WO2023243489A1 - 固体電池パッケージ - Google Patents

固体電池パッケージ Download PDF

Info

Publication number
WO2023243489A1
WO2023243489A1 PCT/JP2023/021014 JP2023021014W WO2023243489A1 WO 2023243489 A1 WO2023243489 A1 WO 2023243489A1 JP 2023021014 W JP2023021014 W JP 2023021014W WO 2023243489 A1 WO2023243489 A1 WO 2023243489A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
solid
state battery
covering
Prior art date
Application number
PCT/JP2023/021014
Other languages
English (en)
French (fr)
Inventor
彰 馬場
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2023243489A1 publication Critical patent/WO2023243489A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/11Primary casings; Jackets or wrappings characterised by their shape or physical structure having a chip structure, e.g. micro-sized batteries integrated on chips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/117Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/141Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte

Definitions

  • the present invention relates to a solid state battery package. More specifically, the present invention relates to solid state batteries packaged to facilitate board mounting.
  • Secondary batteries that can be repeatedly charged and discharged have been used for a variety of purposes.
  • secondary batteries are used as power sources for electronic devices such as smartphones and notebook computers.
  • a liquid electrolyte is generally used as a medium for ion movement that contributes to charging and discharging.
  • electrolytes are used in secondary batteries.
  • safety is generally required in terms of preventing electrolyte leakage.
  • organic solvent used in the electrolyte is a flammable substance, safety is also required in this respect. Based on this point, research is underway on solid batteries that use solid electrolytes instead of electrolytes.
  • solid-state batteries are used in a solid-state battery package configuration that includes a substrate, a solid-state battery placed on the substrate, and a covering part that covers the solid-state battery and includes the package exterior part (patent) (See Reference 1).
  • the two external terminals (positive electrode terminal and negative electrode terminal) of the solid battery package can be normally provided together on the bottom surface of the substrate in consideration of ease of connection with a mating external substrate, etc.
  • the package exterior portion is not electrically connected to the solid state battery inside the package and the external medium, and may become an environment where static electricity tends to accumulate. Therefore, there is a concern that electronic components located at the periphery may be destroyed due to static electricity accumulated on the package exterior. As a result, the behavior of the electronic component may be inappropriately affected.
  • an object of the present invention is to provide a solid state battery package that can suppress inappropriate influences on the behavior of electronic components located at the periphery.
  • a solid state battery package is provided.
  • the solid state battery package according to one embodiment of the present invention, it is possible to suppress inappropriate influences on the behavior of electronic components located at the periphery.
  • FIG. 1 is a cross-sectional view schematically showing the structure of a packaged solid-state battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the configuration of a packaged solid state battery according to an embodiment of the present invention.
  • FIG. 3 is a bottom view schematically showing the configuration of a packaged solid-state battery according to an embodiment of the present invention (corresponding to FIG. 1).
  • FIG. 4 is a plan view schematically showing an arrangement of the second upper substrate electrode layer and the second conductive portion of the substrate in FIG. 1.
  • FIG. FIG. 5 is a plan view schematically showing another arrangement of the second upper substrate electrode layer and the second conductive portion of the substrate in FIG.
  • FIG. 1 is a cross-sectional view schematically showing the structure of a packaged solid-state battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the configuration of a packaged solid state battery according to an embodiment of the present invention.
  • FIG. 3 is a bottom view schematically showing the configuration
  • FIG. 6 is a cross-sectional view schematically showing the configuration of a packaged solid-state battery according to another embodiment of the present invention.
  • 7 is a plan view schematically showing an arrangement of the second upper substrate electrode layer of the substrate in FIG. 6.
  • FIG. 8 is a plan view schematically showing the arrangement of internal electrode layers inside the substrate.
  • FIG. 9 is a bottom view schematically showing the configuration of a packaged solid-state battery according to another embodiment of the present invention (corresponding to FIG. 6).
  • FIG. 10 is a cross-sectional view schematically showing the configuration of a packaged solid-state battery according to yet another embodiment of the present invention.
  • FIG. 11 is a plan view schematically showing an arrangement of the second upper substrate electrode layer and the second conductive portion of the substrate in FIG. 10.
  • FIG. 12 is a plan view schematically showing another arrangement of the second upper substrate electrode layer and the second conductive portion of the substrate in FIG. 10.
  • FIG. 13 is a plan view schematically showing the arrangement of the second upper substrate electrode layer of the substrate that can be contacted with the coated inorganic layer.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of a packaged solid-state battery according to yet another embodiment of the present invention.
  • FIG. 15 is a bottom view schematically showing the configuration of a packaged solid-state battery according to yet another embodiment of the present invention (corresponding to FIG. 14).
  • FIG. 16 is a cross-sectional view schematically showing the configuration of a packaged solid-state battery according to yet another embodiment of the present invention.
  • FIG. 17 is a bottom view schematically showing the configuration of a packaged solid-state battery according to yet another embodiment of the present invention (corresponding to FIG. 16).
  • FIG. 18 is a process sectional view schematically showing a manufacturing process of a solid battery package according to an embodiment of the present invention.
  • FIG. 19 is a process cross-sectional view schematically showing a manufacturing process of a solid battery package according to an embodiment of the present invention.
  • FIG. 20 is a process cross-sectional view schematically showing a manufacturing process of a solid battery package according to an embodiment of the present invention.
  • FIG. 21 is a process cross-sectional view schematically showing a manufacturing process of a solid battery package according to an embodiment of the present invention.
  • FIG. 22 is a process cross-sectional view schematically showing a manufacturing process of a solid battery package according to an embodiment of the present invention.
  • solid battery package refers to a solid battery device (or solid battery product) configured to protect a solid battery from the external environment
  • solid battery product that is equipped with a board that facilitates mounting and that protects the solid-state battery from the external environment.
  • cross-sectional view refers to the shape viewed from a direction substantially perpendicular to the stacking direction in the stacked structure of a solid-state battery (simply put, the cross-sectional view when cut along a plane parallel to the thickness direction of the layers) form).
  • planar view or “planar view shape” as used in this specification is based on a sketch when the object is viewed from above or below along the thickness direction of such layers (i.e., the above-mentioned lamination direction). ing.
  • Solid battery refers to a battery whose constituent elements are made of solid matter in a broad sense, and in a narrow sense it refers to an all-solid-state battery whose constituent elements (preferably all constituent elements) are made of solid matter.
  • the solid-state battery of the present invention is a stacked solid-state battery configured such that the layers constituting the battery constituent units are stacked on each other, and preferably each layer is made of a fired body.
  • a “solid battery” includes not only a so-called “secondary battery” that can be repeatedly charged and discharged, but also a “primary battery” that can only be discharged.
  • the "solid battery” is a secondary battery.
  • the term “secondary battery” is not excessively limited by its name, and may include, for example, power storage devices. Note that in the present invention, the solid state battery included in the package can also be referred to as a "solid state battery element.”
  • a solid battery includes at least positive and negative electrode layers and a solid electrolyte layer.
  • the solid-state battery 100 includes a solid-state battery laminate including battery constituent units consisting of a positive electrode layer 110, a negative electrode layer 120, and at least a solid electrolyte layer 130 interposed between them. .
  • each layer constituting it may be formed by firing, and the positive electrode layer, negative electrode layer, solid electrolyte layer, etc. may form the fired layers.
  • the positive electrode layer, the negative electrode layer, and the solid electrolyte layer are each integrally fired, and therefore it is preferable that the solid battery laminate forms an integrally fired body.
  • the positive electrode layer 110 is an electrode layer containing at least a positive electrode active material.
  • the positive electrode layer may further include a solid electrolyte.
  • the positive electrode layer is composed of a fired body containing at least positive electrode active material particles and solid electrolyte particles.
  • the negative electrode layer is an electrode layer containing at least a negative electrode active material.
  • the negative electrode layer may further include a solid electrolyte.
  • the negative electrode layer is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
  • a positive electrode active material and a negative electrode active material are substances that participate in the transfer of electrons in a solid battery. Ions move (conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte, and electrons are exchanged to perform charging and discharging. It is particularly preferable that each electrode layer of the positive electrode layer and the negative electrode layer is a layer capable of intercalating and deintercalating lithium ions or sodium ions. That is, the solid battery is preferably an all-solid-state secondary battery in which lithium ions or sodium ions move between a positive electrode layer and a negative electrode layer via a solid electrolyte to charge and discharge the battery.
  • Examples of the positive electrode active material contained in the positive electrode layer 110 include a lithium-containing phosphoric acid compound having a Nasicon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and a lithium-containing lithium-containing layered oxide. At least one selected from the group consisting of oxides and the like can be mentioned.
  • An example of a lithium-containing phosphoric acid compound having a Nasicon type structure includes Li 3 V 2 (PO 4 ) 3 and the like.
  • Examples of lithium-containing phosphoric acid compounds having an olivine structure include Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4 , and/or LiMnPO 4 .
  • lithium-containing layered oxide examples include LiCoO 2 and/or LiCo 1/3 Ni 1/3 Mn 1/3 O 2 .
  • lithium-containing oxides having a spinel structure examples include LiMn 2 O 4 and/or LiNi 0.5 Mn 1.5 O 4 .
  • the type of lithium compound is not particularly limited, but may be, for example, a lithium transition metal composite oxide or a lithium transition metal phosphate compound.
  • Lithium transition metal composite oxide is a general term for oxides containing lithium and one or more types of transition metal elements as constituent elements
  • lithium transition metal phosphate compounds are oxides containing lithium and one or more types of transition metal elements as constituent elements. It is a general term for phosphoric acid compounds containing transition metal elements as constituent elements.
  • the type of transition metal element is not particularly limited, and examples thereof include cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe).
  • sodium-containing phosphoric acid compounds having a Nasicon-type structure sodium-containing phosphoric acid compounds having an olivine-type structure, sodium-containing layered oxides, and spinel-type structures are used. At least one selected from the group consisting of sodium-containing oxides and the like can be mentioned.
  • the sodium-containing layered oxide may include at least one selected from the group consisting of 2FeP2O7 , Na4Fe3 ( PO4 ) 2 ( P2O7 ) , and NaFeO2 as the sodium - containing layered oxide.
  • the positive electrode active material may be, for example, an oxide, a disulfide, a chalcogenide, or a conductive polymer.
  • the oxide may be, for example, titanium oxide, vanadium oxide or manganese dioxide.
  • the disulfide is, for example, titanium disulfide or molybdenum sulfide.
  • the chalcogenide may be, for example, niobium selenide.
  • the conductive polymer may be, for example, disulfide, polypyrrole, polyaniline, polythiophene, polyparastyrene, polyacetylene or polyacene.
  • the negative electrode active material contained in the negative electrode layer 120 includes, for example, titanium (Ti), silicon (Si), tin (Sn), chromium (Cr), iron (Fe), niobium (Nb), and molybdenum (Mo). oxides containing at least one element selected from the group, carbon materials such as graphite, graphite-lithium compounds, lithium alloys, lithium-containing phosphoric acid compounds having a Nasicon-type structure, lithium-containing phosphoric acid compounds having an olivine-type structure, and , a lithium-containing oxide having a spinel structure, and the like.
  • An example of a lithium alloy is Li-Al.
  • lithium-containing phosphoric acid compounds having a Nasicon type structure examples include Li 3 V 2 (PO 4 ) 3 and/or LiTi 2 (PO 4 ) 3 .
  • examples of the lithium-containing phosphoric acid compound having an olivine structure include Li 3 Fe 2 (PO 4 ) 3 and/or LiCuPO 4 .
  • An example of a lithium-containing oxide having a spinel structure is Li 4 Ti 5 O 12 and the like.
  • negative electrode active materials capable of intercalating and releasing sodium ions include sodium-containing phosphoric acid compounds having a Nasicon-type structure, sodium-containing phosphoric acid compounds having an olivine-type structure, and sodium-containing oxides having a spinel-type structure. At least one selected from the group consisting of:
  • the positive electrode layer and the negative electrode layer may be made of the same material.
  • the positive electrode layer and/or the negative electrode layer may contain a conductive material.
  • the conductive material contained in the positive electrode layer and the negative electrode layer include at least one metal material such as silver, palladium, gold, platinum, aluminum, copper, and nickel, and carbon.
  • the positive electrode layer and/or the negative electrode layer may contain a sintering aid.
  • the sintering aid include at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide, and phosphorus oxide.
  • the thickness of the positive electrode layer and the negative electrode layer is not particularly limited, but may be, for example, independently 2 ⁇ m or more and 50 ⁇ m or less, particularly 5 ⁇ m or more and 30 ⁇ m or less.
  • the positive electrode layer 110 and the negative electrode layer 120 may each include a positive electrode current collecting layer and a negative electrode current collecting layer.
  • the positive electrode current collecting layer and the negative electrode current collecting layer may each have a foil form. However, if more emphasis is placed on improving electronic conductivity through integral firing, reducing manufacturing costs of solid-state batteries, and/or reducing internal resistance of solid-state batteries, then the positive electrode current collecting layer and the negative electrode current collecting layer should each form a fired body. It may have.
  • the positive electrode current collector constituting the positive electrode current collector layer and the negative electrode current collector constituting the negative electrode current collector it is preferable to use a material with high electrical conductivity, such as silver, palladium, gold, platinum, aluminum, copper, etc. , and/or nickel may be used.
  • the positive electrode current collector and the negative electrode current collector may each have an electrical connection part for electrically connecting with the outside, and may be configured to be electrically connectable to the end surface electrode. Note that when the positive electrode current collecting layer and the negative electrode current collecting layer have the form of fired bodies, they may be constituted by fired bodies containing a conductive material and a sintering aid.
  • the conductive material contained in the positive electrode current collection layer and the negative electrode current collection layer may be selected from the same materials as the conductive materials that may be contained in the positive electrode layer and the negative electrode layer, for example.
  • the sintering aid contained in the positive electrode current collecting layer and the negative electrode current collecting layer may be selected from the same materials as the sintering aid that may be contained in the positive electrode layer and the negative electrode layer, for example.
  • a positive electrode current collecting layer and a negative electrode current collecting layer are not necessarily required in a solid state battery, and a solid state battery that is not provided with such a positive electrode current collecting layer and a negative electrode current collecting layer is also conceivable. That is, the solid state battery included in the package of the present invention may be a solid state battery without a current collecting layer.
  • a solid electrolyte is a material that can conduct lithium ions or sodium ions.
  • the solid electrolyte layer 130 which constitutes a battery constituent unit in a solid battery, may form a layer between the positive electrode layer 110 and the negative electrode layer 120 that can conduct lithium ions.
  • the solid electrolyte layer may be provided at least between the positive electrode layer and the negative electrode layer. That is, the solid electrolyte layer may be present around the positive electrode layer and/or the negative electrode layer so as to protrude from between the positive electrode layer and the negative electrode layer.
  • the solid electrolyte contained in the solid electrolyte layer includes, for example, one or more of a crystalline solid electrolyte, a glass-based solid electrolyte, a glass-ceramic solid electrolyte, and the like.
  • Examples of the crystalline solid electrolyte include oxide-based crystal materials and sulfide-based crystal materials.
  • oxide-based crystal materials include lithium-containing phosphate compounds having a Nasicon structure, oxides having a perovskite structure, oxides having a garnet type or garnet-like structure, oxide glass ceramics-based lithium ion conductors, etc. It will be done.
  • Lithium-containing phosphoric acid compounds having a Nasicon structure include Li x My (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is titanium (Ti), germanium (Ge), aluminum (Al ), gallium (Ga), and zirconium (Zr).
  • An example of a lithium-containing phosphoric acid compound having a Nasicon structure includes Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 and the like.
  • oxides having a perovskite structure include La 0.55 Li 0.35 TiO 3 and the like.
  • oxides having a garnet type or garnet type similar structure includes Li 7 La 3 Zr 2 O 12 and the like.
  • the sulfide-based crystal material include thio-LISICON, such as Li 3.25 Ge 0.25 P 0.75 S4 and Li 10 GeP 2 S 12 .
  • the crystalline solid electrolyte may include a polymeric material (eg, polyethylene oxide (PEO), etc.).
  • Examples of the glass-based solid electrolyte include oxide-based glass materials and sulfide-based glass materials.
  • oxide glass material include 50Li 4 SiO 4 .50Li 3 BO 3 .
  • Sulfide glass materials include , for example, 30Li 2 S.26B 2 S 3.44LiI, 63Li 2 S.36SiS 2.1Li 3 PO 4 , 57Li 2 S.38SiS 2.5Li 4 SiO 4 and 70Li 2 S. Examples include 30P 2 S 5 and 50Li 2 S.50GeS 2 .
  • the glass-ceramic solid electrolyte examples include oxide-based glass-ceramic materials and sulfide-based glass-ceramic materials.
  • oxide-based glass-ceramic material for example, a phosphoric acid compound (LATP) containing lithium, aluminum, and titanium as constituent elements, and a phosphoric acid compound (LAGP) containing lithium, aluminum, and germanium as constituent elements can be used.
  • LATP is, for example, Li 1.07 Al 0.69 Ti 1.46 (PO 4 ) 3 .
  • LAGP is, for example, Li 1.5 Al 0.5 Ge 1.5 (PO 4 ).
  • examples of the sulfide-based glass ceramic materials include Li 7 P 3 S 11 and Li 3.25 P 0.95 S 4 .
  • Examples of the solid electrolyte that can conduct sodium ions include sodium-containing phosphoric acid compounds having a Nasicon structure, oxides having a perovskite structure, and oxides having a garnet type or garnet type similar structure.
  • the sodium-containing phosphate compound having a Nasicon structure includes Na x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2, 1 ⁇ y ⁇ 2, M is from the group consisting of Ti, Ge, Al, Ga and Zr). at least one selected type).
  • the solid electrolyte layer may contain a sintering aid.
  • the sintering aid contained in the solid electrolyte layer may be selected from the same materials as the sintering aid contained in the positive electrode layer and the negative electrode layer, for example.
  • the thickness of the solid electrolyte layer is not particularly limited.
  • the thickness of the solid electrolyte layer located between the positive electrode layer and the negative electrode layer may be, for example, 1 ⁇ m or more and 15 ⁇ m or less, particularly 1 ⁇ m or more and 5 ⁇ m or less.
  • Solid state batteries are generally provided with end electrodes 140.
  • end electrodes are provided on the sides of the solid state battery. More specifically, a positive end surface electrode 140A connected to the positive electrode layer 110 and a negative end surface electrode 140B connected to the negative electrode layer 120 are provided (see FIG. 1).
  • such end electrodes comprise a material with high electrical conductivity.
  • Specific materials for the end electrodes are not particularly limited, but may include at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin, and nickel.
  • the present invention is a packaged solid state battery.
  • it is a solid state battery package that includes a mountable board and has a structure in which the solid state battery is protected from the external environment.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of a packaged solid-state battery according to an embodiment of the present invention.
  • FIG. 2 is a perspective view schematically showing the configuration of a packaged solid state battery according to an embodiment of the present invention.
  • FIG. 3 is a bottom view schematically showing the configuration of a packaged solid-state battery according to an embodiment of the present invention.
  • a solid state battery package 1000 includes a substrate 200 so that a solid state battery 100 is supported.
  • the solid state battery package 1000 includes a mountable substrate 200 and a solid state battery 100 provided on the substrate 200 and protected from the external environment.
  • the substrate 200 has a main surface larger than that of the solid battery 100, for example.
  • the substrate 200 may be a resin substrate or a ceramic substrate.
  • the board 200 may fall into the categories of a printed wiring board, a flexible board, an LTCC board, or an HTCC board.
  • the substrate 200 may be a substrate configured to include resin as a base material, for example, a layered structure of the substrate may include a resin layer.
  • the resin material of such a resin layer may be any thermoplastic resin and/or any thermosetting resin.
  • the resin layer may be formed by, for example, impregnating glass fiber cloth with a resin material such as epoxy resin.
  • the substrate is preferably a member for an external terminal or external electrode of the packaged solid state battery.
  • the substrate serves as a terminal substrate for the external terminal or external electrode of the solid-state battery.
  • a solid-state battery package including such a substrate allows the solid-state battery to be mounted on another secondary substrate such as a printed wiring board with the substrate interposed therebetween.
  • a solid state battery can be surface mounted via a substrate through solder reflow or the like.
  • the solid battery package of the present invention is preferably an SMD (Surface Mount Device) type battery package.
  • Such a substrate can also be understood as a support substrate, as it can be provided to support a solid-state battery.
  • the board since the board is a terminal board, it is preferable that the board has wiring or an electrode layer.
  • the board electrode layer is electrically connected to the upper main surface 230 and the lower main surface 240, respectively. It is preferable to have the following.
  • the substrate 200 includes substrate electrode layers (upper substrate electrode layer 210, lower substrate electrode layer 220) electrically connected to an upper main surface 230 and a lower main surface 240, and is packaged. It is a member for the external terminal or external electrode of a solid-state battery (see Figure 1).
  • the substrate electrode layer 210 itself can be electrically connected to the solid state battery 100, it can be made of a metal layer with relatively high strength.
  • This metal layer is, for example, copper (Cu) plated with gold (Au) (Cu-Au), copper (Cu) plated with nickel (Ni), palladium (Pd), and gold (Au). (Cu-Ni-Pd-Au), or copper (Cu) plated with nickel (Ni) and gold (Au) (Cu-Ni-Au).
  • the thickness of the substrate electrode layer 210 can be 2 to 50 ⁇ m, for example 30 ⁇ m.
  • the substrate electrode layer and the end face electrode of the solid-state battery are connected to each other.
  • the substrate electrode layers of the same polarity and the end face electrodes of the solid state battery are electrically connected to each other.
  • An end face electrode 140A on the positive electrode side of the solid state battery is electrically connected to the upper substrate positive electrode layer 210A.
  • the end face electrode 140B on the negative electrode side of the solid state battery is electrically connected to the upper substrate negative electrode layer 210B.
  • the upper substrate electrode layer 210 and the lower substrate electrode layer 220 are configured to be electrically connected via a conductive portion provided inside the substrate 200.
  • the conductive portion may be made of at least one metal material selected from the group consisting of copper, aluminum, stainless steel, nickel, silver, gold, tin, etc., for example.
  • the lower substrate electrode layer 220 (corresponding to the substrate electrode layer located on the bottom surface of the substrate) or the land connected to the lower substrate electrode layer serves as an external electrode or external terminal of the battery package.
  • the end electrode 140 of the solid battery 100 and the substrate electrode layer 210 of the substrate 200 are connected via the bonding member 600. can do.
  • This joining member 600 is responsible for at least the electrical connection between the end face electrode 140 of the solid battery 100 and the substrate 200, and may contain, for example, a conductive adhesive.
  • the bonding member 600 may be made of an epoxy conductive adhesive containing a metal filler such as Ag.
  • the solid state battery package 1000 itself can be configured to prevent water vapor transmission as a whole.
  • the solid state battery package 1000 according to an embodiment of the present invention may be covered with the covering part 150 so that the solid state battery 100 provided on the substrate 200 is completely surrounded.
  • the solid battery 100 on the substrate 200 may be packaged so that the main surface 100A and the side surface 100B are surrounded by the covering portion 150. According to this configuration, all surfaces forming the solid state battery 100 are not exposed to the outside, and water vapor permeation can be prevented.
  • water vapor as used herein is not particularly limited to water in a gaseous state, but also includes water in a liquid state.
  • water vapor is used to broadly encompass water in a gaseous state, water in a liquid state, etc., regardless of its physical state. Therefore, “water vapor” can also be referred to as moisture, and in particular, water in a liquid state may also include condensed water, which is water in a gaseous state condensed. Since the infiltration of water vapor into a solid-state battery causes deterioration of battery characteristics, the form of the solid-state battery packaged as described above contributes to extending the life of the battery characteristics of the solid-state battery.
  • the covering portion 150 may be composed of a covering insulating layer 160 and a covering inorganic layer 170.
  • the solid battery 100 may have a form covered with a covering insulating layer 160 and a covering inorganic layer 170 as the covering portion 150.
  • the covering inorganic layer 170 is provided to cover the covering insulating layer 160. Since the covering inorganic layer 170 is positioned on the covering insulating layer 160, the covering inorganic layer 170 has a shape that largely envelops the solid battery 100 on the substrate 200 together with the covering insulating layer 160. Furthermore, the covering inorganic layer 170 may also cover the side surface 250 of the substrate 200.
  • Coating inorganic layer 170 preferably functions as a water vapor barrier layer. That is, the covering inorganic layer covers at least the top and side surfaces of the solid-state battery so as to suitably serve as a barrier to prevent water from entering the solid-state battery.
  • the term "barrier” is broadly defined as having the property of preventing water vapor permeation to the extent that water vapor in the external environment does not pass through the coating inorganic layer and cause characteristic deterioration that is disadvantageous to the solid state battery. In a narrow sense, it means that the water vapor permeability is less than 1.0 ⁇ 10 ⁇ 3 g/(m 2 ⁇ Day).
  • the water vapor barrier layer preferably has a water vapor permeability of 0 g/(m 2 ⁇ Day) or more and less than 1.0 ⁇ 10 ⁇ 3 g/(m 2 ⁇ Day).
  • water vapor permeability is the permeation rate obtained using a gas permeability measuring device manufactured by Advance Riko Co., Ltd., model GTms-1, under the measurement conditions of 40°C, 90% RH, and a differential pressure of 1 atm. It refers to the rate.
  • the covering insulating layer 160 and the covering inorganic layer 170 are integrated with each other.
  • the covering inorganic layer forms a water vapor barrier for the solid-state battery together with the covering insulating layer. That is, the combination of the integrated covering insulating layer and covering inorganic layer suitably prevents water vapor from the external environment from entering the solid state battery.
  • the covering inorganic layer may have a dry plating layer and a wet plating layer formed on the dry plating layer.
  • the wet plating layer may contain at least one member selected from the group consisting of Cu, Ni, and Cr as a main component, but is not particularly limited as long as it is possible to suppress water vapor from the external environment from entering the solid-state battery. may contain metals.
  • the dry plating layer may be, for example, a sputtered film.
  • a sputtered film is a thin film obtained by sputtering. In other words, a film deposited by sputtering ions onto a target and knocking out the atoms can be used as the dry plating layer.
  • the sputtered film has a very thin form on the nano- or micro-order, it becomes a relatively dense and/or homogeneous layer, so it can contribute to preventing water vapor permeation for solid-state batteries. Furthermore, since the sputtered film is formed by atomic deposition, it can be suitably attached to the target. Therefore, the sputtered film can be suitably used as a barrier that prevents water vapor in the external environment from entering the solid state battery. Therefore, when the covering inorganic layer further includes a sputtered film as a dry plating layer, it is possible to further improve the ability to prevent water vapor from permeating into the solid-state battery.
  • the dry plating layer may be formed by other dry plating methods such as a vacuum evaporation method or an ion plating method.
  • the dry plating layer may contain, for example, at least one selected from the group consisting of Al (aluminum), Cu (copper), Ti (titanium), and stainless steel (SUS).
  • the coated inorganic film may be composed of a single dry plating layer and a wet plating composite layer having a multilayer structure of two or more layers. That is, the coated inorganic film has a multilayer structure of three or more layers.
  • a covering inorganic film can be provided in which a dry plating layer and a wet plating composite layer are laminated in any order on the covering insulating layer.
  • the film In film formation by sputtering, the film is formed so as to bite into the insulating covering layer, so that the sputtered film can suitably adhere to the insulating covering layer. Therefore, the sputtered film, together with the covering insulating layer, can suitably contribute to preventing the permeation of water vapor for the solid-state battery. Further, by providing a dry plating layer inside the wet plating layer, it becomes possible to more preferably prevent the plating solution used for forming the wet plating layer from entering the solid state battery. Therefore, by providing a dry plating layer on the covering insulating layer, a more reliable solid state battery package can be provided.
  • the inventor of the present application has proposed a configuration for suppressing inappropriate effects on the behavior of electronic components located at the periphery of the solid-state battery package 1000, specifically, capable of suppressing the accumulation of static electricity in the coating inorganic layer 170 of the coating portion 150.
  • the inventors of the present invention have devised the present invention, which has the idea of enabling the solid battery 100 and the covering inorganic layer 170 to be electrically connected to each other.
  • the covering inorganic layer 170 as the package exterior portion 150X is in a grounded state. Therefore, it is possible to avoid electrical disconnection between the covering inorganic layer 170 and the solid state battery 100, and it is possible to prevent static electricity from accumulating. As a result, the solid state battery package 1000 can be brought into an electrically stable state, and damage to electronic components located at the periphery can be suppressed. As a result, according to an embodiment of the present invention, it is possible to suppress inappropriate influences on the behavior of electronic components located at the periphery.
  • the solid battery 100 and the covering inorganic layer 170 can be electrically connected to each other, one of the first external electrodes on the positive and negative electrode sides is positioned on the bottom surface 240 of the substrate 200, and the other first external electrode on the positive and negative electrode sides is positioned on the bottom surface 240 of the substrate 200.
  • the two external electrodes can be coated with an inorganic layer 170 (see FIGS. 1 and 3).
  • the covering inorganic layer 170 can function as a second external electrode.
  • the first external electrode is a positive electrode and the second external electrode is a negative electrode.
  • the potential of the negative electrode is lower than the potential of the positive electrode, the potential of the covering inorganic layer 170 decreases, thereby further reducing the risk of causing problems to peripheral components.
  • one second upper substrate electrode layer 210Y of the substrate 200 (specifically, the upper substrate positive electrode layer 210A or The upper substrate negative electrode layer 210B) and the covering inorganic layer 170 as the package exterior portion 150X are electrically connected.
  • such conduction can be achieved by the second conductive portion 260Y arranged to connect the second upper substrate electrode layer 210Y and the covering inorganic layer 170.
  • the second conductive portion 260Y arranged to connect the second upper substrate electrode layer 210Y and the covering inorganic layer 170.
  • one end of the second conductive portion 260Y contacts the second upper substrate electrode layer 210Y, and the other end contacts the covering inorganic layer 170.
  • the upper substrate electrode layer 210 that is electrically connected to the covering inorganic layer 170 is referred to as a second upper substrate electrode layer 210Y, and the conductive portion that is in contact with the second upper substrate electrode layer 210Y is referred to as a second upper substrate electrode layer 210Y. It is called a second conductive portion 260Y.
  • the upper substrate electrode layer 210 on the side that is not electrically conductive with the covering inorganic layer 170 is referred to as a first upper substrate electrode layer 210X, and the conductive portion that contacts the first upper substrate electrode layer 210X is referred to as a first conductive portion 260X.
  • second conductive portion 260Y may be positioned within substrate 200 (see FIG. 1). In this case, from the viewpoint of enabling the second conductive portion 260Y to contact the covering inorganic layer 170, the covering inorganic layer 170 covers the side surface 250 of the substrate 200, and the second conductive portion 260Y covers the side surface 250 of the substrate 200. It is preferable to contact the inorganic layer 170.
  • one second conductive portion 260Y may be used (see FIG. 4).
  • a plurality of second conductive portions 260Y may be used from the viewpoint of improving connection reliability (see FIG. 5).
  • the internal electrode layer 261YI of the substrate 200 included in the second conductive portion 260YI may extend across the longitudinal direction of the substrate 200. Preferably (see FIGS. 6 to 9).
  • FIG. 6 is a cross-sectional view schematically showing the structure of a packaged solid-state battery according to another embodiment of the present invention.
  • 7 is a plan view schematically showing an arrangement of the second upper substrate electrode layer of the substrate in FIG. 6.
  • FIG. 8 is a plan view schematically showing the arrangement of internal electrode layers inside the substrate.
  • FIG. 9 is a bottom view schematically showing the configuration of a packaged solid-state battery according to another embodiment of the present invention (corresponding to FIG. 6). Note that although FIGS. 7 to 9 correspond to drawings in plan view, hatching is partially added for convenience in consideration of ease of viewing.
  • the internal electrode layer 261YI may be made of metal foil, specifically copper foil.
  • the second conductive portion 260YI described above includes an internal electrode layer 261YI and a connecting via 262YI that connects the second upper substrate electrode layer 210Y and the internal electrode layer 261YI.
  • the first conductive portion 260XI corresponds to a connection via connecting the first upper substrate electrode layer 210X and the first lower substrate electrode layer 220X.
  • the internal electrode layer 261YI is formed along the longitudinal direction of the substrate 200 on the premise that the internal electrode layer 261YI does not come into contact with the first conductive portion 260XI (corresponding to the connection via) through a gap. Extends transversely along the direction. Due to the transverse arrangement of the internal electrode layers 261YI inside the substrate 200, the planar area of the internal electrode layers 261YI that occupies the planar area of the substrate 200 can be increased compared to the embodiments shown in FIGS. 4 and 5 (see FIG. 8). . In other words, the gap that may be formed between the internal electrode layer 261YI and the covering inorganic layer 170 can be reduced.
  • the internal electrode layer 261YI can suitably suppress moisture from entering from the outside into the solid battery 100 side via the substrate 200. Moreover, since the planar area of the internal electrode layer 261YI is increased where the internal electrode layer 261YI contacts the covering inorganic layer 170, the bonding strength between the internal electrode layer 261YI and the covering inorganic layer 170 can be improved.
  • the two By overlapping the two, it is possible to increase the contact area between the internal electrode layer 261YI of the substrate 200 and the covering inorganic layer 170. In other words, the gap between the internal electrode layer 261YI and the covering inorganic layer 170 can be further reduced. Thereby, it becomes possible to more appropriately suppress moisture from entering into the solid battery 100 side from the outside through the gap. Furthermore, the bonding strength between the internal electrode layer 261YI and the covering inorganic layer 170 can be further improved.
  • the second conductive portion 260Y1 may be positioned on the upper major surface 230 of the substrate 200 (see FIGS. 10-12).
  • FIG. 10 is a cross-sectional view schematically showing the configuration of a packaged solid-state battery according to yet another embodiment of the present invention.
  • FIG. 11 is a plan view schematically showing an arrangement of the second upper substrate electrode layer and the second conductive portion of the substrate in FIG. 10.
  • FIG. 12 is a plan view schematically showing another arrangement of the second upper substrate electrode layer and the second conductive portion of the substrate in FIG. 10.
  • the second upper substrate electrode layer 210Y and the second conductive portion 260Y1 can be continuous on the same plane, and the arrangement of both can be simplified. .
  • one second conductive portion 260Y1 may be used (see FIG. 11).
  • a plurality of second conductive portions 2601 may be used from the viewpoint of improving connection reliability (see FIG. 12).
  • a second upper substrate electrode layer 210Y that is in contact with the overlying inorganic layer is disposed on the substrate 200 (see FIG. 13).
  • FIG. 13 is a plan view schematically showing the arrangement of the second upper substrate electrode layer of the substrate that can be contacted with the coated inorganic layer.
  • the covering inorganic layer and the second upper substrate electrode layer 210Y can be in direct contact without using the second conductive portion. This makes it possible to simplify electrical conduction between the covering inorganic layer forming the package exterior portion and the second upper substrate electrode layer 210Y. Furthermore, the electrode size of the second upper substrate electrode layer 210Y can be increased compared to the case where the second conductive portion is used. As a result, the area that receives stress generated due to expansion and contraction of the battery during charging and discharging can be expanded, and stress load on the substrate can be suppressed.
  • the covering inorganic layer 170III continuously covers a portion of the side surface 250 and bottom surface 240 of the substrate 200 (see FIGS. 14 and 15).
  • FIG. 14 is a cross-sectional view schematically showing the configuration of a packaged solid-state battery according to yet another embodiment of the present invention.
  • FIG. 15 is a bottom view schematically showing the configuration of a packaged solid-state battery according to yet another embodiment of the present invention (corresponding to FIG. 14).
  • the covering inorganic layer 170III can wrap around the bottom surface 240 side of the substrate 200. Thereby, peeling of the covering inorganic layer 170III can be suppressed, and at the same time, it is possible to suppress the infiltration of moisture through the interface region between the substrate 200 and the covering insulating layer 160.
  • FIG. 16 is a cross-sectional view schematically showing the configuration of a packaged solid-state battery according to yet another embodiment of the present invention.
  • FIG. 17 is a bottom view schematically showing the configuration of a packaged solid-state battery according to yet another embodiment of the present invention (corresponding to FIG. 16).
  • the solid battery 100 and the package exterior portion 150X can be electrically connected to each other, one of the first external electrodes on the positive and negative electrode sides is positioned on the bottom surface 240 of the substrate 200, and the first external electrode on the positive and negative electrode sides is positioned on the bottom surface 240 of the substrate 200
  • the other second external electrode can be positioned on the package exterior portion 150X.
  • the second external electrode is also positioned on the bottom surface 240 of the substrate 200.
  • the second upper substrate electrode layer 210Y and the covering inorganic layer 170 forming the package exterior portion 150X are connected via the second conductive portion 260Y2, and the second upper substrate electrode layer 210Y and the second lower substrate electrode layer 210Y are connected to each other via the second conductive portion 260Y2. It is connected to the substrate electrode layer 220Y.
  • the second external electrode can be arranged at two locations: the package exterior portion 150X and the bottom surface 240 of the substrate 200. That is, one first external electrode and two second external electrodes are provided.
  • the degree of freedom in arrangement such as surface mounting on an external base material and insertion into a socket, can be further improved.
  • both the first external electrode and the second external electrode can be disposed on the bottom surface 240 of the substrate 200, there is an advantage in that inspection for battery performance evaluation is facilitated.
  • a resist layer may be disposed between the substrate 200 and the solid state battery 100.
  • a resist layer may be provided between the substrate 200 and the solid state battery 100.
  • the resist layer is provided on the main surface of the substrate 200.
  • the resist layer is a layer that at least partially covers the substrate surface to prevent physical processing or chemical reactions from occurring. Therefore, the resist layer may be an insulating layer that is provided on the main surface of the substrate 200 and includes a resin material.
  • Such a resist layer can also be considered to correspond to a heat-resistant coating provided on the main surface of the substrate 200.
  • it may be a resist that maintains insulation properties during connection between the solid-state battery and the substrate and protects conductor portions such as substrate electrode layers.
  • the resist layer provided on the main surface of such a substrate 200 may be, for example, a layer of solder resist.
  • the resist layer may be provided on the main surface of the substrate 200.
  • a water vapor barrier layer may be disposed at least on the resist layer 400.
  • the water vapor barrier layer is placed in direct contact with the resist layer so that the water vapor barrier layer and the resist layer are stacked on each other.
  • water vapor barrier layer is provided on the resist layer in this manner, water vapor entering from the external environment via the substrate 200 and the resist layer 400 thereon can be more effectively blocked.
  • the water vapor barrier layer may be an insulating layer having electrical insulation properties. That is, the water vapor barrier layer may be a film containing a material with high electrical insulation. This is because it becomes easier to suppress inconvenient events such as short circuits. In other words, while attempting to prevent water vapor transmission, it is possible to suppress the electrically disadvantageous effects caused by it.
  • a water vapor barrier layer is not particularly limited as long as it is made of a material exhibiting insulating properties, and specific examples of the material include glass, inorganic insulators such as alumina, organic insulators such as resin, etc. , these may be used alone or in combination of two or more.
  • the water vapor barrier layer is preferably a layer containing silicon. This is because it tends to be a suitable layer in terms of electrical insulation.
  • the water vapor barrier layer containing silicon may be a layer composed of a molecular structure containing not only silicon atoms but also nitrogen atoms and oxygen atoms. This is because it tends to be a suitable layer in terms of electrical insulation and thinning.
  • a water vapor barrier layer includes both Si--O and Si--N bonds. That is, both Si--O bonds and Si--N bonds may exist in the molecular structure constituting the material of the water vapor barrier layer.
  • the layer When the layer has both Si--O bonds and Si--N bonds in its molecular structure, it tends to become a dense layer even though it is thin, and it tends to become a water vapor barrier layer that can also exhibit water vapor permeation prevention properties.
  • Si--O bond and Si--N bond herein refer to those that can be confirmed based on, for example, Fourier transform infrared spectroscopy (FT-IR). That is, in the water vapor barrier layer according to this aspect, Si--O bonds and Si--N bonds can be confirmed by measuring absorption of light in the infrared region.
  • FT-IR refers to that measured by a microscopic ATR method using, for example, Spotlight 150 manufactured by PerkinElmer.
  • a solid-state battery package can be obtained by preparing a solid-state battery including battery constituent units having a positive electrode layer, a negative electrode layer, and a solid electrolyte between these electrodes, and then packaging the solid-state battery. can.
  • the production of the solid-state battery of the present invention can be broadly divided into the production of the solid-state battery itself (hereinafter also referred to as "pre-packaged battery"), which corresponds to the stage before packaging, the preparation of the substrate, and packaging. .
  • the pre-packaged battery can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a combination thereof.
  • the pre-packaged battery itself may be manufactured according to the conventional manufacturing method of solid-state batteries (therefore, the solid electrolyte, organic binder, solvent, optional additives, positive electrode active material, negative electrode active material, etc. described below)
  • the raw materials used in the production of known solid-state batteries may be used).
  • (Laminated block formation) Prepare a slurry by mixing the solid electrolyte, organic binder, solvent, and optional additives. A sheet comprising a solid electrolyte is then formed from the prepared slurry by firing. ⁇ Create a positive electrode paste by mixing the positive electrode active material, solid electrolyte, conductive material, organic binder, solvent, and optional additives. Similarly, a negative electrode paste is prepared by mixing a negative electrode active material, a solid electrolyte, a conductive material, an organic binder, a solvent, and any additives. - Print a positive electrode paste on the sheet, and also print a current collecting layer and/or a negative layer as necessary.
  • a negative electrode paste is printed on the sheet, and if necessary, a current collecting layer and/or a negative layer are printed.
  • a laminate by alternately stacking sheets printed with positive electrode paste and sheets printed with negative electrode paste.
  • the outermost layer (the uppermost layer and/or the lowermost layer) of the laminate may be an electrolyte layer, an insulating layer, or an electrode layer.
  • the laminate is crimped and integrated, it is cut into a predetermined size.
  • the obtained cut laminate is subjected to degreasing and firing. Thereby, a fired laminate is obtained.
  • the laminate may be degreased and fired before cutting, and then the laminate may be cut.
  • the end electrode on the positive electrode side can be formed by applying a conductive paste to the exposed side surface of the positive electrode in the fired laminate.
  • the end electrode on the negative electrode side can be formed by applying a conductive paste to the exposed side surface of the negative electrode in the fired laminate.
  • the end face electrodes on the positive electrode side and the negative electrode side may be provided so as to extend to the main surface of the fired laminate.
  • the component of the end electrode may be selected from at least one selected from silver, gold, platinum, aluminum, copper, tin, and nickel.
  • end electrodes on the positive electrode side and the negative electrode side are not limited to being formed after firing the laminate, but may be formed before firing and subjected to simultaneous firing.
  • a substrate is prepared.
  • a resin substrate when used as the substrate, it may be prepared by laminating a plurality of layers and subjecting them to heating and pressure treatment.
  • a substrate precursor is formed by laminating resin sheets made by impregnating a fiber cloth serving as a base material with a resin raw material and forming a conductive portion on the resin sheets.
  • the green sheet laminate is prepared by, for example, thermocompression-bonding a plurality of green sheets and forming a conductive portion on the green sheets. Thereafter, a ceramic substrate can be obtained by subjecting the green sheet laminate to firing.
  • the ceramic substrate can be prepared, for example, in a similar manner to the preparation of an LTCC substrate.
  • the conductive portion can be formed by forming holes in the sheet using a punch press or a carbon dioxide laser, and filling the holes with a conductive paste material, or by a printing method.
  • the conductive portion for one electrode preferably the negative electrode
  • the conductive portion for the other electrode is formed so that one end is exposed to the upper main surface 230 of the substrate 200 and the other end is exposed to the side surface 250 of the substrate 200.
  • the conductive portion for the other electrode (preferably the positive electrode) is formed so that one end is exposed to the upper main surface 230 of the substrate 200 and the other end is exposed to the lower main surface 240 of the substrate 200.
  • substrate electrode layers 210X, 210Y, and 220X are formed on the upper and lower main surfaces 230 and 240 of the substrate 200 for electrical connection (see FIG. 18).
  • the substrate electrode layer may be patterned as appropriate.
  • a resist layer 400 made of, for example, a solder resist may be formed on the main surface 230 of the substrate 200 excluding the substrate electrode layer (see FIG. 18). This step of forming resist layer 400 may be omitted.
  • a bonding member precursor 600' responsible for electrical connection between the solid battery 100 and the substrate 200 is applied to the substrate electrode layer (see FIG. 19). This makes it possible to electrically connect the substrate electrode layer and the end face electrode of the solid battery to be disposed later.
  • a joining member precursor 600' can be provided by printing a conductive paste that does not require cleaning with flux or the like after formation, such as a nanopaste, an alloy paste, or a brazing material in addition to the Ag conductive paste. .
  • the pre-packaged battery 100 is placed on the substrate 200 (see FIG. 20). That is, an "unpackaged solid-state battery” is placed on the substrate (hereinafter, the battery used for packaging is also simply referred to as a “solid-state battery”).
  • the solid-state battery is placed on the substrate so that the substrate electrode layer and the end face electrode of the solid-state battery are electrically connected to each other.
  • heat treatment is performed to form a gap between the solid battery 100 and the substrate 200 from the precursor 600'.
  • a joining member 600 that contributes to electrical connection is formed.
  • the covering portion 150 is formed.
  • a covering insulating layer 160 and a covering inorganic layer 170 may be provided.
  • the covering insulating layer 160 is formed so as to cover the solid battery 100 on the substrate 200 (see FIG. 21). Therefore, the raw material for the covering insulating layer is provided so that the solid state battery on the substrate is completely covered.
  • the insulating cover layer is made of a resin material
  • the insulating cover layer is formed by providing a resin precursor on the substrate and subjecting it to curing.
  • the covering insulating layer may be formed by applying pressure with a mold.
  • the overlying insulating layer encapsulating the solid state battery on the substrate may be formed through compression molding.
  • the raw material for the insulating coating layer may be in the form of granules, and may be thermoplastic. Note that such molding is not limited to mold molding, and may be performed through polishing, laser processing, and/or chemical treatment.
  • a covering inorganic layer 170 is formed (see FIG. 22). Specifically, the covering inorganic layer 170 is formed on "a covering precursor in which each solid-state battery 100 is covered with a covering insulating layer 160 on a substrate 200". For example, dry plating may be performed to form a dry plating layer, and then wet plating may be performed to form a wet plating layer.
  • the solid battery package according to the present invention can finally be obtained.
  • the solid state battery 100 may have a form in which it is largely covered by the covering part 150.
  • the covering inorganic layer 170 provided on the covering insulating layer 160 surrounding the solid state battery 100 on the substrate 200 may extend to the lower main surface of the substrate 200 (see FIG. 14).
  • the coating inorganic layer 170 as the coating portion 150 extends to the side surface 250 of the substrate 200, and also extends beyond the side of the substrate 200 to the lower main surface 240 of the substrate 200 (particularly the peripheral portion thereof).
  • a solid battery package can be provided in which moisture permeation (moisture permeation from the outside to the solid battery stack) is more preferably prevented.
  • the covering inorganic layer 170 can also be provided as a multilayer structure consisting of at least two layers. Such a multi-layer structure is not limited to materials of different types, but may be formed between materials of the same type. When such a multi-layered covering inorganic layer is provided, it is easier to form a water vapor barrier for a solid state battery.
  • a water vapor barrier layer may be formed on the substrate. That is, a water vapor barrier may be formed on the substrate prior to packaging the substrate and the solid-state battery.
  • the water vapor barrier layer is not particularly limited as long as it can form a desired barrier layer.
  • a water vapor barrier layer having Si--O bonds and Si--N bonds it is preferably formed by applying a liquid raw material and irradiating with ultraviolet rays. That is, the water vapor barrier layer is formed under relatively low temperature conditions (for example, at a temperature of about 100° C.) without using a vapor phase deposition method such as CVD or PVD.
  • a raw material containing, for example, silazane is prepared as a liquid raw material, and the liquid raw material is applied to a substrate by spin coating or spray coating, and dried to form a barrier precursor.
  • a "water vapor barrier layer with Si--O and Si--N bonds” can then be obtained by subjecting the barrier precursor to UV irradiation in an ambient atmosphere containing nitrogen.
  • a mask may be utilized to prevent the formation of a water vapor barrier layer at the joint. That is, a water vapor barrier layer may be formed entirely by applying a mask to the region to be the joint, and then the mask may be removed.
  • a water vapor barrier layer may be formed on the resist layer.
  • a solid-state battery package such a package may be provided as an electronic device mounted on an external substrate separate from the solid-state battery package or inserted into a socket.
  • the substrate of the solid-state battery package can serve as a terminal substrate for external terminals of the solid-state battery, and the solid-state battery package is attached to the surface of the external substrate (i.e., secondary substrate) such as a printed wiring board via such a terminal substrate.
  • a solid state battery package may be provided as such an electronic device.
  • aspects of the solid state battery package of the present disclosure are as follows. ⁇ 1> A substrate, a solid state battery on the substrate, an insulating covering layer covering the solid state battery, and an inorganic covering layer covering the insulating covering layer and having conductivity, the solid battery and the inorganic covering layer being electrically conductive.
  • a solid-state battery package is now possible.
  • the solid battery package according to ⁇ 1> comprising a first external electrode and a second external electrode, the first external electrode being positioned on the bottom surface of the substrate, and the second external electrode being the covering inorganic layer.
  • the substrate includes a first upper substrate electrode layer and a second upper substrate electrode layer arranged on the upper main surface of the side facing the solid-state battery and connected to the solid-state battery, and the second upper substrate electrode layer and the second upper substrate electrode layer are connected to the solid-state battery.
  • the first external electrode is a positive electrode and the second external electrode is a negative electrode.
  • ⁇ 5> The solid battery package according to ⁇ 3>, further comprising a second conductive portion, one end of the second conductive portion being in contact with the second upper substrate electrode layer, and the other end being in contact with the covering inorganic layer.
  • ⁇ 6> The solid state battery package according to ⁇ 5>, wherein the second conductive portion is located inside the substrate.
  • the covering inorganic layer further covers a side surface of the substrate, and the second conductive portion contacts the covering inorganic layer covering the side surface of the substrate.
  • the second conductive portion includes an internal electrode layer inside the substrate, and the internal electrode layer extends transversely along the longitudinal direction of the substrate, according to any one of ⁇ 5> to ⁇ 7>.
  • solid state battery package ⁇ 9> The solid battery package according to ⁇ 8>, wherein the outer contour of the internal electrode layer and the inner contour of the covering inorganic layer overlap in plan view.
  • the second conductive portion is located on the upper main surface of the substrate.
  • the substrate includes the first upper substrate electrode layer and a first lower substrate electrode layer disposed on a lower main surface opposite to the upper main surface, and the first external electrode includes the first outer electrode layer.
  • ⁇ 15> The solid battery package according to any one of ⁇ 1> to ⁇ 14>, wherein the covering inorganic layer continuously covers a part of the side surface and bottom surface of the substrate.
  • ⁇ 16> The solid battery package according to any one of ⁇ 1> to ⁇ 15>, wherein the substrate is a printed wiring board.
  • a solid battery module comprising an external substrate and the solid battery package according to any one of ⁇ 1> to ⁇ 16> mounted on the external substrate.
  • the solid battery package of the present invention can be used in various fields where battery use or power storage is expected.
  • the solid state battery package of the present invention can be used in the electrical, information, and communication fields where mobile devices are used (e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, electronic paper, RFID tags, card-type electronic money, small electronic devices such as smart watches, electrical/electronic equipment field or mobile equipment field), home/small industrial applications (e.g., power tools, golf carts, household/electronic equipment field), nursing care/industrial robots), large industrial applications (e.g. forklifts, elevators, harbor cranes), transportation systems (e.g.
  • mobile devices e.g., mobile phones, smartphones, notebook computers, digital cameras, activity meters, arm computers, electronic paper, RFID tags, card-type electronic money, small electronic devices such as smart watches, electrical/electronic equipment field or mobile equipment field
  • home/small industrial applications e.g., power tools, golf carts, household/electronic equipment
  • hybrid cars electric cars, buses, trains, electrically assisted bicycles, electric motorcycles, etc.
  • power system applications e.g., various power generation, road conditioners, smart grids, home-installed electricity storage systems, etc.
  • medical applications medical equipment such as earphones and hearing aids
  • pharmaceutical applications medication management systems, etc.
  • IoT field space and deep sea applications (for example, in the fields of space probes, underwater research vessels, etc.).
  • Solid battery 110 Positive electrode layer 120 Negative electrode layer 130 Solid electrolyte 140 End electrode 140A End electrode on the positive electrode side 140B End electrode on the negative electrode side 150 Coating portion 150X Exterior part of the package 160 Insulating coating layer 170 Inorganic coating layer 171 Inner contour of the inorganic coating layer 200 Substrate 210 Substrate electrode layer (upper side of substrate) 210A Substrate positive electrode layer 210B Substrate negative electrode layer 220 Mounting side substrate electrode layer (lower side of the substrate) 220A Mounting side substrate positive electrode layer 220B Mounting side substrate negative electrode layer 210X First upper substrate electrode layer 220X Second upper substrate electrode layer 220X First lower substrate electrode layer 220Y Second lower substrate electrode layer 230 Upper main surface of substrate 240 Substrate Lower main surface 250 Side surface of substrate 260X, 260XI First conductive portion 260Y, 260YI Second conductive portion 261YI Internal electrode layer 262YI Connection via 263YI Outer contour of internal electrode layer of substrate 400 Resist layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の一実施形態では、基板と、前記基板上の固体電池と、前記固体電池を覆う被覆絶縁層と、前記被覆絶縁層を覆いかつ導電性を有する被覆無機層とを備え、前記固体電池と前記被覆無機層とが導通可能となっている、固体電池パッケージが提供される。

Description

固体電池パッケージ
 本発明は、固体電池パッケージに関する。より具体的には、本発明は、基板実装に資するようにパッケージ化された固体電池に関する。
 従前より、繰り返しの充放電が可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォンおよびノートパソコン等の電子機器の電源として用いられたりする。
 二次電池においては、充放電に寄与するイオン移動のための媒体として液体の電解質が一般に使用されている。つまり、いわゆる電解液が二次電池に用いられている。しかしながら、そのような二次電池においては、電解液の漏出防止点で安全性が一般に求められる。また、電解液に用いられる有機溶媒等は可燃性物質ゆえ、その点でも安全性が求められる。かかる点をふまえ、電解液に代えて、固体電解質を用いた固体電池について研究が進められている。
 固体電池の使用態様としては、基板と、基板上に配置された固体電池と、固体電池を覆いかつパッケージ外装部分を含む被覆部とを備えた固体電池パッケージの構成で用いられる場合がある(特許文献1参照)。
WO2020/031424号
 上記構成において、固体電池パッケージの2つの外部端子(正極端子および負極端子)は、相手方の外部基板等との接続し易さを考慮して、基板の底面に共に通常設けられ得る。この場合において、パッケージ外装部分は、パッケージ内部の固体電池および外部媒体と電気的に接続されることなく、静電気がたまりやすい環境となり得る。そのため、パッケージ外装部分にたまった静電気により、周縁に位置する電子部品が破壊される懸念がある。その結果、当該電子部品の挙動に対して不適当な影響を及ぼすおそれがある。
 本発明はかかる事情に鑑みて為されたものである。即ち、本発明の目的は、周縁に位置する電子部品の挙動に対する不適当な影響を抑制可能な固体電池パッケージを提供することである。
 上記目的を達成するために、本発明の一実施形態では、
 基板と、前記基板上の固体電池と、前記固体電池を覆う被覆絶縁層と、前記被覆絶縁層を覆いかつ導電性を有する被覆無機層とを備え、前記固体電池と前記被覆無機層とが導通可能となっている、固体電池パッケージが提供される。
 本発明の一実施形態に係る固体電池パッケージによれば、周縁に位置する電子部品の挙動に対する不適当な影響を抑制可能である。
図1は、本発明の一実施形態に係るパッケージ化された固体電池の構成を模式的に示した断面図である。 図2は、本発明の一実施形態に係るパッケージ化された固体電池の構成を模式的に示した斜視図である。 図3は、本発明の一実施形態に係るパッケージ化された固体電池の構成を模式的に示した底面図である(図1に対応)。 図4は、図1における基板の第2上側基板電極層と第2導電部分の一配置態様を模式的に示した平面図である。 図5は、図1における基板の第2上側基板電極層と第2導電部分の別の配置態様を模式的に示した平面図である。 図6は、本発明の別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した断面図である。 図7は、図6における基板の第2上側基板電極層の一配置態様を模式的に示した平面図である。 図8は、基板内部の内部電極層の配置態様を模式的に示した平面図である。 図9は、本発明の別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した底面図である(図6に対応)。 図10は、本発明の更に別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した断面図である。 図11は、図10における基板の第2上側基板電極層と第2導電部分の一配置態様を模式的に示した平面図である。 図12は、図10における基板の第2上側基板電極層と第2導電部分の別の配置態様を模式的に示した平面図である。 図13は、被覆無機層と接触可能な基板の第2上側基板電極層の配置態様を模式的に示した平面図である。 図14は、本発明の更に別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した断面図である。 図15は、本発明の更に別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した底面図である(図14に対応)。 図16は、本発明の更に別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した断面図である。 図17は、本発明の更に別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した底面図である(図16に対応)。 図18は、本発明の一実施形態に係る固体電池パッケージの製造プロセスを模式的に示した工程断面図である。 図19は、本発明の一実施形態に係る固体電池パッケージの製造プロセスを模式的に示した工程断面図である。 図20は、本発明の一実施形態に係る固体電池パッケージの製造プロセスを模式的に示した工程断面図である。 図21は、本発明の一実施形態に係る固体電池パッケージの製造プロセスを模式的に示した工程断面図である。 図22は、本発明の一実施形態に係る固体電池パッケージの製造プロセスを模式的に示した工程断面図である。
 以下、本発明の固体電池パッケージを詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本発明の理解のために模式的かつ例示的に示したにすぎず、外観や寸法比などは実物と異なり得る。
 本明細書でいう「固体電池パッケージ」は、広義には、外部環境から固体電池が保護されるように構成された固体電池デバイス(又は固体電池品)のことを指しており、狭義には、実装に資する基板を備えると共に外部環境から固体電池が保護された固体電池品のことを指している。
 本明細書でいう「断面視」とは、固体電池の積層構造における積層方向に対して略垂直な方向から捉えた形態(端的にいえば、層の厚み方向に平行な面で切り取った場合の形態)に基づいている。また、本明細書で用いる「平面視」または「平面視形状」とは、かかる層の厚み方向(即ち、上記の積層方向)に沿って対象物を上側または下側からみた場合の見取図に基づいている。
 本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」/「底面側」に相当し、その逆向きが「上方向」/「頂面側」に相当すると捉えることができる。
 本発明でいう「固体電池」は、広義にはその構成要素が固体から成る電池を指し、狭義にはその構成要素(特に好ましくは全ての構成要素)が固体から成る全固体電池を指している。ある好適な態様では、本発明における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼成体から成っている。「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含する。本発明のある好適な態様に従うと「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、蓄電デバイスなども包含し得る。なお、本発明において、パッケージに含まれる固体電池は「固体電池素子」と称すこともできる。
 以下では、まず、本発明の固体電池の構成について説明する。ここで説明される固体電池の構成は、あくまでも発明の理解のための例示にすぎず、発明を限定するものではない。
[固体電池の構成]
 固体電池は、正極・負極の電極層と固体電解質層とを少なくとも備える。具体的には図1に示すように、固体電池100は、正極層110、負極層120、およびそれらの間に少なくとも介在する固体電解質層130から成る電池構成単位を含んだ固体電池積層体を備える。
 固体電池は、それを構成する各層が焼成によって形成されていてもよく、正極層、負極層および固体電解質層などが焼成層をなしていてもよい。好ましくは、正極層、負極層および固体電解質層は、それぞれが互いに一体焼成されており、それゆえ固体電池積層体が一体焼成体を成していることが好ましい。
 正極層110は、少なくとも正極活物質を含んで成る電極層である。正極層は、更に固体電解質を含んで成っていてよい。ある好適な態様では、正極層は、正極活物質粒子と固体電解質粒子とを少なくとも含む焼成体から構成されている。一方、負極層は、少なくとも負極活物質を含んで成る電極層である。負極層は、更に固体電解質を含んで成っていてよい。ある好適な態様では、負極層は、負極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。
 正極活物質および負極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質を介してイオンは正極層と負極層との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極層および負極層の各電極層は特にリチウムイオンまたはナトリウムイオンを吸蔵放出可能な層であることが好ましい。つまり、固体電池は、固体電解質を介してリチウムイオンまたはナトリウムイオンが正極層と負極層との間で移動して電池の充放電が行われる全固体型二次電池であることが好ましい。
(正極活物質)
 正極層110に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、および、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li32(PO43等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO43、LiFePO4、および/またはLiMnPO4等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO2、および/またはLiCo1/3Ni1/3Mn1/32等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn24、および/またはLiNi0.5Mn1.54等が挙げられる。リチウム化合物の種類は、特に限定されないが、例えば、リチウム遷移金属複合酸化物およびリチウム遷移金属リン酸化合物としてよい。リチウム遷移金属複合酸化物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含む酸化物の総称であると共に、リチウム遷移金属リン酸化合物は、リチウムと1種類または2種類以上の遷移金属元素とを構成元素として含むリン酸化合物の総称である。遷移金属元素の種類は、特に限定されないが、例えば、コバルト(Co)、ニッケル(Ni)、マンガン(Mn)および鉄(Fe)などである。
 また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物、および、スピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。例えば、ナトリウム含有リン酸化合物の場合、Na(PO、NaCoFe(PO、NaNiFe(PO、NaFe(PO、NaFeP、NaFe(PO(P)、およびナトリウム含有層状酸化物としてNaFeOから成る群から選択される少なくとも一種が挙げられる。
 この他、正極活物質は、例えば、酸化物、二硫化物、カルコゲン化物または導電性高分子等でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムまたは二酸化マンガン等でもよい。二硫化物は、例えば、二硫化チタンまたは硫化モリブデン等である。カルコゲン化物は、例えば、セレン化ニオブ等でもよい。導電性高分子は、例えば、ジスルフィド、ポリピロール、ポリアニリン、ポリチオフェン、ポリパラスチレン、ポリアセチレンまたはポリアセン等でもよい。
(負極活物質)
 負極層120に含まれる負極活物質としては、例えば、チタン(Ti)、ケイ素(Si)、スズ(Sn)、クロム(Cr)、鉄(Fe)、ニオブ(Nb)およびモリブデン(Mo)から成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛などの炭素材料、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li32(PO43、および/またはLiTi2(PO43等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO43、および/またはLiCuPO4等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、Li4Ti512等が挙げられる。
 また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、および、スピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。
 なお、固体電池において、正極層と負極層とが同一材料から成っていてもよい。
 正極層および/または負極層は、導電性材料を含んでいてもよい。正極層および負極層に含まれる導電性材料として、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケル等の金属材料、ならびに炭素などから成る少なくとも1種を挙げることができる。
 さらに、正極層および/または負極層は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。
 正極層および負極層の厚みは特に限定されないが、例えば、それぞれ独立して2μm以上50μm以下、特に5μm以上30μm以下であってよい。
(正極集電層/負極集電層)
 電極層の必須要素ではないものの、正極層110および負極層120は、それぞれ正極集電層および負極集電層を備えていてもよい。正極集電層および負極集電層はそれぞれ箔の形態を有していてもよい。しかしながら、一体焼成による電子伝導性向上、固体電池の製造コスト低減および/または固体電池の内部抵抗低減などの観点をより重視するならば、正極集電層および負極集電層はそれぞれ焼成体の形態を有していてもよい。正極集電層を構成する正極集電体および負極集電体を構成する負極集電体としては、導電率が大きい材料を用いることが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、および/またはニッケルなどを用いてよい。正極集電体および負極集電体はそれぞれ、外部と電気的に接続するための電気接続部を有してよく、端面電極と電気的に接続可能に構成されていてよい。なお、正極集電層および負極集電層が焼成体の形態を有する場合、それらは導電性材料および焼結助剤を含む焼成体により構成されてもよい。正極集電層および負極集電層に含まれる導電性材料は、例えば、正極層および負極層に含まれ得る導電性材料と同様の材料から選択されてよい。正極集電層および負極集電層に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。上述したように、固体電池において、正極集電層および負極集電層が必須というわけではなく、そのような正極集電層および負極集電層が設けられていない固体電池も考えられる。つまり、本発明のパッケージに含まれる固体電池は、集電層レスの固体電池であってもよい。
(固体電解質)
 固体電解質は、リチウムイオンまたはナトリウムイオンが伝導可能な材質である。特に固体電池で電池構成単位を成す固体電解質層130は、正極層110と負極層120との間においてリチウムイオンが伝導可能な層を成していてよい。なお、固体電解質層は、正極層と負極層との間に少なくとも設けられていればよい。つまり、固体電解質層は、正極層と負極層との間からはみ出すように当該正極層および/または負極層の周囲において存在していてもよい。固体電解質層に含まれる固体電解質としては、例えば、結晶性固体電解質、ガラス系固体電解質およびガラスセラミックス系固体電解質等のうちのいずれか1種類または2種類以上を含んでいる。
 結晶性固体電解質は、例えば酸化物系結晶材および硫化物系結晶材などである。酸化物系結晶材は、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物、酸化物ガラスセラミックス系リチウムイオン伝導体等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、チタン(Ti)、ゲルマニウム(Ge)、アルミニウム(Al)、ガリウム(Ga)およびジルコニウム(Zr)から成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。また、硫化物系結晶材は、thio-LISICONが挙げられ、例えばLi3.25Ge0.250.75S4およびLi10GeP12などである。結晶性固体電解質は、高分子材(例えば、ポリエチレンオキシド(PEO)など)を含んでいてもよい。
 ガラス系固体電解質は、例えば、酸化物系ガラス材および硫化物系ガラス材などがある。酸化物系ガラス材は、例えば、50LiSiO・50LiBOなどがある。また、硫化物系ガラス材は、例えば、30LiS・26B・44LiI、63LiS・36SiS・1LiPO、57LiS・38SiS・5LiSiO、70LiS・30Pおよび50LiS・50GeSなどがある。
 ガラスセラミックス系固体電解質は、例えば、酸化物系ガラスセラミックス材および硫化物系ガラスセラミックス材などである。酸化物系ガラスセラミックス材としては、例えば、リチウム、アルミニウムおよびチタンを構成元素に含むリン酸化合物(LATP)、リチウム、アルミニウムおよびゲルマニウムを構成元素に含むリン酸化合物(LAGP)を用いることができる。LATPは、例えばLi1.07Al0.69Ti1.46(POなどである。また、LAGPは、例えばLi1.5Al0.5Ge1.5(PO)などである。また、硫化物系ガラスセラミックス材としては、例えば、Li11およびLi3.250.95などがある。
 また、ナトリウムイオンが伝導可能な固体電解質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、Naxy(PO43(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。
 固体電解質層は、焼結助剤を含んでいてもよい。固体電解質層に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。
 固体電解質層の厚みは特に限定されない。正極層と負極層との間に位置する固体電解質層の厚みは、例えば1μm以上15μm以下、特に1μm以上5μm以下であってよい。
(端面電極)
 固体電池には、一般に端面電極140が設けられている。特に、固体電池の側面に端面電極が設けられている。より具体的には、正極層110と接続された正極側の端面電極140Aと、負極層120と接続された負極側の端面電極140Bとが設けられている(図1参照)。そのような端面電極は、導電率が大きい材料を含んで成ることが好ましい。端面電極の具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。
 [固体電池パッケージの構成]
 本発明は、固体電池がパッケージ化されたものである。つまり、実装可能な基板を備え、外部環境から固体電池が保護された構成を有する固体電池パッケージである。
 図1は、本発明の一実施形態に係るパッケージ化された固体電池の構成を模式的に示した断面図である。図2は、本発明の一実施形態に係るパッケージ化された固体電池の構成を模式的に示した斜視図である。図3は、本発明の一実施形態に係るパッケージ化された固体電池の構成を模式的に示した底面図である。
 図1および図2に示すように、本発明の一実施形態に係る固体電池パッケージ1000は、固体電池100が支持されるように基板200を備えている。具体的には、固体電池パッケージ1000は、実装可能な基板200と、基板200に設けられかつ外部環境から保護された固体電池100とを含む。
 基板200は、例えば固体電池100よりも大きい主面を有している。基板200は、樹脂基板であってよく、あるいは、セラミック基板であってもよい。端的にいえば、基板200は、プリント配線基板、フレキシブル基板、LTCC基板、またはHTCC基板などの範疇に入るものであってもよい。基板200が樹脂基板である場合、基板200は母材として樹脂を含むように構成された基板、例えば基板の積層構造に樹脂層が含まれたものであり得る。そのような樹脂層の樹脂材料は、いずれの熱可塑性樹脂、および/または、いずれの熱硬化性樹脂であってもよい。また、樹脂層は、例えば、ガラス繊維布にエポキシ樹脂などの樹脂材料を含浸して構成されたものであってよい。
 基板は、好ましくは、パッケージ化された固体電池の外部端子または外部電極のための部材となっている。つまり、基板が固体電池の外部端子または外部電極のための端子基板となっているともいえる。このような基板を備えた固体電池パッケージは、基板が介在するような形態で固体電池をプリント配線基板などの別の2次基板上に実装できる。例えば、半田リフローなどを通じて、基板を介して固体電池を表面実装できる。このようなことから、本発明の固体電池パッケージは、好ましくは、SMD(SMD:Surface Mount Device)タイプの電池パッケージとなっている。
 かかる基板は、固体電池を支持するように設けられ得るところ、支持基板と解することもできる。また、上記のとおり、基板は、端子基板ゆえ、配線または電極層などを有していることが好ましく、特に、上側主面230と下側主面240にそれぞれ電気的に結線された基板電極層を備えていることが好ましい。具体的には、基板200は、上側主面230と下側主面240に電気的に結線された基板電極層(上側基板電極層210、下側基板電極層220)を備え、パッケージ化された固体電池の外部端子または外部電極のための部材となっている(図1参照)。
 基板電極層210自体は、固体電池100との電気接続が可能なものであることから、相対的に高い強度の金属層から構成され得る。この金属層は、例えば、銅(Cu)に金(Au)がめっきされたもの(Cu-Au)、銅(Cu)にニッケル(Ni)、パラジウム(Pd)および金(Au)がめっきされたもの(Cu-Ni-Pd-Au)、又は銅(Cu)にニッケル(Ni)および金(Au)がめっきされたもの(Cu-Ni-Au)等から構成され得る。特に限定されるものではないが、基板電極層210の厚みは、2~50μm、例えば30μmであることができる。
 このような基板を備えた固体電池パッケージでは、基板電極層と固体電池の端面電極とが互いに接続されている。具体的には、同極の基板電極層と固体電池の端面電極同士が互いに電気的に接続されている。固体電池の正極側の端面電極140Aは上側基板正極層210Aと電気的に接続されている。固体電池の負極側の端面電極140Bは上側基板負極層210Bと電気的に接続されている。
 上側基板電極層210と下側基板電極層220とは、基板200の内部に設けられた導電部分を介して電気接続可能に構成されている。導電部分は、例えば、銅、アルミニウム、ステンレス、ニッケル、銀、金およびスズなどから成る群から選択される少なくとも1種の金属材料から成るものであってよい。これにより、下側基板電極層220(基板の底面に位置する基板電極層に相当)または同下側基板電極層に接続されたランドが電池パッケージの外部電極または外部端子として供される。
 又、上記の固体電池100と基板200の基板電極層210との電気接続を可能とするために、固体電池100の端面電極140と基板200の基板電極層210とを接合部材600を介して接続することができる。この接合部材600は、固体電池100の端面電極140と基板200との電気的接続を少なくとも担うものであり、例えば導電性接着剤を含むものであり得る。一例としては、接合部材600は、Agなどの金属フィラーを含有したエポキシ系導電性接着剤から構成されていてよい。
 更に、基板200のみならず固体電池パッケージ1000自体が、全体として水蒸気透過を防止できるように構成され得る。例えば、本発明の一実施形態に係る固体電池パッケージ1000は、基板200上に設けられた固体電池100が全体的に包囲されるように被覆部150で覆うことができる。具体的には、基板200上の固体電池100の主面100Aおよび側面100Bが被覆部150で包囲されるようにパッケージ化され得る。かかる構成によれば、固体電池100を成す全ての面は外部に露出することがなく、水蒸気の透過防止を図ることができる。
 なお、本明細書でいう「水蒸気」は、特に気体状態の水に限定されず、液体状態の水なども包含している。つまり、物理的な状態を問わず、気体状態の水、液体状態の水などを広く包含するものとして「水蒸気」といった用語を用いている。よって、「水蒸気」は、水分などとも称すことができ、特に液体状態の水には、気体状態の水が凝縮した結露水なども包含され得る。固体電池への水蒸気の浸入は電池特性の劣化の要因となることから、上述のようにパッケージ化された固体電池の形態は、固体電池の電池特性の長寿命化に資する。
 又、被覆部150は、被覆絶縁層160および被覆無機層170から構成され得る。固体電池100は、被覆部150として被覆絶縁層160および被覆無機層170で覆われた形態を有し得る。被覆無機層170は、被覆絶縁層160を覆うように設けられている。被覆無機層170は、被覆絶縁層160上に位置付けられるので、被覆絶縁層160とともに、基板200上の固体電池100を全体として大きく包み込む形態を有している。更に、被覆無機層170は、基板200の側面250も覆う形態を採ることができる。
 被覆無機層170は、好ましくは、水蒸気バリア層として機能する。つまり、固体電池への水分浸入を阻止するバリアとして好適に供されるように、被覆無機層が少なくとも固体電池の天面および側面を覆っている。本明細書でいう「バリア」とは、広義には、外部環境の水蒸気が被覆無機層を通過して固体電池にとって不都合な特性劣化を引き起す、といったことがない程度の水蒸気透過の阻止特性を有することを意味しており、狭義には、水蒸気透過率が1.0×10-3g/(m・Day)未満となっていることを意味している。よって、端的にいえば、水蒸気バリア層は、好ましくは0g/(m2・Day)以上1.0×10-3g/(m・Day)未満の水蒸気透過率を有しているといえる。なお、ここでいう「水蒸気透過率」は、アドバンス理工(株)社製、型式GTms-1のガス透過率測定装置を用いて、測定条件は40℃ 90%RH 差圧1atmによって得られた透過率のことを指している。
 被覆絶縁層160と被覆無機層170とは互いに一体化している。これにより、被覆無機層は、被覆絶縁層とともに固体電池のための水蒸気バリアを成している。つまり、一体化した被覆絶縁層と被覆無機層との組合せによって、外部環境の水蒸気の固体電池への浸入が好適に防止されている。
 被覆無機層は、乾式めっき層と乾式めっき層上に形成された湿式めっき層とを有し得る。外部環境の水蒸気の固体電池への浸入を抑制可能ならば、特に限定されるものではないが、湿式めっき層は、例えば、主成分としてCu、Ni、およびCrから成る群から選択される少なくとも一種の金属が含まれていてよい。乾式めっき層は、例えばスパッタ膜であってよい。スパッタ膜は、スパッタリングによって得られる薄膜である。つまり、ターゲットにイオンをスパッタリングしてその原子を叩き出して堆積させた膜が乾式めっき層として用いられ得る。
 スパッタ膜は、ナノオーダーないしはマイクロオーダーの非常に薄い形態を有しつつも、比較的緻密および/または均質な層となるため、固体電池のための水蒸気透過防止に寄与し得る。また、スパッタ膜は、原子堆積により成膜されたものゆえ、ターゲット上に好適に付着し得る。そのため、スパッタ膜は、外部環境の水蒸気が固体電池へと浸入することを防ぐバリアとして好適に供され得る。そのため、被覆無機層が乾式めっき層としてスパッタ膜をさらに有することで、固体電池への水蒸気の透過防止性をより向上させることが可能となる。なお、乾式めっき層は、他の乾式めっきである真空蒸着法、またはイオンプレーティング法等によって形成されてもよい。乾式めっき層は、例えばAl(アルミニウム)、Cu(銅)、Ti(チタン)、およびステンレス鋼(SUS)から成る群から選択される少なくとも1種を含んでいてよい。
 このように、被覆無機膜は、単層である乾式めっき層と、2層以上の複数層構造を有する湿式めっき複合層から構成されていてよい。つまり、被覆無機膜は、3層以上の多層構造を有する。これは、被覆絶縁層上にて、乾式めっき層および湿式めっき複合層が、任意の順で積層する被覆無機膜が設けられ得ることを意味する。
 スパッタリングによる成膜では、膜が被覆絶縁層に食い込むように形成されることで、スパッタ膜は被覆絶縁層に対して好適に密着し得る。よって、スパッタ膜は、被覆絶縁層とともに、固体電池のための水蒸気の透過防止において好適に寄与し得る。又、湿式めっき層の内側に乾式めっき層を設けることで、湿式めっき層の形成に用いられるめっき液の固体電池への浸入をより好適に防止可能となる。したがって、被覆絶縁層上に乾式めっき層を設けることで、より信頼性の高い固体電池パッケージが供され得る。
[本発明の特徴部分]
 本願発明者は、固体電池パッケージ1000周縁に位置する電子部品の挙動に対する不適当な影響を抑制するための構成について、具体的には被覆部150の被覆無機層170に静電気がたまることを抑制可能な構成について鋭意検討した。その結果、本願発明者は、固体電池100と被覆無機層170とを相互に導通可能とする思想を有する本発明を案出するに至った。
 かかる技術的思想によれば、固体電池100と被覆無機層170とは相互に導通可能となるため、パッケージ外装部分150Xとしての被覆無機層170はアースがとれた状態となる。そのため、被覆無機層170と固体電池100との電気的な非接続状態を回避することができ、静電気がたまりにくくすることができる。その結果、固体電池パッケージ1000を電気的に安定した状態にすることができ、周縁に位置する電子部品の破損が抑制され得る。これにより、本発明の一実施形態によれば、周縁に位置する電子部品の挙動に対する不適当な影響を抑制可能である。
 又、固体電池100と被覆無機層170とは相互に導通可能となるため、正極側および負極側の一方の第1外部電極を基板200の底面240に位置づけ、正極側および負極側の他方の第2外部電極を被覆無機層170とすることができる(図1および図3参照)。換言すれば、被覆無機層170が第2外部電極として機能することができる。好ましくは、第1外部電極が正極であり、第2外部電極が負極である。この場合、正極の電位よりも負極の電位の方が低いことから、被覆無機層170の電位が低下し、それによって周辺部品に不具合を及ぼす懸念をより低下させることができる。
 以上の事から、従前のように基板200の底面(下側主面240に相当)に2つの外部電極、即ち正極側、負極側の外部端子を共に必ずしも位置付ける必要がない。そのため、外部基材への表面実装、ソケットへの挿入等、配置の自由度を向上させることができる。なお、外部基板と2つの外部電極とが接続された場合、外部基板と本発明の一実施形態に係る固体電池パッケージとを備えた固体電池モジュールが供され得る。
 なお、本発明の一実施形態において、固体電池100と被覆無機層170との相互導通のために、基板200の一方の第2上側基板電極層210Y(具体的には、上側基板正極層210Aまたは上側基板負極層210B)と、パッケージ外装部分150Xとしての被覆無機層170とを導通させる。
 一例として、かかる導通は、第2上側基板電極層210Yと被覆無機層170との間をつなぐように配置される、第2導電部分260Yにより実施することができる。この場合、第2導電部分260Yの一端は第2上側基板電極層210Yと接触し、他端は被覆無機層170と接触する。
 本明細書において、正極と負極の区別をしない場合、被覆無機層170と導通する上側基板電極層210を第2上側基板電極層210Yと称し、第2上側基板電極層210Yと接触する導電部分を第2導電部分260Yと称する。又、被覆無機層170と導通しない側の上側基板電極層210を第1上側基板電極層210Xと称し、第1上側基板電極層210Xと接触する導電部分を第1導電部分260Xと称する。
 一実施形態では、第2導電部分260Yは基板200の内部に位置づけられ得る(図1参照)。この場合、第2導電部分260Yが被覆無機層170との接触を可能とする観点から、被覆無機層170は基板200の側面250を覆い、第2導電部分260Yは基板200の側面250を覆う被覆無機層170と接触することが好ましい。
 一例としては、1本の第2導電部分260Yが用いられ得る(図4参照)。別例では、接続信頼性の向上の観点から、複数本の第2導電部分260Yが用いられ得る(図5参照)。
 なお、第2導電部分260Yが基板200の内部に設けられる場合、第2導電部分260YIに含まれる基板200の内部電極層261YIが基板200の長手方向に沿って横断するように延在することが好ましい(図6~図9参照)。
 図6は、本発明の別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した断面図である。図7は、図6における基板の第2上側基板電極層の一配置態様を模式的に示した平面図である。図8は、基板内部の内部電極層の配置態様を模式的に示した平面図である。図9は、本発明の別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した底面図である(図6に対応)。なお、図7~図9は平面視での図面に相当するが、見易さを考慮して便宜上ハッチングを部分的に入れている。
 内部電極層261YIは、金属箔、具体的には銅箔から構成され得る。上述の第2導電部分260YIは、内部電極層261YIと、第2上側基板電極層210Yと内部電極層261YIとの間をつなぐ接続ビア262YIとを含む。第1導電部分260XIは、第1上側基板電極層210Xと第1下側基板電極層220Xとの間をつなぐ接続ビアに相当する。
 かかる構成下において、具体的には、図8に示すように、内部電極層261YIは、第1導電部分260XI(接続ビアに相当)と空隙を介して接触しないことを前提として、基板200の長手方向に沿って横断するように延在する。基板200内部における内部電極層261YIの横断配置により、図4および図5に示す態様と比べて、基板200の平面領域に占める内部電極層261YIの平面領域を大きくすることができる(図8参照)。換言すれば、内部電極層261YIと被覆無機層170との間に形成され得る隙間を減じることができる。これにより、内部電極層261YIによって、外部から基板200を介して固体電池100側への水分の浸入を好適に抑制することが可能となる。又、内部電極層261YIは被覆無機層170と接触するところ、内部電極層261YIの平面領域が大きくなることで、内部電極層261YIと被覆無機層170との接合強度を向上させることができる。
 特に、平面視で、基板200の内部電極層261YIの外側輪郭263YIと被覆無機層170の内側輪郭171とが重なることがより好ましい。
 両者が重なることで、基板200の内部電極層261YIと被覆無機層170との接触部分を増やすことができる。換言すれば、内部電極層261YIと被覆無機層170との間の隙間をより減じることができる。これにより、外部から当該隙間を介して固体電池100側への水分の浸入をより好適に抑制することが可能となる。又、内部電極層261YIと被覆無機層170との接合強度をより向上させることができる。
 なお、両者の重なりをより増大させる観点からは、平面視で、内部電極層261YIの外側輪郭263YIの全体が被覆無機層170の内側輪郭171と重なることが更により好ましい。
 別の実施形態では、第2導電部分260Y1が基板200の上側主面230に位置づけられ得る(図10~図12参照)。図10は、本発明の更に別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した断面図である。図11は、図10における基板の第2上側基板電極層と第2導電部分の一配置態様を模式的に示した平面図である。図12は、図10における基板の第2上側基板電極層と第2導電部分の別の配置態様を模式的に示した平面図である。
かかる構成によれば、基板200の内部に設ける場合と比べて、第2上側基板電極層210Yと第2導電部分260Y1とを同一平面にて連続させることができ、両者の配置を簡素化され得る。
 一例としては、1本の第2導電部分260Y1が用いられ得る(図11参照)。別例では、接続信頼性の向上の観点から、複数本の第2導電部分2601が用いられ得る(図12参照)。
 一態様では、被覆無機層と接触可能な第2上側基板電極層210Yが基板200に配置される(図13参照)。図13は、被覆無機層と接触可能な基板の第2上側基板電極層の配置態様を模式的に示した平面図である。
 本態様では、被覆無機層と第2上側基板電極層210Yとが第2導電部分を介することなく直接接触可能となっている。これにより、パッケージ外装部分をなす被覆無機層と第2上側基板電極層210Yとの導通をシンプル化することができる。又、第2導電部分を介する場合と比べて、第2上側基板電極層210Yの電極サイズを大きくすることができる。これにより、充放電時の電池の膨張収縮に伴い生じる応力を受容する領域を広くなり、基板への応力負荷を抑制することができる。
 一態様では、被覆無機層170IIIは基板200の側面250と底面240の一部を連続して覆う(図14および図15参照)。図14は、本発明の更に別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した断面図である。図15は、本発明の更に別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した底面図である(図14に対応)。
 本態様によれば、被覆無機層170IIIが基板200の底面240側にまでまわり込む形態となり得る。これにより、被覆無機層170IIIの剥離を抑制することができると共に、基板200と被覆絶縁層160との界面領域を介しての水分の浸入を抑制することができる。
 一態様では、第2外部電極が基板200の底面240に更に位置づけられ得る(図16および図17参照)。図16は、本発明の更に別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した断面図である。図17は、本発明の更に別の実施形態に係るパッケージ化された固体電池の構成を模式的に示した底面図である(図16に対応)。
 既述のように、固体電池100とパッケージ外装部分150Xとが相互に導通可能となるため、正極側および負極側の一方の第1外部電極を基板200の底面240に位置づけ、正極側および負極側の他方の第2外部電極をパッケージ外装部分150Xに位置づけることができる。これに加えて、本態様では、第2外部電極を基板200の底面240にも位置付ける。
 具体的には、第2導電部分260Y2を介して、第2上側基板電極層210Yとパッケージ外装部分150Xをなす被覆無機層170とを接続させると共に、第2上側基板電極層210Yと第2下側基板電極層220Yとを接続させる。これにより、第2外部電極がパッケージ外装部分150Xと基板200の底面240の2箇所に配置され得る。即ち、1つの第1外部電極と2つの第2外部電極が供される。その結果、外部基材への表面実装、ソケットへの挿入等、配置の自由度を更に向上させることができる。また、第1外部電極と第2外部電極とが共に基板200の底面240に配置され得るため、電池性能評価のための検査をしやすくなる点でも利点がある。
 一態様では、基板200と固体電池100との間にレジスト層が配置され得る。特に、基板200上に設けられたレジストに起因して、基板200と固体電池100との間にレジスト層が設けられていてよい。
 レジスト層は、特に、基板200の主面上に設けられている。レジスト層は、物理的加工あるいは化学的反応が及ばないように基板表面を少なくとも部分的に覆う層である。よって、レジスト層は、基板200の主面上に設けられた樹脂材を含んで成る絶縁層であってよい。このようなレジスト層は、基板200の主面上に設けられた耐熱性のコーティングに相当すると捉えることもできる。例えば、固体電池と基板との接続時に絶縁性を保ち、基板電極層などの導体部分を保護するのに供するレジストであってもよい。このような基板200の主面上に設けられるレジスト層は、例えばソルダレジストの層であってよい。
 一例としては、レジスト層は、基板200の主面に設けられていてよい。この場合、水蒸気バリア層が少なくともレジスト層400上に配置されていてよい。水蒸気バリア層とレジスト層とが互いに積層するように、レジスト層に直接的に接するように水蒸気バリア層が配置される。このようにレジスト層上に水蒸気バリア層が設けられていると、基板200およびその上のレジスト層400を経由して外部環境から浸入してくる水蒸気をより効果的に阻止できる。
 水蒸気バリア層は電気絶縁性を有する絶縁層であり得る。つまり、水蒸気バリア層は、電気的絶縁性が高い材質を含んで成る膜であってよい。ショートなどの不都合な事象をより抑制し易くなるからである。つまり、水蒸気透過防止を図りつつも、それによる電気的に不都合な影響などを抑制できる。このような水蒸気バリア層は、絶縁性を呈する素材であれば特に限定されず、その素材の具体例としては、例えば、ガラス、アルミナ等の無機絶縁体、樹脂等の有機絶縁体等が挙げられ、これらが1種単独で使用されてよく、あるいは2種以上を併用されてもよい。
 水蒸気バリア層は、好ましくはケイ素を含んだ層である。電気絶縁性の点で好適な層になり易いからである。ケイ素を含んだ水蒸気バリア層としては、ケイ素原子のみならず、窒素原子および酸素原子を含んだ分子構造から構成された層であってよい。電気絶縁性および薄膜化の点で好適な層となり易いからである。例えば、水蒸気バリア層はSi-O結合およびSi-N結合の双方を備える。つまり、水蒸気バリア層の材質を構成する分子構造中にSi-O結合およびSi-N結合の双方が存在していてよい。層の分子構造にSi-O結合およびSi-N結合の双方を有していると、薄い層でありながらも緻密な層となり易く、より水蒸気透過防止特性をも呈し得る水蒸気バリア層となり易い。
 ここでいう「Si-O結合」および「Si-N結合」は、例えば、フーリエ変換赤外分光分析(FT-IR)に基づいて確認できるものを指している。つまり、かかる態様に係る水蒸気バリア層は、赤外領域の光の吸収を測定することによってSi-O結合およびSi-N結合を確認することができる。なお、本明細書においてFT-IRは、例えばSpotlight 150 パーキンエルマー社製を用い、顕微ATR法で測定されるものを指している。
[固体電池パッケージの製造方法]
 以下、本発明の一実施形態にかかる固体電池パッケージの製造方法について説明する。
 固体電池パッケージは、正極層、負極層、およびそれらの電極間に固体電解質を有する電池構成単位を含んだ固体電池を調製し、次いで、その固体電池をパッケージ化するプロセスを経ることで得ることができる。
 本発明の固体電池の製造は、パッケージ化の前段階に相当する固体電池自体(以下では、「パッケージ前電池」とも称する)の製造と、基板の調製と、パッケージ化とに大きく分けることができる。
≪パッケージ前電池の製造方法≫
 パッケージ前電池は、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。つまり、パッケージ前電池自体は、常套的な固体電池の製法に準じて作製してよい(よって、下記で説明する固体電解質、有機バインダ、溶剤、任意の添加剤、正極活物質、負極活物質などの原料物質は、既知の固体電池の製造で用いられるものを使用してよい)。
 以下では、本発明のより良い理解のために、ある1つの製法を例示説明するが、本発明は当該方法に限定されない。また、以下の記載順序など経時的な事項は、あくまでも説明のための便宜上のものにすぎず、必ずしもそれに拘束されない。
(積層体ブロック形成)
 ・固体電解質、有機バインダ、溶剤および任意の添加剤を混合してスラリーを調製する。次いで、調製されたスラリーから、焼成によって固体電解質を含んで成るシートを形成する。
 ・正極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して正極用ペーストを作製する。同様にして、負極活物質、固体電解質、導電性材料、有機バインダ、溶剤および任意の添加剤を混合して負極用ペーストを作製する。
 ・シート上に正極用ペーストを印刷し、また、必要に応じて集電層および/またはネガ層を印刷する。同様にして、シート上に負極用ペーストを印刷し、また、必要に応じて集電層および/またはネガ層を印刷する。
 ・正極用ペーストを印刷したシートと、負極用ペーストを印刷したシートとを交互に積層して積層体を得る。なお、積層体の最外層(最上層および/または最下層)についていえば、それが電解質層でも絶縁層でもよく、あるいは、電極層であってもよい。
(電池焼成体形成)
 積層体を圧着一体化させた後、所定のサイズにカットする。得られたカット済み積層体を脱脂および焼成に付す。これにより、焼成積層体を得る。なお、カット前に積層体を脱脂および焼成に付し、その後にカットを行ってもよい。
(端面電極形成)
 正極側の端面電極は、焼成積層体における正極露出側面に対して導電性ペーストを塗布することを通じて形成できる。同様にして、負極側の端面電極は、焼成積層体における負極露出側面に対して導電性ペーストを塗布することを通じて形成できる。正極側および負極側の端面電極は、焼成積層体の主面にまで及ぶように設けてよい。端面電極の成分としては、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから選択される少なくとも一種から選択され得る。
 なお、正極側および負極側の端面電極は、積層体の焼成後に形成することに限らず、焼成前に形成し、同時焼成に付してもよい。
 以上の如くの工程を経ることによって、最終的に所望のパッケージ前電池(後述する図20に示す固体電池100に相当)を得ることができる。
≪基板の調製≫
 本工程では、基板の調製を行う。
 特に限定されるものではないが、基板として樹脂基板を用いる場合、その調製は、複数の層を積層して加熱および加圧処理することによって行ってよい。例えば、基材となる繊維布に樹脂原料が含浸して構成された樹脂シートの積層と樹脂シートへの導電部分の形成により基板前駆体を形成する。一方、基板としてセラミック基板を用いる場合、その調製は、例えば、複数のグリーンシートの熱圧着とグリーンシートへの導電部分の形成によりグリーンシート積層体を形成する。その後、グリーンシート積層体を焼成に付すことによって、セラミック基板を得ることができる。セラミック基板の調製は、例えばLTCC基板の作製に準じで行うことができる。
 導電部分の形成としては、シートへのパンチプレスまたは炭酸ガスレーザなどによる孔形成と、その孔への導電性ペースト材料の充填、あるいは、印刷法などにより形成することができる。この際、本発明では、一方の電極(好ましくは負極)用の導電部分については、一端が基板200の上側主面230に露出し、他端が基板200の側面250に露出するように形成する。他方の電極(好ましくは正極)用の導電部分については、一端が基板200の上側主面230に露出し、他端が基板200の下側主面240に露出するように形成する。
 その後、電気的に接続するため基板200の上下主面230、240に基板電極層210X、210Y、220Xを形成する(図18参照)。基板電極層については適宜パターニング処理されてよい。なお、基板電極層の形成後、基板200の基板電極層を除く主面230上に、例えばソルダレジストから構成されるレジスト層400を形成してよい(図18参照)。このレジスト層400の形成工程は省略してもよい。
 次に、固体電池100と基板200との間の電気的接続を担う接合部材前駆体600’を基板電極層に供する(図19参照)。これにより、基板電極層と後刻に配置する固体電池の端面電極とを互いに電気的に接続可能とする。このような接合部材前駆体600’は、Ag導電ペーストの他、ナノペーストや合金系ペースト、ロー材など、形成後にフラックスなどの洗浄を必要としない導電性ペーストを印刷することで設けることができる。
≪パッケージ化≫
 次に、上記で得られた電池および基板を用いてパッケージ化を行う。
 まず、基板200上にパッケージ前電池100を配置する(図20参照)。つまり、基板上に“パッケージ化されていない固体電池”を配置する(以下、パッケージ化に用いる電池を単に「固体電池」とも称する)。
 具体的には、基板電極層と固体電池の端面電極とが互いに電気的に接続されるように固体電池を基板上に配置する。固体電池の端面電極と接合部材の前駆体600’とが互いに接するように基板上に固体電池100を配した後、加熱処理に付すことで前駆体600’から固体電池100と基板200との間の電気的接続に資する接合部材600を形成する。
 次いで、被覆部150を形成する。被覆部としては、被覆絶縁層160および被覆無機層170を設けてよい。
 まず、基板200上の固体電池100が覆われるように被覆絶縁層160を形成する(図21参照)。それゆえ、基板上の固体電池が全体的に覆われるように被覆絶縁層の原料を供する。被覆絶縁層が樹脂材から成る場合、樹脂前駆体を基板上に設けて硬化などに付して被覆絶縁層を成型する。金型で加圧に付すことを通じて被覆絶縁層の成型を行ってもよい。例示にすぎないが、コンプレッション・モールドを通じて基板上の固体電池を封止する被覆絶縁層を成型してよい。一般的にモールドで用いられる樹脂材であるならば、被覆絶縁層の原料の形態は、顆粒状でもよく、また、その種類は熱可塑性であってもよい。なお、このような成型は、金型成型に限らず、研磨加工、レーザー加工および/または化学的処理などを通じて行ってもよい。
 被覆絶縁層160の形成後、被覆無機層170を形成する(図22参照)。具体的には、「個々の固体電池100が基板200上にて被覆絶縁層160で覆われた被覆前駆体」に対して被覆無機層170を形成する。例えば、乾式めっきを実施して乾式めっき層を形成し、次いで湿式めっきを実施し湿式めっき層を形成してよい。
 以上のような工程を経ることによって、基板上の固体電池が被覆絶縁層および被覆無機層で全体的に覆われたパッケージ品を得ることができる。つまり、本発明に係る「固体電池パッケージ」を最終的に得ることができる。
 なお、上記では、被覆部150が固体電池100を覆う形態について触れたが、固体電池100が被覆部150によって大きく覆われた形態を有していてもよい。例えば、基板200上の固体電池100を包む被覆絶縁層160上に設けられた被覆無機層170が基板200の下側主面にまで及んでいてよい(図14参照)。つまり、被覆部150としての被覆無機層170が基板200の側面250にまで延在していると共に、基板200の側方を超えて当該基板200の下側主面240(特にその周縁部分)にまで延在していてよい。このような形態の場合、水分透過(外部から固体電池積層体へと至るような水分透過)がより好適に防止された固体電池パッケージがもたらされ得る。なお、被覆無機層170は、少なくとも2層から成る複数層構造として設けることもできる。かかる複数層構造は、特に異種材間に限らず、同種材間であってもよい。このような複数層構造の被覆無機層が設けられる場合、固体電池のための水蒸気バリアをより好適に構成し易い。
 なお、好ましくは、水蒸気バリア層を基板に対して形成しておいてよい。つまり、基板と固体電池を組み合わせるパッケージ化に先立って基板に水蒸気バリアを形成しておいてよい。
 水蒸気バリア層は、所望のバリア層を形成できるのであれば、特に制限はない。例えば「Si-O結合およびSi-N結合を有する水蒸気バリア層」の場合、好ましくは、液体原料の塗布および紫外線照射を通じて形成する。つまり、CVDやPVDなどの気相蒸着法を利用せず比較的低温の条件(例えば、100℃程度の温度条件)で水蒸気バリア層を形成する。具体的には、液体原料として例えばシラザンを含んで成る原料を用意し、その液体原料をスピンコートまたはスプレーコートなどによって基板に塗布、乾燥してバリア前駆体を形成する。次いで、窒素を含む環境雰囲気において、バリア前駆体をUV照射に付すことによって、「Si-O結合およびSi-N結合を有する水蒸気バリア層」を得ることができる。
 なお、基板電極層と固体電池の端面電極との接合箇所には水蒸気バリア層が存在しないように、その箇所のバリア層を局所除去することが好ましい。あるいは、接合箇所に水蒸気バリア層が形成されないようにマスクを利用してもよい。つまり、接合箇所となる領域にマスクを施して水蒸気バリア層を全体的に形成し、その後にマスクを除してもよい。
 基板の主面にレジスト層を設ける場合、レジスト層上に水蒸気バリア層を形成してよい。この際、上述したように、固体電池100との接合領域を除くように水蒸気バリア層を形成することが好ましい。つまり、基板の基板電極層210が露出することになるようにレジスト層および水蒸気バリア層が形成された基板200を用意することが好ましい。
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。本発明はこれに限定されず、本発明の要旨を変更しない範囲において種々の態様が考えられることを当業者は容易に理解されよう。
 なお、本発明は、固体電池パッケージに関するが、かかるパッケージがその基板と別個の外部基板に実装されたまたはソケットに挿入された電子デバイスとして供されてもよい。つまり、固体電池パッケージの基板は固体電池の外部端子のための端子基板となり得るところ、かかる端子基板を介して、固体電池パッケージが例えばプリント配線板などの外部基板(即ち、2次基板)に表面実装されていてよく、そのような電子デバイスとして固体電池パッケージが供されていてもよい。
 本開示の固体電池パッケージの態様は、以下のとおりである。
<1>
 基板と、前記基板上の固体電池と、前記固体電池を覆う被覆絶縁層と、前記被覆絶縁層を覆いかつ導電性を有する被覆無機層とを備え、前記固体電池と前記被覆無機層とが導通可能となっている、固体電池パッケージ。
<2>
 第1外部電極および第2外部電極を備え、第1外部電極が前記基板の底面に位置づけられ、第2外部電極は前記被覆無機層である、<1>に記載の固体電池パッケージ。
<3>
 前記基板が、前記固体電池と対向する側の上側主面に配置され、前記固体電池と接続された第1上側基板電極層および第2上側基板電極層を備え、前記第2上側基板電極層と前記被覆無機層とが導通可能となっている、<1>又は<2>に記載の固体電池パッケージ。
<4>
 前記第1外部電極が正極であり、前記第2外部電極が負極である、<2>に記載の固体電池パッケージ。 
<5>
 第2導電部分を更に含み、前記第2導電部分の一端は前記第2上側基板電極層と接触し、他端は前記被覆無機層と接触する、<3>に記載の固体電池パッケージ。
<6>
 前記第2導電部分が前記基板の内部に位置づけられる、<5>に記載の固体電池パッケージ。
<7>
 前記被覆無機層は前記基板の側面を更に覆い、前記第2導電部分は前記基板の側面を覆う前記被覆無機層と接触する、<5>又は<6>に記載の固体電池パッケージ。
<8>
 前記第2導電部分は前記基板内部にて内部電極層を含み、前記内部電極層が前記基板の長手方向に沿って横断するように延在する、<5>~<7>のいずれかに記載の固体電池パッケージ。
<9>
 平面視で、前記内部電極層の外側輪郭と前記被覆無機層の内側輪郭とが重なる、<8>に記載の固体電池パッケージ。
<10>
 前記第2導電部分が前記基板の前記上側主面に位置づけられる、<5>~<9>のいずれかに記載の固体電池パッケージ。
<11>
 前記第2上側基板電極層と前記被覆無機層とが接触する、<3>又は<5>に記載の固体電池パッケージ。
<12>
 前記第2外部電極が前記基板の底面に更に位置づけられる、<2>~<11>のいずれかに記載の固体電池パッケージ。
<13>
 1つの前記第1外部電極と2つの前記第2外部電極が供される、<12>に記載の固体電池パッケージ。
<14>
 前記基板が、前記第1上側基板電極層と、前記上側主面とは反対側の下側主面に配置された第1下側基板電極層とを備え、前記第1外部電極が前記第1下側基板電極層である、<3>~<13>のいずれかに記載の固体電池パッケージ。
<15>
 前記被覆無機層が、前記基板の側面と底面の一部を連続して覆う、<1>~<14>のいずれかに記載の固体電池パッケージ。
<16>
 前記基板がプリント配線基板である、<1>~<15>のいずれかに記載の固体電池パッケージ。
<17>
 外部基板と、前記外部基板に実装される<1>~<16>のいずれかに記載の固体電池パッケージと、を備える固体電池モジュール。
 本発明の固体電池パッケージは、電池使用または蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の固体電池パッケージは、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどや、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などに利用することができる。
 100   固体電池
 110   正極層
 120   負極層
 130   固体電解質
 140   端面電極
 140A  正極側の端面電極
 140B  負極側の端面電極
 150   被覆部
 150X  パッケージの外装部分
 160   被覆絶縁層
 170   被覆無機層
 171   被覆無機層の内側輪郭
 200   基板
 210   基板電極層(基板上側)
 210A  基板正極層
 210B  基板負極層
 220   実装側基板電極層(基板下側)
 220A  実装側基板正極層
 220B  実装側基板負極層
 210X  第1上側基板電極層
 220X  第2上側基板電極層
 220X  第1下側基板電極層
 220Y  第2下側基板電極層
 230   基板の上側主面
 240   基板の下側主面
 250   基板の側面
 260X、260XI 第1導電部分
 260Y、260YI 第2導電部分
 261YI 内部電極層
 262YI 接続ビア
 263YI 基板の内部電極層の外側輪郭

 400   レジスト層
 600   接合部材
 600’  接合部材の前駆体
 1000、1000I~1000IV 固体電池パッケージ

Claims (17)

  1.  基板と、前記基板上の固体電池と、前記固体電池を覆う被覆絶縁層と、前記被覆絶縁層を覆いかつ導電性を有する被覆無機層とを備え、前記固体電池と前記被覆無機層とが導通可能となっている、固体電池パッケージ。
  2.  第1外部電極および第2外部電極を備え、第1外部電極が前記基板の底面に位置づけられ、第2外部電極は前記被覆無機層である、請求項1に記載の固体電池パッケージ。
  3.  前記基板が、前記固体電池と対向する側の上側主面に配置され、前記固体電池と接続された第1上側基板電極層および第2上側基板電極層を備え、前記第2上側基板電極層と前記被覆無機層とが導通可能となっている、請求項1又は2に記載の固体電池パッケージ。
  4.  前記第1外部電極が正極であり、前記第2外部電極が負極である、請求項2に記載の固体電池パッケージ。 
  5.  第2導電部分を更に含み、前記第2導電部分の一端は前記第2上側基板電極層と接触し、他端は前記被覆無機層と接触する、請求項3に記載の固体電池パッケージ。
  6.  前記第2導電部分が前記基板の内部に位置づけられる、請求項5に記載の固体電池パッケージ。
  7.  前記被覆無機層は前記基板の側面を更に覆い、前記第2導電部分は前記基板の側面を覆う前記被覆無機層と接触する、請求項5又は6に記載の固体電池パッケージ。
  8.  前記第2導電部分は前記基板内部にて内部電極層を含み、前記内部電極層が前記基板の長手方向に沿って横断するように延在する、請求項5~7のいずれかに記載の固体電池パッケージ。
  9.  平面視で、前記内部電極層の外側輪郭と前記被覆無機層の内側輪郭とが重なる、請求項8に記載の固体電池パッケージ。
  10.  前記第2導電部分が前記基板の前記上側主面に位置づけられる、請求項5~9のいずれかに記載の固体電池パッケージ。
  11.  前記第2上側基板電極層と前記被覆無機層とが接触する、請求項3又は5に記載の固体電池パッケージ。
  12.  前記第2外部電極が前記基板の底面に更に位置づけられる、請求項2~11のいずれかに記載の固体電池パッケージ。
  13.  1つの前記第1外部電極と2つの前記第2外部電極が供される、請求項12に記載の固体電池パッケージ。
  14.  前記基板が、前記第1上側基板電極層と、前記上側主面とは反対側の下側主面に配置された第1下側基板電極層とを備え、前記第1外部電極が前記第1下側基板電極層である、請求項3~13のいずれかに記載の固体電池パッケージ。
  15.  前記被覆無機層が、前記基板の側面と底面の一部を連続して覆う、請求項1~14のいずれかに記載の固体電池パッケージ。
  16.  前記基板がプリント配線基板である、請求項1~15のいずれかに記載の固体電池パッケージ。
  17.  外部基板と、前記外部基板に実装される請求項1~16のいずれかに記載の固体電池パッケージと、を備える固体電池モジュール。
PCT/JP2023/021014 2022-06-14 2023-06-06 固体電池パッケージ WO2023243489A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022095992 2022-06-14
JP2022-095992 2022-06-14

Publications (1)

Publication Number Publication Date
WO2023243489A1 true WO2023243489A1 (ja) 2023-12-21

Family

ID=89191053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/021014 WO2023243489A1 (ja) 2022-06-14 2023-06-06 固体電池パッケージ

Country Status (1)

Country Link
WO (1) WO2023243489A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518578A (ja) * 2007-02-09 2010-05-27 シンベット・コーポレイション 充電システムおよび充電方法
WO2020031424A1 (ja) * 2018-08-10 2020-02-13 株式会社村田製作所 固体電池
JP2021005483A (ja) * 2019-06-26 2021-01-14 株式会社村田製作所 固体電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010518578A (ja) * 2007-02-09 2010-05-27 シンベット・コーポレイション 充電システムおよび充電方法
WO2020031424A1 (ja) * 2018-08-10 2020-02-13 株式会社村田製作所 固体電池
JP2021005483A (ja) * 2019-06-26 2021-01-14 株式会社村田製作所 固体電池

Similar Documents

Publication Publication Date Title
JP7192866B2 (ja) 固体電池
JP7396352B2 (ja) 固体電池
JP7047934B2 (ja) 固体電池
CN115699418A (zh) 固体电池以及固体电池的制造方法
US20230163365A1 (en) Solid state battery
US20230128747A1 (en) Solid state battery
JP7206836B2 (ja) 電子部品の製造方法
WO2023243489A1 (ja) 固体電池パッケージ
WO2021132504A1 (ja) 固体電池
WO2022114155A1 (ja) 固体電池および固体電池の製造方法
US20220013816A1 (en) Solid-state battery
WO2021235451A1 (ja) 固体電池および固体電池用の外装体
JP7180685B2 (ja) 固体電池
WO2024014261A1 (ja) パッケージ化された固体電池
WO2022230901A1 (ja) 固体電池パッケージ
WO2024009963A1 (ja) 固体電池
JP2023180885A (ja) 固体電池パッケージ
WO2023167100A1 (ja) 固体電池パッケージ
WO2022230900A1 (ja) 固体電池パッケージ
WO2024014260A1 (ja) 固体電池および電子デバイス
WO2023171759A1 (ja) 固体電池モジュール
US20240021924A1 (en) Solid state battery package
WO2023182513A1 (ja) 固体電池パッケージ
WO2022114140A1 (ja) 固体電池および固体電池の製造方法
JP7131298B2 (ja) 電子部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823781

Country of ref document: EP

Kind code of ref document: A1