for a variety of purposes.
  • secondary batteries are used as power sources for electronic devices such as smartphones and notebook computers.
  • a liquid electrolyte is generally used as a medium for ion movement that contributes to charging and discharging.
  • electrolytes are used in secondary batteries.
  • such secondary batteries are generally required to be safe in terms of preventing electrolyte leakage.
  • the organic solvent used in the electrolyte is a flammable substance, safety is also required in this respect.
  • Patent Document 1 discloses a configuration in which the interfaces between the positive electrode layer and the solid electrolyte layer, and the interface between the negative electrode layer and the solid electrolyte are intertwined with each other, as an all-solid-state battery with no cracks or warpage, or cracks or peeling between layers. There is. According to Patent Document 1, by increasing the adhesive strength between each layer, cracking, warping, cracking and peeling between each layer are less likely to occur (see paragraph [0022] of Patent Document 1).
  • the all-solid-state battery described in Patent Document 1 does not have a structure that releases (relaxes) stress due to volume change, and there is a risk that the battery may break due to stress accumulation.
  • the present disclosure has been made in view of such problems. That is, the main objective of the present disclosure is to provide a solid state battery and an electronic device that can relieve stress due to volume change.
  • the solid state battery according to the present disclosure includes: A plurality of solid battery elements in which a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer are laminated; an interlayer conductive layer located between each of the solid battery elements, The interlayer conductive layer is sandwiched between the positive electrode layer or negative electrode layer of one solid battery element and the positive electrode layer or negative electrode layer of the other solid battery element, The positive electrode layer or the negative electrode layer sandwiching the interlayer conductive layer includes a solid electrolyte, The solid electrolyte ratio of the positive electrode layer or negative electrode layer sandwiching the interlayer conductive layer is 40% by weight or more and 60% by weight or less based on the entire positive electrode layer or negative electrode layer, The solid electrolyte ratio of the interlayer conductive layer is 10% by weight or more and 35% by weight or less based on the entire interlayer conductive layer.
  • the above-described solid battery is surface mounted.
  • FIG. 1 is a cross-sectional view of a main part of a solid-state battery of the present disclosure.
  • FIG. 7 is a sectional view of a main part of a modification of the solid state battery of the present disclosure.
  • FIG. 7 is a sectional view of a main part of a modification of the solid state battery of the present disclosure.
  • 1 is a cross-sectional view of a solid state battery of the present disclosure.
  • FIG. 2 is a process cross-sectional view showing a manufacturing process of a solid-state battery according to the present disclosure.
  • solid-state battery and the “electronic device” in which the solid-state battery is surface-mounted according to the present disclosure will be described in detail.
  • the contents shown in the drawings are merely shown schematically and exemplarily for understanding the present disclosure, and the appearance, dimensional ratio, etc. may differ from the actual thing.
  • the term “solid battery” refers to a battery whose components are made of solid matter, and in a narrow sense, it refers to batteries whose battery components (preferably all battery components) are made of solid matter. This refers to all-solid-state batteries.
  • the solid-state battery of the present disclosure is a stacked solid-state battery configured such that layers constituting battery structural units are stacked on each other, and preferably each layer may be a fired body.
  • the term “solid battery” includes not only so-called “secondary batteries” that can be repeatedly charged and discharged, but also "primary batteries” that can only be discharged.
  • the “solid battery” is a secondary battery.
  • the term “secondary battery” is not excessively limited by its name, and may include, for example, power storage devices.
  • Plant view as used herein is based on the form when the object is viewed from above or below along the thickness direction based on the stacking direction of each layer constituting the solid-state battery.
  • cross-sectional view refers to the form viewed from a direction approximately perpendicular to the thickness direction based on the stacking direction of each layer constituting the solid-state battery (simply put, parallel to the thickness direction). It is based on the shape (when cut on a plane).
  • the "vertical direction” and “horizontal direction” used directly or indirectly in this specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same reference numerals or symbols indicate the same members/parts or the same meanings.
  • the vertically downward direction corresponds to the "downward direction”
  • the opposite direction corresponds to the "upward direction.”
  • references to directions, orientations, etc. are merely for convenience of explanation, and are not intended to limit the scope of the present disclosure unless explicitly stated otherwise.
  • relative terms such as “outside”, “inside”, and derivatives thereof should be understood to refer to the direction as described or illustrated. be.
  • the invention is not necessarily limited to a specific direction, orientation, form, etc.
  • terms such as “provided” and “arranged” as well as derivative terms thereof are also the same, and unless explicitly stated otherwise, they are not limited to direct aspects, but include other elements such as intervening elements. It may be an embodiment in which there is an intervention.
  • the solid-state battery 100 includes a solid-state battery element 141 including battery constituent units consisting of a positive electrode layer 110, a negative electrode layer 120, and at least a solid electrolyte layer 130 interposed therebetween, and each solid-state battery element. 141, and an interlayer conductive layer 170 located between layers 141. Interlayer conduction layer 170 is sandwiched between positive electrode layer 110 or negative electrode layer 120 of one solid battery element 141 and positive electrode layer 110 or negative electrode layer 120 of the other solid battery element 141.
  • the positive electrode layer 110 or the negative electrode layer 120 sandwiching the interlayer conductive layer 170 contains a solid electrolyte, and the solid electrolyte ratio of the positive electrode layer 110 or the negative electrode layer 120 sandwiching the interlayer conductive layer 170 is 40 based on the layer containing the solid electrolyte. % by weight or more and 60% by weight or less, and the solid electrolyte ratio of the interlayer conductive layer 170 is 10% by weight or more and 35% by weight or less based on the layer containing the solid electrolyte.
  • the solid electrolyte ratio of the interlayer conductive layer 170 is smaller than the solid electrolyte ratio of the positive electrode layer 110 or the negative electrode layer 120 that sandwich the interlayer conductive layer 170.
  • the strength of the layered structure will be low. Therefore, the strength of the interlayer conductive layer 170 is relatively lower than the strength of the positive electrode layer 110 or the negative electrode layer 120 sandwiching the interlayer conductive layer 170. Therefore, when stress is accumulated inside the solid-state battery, the stress can be concentrated on the interlayer conductive layer 170, which has low strength. For example, stress can be alleviated by creating cracks in the interlayer conductive layer 170.
  • the interlayer conductive layer 170 has a lower contribution to the solid state battery characteristics than the solid state battery element 141. Therefore, even if stress is concentrated and a load is applied to the interlayer conductive layer 170 and cracks occur, the effect on the solid state battery characteristics is small. In other words, by applying a load to the interlayer conduction layer 170 side, it is possible to reduce the load applied to the solid state battery element 141 side, thereby preventing deterioration of the solid state battery characteristics.
  • the solid electrolyte ratio of the positive electrode layer 110 or the negative electrode layer 120 and the solid electrolyte ratio of the interlayer conductive layer 170 sandwiching the interlayer conductive layer 170 to the above numerical ranges, the production suitability of the solid battery can be maintained.
  • the solid state battery of the present disclosure will be described in detail.
  • the solid battery element 141 is a battery structural unit consisting of a positive electrode layer 110, a negative electrode layer 120, and at least a solid electrolyte layer 130 interposed between them.
  • a plurality of solid battery elements 141 may be stacked with interlayer conductive layers 170 in between.
  • two solid battery elements 141 may be stacked with an interlayer conductive layer 170 in between.
  • four solid battery elements 141 may be stacked with interlayer conductive layers 170 in between. More specifically, the plurality of solid battery elements 141 may be electrically connected to each other in parallel. Desired battery characteristics can be obtained by electrically connecting a plurality of solid battery elements in parallel.
  • Each layer of the solid battery element 141 may be formed by firing. That is, the positive electrode layer 110, the negative electrode layer 120, the solid electrolyte layer 130, etc. may form a sintered layer.
  • the positive electrode layer 110, the negative electrode layer 120, and the solid electrolyte layer 130 are each integrally fired with each other and may be composed of a sintered body.
  • the laminate 140 in which the interlayer conductive layer 170 is interposed between the plurality of solid battery elements 141 may be integrally sintered to form an integral sintered body.
  • the direction in which the positive electrode layer and the negative electrode layer are stacked (vertical direction) is referred to as the "stacking direction", and the direction that intersects with the stacking direction is the horizontal direction in which the positive electrode layer and the negative electrode layer extend.
  • the positive electrode layer 110 may be an electrode layer including at least a positive electrode active material layer 111 and a positive electrode current collector layer 112.
  • the positive electrode active material layer 111 may be composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles.
  • the positive electrode current collector layer 112 may further contain a solid electrolyte.
  • the negative electrode layer 120 may be an electrode layer including at least a negative electrode active material layer 121 and a negative electrode current collector layer 122.
  • the negative electrode active material layer 121 may be composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
  • the negative electrode current collector layer 122 may further contain a solid electrolyte.
  • the positive electrode active material and the negative electrode active material are substances that participate in the transfer of electrons in a solid-state battery. Charging and discharging are performed by the movement (or conduction) of ions between the positive and negative electrode layers via the solid electrolyte and the exchange of electrons between the positive and negative electrode layers via the external terminals. .
  • the illustrated example shows a positive electrode layer 110 in which one positive electrode active material layer 111 and one positive electrode current collector layer 112 are laminated, and a negative electrode active material layer 121 for one solid battery element 141.
  • the configuration of the negative electrode layer 120 in which one layer and one negative electrode current collector layer 122 are laminated is illustrated.
  • the number of laminated layers is not limited to this example, and the number of active material layers and current collector layers may be two or more.
  • the thickness of the positive electrode layer 110 or the negative electrode layer 120 may be 5 ⁇ m or more and 60 ⁇ m or less, preferably 8 ⁇ m or more and 50 ⁇ m or less. Further, the thickness may be 5 ⁇ m or more and 30 ⁇ m or less.
  • the positive electrode active material contained in the positive electrode active material layer 111 may be, for example, a lithium-containing compound or a sodium-containing compound. In other words, it may be possible to insert and release lithium ions or sodium ions.
  • the type of lithium-containing compound is not particularly limited, and examples thereof include a lithium transition metal composite oxide and/or a lithium transition metal phosphate compound.
  • Lithium transition metal composite oxide is a general term for oxides containing lithium and one or more transition metal elements as constituent elements.
  • a lithium transition metal phosphate compound is a general term for phosphoric acid compounds containing lithium and one or more transition metal elements as constituent elements.
  • the type of transition metal element is not particularly limited, and examples thereof include cobalt (Co), nickel (Ni), manganese (Mn), and/or iron (Fe).
  • lithium transition metal composite oxide examples include compounds represented by Li x M1O 2 and Li y M2O 4 .
  • the lithium transition metal phosphate compound is, for example, a compound represented by Li z M3PO 4 .
  • each of M1, M2, and M3 is one or more types of transition metal elements.
  • Each value of x, y and z is arbitrary.
  • lithium transition metal composite oxides include, for example, LiCoO 2 , LiNiO 2 , LiVO 2 , LiCrO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and LiNi 0 .5 Mn 1.5 O 4 etc.
  • examples of the lithium transition metal phosphate compound include LiFePO 4 , LiCoPO 4 and LiMnPO 4 .
  • the lithium transition metal composite oxide (particularly LiCoO 2 ) may contain a trace amount (about several percent) of an additive element.
  • additive elements include aluminum (Al), magnesium (Mg), nickel (Ni), manganese (Mn), titanium (Ti), boron (B), vanadium (V), chromium (Cr), iron (Fe). , copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), tungsten (W), zirconium (Zr), yttrium (Y), niobium (Nb), calcium (Ca), strontium (Sr) , bismuth (Bi), sodium (Na), potassium (K), and silicon (Si).
  • sodium-containing phosphoric acid compounds having a Nasicon-type structure sodium-containing phosphoric acid compounds having an olivine-type structure, sodium-containing layered oxides, and sodium-containing sodium-containing oxides having a spinel-type structure are used. At least one selected from the group consisting of oxides and the like can be mentioned.
  • the sodium-containing layered oxide may include at least one selected from the group consisting of 2FeP2O7 , Na4Fe3 ( PO4 ) 2 ( P2O7 ) , and NaFeO2 as the sodium - containing layered oxide.
  • the positive electrode active material may be, for example, an oxide, a disulfide, a chalcogenide, or a conductive polymer.
  • the oxide may be, for example, titanium oxide, vanadium oxide or manganese dioxide.
  • the disulfide is, for example, titanium disulfide or molybdenum sulfide.
  • the chalcogenide may be, for example, niobium selenide.
  • the conductive polymer may be, for example, disulfide, polypyrrole, polyaniline, polythiophene, polyparastyrene, polyacetylene or polyacene.
  • the content of the positive electrode active material in the positive electrode active material layer 111 is usually 50% by weight or more, for example 60% by weight or more, based on the total amount of the positive electrode active material layer 111.
  • the positive electrode active material layer 111 may contain two or more types of positive electrode active materials, and in that case, the total content thereof may be within the above range. When the content of the active material is 50% by mass or more, the energy density of the battery can be particularly increased.
  • Negative electrode active material layer examples of the negative electrode active material contained in the negative electrode active material layer 121 include carbon materials, metal materials, lithium alloys, and/or lithium-containing compounds.
  • the carbon material is, for example, graphite, graphitizable carbon, non-graphitizable carbon, mesocarbon microbeads (MCMB), and/or highly oriented graphite (HOPG).
  • the metal-based material is a general term for materials that contain as a constituent element one or more of metal elements and metalloid elements that can form an alloy with lithium.
  • This metallic material may be a single substance, an alloy, or a compound.
  • the purity of the simple substance described here is not necessarily limited to 100%, so the simple substance may contain a trace amount of impurity.
  • metal elements and metalloid group elements include silicon (Si), tin (Sn), aluminum (Al), indium (In), magnesium (Mg), boron (B), gallium (Ga), and germanium (Ge). , lead (Pb), bismuth (Bi), cadmium (Cd), titanium (Ti), chromium (Cr), iron (Fe), niobium (Nb), molybdenum (Mo), silver (Ag), zinc (Zn) , hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd) and/or platinum (Pt).
  • metal-based materials include, for example, Si, Sn, SiB 4 , TiSi 2 , SiC, Si 3 N 4 , SiO v (0 ⁇ v ⁇ 2), LiSiO, SnO w (0 ⁇ w ⁇ 2) , SnSiO 3 , LiSnO and/or Mg 2 Sn.
  • the lithium-containing compound is, for example, a lithium transition metal composite oxide.
  • the definition regarding the lithium transition metal composite oxide is as described above.
  • lithium transition metal double oxides include, for example, Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12 , LiTi 2 (PO 4 ) 3 , and/or LiCuPO4 , etc.
  • negative electrode active materials capable of intercalating and releasing sodium ions include a group consisting of sodium-containing phosphoric acid compounds having a Nasicon-type structure, sodium-containing phosphoric acid compounds having an olivine-type structure, and sodium-containing oxides having a spinel-type structure. At least one selected from:
  • the content of the negative electrode active material in the negative electrode active material layer 121 is usually 50% by weight or more, for example 60% by weight or more, based on the total amount of the negative electrode active material portion.
  • the negative electrode active material portion may contain two or more types of negative electrode active materials, and in that case, the total content thereof may be within the above range.
  • the content of the active material is 50% by mass or more, the energy density of the battery can be particularly increased.
  • the positive electrode active material layer 111 and/or the negative electrode active material layer 121 may contain a conductive material.
  • the conductive material included in the positive electrode active material layer 111 and/or the negative electrode active material layer 121 include carbon materials and metal materials.
  • carbon materials include, for example, graphite and carbon nanotubes.
  • metal materials include copper (Cu), magnesium (Mg), titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), aluminum (Al), and germanium (Ge). , indium (In), gold (Au), platinum (Pt), silver (Ag) and/or palladium (Pd), and may be an alloy of two or more thereof.
  • the positive electrode active material layer 111 and/or the negative electrode active material layer 121 may contain a binder.
  • the binder may be, for example, one or more of synthetic rubber and polymeric materials.
  • the synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber, and/or ethylene propylene diene.
  • the polymer material include at least one selected from the group consisting of polyvinylidene fluoride, polyimide, and acrylic resin.
  • the positive electrode active material layer 111 and/or the negative electrode active material layer 121 may contain a sintering aid.
  • the sintering aid include at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide.
  • the thicknesses of the positive electrode active material layer 111 and the negative electrode active material layer 121 are not particularly limited, and may each independently be, for example, 2 ⁇ m or more and 100 ⁇ m or less, particularly 5 ⁇ m or more and 50 ⁇ m or less.
  • the positive electrode active material layer 111 or the negative electrode active material layer 121 located on both sides of the interlayer conductive layer 170, which will be described later, may be arranged inside the opposing active material layer of the counter electrode.
  • the positive electrode active material layer 111 may be arranged inside the opposing negative electrode active material layer 121. The reason for the above arrangement is that if there is a positive electrode portion that does not face the negative electrode, dendrites may occur on the negative electrode side, which may cause a short circuit.
  • compressive stress is applied due to charging and discharging in the region A where the active material layers that are opposite to each other face each other
  • tensile stress is applied due to charging and discharging in the region B where the active material layers that are opposite to each other do not face each other.
  • the stress can be appropriately alleviated by the interlayer conductive layer 170 described later.
  • the positive electrode current collector layer 112 and the negative electrode current collector layer 122 preferably have higher electronic conductivity than the positive electrode active material layer 111 and the negative electrode active material layer 121.
  • the positive electrode current collector layer 112 and the negative electrode current collector layer 122 are for collecting current between the positive electrode layers 110 or between the negative electrode layers 120.
  • the positive electrode current collector layer 112 and the negative electrode current collector layer 122 may contain a conductive material and a solid electrolyte.
  • the conductive material used for the positive electrode current collector layer 112 is, for example, selected from the group consisting of carbon materials, silver, palladium, gold, platinum, aluminum, copper, nickel-lithium transition metal composite oxides, and lithium transition metal phosphate compounds. At least one of these may be used.
  • the conductive material used for the negative electrode current collector layer 122 may be at least one selected from the group consisting of carbon materials, silver, palladium, gold, platinum, aluminum, copper, and nickel.
  • the solid electrolyte ratio is 40% by weight or more and 60% by weight or less based on the entire positive electrode current collector layer 112 or negative electrode current collector layer 122.
  • the positive electrode current collector layer 112 and the negative electrode current collector layer 122 are composed of a conductive material and a solid electrolyte, so when the solid electrolyte ratio in the current collector layer is 40% by weight on the overall basis. , the conductive material is 60% by weight. Further, when the solid electrolyte ratio in the current collector layer is 60% by weight on a total basis, the amount of the conductive material is 40% by weight. If the numerical range is satisfied, the strength of the positive electrode current collector layer 112 and the negative electrode current collector layer 122 can be increased.
  • the positive electrode current collector layer 112 and/or the negative electrode current collector layer 122 may have the form of a fired body. That is, in addition to the above-mentioned conductive material and solid electrolyte, the fired body may contain an active material, a binder, and/or a sintering aid. Furthermore, the positive electrode current collector layer 112 and/or the negative electrode current collector layer 122 may contain a heat-resistant resin. When the current collector layer contains a heat-resistant resin, cracks caused by expansion of the current collector layer can be suppressed.
  • the thicknesses of the positive electrode current collector layer 112 and the negative electrode current collector layer 122 are not particularly limited, and may each independently be, for example, 1 ⁇ m or more and 100 ⁇ m or less, particularly 1 ⁇ m or more and 50 ⁇ m or less.
  • the positive electrode current collector layer 112 or the negative electrode current collector layer 122 sandwiching the interlayer conductive layer 170 is located on both sides of the interlayer conductive layer 170. It may be exposed from the positive electrode active material layer 111 or the negative electrode active material layer 121.
  • "a mode in which the current collector layer sandwiching the interlayer conductive layer is exposed from the active material layers located on both sides of the interlayer conductive layer” means that the current collector layer sandwiching the interlayer conductive layer is exposed from the active material layers located on both sides of the interlayer conductive layer. It is intended to be exposed to active material layers located on both sides of the interlayer conductive layer.
  • the current collector layer sandwiching the interlayer conductive layer is longer than the active material layers located on both sides of the interlayer conductive layer and is therefore exposed.
  • the positive electrode current collector layer 112 extends so as to be exposed from the solid battery element 141, but the positive electrode active material layer 111 does not have to extend so as to be exposed from the solid battery element 141. .
  • the positive electrode current collector layer 112 and the negative electrode current collector layer 122 exposed from the solid battery element 141 can be appropriately wired to the terminal electrodes 151 and 152.
  • the positive electrode active material layer 111 or the negative electrode active material layer 121 which are involved in transfer of electrons, can be appropriately protected without being exposed.
  • the solid electrolyte constituting the solid electrolyte layer 130 is a material that can conduct lithium ions or sodium ions.
  • the solid electrolyte that forms a battery constituent unit in a solid battery forms a layer between the positive electrode layer 110 and the negative electrode layer 120 that can conduct lithium ions or sodium ions.
  • the solid electrolyte layer may be provided at least between the positive electrode layer 110 and the negative electrode layer 120.
  • Specific solid electrolytes contained in the solid electrolyte layer include, for example, one or more of a crystalline solid electrolyte, a glass-based solid electrolyte, a glass-ceramic solid electrolyte, and the like.
  • Examples of the crystalline solid electrolyte include oxide-based crystal materials and sulfide-based crystal materials.
  • oxide-based crystal materials include lithium-containing phosphate compounds having a Nasicon structure, oxides having a perovskite structure, oxides having a garnet type or garnet-like structure, oxide glass ceramics-based lithium ion conductors, etc. It will be done.
  • Lithium-containing phosphoric acid compounds having a Nasicon structure include Li x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is titanium (Ti), germanium (Ge), aluminum (Al ), gallium (Ga), and zirconium (Zr).
  • An example of a lithium-containing phosphoric acid compound having a Nasicon structure includes Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like.
  • oxides having a perovskite structure include La 0.55 Li 0.35 TiO 3 and the like.
  • An example of an oxide having a garnet type or garnet type similar structure includes Li 7 La 3 Zr 2 O 12 and the like.
  • the sulfide-based crystal material include thio-LISICON, such as Li 3.25 Ge 0.25 P 0.75 S 4 and Li 10 GeP 2 S 12 .
  • the crystalline solid electrolyte may include a polymeric material (eg, polyethylene oxide (PEO), etc.).
  • the glass-based solid electrolyte examples include oxide-based glass materials and sulfide-based glass materials.
  • oxide glass materials include Li 2 O--SiO 2 , Li 2 O--Al 2 O 3 --TiO 2 --P 2 O 5 , 54Li 2 O.11SiO 2.35B 2 O 3 , 50Li 4 SiO 4 .
  • examples include 50Li 3 BO 3 , 23.3Li 2 O-76.7GeO 2 and/or 60Li 2 O-40P 2 O 5 .
  • the oxide glass material may contain at least one member selected from the group consisting of lithium, silicon, and boron.
  • the oxide glass material essentially contains lithium oxide and may contain at least one selected from the group consisting of germanium oxide, silicon oxide, boron oxide, and phosphorus oxide.
  • Sulfide glass materials include , for example, 30Li 2 S.26B 2 S 3.44LiI, 63Li 2 S.36SiS 2.1Li 3 PO 4 , 57Li 2 S.38SiS 2.5Li 4 SiO 4 and 70Li 2 S. Examples include 30P 2 S 5 and/or 50Li 2 S.50GeS 2 .
  • the glass-ceramic solid electrolyte examples include oxide-based glass-ceramic materials and sulfide-based glass-ceramic materials.
  • oxide-based glass-ceramic material for example, a phosphoric acid compound (LATP) containing lithium, aluminum, and titanium as constituent elements, and a phosphoric acid compound (LAGP) containing lithium, aluminum, and germanium as constituent elements can be used.
  • LATP is, for example, Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) 3 .
  • LAGP is, for example, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ).
  • the oxide-based glass-ceramic material may include at least one selected from the group consisting of lithium, silicon, and boron.
  • the oxide-based glass ceramic material essentially contains lithium oxide and may contain at least one selected from the group consisting of germanium oxide, silicon oxide, boron oxide, and phosphorus oxide.
  • examples of the sulfide-based glass ceramic materials include Li 7 P 3 S 11 and Li 3.25 P 0.95 S 4 .
  • the solid electrolyte is selected from the group consisting of oxide-based crystal materials, oxide-based glass materials, and oxide-based glass-ceramic materials. It may contain at least one kind.
  • Examples of the solid electrolyte that can conduct sodium ions include sodium-containing phosphoric acid compounds having a Nasicon structure, oxides having a perovskite structure, and oxides having a garnet type or garnet type similar structure.
  • sodium-containing phosphate compound having a Nasicon structure Na x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr) at least one selected type).
  • the solid electrolyte layer may contain a binder and/or a sintering aid.
  • the binder and/or sintering aid contained in the solid electrolyte layer may be made of the same material as the binder and/or sintering aid that may be contained in the positive electrode active material portion and/or the negative electrode active material portion, for example. May be selected.
  • the thickness of the solid electrolyte layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 15 ⁇ m or less, particularly 1 ⁇ m or more and 5 ⁇ m or less.
  • the solid electrolyte layer 130 may cover one side surface of the interlayer conductive layer 170 and one side surface of the positive electrode layer 110 or negative electrode layer 120 sandwiching the interlayer conductive layer 170.
  • the solid electrolyte layer 130 may cover one side surface of the positive electrode active material layer 111 and the positive electrode current collector layer 112 sandwiching the interlayer conductive layer 170, and one side surface of the interlayer conductive layer 170.
  • one side of the positive electrode layer 110 or the negative electrode layer 120 is covered with the solid electrolyte layer, so that unintended short circuits of the electrode layers can be prevented.
  • the solid electrolyte layer 130 may be coated so as to straddle the current collecting layer and the active material layer that sandwich the interlayer conductive layer 170.
  • the outer surface of the current collecting layer and the outer surface of the active material layer, excluding the side surface where the current collecting layer is exposed from the solid battery element, may be covered with the solid electrolyte layer 130. According to the above-mentioned covering aspect, unintended short-circuiting of the electrode layer can be effectively prevented.
  • Interlayer conduction layer Interlayer conduction layer 170 is located between solid state battery elements 141 . Specifically, the interlayer conductive layer 170 is sandwiched between the positive electrode layer 110 or negative electrode layer 120 of one solid battery element 141 and the positive electrode layer 110 or negative electrode layer 120 of the other solid battery element 141.
  • the interlayer conductive layer 170 may be sandwiched between the positive electrode layers 110.
  • the present invention is not limited to this example, and the interlayer conductive layer 170 may be sandwiched between the negative electrode layers 120 (see FIG. 2). That is, the interlayer conductive layer 170 may be sandwiched between electrode layers having the same polarity. Thereby, the electrode layers having the same polarity can be electrically connected to each other.
  • the interlayer conductive layer 170 has electrical conductivity. Therefore, the positive electrode layers 110 or the negative electrode layers 120 that are in contact with the interlayer conductive layer 170 on both sides in the stacking direction can be electrically connected to each other.
  • the constituent material used for the interlayer conductive layer 170 may contain a conductive material and a solid electrolyte.
  • the conductive material used for the interlayer conductive layer 170 that electrically connects the positive electrode current collector layers 112 is, for example, carbon material, silver, palladium, gold, platinum, aluminum, copper, nickel-lithium transition metal composite oxide, and lithium. At least one selected from the group consisting of transition metal phosphate compounds may be used.
  • the conductive material used for the interlayer conductive layer 170 that electrically connects the negative electrode current collector layers 122 is at least one selected from the group consisting of carbon materials, silver, palladium, gold, platinum, aluminum, copper, and nickel. may be used.
  • the materials detailed in "1-2. Solid electrolyte layer” may be used. Further, the solid electrolyte ratio is 10% by weight or more and 35% by weight or less based on the entire interlayer conductive layer 170. Note that in the present disclosure, the interlayer conductive layer is composed of a conductive material and a solid electrolyte, so when the solid electrolyte ratio in the interlayer conductive layer is 10% by weight on the whole basis, the conductive material is 90% by weight, and the interlayer conductive layer is 90% by weight. If the solid electrolyte proportion in the conductive layer is 35% by weight on a total basis, the conductive material is 65% by weight.
  • the strength of the interlayer conductive layer 170 can be made lower than the strength of the positive electrode layer 110 or the negative electrode layer 120 sandwiching the interlayer conductive layer 170. Therefore, when stress accumulates inside the solid-state battery, the stress can be concentrated on the interlayer conductive layer 170, which has low strength. For example, the stress can be alleviated by causing cracks in the interlayer conductive layer 170. can. Note that if the solid electrolyte in the interlayer conductive layer 170 is 10% by weight or less, it is difficult to maintain the shape of the sintered body. Therefore, at least the interlayer conductive layer 170 has a solid electrolyte content of 10% by weight or more. Details of the numerical range of the solid electrolyte ratio will be explained in detail in "Examples" below.
  • a terminal electrode, an insulating outer layer, a covering insulating film, an inorganic film, and a supporting substrate will be described as additional structures of the solid state battery of the present disclosure.
  • Terminal Electrode The terminal electrode is provided on the end surface of the laminate 140.
  • terminal electrodes 151 and 152 may be provided on the side surfaces of the laminate 140 located in a direction intersecting the stacking direction of the laminate 140, respectively.
  • a terminal electrode 151 on the positive side connected to the positive electrode layer 110 and a terminal electrode 152 on the negative side connected to the negative electrode layer 120 are provided. may be formed on one side (on the right side in FIG. 4), and the terminal electrode 152 on the negative side may be provided so as to face the terminal electrode 151 on the positive side (on the left side in FIG. 4).
  • Terminal electrodes 151 and 152 may include a conductive material.
  • the conductive material is a material that has conductivity, and specifically includes carbon materials and metal materials. Note that "conductivity" as used herein means that the volume resistivity is 10 7 ⁇ cm or less.
  • the metal material is not particularly limited as long as it has conductivity, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, palladium, zinc, tin, and nickel may be used. I can do it. Alternatively, a composite metal such as Ag-coated Cu and/or Ag-coated CuNi may be used. Note that silver is a preferred metal material because it has high electrical conductivity and changes in electrical conductivity are small even under high temperature and high humidity environments.
  • An insulating outer layer 160 may be included as an additional feature of the solid state battery of the present disclosure. Specifically, an insulating outer layer 160 may be provided on the outside of the laminate 140 (see FIGS. 1 to 3). The insulating outer layer 160 may generally be formed on the outermost side of the laminate 140 to protect the laminate 140 electrically, physically, and/or chemically. In particular, the insulating outer layer 160 includes an insulating outer layer 160 on the top side of the solid state battery 100 and an insulating outer layer 160 on the bottom side.
  • the insulating outer layer 160 may be provided on the side surface of the stacked body 140 where the terminal electrodes 151 and 152 are not provided (the side surface of the solid battery element 141 in the direction perpendicular to the paper in FIG. 4).
  • the material constituting the insulating outer layer is preferably one that has excellent insulation, durability, and/or moisture resistance, and is environmentally safe, and may include, for example, a resin material, a glass material, and/or a ceramic material. .
  • the insulating outer layer since the insulating outer layer is manufactured by integral firing, it may have the form of a fired body. Note that the insulating outer layer 160 may not be provided and may be included in a resin or ceramic package.
  • a covering insulating film 200 may be provided.
  • the covering insulating film 200 may be provided to cover the terminal electrodes 151, 152 and the stacked body 140 (see FIG. 4).
  • the covering insulating film 200 corresponds to resin. That is, it is preferable that the covering insulating film 200 contains a resin material. As can be seen from the embodiment shown in FIG. 4, this means that the laminate 140 provided on the support substrate 400 is sealed with the resin material of the covering insulating film 200.
  • the material of the covering insulating film may be any type as long as it exhibits insulating properties.
  • the resin may be either a thermosetting resin or a thermoplastic resin.
  • specific resin materials for the coating insulating film include, for example, epoxy resins, silicone resins, and/or liquid crystal polymers.
  • the thickness of the covering insulating film may be 30 ⁇ m or more and 1000 ⁇ m or less, for example, 50 ⁇ m or more and 300 ⁇ m or less.
  • the insulating coating film is not essential for solid-state batteries, and solid-state batteries that are not provided with the insulating coating film are also conceivable.
  • an inorganic film 300 covering the covering insulating film 200 may be provided. As shown in FIG. 4, since the inorganic film 300 is positioned on the covering insulating film 200, the inorganic film 300 has a form that largely envelops the laminate 140 on the support substrate 400 together with the covering insulating film 200. .
  • the inorganic film 300 preferably has a thin film form.
  • the material of the inorganic film is not particularly limited as long as it contributes to an inorganic film having a thin film form, and may be metal, glass, oxide ceramics, or a mixture thereof.
  • the inorganic membrane may include a metal component. That is, the inorganic film may preferably be a metal thin film.
  • the thickness of such an inorganic film may be 0.1 ⁇ m or more and 100 ⁇ m or less, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the inorganic film 300 may be a dry plating film.
  • a dry plating film is a film obtained by a vapor phase method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD), and has a very small thickness on the order of nanometers or microns. are doing.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • Such a thin dry plating film contributes to more compact packaging.
  • Dry plating films include, for example, aluminum (Al), nickel (Ni), palladium (Pd), silver (Ag), tin (Sn), gold (Au), copper (Cu), titanium (Ti), platinum (Pt). ), silicon/silicon (Si), SUS, etc., at least one metal component/metalloid component, an inorganic oxide, and/or a glass component. Dry-plated films made of such components are chemically and/or thermally stable, resulting in solid-state batteries with excellent chemical resistance, weather resistance, and/or heat resistance, and improved long-term reliability. can be done.
  • an inorganic film is not essential for a solid-state battery, and a solid-state battery that is not provided with an inorganic film is also conceivable.
  • the solid state battery of the present disclosure may additionally include a support substrate 400.
  • the support substrate 400 is a substrate provided so that the stacked body 140 is supported.
  • a support substrate is positioned on one side forming the main surface of the solid state battery to provide "support”. Further, since it is a "substrate", it preferably has a thin plate-like shape as a whole.
  • the support substrate 400 may be, for example, a resin substrate or a ceramic substrate, and preferably a water-resistant substrate.
  • support substrate 400 may be a ceramic substrate. That is, the support substrate 400 may include ceramic, which may constitute the base material component of the substrate.
  • a support substrate made of ceramic is a preferable substrate since it contributes to preventing water vapor permeation and has heat resistance during board mounting.
  • Such a ceramic substrate can be obtained through firing, for example, by firing a green sheet laminate.
  • the ceramic substrate may be, for example, an LTCC substrate (LTCC: Low Temperature Co-fired Ceramics) or an HTCC substrate (HTCC: High Temperature Co-fired Ceramics).
  • the thickness of the support substrate may be 20 ⁇ m or more and 1000 ⁇ m or less, for example, 100 ⁇ m or more and 300 ⁇ m or less.
  • the support substrate 400 may function as a terminal substrate of the stacked body 140. That is, a solid state battery packaged with a substrate interposed therebetween can be mounted on another secondary substrate such as a printed wiring board.
  • solid state batteries can be surface mounted via a support substrate, such as through solder reflow.
  • the packaged solid state battery may be an SMD type battery.
  • the terminal board is made of a ceramic substrate
  • the solid state battery can be an SMD type battery that has high heat resistance and can be soldered.
  • the supporting substrate in a certain preferred embodiment may be a terminal substrate for external terminals of a packaged solid-state battery, which includes wiring that electrically connects the upper and lower surfaces of the substrate.
  • the wiring 410 on the terminal board is not particularly limited, and may have any form as long as it contributes to electrical connection between the top and bottom surfaces of the board. Since the wiring 410 on the terminal board contributes to electrical connection, it can also be said that the wiring 410 on the terminal board is a conductive portion of the board. Conductive portions of such substrates may take the form of wiring layers, vias and/or lands, and the like.
  • the support substrate 400 is provided with vias 412 and/or lands 411.
  • “Via” here refers to a member for electrically connecting the support substrate in the vertical direction, that is, in the thickness direction of the substrate.
  • a filled via is preferable, and it may also be in the form of an inner via.
  • "land” as used in this specification refers to a terminal part/connection part (preferably a terminal part connected to a via) for electrical connection provided on the upper main surface and/or lower main surface of the support substrate. ⁇ Connection part), and may be a square land or a round land, for example.
  • the electronic device of the present disclosure is one in which the above-described solid battery is surface-mounted. Specifically, the wiring of the support substrate 400 enables surface mounting of the solid battery.
  • Surface mounting refers to a technique in which a solid-state battery is directly fixed to a pattern formed on a substrate.
  • the solid battery 1 described above may be mounted on a printed circuit board or the like and packaged.
  • electronic components other than solid batteries may be mounted.
  • the manufacturing of the solid state battery of the present disclosure includes (1) preparing a laminate, (2) preparing a terminal electrode material, (3) firing the laminate, (4) applying the terminal electrode material, and (5) applying the terminal electrode material. This is done through a process including curing, (6) fixing to a supporting substrate, and (7) forming a covering insulating film and an inorganic film. The following is a step-by-step explanation.
  • a sheet containing a solid electrolyte is formed by preparing a slurry by mixing the solid electrolyte, an organic binder, a solvent, and any additives, and firing the prepared slurry to form a sheet.
  • the positive electrode active material paste is prepared by mixing the positive electrode active material, solid electrolyte, conductive material, organic binder, solvent, and optional additives.
  • the positive electrode current collector layer paste is prepared by mixing a solid electrolyte, a conductive material, an organic binder, a solvent, and optional additives.
  • the solid electrolyte ratio in the positive electrode current collector layer paste is 40% by weight or more and 60% by weight or less on a total basis.
  • the negative electrode active material paste is prepared by mixing the negative electrode active material, solid electrolyte, conductive material, organic binder, solvent, and optional additives.
  • the negative electrode current collector layer paste is prepared by mixing a solid electrolyte, a conductive material, an organic binder, a solvent, and optional additives.
  • the solid electrolyte ratio in the negative electrode current collector layer paste is 40% by weight or more and 60% by weight or less on a total basis.
  • the paste for the interlayer conductive layer is prepared by mixing a solid electrolyte, a conductive material, an organic binder, a solvent, and optional additives.
  • the solid electrolyte ratio in the interlayer conductive layer paste is 10% by weight or more and 35% by weight or less on a total basis.
  • a negative electrode current collector layer paste P22 is printed on the sheet S containing the solid electrolyte, and a negative electrode active material paste P21 is printed on the negative electrode current collector layer paste P22. Further, if necessary, a solid electrolyte portion N acting as a solid electrolyte may be printed (see FIG. 5(b)).
  • the solid electrolyte portion N is intended to be a slurry by mixing a solid electrolyte, an organic binder, a solvent, and optional additives.
  • a paste P11 for a positive electrode active material is printed on another sheet S containing a solid electrolyte, and a paste P12 for a positive electrode current collector layer is printed on the paste P11 for a positive electrode active material. If necessary, a solid electrolyte portion N acting as a solid electrolyte may be printed (see FIG. 5(a)).
  • An interlayer conductive layer paste P30 is printed on the positive electrode current collector layer paste. On the interlayer conductive layer paste P30, the positive electrode current collector layer paste P12 and the positive electrode active material paste P11 are printed in order. If necessary, the solid electrolyte portion N acting as a solid electrolyte may be printed.
  • a laminate is obtained by alternately stacking sheets printed with the negative electrode paste and sheets printed with the positive electrode paste.
  • the outermost layer (the uppermost layer and/or the lowermost layer) of the laminate may be an electrolyte layer, an insulating layer, or an electrode layer.
  • terminal electrode material (as an example, a conductive paste) that will be the material of the terminal electrodes 151 and 152 is prepared.
  • Ag is prepared as a conductive material.
  • the terminal electrode material may further contain a resin and a solvent as additional elements.
  • terminal electrode material refers to a material that can form a flow in a hydrodynamic sense or a material that can maintain such a flow. Examples of such materials include liquids such as pastes, solutions or suspensions.
  • the solvent dissolves the above-mentioned resin binder, and for example, an organic solvent may be used.
  • organic solvents include, but are not limited to, alcohols including methanol, ethanol, 1-propanol, 2-propanol, hexanol, and cyclohexanol, glycols including ethylene glycol and propylene glycol, methyl ethyl ketone, diethyl ketone, Ketones including methyl isobutyl ketone, terpenes including ⁇ -terpineol, ⁇ -terpineol, and ⁇ -terpineol, ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, diethylene glycol monoalkyl ethers, diethylene glycol dialkyl ethers, ethylene glycol Monoalkyl ether acetates, ethylene glycol dialkyl ether acetates, diethylene glycol monoalkyl ether acetates, diethylene glyco
  • the terminal electrode material is applied to the exposed positive electrode side surface and the exposed negative electrode side surface of the battery body.
  • Firing the laminate is fired in a nitrogen gas atmosphere containing oxygen gas or It is carried out by heating in the atmosphere. Firing may be performed while pressing the laminate precursor in the stacking direction (in some cases, in the stacking direction and in a direction perpendicular to the stacking direction).
  • the terminal electrode material is applied to the exposed positive electrode side surface and the exposed negative electrode side surface of the laminate.
  • the laminate applied to the exposed positive electrode side surface and the exposed negative electrode side surface is cured at a desired curing temperature (for example, in the range of 100° C. to 300° C.).
  • the support board is provided with vias and/or lands to enable surface mounting to the secondary board. For example, it can be obtained by laminating and firing a plurality of green sheets. This is especially true when the support substrate is a ceramic substrate.
  • the support substrate can be prepared, for example, in accordance with the preparation of an LTCC substrate.
  • the vias and/or lands on the support substrate can be manufactured by, for example, forming holes (diameter size: approximately 50 ⁇ m or more and 200 ⁇ m or less) using a punch press or carbon dioxide laser, and filling the holes with a conductive paste material, or , manufactured by a technique using a printing method.
  • the conductive portion of the support substrate and the terminal electrode of the laminate are arranged so as to be electrically connected to each other.
  • a conductive paste may then be provided on the support substrate, thereby electrically connecting the conductive portion of the support substrate and the terminal electrode to each other.
  • conductive pastes such as nanopaste, alloy paste, and brazing material that do not require cleaning with flux after formation can be used.
  • a covering insulating film is formed so as to cover the laminate on the support substrate. Therefore, the raw material for the coating insulating film is provided so that the battery element on the support substrate is completely covered.
  • the covering insulating film is made of a resin material, a resin precursor is provided on the support substrate and subjected to curing or the like to form the covering insulating film.
  • the covering insulating film may be formed by applying pressure with a mold.
  • the covering insulating film that seals the battery element on the support substrate may be formed through compression molding.
  • the raw material for the covering insulating film may be in the form of granules, and may be thermoplastic. Note that such molding is not limited to mold molding, and may be performed through polishing, laser processing, and/or chemical treatment.
  • the inorganic film may be dry plated by dry plating. More specifically, dry plating is performed to form an inorganic film on exposed surfaces other than the bottom surface of the coating precursor (that is, other than the bottom surface of the supporting substrate). In some preferred embodiments, sputtering is performed to form a sputtered film on the exposed outer surface of the coating precursor other than the bottom surface.
  • the solid state battery of the present disclosure can be finally obtained.
  • the solid-state batteries of Examples 1 to 5 had a structure in which two solid-state battery elements 141 were stacked with an interlayer conductive layer 170 interposed therebetween, and the interlayer conductive layer 170 was sandwiched between the positive electrode layers 110.
  • the positive electrode active material layer 111 was made of LiCoO 2
  • the positive electrode current collector layer 112 the negative electrode active material layer 121, the negative electrode current collector layer 122, and the interlayer conductive layer 170 were made of carbon materials. Note that the material of each layer, the number of layers, etc. are not limited to this example.
  • Example 1 ⁇ Configuration unique to Example 1>
  • the solid electrolyte ratios of the positive electrode current collector layer and the interlayer conductive layer were set as follows.
  • Positive electrode current collector layer conductive material (50% by weight), solid electrolyte (50% by weight)
  • Interlayer conductive layer conductive material (80% by weight), solid electrolyte (20% by weight)
  • the solid electrolyte ratios of the positive electrode current collector layer and the interlayer conductive layer were set as follows.
  • Positive electrode current collector layer conductive material (50% by weight), solid electrolyte (50% by weight)
  • Interlayer conductive layer conductive material (65% by weight), solid electrolyte (35% by weight)
  • Example 5 ⁇ Configuration unique to Example 5>
  • the solid electrolyte ratios of the positive electrode current collector layer and the interlayer conductive layer were set as follows.
  • Positive electrode current collector layer conductive material (40% by weight), solid electrolyte (60% by weight)
  • Interlayer conductive layer conductive material (80% by weight), solid electrolyte (20% by weight)
  • Shape abnormality rate 10% or less
  • Shape abnormality rate greater than 10% and 30% or less
  • Shape abnormality rate greater than 30%
  • the solid electrolyte ratio of the positive electrode layer sandwiching the interlayer conductive layer is in the range of 40% to 60% by weight, and Since the solid electrolyte ratio was 10% by weight or more and 35% by weight or less based on the layer containing the solid electrolyte, the high temperature charge/discharge test and production suitability test showed good results.
  • the solid state battery of Example 1 showed better results than the demonstration tests of the solid state batteries of Examples 2 to 5.
  • the solid-state battery of Comparative Example 4 had a relatively high solid electrolyte ratio in the positive electrode current collector layer and had high resistance, so it did not function as a solid-state battery and could not be subjected to a high-temperature charge/discharge test.
  • the solid electrolyte ratio of the positive electrode layer or negative electrode layer sandwiching the interlayer conductive layer is in the range of 40% to 60% by weight, and the interlayer conductive layer Results were obtained in which stress due to volume change can be alleviated if the solid electrolyte ratio is 10% by weight or more and 35% by weight or less based on the layer containing the solid electrolyte.
  • the positive electrode layer or the negative electrode layer includes an active material layer containing an electrode active material and a current collector layer in contact with the interlayer conductive layer,
  • the current collector layer contains the solid electrolyte.
  • the current collector layer is provided up to an end of the solid battery element, and the active material layer is located inside the end in a cross-sectional view.
  • the counter electrode layer facing the electrode layer includes an active material layer containing an electrode active material and a current collector layer in contact with the interlayer conductive layer,
  • the solid battery according to ⁇ 4> wherein the active material layers of the electrode layers located on both sides of the interlayer conductive layer are arranged inside the active material layer.
  • ⁇ 6> The solid battery according to any one of ⁇ 1> to ⁇ 5>, wherein the interlayer conductive layer is sandwiched between electrode layers having the same polarity.
  • ⁇ 7> The solid battery according to any one of ⁇ 1> to ⁇ 6>, wherein the plurality of solid battery elements are electrically connected in parallel to each other.
  • ⁇ 8> One side surface of the interlayer conductive layer and one side surface of the positive electrode layer or the negative electrode layer sandwiching the interlayer conductive layer are covered with the solid electrolyte layer, ⁇ 1> to ⁇ 7>.
  • the solid battery according to any one of the above. ⁇ 9> The solid electrolyte layer according to any one of ⁇ 1> to ⁇ 8>, wherein the solid electrolyte layer covers the current collector layer and the active material layer sandwiching the interlayer conductive layer. solid state battery.
  • ⁇ 10> The solid battery according to any one of ⁇ 1> to ⁇ 9>, wherein the solid battery element is composed of a sintered body.
  • ⁇ 11> The solid battery according to any one of ⁇ 1> to ⁇ 10>, wherein the solid battery is packaged so as to be surface mounted.
  • ⁇ 12> The solid battery according to any one of ⁇ 1> to ⁇ 11>, wherein the positive electrode layer and the negative electrode layer are layers capable of intercalating and deintercalating lithium ions.
  • ⁇ 13> An electronic device in which the solid battery according to any one of ⁇ 1> to ⁇ 12> is surface mounted.
  • the solid state battery is not limited to a substantially hexahedral shape, but may have a polyhedral shape, a cylindrical shape, or a spherical shape.
  • the packaged solid-state battery of the present disclosure can be used in various fields where battery use or power storage is expected.
  • the packaged solid state battery of the present disclosure can be used in the electronics packaging field.
  • the electricity, information, and communication fields where mobile devices are used e.g., mobile phones, smartphones, notebook computers, digital cameras, activity monitors, arm computers, electronic paper, RFID tags, card-type electronic money, smart watches, etc.
  • electric/electronic equipment field or mobile equipment field including small electronic equipment, household and small industrial applications (e.g. power tools, golf carts, home/nursing care/industrial robots), large industrial applications (e.g.
  • forklifts, elevators, harbor cranes e.g., transportation systems (e.g., hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), power system applications (e.g., various types of power generation, road conditioners, etc.) , smart grids, household energy storage systems, etc.), medical applications (medical devices such as earphones and hearing aids), pharmaceutical applications (medication management systems, etc.), IoT fields, and space/deep sea applications (e.g. The present disclosure can also be used in fields such as , space probes, and underwater research vessels).
  • transportation systems e.g., hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.
  • power system applications e.g., various types of power generation, road conditioners, etc.
  • smart grids e.g., smart grids, household energy storage systems, etc.
  • medical applications medical devices such as earphones and hearing aids
  • pharmaceutical applications medication management systems,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

体積変化に基づく応力を緩和することができる、固体電池および電子デバイスを提供する。正極層110、負極層120、および正極層110と負極層120との間に介在する固体電解質層130を積層させた複数の固体電池要素141と、各固体電池要素141の間に位置する層間導通層170と、を備え、層間導通層170は、一方の固体電池要素141の正極層110または負極層120と、他方の固体電池要素141の正極層110または負極層120とで挟まれており、層間導通層170を挟んでいる正極層110または負極層120が固体電解質を含み、層間導通層170を挟んでいる正極層110または負極層120の固体電解質比率は、正極層110または負極層120全体基準で40重量%以上60重量%以下であり、層間導通層170の固体電解質比率は、層間導通層170全体基準で10重量%以上35重量%以下である。

Description

固体電池および電子デバイス
 本開示は、固体電池および電子デバイスに関する。
 従前より、繰り返しの充放電が可能な二次電池は様々な用途に用いられている。例えば、二次電池は、スマートフォンおよびノートパソコン等の電子機器の電源として用いられている。
 二次電池においては、充放電に寄与するイオン移動のための媒体として液体の電解質が一般に使用されている。つまり、いわゆる電解液が二次電池に用いられている。しかしながら、そのような二次電池においては、電解液の漏出を防止する点で安全性が一般に求められる。また、電解液に用いられる有機溶媒等は可燃性物質ゆえ、その点でも安全性が求められる。
 そこで、電解液に代えて、固体電解質を用いた固体電池について研究が進められている。
特開2018-166020号公報
 電池の充放電時において、正極または負極に体積変化が生じることが一般的に知られており、当該体積変化に基づく応力によって、電池の破断が生じる虞がある。当該電池の破断に対して様々な対策が検討されている。
 例えば、特許文献1には、割れや反り、あるいは層間にクラックや剥がれがない全固体電池として、正極層と固体電解質層および負極層と固体電解質の界面が相互に入り組んでいる構成が開示されている。特許文献1によると、各層間での接着強度を増大させることにより、割れや反り、各層間でのクラックや剥がれが発生し難くなっている(特許文献1の段落[0022]参照)。
 しかしながら、特許文献1に記載の全固体電池は、体積変化に基づく応力を逃がす構成(緩和する構成)となっておらず、応力が蓄積されることによって電池の破断に至る虞があった。
 本開示は、かかる課題に鑑みて為されたものである。即ち、本開示の主たる目的は、体積変化に基づく応力を緩和することができる、固体電池および電子デバイスを提供することである。
 本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された固体電池に至った。
 本開示に係る固体電池は、
 正極層、負極層、および前記正極層と前記負極層との間に介在する固体電解質層を積層させた複数の固体電池要素と、
 各前記固体電池要素の間に位置する層間導通層と、を備え、
 前記層間導通層は、一方の固体電池要素の正極層または負極層と、他方の固体電池要素の正極層または負極層とで挟まれており、
 前記層間導通層を挟んでいる前記正極層または負極層が固体電解質を含み、
 前記層間導通層を挟んでいる前記正極層または負極層の固体電解質比率は、正極層または負極層全体基準で40重量%以上60重量%以下であり、
 前記層間導通層の固体電解質比率は、層間導通層全体基準で10重量%以上35重量%以下である。
 また、本開示に係る電子デバイスは、上述の固体電池が表面実装されている。
 本開示によれば、体積変化に基づく応力を緩和することができる固体電池および電子デバイスを提供することができる。
本開示の固体電池の要部断面図である。 本開示の固体電池の変形例の要部断面図である。 本開示の固体電池の変形例の要部断面図である。 本開示の固体電池の断面図である。 本開示の固体電池の製造工程を示す工程断面図である。
 以下、本開示の「固体電池」および固体電池が表面実装された「電子デバイス」を詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本開示の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。
 まず、本開示の実施形態に係る「固体電池」について説明する。本開示でいう「固体電池」は、広義にはその構成要素が固体から構成されている電池を指し、狭義にはその電池構成要素(特に好ましくは全ての電池構成要素)が固体から構成されている全固体電池を指している。ある好適な態様では、本開示における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼成体とされてよい。なお、「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含する。本開示のある好適な態様に従うと「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものでなく、例えば、蓄電デバイスなども包含し得る。
 本明細書でいう「平面視」とは、固体電池を構成する各層の積層方向に基づく厚み方向に沿って対象物を上側または下側から捉えた場合の形態に基づいている。又、本明細書でいう「断面視」とは、固体電池を構成する各層の積層方向に基づく厚み方向に対して略垂直な方向から捉えた場合の形態(端的にいえば、厚み方向に平行な面で切り取った場合の形態)に基づいている。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。また、本明細書の説明において、方向または向きなどに関する言及は、単に説明の便宜のためであり、特に明示的な説明がされない限り、本開示の範囲を限定することは意図されていない。例えば、「外(または外側)」、「内(または内側)」などの相対的な用語、ならびに、それらの派生用語などは、記載された如くまたは図示される如くの方向に言及すると解すべきである。つまり、特段の明示的な説明がされない限り、特定の方向・向き・形態などにのみ発明が限定されることを要するものではない。また、「設けられ」、「配置され」などの用語、ならびにそれらの派生用語もまた同様であり、特段の明示的な説明がされない限り、直接的な態様に限らず、介在物などの他要素が介在する態様であってよい。
[固体電池の構成]
 固体電池100(図1~4参照)は、正極層110、負極層120および、それらの間に少なくとも介在する固体電解質層130から成る電池構成単位を含んだ固体電池要素141と、各固体電池要素141の間に位置する層間導通層170と、を備えて成る積層体140を有している。層間導通層170は、一方の固体電池要素141の正極層110または負極層120と、他方の固体電池要素141の正極層110または負極層120とで挟まれている。層間導通層170を挟んでいる正極層110または負極層120が固体電解質を含み、層間導通層170を挟んでいる正極層110または負極層120の固体電解質比率は、固体電解質を含む層基準で40重量%以上60重量%以下であり、層間導通層170の固体電解質比率は、固体電解質を含む層基準で10重量%以上35重量%以下である。
 本開示の固体電池100によれば、層間導通層170の固体電解質比率は、層間導通層170を挟んでいる正極層110または負極層120の固体電解質比率よりも小さくなっている。ここで、固体電解質比率が小さいと層構造の強度が低くなる。そのため、層間導通層170の強度は、層間導通層170を挟んでいる正極層110または負極層120の強度よりも比較的低い。したがって、固体電池の内部に応力が蓄積されると、強度の低い層間導通層170に応力を集中させることができる。一例として、層間導通層170に亀裂を生じさせることにより応力を緩和することができる。
 また、層間導通層170は、固体電池要素141と比較して固体電池特性への寄与が低い。そのため、層間導通層170に応力が集中して負荷が掛かり、仮に亀裂が生じても固体電池特性への影響は小さい。言い換えると、層間導通層170側に負荷を掛けることによって、固体電池要素141側に負荷が入ることを低減できるため、固体電池特性の悪化を防ぐことができる。
 さらに、層間導通層170を挟んでいる正極層110または負極層120の固体電解質比率および層間導通層170の固体電解質比率を上記数値範囲とすることによって、固体電池の生産適性を維持させることもできる。以下、本開示の固体電池を詳述する。
1.固体電池要素
 固体電池要素141は、正極層110、負極層120および、それらの間に少なくとも介在する固体電解質層130から成る電池構成単位である。この固体電池要素141が層間導通層170を介して複数積層されてよい。一例として、図1では、2つの固体電池要素141が層間導通層170を介して積層されてよい。また、他の例として、図3では、4つの固体電池要素141が層間導通層170を介して積層されてよい。より詳述すると、複数の固体電池要素141は、互いに電気的に並列接続されていてよい。複数の固体電池要素を電気的に並列接続することによって所望の電池特性を得ることができる。
 固体電池要素141は、各層が焼成によって形成されてよい。つまり、正極層110、負極層120および固体電解質層130などが焼結層を成していてもよい。好ましくは、正極層110、負極層120および固体電解質層130は、それぞれが互いに一体焼成され、焼結体から構成されてよい。さらに好ましくは、複数の固体電池要素141の間に層間導通層170を介在させた積層体140を一体焼結させて一体焼結体を成していてもよい。なお、本明細書では、正極層および負極層が積層された方向(鉛直方向)を「積層方向」とし、積層方向と交差する方向は、正極層および負極層が延在する水平方向である。
1-1.正極層および負極層
 正極層110は、少なくとも正極活物質層111および正極集電体層112を含む電極層としてよい。ある好適な態様では、正極活物質層111は、正極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されてよい。また、正極集電体層112は、更に固体電解質を含んでいてよい。一方、負極層120は、少なくとも負極活物質層121および負極集電体層122を含む電極層としてよい。ある好適な態様では、負極活物質層121は、負極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されてよい。また、負極集電体層122は、更に固体電解質を含んでいてよい。
 ここで、正極活物質および負極活物質は、固体電池において電子の授受に関与する物質である。固体電解質を介した正極層と負極層との間におけるイオンの移動(又は伝導)と、外部端子を介した正極層と負極層との間における電子の授受が行われることで充放電がなされる。
 図示例(図1~3)は、1つの固体電池要素141あたり、正極活物質層111を1層、正極集電体層112を1層積層させた正極層110および、負極活物質層121を1層、負極集電体層122を1層積層させた負極層120の構成を例示している。しかしながら、積層数はこの例に限られず、活物質層および集電体層を2層以上としてもよい。正極層110または負極層120の膜厚は、5μm以上60μm以下、好ましくは8μm以上50μm以下であってよい。また、5μm以上30μm以下であってもよい。
(正極活物質層)
 正極活物質層111に含まれる正極活物質としては、例えば、リチウム含有化合物またはナトリウム含有化合物としてよい。つまり、リチウムイオンまたはナトリウムイオンを吸蔵放出可能としてよい。リチウム含有化合物の種類は、特に限定されないが、例えば、リチウム遷移金属複合酸化物および/またはリチウム遷移金属リン酸化合物である。リチウム遷移金属複合酸化物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含む酸化物の総称である。リチウム遷移金属リン酸化合物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含むリン酸化合物の総称である。遷移金属元素の種類は、特に限定されないが、例えば、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)および/または鉄(Fe)などである。
 リチウム遷移金属複合酸化物は、例えば、LiM1OおよびLiM2Oのそれぞれで表される化合物などである。リチウム遷移金属リン酸化合物は、例えば、LiM3POで表される化合物などである。ただし、M1、M2およびM3のそれぞれは、1種類または2種類以上の遷移金属元素である。x、yおよびzのそれぞれの値は、任意である。
 具体的には、リチウム遷移金属複合酸化物は、例えば、LiCoO、LiNiO、LiVO、LiCrO、LiMn、LiCo1/3Ni1/3Mn1/3、およびLiNi0.5Mn1.5などである。また、リチウム遷移金属リン酸化合物は、例えば、LiFePO、LiCoPOおよびLiMnPOなどである。リチウム遷移金属複合酸化物(特にLiCoO)は微量(数%程度)の添加元素を含んでもよい。添加元素として、例えば、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、マンガン(Mn)、チタン(Ti)、ホウ素(B)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、タングステン(W)、ジルコニウム(Zr)、イットリウム(Y)、ニオブ(Nb)、カルシウム(Ca)、ストロンチウム(Sr)、ビスマス(Bi)、ナトリウム(Na)、カリウム(K)およびケイ素(Si)からなる群から選択される1種以上の元素が挙げられる。
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。例えば、ナトリウム含有リン酸化合物の場合、Na(PO、NaCoFe(PO、NaNiFe(PO、NaFe(PO、NaFeP、NaFe(PO(P)、およびナトリウム含有層状酸化物としてNaFeOから成る群から選択される少なくとも一種が挙げられる。
 この他、正極活物質は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子等でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガン等でもよい。二硫化物は、例えば、二硫化チタンまたは硫化モリブデン等である。カルコゲン化物は、例えば、セレン化ニオブ等でもよい。導電性高分子は、例えば、ジスルフィド、ポリピロール、ポリアニリン、ポリチオフェン、ポリパラスチレン、ポリアセチレンまたはポリアセン等でもよい。
 正極活物質層111における正極活物質の含有量は通常、正極活物質層111の全量に対して、50重量%以上であり、例えば60重量%以上である。正極活物質層111は2種以上の正極活物質を含んでもよく、その場合、それらの合計含有量が上記範囲内であればよい。当該活物質の含有量が50質量%以上であることで、電池のエネルギー密度を特に高めることができる。
(負極活物質層)
 負極活物質層121に含まれる負極活物質としては、例えば、炭素材料、金属系材料、リチウム合金および/またはリチウム含有化合物などである。
 具体的には、炭素材料は、例えば、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、メソカーボンマイクロビーズ(MCMB)および/または高配向性グラファイト(HOPG)などである。
 金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称である。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよい。ここで説明する単体の純度は、必ずしも100%に限られないため、その単体は、微量の不純物を含んでいてもよい。
 金属元素および半金族元素は、例えば、ケイ素(Si)、スズ(Sn)、アルミニウム(Al)、インジウム(In)、マグネシウム(Mg)、ホウ素(B)、ガリウム(Ga)、ゲルマニウム(Ge)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、チタン(Ti)、クロム(Cr)、鉄(Fe)、ニオブ(Nb)、モリブデン(Mo)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)および/または白金(Pt)などである。
 具体的には、金属系材料は、例えば、Si、Sn、SiB、TiSi、SiC、Si、SiO(0<v≦2)、LiSiO、SnO(0<w≦2)、SnSiO、LiSnOおよび/またはMgSnなどである。
 リチウム含有化合物は、例えば、リチウム遷移金属複合酸化物などである。リチウム遷移金属複合酸化物に関する定義は、上述のとおりである。具体的には、リチウム遷移金属複酸化物は、例えば、Li(PO、LiFe(PO、LiTi12、LiTi(PO、および/またはLiCuPOなどである。
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。
 負極活物質層121における負極活物質の含有量は通常、負極活物質部分の全量に対して、50重量%以上であり、例えば60重量%以上である。負極活物質部分は2種以上の負極活物質を含んでもよく、その場合、それらの合計含有量が上記範囲内であればよい。当該活物質の含有量が50質量%以上であることで、電池のエネルギー密度を特に高めることができる。
 好ましい活物質層の態様として、正極活物質層111および/または負極活物質層121は、導電材を含んでいてもよい。正極活物質層111および/または負極活物質層121に含まれる導電材としては、例えば、炭素材料および金属材料などである。具体的には、炭素材料は、例えば、黒鉛およびカーボンナノチューブなどである。金属材料は、例えば、銅(Cu)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、金(Au)、白金(Pt)、銀(Ag)および/またはパラジウム(Pd)などであり、それらの2種類以上の合金でもよい。
 また、正極活物質層111および/または負極活物質層121は、結着剤を含んでいてもよい。結着剤としては、例えば、合成ゴムおよび高分子材料などのうちのいずれか1種類または2種類以上である。具体的には、合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよび/またはエチレンプロピレンジエンなどである。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミドおよびアクリル樹脂から成る群から選択される少なくとも1種を挙げることができる。
 また、正極活物質層111および/または負極活物質層121は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。
 また、正極活物質層111および負極活物質層121の各厚みは特に限定されず、例えば、それぞれ独立して、2μm以上100μm以下であってよく、特に5μm以上50μm以下であってもよい。
 また、後述する層間導通層170の両側に位置する正極活物質層111または負極活物質層121は、対向する対極の活物質層よりも内側に配置されてよい。具体的に図示例(図1)において、正極活物質層111は、対向する負極活物質層121よりも内側に配置されてよい。上記配置は、負極と対向していない正極部分が存在すると、負極側でデンドライトが発生し短絡の可能性があることに起因する。また、本開示の固体電池において、互いに対極する活物質層同士が対向する領域Aでは、充放電により圧縮応力がかかり、互いに対極する活物質層同士が対向しない領域Bでは、充放電により引張応力がかかるが、後述する層間導通層170により適切に応力を緩和させることができる。
(正極集電体層および負極集電体層)
 正極集電体層112および負極集電体層122は、正極活物質層111および負極活物質層121よりも電子導電率が高いことが好ましい。言い換えると、正極集電体層112および負極集電体層122は、正極層110同士または負極層120同士を集電させるためのものである。具体的な構成材料として、正極集電体層112および負極集電体層122は、導電材料および固体電解質を含有してよい。
 正極集電体層112に用いられる導電材料は、例えば、炭素材料、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルリチウム遷移金属複合酸化物およびリチウム遷移金属リン酸化合物から成る群から選択される少なくとも1種を用いてよい。
 負極集電体層122に用いられる導電材料は、炭素材料、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケルから成る群から選択される少なくとも1種を用いてよい。
 固体電解質の具体的な材料は、後述する「1-2.固体電解質層」で詳述する。
 固体電解質比率は、正極集電体層112または負極集電体層122の全体基準で40重量%以上60重量%以下である。なお、本開示において正極集電体層112および負極集電体層122は、導電材料および固体電解質から構成されているため、集電体層における固体電解質比率が全体基準で40重量%である場合、導電材料は60重量%である。また、集電体層における固体電解質比率が全体基準で60重量%である場合、導電材料は40重量%である。当該数値範囲を充足していれば、正極集電体層112および負極集電体層122の強度を高めることができる。したがって、固体電池内部に応力が蓄積されても、正極集電体層112および負極集電体層122の破断を低減することができる。なお、当該固体電解質比率の数値範囲の詳細は、後述の「実施例」にて詳述する。
 正極集電体層112および/または負極集電体層122が焼成体の形態を有してよい。つまり、上述した、導電材料、固体電解質の他に、活物質、結着剤および/または焼結助剤を含む焼成体より構成されてもよい。さらに、正極集電体層112および/または負極集電体層122が耐熱性樹脂を含んでいてもよい。集電体層に耐熱樹脂を含む場合、集電体層の膨張によって生じる亀裂を抑制することができる。
 正極集電体層112および負極集電体層122の各厚みは特に限定されず、例えば、それぞれ独立して、1μm以上100μm以下であってよく、特に1μm以上50μm以下であってもよい。
 好ましい正極集電体層112および負極集電体層122の態様として、層間導通層170を挟んでいる正極集電体層112または負極集電体層122は、層間導通層170の両側に位置する正極活物質層111または負極活物質層121より露出していてよい。本明細書でいう「層間導通層を挟んでいる集電体層は、層間導通層の両側に位置する活物質層より露出する態様」とは、層間導通層を挟んでいる集電体層が層間導通層の両側に位置する活物質層に対して露出する態様を意図している。言い換えると、層間導通層を挟んでいる集電体層の長さが層間導通層の両側に位置する活物質層よりも長くなっているが故に露出している態様を意図している。図示例(図1)では、正極集電体層112は固体電池要素141から露出するように伸びているが、正極活物質層111は固体電池要素141から露出するように伸びていなくてもよい。このような構成とすることにより、固体電池要素141から露出する正極集電体層112および負極集電体層122を端子電極151,152と適切に配線することができる。また、電子の授受に関与する正極活物質層111または負極活物質層121を露出させずに適切に保護することもできる。
1-2.固体電解質層
 固体電解質層130を構成する固体電解質は、リチウムイオンまたはナトリウムイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質は、正極層110と負極層120との間においてリチウムイオンまたはナトリウムイオンが伝導可能な層を成している。なお、固体電解質層は、正極層110と負極層120との間に少なくとも設けられていればよい。固体電解質層に含まれる具体的な固体電解質としては、例えば、結晶性固体電解質、ガラス系固体電解質およびガラスセラミックス系固体電解質などのうちのいずれか1種類または2種類以上を含んでいる。
 結晶性固体電解質は、例えば、酸化物系結晶材および硫化物系結晶材などがある。酸化物系結晶材は、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物、酸化物ガラスセラミックス系リチウムイオン伝導体等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、チタン(Ti)、ゲルマニウム(Ge)、アルミニウム(Al)、ガリウム(Ga)およびジルコニウム(Zr)から成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。また、硫化物系結晶材は、thio-LISICONが挙げられ、例えばLi3.25Ge0.250.75およびLi10GeP12などである。結晶性固体電解質は、高分子材(例えば、ポリエチレンオキシド(PEO)など)を含んでいてもよい。
 ガラス系固体電解質は、例えば、酸化物系ガラス材および硫化物系ガラス材などがある。酸化物系ガラス材は、例えば、LiO-SiO、LiO-Al-TiO-P、54LiO・11SiO・35B、50LiSiO・50LiBO、23.3LiO-76.7GeOおよび/または60LiO-40P5、などがある。言い換えると、酸化物系ガラス材は、リチウム、ケイ素およびホウ素から成る群から選択される少なくとも一種を含んでよい。また、酸化物系ガラス材は、酸化リチウムを必須とし、酸化ゲルマニウム、酸化ケイ素、酸化ホウ素および酸化リンから成る群から選択される少なくとも一種を含んでよい。また、硫化物系ガラス材は、例えば、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、70LiS・30Pおよび/または50LiS・50GeSなどがある。
 ガラスセラミックス系固体電解質は、例えば、酸化物系ガラスセラミックス材および硫化物系ガラスセラミックス材などである。酸化物系ガラスセラミックス材としては、例えば、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)を用いることができる。LATPは、例えばLi1.07Al0.69Ti1.46(POなどである。また、LAGPは、例えばLi1.5Al0.5Ge1.5(PO)などである。言い換えると、酸化物系ガラスセラミック材は、リチウム、ケイ素およびホウ素から成る群から選択される少なくとも一種を含んでよい。例えば、90LiBO-10LiSOが挙げられる。また、酸化物系ガラスセラミック材は、酸化リチウムを必須とし、酸化ゲルマニウム、酸化ケイ素、酸化ホウ素および酸化リンから成る群から選択される少なくとも一種を含んでよい。また、硫化物系ガラスセラミックス材としては、例えば、Li11およびLi3.250.95などがある。
 大気安定性に優れ、一体焼結を容易に成し得る観点をより重視すると、固体電解質は、酸化物系結晶材、酸化物系ガラス材および酸化物系ガラスセラミックス材から成る群から選択される少なくとも一種を含んでいてもよい。
 また、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、Na(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。
 固体電解質層は、結着剤および/または焼結助剤を含んでいてもよい。固体電解質層に含まれる結着剤および/または焼結助剤は、例えば、正極活物質部分および/または負極活物質部分に含まれ得る結着剤および/または焼結助剤と同様の材料から選択されてもよい。
 固体電解質層の厚みは特に限定されず、例えば、1μm以上15μm以下であってよく、特に1μm以上5μm以下であってもよい。
 好ましい固体電解質層130の態様として、固体電解質層130は、層間導通層170の片側側面と、層間導通層170を挟んでいる正極層110または負極層120の片側側面を被覆してよい。図示例(図1)では、固体電解質層130は、層間導通層170を挟んでいる正極活物質層111および正極集電体層112の片側側面ならびに層間導通層170の片側側面を被覆してよい。このような被覆態様によれば、正極層110または負極層120の片側側面が固体電解質層で被覆されているため、意図せぬ電極層の短絡を防ぐことができる。
 さらに好ましい固体電解質層130の被覆態様として、固体電解質層130は、層間導通層170を挟んでいる集電層および活物質層を跨ぐように被覆してよい。言い換えると、集電層が固体電池要素から露出する側面を除く集電層の外面および活物質層の外面が固体電解質層130によって被覆されていてよい。上記被覆態様によれば、意図せぬ電極層の短絡を効果的に防ぐことができる。
2.層間導通層
 層間導通層170は、固体電池要素141の間に位置している。詳述すると、層間導通層170は、一方の固体電池要素141の正極層110または負極層120と、他方の固体電池要素141の正極層110または負極層120とで挟まれている。
 一例を示す図1では、層間導通層170は、正極層110で挟まれていてよい。なお、この例に限定されるものではなく、層間導通層170は、負極層120で挟まれていてもよい(図2参照)。つまり、層間導通層170は、互いに同じ極性の電極層で挟まれてよい。これにより、同じ極性同士の電極層を導通させることができる。
 層間導通層170は、導電性を有している。そのため、積層方向の両側で層間導通層170と接している正極層110同士または負極層120同士を導通させることができる。
 層間導通層170に用いられる構成材料は、導電材料および固体電解質を含有してよい。
 正極集電体層112同士を電気的に接続する層間導通層170に用いられる導電材料は、例えば、炭素材料、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルリチウム遷移金属複合酸化物およびリチウム遷移金属リン酸化合物から成る群から選択される少なくとも1種を用いてよい。
 負極集電体層122同士を電気的に接続する層間導通層170に用いられる導電材料は、炭素材料、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケルから成る群から選択される少なくとも1種を用いてよい。
 固体電解質の具体的な材料は、「1-2.固体電解質層」で詳述した材料を用いてよい。さらに、固体電解質比率は、層間導通層170の全体基準で10重量%以上35重量%以下である。なお、本開示において層間導通層は、導電材料および固体電解質から構成されているため、層間導通層における固体電解質比率が全体基準で10重量%である場合、導電材料は90重量%であり、層間導通層における固体電解質比率が全体基準で35重量%である場合、導電材料は65重量%である。当該数値範囲に含まれていれば、層間導通層170の強度について、層間導通層170を挟んでいる正極層110または負極層120の強度よりも低くすることができる。したがって、固体電池の内部に応力が蓄積されると、強度の低い層間導通層170に応力を集中させることができ、一例として、層間導通層170に亀裂を生じさせることにより応力を緩和することができる。なお、層間導通層170の固体電解質が10重量%以下であると、焼結体としての形状維持が困難である。そのため、少なくとも層間導通層170は固体電解質を10重量%以上としている。固体電解質比率の数値範囲の詳細は、後述の「実施例」にて詳述する。
 次に、本開示の固体電池の付加的な構成として、端子電極、絶縁外層、被覆絶縁膜、無機膜、支持基板について説明する。
3.端子電極
 端子電極は、積層体140の端面に設けられている。一例として、図4では、積層体140の積層の方向と交差する方向に位置する積層体140の側面にそれぞれに端子電極151,152が設けられてよい。
 端子電極は、より詳述すると、正極層110と接続された正極側の端子電極151と、負極層120と接続された負極側の端子電極152とが設けられており、正極側の端子電極151は、一側面(図4では、右側)に形成され、負極側の端子電極152は、正極側の端子電極151と対向するように(図4では、左側)設けられていてもよい。
 端子電極151,152は、導電材料を含んでよい。導電材料は、導電性を有する材料であり、具体的には、炭素材料や金属材料が挙げられる。なお、本明細書でいう「導電性」とは、体積抵抗率が10Ω・cm以下であることを意味する。
 金属材料は、導電性を有していれば特に制限されるものではないが、銀、金、プラチナ、アルミニウム、銅、パラジウム、亜鉛、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。また、AgコートCuおよび/またはAgコートCuNiなどの複合金属でもよい。なお、導電率が高く、かつ、高温高湿の環境下でも導電率の変化が小さいことから、好ましい金属材料として、銀が挙げられる。
4.絶縁外層
 本開示の固体電池の付加的構成として、絶縁外層160を備えていてよい。具体的には、積層体140の外側には、絶縁外層160が設けられてよい(図1~3参照)。絶縁外層160は、一般に積層体140の最外側に形成され得るもので、電気的、物理的および/または化学的に積層体140を保護するためのものである。特に、絶縁外層160は、固体電池100の頂面側の絶縁外層160および底面側の絶縁外層160を備えている。また、端子電極151,152が設けられていない積層体140の側面(図4において紙面垂直方向の固体電池要素141の側面)に絶縁外層160が設けられていてもよい。絶縁外層を構成する材料としては、絶縁性、耐久性および/または耐湿性に優れ、環境的に安全であることが好ましく、例えば樹脂材、ガラス材および/またはセラミック材を含むものであってよい。さらに、絶縁外層は、一体焼成による製造のため、焼成体の形態を有していてもよい。なお、絶縁外層160を設けず、その他樹脂やセラミックパッケージに包含されていてもよい。
5.被覆絶縁膜
 本開示の固体電池の付加的構成として、被覆絶縁膜200を備えていてよい。被覆絶縁膜200は、端子電極151,152および積層体140を覆うように設けられてよい(図4参照)。被覆絶縁膜200は樹脂に相当することが好ましい。つまり、被覆絶縁膜200は樹脂材を含むことが好ましい。図4に示される態様から分かるように、支持基板400上に設けられた積層体140が被覆絶縁膜200の樹脂材で封止されていることを意味している。このような樹脂材から成る被覆絶縁膜200は、後述する無機膜300と相俟って好適に水分の侵入を低減に資する。
 被覆絶縁膜の材質は、絶縁性を呈するものであればいずれの種類であってよい。例えば被覆絶縁膜が樹脂を含む場合、その樹脂は熱硬化性樹脂または熱可塑性樹脂のいずれであってもよい。特に制限されるわけではないが、被覆絶縁膜の具体的な樹脂材としては、例えばエポキシ系樹脂、シリコーン系樹脂および/または液晶ポリマーなどを挙げることができる。あくまでも例示にすぎないが、被覆絶縁膜の厚さは、30μm以上1000μm以下であってよく、例えば50μm以上300μm以下である。
 なお、固体電池において、被覆絶縁膜が必須というわけではなく、被覆絶縁膜が設けられていない固体電池も考えられる。
6.無機膜
 本開示の固体電池の付加的構成として、被覆絶縁膜200を覆う無機膜300を設けてもよい。図4に示されるように、無機膜300は、被覆絶縁膜200上に位置付けられているので、被覆絶縁膜200とともに、支持基板400上の積層体140を全体として大きく包み込む形態を有している。
 無機膜300は、薄膜形態を有することが好ましい。薄膜形態を有する無機膜に資するものであれば、無機膜の材質は特に制限されず、金属、ガラス、酸化物セラミックスまたは、それらの混合物などであってもよい。ある好適な態様では無機膜が金属成分を含んでよい。つまり、無機膜が好ましくは金属薄膜でよい。あくまでも例示にすぎないが、このような無機膜の厚さは、0.1μm以上100μm以下であってよく、例えば1μm以上50μm以下である。
 特に製法に依拠していえば、無機膜300は、乾式めっき膜であってよい。かかる乾式めっき膜は、物理的気相成長法(PVD)や化学的気相成長法(CVD)といった気相法で得られる膜であって、ナノオーダーまたはミクロンオーダーの非常に小さい厚さを有している。このような薄い乾式めっき膜は、よりコンパクトなパッケージ化に資する。
 乾式めっき膜は、例えば、アルミニウム(Al)、ニッケル(Ni)、パラジウム(Pd)、銀(Ag)、スズ(Sn)、金(Au)、銅(Cu)、チタン(Ti)、白金(Pt)、ケイ素/シリコン(Si)およびSUSなどから成る群から選択される少なくとも1種の金属成分・半金属成分、無機酸化物ならびに/またはガラス成分などから成るものであってよい。このような成分から成る乾式めっき膜は、化学的および/または熱的に安定するので、耐薬品性、耐候性および/または耐熱性などに優れ、長期信頼性がより向上した固体電池がもたらされ得る。
 なお、固体電池において、無機膜が必須というわけではなく、無機膜が設けられていない固体電池も考えられる。
7.支持基板
 本開示の固体電池の付加的構成として、支持基板400を備えてよい。支持基板400は、積層体140が支持されるように設けられた基板である。“支持”に供すべく固体電池の主面を成す一方の側に支持基板が位置付けられている。また、“基板”ゆえ全体として薄板状の形態を好ましくは有している。
 支持基板400は、例えば、樹脂基板、セラミック基板であってもよく、耐水性を有する基板が好ましい。ある好適な態様では支持基板400が、セラミック基板でよい。つまり、支持基板400はセラミックを含み、それが基板の母材成分を占めてよい。セラミックから成る支持基板は、水蒸気透過防止に資するところ、基板実装における耐熱性などの点でも好ましい基板である。このようなセラミック基板は、焼成を通じて得ることができ、例えばグリーンシート積層体の焼成によって得ることができる。これにつき、セラミック基板は、例えばLTCC基板(LTCC:Low Temperature Co-fired Ceramics)であってよく、あるいは、HTCC基板(HTCC:High Temperature Co-fired Ceramics)であってもよい。あくまでも例示にすぎないが、支持基板の厚さは、20μm以上1000μm以下であってよく、例えば100μm以上300μm以下である。
 また、支持基板400は、積層体140の端子基板として機能してよい。すなわち、基板が介在するような形態でパッケージ化された固体電池をプリント配線板などの別の2次基板上に実装し得る。例えば、半田リフローなどを通じで、支持基板を介して固体電池を表面実装でき得る。このようなことから、パッケージ化された固体電池は、SMDタイプの電池であってよい。特に端子基板がセラミック基板から成る場合、固体電池は、耐熱性が高く、半田実装可能なSMDタイプの電池となり得る。
 端子基板ゆえ、配線を有していることが好ましく、特に、上下表面または上下表層を電気的に結線する配線410(図4参照)を備えていることが好ましい。つまり、ある好適な態様の支持基板は、当該基板の上下面を電気的に結線する配線を備え、パッケージ化された固体電池の外部端子のための端子基板でよい。
 端子基板における配線410は、特に制限されず、当該基板の上面と下面との間の電気接続に資するものであれば、いずれの形態を有していてもよい。電気接続に資するがゆえ、端子基板における配線410は、基板の導電性部分であるともいえる。そのような基板の導電性部分は、配線層、ビアおよび/またはランドなどの形態を有していてよい。例えば、図4に示す態様では、支持基板400にビア412および/またはランド411が設けられている。ここでいう「ビア」は、支持基板の上下方向、すなわち基板厚み方向を電気的に接続するための部材を指しており、例えばフィルドビアなどが好ましく、また、インナービアの形態などであってもよい。また、本明細書でいう「ランド」は、支持基板の上側主面および/または下側主面に設けられた電気接続のための端子部分・接続部分(好ましくはビアと接続されている端子部分・接続部分)を指しており、例えば角ランドであってよいし、あるいは、丸ランドなどであってもよい。
[電子デバイスの構成]
 本開示の電子デバイスは、上述した固体電池が、表面実装されたものである。具体的には、支持基板400の配線によって固体電池の表面実装を可能とされている。本明細書でいう「表面実装」とは、基板上に形成されたパターンに直接固体電池を固定する技術を意図している。一例として、上述した固体電池1は、プリント基板等に実装されパッケージ化されてよい。さらに、固体電池以外の電子部品を搭載していてもよい。
[固体電池の製造方法]
 本開示の固体電池の製造は、(1)積層体の準備、(2)端子電極材料の準備、(3)積層体の焼成、(4)端子電極材料の塗布、(5)端子電極材料の硬化、(6)支持基板への固定、(7)被覆絶縁膜および無機膜の形成、を含むプロセスを経て行われる。以下、順を追って説明する。
(1)積層体の準備(図5(a),(b)参照)
 積層体の製造に際して、固体電解質を含むシート、正極活物質層用ペースト、正極集電体層用ペースト、負極活物質層用ペースト、負極集電体層用ペースト、層間導通層用ペーストを作製する。
 固体電解質を含むシートは、固体電解質、有機バインダ、溶剤および任意の添加剤を混合してスラリーを調製し、調製されたスラリーから、焼成によってシートが形成される。
 正極活物質用ペーストは、正極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して作製される。正極集電体層用ペーストは、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して作製される。正極集電体層用ペーストにおける固体電解質比率は、全体基準で40重量%以上60重量%以下である。
 負極活物質用ペーストは、負極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して作製される。負極集電体層用ペーストは、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して作製される。負極集電体層用ペーストにおける固体電解質比率は、全体基準で40重量%以上60重量%以下である。
 層間導通層用ペーストは、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して作製される。層間導通層用ペーストにおける固体電解質比率は、全体基準で10重量%以上35重量%以下である。
 上記ペーストを準備した後に、積層体の準備に移る。固体電解質を含むシートS上に負極集電体層用ペーストP22を印刷し、負極集電体層用ペーストP22の上に負極活物質用ペーストP21を印刷する。また、必要に応じて固体電解質として作用する固体電解質部Nを印刷してもよい(図5(b)参照)。固体電解質部Nは、固体電解質、有機バインダ、溶剤および任意の添加剤を混合してスラリーを意図している。
 また、固体電解質を含む別のシートS上に正極活物質用ペーストP11を印刷し、正極活物質用ペーストP11の上に正極集電体層用ペーストP12を印刷する。必要に応じて固体電解質として作用する固体電解質部Nを印刷してもよい(図5(a)参照)。正極集電体層用ペーストの上に層間導通層用ペーストP30を印刷する。層間導通層用ペーストP30の上に、正極集電体層用ペーストP12および正極活物質用ペーストP11を順に印刷する。必要に応じて固体電解質として作用する固体電解質部Nを印刷してもよい。これら負極用ペーストを印刷したシートと、正極用ペーストを印刷したシートとを交互に積層して積層体を得る。なお、積層体の最外層(最上層および/または最下層)についていえば、それが電解質層でも絶縁層でもよく、あるいは、電極層であってもよい。
(2)端子電極材料の準備
 まず、端子電極151,152の材料となる端子電極材料(一例として、導電性ペースト)を準備する。導電材料としてAgを準備する。ここで、付加的要素として、さらに、樹脂および溶剤をさらに含有させて端子電極材料としてもよい。なお、本明細書でいう「端子電極材料」とは、流体力学的な意味における流れを形成することができる材料、または、そのような流れを維持することができる材料のことをいう。そのような材料の例は、ペースト、溶液又は懸濁液等の液状体が挙げられる。
 溶剤は、上述の樹脂バインダを溶解するものであり、例えば、有機溶剤を用いてよい。有機溶剤としては、特に制限されるわけではないが、メタノール、エタノール、1-プロパノール、2-プロパノール、ヘキサノール、シクロヘキサノールを含むアルコール類、エチレングリコール、プロピレングリコールを含むグリコール類、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトンを含むケトン類、α-テルピネオール、β-テルピネオール、γ-テルピネオールを含むテルペン類、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテル類、ジエチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、エチレングリコールジアルキルエーテルアセテート類、ジエチレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、プロピレングリコールジアルキルエーテルアセテート類および/またはモノアルキルセロソルブ類を単独で用いることができる他、これらの溶剤から選ばれた少なくとも1種類または2種類以上の溶剤から成る混合物も用いることができる。有機溶剤の一例として、好ましくは、ターピネオールなどのアルコール系溶剤が用いられる。また、溶剤には、分散材が添加されていてもよい。
 端子電極材料を準備後に、当該端子電極材料を、電池素体における正極露出側面および負極露出側面に対して塗布する。
(3)積層体の焼成
 積層体の焼成は、あくまでも例示にすぎないが、所望の焼成温度(例えば、焼成ピーク温度が300℃~600℃の範囲)において、酸素ガスを含む窒素ガス雰囲気中または大気中で加熱することによって実施する。焼成は、積層方向(場合によっては積層方向および当該積層方向に対する垂直方向)で積層体前駆体を加圧しながら行ってよい。
(4)端子電極材料の塗布
 端子電極材料を準備後に、当該端子電極材料を、積層体における正極露出側面および負極露出側面に対して塗布する。
(5)端子電極材料の硬化
 所望の硬化温度(例えば、100℃~300℃の範囲)において、正極露出側面および負極露出側面に対して塗布した積層体を硬化させる。
(6)支持基板への固定
 支持基板は、二次基板への表面実装可能とするため、ビアおよび/またはランドが設けられている。例えば、複数のグリーンシートを積層して焼成することによって得ることができる。これは支持基板がセラミック基板である場合に特にいえる。支持基板の調製は、例えばLTCC基板の作成に準じて行うことができる。
 支持基板における、ビアおよび/またはランドの製造は、例えば、パンチプレスまたは炭酸ガスレーザなどによって孔(径サイズ:約50μm以上200μm以下)を形成し、その孔に導電性ペースト材料を充填する手法、あるいは、印刷法を用いる手法によって製造される。
 支持基板を製造した後に、当該支持基板の導電性部分と積層体の端子電極とが互いに電気的に接続されるように配置する。そして、導電性ペーストを支持基板上に供し、それによって、支持基板の導電性部分と端子電極とを互いに電気的に接続するようにしてよい。導電性ペーストには、Ag導電ペーストの他、ナノペーストや合金系ペースト、ロー材など、形成後にフラックスなどの洗浄を必要としない導電性ペーストを用いることができる。
(7)被覆絶縁膜および無機膜の形成
 次いで、支持基板上の積層体が覆われるように被覆絶縁膜を形成する。それゆえ、支持基板上の電池素体が全体的に覆われるように被覆絶縁膜の原料を供する。被覆絶縁膜が樹脂材から成る場合、樹脂前駆体を支持基板上に設けて硬化などに付して被覆絶縁膜を成型する。
 ある好適な態様では、金型で加圧に付すことを通じて被覆絶縁膜の成型を行ってもよい。例示にすぎないが、コンプレッション・モールドを通じて支持基板上の電池素体を封止する被覆絶縁膜を成型してよい。一般的にモールドで用いられる樹脂材であるならば、被覆絶縁膜の原料の形態は、顆粒状でもよく、また、その種類は熱可塑性であってもよい。なお、このような成型は、金型成型に限らず、研磨加工、レーザー加工および/または化学的処理などを通じて行ってもよい。
 次いで、無機膜を形成する。無機膜は、例えば、乾式めっきを実施し、無機膜として乾式めっき膜をとしてよい。より具体的には、乾式めっきを実施し、被覆前駆体の底面以外(即ち、支持基板の底面以外)の露出面に対して無機膜を形成する。ある好適な態様では、スパッタリングを実施し、スパッタ膜を被覆前駆体の底面以外の露出外面に形成する。
 以上のような工程を経ることによって、本開示の固体電池を最終的に得ることができる。
 本開示の固体電池に関して実証試験を行った。具体的には、以下に示す実施例1~5および比較例1~5の固体電池を製造した。
<実施例における共通の構成>
 実施例1~5の固体電池として、図1に示すとおり、2つの固体電池要素141が層間導通層170を介して積層され、層間導通層170が正極層110で挟まれた構造を採用した。各層の材料としては、一例として、正極活物質層111をLiCoOとし、正極集電体層112,負極活物質層121,負極集電体層122および層間導通層170は、炭素材料とした。なお、各層の材料および積層数等は、この例に限定されるものではない。
<実施例1特有の構成>
 実施例1の固体電池として、正極集電体層および層間導通層の固体電解質比率を以下のように設定した。
 正極集電体層:導電材料(50重量%)、固体電解質(50重量%)
 層間導通層:導電材料(80重量%)、固体電解質(20重量%)
<実施例2特有の構成>
 実施例2の固体電池として、正極集電体層および層間導通層の固体電解質比率を以下のように設定した。
 正極集電体層:導電材料(50重量%)、固体電解質(50重量%)
 層間導通層:導電材料(90重量%)、固体電解質(10重量%)
<実施例3特有の構成>
 実施例3の固体電池として、正極集電体層および層間導通層の固体電解質比率を以下のように設定した。
 正極集電体層:導電材料(50重量%)、固体電解質(50重量%)
 層間導通層:導電材料(65重量%)、固体電解質(35重量%)
<実施例4特有の構成>
 実施例4の固体電池として、正極集電体層および層間導通層の固体電解質比率を以下のように設定した。
 正極集電体層:導電材料(60重量%)、固体電解質(40重量%)
 層間導通層:導電材料(80重量%)、固体電解質(20重量%)
<実施例5特有の構成>
 実施例5の固体電池として、正極集電体層および層間導通層の固体電解質比率を以下のように設定した。
 正極集電体層:導電材料(40重量%)、固体電解質(60重量%)
 層間導通層:導電材料(80重量%)、固体電解質(20重量%)
<比較例1の構成>
 比較例1の固体電池として、層間導通層を設けていない固体電池を製造した。また、正極集電体層は以下のように設定した。
 正極集電体層:導電材料(80重量%)、固体電解質(20重量%)
<比較例2の構成>
 比較例2の固体電池として、実施例1の固体電池の固体電解質比率に代えて、以下のように設定した。
 正極集電体層:導電材料(50重量%)、固体電解質(50重量%)
 層間導通層:導電材料(95重量%)、固体電解質(5重量%)
<比較例3の構成>
 比較例3の固体電池として、実施例1の固体電池の固体電解質比率に代えて、以下のように設定した。
 正極集電体層:導電材料(50重量%)、固体電解質(50重量%)
 層間導通層:導電材料(60重量%)、固体電解質(40重量%)
<比較例4の構成>
 比較例4の固体電池として、実施例1の固体電池の固体電解質比率に代えて、以下のように設定した。
 正極集電体層:導電材料(30重量%)、固体電解質(70重量%)
 層間導通層:導電材料(80重量%)、固体電解質(20重量%)
<比較例5の構成>
 比較例5の固体電池として、実施例1の固体電池の固体電解質比率に代えて、以下のように設定した。
 正極集電体層:導電材料(70重量%)、固体電解質(30重量%)
 層間導通層:導電材料(80重量%)、固体電解質(20重量%)
 上記実施例1~5および比較例1~5の固体電池に対し、高温充放電サイクル短絡試験および生産適性試験を行った。各試験の内容を以下に示す。
-高温充放電サイクル短絡試験-
 東陽システム製の充放電試験装置(TOSCAT-3100)を用いて設計電圧・設計電流にて充放電サイクル試験を行い、固体電池の短絡発生率を確認した。なお、本試験において短絡発生率の指標は以下のとおりである。
 ◎:短絡発生率20%以下
 〇:短絡発生率20%より大きく60%以下
 ×:短絡発生率60%より大きい
-生産適性試験-
 生産適性試験は、固体電池を生産した際に形状異常の有無を目視で検査した。形状異常の発生率の指標は以下のとおりである。
 ◎:形状異常率10%以下
 〇:形状異常率10%より大きく30%以下
 ×:形状異常率30%より大きい
 上記試験結果を下記表に示す。
Figure JPOXMLDOC01-appb-T000001
 上記試験結果によれば、実施例1~実施例5の固体電池は、層間導通層を挟んでいる正極層の固体電解質比率が40重量%以上60重量%以下の範囲にあり、層間導通層の固体電解質比率が固体電解質を含む層基準で10重量%以上35重量%以下にあるため、高温充放電試験および生産適性試験が良好な結果を示した。特に実施例1の固体電池は、実施例2~5の固体電池の実証試験よりも良好な結果を示した。
 一方で、比較例1の固体電池は、層間導通層を備えていないため、固体電池の応力によって短絡が発生した。比較例2の固体電池は、層間導通層の固体電解質比率が低いため、焼結体の形状を維持することができず、そもそも固体電池を製造することができなかった。比較例3および比較例5の固体電池は、層間導通層の固体電解質比率と正極集電体層の固体電解質比率との差が小さいため、強度差による応力緩和効果を得ることができなかった。比較例4の固体電池は、正極集電体層の固体電解質比率が比較的高く高抵抗となったため固体電池として作用せず、高温充放電試験を行うことができなかった。
 上記実証試験(高温充放電試験および生産適性試験)によれば、層間導通層を挟んでいる正極層または負極層の固体電解質比率が40重量%以上60重量%以下の範囲にあり、層間導通層の固体電解質比率が固体電解質を含む層基準で10重量%以上35重量%以下にあれば、体積変化に基づく応力を緩和することができる結果が得られた。
 本開示の固体電池および電子デバイスの態様は、以下のとおりである。
<1>正極層、負極層、および前記正極層と前記負極層との間に介在する固体電解質層を積層させた複数の固体電池要素と、
 各前記固体電池要素の間に位置する層間導通層と、を備え、
 前記層間導通層は、一方の固体電池要素の正極層または負極層と、他方の固体電池要素の正極層または負極層とで挟まれており、
 前記層間導通層を挟んでいる前記正極層または負極層が固体電解質を含み、
 前記層間導通層を挟んでいる前記正極層または負極層の固体電解質比率は、固体電解質を含む層基準で40重量%以上60重量%以下であり、
 前記層間導通層の固体電解質比率は、固体電解質を含む層基準で10重量%以上35重量%以下である、固体電池。
<2>前記正極層または前記負極層は、電極活物質を含む活物質層と、前記層間導通層と接している集電体層と、を含んでおり、
 前記集電体層に前記固体電解質が含まれている、<1>に記載の固体電池。
<3>断面視において、前記集電体層は、前記固体電池要素の端部まで設けられ、前記活物質層は、前記端部よりも内側に位置する、<2>に記載の固体電池。
<4>前記層間導通層の両側に位置する電極層の活物質層は、前記電極層と対向する対極の電極層よりも内側に配置されている、<2>または<3>に記載の固体電池。
<5>前記電極層と対向する対極の電極層が電極活物質を含む活物質層と、前記層間導通層と接している集電体層とを含み、
 前記層間導通層の両側に位置する電極層の活物質層は、前記活物質層よりも内側に配置されている、<4>に記載の固体電池。
<6>前記層間導通層は、互いに同じ極性の電極層で挟まれている、<1>~<5>のいずれか1つに記載の固体電池。
<7>複数の前記固体電池要素は、互いに電気的に並列接続されている、<1>~<6>のいずれか1つに記載の固体電池。
<8>前記層間導通層の片側側面と、前記層間導通層を挟んでいる前記正極層または前記負極層の片側側面は、前記固体電解質層によって被覆されている、<1>~<7>のいずれか1つに記載の固体電池。
<9>前記固体電解質層は、前記層間導通層を挟んでいる前記集電体層および前記活物質層を跨ぐように被覆している、<1>~<8>のいずれか1つに記載の固体電池。
<10>前記固体電池要素が焼結体から構成されている、<1>~<9>のいずれか1つに記載の固体電池。
<11>前記固体電池は、表面実装されるようにパッケージ化されている、<1>~<10>のいずれか1つに記載の固体電池。
<12>前記正極層および前記負極層がリチウムイオンを吸蔵放出可能な層となっている、<1>~<11>のいずれか1つに記載の固体電池。
<13><1>~<12>のいずれか1つに記載された固体電池が、表面実装された電子デバイス。
 なお、今回開示した実施態様は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本開示の技術的範囲は、上記した実施態様のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本開示の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。例えば、固体電池は、略六面体形状に限定されるものではなく、多面体形状、円筒形状、球体形状であってもよい。
 本開示のパッケージ化された固体電池は、電池使用または蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本開示のパッケージ化された固体電池は、エレクトロニクス実装分野で用いることができる。また、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、ならびに、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などにも本開示を利用することができる。
100 固体電池
110 正極層
111 正極活物質層
112 正極集電体層
120 負極層
121 負極活物質層
122 負極集電体層
130 固体電解質層
140 積層体
141 固体電池要素
151 正極層側端子電極
152 負極層側端子電極
160 絶縁外層
170 層間導通層
200 被覆絶縁膜
300 無機膜
400 支持基板
410 配線
411 ランド
412 ビア
S   シート
P11 正極活物質用ペースト
P12 正極集電体層用ペースト
P21 負極活物質用ペースト
P22 負極集電体層用ペースト
P30 層間導通層用ペースト
N   固体電解質部

Claims (13)

  1.  正極層、負極層、および前記正極層と前記負極層との間に介在する固体電解質層を積層させた複数の固体電池要素と、
     各前記固体電池要素の間に位置する層間導通層と、を備え、
     前記層間導通層は、一方の固体電池要素の正極層または負極層と、他方の固体電池要素の正極層または負極層とで挟まれており、
     前記層間導通層を挟んでいる前記正極層または負極層が固体電解質を含み、
     前記層間導通層を挟んでいる前記正極層または負極層の固体電解質比率は、固体電解質を含む層基準で40重量%以上60重量%以下であり、
     前記層間導通層の固体電解質比率は、固体電解質を含む層基準で10重量%以上35重量%以下である、固体電池。
  2.  前記正極層または前記負極層は、電極活物質を含む活物質層と、前記層間導通層と接している集電体層と、を含んでおり、
     前記集電体層に前記固体電解質が含まれている、請求項1に記載の固体電池。
  3.  断面視において、前記集電体層は、前記固体電池要素の端部まで設けられ、前記活物質層は、前記端部よりも内側に位置する、請求項2に記載の固体電池。
  4.  前記層間導通層の両側に位置する電極層の活物質層は、前記電極層と対向する対極の電極層よりも内側に配置されている、請求項2または3に記載の固体電池。
  5.  前記電極層と対向する対極の電極層が電極活物質を含む活物質層と、前記層間導通層と接している集電体層とを含み、
     前記層間導通層の両側に位置する電極層の活物質層は、前記活物質層よりも内側に配置されている、請求項4に記載の固体電池。
  6.  前記層間導通層は、互いに同じ極性の電極層で挟まれている、請求項1~5のいずれか1項に記載の固体電池。
  7.  複数の前記固体電池要素は、互いに電気的に並列接続されている、請求項1~6のいずれか1項に記載の固体電池。
  8.  前記層間導通層の片側側面と、前記層間導通層を挟んでいる前記正極層または前記負極層の片側側面は、前記固体電解質層によって被覆されている、請求項1~7のいずれか1項に記載の固体電池。
  9.  前記固体電解質層は、前記層間導通層を挟んでいる前記集電体層および前記活物質層を跨ぐように被覆している、請求項1~8のいずれか1項に記載の固体電池。
  10.  前記固体電池要素が焼結体から構成されている、請求項1~9のいずれか1項に記載の固体電池。
  11.  前記固体電池は、表面実装されるようにパッケージ化されている、請求項1~10のいずれか1項に記載の固体電池。
  12.  前記正極層および前記負極層がリチウムイオンを吸蔵放出可能な層となっている、請求項1~11のいずれか1項に記載の固体電池。
  13.  請求項1~12のいずれか1項に記載された固体電池が、表面実装された電子デバイス。
PCT/JP2023/023289 2022-07-13 2023-06-23 固体電池および電子デバイス WO2024014260A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-112552 2022-07-13
JP2022112552 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024014260A1 true WO2024014260A1 (ja) 2024-01-18

Family

ID=89536681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023289 WO2024014260A1 (ja) 2022-07-13 2023-06-23 固体電池および電子デバイス

Country Status (1)

Country Link
WO (1) WO2024014260A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033702A1 (ja) * 2009-09-17 2011-03-24 株式会社村田製作所 電池間分離構造体とそれを備えた積層型固体二次電池
WO2020070990A1 (ja) * 2018-10-04 2020-04-09 株式会社村田製作所 固体電池
WO2020116090A1 (ja) * 2018-12-06 2020-06-11 株式会社村田製作所 固体電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011033702A1 (ja) * 2009-09-17 2011-03-24 株式会社村田製作所 電池間分離構造体とそれを備えた積層型固体二次電池
WO2020070990A1 (ja) * 2018-10-04 2020-04-09 株式会社村田製作所 固体電池
WO2020116090A1 (ja) * 2018-12-06 2020-06-11 株式会社村田製作所 固体電池

Similar Documents

Publication Publication Date Title
JP7192866B2 (ja) 固体電池
WO2020195382A1 (ja) 固体電池
JP6295819B2 (ja) 全固体二次電池
JP7484999B2 (ja) 固体電池
JP7207524B2 (ja) 固体電池
JP7405151B2 (ja) 固体電池
JP7107389B2 (ja) 固体電池
WO2021132504A1 (ja) 固体電池
WO2021010231A1 (ja) 固体電池
US20230163365A1 (en) Solid state battery
WO2022004733A1 (ja) 固体電池
WO2024014260A1 (ja) 固体電池および電子デバイス
JP7180685B2 (ja) 固体電池
WO2023189678A1 (ja) 固体電池および電子デバイス
WO2023127247A1 (ja) 固体電池
WO2024009963A1 (ja) 固体電池
WO2022230901A1 (ja) 固体電池パッケージ
JP7472980B2 (ja) 固体電池
WO2023048193A1 (ja) 導電性組成物、導電性組成物を用いた固体電池および固体電池を実装した電子デバイス
WO2023243489A1 (ja) 固体電池パッケージ
JP7259938B2 (ja) 固体電池
JP7131298B2 (ja) 電子部品
WO2023167100A1 (ja) 固体電池パッケージ
WO2023182513A1 (ja) 固体電池パッケージ
JP2023143252A (ja) 固体電池パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839434

Country of ref document: EP

Kind code of ref document: A1