WO2023189678A1 - 固体電池および電子デバイス - Google Patents

固体電池および電子デバイス Download PDF

Info

Publication number
WO2023189678A1
WO2023189678A1 PCT/JP2023/010428 JP2023010428W WO2023189678A1 WO 2023189678 A1 WO2023189678 A1 WO 2023189678A1 JP 2023010428 W JP2023010428 W JP 2023010428W WO 2023189678 A1 WO2023189678 A1 WO 2023189678A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
battery
battery according
layer
oxide
Prior art date
Application number
PCT/JP2023/010428
Other languages
English (en)
French (fr)
Inventor
克明 東
義人 二輪
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023189678A1 publication Critical patent/WO2023189678A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/548Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to solid state batteries and electronic devices.
  • Secondary batteries that can be repeatedly charged and discharged have been used for a variety of purposes.
  • secondary batteries are used as power sources for electronic devices such as smartphones and notebook computers.
  • a liquid electrolyte is generally used as a medium for ion movement that contributes to charging and discharging.
  • electrolytes are used in secondary batteries.
  • safety is generally required in terms of preventing electrolyte leakage.
  • organic solvent used in the electrolyte is a flammable substance, safety is also required in this respect.
  • a solid-state battery has an element body including battery constituent units consisting of a positive electrode layer, a negative electrode layer, and a solid electrolyte between them, and includes terminal electrodes that are electrically connected to the positive electrode layer and the negative electrode layer, respectively.
  • Patent Document 1 describes the selection of a highly conductive material for the terminal electrode, and adopts silver, gold, platinum, aluminum, copper, tin, and nickel.
  • the present disclosure has been made in view of such demands. That is, the main objective of the present disclosure is to provide a solid state battery and an electronic device in which the terminal electrodes of the solid state battery have high adhesiveness.
  • the solid state battery according to the present disclosure includes: a battery element having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer; a terminal electrode provided on an end surface of the battery body and electrically connected to the battery body,
  • the terminal electrode includes a conductive material and a polyester resin.
  • the solid battery described above is surface mounted.
  • the solid-state battery and electronic device According to the solid-state battery and electronic device according to the present disclosure, it is possible to provide a solid-state battery and electronic device with high adhesiveness regarding terminal electrodes.
  • FIG. 1 is a cross-sectional view of main parts of a solid-state battery according to the present disclosure.
  • FIG. 1 is a schematic diagram of a solid state battery according to the present disclosure.
  • FIG. 1 is a schematic diagram of a solid state battery according to the present disclosure.
  • FIG. 1 is a cross-sectional view of a solid state battery according to the present disclosure.
  • solid-state battery and the “electronic device” in which the solid-state battery is surface-mounted according to the present disclosure will be described in detail.
  • the contents shown in the drawings are merely shown schematically and exemplarily for understanding the present disclosure, and the appearance, dimensional ratio, etc. may differ from the actual thing.
  • the term “solid battery” refers to a battery whose components are made of solid matter, and in a narrow sense, it refers to batteries whose battery components (preferably all battery components) are made of solid matter. This refers to all-solid-state batteries.
  • the solid-state battery of the present disclosure is a stacked solid-state battery configured such that layers constituting battery structural units are stacked on each other, and preferably each layer may be a fired body.
  • the term “solid battery” includes not only so-called “secondary batteries” that can be repeatedly charged and discharged, but also "primary batteries” that can only be discharged.
  • the “solid battery” is a secondary battery.
  • the term “secondary battery” is not excessively limited by its name, and may include, for example, power storage devices.
  • planar view is based on the form when the object is viewed from above or below along the thickness direction based on the stacking direction of each layer constituting the solid-state battery.
  • cross-sectional view refers to the form viewed from a direction approximately perpendicular to the thickness direction based on the stacking direction of each layer constituting the solid-state battery (simply put, parallel to the thickness direction). It is based on the shape (when cut on a plane).
  • the "vertical direction” and “horizontal direction” used directly or indirectly in this specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same reference numerals or symbols indicate the same members/parts or the same meanings.
  • the vertically downward direction that is, the direction in which gravity acts
  • the opposite direction corresponds to the "upward direction.”
  • the solid battery 100 includes a battery body 140 including a battery constituent unit consisting of a positive electrode layer 110, a negative electrode layer 120, and at least a solid electrolyte layer 130 interposed between them, and terminal electrodes 151, 152. (See Figure 1). More specifically, the terminal electrodes 151 and 152 are in contact with the outer surface of the battery body 140.
  • the battery body 140 may have its constituent layers formed by firing.
  • the positive electrode layer 110, the negative electrode layer 120, the solid electrolyte layer 130, and the like may form a sintered layer.
  • the positive electrode layer, the negative electrode layer, and the solid electrolyte are each integrally fired with each other and may be composed of a sintered body. Therefore, the battery body may be an integral sintered body.
  • the direction in which the positive electrode layer and the negative electrode layer are stacked (vertical direction)
  • the direction that intersects with the stacking direction is the horizontal direction in which the positive electrode layer and the negative electrode layer extend.
  • the positive electrode layer 110 is an electrode layer that includes at least a positive electrode active material layer 111.
  • the positive electrode layer 110 may further contain a solid electrolyte.
  • the positive electrode layer 110 may be composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles.
  • the negative electrode layer 120 may be an electrode layer including at least the negative electrode active material layer 121. Negative electrode layer 120 may further contain a solid electrolyte.
  • the negative electrode layer 120 may be composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
  • the positive electrode active material and the negative electrode active material are substances that participate in the transfer of electrons in a solid-state battery. Charging and discharging are performed by the movement (or conduction) of ions between the positive and negative electrode layers via the solid electrolyte and the exchange of electrons between the positive and negative electrode layers via the external terminals.
  • the positive electrode layer 110 and the negative electrode layer 120 may include a current collector layer.
  • FIG. 1 shows an example of a structure in which three positive electrode layers 110 and two negative electrode layers 120 are laminated
  • the number of laminated layers is not limited to this example, and may be one layer, or several tens to hundreds of layers. Layers may be laminated.
  • the thickness of the positive electrode layer or the negative electrode layer may be 5 ⁇ m or more and 60 ⁇ m or less, preferably 8 ⁇ m or more and 50 ⁇ m or less. Further, the thickness may be 5 ⁇ m or more and 30 ⁇ m or less.
  • the positive electrode active material contained in the positive electrode active material layer 111 is, for example, a lithium-containing compound or a sodium-containing compound. In other words, it may be possible to insert and release lithium ions or sodium ions.
  • the type of lithium-containing compound is not particularly limited, and examples thereof include a lithium transition metal composite oxide and/or a lithium transition metal phosphate compound.
  • Lithium transition metal composite oxide is a general term for oxides containing lithium and one or more transition metal elements as constituent elements.
  • a lithium transition metal phosphate compound is a general term for phosphoric acid compounds containing lithium and one or more transition metal elements as constituent elements.
  • the type of transition metal element is not particularly limited, and examples thereof include cobalt (Co), nickel (Ni), manganese (Mn), and/or iron (Fe).
  • lithium transition metal composite oxide examples include compounds represented by Li x M1O 2 and Li y M2O 4 .
  • the lithium transition metal phosphate compound is, for example, a compound represented by Li z M3PO 4 .
  • each of M1, M2, and M3 is one or more types of transition metal elements.
  • Each value of x, y and z is arbitrary.
  • lithium transition metal composite oxides include, for example, LiCoO 2 , LiNiO 2 , LiVO 2 , LiCrO 2 , LiMn 2 O 4 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , and LiNi 0 .5 Mn 1.5 O 4 etc.
  • examples of the lithium transition metal phosphate compound include LiFePO 4 , LiCoPO 4 and LiMnPO 4 .
  • the lithium transition metal composite oxide (particularly LiCoO 2 ) may contain a trace amount (about several percent) of an additive element.
  • additive elements include aluminum (Al), magnesium (Mg), nickel (Ni), manganese (Mn), titanium (Ti), boron (B), vanadium (V), chromium (Cr), iron (Fe). , copper (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), tungsten (W), zirconium (Zr), yttrium (Y), niobium (Nb), calcium (Ca), strontium (Sr) , bismuth (Bi), sodium (Na), potassium (K), and silicon (Si).
  • sodium-containing phosphoric acid compounds having a Nasicon-type structure sodium-containing phosphoric acid compounds having an olivine-type structure, sodium-containing layered oxides, and sodium-containing sodium-containing oxides having a spinel-type structure are used. At least one selected from the group consisting of oxides and the like can be mentioned.
  • the sodium- containing layered oxide may include at least one selected from the group consisting of 2FeP2O7 , Na4Fe3 ( PO4 ) 2 ( P2O7 ), and NaFeO2 as the sodium - containing layered oxide.
  • the positive electrode active material may be, for example, an oxide, a disulfide, a chalcogenide, or a conductive polymer.
  • the oxide may be, for example, titanium oxide, vanadium oxide or manganese dioxide.
  • the disulfide is, for example, titanium disulfide or molybdenum sulfide.
  • the chalcogenide may be, for example, niobium selenide.
  • the conductive polymer may be, for example, disulfide, polypyrrole, polyaniline, polythiophene, polyparastyrene, polyacetylene or polyacene.
  • the content of the positive electrode active material in the positive electrode active material layer 111 is usually 50% by weight or more, for example 60% by weight or more, based on the total amount of the positive electrode active material layer 111.
  • the positive electrode active material layer 111 may contain two or more types of positive electrode active materials, and in that case, the total content thereof may be within the above range. When the content of the active material is 50% by mass or more, the energy density of the battery can be particularly increased.
  • Negative electrode active material layer examples of the negative electrode active material contained in the negative electrode active material layer 121 include carbon materials, metal materials, lithium alloys, and/or lithium-containing compounds.
  • the carbon material is, for example, graphite, graphitizable carbon, non-graphitizable carbon, mesocarbon microbeads (MCMB), and/or highly oriented graphite (HOPG).
  • the metal-based material is a general term for materials that contain as a constituent element one or more of metal elements and metalloid elements that can form an alloy with lithium.
  • This metallic material may be a single substance, an alloy, or a compound.
  • the purity of the simple substance described here is not necessarily limited to 100%, so the simple substance may contain a trace amount of impurity.
  • metal elements and metalloid group elements include silicon (Si), tin (Sn), aluminum (Al), indium (In), magnesium (Mg), boron (B), gallium (Ga), and germanium (Ge). , lead (Pb), bismuth (Bi), cadmium (Cd), titanium (Ti), chromium (Cr), iron (Fe), niobium (Nb), molybdenum (Mo), silver (Ag), zinc (Zn) , hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd) and/or platinum (Pt).
  • metal-based materials include, for example, Si, Sn, SiB 4 , TiSi 2 , SiC, Si 3 N 4 , SiO v (0 ⁇ v ⁇ 2), LiSiO, SnO w (0 ⁇ w ⁇ 2) , SnSiO 3 , LiSnO and/or Mg 2 Sn.
  • the lithium-containing compound is, for example, a lithium transition metal composite oxide.
  • the definition regarding the lithium transition metal composite oxide is as described above.
  • lithium transition metal double oxides include, for example, Li 3 V 2 (PO 4 ) 3 , Li 3 Fe 2 (PO 4 ) 3 , Li 4 Ti 5 O 12 , LiTi 2 (PO 4 ) 3 , and/or LiCuPO4 , etc.
  • negative electrode active materials capable of intercalating and releasing sodium ions include a group consisting of sodium-containing phosphoric acid compounds having a Nasicon-type structure, sodium-containing phosphoric acid compounds having an olivine-type structure, and sodium-containing oxides having a spinel-type structure. At least one selected from:
  • the content of the negative electrode active material in the negative electrode active material layer 121 is usually 50% by weight or more, for example 60% by weight or more, based on the total amount of the negative electrode active material portion.
  • the negative electrode active material portion may contain two or more types of negative electrode active materials, and in that case, the total content thereof may be within the above range.
  • the content of the active material is 50% by mass or more, the energy density of the battery can be particularly increased.
  • the positive electrode active material layer 111 and/or the negative electrode active material layer 121 may contain a conductive material.
  • the conductive material included in the positive electrode active material layer 111 and/or the negative electrode active material layer 121 include carbon materials and metal materials.
  • carbon materials include, for example, graphite and carbon nanotubes.
  • metal materials include copper (Cu), magnesium (Mg), titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), aluminum (Al), and germanium (Ge). , indium (In), gold (Au), platinum (Pt), silver (Ag) and/or palladium (Pd), and may be an alloy of two or more thereof.
  • the positive electrode active material layer 111 and/or the negative electrode active material layer 121 may contain a binder.
  • the binder may be, for example, one or more of synthetic rubber and polymeric materials.
  • the synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber, and/or ethylene propylene diene.
  • the polymer material include at least one selected from the group consisting of polyvinylidene fluoride, polyimide, and acrylic resin.
  • the positive electrode active material layer 111 and/or the negative electrode active material layer 121 may contain a sintering aid.
  • the sintering aid include at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide.
  • the thicknesses of the positive electrode active material layer 111 and the negative electrode active material layer 121 are not particularly limited, and may be, for example, independently from 2 ⁇ m to 100 ⁇ m, particularly from 5 ⁇ m to 50 ⁇ m.
  • the positive electrode current collector layer 112 and the negative electrode current collector layer 122 preferably have higher electronic conductivity than the positive electrode active material layer 111 and the negative electrode active material layer 121.
  • the positive electrode current collector layer 112 includes, for example, at least one member selected from the group consisting of carbon materials, silver, palladium, gold, platinum, aluminum, copper, nickel-lithium transition metal composite oxides, and lithium transition metal phosphate compounds. May be used.
  • the negative electrode current collector layer 122 for example, at least one material selected from the group consisting of carbon material, silver, palladium, gold, platinum, aluminum, copper, and nickel may be used.
  • Each of the positive electrode current collector layer 112 and/or the negative electrode current collector layer 122 may have an electrical connection part for electrically connecting with the outside, and is configured to be electrically connectable to a terminal electrode. It's okay.
  • the positive electrode current collector layer 112 and the negative electrode current collector layer 122 may each have a foil form, but from the viewpoint of improving conductivity and reducing manufacturing costs by integral sintering, it is preferable that they have an integrally sintered form. is preferred.
  • the positive electrode current collector layer 112 and/or the negative electrode current collector layer 122 have the form of a fired body, for example, from a fired body containing a conductive material, an active material, a solid electrolyte, a binder and/or a sintering aid. may be configured.
  • the conductive material included in the positive electrode current collector layer 112 and the negative electrode current collector layer 122 may be selected from the same materials as the conductive material that may be included in the positive electrode active material layer 111 and/or the negative electrode active material layer 121, for example. good.
  • the positive electrode current collector layer 112 and the negative electrode current collector layer 122 are not essential, and a solid battery without such a positive electrode current collector layer 112 and negative electrode current collector layer 122 may be used. Good too. That is, the solid state battery in the present disclosure may be a solid state battery without a current collecting layer.
  • the positive electrode current collector layer 112 and/or the negative electrode current collector layer 122 may contain a heat-resistant resin.
  • the current collector layer contains a heat-resistant resin, cracks caused by expansion of the current collector layer can be suppressed.
  • the thicknesses of the positive electrode current collector layer 112 and the negative electrode current collector layer 122 are not particularly limited, and may each independently be, for example, 1 ⁇ m or more and 100 ⁇ m or less, particularly 1 ⁇ m or more and 50 ⁇ m or less.
  • the solid electrolyte constituting the solid electrolyte layer 130 is a material that can conduct lithium ions or sodium ions.
  • the solid electrolyte that forms a battery constituent unit in a solid battery forms a layer between the positive electrode layer 110 and the negative electrode layer 120 that can conduct lithium ions or sodium ions.
  • the solid electrolyte layer may be provided at least between the positive electrode layer 110 and the negative electrode layer 120. That is, the solid electrolyte layer may also exist around the positive electrode layer 110 and/or the negative electrode layer 120 so as to protrude horizontally from between the positive electrode layer 110 and the negative electrode layer 120.
  • Specific solid electrolytes include, for example, one or more of a crystalline solid electrolyte, a glass-based solid electrolyte, a glass-ceramic solid electrolyte, and the like.
  • Examples of the crystalline solid electrolyte include oxide-based crystal materials and sulfide-based crystal materials.
  • oxide-based crystal materials include lithium-containing phosphate compounds having a Nasicon structure, oxides having a perovskite structure, oxides having a garnet type or garnet-like structure, oxide glass ceramics-based lithium ion conductors, etc. It will be done.
  • Lithium-containing phosphoric acid compounds having a Nasicon structure include Li x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is titanium (Ti), germanium (Ge), aluminum (Al ), gallium (Ga), and zirconium (Zr).
  • An example of a lithium-containing phosphoric acid compound having a Nasicon structure includes Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like.
  • oxides having a perovskite structure include La 0.55 Li 0.35 TiO 3 and the like.
  • An example of an oxide having a garnet type or garnet type similar structure includes Li 7 La 3 Zr 2 O 12 and the like.
  • the sulfide-based crystal material include thio-LISICON, such as Li 3.25 Ge 0.25 P 0.75 S 4 and Li 10 GeP 2 S 12 .
  • the crystalline solid electrolyte may include a polymeric material (eg, polyethylene oxide (PEO), etc.).
  • the glass-based solid electrolyte examples include oxide-based glass materials and sulfide-based glass materials.
  • oxide glass materials include Li 2 O--SiO 2 , Li 2 O--Al 2 O 3 --TiO 2 --P 2 O 5 , 54Li 2 O.11SiO 2.35B 2 O 3 , 50Li 4 SiO 4 .
  • examples include 50Li 3 BO 3 , 23.3Li 2 O-76.7GeO 2 , 60Li 2 O-40P 2 O 5, and the like.
  • the oxide glass material may contain at least one member selected from the group consisting of lithium, silicon, and boron.
  • the oxide glass material essentially contains lithium oxide and may contain at least one selected from the group consisting of germanium oxide, silicon oxide, boron oxide, and phosphorus oxide.
  • Sulfide glass materials include , for example, 30Li 2 S.26B 2 S 3.44LiI, 63Li 2 S.36SiS 2.1Li 3 PO 4 , 57Li 2 S.38SiS 2.5Li 4 SiO 4 and 70Li 2 S. Examples include 30P 2 S 5 and 50Li 2 S.50GeS 2 .
  • the glass-ceramic solid electrolyte examples include oxide-based glass-ceramic materials and sulfide-based glass-ceramic materials.
  • oxide-based glass-ceramic material for example, a phosphoric acid compound (LATP) containing lithium, aluminum, and titanium as constituent elements, and a phosphoric acid compound (LAGP) containing lithium, aluminum, and germanium as constituent elements can be used.
  • LATP is, for example, Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) 3 .
  • LAGP is, for example, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ).
  • the oxide-based glass-ceramic material may include at least one selected from the group consisting of lithium, silicon, and boron.
  • the oxide-based glass ceramic material essentially contains lithium oxide and may contain at least one selected from the group consisting of germanium oxide, silicon oxide, boron oxide, and phosphorus oxide.
  • examples of the sulfide-based glass ceramic materials include Li 7 P 3 S 11 and Li 3.25 P 0.95 S 4 .
  • the solid electrolyte is selected from the group consisting of oxide-based crystal materials, oxide-based glass materials, and oxide-based glass-ceramic materials. It may contain at least one kind.
  • Examples of the solid electrolyte that can conduct sodium ions include sodium-containing phosphoric acid compounds having a Nasicon structure, oxides having a perovskite structure, and oxides having a garnet type or garnet type similar structure.
  • sodium-containing phosphate compound having a Nasicon structure Na x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr) at least one selected type).
  • the solid electrolyte layer may contain a binder and/or a sintering aid.
  • the binder and/or sintering aid contained in the solid electrolyte layer may be made of the same material as the binder and/or sintering aid that may be contained in the positive electrode active material portion and/or the negative electrode active material portion, for example. May be selected.
  • the thickness of the solid electrolyte layer is not particularly limited, and may be, for example, 1 ⁇ m or more and 15 ⁇ m or less, particularly 1 ⁇ m or more and 5 ⁇ m or less.
  • terminal electrode is provided on the end surface of the battery body 140.
  • terminal electrodes 151 and 152 may be provided on the side surfaces of the battery body 140 located in a direction intersecting the stacking direction of the battery body 140, respectively.
  • terminal electrodes 151 and 152 may extend from the side surface of the battery body 140 to the bottom surface of the battery body.
  • terminal electrodes may be provided from the side surface to the bottom surface and/or the top surface of the battery body 140.
  • a terminal electrode 151 on the positive side connected to the positive electrode layer 110 and a terminal electrode 152 on the negative side connected to the negative electrode layer 120 are provided. may be formed on one side (on the right side in FIG. 1), and the terminal electrode 152 on the negative side may be provided so as to face the terminal electrode 151 on the positive side (on the left side in FIG. 1).
  • the terminal electrodes 151 and 152 contain a conductive material and a polyester resin.
  • terminal electrodes made only of conductive materials are known as terminal electrodes of conventional solid-state batteries.
  • This terminal electrode was formed by providing a conductive paste on a battery body and firing the conductive paste. Since the firing temperature of the conductive paste is about 800° C., it is not suitable for battery bodies having glass whose temperature is lower than the firing temperature. Therefore, with the intention of lowering the temperature at which the terminal electrode is formed, a terminal electrode containing a conductive material and a resin material has been used.
  • a polyester-based resin is contained as a material for forming the terminal electrode, it is possible to reduce cracks in the terminal electrode due to volumetric expansion that occurs when charging a solid-state battery.
  • the terminal electrode will be explained in detail below.
  • the conductive material is a material that has conductivity, and specifically includes carbon materials and metal materials. Note that "conductivity” as used herein means that the volume resistivity is 10 7 ⁇ cm or less.
  • the metal material is not particularly limited as long as it has conductivity, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, palladium, zinc, tin, and nickel may be used. I can do it. Alternatively, composite metals such as Ag-coated Cu and Ag-coated CuNi may be used. Note that silver is a preferred metal material because it has high electrical conductivity and changes in electrical conductivity are small even under high temperature and high humidity environments.
  • the shape of the conductive material is preferably spherical, dendritic, or flat.
  • a "flat shape” refers to an elliptical shape that is a curved shape that combines a circular arc part with a large radius of curvature and a circular arc part that has a small radius of curvature, or a long shape that is a shape that combines a circular arc part and a flat part. This includes circular shapes and the like. Note that it may include a perfect circle. Although there are no restrictions on the particle size of the particles, it is preferably 0.1 ⁇ m or more and 30 ⁇ m or less.
  • polyester resin The polyester resin is used to further improve the adhesiveness between the terminal electrode and the battery body.
  • the term "polyester resin” as used herein refers to a resin that is obtained by polycondensing a polybasic acid and a polyhydric alcohol and has an ester bond inside.
  • a polyhydric carboxylic acid for example, a dicarboxylic acid
  • polyalcohol for example, diol
  • the terminal electrodes 151 and 152 contain polyester resin, the terminal electrodes 151 and 152 can be firmly bonded to the battery body 140. Furthermore, since the terminal electrodes 151 and 152 of the solid state battery 100 can follow the volumetric expansion of the battery body 140 that occurs when charging the solid state battery, it is possible to suppress the occurrence of cracks in the terminal electrodes 151 and 152. . The point of suppressing the occurrence of cracks in the terminal electrodes 151 and 152 will be explained in detail when "elongation at break" and "Young's modulus" are explained in Examples described later.
  • an insulating outer layer 160 may be included as an additional feature of the solid state battery of the present disclosure. Specifically, an insulating outer layer 160 may be provided on the outside of the battery body 140. The insulating outer layer 160 can generally be formed on the outermost side of the battery body 140 and is for protecting the battery body 140 electrically, physically and/or chemically. In particular, the insulating outer layer 160 includes an insulating outer layer 160 on the top side of the solid state battery 100 and an insulating outer layer 160 on the bottom side. Further, the insulating outer layer 160 may be provided on the side surface of the battery body 140 where the terminal electrodes 151 and 152 are not provided (the side surface of the battery body 140 in the direction perpendicular to the paper in FIG. 1).
  • the material constituting the insulating outer layer is preferably one that has excellent insulation, durability, and/or moisture resistance, and is environmentally safe, and may include, for example, a resin material, a glass material, and/or a ceramic material. . Furthermore, since the insulating outer layer is manufactured by integral firing, it may have the form of a fired body. Note that the insulating outer layer 160 may not be provided and may be included in a resin or ceramic package.
  • a covering insulating film 200 may be provided.
  • the covering insulating film 200 may be provided to cover the terminal electrodes 151, 152 and the battery body 140 (see FIG. 3).
  • the covering insulating film 200 corresponds to resin. That is, it is preferable that the covering insulating film 200 contains a resin material. As can be seen from the embodiment shown in FIG. 3, this means that the battery element 140 provided on the support substrate 400 is sealed with the resin material of the covering insulating film 200.
  • the material of the covering insulating film may be any type as long as it exhibits insulating properties.
  • the resin may be either a thermosetting resin or a thermoplastic resin.
  • specific resin materials for the coating insulating film include, for example, epoxy resins, silicone resins, and/or liquid crystal polymers.
  • the thickness of the covering insulating film may be 30 ⁇ m or more and 1000 ⁇ m or less, for example, 50 ⁇ m or more and 300 ⁇ m or less.
  • the insulating coating film is not essential for solid-state batteries, and solid-state batteries that are not provided with the insulating coating film are also conceivable.
  • an inorganic film 300 covering the covering insulating film 200 may be provided. As shown in FIG. 3, since the inorganic film 300 is positioned on the covering insulating film 200, it has a form that largely envelops the battery body 140 on the support substrate 400 together with the covering insulating film 200. There is.
  • the inorganic film 300 preferably has a thin film form.
  • the material of the inorganic film is not particularly limited as long as it contributes to an inorganic film having a thin film form, and may be metal, glass, oxide ceramics, or a mixture thereof.
  • the inorganic membrane may include a metal component. That is, the inorganic film may preferably be a metal thin film.
  • the thickness of such an inorganic film may be 0.1 ⁇ m or more and 100 ⁇ m or less, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the inorganic film 300 may be a dry plating film.
  • a dry plating film is a film obtained by a vapor phase method such as physical vapor deposition (PVD) or chemical vapor deposition (CVD), and has a very small thickness on the order of nanometers or microns. are doing.
  • PVD physical vapor deposition
  • CVD chemical vapor deposition
  • Such a thin dry plating film contributes to more compact packaging.
  • Dry plating films include, for example, aluminum (Al), nickel (Ni), palladium (Pd), silver (Ag), tin (Sn), gold (Au), copper (Cu), titanium (Ti), platinum (Pt). ), silicon/silicon (Si), SUS, etc., at least one metal component/metalloid component, an inorganic oxide, and/or a glass component. Dry-plated films made of such components are chemically and/or thermally stable, resulting in solid-state batteries with excellent chemical resistance, weather resistance, and/or heat resistance, and improved long-term reliability. can be done.
  • an inorganic film is not essential for a solid-state battery, and a solid-state battery that is not provided with an inorganic film is also conceivable.
  • the solid state battery of the present disclosure may additionally include a support substrate 400.
  • the support substrate 400 is a substrate provided so that the battery body 140 is supported.
  • a support substrate is positioned on one side forming the main surface of the solid state battery to provide "support”. Further, since it is a "substrate", it preferably has a thin plate-like shape as a whole.
  • the support substrate 400 may be, for example, a resin substrate or a ceramic substrate, and preferably a water-resistant substrate.
  • support substrate 400 may be a ceramic substrate. That is, the support substrate 400 may include ceramic, which may constitute the base material component of the substrate.
  • a support substrate made of ceramic is a preferable substrate since it contributes to preventing water vapor permeation and has heat resistance during board mounting.
  • Such a ceramic substrate can be obtained through firing, for example, by firing a green sheet laminate.
  • the ceramic substrate may be, for example, an LTCC substrate (LTCC: Low Temperature Co-fired Ceramics) or an HTCC substrate (HTCC: High Temperature Co-fired Ceramics).
  • the thickness of the support substrate may be 20 ⁇ m or more and 1000 ⁇ m or less, for example, 100 ⁇ m or more and 300 ⁇ m or less.
  • the support substrate 400 may function as a terminal substrate for the battery body 140. That is, a solid state battery packaged with a substrate interposed therebetween can be mounted on another secondary substrate such as a printed wiring board.
  • solid state batteries can be surface mounted via a support substrate, such as through solder reflow.
  • the packaged solid state battery may be an SMD type battery.
  • the terminal board is made of a ceramic substrate
  • the solid state battery can be an SMD type battery that has high heat resistance and can be soldered.
  • the supporting substrate in a certain preferred embodiment may be a terminal substrate for external terminals of a packaged solid-state battery, which includes wiring that electrically connects the upper and lower surfaces of the substrate.
  • the wiring 410 on the terminal board is not particularly limited, and may have any form as long as it contributes to electrical connection between the top and bottom surfaces of the board. Since the wiring 410 on the terminal board contributes to electrical connection, it can also be said that the wiring 410 on the terminal board is a conductive portion of the board. Conductive portions of such substrates may take the form of wiring layers, vias and/or lands, and the like.
  • the support substrate 400 is provided with vias 412 and/or lands 411.
  • “Via” here refers to a member for electrically connecting the support substrate in the vertical direction, that is, in the thickness direction of the substrate.
  • a filled via is preferable, and it may also be in the form of an inner via.
  • "land” as used in this specification refers to a terminal part/connection part (preferably a terminal part connected to a via) for electrical connection provided on the upper main surface and/or lower main surface of the support substrate. ⁇ Connection part), and may be a square land or a round land, for example.
  • the electronic device of the present disclosure is one in which the above-described solid battery is surface-mounted. Specifically, the wiring of the support substrate 400 enables surface mounting of the solid battery.
  • Surface mounting refers to a technique in which a solid-state battery is directly fixed to a pattern formed on a substrate.
  • the solid battery 1 described above may be mounted on a printed circuit board or the like and packaged.
  • electronic components other than solid batteries may be mounted.
  • the manufacturing of the solid-state battery of the present disclosure includes (1) preparation of a battery body, (2) preparation of terminal electrode material, (3) firing of the battery body, (4) application of terminal electrode material, (5) terminal electrode This is accomplished through a process that includes curing the material, (6) fixing it to a supporting substrate, and (7) forming a covering insulating film and an inorganic film.
  • the following is a step-by-step explanation.
  • a sheet containing a solid electrolyte is formed by preparing a slurry by mixing the solid electrolyte, an organic binder, a solvent, and any additives, and firing the prepared slurry to form a sheet.
  • the positive electrode paste is prepared by mixing a positive electrode active material, a solid electrolyte, a conductive material, an organic binder, a solvent, and any additives.
  • a negative electrode paste is prepared by mixing a negative electrode active material, a solid electrolyte, a conductive material, an organic binder, a solvent, and any additives.
  • a positive electrode paste is printed on a sheet containing a solid electrolyte, and if necessary, a current collecting layer and/or a negative layer are printed.
  • a negative electrode paste is printed on the sheet, and if necessary, a current collecting layer and/or a negative layer are printed.
  • a laminate is obtained by alternately stacking sheets on which the positive electrode paste is printed and sheets on which the negative electrode paste is printed. Note that the outermost layer (the uppermost layer and/or the lowermost layer) of the laminate may be an electrolyte layer, an insulating layer, or an electrode layer.
  • a terminal electrode material (as an example, a conductive paste) that will be the material of the terminal electrodes 151 and 152 is prepared.
  • Ag and polyester resin are prepared as conductive materials.
  • the Ag particles may have any shape, but preferably have a flat shape.
  • the particle size of Ag may be any particle size, but preferably 0.1 ⁇ m or more and 30 ⁇ m or less. More preferably, the thickness is 0.5 ⁇ m or more and 20 ⁇ m or less.
  • the "particle size" as used herein refers to the median diameter (D50) at which the cumulative volume is 50% in the volume-based particle size distribution.
  • the median diameter (D50) is measured using, for example, image analysis or a laser diffraction/scattering type particle distribution measuring device, but is not limited to measurement using the device.
  • the terminal electrode material may further contain a resin and a solvent as additional elements.
  • the term "terminal electrode material" as used herein refers to a material that can form a flow in a hydrodynamic sense or a material that can maintain such a flow. Examples of such materials include liquids such as pastes, solutions or suspensions.
  • the solvent dissolves the above-mentioned resin binder, and for example, an organic solvent may be used.
  • organic solvents include, but are not limited to, alcohols including methanol, ethanol, 1-propanol, 2-propanol, hexanol, and cyclohexanol, glycols including ethylene glycol and propylene glycol, methyl ethyl ketone, diethyl ketone, Ketones including methyl isobutyl ketone, terpenes including ⁇ -terpineol, ⁇ -terpineol, and ⁇ -terpineol, ethylene glycol monoalkyl ethers, ethylene glycol dialkyl ethers, diethylene glycol monoalkyl ethers, diethylene glycol dialkyl ethers, ethylene glycol Monoalkyl ether acetates, ethylene glycol dialkyl ether acetates, diethylene glycol monoalkyl ether acetates, diethylene glyco
  • the terminal electrode material is applied to the exposed positive electrode side surface and the exposed negative electrode side surface of the battery body.
  • Firing of the battery body Although the firing of the battery body is merely an example, the firing of the battery body is performed at a desired firing temperature (for example, a firing peak temperature in the range of 300°C to 600°C) in a nitrogen gas atmosphere containing oxygen gas. It is carried out by heating in the air or in the atmosphere. Firing may be performed while pressurizing the battery body precursor in the stacking direction (in some cases, in the stacking direction and in a direction perpendicular to the stacking direction).
  • a desired firing temperature for example, a firing peak temperature in the range of 300°C to 600°C
  • Firing may be performed while pressurizing the battery body precursor in the stacking direction (in some cases, in the stacking direction and in a direction perpendicular to the stacking direction).
  • the terminal electrode material is applied to the exposed positive electrode side surface and the exposed negative electrode side surface of the battery body.
  • the battery body coated on the exposed positive electrode side surface and the exposed negative electrode side surface is cured at a desired curing temperature (for example, in the range of 100° C. to 300° C.).
  • the support board is provided with vias and/or lands to enable surface mounting to the secondary board. For example, it can be obtained by laminating and firing a plurality of green sheets. This is especially true when the support substrate is a ceramic substrate.
  • the support substrate can be prepared, for example, in accordance with the preparation of an LTCC substrate.
  • the vias and/or lands on the support substrate can be manufactured by, for example, forming holes (diameter size: approximately 50 ⁇ m or more and 200 ⁇ m or less) using a punch press or carbon dioxide laser, and filling the holes with a conductive paste material, or , manufactured by a technique using a printing method.
  • the conductive portion of the support substrate and the terminal electrode of the battery body are arranged so as to be electrically connected to each other.
  • a conductive paste may then be provided on the support substrate, thereby electrically connecting the conductive portion of the support substrate and the terminal electrode to each other.
  • conductive pastes such as nanopaste, alloy paste, and brazing material that do not require cleaning with flux after formation can be used.
  • a covering insulating film is formed so as to cover the battery element on the support substrate. Therefore, the raw material for the coating insulating film is provided so that the battery element on the support substrate is completely covered.
  • the covering insulating film is made of a resin material, a resin precursor is provided on the support substrate and subjected to curing or the like to form the covering insulating film.
  • the covering insulating film may be formed by applying pressure with a mold.
  • the covering insulating film that seals the battery element on the support substrate may be formed through compression molding.
  • the raw material for the covering insulating film may be in the form of granules, and may be thermoplastic. Note that such molding is not limited to mold molding, and may be performed through polishing, laser processing, and/or chemical treatment.
  • the inorganic film may be dry plated by dry plating. More specifically, dry plating is performed to form an inorganic film on exposed surfaces other than the bottom surface of the coating precursor (that is, other than the bottom surface of the supporting substrate). In some preferred embodiments, sputtering is performed to form a sputtered film on the exposed outer surface of the coating precursor other than the bottom surface.
  • the solid state battery of the present disclosure can be finally obtained.
  • the prepared sample was tested at a test speed of 3 mm/min using a dynamic viscoelasticity (DMA) measuring device (RSA-G2 manufactured by TA Instruments).
  • DMA dynamic viscoelasticity
  • the dimension at break after the tensile test was measured from the initial dimension (13 mm) before the tensile test.
  • the "fracture elongation rate" was calculated from the obtained initial dimensions and dimensions after fracture. Incidentally, the elongation at break was measured and calculated for five samples, and the average value thereof was adopted.
  • Young's modulus was measured by a load-unload test using an ultra-micro indentation hardness tester (ENT-1100a manufactured by Elionix). More specifically, a Berkovich indenter was used as the indenter, and the displacement curve when testing was conducted at an indentation load of 50 mN was analyzed to measure the Young's modulus. The elongation at break was measured and calculated by preparing three samples for each example and comparative example, and the average value thereof was adopted.
  • the elongation at break is 0.8% or more, it is possible to follow the volumetric expansion of the battery body that occurs when charging a solid battery, so it is possible to reduce the occurrence of cracks in the terminal electrodes.
  • the elongation at break was less than 0.8%, the battery could not follow the volumetric expansion of the battery body of the rechargeable battery, and cracks were observed in the terminal electrodes.
  • the elongation at break exceeded 50% as in Comparative Example 3, the adhesion between the battery element and the terminal electrode became weak, and peeling between the battery element and the terminal electrode was observed here and there.
  • the elongation at break of the terminal electrode of the present disclosure is 0.8% or more and 50% or less.
  • the Young's modulus of Examples 1 to 4 is within the range of 2.0 GPa or more and 6.0 GPa or less.
  • Comparative Examples 1 and 2 had a Young's modulus of 6.0 GPa or more
  • Comparative Example 3 had a Young's modulus of less than 2.0 GPa.
  • the Young's modulus of the terminal electrode of the present disclosure is 2.0 GPa or more and 6.0 GPa or less.
  • the evaluation test included measuring the charging and discharging characteristics of the solid-state battery and evaluating voltage fluctuations during discharge.
  • alternating current impedance (ACimp) after a cycle test of the solid battery was calculated and evaluated.
  • a charge/discharge evaluation device TOSCAT-3100 manufactured by Toyo System Co., Ltd. was used for the charge/discharge test and cycle test of the solid battery.
  • the solid battery was charged and discharged for 100 cycles in an environment of 60°C.
  • the charging/discharging conditions are as follows: When charging, a current value of 0.5C (current value for complete charging in 2 hours) is used, constant current charging is performed until the voltage reaches 4.1V, and then 0.5C is charged at a voltage of 4.1V. Constant voltage charging was performed until reaching a current value of 01C (current value for complete charging in 100 hours). During discharging, constant current discharge was performed at a current value of 0.1 C (current value for complete discharge in 10 hours) until a voltage of 2.0 V was reached.
  • ACimp after 100 cycles of charging and discharging was evaluated by measuring the resistance value of the solid battery after the cycle test using an AC impedance method.
  • a Cole-Cole plot from 1 MHz to 1 Hz of the solid-state battery after the cycle test was measured (device: Impedance Gain/Phase Analyzer SI1260 manufactured by Solartron Instruments), and the end point of the first arc was defined as ACimp.
  • the smaller the value of ACimp the better the input/output characteristics of the battery.
  • the ACimp value after the 100 cycle test was 70 ⁇ or less, it was judged to be good.
  • the solid state battery is not limited to a substantially hexahedral shape, but may have a polyhedral shape, a cylindrical shape, or a spherical shape.
  • the packaged solid-state battery of the present disclosure can be used in various fields where battery use or power storage is expected.
  • the packaged solid state battery of the present disclosure can be used in the electronics packaging field.
  • the electricity, information, and communication fields where mobile devices are used e.g., mobile phones, smartphones, notebook computers, digital cameras, activity monitors, arm computers, electronic paper, RFID tags, card-type electronic money, smart watches, etc.
  • electric/electronic equipment field or mobile equipment field including small electronic equipment, household and small industrial applications (e.g. power tools, golf carts, home/nursing care/industrial robots), large industrial applications (e.g.
  • forklifts, elevators, harbor cranes e.g., transportation systems (e.g., hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), power system applications (e.g., various types of power generation, road conditioners, etc.) , smart grids, household energy storage systems, etc.), medical applications (medical devices such as earphones and hearing aids), pharmaceutical applications (medication management systems, etc.), IoT, space/deep sea applications (e.g. The present disclosure can also be used in fields such as , space probes, and underwater research vessels).
  • transportation systems e.g., hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.
  • power system applications e.g., various types of power generation, road conditioners, etc.
  • smart grids e.g., smart grids, household energy storage systems, etc.
  • medical applications medical devices such as earphones and hearing aids
  • pharmaceutical applications medication management systems, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

端子電極に関して接着性の高い固体電池および電子デバイスを提供する。正極層110、負極層120、および固体電解質層130を有する電池素体140と、電池素体140の端面に設けられ電池素体140に電気的に接続された端子電極151,152と、を備え、端子電極151,152は、導電材料と、ポリエステル系樹脂を含んでいる。

Description

固体電池および電子デバイス
 本開示は、固体電池および電子デバイスに関する。
 従前より、繰り返しの充放電が可能な二次電池は様々な用途に用いられている。例えば、二次電池は、スマートフォンおよびノートパソコン等の電子機器の電源として用いられたりする。
 二次電池においては、充放電に寄与するイオン移動のための媒体として液体の電解質が一般に使用されている。つまり、いわゆる電解液が二次電池に用いられている。しかしながら、そのような二次電池においては、電解液の漏出防止点で安全性が一般に求められる。また、電解液に用いられる有機溶媒等は可燃性物質ゆえ、その点でも安全性が求められる。
 そこで、電解液に代えて、固体電解質を用いた固体電池について研究が進められている。
特開2015-220107号公報 特表2010-503957号公報
 固体電池は、正極層、負極層、およびそれらの間の固体電解質から成る電池構成単位を含む素体を有し、正極層および負極層とそれぞれ電気的に接続される端子電極を備える。ここで、特許文献1には、端子電極として導電性が大きい材料を選択する点が記載され、銀、金、プラチナ、アルミニウム、銅、スズ、ニッケルが採用されている。
 しかしながら、固体電池の更なる電気特性や信頼性特性の向上が要望されていた。
 本開示は、かかる要望に鑑みて為されたものである。即ち、本開示の主たる目的は、固体電池の端子電極に関して接着性の高い固体電池および電子デバイスを提供することである。
 本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された固体電池に至った。
 本開示に係る固体電池は、
 正極層、負極層、および前記正極層と前記負極層との間に介在する固体電解質層を有する電池素体と、
前記電池素体の端面に設けられ前記電池素体に電気的に接続された端子電極と、を備え、
 前記端子電極は、導電材料と、ポリエステル系樹脂を含む。
 本開示に係る電子デバイスは、上述の固体電池が表面実装されている。
 本開示に係る固体電池および電子デバイスによれば、端子電極に関して接着性の高い固体電池および電子デバイスを提供することができる。
本開示に係る固体電池の要部の断面図である。 本開示に係る固体電池の模式図である。 本開示に係る固体電池の模式図である。 本開示に係る固体電池の断面図である。
 以下、本開示の「固体電池」および固体電池が表面実装された「電子デバイス」を詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本開示の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。
 まず、本開示の実施形態に係る「固体電池」について説明する。本開示でいう「固体電池」は、広義にはその構成要素が固体から構成されている電池を指し、狭義にはその電池構成要素(特に好ましくは全ての電池構成要素)が固体から構成されている全固体電池を指している。ある好適な態様では、本開示における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼成体とされてよい。なお、「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含する。本開示のある好適な態様に従うと「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものでなく、例えば、蓄電デバイスなども包含し得る。
 本明細書でいう「平面視」とは、固体電池を構成する各層の積層方向に基づく厚み方向に沿って対象物を上側または下側から捉えた場合の形態に基づいている。又、本明細書でいう「断面視」とは、固体電池を構成する各層の積層方向に基づく厚み方向に対して略垂直な方向から捉えた場合の形態(端的にいえば、厚み方向に平行な面で切り取った場合の形態)に基づいている。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。
[固体電池の構成]
 固体電池100は、正極層110、負極層120および、それらの間に少なくとも介在する固体電解質層130から成る電池構成単位を含んだ電池素体140と、端子電極151,152と、を有している(図1参照)。端子電極151,152は、より具体的には、電池素体140の外面と接触している。
1.電池素体
 電池素体140は、それを構成する各層が焼成によって形成されていてもよい。正極層110、負極層120および固体電解質層130などが焼結層を成していてもよい。好ましくは、正極層、負極層および固体電解質は、それぞれが互いに一体焼成され、焼結体から構成されてよい。それゆえ電池素体が一体焼結体を成していてもよい。なお、本明細書では、正極層および負極層が積層された方向(鉛直方向)を「積層方向」とし、積層方向と交差する方向は、正極層および負極層が延在する水平方向である。
1-1.正極層および負極層
 正極層110は、少なくとも正極活物質層111を含む電極層である。正極層110は、更に固体電解質を含んでいてよい。ある好適な態様では、正極層110は、正極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されてよい。一方、負極層120は、少なくとも負極活物質層121を含む電極層としてよい。負極層120は、更に固体電解質を含んでいてもよい。ある好適な態様では、負極層120は、負極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されてよい。
 ここで、正極活物質および負極活物質は、固体電池において電子の授受に関与する物質である。固体電解質を介した正極層と負極層との間におけるイオンの移動(又は伝導)と、外部端子を介した正極層と負極層との間における電子の授受が行われることで充放電がなされる。また、正極層110および負極層120は、集電体層を含んでいてもよい。
 図1には、正極層110を3層、負極層120を2層積層させた構成を例示しているが、積層数は、この例に限られず、1層でもよいし、数十~数百層積層してもよい。正極層または負極層の膜厚は、5μm以上60μm以下、好ましくは8μm以上50μm以下であってよい。また、5μm以上30μm以下であってもよい。
(正極活物質層)
 正極活物質層111に含まれる正極活物質としては、例えば、リチウム含有化合物またはナトリウム含有化合物である。つまり、リチウムイオンまたはナトリウムイオンを吸蔵放出可能としてよい。リチウム含有化合物の種類は、特に限定されないが、例えば、リチウム遷移金属複合酸化物および/またはリチウム遷移金属リン酸化合物である。リチウム遷移金属複合酸化物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含む酸化物の総称である。リチウム遷移金属リン酸化合物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含むリン酸化合物の総称である。遷移金属元素の種類は、特に限定されないが、例えば、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)および/または鉄(Fe)などである。
 リチウム遷移金属複合酸化物は、例えば、LiM1OおよびLiM2Oのそれぞれで表される化合物などである。リチウム遷移金属リン酸化合物は、例えば、LiM3POで表される化合物などである。ただし、M1、M2およびM3のそれぞれは、1種類または2種類以上の遷移金属元素である。x、yおよびzのそれぞれの値は、任意である。
 具体的には、リチウム遷移金属複合酸化物は、例えば、LiCoO、LiNiO、LiVO、LiCrO、LiMn、LiCo1/3Ni1/3Mn1/3、およびLiNi0.5Mn1.5などである。また、リチウム遷移金属リン酸化合物は、例えば、LiFePO、LiCoPOおよびLiMnPOなどである。リチウム遷移金属複合酸化物(特にLiCoO)は微量(数%程度)の添加元素を含んでもよい。添加元素として、例えば、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、マンガン(Mn)、チタン(Ti)、ホウ素(B)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、タングステン(W)、ジルコニウム(Zr)、イットリウム(Y)、ニオブ(Nb)、カルシウム(Ca)、ストロンチウム(Sr)、ビスマス(Bi)、ナトリウム(Na)、カリウム(K)およびケイ素(Si)からなる群から選択される1種以上の元素が挙げられる。
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。例えば、ナトリウム含有リン酸化合物の場合、Na(PO、NaCoFe(PO、NaNiFe(PO、NaFe(PO、NaFeP、NaFe(PO(P)、およびナトリウム含有層状酸化物としてNaFeOから成る群から選択される少なくとも一種が挙げられる。
 この他、正極活物質は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子等でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガン等でもよい。二硫化物は、例えば、二硫化チタンまたは硫化モリブデン等である。カルコゲン化物は、例えば、セレン化ニオブ等でもよい。導電性高分子は、例えば、ジスルフィド、ポリピロール、ポリアニリン、ポリチオフェン、ポリパラスチレン、ポリアセチレンまたはポリアセン等でもよい。
 正極活物質層111における正極活物質の含有量は通常、正極活物質層111の全量に対して、50重量%以上であり、例えば60重量%以上である。正極活物質層111は2種以上の正極活物質を含んでもよく、その場合、それらの合計含有量が上記範囲内であればよい。当該活物質の含有量が50質量%以上であることで、電池のエネルギー密度を特に高めることができる。
(負極活物質層)
 負極活物質層121に含まれる負極活物質としては、例えば、炭素材料、金属系材料、リチウム合金および/またはリチウム含有化合物などである。
 具体的には、炭素材料は、例えば、黒鉛、易黒鉛化性炭素、難黒鉛化性炭素、メソカーボンマイクロビーズ(MCMB)および/または高配向性グラファイト(HOPG)などである。
 金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称である。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよい。ここで説明する単体の純度は、必ずしも100%に限られないため、その単体は、微量の不純物を含んでいてもよい。
 金属元素および半金族元素は、例えば、ケイ素(Si)、スズ(Sn)、アルミニウム(Al)、インジウム(In)、マグネシウム(Mg)、ホウ素(B)、ガリウム(Ga)、ゲルマニウム(Ge)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、チタン(Ti)、クロム(Cr)、鉄(Fe)、ニオブ(Nb)、モリブデン(Mo)、銀(Ag)、亜鉛(Zn)、ハフニウム(Hf)、ジルコニウム(Zr)、イットリウム(Y)、パラジウム(Pd)および/または白金(Pt)などである。
 具体的には、金属系材料は、例えば、Si、Sn、SiB、TiSi、SiC、Si、SiO(0<v≦2)、LiSiO、SnO(0<w≦2)、SnSiO、LiSnOおよび/またはMgSnなどである。
 リチウム含有化合物は、例えば、リチウム遷移金属複合酸化物などである。リチウム遷移金属複合酸化物に関する定義は、上記した通りである。具体的には、リチウム遷移金属複酸化物は、例えば、Li(PO、LiFe(PO、LiTi12、LiTi(PO、および/またはLiCuPOなどである。
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。
 負極活物質層121における負極活物質の含有量は通常、負極活物質部分の全量に対して、50重量%以上であり、例えば60重量%以上である。負極活物質部分は2種以上の負極活物質を含んでもよく、その場合、それらの合計含有量が上記範囲内であればよい。当該活物質の含有量が50質量%以上であることで、電池のエネルギー密度を特に高めることができる。
(正極活物質層および負極活物質層の付加的構成)
 正極活物質層111および/または負極活物質層121は、導電材を含んでいてもよい。正極活物質層111および/または負極活物質層121に含まれる導電材としては、例えば、炭素材料および金属材料などである。具体的には、炭素材料は、例えば、黒鉛およびカーボンナノチューブなどである。金属材料は、例えば、銅(Cu)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、金(Au)、白金(Pt)、銀(Ag)および/またはパラジウム(Pd)などであり、それらの2種類以上の合金でもよい。
 正極活物質層111および/または負極活物質層121は、結着剤を含んでいてもよい。結着剤としては、例えば、合成ゴムおよび高分子材料などのうちのいずれか1種類または2種類以上である。具体的には、合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよび/またはエチレンプロピレンジエンなどである。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミドおよびアクリル樹脂から成る群から選択される少なくとも1種を挙げることができる。
 正極活物質層111および/または負極活物質層121は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。
 正極活物質層111および負極活物質層121の各厚みは特に限定されず、例えば、それぞれ独立して、2μm以上100μm以下であってよく、特に5μm以上50μm以下であってもよい。
(正極集電体層および負極集電体層)
 正極集電体層112および負極集電体層122は、正極活物質層111および負極活物質層121よりも電子導電率が高いことが好ましい。
 正極集電体層112は、例えば、炭素材料、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルリチウム遷移金属複合酸化物およびリチウム遷移金属リン酸化合物から成る群から選択される少なくとも1種を用いてよい。
 負極集電体層122は、例えば、炭素材料、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケルから成る群から選択される少なくとも1種を用いてよい。
 正極集電体層112および/または負極集電体層122はそれぞれ、外部と電気的に接続するための電気的接続部を有していてよく、端子電極と電気的に接続可能に構成されていてもよい。正極集電体層112および負極集電体層122はそれぞれ箔の形態を有していてもよいが、一体焼結による導電性向上および製造コスト低減の観点から、一体焼結の形態を有することが好ましい。
 正極集電体層112および/または負極集電体層122が焼成体の形態を有する場合、例えば、導電材、活物質、固体電解質、結着剤および/または焼結助剤を含む焼成体より構成されてもよい。正極集電体層112および負極集電体層122に含まれる導電材は、例えば、正極活物質層111および/または負極活物質層121に含まれ得る導電材と同様の材料から選択されてもよい。なお、固体電池において、正極集電体層112および負極集電体層122が必須というわけではなく、そのような正極集電体層112および負極集電体層122が設けられていない固体電池としてもよい。つまり、本開示における固体電池は、集電層レスの固体電池であってもよい。
 正極集電体層112および/または負極集電体層122が耐熱性樹脂を含んでいてもよい。集電体層に耐熱樹脂を含む場合、集電体層の膨張によって生じる亀裂を抑制することができる。
 正極集電体層112および負極集電体層122の各厚みは特に限定されず、例えば、それぞれ独立して、1μm以上100μm以下であってよく、特に1μm以上50μm以下であってもよい。
1-2.固体電解質層
 固体電解質層130を構成する固体電解質は、リチウムイオンまたはナトリウムイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質は、正極層110と負極層120との間においてリチウムイオンまたはナトリウムイオンが伝導可能な層を成している。なお、固体電解質層は、正極層110と負極層120との間に少なくとも設けられていればよい。つまり、固体電解質層は、正極層110と負極層120との間から水平方向にはみ出すように当該正極層110および/または負極層120の周囲においても存在していてもよい。具体的な固体電解質としては、例えば、結晶性固体電解質、ガラス系固体電解質およびガラスセラミックス系固体電解質などのうちのいずれか1種類または2種類以上を含んでいる。
 結晶性固体電解質は、例えば、酸化物系結晶材および硫化物系結晶材などがある。酸化物系結晶材は、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物、酸化物ガラスセラミックス系リチウムイオン伝導体等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、チタン(Ti)、ゲルマニウム(Ge)、アルミニウム(Al)、ガリウム(Ga)およびジルコニウム(Zr)から成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。また、硫化物系結晶材は、thio-LISICONが挙げられ、例えばLi3.25Ge0.250.75およびLi10GeP12などである。結晶性固体電解質は、高分子材(例えば、ポリエチレンオキシド(PEO)など)を含んでいてもよい。
 ガラス系固体電解質は、例えば、酸化物系ガラス材および硫化物系ガラス材などがある。酸化物系ガラス材は、例えば、LiO-SiO、LiO-Al-TiO-P、54LiO・11SiO・35B、50LiSiO・50LiBO、23.3LiO-76.7GeO、60LiO―40P5、などがある。言い換えると、酸化物系ガラス材は、リチウム、ケイ素およびホウ素から成る群から選択される少なくとも一種を含んでよい。また、酸化物系ガラス材は、酸化リチウムを必須とし、酸化ゲルマニウム、酸化ケイ素、酸化ホウ素および酸化リンから成る群から選択される少なくとも一種を含んでよい。また、硫化物系ガラス材は、例えば、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、70LiS・30Pおよび50LiS・50GeSなどがある。
 ガラスセラミックス系固体電解質は、例えば、酸化物系ガラスセラミックス材および硫化物系ガラスセラミックス材などである。酸化物系ガラスセラミックス材としては、例えば、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)を用いることができる。LATPは、例えばLi1.07Al0.69Ti1.46(POなどである。また、LAGPは、例えばLi1.5Al0.5Ge1.5(PO)などである。言い換えると、酸化物系ガラスセラミック材は、リチウム、ケイ素およびホウ素から成る群から選択される少なくとも一種を含んでよい。例えば、90LiBO-10LiSOが挙げられる。また、酸化物系ガラスセラミック材は、酸化リチウムを必須とし、酸化ゲルマニウム、酸化ケイ素、酸化ホウ素および酸化リンから成る群から選択される少なくとも一種を含んでよい。また、硫化物系ガラスセラミックス材としては、例えば、Li11およびLi3.250.95などがある。
 大気安定性に優れ、一体焼結を容易に成し得る観点をより重視すると、固体電解質は、酸化物系結晶材、酸化物系ガラス材および酸化物系ガラスセラミックス材から成る群から選択される少なくとも一種を含んでいてもよい。
 また、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、Na(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。
 固体電解質層は、結着剤および/または焼結助剤を含んでいてもよい。固体電解質層に含まれる結着剤および/または焼結助剤は、例えば、正極活物質部分および/または負極活物質部分に含まれ得る結着剤および/または焼結助剤と同様の材料から選択されてもよい。
 固体電解質層の厚みは特に限定されず、例えば、1μm以上15μm以下であってよく、特に1μm以上5μm以下であってもよい。
2.端子電極
 端子電極は、電池素体140の端面に設けられている。一例として、図1では、電池素体140の積層の方向と交差する方向に位置する電池素体140の側面にそれぞれに端子電極151,152が設けられてよい。なお、端子電極151,152の変形例として、図2Aに示すように、電池素体140の側面から電池素体の底面にまで及ぶように延在してもよい。また、他の変形例として、図2Bに示すように、電池素体140の側面から底面および/または天面にかけて端子電極が設けられていてもよい。
 端子電極は、より詳述すると、正極層110と接続された正極側の端子電極151と、負極層120と接続された負極側の端子電極152とが設けられており、正極側の端子電極151は、一側面(図1では、右側)に形成され、負極側の端子電極152は、正極側の端子電極151と対向するように(図1では、左側)設けられていてもよい。
 端子電極151,152は、導電材料と、ポリエステル系樹脂を含んでいる。ここで、従前の固体電池の端子電極として、導電材料のみからなる端子電極が知られている。この端子電極は、導電性ペーストを電池素体に設け、導電性ペーストを焼成することによって形成していた。導電性ペーストの焼成温度が800℃程度であるため、当該焼成温度よりも低いガラスを有する電池素体には不向きであった。そのため、端子電極の形成温度を低温化することを意図して、導電材料と樹脂材料を含む端子電極を用いることに至った。特に、端子電極を形成する材料として、ポリエステル系樹脂を含有すると、固体電池を充電する際に生じる体積膨張によって端子電極にクラックが入ることを低減することができる。以下、端子電極について詳述する。
(導電材料)
 導電材料は、導電性を有する材料であり、具体的には、炭素材料や金属材料が挙げられる。なお、本明細書でいう「導電性」とは、体積抵抗率が10Ω・cm以下であることを意味する。
 金属材料は、導電性を有していれば特に制限されるものではないが、銀、金、プラチナ、アルミニウム、銅、パラジウム、亜鉛、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。また、AgコートCu、AgコートCuNiなどの複合金属でもよい。なお、導電率が高く、かつ、高温高湿の環境下でも導電率の変化が小さいことから、好ましい金属材料として、銀が挙げられる。
 導電材料の形状は、球状、樹枝形状、偏平形状であることが好ましい。本明細書でいう「偏平形状」とは、曲率半径の大きい円弧部と曲率半径の小さい円弧部とを結合した曲線形状からなる楕円形状や、円弧部と平坦部とを結合した形状からなる長円形状等を包含するものである。なお、真円を含んでいてもよい。粒子の粒径に制約はないが、好ましくは0.1μm以上30μm以下が好適である。
(ポリエステル系樹脂)
 ポリエステル系樹脂は、端子電極と電池素体の接着性をより向上させるために用いられるものである。本明細書でいう「ポリエステル系樹脂」とは、多塩基酸と多価アルコールを重縮合させ、内部にエステル結合を有する樹脂をいう。多塩基酸の一例として、多価カルボン酸(例えば、ジカルボン酸)が好ましい。多価アルコールの一例として、ポリアルコール(例えば、ジオール)が好ましい。
 本実施形態では、端子電極151,152にポリエステル系樹脂を含有するために電池素体140に対して端子電極151,152を強固に接着することができる。また、固体電池100の端子電極151,152は、固体電池を充電する際に生じる電池素体140の体積膨張と追随可能なため、端子電極151,152へのクラックの発生を抑制することができる。端子電極151,152へのクラックの発生を抑制する点については、後述する実施例で「破断伸び率」および「ヤング率」を説明する際に詳述する。
3.絶縁外層
 本開示の固体電池の付加的構成として、絶縁外層160を備えていてよい。具体的には、電池素体140の外側には、絶縁外層160が設けられてよい。絶縁外層160は、一般に電池素体140の最外側に形成され得るもので、電気的、物理的および/または化学的に電池素体140を保護するためのものである。特に、絶縁外層160は、固体電池100の頂面側の絶縁外層160および底面側の絶縁外層160を備えている。また、端子電極151,152が設けられていない電池素体140の側面(図1において紙面垂直方向の電池素体140の側面)に絶縁外層160が設けられていてもよい。絶縁外層を構成する材料としては、絶縁性、耐久性および/または耐湿性に優れ、環境的に安全であることが好ましく、例えば樹脂材、ガラス材および/またはセラミック材を含むものであってよい。さらに、絶縁外層は、一体焼成による製造のため、焼成体の形態を有していてもよい。なお、絶縁外層160を設けず、その他樹脂やセラミックパッケージに包含されていてもよい。
4.被覆絶縁膜
 本開示の固体電池の付加的構成として、被覆絶縁膜200を備えていてよい。被覆絶縁膜200は、端子電極151,152および電池素体140を覆うように設けられてよい(図3参照)。被覆絶縁膜200は樹脂に相当することが好ましい。つまり、被覆絶縁膜200は樹脂材を含むことが好ましい。図3に示される態様から分かるように、支持基板400上に設けられた電池素体140が被覆絶縁膜200の樹脂材で封止されていることを意味している。このような樹脂材から成る被覆絶縁膜200は、後述する無機膜300と相俟って好適に水分の侵入を低減に資する。
 被覆絶縁膜の材質は、絶縁性を呈するものであればいずれの種類であってよい。例えば被覆絶縁膜が樹脂を含む場合、その樹脂は熱硬化性樹脂または熱可塑性樹脂のいずれであってもよい。特に制限されるわけではないが、被覆絶縁膜の具体的な樹脂材としては、例えばエポキシ系樹脂、シリコーン系樹脂および/または液晶ポリマーなどを挙げることができる。あくまでも例示にすぎないが、被覆絶縁膜の厚さは、30μm以上1000μm以下であってよく、例えば50μm以上300μm以下である。
 なお、固体電池において、被覆絶縁膜が必須というわけではなく、被覆絶縁膜が設けられていない固体電池も考えられる。
5.無機膜
 本開示の固体電池の付加的構成として、被覆絶縁膜200を覆う無機膜300を設けてもよい。図3に示されるように、無機膜300は、被覆絶縁膜200上に位置付けられているので、被覆絶縁膜200とともに、支持基板400上の電池素体140を全体として大きく包み込む形態を有している。
 無機膜300は、薄膜形態を有することが好ましい。薄膜形態を有する無機膜に資するものであれば、無機膜の材質は特に制限されず、金属、ガラス、酸化物セラミックスまたは、それらの混合物などであってもよい。ある好適な態様では無機膜が金属成分を含んでよい。つまり、無機膜が好ましくは金属薄膜でよい。あくまでも例示にすぎないが、このような無機膜の厚さは、0.1μm以上100μm以下であってよく、例えば1μm以上50μm以下である。
 特に製法に依拠していえば、無機膜300は、乾式めっき膜であってよい。かかる乾式めっき膜は、物理的気相成長法(PVD)や化学的気相成長法(CVD)といった気相法で得られる膜であって、ナノオーダーまたはミクロンオーダーの非常に小さい厚さを有している。このような薄い乾式めっき膜は、よりコンパクトなパッケージ化に資する。
 乾式めっき膜は、例えば、アルミニウム(Al)、ニッケル(Ni)、パラジウム(Pd)、銀(Ag)、スズ(Sn)、金(Au)、銅(Cu)、チタン(Ti)、白金(Pt)、ケイ素/シリコン(Si)およびSUSなどから成る群から選択される少なくとも1種の金属成分・半金属成分、無機酸化物ならびに/またはガラス成分などから成るものであってよい。このような成分から成る乾式めっき膜は、化学的および/または熱的に安定するので、耐薬品性、耐候性および/または耐熱性などに優れ、長期信頼性がより向上した固体電池がもたらされ得る。
 なお、固体電池において、無機膜が必須というわけではなく、無機膜が設けられていない固体電池も考えられる。
6.支持基板
 本開示の固体電池の付加的構成として、支持基板400を備えてよい。支持基板400は、電池素体140が支持されるように設けられた基板である。“支持”に供すべく固体電池の主面を成す一方の側に支持基板が位置付けられている。また、“基板”ゆえ全体として薄板状の形態を好ましくは有している。
 支持基板400は、例えば、樹脂基板、セラミック基板であってもよく、耐水性を有する基板が好ましい。ある好適な態様では支持基板400が、セラミック基板でよい。つまり、支持基板400はセラミックを含み、それが基板の母材成分を占めてよい。セラミックから成る支持基板は、水蒸気透過防止に資するところ、基板実装における耐熱性などの点でも好ましい基板である。このようなセラミック基板は、焼成を通じて得ることができ、例えばグリーンシート積層体の焼成によって得ることができる。これにつき、セラミック基板は、例えばLTCC基板(LTCC:Low Temperature Co-fired Ceramics)であってよく、あるいは、HTCC基板(HTCC:High Temperature Co-fired Ceramics)であってもよい。あくまでも例示にすぎないが、支持基板の厚さは、20μm以上1000μm以下であってよく、例えば100μm以上300μm以下である。
 また、支持基板400は、電池素体140の端子基板として機能してよい。すなわち、基板が介在するような形態でパッケージ化された固体電池をプリント配線板などの別の2次基板上に実装し得る。例えば、半田リフローなどを通じで、支持基板を介して固体電池を表面実装でき得る。このようなことから、パッケージ化された固体電池は、SMDタイプの電池であってよい。特に端子基板がセラミック基板から成る場合、固体電池は、耐熱性が高く、半田実装可能なSMDタイプの電池となり得る。
 端子基板ゆえ、配線を有していることが好ましく、特に、上下表面または上下表層を電気的に結線する配線410(図3参照)を備えていることが好ましい。つまり、ある好適な態様の支持基板は、当該基板の上下面を電気的に結線する配線を備え、パッケージ化された固体電池の外部端子のための端子基板でよい。
 端子基板における配線410は、特に制限されず、当該基板の上面と下面との間の電気接続に資するものであれば、いずれの形態を有していてもよい。電気接続に資するがゆえ、端子基板における配線410は、基板の導電性部分であるともいえる。そのような基板の導電性部分は、配線層、ビアおよび/またはランドなどの形態を有していてよい。例えば、図3に示す態様では、支持基板400にビア412および/またはランド411が設けられている。ここでいう「ビア」は、支持基板の上下方向、すなわち基板厚み方向を電気的に接続するための部材を指しており、例えばフィルドビアなどが好ましく、また、インナービアの形態などであってもよい。また、本明細書でいう「ランド」は、支持基板の上側主面および/または下側主面に設けられた電気接続のための端子部分・接続部分(好ましくはビアと接続されている端子部分・接続部分)を指しており、例えば角ランドであってよいし、あるいは、丸ランドなどであってもよい。
[電子デバイスの構成]
 本開示の電子デバイスは、上述した固体電池が、表面実装されたものである。具体的には、支持基板400の配線によって固体電池の表面実装を可能とされている。本明細書でいう「表面実装」とは、基板上に形成されたパターンに直接固体電池を固定する技術を意図している。一例として、上述した固体電池1は、プリント基板等に実装されパッケージ化されてよい。さらに、固体電池以外の電子部品を搭載していてもよい。
[固体電池の製造方法]
 本開示の固体電池の製造は、(1)電池素体の準備、(2)端子電極材料の準備、(3)電池素体の焼成、(4)端子電極材料の塗布、(5)端子電極材料の硬化、(6)支持基板への固定、(7)被覆絶縁膜および無機膜の形成、を含むプロセスを経て行われる。以下、順を追って説明する。
(1)電池素体の準備
 電池素体の製造に際して、固体電解質を含むシート、正極用ペースト、負極用ペーストを作製する。
 固体電解質を含むシートは、固体電解質、有機バインダ、溶剤および任意の添加剤を混合してスラリーを調製し、調製されたスラリーから、焼成によってシートが形成される。
 正極用ペーストは、正極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して作製される。同様に負極用ペーストは、負極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して作製される。
 まず、固体電解質を含むシート上に正極用ペーストを印刷し、また、必要に応じて集電層および/またはネガ層を印刷する。同様にして、シート上に負極用ペーストを印刷し、また、必要に応じて集電層および/またはネガ層を印刷する。これら正極用ペーストを印刷したシートと、負極用ペーストを印刷したシートとを交互に積層して積層体を得る。なお、積層体の最外層(最上層および/または最下層)についていえば、それが電解質層でも絶縁層でもよく、あるいは、電極層であってもよい。
(2)端子電極材料の準備
 まず、端子電極151,152の材料となる端子電極材料(一例として、導電性ペースト)を準備する。導電材料としてAgおよびポリエステル系樹脂を準備する。Agの粒子はどのような形状であってもいいが、扁平形状を有しているとよい。また、Agの粒径はどのような粒径であってもよいが、好ましくは0.1μm以上30μm以下が好適である。より好ましくは0.5μm以上20μm以下が好適である。なお、本明細書でいう「粒径」とは、体積基準の粒度分布において累積体積が50%になるメジアン径(D50)を示している。また、メジアン径(D50)は、例えば、画像解析や、レーザー回折/散乱式粒子分布測定装置を用いて測定されるが、当該装置による測定に限定されるものではない。
 そして、導電材料およびポリエステル系樹脂を混ぜ合わせる。なお、導電材料とポリエステル系樹脂は体積比率で20/80~60/40の範囲になるように混ぜ合わせる。中でも体積比率30/70~50/50の範囲では、諸特性のバランスがよく好適である。ここで、付加的要素として、さらに、樹脂および溶剤をさらに含有させて端子電極材料としてもよい。なお、本明細書でいう「端子電極材料」とは、流体力学的な意味における流れを形成することができる材料、または、そのような流れを維持することができる材料のことをいう。そのような材料の例は、ペースト、溶液又は懸濁液等の液状体が挙げられる。
 溶剤は、上述の樹脂バインダを溶解するものであり、例えば、有機溶剤を用いてよい。有機溶剤としては、特に制限されるわけではないが、メタノール、エタノール、1-プロパノール、2-プロパノール、ヘキサノール、シクロヘキサノールを含むアルコール類、エチレングリコール、プロピレングリコールを含むグリコール類、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトンを含むケトン類、α-テルピネオール、β-テルピネオール、γ-テルピネオールを含むテルペン類、エチレングリコールモノアルキルエーテル類、エチレングリコールジアルキルエーテル類、ジエチレングリコールモノアルキルエーテル類、ジエチレングリコールジアルキルエーテル類、エチレングリコールモノアルキルエーテルアセテート類、エチレングリコールジアルキルエーテルアセテート類、ジエチレングリコールモノアルキルエーテルアセテート類、ジエチレングリコールジアルキルエーテルアセテート類、プロピレングリコールモノアルキルエーテル類、プロピレングリコールジアルキルエーテル類、プロピレングリコールモノアルキルエーテルアセテート類、プロピレングリコールジアルキルエーテルアセテート類、モノアルキルセロソルブ類を単独で用いることができる他、これらの溶剤から選ばれた少なくとも1種類または2種類以上の溶剤から成る混合物も用いることができる。有機溶剤の一例として、好ましくは、ターピネオールなどのアルコール系溶剤が用いられる。また、溶剤には、分散材が添加されていてもよい。
 端子電極材料を準備後に、当該端子電極材料を、電池素体における正極露出側面および負極露出側面に対して塗布する。
(3)電池素体の焼成
 電池素体の焼成は、あくまでも例示にすぎないが、所望の焼成温度(例えば、焼成ピーク温度が300℃~600℃の範囲)において、酸素ガスを含む窒素ガス雰囲気中または大気中で加熱することによって実施する。焼成は、積層方向(場合によっては積層方向および当該積層方向に対する垂直方向)で電池素体前駆体を加圧しながら行ってよい。
(4)端子電極材料の塗布
 端子電極材料を準備後に、当該端子電極材料を、電池素体における正極露出側面および負極露出側面に対して塗布する。
(5)端子電極材料の硬化
 所望の硬化温度(例えば、100℃~300℃の範囲)において、正極露出側面および負極露出側面に対して塗布した電池素体を硬化させる。
(6)支持基板への固定
 支持基板は、二次基板への表面実装可能とするため、ビアおよび/またはランドが設けられている。例えば、複数のグリーンシートを積層して焼成することによって得ることができる。これは支持基板がセラミック基板である場合に特にいえる。支持基板の調製は、例えばLTCC基板の作成に準じて行うことができる。
 支持基板における、ビアおよび/またはランドの製造は、例えば、パンチプレスまたは炭酸ガスレーザなどによって孔(径サイズ:約50μm以上200μm以下)を形成し、その孔に導電性ペースト材料を充填する手法、あるいは、印刷法を用いる手法によって製造される。
 支持基板を製造した後に、当該支持基板の導電性部分と電池素体の端子電極とが互いに電気的に接続されるように配置する。そして、導電性ペーストを支持基板上に供し、それによって、支持基板の導電性部分と端子電極とを互いに電気的に接続するようにしてよい。導電性ペーストには、Ag導電ペーストの他、ナノペーストや合金系ペースト、ロー材など、形成後にフラックスなどの洗浄を必要としない導電性ペーストを用いることができる。
(7)被覆絶縁膜および無機膜の形成
 次いで、支持基板上の電池素体が覆われるように被覆絶縁膜を形成する。それゆえ、支持基板上の電池素体が全体的に覆われるように被覆絶縁膜の原料を供する。被覆絶縁膜が樹脂材から成る場合、樹脂前駆体を支持基板上に設けて硬化などに付して被覆絶縁膜を成型する。
 ある好適な態様では、金型で加圧に付すことを通じて被覆絶縁膜の成型を行ってもよい。例示にすぎないが、コンプレッション・モールドを通じて支持基板上の電池素体を封止する被覆絶縁膜を成型してよい。一般的にモールドで用いられる樹脂材であるならば、被覆絶縁膜の原料の形態は、顆粒状でもよく、また、その種類は熱可塑性であってもよい。なお、このような成型は、金型成型に限らず、研磨加工、レーザー加工および/または化学的処理などを通じて行ってもよい。
 次いで、無機膜を形成する。無機膜は、例えば、乾式めっきを実施し、無機膜として乾式めっき膜をとしてよい。より具体的には、乾式めっきを実施し、被覆前駆体の底面以外(即ち、支持基板の底面以外)の露出面に対して無機膜を形成する。ある好適な態様では、スパッタリングを実施し、スパッタ膜を被覆前駆体の底面以外の露出外面に形成する。
 以上のような工程を経ることによって、本開示の固体電池を最終的に得ることができる。
 [評価1:端子電極ペーストに関する評価]
 以下の表1に示す実施例1~4および比較例1~4の導電性ペーストの破断伸び率およびヤング率について評価した。なお、導電材料には、扁平形状のAg粉末、樹脂には、分子構造、分子量等が異なるポリエステル系樹脂A~Dを使用した。破断伸び率およびヤング率の評価は次の通り行った。導電性ペーストをガラス板上に適量垂らし、アプリケーターを用いてペースト塗膜を塗工した。塗工した塗膜を熱風循環オーブンに投入し、各ペーストの標準硬化条件で加熱し硬化させた。硬化後の塗膜については、トムソン刃を用いてダンベル形状に打ち抜き測定に使用した。
 作製した試料については、動的粘弾性(DMA)測定装置(TAインスツルメント社製 RSA-G2)を用いて、試験速度3mm/minで試験した。引張試験前の初期寸法(13mm)から、引張試験後の破断した際の寸法を測定した。得られた初期寸法および破断後の寸法から「破断伸び率」を算出した。なお、破断伸び率は5つの試料を測定、算出し、その平均値を採用した。
 ヤング率については、超微小押込み硬さ試験機(エリオニクス社製 ENT-1100a)を用いて、負荷除荷試験により測定した。より具体的には、圧子にはバーコビッチ圧子を使用し、押込み荷重50mNで試験を行ったときの変位の曲線を解析し、ヤング率を計測した。なお、破断伸び率は各実施例および比較例に対し3つの試料を作成して測定、算出し、その平均値を採用した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果によれば、実施例1~4は、破断伸び率が0.8%以上50%以下の範囲に包含されている。一方で、比較例1および2は、破断伸び率が0.8%未満であり、比較例3は、破断伸び率が50%より高い結果が得られた。
 破断伸び率が0.8%以上あれば、固体電池を充電する際に生じる電池素体の体積膨張に追随できるため、端子電極へのクラックの発生を低減することができる。一方で、破断伸び率が0.8%未満であると、充電池の電池素体の体積膨張に追随できず、端子電極のクラックが散見された。また、比較例3のように破断伸び率が50%を越えると、電池素体と端子電極との密着力が弱くなり、電池素体と端子電極との剥がれが散見された。以上を考慮すると、本開示の端子電極の破断伸び率は、0.8%以上50%以下であることが好ましい。
 また、表1の結果によれば、実施例1~4は、ヤング率が2.0GPa以上6.0GPa以下の範囲に包含されている。一方で、比較例1および2は、ヤング率が6.0GPa以上であり、比較例3は、ヤング率が2.0GPa未満である結果が得られた。
 上記結果のとおりヤング率を2.0GPa以上であれば、固体電池に充電する際に生じる電池素体の体積膨張に追随できるため、端子電極へのクラックの発生を低減することができる。一方で、ヤング率が2.0GPa未満であると、充電池の電池素体の体積膨張に追随できず、端子電極のクラックが散見された。また、比較例3のようにヤング率が0.5GPa以下であると、電池素体と端子電極との密着力が弱くなり、電池素体と端子電極との剥がれが散見された。以上を考慮すると、本開示の端子電極のヤング率は、2.0GPa以上6.0GPa以下であることが好ましい。
 [評価2:固体電池の電気的特性に関する評価]
 以下、実施例1~4および比較例1~3の固体電池の電気的特性について評価した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
評価試験内容は、固体電池の充放電特性を測定し、放電時の電圧変動を評価した。また、固体電池のサイクル試験を行ったあとの交流インピーダンス(ACimp)を算出し評価した。
固体電池の充放電試験およびサイクル試験には、東洋システム社製充放電評価装置TOSCAT-3100を使用した。60℃の環境下において、固体電池を100サイクル充放電させた。なお、充放電条件は、充電時には、0.5Cの電流値(2時間で完全充電させる電流値)、電圧が4.1Vに到達するまで定電流充電したのち、4.1Vの電圧で0.01Cの電流値(100時間で完全充電させる電流値)に到達するまで定電圧充電した。放電時には、0.1Cの電流値(10時間で完全放電させる電流値)で電圧2.0Vに到達するまで定電流放電した。
 放電時の電圧変動は、放電時の放電カーブのベースラインから0.05V以上の電圧増加が発生しているかどうかを確認した。充放電100サイクル後のACimpについては、サイクル試験後の固体電池の抵抗値を交流インピーダンス法で測定して評価を行った。
 サイクル試験後の固体電池の1MHzから1HzまでのCole-Coleプロットを測定(装置:ソーラトロンインスツルメンツ製インピーダンス ゲイン/フェーズ アナライザSI1260)し、第1円弧の終点をACimpと定義した。ACimpの値が小さい程、電池の出入力特性が向上する。100サイクル試験後のACimpの値が70Ω以下である場合、良好と判断した。
 表2に記載の交流インピーダンスの評価によると、比較例1および2(エポキシ樹脂を用いたもの)は、放電時の電圧増加が0.05V以上であった。一方で、実施例1~4は、放電時の電圧増加が0.05V未満に抑えられ、良好な放電特性が得られた。
 また、比較例3(シリコーン樹脂を用いたもの)は、放電時の電圧増加が抑えられているものの、交流インピーダンスの値が129Ωであり、基準である交流インピーダンスの値(70Ω)よりも高い値を示した。一方で、実施例1~4は、交流インピーダンスの値がいずれも70Ωを下回ったため、良好な交流インピーダンス特性が得られた。
 なお、今回開示した実施態様は、すべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本開示の技術的範囲は、上記した実施態様のみによって解釈されるものではなく、特許請求の範囲の記載に基づいて画定される。また、本開示の技術的範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。例えば、固体電池は、略六面体形状に限定されるものではなく、多面体形状、円筒形状、球体形状であってもよい。
 本開示のパッケージ化された固体電池は、電池使用または蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本開示のパッケージ化された固体電池は、エレクトロニクス実装分野で用いることができる。また、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、ならびに、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などにも本開示を利用することができる。
100 固体電池
110 正極層
111 正極活物質層
112 正極集電体層
120 負極層
121 負極活物質層
122 負極集電体層
130 固体電解質層
140 電池素体
151 正極層側端子電極
152 負極層側端子電極
160 絶縁外層
200 被覆絶縁膜
300 無機膜
400 支持基板
410 配線
411 ランド
412 ビア

Claims (17)

  1.  正極層、負極層、および前記正極層と前記負極層との間に介在する固体電解質層を有する電池素体と、
    前記電池素体の端面に設けられ前記電池素体に電気的に接続された端子電極と、を備え、
     前記端子電極は、導電材料と、ポリエステル系樹脂を含む、固体電池。
  2.  前記導電材料は、偏平形状である、請求項1に記載の固体電池。
  3.  前記導電材料は、銀である、請求項1または2に記載の固体電池。
  4.  前記端子電極の破断伸び率が0.8%以上50%以下である、請求項1~3のいずれか1項に記載の固体電池。
  5.  前記端子電極のヤング率が2.0GPa以上6.0GPa以下である、請求項1~4のいずれか1項に記載の固体電池。
  6.  前記固体電解質層が、酸化物ガラスおよび/または酸化物ガラスセラミックスを含み、
    前記酸化物ガラスおよび/または前記酸化物ガラスセラミックスは、リチウム、ケイ素およびホウ素から成る群から選択される少なくとも一種を含む、請求項1~5のいずれか1項に記載の固体電池。
  7.  前記固体電解質層が、酸化物ガラスおよび/または酸化物ガラスセラミックスを含み、
     前記酸化物ガラスおよび/または前記酸化物ガラスセラミックスは、
     酸化リチウムと、
     酸化ゲルマニウム、酸化ケイ素、酸化ホウ素および酸化リンから成る群から選択される少なくとも一種と、を含む、
     請求項1~5のいずれか1項に記載の固体電池。
  8.  前記端子電極は、前記正極層および前記負極層が積層する方向と交差する方向に位置する前記電池素体の側面に設けられている、請求項1~7のいずれか1項に記載の固体電池。
  9.  前記端子電極は、前記電池素体の側面から前記電池素体の底面にまで及ぶように延在している、請求項8に記載の固体電池。
  10.  前記端子電極は、前記電池素体の側面から前記電池素体の天面および底面にまで及ぶように延在している、請求項8に記載の固体電池。
  11.  前記端子電極は、支持基板に対して電気的に接続されている、請求項1~10のいずれか1項に記載の固体電池。
  12.  前記端子電極および前記電池素体は、被覆絶縁膜で被覆されている、請求項1~11のいずれか1項に記載の固体電池。
  13.  前記被覆絶縁膜は、無機膜で被覆されている、請求項12に記載の固体電池。
  14. 前記固体電池は、表面実装されるようにパッケージ化されている、請求項1~13のいずれか1項に記載の固体電池。
  15.  前記電池素体が焼結体から構成されている、請求項1~14のいずれか1項に記載の固体電池。
  16.  前記正極層および前記負極層は、リチウムイオンを吸蔵放出可能な層である、請求項1~15のいずれか1項に記載の固体電池。
  17.  請求項1~16のいずれか1項に記載された固体電池が、表面実装された電子デバイス。
PCT/JP2023/010428 2022-03-29 2023-03-16 固体電池および電子デバイス WO2023189678A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022054371 2022-03-29
JP2022-054371 2022-03-29

Publications (1)

Publication Number Publication Date
WO2023189678A1 true WO2023189678A1 (ja) 2023-10-05

Family

ID=88201787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/010428 WO2023189678A1 (ja) 2022-03-29 2023-03-16 固体電池および電子デバイス

Country Status (1)

Country Link
WO (1) WO2023189678A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006501A (ja) * 2016-06-30 2018-01-11 Tdk株式会社 電子部品
WO2020031424A1 (ja) * 2018-08-10 2020-02-13 株式会社村田製作所 固体電池
JP2020087588A (ja) * 2018-11-20 2020-06-04 株式会社村田製作所 電子部品
WO2020219354A1 (en) * 2019-04-25 2020-10-29 Avx Corporation Multilayer capacitor having open mode electrode configuration and flexible terminations
JP6933250B2 (ja) * 2017-03-28 2021-09-08 株式会社村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018006501A (ja) * 2016-06-30 2018-01-11 Tdk株式会社 電子部品
JP6933250B2 (ja) * 2017-03-28 2021-09-08 株式会社村田製作所 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両
WO2020031424A1 (ja) * 2018-08-10 2020-02-13 株式会社村田製作所 固体電池
JP2020087588A (ja) * 2018-11-20 2020-06-04 株式会社村田製作所 電子部品
WO2020219354A1 (en) * 2019-04-25 2020-10-29 Avx Corporation Multilayer capacitor having open mode electrode configuration and flexible terminations

Similar Documents

Publication Publication Date Title
EP2058892B1 (en) Total solid rechargeable battery
KR101757017B1 (ko) 리튬 이온 이차 전지 및 그 제조 방법
JP6693226B2 (ja) 全固体型二次電池
WO2020195382A1 (ja) 固体電池
JP7107389B2 (ja) 固体電池
JP6295819B2 (ja) 全固体二次電池
JP7188562B2 (ja) 固体電池
JP7405151B2 (ja) 固体電池
JPWO2020116090A1 (ja) 固体電池
JP6316091B2 (ja) リチウムイオン二次電池
JP2020115450A (ja) 全固体電池
CN113169372A (zh) 全固体二次电池
WO2021132504A1 (ja) 固体電池
JP7201085B2 (ja) 固体電池
US20230163365A1 (en) Solid state battery
CN113169374A (zh) 全固体电池
WO2023189678A1 (ja) 固体電池および電子デバイス
WO2024014260A1 (ja) 固体電池および電子デバイス
CN115735288A (zh) 固体电池
CN113273015A (zh) 全固体电池
WO2023048193A1 (ja) 導電性組成物、導電性組成物を用いた固体電池および固体電池を実装した電子デバイス
WO2023171457A1 (ja) 固体電池および固体電池が表面実装された電子デバイス
JP7259938B2 (ja) 固体電池
WO2024009963A1 (ja) 固体電池
JP2023143252A (ja) 固体電池パッケージ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024511797

Country of ref document: JP