WO2021117827A1 - 固体電池 - Google Patents
固体電池 Download PDFInfo
- Publication number
- WO2021117827A1 WO2021117827A1 PCT/JP2020/046114 JP2020046114W WO2021117827A1 WO 2021117827 A1 WO2021117827 A1 WO 2021117827A1 JP 2020046114 W JP2020046114 W JP 2020046114W WO 2021117827 A1 WO2021117827 A1 WO 2021117827A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid
- active material
- negative electrode
- positive electrode
- electrode layer
- Prior art date
Links
- 239000011149 active material Substances 0.000 claims abstract description 98
- 239000007784 solid electrolyte Substances 0.000 claims abstract description 35
- 239000007772 electrode material Substances 0.000 claims abstract description 34
- 239000007773 negative electrode material Substances 0.000 claims abstract description 28
- 239000007774 positive electrode material Substances 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims description 97
- 239000007787 solid Substances 0.000 claims description 22
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 5
- 229910001416 lithium ion Inorganic materials 0.000 claims description 5
- 239000011810 insulating material Substances 0.000 claims 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 17
- 229910052744 lithium Inorganic materials 0.000 description 17
- -1 phosphoric acid compound Chemical class 0.000 description 17
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 16
- 239000002003 electrode paste Substances 0.000 description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 16
- 239000002243 precursor Substances 0.000 description 16
- 239000011734 sodium Substances 0.000 description 11
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000005245 sintering Methods 0.000 description 10
- 229910052708 sodium Inorganic materials 0.000 description 10
- 239000000758 substrate Substances 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 208000031481 Pathologic Constriction Diseases 0.000 description 8
- 208000037804 stenosis Diseases 0.000 description 8
- 230000036262 stenosis Effects 0.000 description 8
- 238000010304 firing Methods 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 6
- 229910001415 sodium ion Inorganic materials 0.000 description 6
- 230000000007 visual effect Effects 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000012752 auxiliary agent Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000007639 printing Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 239000010949 copper Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000002223 garnet Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000000470 constituent Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 239000011135 tin Substances 0.000 description 3
- 229910052718 tin Inorganic materials 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 229910000733 Li alloy Inorganic materials 0.000 description 2
- 229910012425 Li3Fe2 (PO4)3 Inorganic materials 0.000 description 2
- 239000002228 NASICON Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000005385 borate glass Substances 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910019271 La0.55Li0.35TiO3 Inorganic materials 0.000 description 1
- 229910007857 Li-Al Inorganic materials 0.000 description 1
- 229910010406 Li1.2Al0.2Ti1.8(PO4)3 Inorganic materials 0.000 description 1
- 229910012735 LiCo1/3Ni1/3Mn1/3O2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910011500 LiCuPO Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 1
- 229910012465 LiTi Inorganic materials 0.000 description 1
- 229910008447 Li—Al Inorganic materials 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 239000005287 barium borate glass Substances 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- 229910000416 bismuth oxide Inorganic materials 0.000 description 1
- KAMGYJQEWVDJBD-UHFFFAOYSA-N bismuth zinc borate Chemical compound B([O-])([O-])[O-].[Zn+2].[Bi+3] KAMGYJQEWVDJBD-UHFFFAOYSA-N 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 239000005388 borosilicate glass Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- TYIXMATWDRGMPF-UHFFFAOYSA-N dibismuth;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Bi+3].[Bi+3] TYIXMATWDRGMPF-UHFFFAOYSA-N 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000011244 liquid electrolyte Substances 0.000 description 1
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- CHWRSCGUEQEHOH-UHFFFAOYSA-N potassium oxide Chemical compound [O-2].[K+].[K+] CHWRSCGUEQEHOH-UHFFFAOYSA-N 0.000 description 1
- 229910001950 potassium oxide Inorganic materials 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/102—Primary casings; Jackets or wrappings characterised by their shape or physical structure
- H01M50/103—Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
- H01M50/55—Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/552—Terminals characterised by their shape
- H01M50/553—Terminals adapted for prismatic, pouch or rectangular cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2220/00—Batteries for particular applications
- H01M2220/30—Batteries in portable systems, e.g. mobile phone, laptop
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to a solid state battery. More specifically, the present invention relates to a laminated solid-state battery in which each layer forming a battery constituent unit is laminated.
- a secondary battery may be used as a power source for electronic devices such as smartphones and notebook computers.
- a liquid electrolyte is generally used as a medium for ion transfer that contributes to charging and discharging. That is, a so-called electrolytic solution is used in the secondary battery.
- electrolytic solution is used in the secondary battery.
- such a secondary battery is generally required to be safe in terms of preventing leakage of the electrolytic solution.
- organic solvent and the like used in the electrolytic solution are flammable substances, safety is also required in that respect as well.
- the solid-state battery has a solid-state battery laminate composed of a positive electrode layer, a negative electrode layer, and a solid electrolyte layer between them (see Patent Documents 1 to 4 above). More specifically, the positive electrode layer and the negative electrode layer are alternately laminated via the solid electrolyte layer.
- the positive electrode layer contains the positive electrode active material
- the negative electrode layer contains the negative electrode active material, which are involved in the transfer of electrons in the solid-state battery. That is, ions move between the positive electrode layer and the negative electrode layer via the solid electrolyte to transfer electrons, and the solid state battery is charged and discharged.
- external terminals 400 such as a positive electrode terminal and a negative electrode terminal face each other so as to sandwich the laminate (see FIG. 18).
- the solid-state batteries are housed in a battery storage space such as inside a housing, or mounted on various substrates such as a printed wiring board or a motherboard. That is, assuming various battery applications, the arrangement required for the external terminals of the solid-state battery is not always constant, and may change as appropriate depending on the battery application. Therefore, it cannot be said that the degree of freedom is large in the conventional arrangement of the external terminals of the positive and negative electrodes of the solid-state battery, and it is desirable that the external terminals can be provided according to various battery applications.
- a main object of the present invention is to provide a solid-state battery having a higher degree of freedom in terms of arrangement of external terminals.
- the present invention is a solid-state battery. It has a solid battery laminate having a positive electrode layer having a positive electrode active material as an electrode active material, a negative electrode layer having a negative electrode active material as an electrode active material, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer. Made up of "The contour portion of the active material in which the electrode active material is provided up to the plan view contour of the solid battery laminate in one of the positive electrode layer and the negative electrode layer" and "The electrode in the other of the positive electrode layer and the negative electrode layer up to the plan view contour Provided is a solid-state battery in which "non-active material contour portions" provided with no active material are opposed to each other in the stacking direction.
- the solid-state battery according to the present invention is a solid-state battery having a higher degree of freedom in terms of arrangement of external terminals.
- the active material contour portion of one electrode and the inactive material contour portion of the other electrode face each other in the stacking direction.
- the external terminal of one electrode can be provided so as to be in contact with the active material contour portion of the other electrode, and can be arranged relatively freely.
- the external terminal of the other electrode can also be provided so as to be in contact with the active material contour portion of the other electrode (that is, the portion corresponding to the contour portion excluding the above-mentioned inactive material contour portion). , Can be arranged relatively freely.
- the solid-state battery of the present invention has relatively few restrictions in terms of the arrangement of the external terminals of the positive electrode and the negative electrode.
- FIG. 1 is a schematic perspective view for explaining the “degree of freedom in installing external terminals” in the present invention.
- FIG. 2 is a schematic perspective view for explaining the characteristics of the solid-state battery according to the embodiment of the present invention.
- FIG. 3 is a schematic side view for explaining the characteristics of the solid-state battery according to the embodiment of the present invention.
- FIG. 4 is a schematic plan view for explaining the features of the solid-state battery according to the embodiment of the present invention.
- FIG. 5 is a schematic plan view for explaining an exemplary embodiment of one active material contour portion and the other inactive material contour portion of the positive electrode layer and the negative electrode layer.
- FIG. 6 is a schematic plan view for explaining an exemplary embodiment of one active material contour portion and the other inactive material contour portion of the positive electrode layer and the negative electrode layer.
- FIG. 7 is a schematic plan view for explaining an exemplary embodiment of one active material contour portion and the other inactive material contour portion of the positive electrode layer and the negative electrode layer.
- FIG. 8 is a schematic plan view for explaining an exemplary embodiment of one active material contour portion and the other inactive material contour portion of the positive electrode layer and the negative electrode layer.
- FIG. 9 is a schematic plan view for explaining an exemplary embodiment of one active material contour portion and the other inactive material contour portion of the positive electrode layer and the negative electrode layer.
- FIG. 10 is a schematic plan view for explaining an exemplary embodiment of one active material contour portion and the other inactive material contour portion of the positive electrode layer and the negative electrode layer.
- FIG. 11 is a schematic plan view for explaining an exemplary embodiment of one active material contour portion and the other inactive material contour portion of the positive electrode layer and the negative electrode layer.
- FIG. 12 is a schematic plan view for explaining an exemplary embodiment of one active material contour portion and the other inactive material contour portion of the positive electrode layer and the negative electrode layer.
- FIG. 13 is a schematic perspective view for explaining a surface mount solid-state battery.
- FIG. 14 is a schematic perspective view for explaining the inactive material region.
- FIG. 15 is a schematic plan view for explaining "aspects relating to the width-dimensional relationship of the electrode stenosis portion".
- FIG. 16 is a schematic plan view for explaining a preferable feature of a constricted portion when a current collecting layer is provided with respect to the electrode layer.
- FIG. 17 is a schematic plan view for explaining a preferable feature of the contour corner of the narrowed portion.
- FIG. 18 is a schematic cross-sectional view for explaining the basic configuration of the solid-state battery.
- planar view refers to a form in which an object is viewed from above or below along a thickness direction corresponding to the stacking direction of each layer constituting a solid-state battery (particularly a solid-state battery laminate). Is based. Further, the "cross-sectional view” referred to in the present specification is based on a form when viewed from a direction substantially perpendicular to the stacking direction of each layer constituting the solid-state battery (particularly the solid-state battery laminate). In short, the cross-sectional view is based on the morphology obtained when cutting in a plane parallel to the thickness direction.
- the "vertical direction” and “horizontal direction” used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the drawings, respectively.
- the vertical downward direction corresponds to the "downward direction” / "bottom side”
- the opposite direction corresponds to the "upward direction” / "top surface side”. Can be done.
- the “solid-state battery” in the present invention refers to a battery whose components are composed of solids in a broad sense, and in a narrow sense, all the components (particularly preferably all components) are composed of solids.
- the solid-state battery in the present invention is a laminated solid-state battery in which the layers forming the battery building unit are laminated to each other, and preferably such layers are made of a sintered body.
- the "solid-state battery” includes not only a so-called “secondary battery” capable of repeating charging and discharging, but also a "primary battery” capable of only discharging.
- a “solid-state battery” is a secondary battery.
- the “secondary battery” is not overly bound by its name and may also include electrochemical devices such as power storage devices.
- the solid-state battery has at least an electrode layer of a positive electrode and a negative electrode and a solid electrolyte layer.
- the solid-state battery includes a solid-state battery laminate 500 including a battery constituent unit including a positive electrode layer 100, a negative electrode layer 200, and a solid electrolyte layer 300 interposed therein at least. It consists of.
- each layer constituting the solid-state battery is formed by firing.
- the positive electrode layer, the negative electrode layer, the solid electrolyte layer, and the like form a sintered layer.
- the positive electrode layer, the negative electrode layer and the solid electrolyte layer are integrally fired with each other, and therefore the solid-state battery laminate forms an integrally sintered body.
- the positive electrode layer 100 is an electrode layer including at least a positive electrode active material.
- the positive electrode layer may further contain a solid electrolyte.
- the positive electrode layer is composed of a sintered body containing at least positive electrode active material particles and solid electrolyte particles.
- the negative electrode layer is an electrode layer including at least a negative electrode active material.
- the negative electrode layer may further contain a solid electrolyte.
- the negative electrode layer is composed of a sintered body containing at least negative electrode active material particles and solid electrolyte particles.
- the positive electrode active material and the negative electrode active material are substances involved in the transfer of electrons in a solid-state battery. Ions move (or conduct) between the positive electrode layer and the negative electrode layer via the solid electrolyte layer, and electrons are transferred to perform charging and discharging. It is particularly preferable that each of the positive electrode layer and the negative electrode layer is a layer capable of occluding and releasing lithium ions or sodium ions. That is, the solid-state battery is preferably an all-solid-state secondary battery in which lithium ions or sodium ions move between the positive electrode layer and the negative electrode layer via the solid electrolyte layer to charge and discharge the battery.
- Examples of the positive electrode active material contained in the positive electrode layer include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and lithium-containing having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned.
- Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 .
- Examples of the lithium-containing phosphoric acid compound having an olivine-type structure include Li 3 Fe 2 (PO 4 ) 3 , LiFePO 4, and LiMnPO 4 .
- lithium-containing layered oxides examples include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, and the like.
- Examples of the lithium-containing oxide having a spinel-type structure include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4, and the like.
- the positive electrode active material capable of occluding and releasing sodium ions a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing layered oxide, and a sodium-containing sodium having a spinel-type structure At least one selected from the group consisting of oxides and the like can be mentioned.
- Examples of the negative electrode active material contained in the negative electrode layer 200 include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb and Mo, graphite-lithium compounds, and lithium alloys. At least one selected from the group consisting of a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing oxide having a spinel-type structure, and the like can be mentioned.
- An example of a lithium alloy is Li—Al or the like.
- lithium-containing phosphoric acid compound having a pear-con type structure examples include Li 3 V 2 (PO 4 ) 3 , LiTi 2 (PO 4 ) 3, and the like.
- lithium-containing phosphoric acid compound having an olivine-type structure examples include Li 3 Fe 2 (PO 4 ) 3 , LiCuPO 4, and the like.
- lithium-containing oxides having a spinel-type structure include Li 4 Ti 5 O 12 .
- the negative electrode active material capable of occluding and releasing sodium ions is a group consisting of a sodium-containing phosphoric acid compound having a pearcon-type structure, a sodium-containing phosphoric acid compound having an olivine-type structure, a sodium-containing oxide having a spinel-type structure, and the like. At least one selected from is mentioned.
- the positive electrode layer and / or the negative electrode layer may contain a conductive auxiliary agent.
- the conductive auxiliary agent contained in the positive electrode layer and the negative electrode layer include at least one selected from the group consisting of metal materials such as silver, palladium, gold, platinum, aluminum, copper and nickel, and carbon.
- metal materials such as silver, palladium, gold, platinum, aluminum, copper and nickel, and carbon.
- copper is preferable because it does not easily react with the positive electrode active material, the negative electrode active material, the solid electrolyte material, and the like, and is effective in reducing the internal resistance of the solid battery.
- the positive electrode layer and / or the negative electrode layer may contain a sintering aid.
- a sintering aid at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, silicon oxide, bismuth oxide and phosphorus oxide can be mentioned.
- the solid electrolyte layer 300 comprises a material capable of conducting lithium ions or sodium ions.
- the solid electrolyte layer which forms a battery constituent unit of a solid-state battery, forms a layer in which lithium ions can be conducted between the positive electrode layer and the negative electrode layer.
- the material of the solid electrolyte layer include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like.
- Examples of the lithium-containing phosphoric acid compound having a pear-con structure include Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 .
- Examples of oxides having a perovskite structure include La 0.55 Li 0.35 TiO 3 and the like.
- oxides having a garnet-type or garnet-type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
- Examples of the material of the solid electrolyte layer capable of conducting sodium ions include a sodium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like. ..
- the solid electrolyte layer may contain a sintering aid.
- the sintering aid contained in the solid electrolyte layer may be selected from, for example, the same materials as the sintering aid that may be contained in the positive electrode layer and / or the negative electrode layer.
- the positive electrode layer 100 and the negative electrode layer 200 may include a positive electrode current collector layer and a negative electrode current collector layer, respectively.
- the positive electrode current collector layer and the negative electrode current collector layer may each have a foil form, but from the viewpoint of reducing the manufacturing cost of the solid-state battery and reducing the internal resistance of the solid-state battery by integral firing, the sintered body It preferably has a form (that is, a form of a sintered layer).
- the positive electrode current collector layer and the negative electrode current collector layer have the form of a sintered body, they may be composed of a sintered body containing a conductive material and a sintering aid.
- the conductive material contained in the positive electrode current collector layer and the negative electrode current collector layer may be selected from, for example, the same materials as the conductive auxiliary agent that can be contained in the positive electrode layer and the negative electrode layer.
- the sintering aid contained in the positive electrode current collector layer and the negative electrode current collector layer may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and / or the negative electrode layer. It should be noted that the positive electrode current collector layer and the negative electrode current collector layer are not essential in the solid-state battery, and a solid-state battery in which such a positive electrode current collector layer and / or the negative electrode current collector layer is not provided is also conceivable. That is, the solid-state battery in the present invention may be a solid-state battery without a current collector layer.
- Solid-state batteries are generally provided with external terminals.
- an external terminal 400 is provided on the side surface of the solid-state battery.
- FIG. 18 shows an arrangement mode of a pair of external terminals (400A, 400B) arranged so as to face each other, which is particularly seen in the conventional configuration. More specifically, a positive electrode external terminal 400A connected to the positive electrode layer 100 and a negative electrode external terminal 400B connected to the negative electrode layer 200 are provided (see FIG. 18).
- Such external terminals preferably include a material having a high conductivity.
- the specific material of the external terminal is not particularly limited, but at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel can be mentioned.
- the solid-state battery of the present invention has features related to the arrangement of external terminals.
- the present invention is characterized in that the solid-state battery laminate has a configuration that allows an arrangement of external terminals different from the conventional arrangement.
- the positive electrode external terminal and the negative electrode external terminal of the solid-state battery face each other with the solid-state battery laminate interposed therebetween, but the solid-state battery of the present invention is not limited to this and is relatively freely external. It is configured so that terminals can be placed.
- the positive electrode external terminal 400A and the negative electrode external terminal 400B are any side surface of the solid-state battery laminate 500 (that is, the solid-state battery).
- the laminated body it can be provided on any of the laminated body surfaces) existing in the direction orthogonal to the laminating direction.
- the "side surface” as used herein refers to a plurality of side surfaces formed by a solid-state battery (more specifically, a solid-state battery laminate).
- side refers to a plurality of planar and / or curved sides of a solid-state battery (more specifically, a solid-state battery laminate).
- the present invention will be described in detail by first taking the forms shown in FIGS. 2 to 4 as an example.
- the positive electrode external terminal 400A and the negative electrode external terminal 400B are positioned with respect to the same side surface thereof (particularly, see FIG. 2). That is, the positive electrode external terminal and the negative electrode external terminal shown here are not opposed to each other so as to sandwich the solid-state battery laminate, but are arranged so as to be adjacent to each other on one side surface of the solid-state battery laminate.
- the positive electrode layer and the negative electrode layer have a characteristic relationship in terms of the contour (outermost peripheral edge) of the solid-state battery laminate. .. Specifically, one of the positive electrode layer and the negative electrode layer is "the contour portion of the active material in which the electrode active material is provided up to the contour of the solid battery laminate in a plan view", and the other of the positive electrode layer and the negative electrode layer is "solid". The “inactive material contour portion” on which the electrode active material is not provided up to the plan view contour of the battery laminate is opposed to each other in the stacking direction.
- the contour portion of the active material in which the electrode active material is provided up to the contour of the solid-state battery laminate and on the other electrode layer, "the contour of the solid-state battery laminate on the plan view”. It can be said that "the contour portion of the inactive material to which the electrode active material is not provided” is aligned along the stacking direction of the solid-state battery laminate.
- the inactive material contour portion 160 "in which the electrode active material is not provided up to the contour is opposed to each other in the stacking direction. In other words, in the present invention, when the positive electrode layer 100 and the negative electrode layer 200 are overlapped in a plan view, one active material contour portion and the other inactive material contour portion overlap at least with each other. (See FIG. 4).
- the second contour portions are also preferably opposed to each other in the stacking direction. More specifically, “the contour portion of the active material in which the electrode active material is provided up to the contour of the solid cell laminate in one of the positive electrode layer and the negative electrode layer” and “the flat surface in the other of the positive electrode layer and the negative electrode layer”.
- the "inactive material contour portion in which the electrode active material is not provided up to the visual contour” faces each other in the stacking direction, the "plan view contour of the solid battery laminate on the other side of the positive electrode layer and the negative electrode layer”
- the surface where the active material contour portion and the inactive material contour portion face each other that is, the surface facing the first contour portion
- the second active material contour portion and the second inactive portion faces each other in the stacking direction.
- the surface facing the material contour portion is different.
- the “active material contour portion 240 that is, the first active material contour portion” in which the electrode active material is provided up to the plan view contour of the solid cell laminate 200 in the negative electrode layer 200 (that is, the first active material contour portion) ”
- the inactive material contour portion 160 that is, the first inactive material contour portion in which the electrode active material is not provided up to the plan view contour of the solid cell laminate “in the positive electrode layer 100” are in the stacking direction.
- the solid-state battery laminate has an embodiment in which the surface facing the first contour portion (laminated body surface) and the surface facing the second contour portion (laminated body surface) are different from each other. That is, it is preferable that the solid-state battery laminate contains such different surfaces.
- the facing relationship of the contour portions in the stacking direction is related to the relatively free arrangement of the external terminals of the positive electrode and the negative electrode.
- the external terminal is provided so as to be in contact with the contour portion of the active material.
- one of the positive electrode external terminal and the negative electrode external terminal is provided so as to be in contact with the contour portion of one of the positive electrode layer and the negative electrode layer, and the other of the positive electrode layer and the negative electrode layer
- the other of the positive electrode external terminal and the negative electrode external terminal is provided so as to be in contact with the active material contour portion where the electrode active material is provided up to the plan view contour of the battery laminate.
- the external terminal of one electrode can be provided so as to be in contact with the active material contour portion of the other electrode, and can be provided relatively freely. Can be placed.
- the external terminal of the other electrode also corresponds to the contour portion of the active material of the other electrode (preferably the contour portion excluding the contour portion of the inactive material) as long as the opposite relationship in the stacking direction is maintained. It can be provided so as to be in contact with the possible part) and can be arranged relatively freely.
- this is just one preferred example, but without significantly changing the design of the solid-state battery once adopted (particularly, matters relating to the morphology of the positive electrode layer and the negative electrode layer in the solid-state battery laminate and matters related thereto). , The installation position of the external terminal can be changed relatively easily.
- the surface of the solid-state battery laminate provided with the positive electrode external terminal and the surface of the solid-state battery laminate provided with the negative electrode external terminal may be different from each other.
- one of the positive electrode external terminal and the negative electrode external terminal in contact with the active material contour portion (that is, the first active material contour portion) of the positive electrode layer and the negative electrode layer is provided on the side surface of the solid-state battery laminate.
- the positive electrode external terminal and the other external terminal of the negative electrode external terminal in contact with the contour portion of the second active material may be provided on a side surface different from the side surface of the solid-state battery laminate.
- the positive electrode external terminal and the negative electrode external terminal may extend in directions along the stacking direction of the solid-state battery laminate on different sides of the solid-state battery laminate.
- one side and the other side of the positive electrode external terminal and the negative electrode external terminal are adjacent to each other (that is, that is, It can also be provided on each of the non-opposing side surfaces that do not face each other.
- the positive electrode external terminal and the negative electrode external terminal can be separately provided on adjacent side surfaces that are different from each other among the plurality of surfaces of the solid-state battery laminate and are continuous with each other.
- the active material contour portion and the non-active material contour portion of the present invention contribute to the unique arrangement configuration of the external terminals, and a more versatile solid-state battery can be provided.
- the positive electrode external terminal is provided on the contour portion of the active material on the positive electrode side of the reference number 140, whereas the negative electrode external terminal is the active material on the negative electrode side shown by the reference number 240.
- the side forming the plan view contour is not limited to the active material contour portion on the side of the reference number 240I, but the active material contour portion on the other three sides forming the plan view contour (reference numbers 240II, 240III, 240IV). Either) can be provided.
- the solid-state battery laminate 500 may have an overall rectangular parallelepiped shape.
- the term "rectangular parallelepiped” as used herein is not limited to a perfect rectangular parallelepiped, but can be widely interpreted including the three-dimensional shape of a substantially rectangular parallelepiped that can be regarded as being modified based on the perfect rectangular parallelepiped.
- a "cuboid” is not limited to a perfect rectangular parallelepiped as its geometric shape, but also includes a cube, and even if such a rectangular parallelepiped shape or a cube shape is partially missing or deformed, it is large. It also includes shapes that can still be included in the concept of rectangular parallelepipeds or cubes.
- the "rectangular parallelepiped” will also be referred to as a "substantially rectangular parallelepiped” below.
- the solid-state battery of the present invention has a configuration in which the positive electrode external terminal and the negative electrode external terminal can be provided on any side surface of the “rectangular parallelepiped”. doing. That is, the configuration has a high degree of freedom in design in terms of the arrangement of external terminals.
- one aspect of the design of such relatively free external terminals is that the external terminals are collectively arranged with respect to the side surface.
- both the positive electrode external terminal 400A and the negative electrode external terminal 400B are provided side by side and proximal to each other on the "same side surface" 510 corresponding to one side surface of a substantially rectangular parallelepiped.
- one active material contour portion of the positive electrode layer and the negative electrode layer is provided on at least two sides selected from the sides forming the plan view contour of the battery laminate, and the positive electrode layer and the negative electrode layer are provided.
- the other inactive material contour region is provided on at least two sides selected from the sides forming the plan view contour of the battery laminate. That is, for example, in the positive electrode layer, the active material contour portion is provided on at least two sides selected from the sides forming the plan view contour of the battery laminate, while in the negative electrode layer, the inactive material contour region is the battery. It is provided on at least two sides selected from the sides forming the plan view contour of the laminated body.
- the active material contour portion is provided on at least two sides selected from the sides forming the plan view contour of the battery laminate, while in the positive electrode layer, the inactive material contour region is the battery laminate. It is provided on at least two sides selected from the sides forming the planar view contour of.
- this embodiment may have a form in which the plan view of the battery laminate in the positive electrode layer and the negative electrode layer is as shown in FIGS. 5 to 10, for example.
- the active material contour portion of the negative electrode layer 200 is provided on the sides (550I to 550IV) forming the planar contour of the battery laminate with respect to the sides of 550I, 550II, and 550III, and the positive electrode layer 100.
- the inactive material contour portion is provided for the sides of 550I, 550II, and 550III of the sides (550I to 550IV) forming the planar contour of the battery laminate.
- the negative electrode external terminal can be provided on any of the active material contour portions of the sides 550I, 550II and 550III
- the positive electrode external terminal can be provided on the contour portion corresponding to other than the inactive material contour portion. it can.
- FIG. 5 the active material contour portion of the negative electrode layer 200 is provided on the sides (550I to 550IV) forming the planar contour of the battery laminate with respect to the sides of 550I, 550II, and 550III, and the positive electrode layer 100.
- the inactive material contour portion is provided for the sides of 550
- the active material contour portion of the negative electrode layer 200 is provided for the sides of 550I and 550IV among the sides forming the plan view contour of the battery laminate, and the inactive material contour portion of the positive electrode layer 100 is provided.
- the portions are provided with respect to the sides of 550I and 550IV among the sides forming the plan-view contour of the battery laminate.
- the negative electrode external terminal can be provided on any of the active material contour portions of the sides 550I and 550IV, and the positive electrode external terminal can be provided on the contour portion corresponding to other than the inactive material contour portion.
- the active material contour portion of the negative electrode layer 200 is provided for the sides of 550I, 550III, and 550IV among the sides forming the plan view contour of the battery laminate, and the inactive material contour portion of the positive electrode layer 100 is provided. It is provided for 550I, 550III, and 550IV among the sides forming the planar contour of the battery laminate.
- the negative electrode external terminal may be provided on any of the active material contour portions of the sides 550I, 550III and 550IV, and the positive electrode external terminal may be provided on the contour portion corresponding to other than the inactive material contour portion. it can. The same applies to the other forms shown in FIGS. 8 to 10.
- the active material contour portion 240 is provided on one side (550I) of the sides forming the plan view contour of the battery laminate for the negative electrode layer 200. Therefore, in consideration of such a form, in the present invention, one active material contour portion of the positive electrode layer and the negative electrode layer is provided on at least one side selected from the sides forming the plan view contour of the battery laminate. It can be said that the other inactive material contour region of the positive electrode layer and the negative electrode layer may be provided on at least one side selected from the sides forming the plan view contour of the battery laminate. Including such matters, in the present invention, the external terminals of the positive electrode and the negative electrode can be arranged in a relatively free arrangement.
- the exemplary embodiment shown in FIG. 12 can be considered.
- the active material contour portions 240 are provided on the four sides 550I, 550II, 550III and 550IV forming the planar contour of the battery laminate with respect to the negative electrode layer 200, and the plane of the battery laminate with respect to the positive electrode layer 100.
- the inactive material contour portion 160 is provided on the four sides 550I, 550II, 550III, and 550IV forming the visual contour.
- one active material contour portion of the positive electrode layer and the negative electrode layer may be provided on all sides of the side forming the planar contour of the battery laminate, and the positive electrode layer and the negative electrode layer and the positive electrode layer and the negative electrode layer may be provided. It can be said that the other inactive material contour region of the negative electrode layer may be provided on all sides of the side forming the planar contour of the battery laminate. Including such matters, in the present invention, the external terminals of the positive electrode and the negative electrode can be arranged relatively freely.
- the "active material contour portion” is provided on the side forming the plan view contour of the battery laminate so as to satisfy all the portions of the side.
- the active material contour portion may be provided in, or not limited to that, the active material contour portion may be provided so as to satisfy at least a part of the target side.
- the "inactive material contour portion” is provided on the side forming the planar contour of the battery laminate, but the inactive material contour portion is provided so as to fill all the parts of the side.
- the inactive material contour portion may be provided so as to satisfy at least a part of the target side.
- the "active material contour portion" may be continuous with the adjacent sides on the side forming the plan view contour of the battery laminate.
- the “inactive material contour portion” may also be continuous with adjacent sides on the sides forming the plan view contour of the battery laminate.
- the surface of the positive electrode layer and the negative electrode layer facing each other with the first contour portion and the surface facing the second contour portion may be different from each other. ..
- the surface on which the first active material contour portion 240 of the negative electrode layer 200 and the first inactive material contour portion 160 of the positive electrode layer 100 face each other is "side 550II to When it becomes "any surface of IV”
- the surface where the second inactive material contour portion 260 of the negative electrode layer 200 and the second active material contour portion 140 of the positive electrode layer 100 face each other is the "plane of side 550I". ".
- the electrode layer has a constriction in the active material region. More specifically, the positive electrode layer 100 may have a narrowed shape that narrows toward the side forming the plan view contour, and similarly, the negative electrode layer 200 also has the negative electrode active material region toward the side forming the plan view contour. It may have a narrowed shape that narrows (see FIGS. 2 to 4).
- the positive electrode layer 100 preferably has a positive electrode narrowed portion 115 in which the positive electrode active material region 110 is narrowed toward the side forming the contour in plan view, and similarly, the negative electrode layer 200 is also viewed in plan view. It preferably has a negative electrode narrowed portion 225 in which the negative electrode active material region 220 is narrowed toward the contoured side (see the upper view of FIG. 4).
- the positive electrode external terminal 400A and the negative electrode external terminal 400B are positioned on the same side surface of the solid-state battery laminate so as to be side by side with each other. It can be said that the positive electrode lead-out portion 400A'and the negative electrode lead-out portion 400B' are arranged side by side or proximal to each other (see FIG. 3).
- the solid-state battery of the present invention in which both the positive electrode side and the negative electrode side external terminals are positioned on the same side surface of the solid-state battery laminate is a battery more suitable for mounting on a substrate such as a printed wiring board or a motherboard. Become. In particular, if the battery is surface-mounted with the "same side surface" provided with both external terminals as the surface on the mounting side, the inconvenient effect due to the expansion of the solid-state battery can be avoided.
- a solid-state battery mounted on a substrate may come into contact with or collide with the substrate and cause a failure when expanded due to charge / discharge and / or thermal expansion. In the present invention, such inconvenient contact or collision may occur. Has been avoided.
- the "same side surface" provided with both external terminals is mounted as the mounting side surface, that is, when the side surface is the most recent surface as the surface closest to the substrate as a whole, the solid-state battery ( In particular, this is because expansion occurs in a direction orthogonal to the opposite direction between the solid-state battery laminate 500) and the substrate 600 (see FIG. 13).
- each of the positive electrode external terminal 400A and the negative electrode external terminal 400B does not have to be provided so as to extend to another surface continuous with the surface on which the external terminal is provided.
- each of the positive electrode external terminal 400A and the negative electrode external terminal 400B has a side surface on which it is provided and a main surface continuous with the side surface (for example, both main surfaces facing each other of the solid-state battery laminate). It is terminated at the boundary edge between each of them. In such a case, since the external terminal does not extend long to other continuous surfaces, it becomes easy to reduce the height or size of the solid-state battery as a whole.
- the non-active material contour portion is a region in which the electrode active material is not provided up to the contour in the plan view of the battery laminate. That is, such an inactive material contour portion provides an inactive material region at the peripheral edge of the battery laminate.
- the inactive material region is typically an insulating region. More specifically, the inactive material region preferably has at least electronic insulation.
- a material conventionally used as the "inactive material" of the solid-state battery may be used, and includes, for example, a resin material, a glass material, and / or a ceramic material. It's okay.
- the inactive material region may additionally contain a solid electrolyte material as its material as long as the desired electronic insulation property is ensured.
- the portion 170 around the positive electrode constriction portion 115 in the positive electrode layer corresponds to the inactive material region in which the positive electrode active material is not provided.
- the portion 270 around the negative electrode constriction portion 225 corresponds to an inactive material region in which the negative electrode active material is not provided.
- the inactive material region may have the form of a sintered body.
- the materials contained in the inactive material region include soda lime glass, potash glass, borate glass, borosilicate glass, barium borate glass, and bismuth zinc borate glass. At least one selected from the group consisting of bismassilicate-based glass, phosphate-based glass, aluminophosphate-based glass, and zinc phosphate-based glass can be mentioned.
- the ceramic material contained in the inactive material region is not particularly limited, but is composed of aluminum oxide, boron nitride, silicon dioxide, silicon nitride, zirconium oxide, aluminum nitride, silicon carbide and barium titanate. At least one selected from the group can be mentioned. As can be seen from FIG.
- the inactive material region (170, 270) can also be referred to as a “margin portion” or a “negative portion” due to its morphology.
- the width dimension of the inactive material region (margin / negative portion) may be about 0.2 mm to 0.8 mm, preferably about 0.3 mm to 0.6 mm.
- the solid-state battery of the present invention may have different areas of the negative electrode active material region and the positive electrode active material region.
- the plan-view area of the negative electrode active material region may be larger than the plan-view area of the positive electrode active material region, whereby inconvenient events such as so-called dendrite generation can be further suppressed.
- the width dimension of the inactive material region 270 corresponding to the negative portion around the negative electrode constriction portion 225 in the negative electrode layer 200 is the negative portion around the positive electrode constriction portion 115 in the positive electrode layer 100. It may be smaller than the width dimension of the corresponding inactive material region 170. This is because it effectively contributes to a relatively large plan view area of the negative electrode active material region 110.
- the plan view area of the negative electrode active material region 220 is larger than the plan view area of the positive electrode active material region 110, but in this form, the negative electrode constriction portion 225 per the negative electrode layer 200. Since all the parts other than the side 550I (that is, the three sides of 550II, 550III and 550IV) provided with the active material contour portion, it is preferable in terms of battery capacity. Therefore, in the solid-state battery having the configuration shown in FIG. 12, it is easy to increase the battery capacity while suppressing inconvenient events such as dendrite generation.
- the solid-state battery according to the present invention has a configuration in which the degree of freedom in installing the negative electrode external terminal is particularly high, that is, the degree of freedom in pulling out the negative electrode is high.
- the present invention can be embodied in various aspects. This will be described below.
- the external terminals are provided relatively short.
- the external terminal 400 is provided so as to partially protrude from the “same side surface”.
- each of the positive electrode external terminal 400A and the negative electrode external terminal 400B extends to the opposite main surface of the solid-state battery laminate 500 via the “same side surface” 510.
- the solid-state battery according to this aspect as shown in FIG. 13, each of the positive electrode external terminal 400A and the negative electrode external terminal 400B is positioned only on the “same side surface” 510, and the solid-state battery laminate It does not extend to the main surface of 500.
- the external terminal of the solid-state battery of this embodiment does not extend long to the main surface, it is possible to reduce the height or size of the solid-state battery as a whole (see the upper view of FIG. 13). Further, when the solid-state battery of the present invention is an SMD (Surface Mount Device) type solid-state battery mounted on the surface as shown in the lower view of FIG. 13, the external terminal is positioned only between the substrate and the solid-state battery. become. Therefore, if the external terminal does not extend to the main surface, the mounted solid-state battery is less likely to cause undesired interactions with other electronic components, which may result in a more reliable solid-state battery. ..
- SMD Surface Mount Device
- the solid-state battery may have a size that can be mounted on a substrate.
- it may have the same size as other electronic components mounted on the substrate (eg, active and / or passive elements).
- at least one side dimension of the rectangular parallelepiped solid-state battery laminate may be less than 1 cm.
- This aspect is characterized by the width-dimensional relationship of the electrode stenosis portion.
- it is an embodiment characterized by a relative width-dimensional relationship between the positive electrode constriction portion and the negative electrode constriction portion.
- the width dimension of the positive electrode stenosis portion 115 is larger than the width dimension of the negative electrode stenosis portion 225. That is, in the plan view of the illustrated electrode, if the width dimension of the positive electrode constriction portion 115 is “Wa” and the width dimension of the negative electrode constriction portion 225 is “Wb”, Wa> Wb.
- the positive electrode layer may have lower electron conductivity than the negative electrode layer in terms of material, but in such a case, the width dimension of the positive electrode constriction portion becomes larger than the width dimension of the negative electrode constriction portion. This makes it easier to improve the electron conductivity of the positive electrode layer.
- the solid-state battery of the present invention can be obtained through a process of producing a solid-state battery laminate having a positive electrode layer, a negative electrode layer, and a solid electrolyte layer between the electrodes.
- the solid-state battery laminate can be manufactured by a printing method such as a screen printing method, a green sheet method using a green sheet, or a composite method thereof. That is, the solid-state battery laminate can be manufactured according to a conventional solid-state battery manufacturing method. Therefore, as the raw material such as the solid electrolyte, the organic binder, the solvent, any additive, the positive electrode active material, and the negative electrode active material described below, those used in the production of known solid-state batteries may be adopted.
- the organic binder, solvent, additive and the like used here those conventionally used in the production of a solid-state battery may be used.
- the precursor of the positive electrode active material region obtained from the positive electrode paste is preferably printed and formed so that it has a narrowed shape. Further, it is preferable to obtain a precursor of the "margin" around the positive electrode layer by printing an insulating paste. For such a form, refer to the lower view of FIG. 14, for example.
- the negative electrode paste is printed on the sheet, and the current collector layer is printed as necessary.
- the precursor of the negative electrode active material region obtained from the negative electrode paste is preferably printed and formed so that it has a narrowed shape. Further, it is preferable to obtain a precursor of the "margin" around the negative electrode layer by printing an insulating paste.
- a sheet on which the positive electrode paste is printed that is, a precursor of the positive electrode layer
- a sheet on which the negative electrode paste is printed that is, a precursor of the negative electrode layer
- the outermost layer (top layer and / or bottom layer) of the laminated body it may be a solid electrolyte layer or an insulating layer, or may be an electrode layer.
- a contour portion in which the positive electrode paste is provided up to the plan view contour and a contour portion in which the positive electrode paste is not provided up to the plan view contour are formed.
- a positive electrode precursor can be formed by a printing method.
- the contour portion where the positive electrode paste is provided up to the plan view contour finally becomes the "active material contour portion where the electrode active material is provided up to the plan view contour" in the solid-state battery laminate, and is flat.
- the contour portion where the positive electrode paste is not provided up to the visual contour finally becomes the "inactive material contour portion where the electrode active material is not provided up to the visual contour" in the solid-state battery laminate.
- a contour portion in which the negative electrode paste is provided up to the plan view contour and a contour portion in which the negative electrode paste is not provided up to the plan view contour are formed. It is preferable to keep it.
- such a negative electrode precursor can be formed by a printing method.
- the contour portion where the negative electrode paste is provided up to the plan view contour finally becomes the "active material contour portion where the electrode active material is provided up to the plan view contour" in the solid-state battery laminate, and is flat.
- the contour portion where the negative electrode paste is not provided up to the visual contour finally becomes the "inactive material contour portion where the electrode active material is not provided up to the visual contour" in the solid-state battery laminate.
- a plurality of precursors of the positive electrode layer may be used, but in the precursors of the plurality of positive electrode layers, the active material contour portion and the inactive material contour portion are formed so as to be located at the same position on the same planar view contour. Is preferable.
- a plurality of precursors of the negative electrode layer may be used, but in the precursors of the plurality of negative electrode layers, the active material contour portion and the inactive material contour portion are formed so as to be located at the same position in the plan view contour. It is preferable to keep it.
- the positional relationship is such that the active material contours of the plurality of positive electrode layers and the active material contours of the plurality of negative electrode layers do not face each other by the laminating method. It is preferable to form each precursor of the positive electrode layer and the negative electrode layer so as to have. This is so that the active material contour portion of the positive electrode layer and the inactive material contour portion of the negative electrode layer face each other in the stacking direction when the solid-state battery laminate is formed, and / or the positive electrode layer is not. This means that it is preferable to form the precursors of the positive electrode layer and the negative electrode layer so that the contour portion of the active material and the contour portion of the active material of the negative electrode layer face each other in the stacking direction.
- the obtained laminate is pressure-bonded and integrated, and then the laminate is degreased and fired. As a result, a sintered solid-state battery laminate is obtained. If necessary, it may be subjected to a cutting process (such a cutting process may be performed before degreasing and / or firing, or may be performed after degreasing and / or firing).
- the external terminal on the positive electrode side can be formed, for example, by applying a conductive paste to the exposed side surface of the positive electrode (particularly, the “active material contour portion” on the positive electrode side) in the sintered laminate.
- the external terminal on the negative electrode side may be formed, for example, by applying a conductive paste to the exposed side surface of the negative electrode (particularly, the “active material contour portion” on the negative electrode side) in the sintered laminate.
- a conventional method may be used.
- an external terminal may be provided by arranging so as to attach a predetermined metal member.
- the main material of such an external terminal may be selected from at least one selected from silver, gold, platinum, aluminum, copper, tin and nickel.
- the external terminals on the positive electrode side and the negative electrode side are not limited to being formed after sintering the laminate, but may be formed before firing and subjected to simultaneous sintering.
- the solid-state battery of the present invention may be the solid-state battery laminate itself, but if necessary, an additional protective film or the like may be formed on the surface of the solid-state battery laminate, or the solid-state battery may be enclosed in an appropriate exterior body. It can be obtained by additional processing such as. Such additional protective coatings or additional treatments themselves may be conventional.
- a method for manufacturing a solid-state battery comprises forming a solid-state battery laminate having a positive electrode layer having a positive electrode active material, a negative electrode layer having a negative electrode active material, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer.
- a solid battery laminate In the solid battery laminate, an active material contour portion in which an electrode active material is provided up to the plan view contour of the solid battery laminate in one of the positive electrode layer and the negative electrode layer, and the positive electrode layer and the negative electrode layer.
- the contour portions of the inactive material on which the electrode active material is not provided up to the contour in the plan view are opposed to each other in the stacking direction.
- One of the positive electrode external terminal and the negative electrode external terminal is selectively arranged so as to be positioned with respect to the portions facing each other in the plan view contour.
- Second aspect A second active material contour portion in which an electrode active material is provided up to the plan view contour of the solid battery laminate on the other side of the positive electrode layer and the negative electrode layer, and the positive electrode layer and the negative electrode. On one side of the layer, the contour portion of the second inactive material on which the electrode active material is not provided up to the contour in the plan view is opposed to each other in the stacking direction.
- the other of the positive electrode external terminal and the negative electrode external terminal is selectively arranged so as to be positioned with respect to the portion of the plan view contour that faces the other with respect to the second. Therefore, in the manufacturing method of the present invention, there are relatively few restrictions on the arrangement of the external terminals of the positive electrode and the negative electrode, and they can be arranged relatively freely.
- the electrode layer does not include the current collector layer, but the present invention is not limited thereto.
- a current collector layer may be additionally provided as a layer that contributes to collecting or supplying electrons generated by the active material due to the battery reaction. That is, the positive electrode current collector layer may be provided on the positive electrode layer, and / or the negative electrode current collector layer may be provided on the negative electrode layer.
- the negative electrode layer may not be provided with a current collector layer, while the positive electrode layer may be provided with a current collector layer (that is, a positive electrode current collector layer).
- the current collector layer may form a narrowed portion.
- the positive electrode current collecting layer portion 115'protrudes into the plan view contour of the solid-state battery laminate as shown in FIG. A positive electrode stenosis may result.
- the electrode stenosis portion has a shape in which the contour is angular, but the present invention is not limited to this. That is, the contour of the narrowed portion is not limited to a straight line, but may be curved, or may include such a curved portion as a part. As shown in FIG. 17, in a plan view, the contour corners (118, 228) of the constricted portion may be marked with an R or may be marked with an R. In such a case, an effect that inconvenient stress concentration at the contour corner can be reduced can be achieved.
- the solid-state battery according to the present invention can be used in various fields where battery use or storage is expected.
- the solid-state battery of the present invention can be used in the field of electronics mounting.
- the fields of electricity, information, and communication where mobile devices are used (for example, mobile phones, smartphones, laptop computers and digital cameras, activity meters, arm computers, electronic papers, wearable devices, etc., RFID tags, card-type electronic devices, etc.)
- Electric / electronic equipment field including small electronic devices such as money and smart watches or mobile equipment field), home / small industrial applications (for example, power tools, golf carts, home / nursing / industrial robot fields), Large industrial applications (eg, forklifts, elevators, bay port cranes), transportation systems (eg, hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), power system applications (eg, electric motorcycles)
- medical applications medical equipment fields such as earphone hearing aid
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
正極活物質を有する正極層、負極活物質を有する負極層、および該正極層と該負極層との間に介在する固体電解質層を有する固体電池積層体を有して成る固体電池が提供される。本発明の固体電池は、正極活物質を有する正極層および負極活物質を有する負極層の一方において固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部と、正極層および負極層の他方において固体電池積層体の平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部とが積層方向で互いに対向している。
Description
本発明は、固体電池に関する。より具体的には、本発明は、電池構成単位を成す各層が積層して構成された積層型固体電池に関する。
従前より、繰り返しの充放電が可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォンおよびノートパソコン等の電子機器の電源として用いられたりする。
二次電池においては、充放電に寄与するイオン移動のための媒体として液体の電解質が一般に使用されている。つまり、いわゆる電解液が二次電池に用いられている。しかしながら、そのような二次電池は、電解液の漏出防止点で安全性が一般に求められる。また、電解液に用いられる有機溶媒等は可燃性物質ゆえ、その点でも安全性が求められる。
そこで、電解液に代えて、固体電解質を用いた固体電池について研究が進められている。
固体電池は、正極層、負極層、およびそれらの間の固体電解質層から成る固体電池積層体を有して成る(上記の特許文献1~4参照)。より具体的には、正極層と負極層とが固体電解質層を介して交互に積層されている。正極層には正極活物質が含まれる一方、負極層には負極活物質が含まれており、それらは固体電池における電子の受け渡しに関与する。つまり、固体電解質を介してイオンが正極層と負極層との間で移動して電子の受け渡しが行われ、固体電池の充放電がなされることになる。このような固体電池は、正極端子と負極端子といった外部端子400が、上記積層体を間に挟むように互いに対向している(図18参照)。
本願発明者は、固体電池の実際の使用に鑑みると克服すべき課題が依然あることに気付き、そのための対策を取る必要性を見出した。具体的には以下の課題があることを本願発明者は見出した。
固体電池における種々の用途に鑑みると、固体電池が筐体内などの電池収容スペースに収められたり、あるいは、プリント配線板またはマザーボードなどの各種基板に実装されることが考えられる。つまり、種々の電池用途を想定すると、固体電池の外部端子に求められる配置は必ずしも一定であると限らず、電池用途によって適宜変わり得る。したがって、従前における固体電池の正負極の外部端子配置では、自由度が大きいといえず、種々の電池用途に合わせて外部端子を設けることができることが望ましい。
本発明はかかる課題に鑑みて為されたものである。即ち、本発明の主たる目的は、外部端子の配置の点でより自由度が高い固体電池を提供することである。
本願発明者は、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記課題の解決を試みた。その結果、上記主たる目的が達成された固体電池の発明に至った。
本発明では、固体電池であって、
電極活物質として正極活物質を有する正極層、電極活物質として負極活物質を有する負極層、および該正極層と該負極層との間に介在する固体電解質層を備えた固体電池積層体を有して成り、
「正極層および負極層の一方において固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部」と「正極層および負極層の他方において平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部」とが積層方向で互いに対向している、固体電池が提供される。
電極活物質として正極活物質を有する正極層、電極活物質として負極活物質を有する負極層、および該正極層と該負極層との間に介在する固体電解質層を備えた固体電池積層体を有して成り、
「正極層および負極層の一方において固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部」と「正極層および負極層の他方において平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部」とが積層方向で互いに対向している、固体電池が提供される。
本発明に係る固体電池は、外部端子の配置の点でより自由度が高い固体電池となっている。
本発明に係る固体電池は、一方の電極の活物質輪郭部と、他方の電極の非活物質輪郭部とが積層方向で互いに対向している。本発明では、この対向関係を維持していれば、一方の電極の外部端子は、その一方の電極の活物質輪郭部と接するように設けることができ、比較的自由に配置できる。同様にして、他方の電極の外部端子も、他方の電極の活物質輪郭部(すなわち、好ましくは上記の非活物質輪郭部を除いた輪郭部に相当する部分)と接するように設けることができ、比較的自由に配置できる。このように、本発明の固体電池は、正極および負極の外部端子の配置の点で比較的制約が少ないものとなっている。
以下、本発明の固体電池を詳細に説明する。必要に応じて図面を参照して説明を行うものの、図示する内容は、本発明の理解促進のために模式的かつ例示的に示したにすぎず、外観および/または寸法比などは実物と異なり得る。
本明細書でいう「平面視」とは、固体電池(特に固体電池積層体)を構成する各層の積層方向に相当する厚み方向に沿って対象物を上側または下側から捉えた場合の形態に基づいている。又、本明細書でいう「断面視」とは、固体電池(特に固体電池積層体)を構成する各層の積層方向に対して略垂直な方向から捉えた場合の形態に基づいている。端的にいえば、断面視は、厚み方向に平行な面で切り取った場合に得られる形態に基づいている。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材もしくは部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」/「底面側」に相当し、その逆向きが「上方向」/「頂面側」に相当すると捉えることができる。
本発明でいう「固体電池」は、広義にはその構成要素が固体から構成されている電池を指し、狭義にはその構成要素(特に好ましくは全ての構成要素)が固体から構成されている全固体電池を指している。ある好適な態様では、本発明における固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼結体から成っている。なお、「固体電池」は、充電および放電の繰り返しが可能な、いわゆる「二次電池」のみならず、放電のみが可能な「一次電池」をも包含する。本発明のある好適な態様に従うと「固体電池」は二次電池である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、蓄電デバイスなどの電気化学デバイスをも包含し得る。
以下では、まず、本発明を理解する上で必要と考えられる固体電池の基本的構成について説明する。ここで説明される固体電池の構成は、固体電池の前提となる事項を説明するための例示にすぎず、発明を限定するものではない。
[固体電池の基本的構成]
固体電池は、正極および負極の電極層と固体電解質層とを少なくとも有して成る。具体的には図18に示すように、固体電池は、正極層100、負極層200、およびそれらの間に少なくとも介在する固体電解質層300から成る電池構成単位を含んだ固体電池積層体500を有して成る。
固体電池は、正極および負極の電極層と固体電解質層とを少なくとも有して成る。具体的には図18に示すように、固体電池は、正極層100、負極層200、およびそれらの間に少なくとも介在する固体電解質層300から成る電池構成単位を含んだ固体電池積層体500を有して成る。
固体電池は、それを構成する各層を焼成によって形成することが好ましい。正極層、負極層および固体電解質層などが焼結層を成している。好ましくは、正極層、負極層および固体電解質層は、それぞれ互いに一体焼成されており、それゆえ固体電池積層体が一体焼結体を成している。
正極層100は、少なくとも正極活物質を含んで成る電極層である。正極層は、更に固体電解質を含んで成っていてよい。ある好適な態様では、正極層は、正極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。一方、負極層は、少なくとも負極活物質を含んで成る電極層である。負極層は、更に固体電解質を含んで成っていてよい。ある好適な態様では、負極層は、負極活物質粒子と固体電解質粒子とを少なくとも含む焼結体から構成されている。
正極活物質および負極活物質は、固体電池において電子の受け渡しに関与する物質である。固体電解質層を介してイオンは正極層と負極層との間で移動(又は伝導)して電子の受け渡しが行われることで充放電がなされる。正極層および負極層の各々は特にリチウムイオンまたはナトリウムイオンを吸蔵放出可能な層であることが好ましい。つまり、固体電池は、固体電解質層を介してリチウムイオンまたはナトリウムイオンが正極層と負極層との間で移動して電池の充放電が行われる全固体型二次電池であることが好ましい。
(正極活物質)
正極層に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、および、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li3V2(PO4)3等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO4)3、LiFePO4、LiMnPO4等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO2、LiCo1/3Ni1/3Mn1/3O2等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn2O4、LiNi0.5Mn1.5O4等が挙げられる。
正極層に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、および、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li3V2(PO4)3等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO4)3、LiFePO4、LiMnPO4等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO2、LiCo1/3Ni1/3Mn1/3O2等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn2O4、LiNi0.5Mn1.5O4等が挙げられる。
また、ナトリウムイオンを吸蔵放出可能な正極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物、ナトリウム含有層状酸化物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。
(負極活物質)
負極層200に含まれる負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、NbおよびMoから成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li3V2(PO4)3、LiTi2(PO4)3等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO4)3、LiCuPO4等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、Li4Ti5O12等が挙げられる。
負極層200に含まれる負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、NbおよびMoから成る群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、ならびに、スピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li3V2(PO4)3、LiTi2(PO4)3等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、Li3Fe2(PO4)3、LiCuPO4等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、Li4Ti5O12等が挙げられる。
また、ナトリウムイオンを吸蔵放出可能な負極活物質としては、ナシコン型構造を有するナトリウム含有リン酸化合物、オリビン型構造を有するナトリウム含有リン酸化合物およびスピネル型構造を有するナトリウム含有酸化物等から成る群から選択される少なくとも1種が挙げられる。
正極層および/または負極層は、導電助剤を含んでいてもよい。正極層および負極層に含まれる導電助剤として、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケル等の金属材料、ならびに炭素などから成る群から選択される少なくとも1種を挙げることができる。特に限定されるわけではないが、銅は、正極活物質、負極活物質および固体電解質材などと反応し難く、固体電池の内部抵抗の低減に効果を奏するのでその点で好ましい。
さらに、正極層および/または負極層は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、酸化ケイ素、酸化ビスマスおよび酸化リンから成る群から選択される少なくとも1種を挙げることができる。
(固体電解質層)
固体電解質層300は、リチウムイオンまたはナトリウムイオンが伝導可能な材質を含んで成る。特に固体電池で電池構成単位を成す固体電解質層は、正極層と負極層との間においてリチウムイオンが伝導可能な層を成している。具体的な固体電解質層の材質としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、LixMy(PO4)3(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO4)3等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO3等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、Li7La3Zr2O12等が挙げられる。
固体電解質層300は、リチウムイオンまたはナトリウムイオンが伝導可能な材質を含んで成る。特に固体電池で電池構成単位を成す固体電解質層は、正極層と負極層との間においてリチウムイオンが伝導可能な層を成している。具体的な固体電解質層の材質としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、LixMy(PO4)3(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO4)3等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO3等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、Li7La3Zr2O12等が挙げられる。
なお、ナトリウムイオンが伝導可能な固体電解質層の材質としては、例えば、ナシコン構造を有するナトリウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するナトリウム含有リン酸化合物としては、NaxMy(PO4)3(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrから成る群より選ばれた少なくとも一種)が挙げられる。
固体電解質層は、焼結助剤を含んでいてもよい。固体電解質層に含まれる焼結助剤は、例えば、正極層および/または負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。
(正極集電層および負極集電層)
必須ではないものの、正極層100および負極層200は、それぞれ正極集電層および負極集電層を備えていてもよい。正極集電層および負極集電層はそれぞれ箔の形態を有していてもよいが、一体焼成による固体電池の製造コスト低減および固体電池の内部抵抗低減などの観点を重視すると、焼結体の形態(即ち、焼結層の形態)を有していることが好ましい。なお、正極集電層および負極集電層が焼結体の形態を有する場合、導電材および焼結助剤を含む焼結体により構成されてもよい。正極集電層および負極集電層に含まれる導電材は、例えば、正極層および負極層に含まれ得る導電助剤と同様の材料から選択されてよい。正極集電層および負極集電層に含まれる焼結助剤は、例えば、正極層および/または負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。なお、固体電池において、正極集電層および負極集電層が必須というわけではなく、そのような正極集電層および/または負極集電層が設けられていない固体電池も考えられる。つまり、本発明における固体電池は、集電層レスの固体電池であってもよい。
必須ではないものの、正極層100および負極層200は、それぞれ正極集電層および負極集電層を備えていてもよい。正極集電層および負極集電層はそれぞれ箔の形態を有していてもよいが、一体焼成による固体電池の製造コスト低減および固体電池の内部抵抗低減などの観点を重視すると、焼結体の形態(即ち、焼結層の形態)を有していることが好ましい。なお、正極集電層および負極集電層が焼結体の形態を有する場合、導電材および焼結助剤を含む焼結体により構成されてもよい。正極集電層および負極集電層に含まれる導電材は、例えば、正極層および負極層に含まれ得る導電助剤と同様の材料から選択されてよい。正極集電層および負極集電層に含まれる焼結助剤は、例えば、正極層および/または負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。なお、固体電池において、正極集電層および負極集電層が必須というわけではなく、そのような正極集電層および/または負極集電層が設けられていない固体電池も考えられる。つまり、本発明における固体電池は、集電層レスの固体電池であってもよい。
(外部端子)
固体電池には、一般に外部端子が設けられている。特に、固体電池の側面に外部端子400が設けられている。図18では、特に従前の構成でみられる互いに対向して配置された一対の外部端子(400A,400B)の配置態様を示している。より具体的には、正極層100と接続された正極外部端子400Aと、負極層200と接続された負極外部端子400Bとが設けられている(図18参照)。そのような外部端子は、導電率が大きい材料を含んで成ることが好ましい。外部端子の具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。
固体電池には、一般に外部端子が設けられている。特に、固体電池の側面に外部端子400が設けられている。図18では、特に従前の構成でみられる互いに対向して配置された一対の外部端子(400A,400B)の配置態様を示している。より具体的には、正極層100と接続された正極外部端子400Aと、負極層200と接続された負極外部端子400Bとが設けられている(図18参照)。そのような外部端子は、導電率が大きい材料を含んで成ることが好ましい。外部端子の具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。
[本発明の固体電池の特徴]
本発明の固体電池は、外部端子の配置に関連した特徴を有している。特に、固体電池積層体が従前配置と異なる外部端子の配置を可能とする構成を有する点で本発明は特徴を有している。従前配置では、固体電池積層体を挟んで固体電池の正極外部端子と負極外部端子とが互いに向き合うように対向しているが、本発明の固体電池は、それに限らずに相対的に自由に外部端子を配置できる構成となっている。
本発明の固体電池は、外部端子の配置に関連した特徴を有している。特に、固体電池積層体が従前配置と異なる外部端子の配置を可能とする構成を有する点で本発明は特徴を有している。従前配置では、固体電池積層体を挟んで固体電池の正極外部端子と負極外部端子とが互いに向き合うように対向しているが、本発明の固体電池は、それに限らずに相対的に自由に外部端子を配置できる構成となっている。
本発明の固体電池では、外部端子の設置自由度が高く、例えば図1に示されるように、正極外部端子400Aと負極外部端子400Bとが固体電池積層体500のいずれの側面(すなわち、固体電池積層体において、その積層方向に直交する方向に存在する積層体面のいずれ)に対しても設けることができるようになっている。ここでいう「側面」とは、広義には、固体電池(より具体的には固体電池積層体)が成す複数の側面のことを指している。狭義には、「側面」は、固体電池(より具体的には固体電池積層体)における複数の平面状および/または曲面状の側面を指している。
図2~4に示される形態をまず例にとって本発明を詳述していく。図2~4に示されている固体電池積層体500では、その同一側面に対して正極外部端子400Aと負極外部端子400Bとが位置付けられている(特に図2参照)。つまり、ここで図示される正極外部端子と負極外部端子は、固体電池積層体を挟むように対向しておらず、固体電池積層体の1つの側面で互いに隣接するように配置されている。
このような外部端子の配置構成を取ることができる本発明の固体電池では、固体電池積層体の輪郭(最外周縁)の点で正極層と負極層とが特徴的な関係を有している。具体的には、正極層および負極層の一方において「固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部」と、正極層および負極層の他方において「固体電池積層体の平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部」とが積層方向で互いに対向している。そのような一方の電極層の「固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部」と、他方の電極層の「固体電池積層体の平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部」とが固体電池積層体の積層方向に沿って整列しているともいえる。図4に示す形態では、負極層200における「固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部240」と正極層100における「固体電池積層体の平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部160」とが積層方向で互いに対向している。換言すれば、本発明では、正極層100と負極層200とを平面視として重ね合わせると、一方の活物質輪郭部と他方の非活物質輪郭部とが互いに少なくともオーバーラップするようになっている(図4参照)。
本発明の固体電池では、上記の活物質輪郭部・非活物質輪郭部を第1の輪郭部と捉えると、第2の輪郭部も好ましくは積層方向で互いに対向している。より具体的には、「正極層および負極層の一方において固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部」と「正極層および負極層の他方において平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部」とが積層方向で互いに対向している場合、「正極層および負極層の前記他方において固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている第2の活物質輪郭部」と「正極層および負極層の前記一方において平面視輪郭に至るまで電極活物質が設けられていない第2の非活物質輪郭部」とが積層方向で互いに対向していることが好ましい。このような固体電池では、活物質輪郭部と非活物質輪郭部とが対向する面(すなわち、第1の輪郭部について対向する面)と、第2の活物質輪郭部と第2の非活物質輪郭部とが対向する面とが異なっていることが好ましい。例えば、図4に示す態様でいえば、負極層200における「固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部240(すなわち、第1の活物質輪郭部)」と正極層100における「固体電池積層体の平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部160(すなわち、第1の非活物質輪郭部)」とが積層方向で互いに対向していると共に、負極層200における「固体電池積層体の平面視輪郭に至るまで電極活物質が設けられていない第2の非活物質輪郭部260」と正極層100における「固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている第2の活物質輪郭部140」とが積層方向で互いに対向している。そして、かかる場合では、固体電池積層体は、そのような第1の輪郭部が対向する面(積層体面)と、第2の輪郭部が対向する面(積層体面)とが互いに異なっている態様を含んでいることが好ましく、即ち、固体電池積層体においてそのように互いに異なる面を含んでいることが好ましい。
本発明では、このような輪郭部の積層方向の対向関係が、正極および負極の外部端子の比較的自由な配置に関係している。外部端子は、活物質輪郭部と接するように設けられる。具体的には、本発明に係る固体電池は、正極層および負極層の一方の活物質輪郭部と接するように正極外部端子および負極外部端子の一方が設けられ、正極層および負極層の他方において電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部と接するように正極外部端子および負極外部端子の他方が設けられる。本発明では、輪郭部が上記積層方向の対向関係を維持していれば、一方の電極の外部端子は、その一方の電極の活物質輪郭部と接するように設けることができ、比較的自由に配置できる。同様にして、他方の電極の外部端子も、上記積層方向の対向関係を維持していれば、他方の電極の活物質輪郭部(好ましくは上記の非活物質輪郭部を除いた輪郭部に相当し得る部分)と接するように設けることができ、比較的自由に配置できる。本発明に従えば、あくまでも1つの好適例であるが、一度採用した固体電池の設計(特に固体電池積層体における正極層および負極層の形態に関する事項およびそれに関連した事項など)を大きく変えることなく、外部端子の設置位置を比較的容易に変更できる。
例えば、本発明の固体電池では、正極外部端子が設けられる固体電池積層体の面と、負極外部端子が設けられる固体電池積層体の面とが互いに異なっていてよい。例えば、正極層および負極層の前記一方における前記活物質輪郭部(すなわち、第1の活物質輪郭部)と接する正極外部端子および負極外部端子の一方の外部端子が固体電池積層体の側面に設けられており、第2の活物質輪郭部と接する正極外部端子および負極外部端子の他方の外部端子が固体電池積層体の当該側面と異なる側面に設けられていてよい。なお、正極外部端子と負極外部端子とは、固体電池積層体の互いに異なる側面において固体電池積層体の積層方向に沿った向きに延在していてよい。本発明の固体電池では、図1(b)、図1(d)および図1(e)に示されるように、正極外部端子および負極外部端子の一方と他方とが互いに隣接する側面(すなわち、互いに対向していない非対向の側面)にそれぞれ設けることもできる。固体電池積層体の複数の面のうち互いに異なる非対向の側面であって、互いに連続している隣接の側面に対して正極外部端子と負極外部端子とが別個に設けられ得るともいえる。このように、本発明の活物質輪郭部・非活物質輪郭部というものは、外部端子のユニークな配置構成に寄与し、より汎用性の高い固体電池がもたらされ得る。
図4で示される平面視でいえば、正極外部端子は、参照番号140の正極側の活物質輪郭部に設けるのに対して、負極外部端子は、参照番号240で示される負極側の活物質輪郭部であればいずれの箇所に対しても設けることができる。つまり、平面視輪郭を成す辺でいえば、参照番号240Iの辺における活物質輪郭部に限らず、他の平面視輪郭を成す3つ辺における活物質輪郭部(参照番号240II,240III、240IVのいずれか)に設けることができる。
図2の上側図に示す形態から分かるように、本発明の固体電池では、固体電池積層体500が直方体の全体形状を有していてよい。ここでいう「直方体」とは、完全な直方体に限らず、それに基づき変更されたとみなせる略直方体の立体的形状も含め広く解釈され得る。例えば、「直方体」は、その幾何学形状として完全な直方体に限らず、立方体も含んでおり、更にはそのような直方体形状または立方体形状が部分的に欠けていたり変形していたりする場合でも大きく捉えると直方体または立方体の概念に依然含めることができる形状も含んでいる。説明の便宜上、以下では「直方体」を「略直方体」とも称して説明する。
固体電池積層体がそのような略直方体の全体形状を有する場合、本発明の固体電池は、正極外部端子および負極外部端子を“直方体”のいずれの側面に対しても設けることができる構成を有している。つまり、外部端子の配置の点で設計自由度が高い構成となっている。図2および図3の例示形態では、そのような比較的自由な外部端子の設計における一態様として外部端子がある側面に対して纏めて配置されている。具体的には、略直方体の1つの側面に相当する“同一側面”510に正極外部端子400Aと負極外部端子400Bとの双方が横並びで互いに近位に設けられている。例えば、固体電池積層体において最も面積が大きい主面(図1に示す固体電池積層体でいえば、その上面および/または下面を成す面)よりも小さい面積を有する側面に対して正極側と負極側の双方の外部端子が位置付けられてよい。
ある好適な態様では、正極層および負極層の一方の活物質輪郭部が、電池積層体の平面視輪郭を成す辺から選択される少なくとも2つの辺に設けられており、正極層および負極層の他方の非活物質輪郭領域が、電池積層体の平面視輪郭を成す辺から選択される少なくとも2つの辺に設けられている。つまり、例えば、正極層において、その活物質輪郭部が電池積層体の平面視輪郭を成す辺から選択される少なくとも2つの辺に設けられる一方、負極層において、その非活物質輪郭領域が、電池積層体の平面視輪郭を成す辺から選択される少なくとも2つの辺に設けられている。あるいは、負極層において、その活物質輪郭部が電池積層体の平面視輪郭を成す辺から選択される少なくとも2つの辺に設けられる一方、正極層において、その非活物質輪郭領域が、電池積層体の平面視輪郭を成す辺から選択される少なくとも2つの辺に設けられている。図面を用いて説明すると、本態様は、正極層および負極層における電池積層体の平面視が例えば図5~10に示すような形態を有し得る。
図5では、負極層200について活物質輪郭部が電池積層体の平面視輪郭を成す辺(550I~550IV)のうち、550I、550IIおよび550IIIの辺に対して設けられており、正極層100について非活物質輪郭部が電池積層体の平面視輪郭を成す辺(550I~550IV)のうち550I、550IIおよび550IIIの辺に対して設けられている。かかる場合、負極外部端子は、上記辺550I、550IIおよび550IIIのいずれの活物質輪郭部に設けることができ、正極外部端子は、非活物質輪郭部以外に相当する輪郭部に対して設けることができる。同様にして、図6では、負極層200について活物質輪郭部が電池積層体の平面視輪郭を成す辺のうち550Iおよび550IVの辺に対して設けられており、正極層100について非活物質輪郭部が電池積層体の平面視輪郭を成す辺のうち550Iおよび550IVの辺に対して設けられている。かかる場合、負極外部端子は、上記辺550Iおよび550IVのいずれの活物質輪郭部に設けることができ、正極外部端子は、非活物質輪郭部以外に相当する輪郭部に対して設けることができる。図7では、負極層200について活物質輪郭部が電池積層体の平面視輪郭を成す辺のうち550I、550IIIおよび550IVの辺に対して設けられており、正極層100について非活物質輪郭部が電池積層体の平面視輪郭を成す辺のうち550I、550IIIおよび550IVに対して設けられている。かかる場合、負極外部端子は、上記辺550I、550IIIおよび550IVのいずれの活物質輪郭部に設けることができ、正極外部端子は、非活物質輪郭部以外に相当する輪郭部に対して設けることができる。その他の図8~10の形態も同様となる。
本発明では、図11に示す例示形態も考えられる。図示される形態では、負極層200について電池積層体の平面視輪郭を成す辺のうちの1つの辺(550I)に活物質輪郭部240が設けられている。よって、このような形態も考慮すると、本発明では、正極層および負極層の一方の活物質輪郭部が、電池積層体の平面視輪郭を成す辺から選択される少なくとも1つの辺に設けられていてよく、正極層および負極層の他方の非活物質輪郭領域が、電池積層体の平面視輪郭を成す辺から選択される少なくとも1つの辺に設けられていてよいといえる。このような事項も含め、本発明では正極および負極の外部端子が比較的自由な配置構成を取ることができる。
さらにいえば、本発明では、図12に示す例示形態も考えらえる。図示される形態では、負極層200について電池積層体の平面視輪郭を成す4つの辺550I、550II、550IIIおよび550IVに活物質輪郭部240が設けられており、正極層100について電池積層体の平面視輪郭を成す4つの辺550I、550II、550IIIおよび550IVに非活物質輪郭部160が設けられている。よって、かかる形態も考慮すると、本発明では、正極層および負極層の一方の活物質輪郭部が、電池積層体の平面視輪郭を成す辺について全ての辺に設けられていてよく、正極層および負極層の他方の非活物質輪郭領域が、電池積層体の平面視輪郭を成す辺について全ての辺に設けられていてよいといえる。このような事項も含め、本発明では正極および負極の外部端子の比較的自由な配置構成を取ることができる。
なお、上記で参照した図5~図12から分かるように、“活物質輪郭部”は、電池積層体の平面視輪郭を成す辺に設けられているところ、その辺の全ての部分を満たすように活物質輪郭部が設けられていよく、あるいは、それに限らず対象となる辺の少なくとも一部を満たすように活物質輪郭部が設けられていてよい。同様にして、“非活物質輪郭部”は、電池積層体の平面視輪郭を成す辺に設けられているが、その辺の全ての部分を満たすように非活物質輪郭部が設けられていてよく、あるいは、それに限らず対象となる辺の少なくとも一部を満たすように非活物質輪郭部が設けられていてよい。また、“活物質輪郭部”は、電池積層体の平面視輪郭を成す辺において隣接する辺同士で連続していてもよい。同様に、“非活物質輪郭部”も、電池積層体の平面視輪郭を成す辺において隣接する辺同士で連続していてもよい。
また、本発明の固体電池では、上述したように、正極層と負極層との間で第1の輪郭部が対向する面と、第2の輪郭部が対向する面とは互いに異なっていてよい。例えば、図12を1つ例として取ると、負極層200の第1の活物質輪郭部240と正極層100の第1の非活物質輪郭部160とが対向している面は“辺550II~IVのいずれかの面”になるところ、負極層200の第2の非活物質輪郭部260と正極層100の第2の活物質輪郭部140とが対向している面は“辺550Iの面”となっている。
ある好適な態様では、電極層は活物質領域に狭窄部を有している。より具体的には、正極層100は平面視輪郭を成す辺に向かって狭窄する狭窄形状を有していてよく、同様に負極層200も負極活物質領域が平面視輪郭を成す辺に向かって狭窄する狭窄形状を有していてよい(図2~4参照)。換言すれば、正極層100は、平面視輪郭を成す辺に向かって正極活物質領域110が狭窄している正極狭窄部115を好ましくは有しており、同様にして負極層200も、平面視輪郭を成す辺に向かって負極活物質領域220が狭窄している負極狭窄部225を好ましくは有している(図4の上側図参照)。
このような電極狭窄部が設けられると、正極側と負極側の双方の外部端子が固体電池積層体の同一側面に位置付けられることを可能とする構成を取り易くなる。なぜなら、正極狭窄部および負極狭窄部は、電池積層体では積層方向に互いに非対向となるので、“同一側面の配置”であっても正極外部端子と負極外部端子とのショートが好適に防止され得るからである。例えば、図2および図3に示される形態では、正極外部端子400Aと負極外部端子400Bとが互いに横並びとなるように固体電池積層体の同一側面に位置付けられている。正極引き出し部400A’と負極引き出し部400B’とが互いに横並び又は近位に配置されているともいえる(図3参照)。
同一側面に正極外部端子と負極該端子を設ける場合、特に表面実装の用途において有利な効果が奏され得る。具体的には、正極側および負極側の双方の外部端子が固体電池積層体の同一側面に位置付けられた本発明の固体電池は、プリント配線板またはマザーボードなどの基板への実装により適した電池となる。特に、双方の外部端子が設けられた“同一側面”を実装側の面として電池を表面実装すると、固体電池の膨張による不都合な影響が回避され得る。基板に実装された固体電池は、充放電および/または熱膨張などに起因した膨張があると、基板と接触又は衝突して故障を引き起こし得るところ、本発明では、そのような不都合な接触又は衝突が回避されている。双方の外部端子が設けられた“同一側面”が実装側の面となって実装される場合、すなわち、当該側面が全体的に最も基板に近づく面として最近位な面となる場合、固体電池(特に固体電池積層体500)と基板600との対向方向に直交する方向に膨張が生じることになるからである(図13参照)。
なお、図13に示すように、正極外部端子400Aおよび負極外部端子400Bの各々は、当該外部端子が設けられている面に連続する他の面にまで及ぶように設けられていなくてよい。図13に示す態様でいえば、正極外部端子400Aおよび負極外部端子400Bの各々が、それが設けられている側面と当該側面に連続する主面(例えば、固体電池積層体の対向する両主面の各々)との間の境界エッジにおいて終端している。このような場合、連続する他の面にまで外部端子が長く延びていないので、全体として固体電池の低背化または小型化などを図り易くなる。
ここで、非活物質輪郭部について詳述しておく。非活物質輪郭部は、電池積層体の平面視において、その輪郭に至るまで電極活物質が設けられていない領域である。つまり、かかる非活物質輪郭部によって、電池積層体の周縁部には非活物質領域がもたらされている。非活物質領域は、典型的には絶縁性を有する領域である。より具体的には、非活物質領域は、少なくとも電子絶縁性を有していることが好ましい。非活物質領域の材料としては、固体電池の“非活物質”として常套的に用いられている材料を用いてよく、例えば樹脂材、ガラス材および/またはセラミック材などを含んで成るものであってよい。所望の電子絶縁性が担保されていれば、非活物質領域は、その材質として固体電解質材を付加的に含んでいてもよい。電極狭窄部が設けられる場合、図14に示すように、正極層において正極狭窄部115の周囲の部分170は、正極活物質が設けられていない非活物質領域に相当する。同様にして、負極層において負極狭窄部225の周囲の部分270は、負極活物質が設けられていない非活物質領域に相当する。焼成によって製造する観点でいえば、非活物質領域は、焼結体の形態を有していてよい。あくまでも例示にすぎないが、非活物質領域部に含まれる材質としては、ソーダ石灰ガラス、カリガラス、ホウ酸塩系ガラス、ホウケイ酸塩系ガラス、ホウケイ酸バリウム系ガラス、ホウ酸ビスマス亜鉛系ガラス、ビスマスケイ酸塩系ガラス、リン酸塩系ガラス、アルミノリン酸塩系ガラス、および、リン酸亜鉛系ガラスから成る群から選択される少なくとも一種を挙げることができる。また、非活物質領域部に含まれるセラミック材としては、特に限定されるものではないが、酸化アルミニウム、窒化ホウ素、二酸化ケイ素、窒化ケイ素、酸化ジルコニウム、窒化アルミニウム、炭化ケイ素およびチタン酸バリウムからなる群から選択される少なくとも一種を挙げることができる。なお、図14から分かるように、非活物質領域(170,270)は、その形態ゆえ“余白部”または“ネガ部”などと称すこともできる。例えば、平面視において非活物質領域(余白部/ネガ部)の幅寸法は、0.2mm~0.8mm程度であってよく、好ましくは0.3mm~0.6mm程度である。
図示されるような平面視において、本発明の固体電池は、負極活物質領域と正極活物質領域との面積が互いに異なっていてよい。例えば、負極活物質領域の平面視面積は、正極活物質領域の平面視面積よりも大きくてよく、それによって、いわゆるデンドライト発生等の不都合な事象をより抑制できる。例えば図11を参照して説明すると、負極層200において負極狭窄部225の周囲のネガ部に相当する非活物質領域270の幅寸法は、正極層100において正極狭窄部115の周囲のネガ部に相当する非活物質領域170の幅寸法よりも小さくてよい。負極活物質領域110の相対的に大きな平面視面積に効果的に寄与するからである。
図12に示す例示形態は、そのように負極活物質領域220の平面視面積が正極活物質領域110の平面視面積よりも大きくなっているが、この形態は、負極層200につき負極狭窄部225が設けられている辺550I以外の辺(すなわち、550II、550IIIおよび550IVの3つの辺)の全ての部分が活物質輪郭部となっているので、電池容量の点で好ましい。したがって、図12に示される構成を有する固体電池では、デンドライト発生等の不都合な事象を抑制しつつも、電池容量の増加が図り易くなっている。そして、この図12に示される構成を有する固体電池は、外部端子の配置の点につき、正極外部端子は、正極狭窄部115に接して設けるものの、負極外部端子は、4つの辺(550I、550II、550IIIおよび550IV)のいずれの活物質輪郭部にも設けることができる。つまり、負極外部端子は、図示される240I、240II、240IIIおよび240IVのいずれの活物質輪郭部に対しても設けることができる。このような観点に依拠すると、本発明に係る固体電池は、特に負極外部端子の設置自由度が高い、すなわち、負極引き出し自由度が高い構成を有しているともいえる。
本発明は種々の態様で具現化できる。以下それについて説明する。
(短延在の外部端子の態様)
本態様は、外部端子が相対的に短く設けられた態様である。上述の固体電池で参照した図1および図2では、外部端子400が“同一側面”から部分的にはみ出すように設けられている。例えば図2を参照すると分かるように、上述の固体電池では、正極外部端子400Aおよび負極外部端子400Bの各々が、“同一側面”510を介して固体電池積層体500の対向する主面にまで延在している。これに対して、本態様に従った固体電池は、図13に示すように、正極外部端子400Aおよび負極外部端子400Bの各々が、“同一側面”510にのみ位置付けられており、固体電池積層体500の主面にまでは延在していない。
本態様は、外部端子が相対的に短く設けられた態様である。上述の固体電池で参照した図1および図2では、外部端子400が“同一側面”から部分的にはみ出すように設けられている。例えば図2を参照すると分かるように、上述の固体電池では、正極外部端子400Aおよび負極外部端子400Bの各々が、“同一側面”510を介して固体電池積層体500の対向する主面にまで延在している。これに対して、本態様に従った固体電池は、図13に示すように、正極外部端子400Aおよび負極外部端子400Bの各々が、“同一側面”510にのみ位置付けられており、固体電池積層体500の主面にまでは延在していない。
本態様の固体電池は、主面にまで外部端子が長く延びていないので、全体として固体電池の低背化または小型化などを図ることができる(図13の上側図参照)。また、本発明の固体電池が図13の下側図に示す如く表面実装されるSMD(Surface Mount Device)タイプの固体電池となる場合、基板と固体電池との間にのみ外部端子が位置付けられることになる。よって、主面にまで外部端子が延びていない場合、実装された固体電池は他の電子部品との間で非所望な相互作用を引き起こしにくくなり、より信頼性の高い固体電池がもたらされ得る。表面実装される固体電池の場合、固体電池は基板に実装できるサイズを有していてよい。例えば、基板に実装される他の電子部品(例えば、能動素子および/または受動素子)と同等のサイズを有していてよい。あくまでも1つの例示にすぎないが、直方体状の固体電池積層体の少なくとも1つの辺寸法が1cm未満となっていてもよい。
(電極狭窄部の幅寸法関係に関する態様)
本態様は、電極狭窄部の幅寸法関係に特徴を有する態様である。特に正極狭窄部および負極狭窄部の相対的な幅寸法関係に特徴を有する態様である。具体的には図15に示すように、正極狭窄部115の幅寸法が負極狭窄部225の幅寸法よりも大きくなっている。つまり、図示する電極の平面視において、正極狭窄部115の幅寸法を「Wa」とし、負極狭窄部225の幅寸法を「Wb」とすると、Wa>Wbとなっている。
本態様は、電極狭窄部の幅寸法関係に特徴を有する態様である。特に正極狭窄部および負極狭窄部の相対的な幅寸法関係に特徴を有する態様である。具体的には図15に示すように、正極狭窄部115の幅寸法が負極狭窄部225の幅寸法よりも大きくなっている。つまり、図示する電極の平面視において、正極狭窄部115の幅寸法を「Wa」とし、負極狭窄部225の幅寸法を「Wb」とすると、Wa>Wbとなっている。
このような電極狭窄部の幅寸法関係の態様は、電極の電子伝導性の点でより好適になり得る。具体的には、材質的な点で正極層が負極層よりも電子伝導性が低い場合があるが、そのような場合には正極狭窄部の幅寸法が負極狭窄部の幅寸法よりも大きくなることで、正極層の電子導電性を向上させ易くなる。
[固体電池の製造方法]
本発明の固体電池は、正極層、負極層、およびそれらの電極間に固体電解質層を有する固体電池積層体を作製するプロセスを通じて得ることができる。
本発明の固体電池は、正極層、負極層、およびそれらの電極間に固体電解質層を有する固体電池積層体を作製するプロセスを通じて得ることができる。
固体電池積層体は、スクリーン印刷法等の印刷法、グリーンシートを用いるグリーンシート法、またはそれらの複合法により製造することができる。つまり、固体電池積層体は、常套的な固体電池の製法に準じて作製することができる。よって、下記で説明する固体電解質、有機バインダー、溶剤、任意の添加剤、正極活物質、負極活物質などの原料物質は、既知の固体電池の製造で用いられるものを採用してよい。
以下では、本発明のより良い理解のために、ある1つの製法を例示説明するが、本発明は当該方法に限定されない。また、以下の記載順序など経時的な事項は、あくまでも説明のための便宜上のものにすぎず、必ずしもそれに拘束されるわけではない。
(積層体ブロック形成)
・固体電解質、有機バインダー、溶剤および任意の添加剤を混合してスラリーを調製する。次いで、調製されたスラリーからシート成形によって、焼成後の厚みが例えば5μm~50μm程度のシートを得る。当該シートは、最終的には固体電池積層体において固体電解質層を成すことになる。
・正極活物質、固体電解質、導電助剤、有機バインダー、溶剤および任意の添加剤を混合して正極用ペーストを作成する。同様にして、負極活物質、固体電解質、導電助剤、有機バインダー、溶剤および任意の添加剤を混合して負極用ペーストを作成する。ここで用いる有機バインダー、溶剤および添加剤などは、固体電池の製造に常套的に用いられるものを利用してよい。
・シート上に正極用ペーストを印刷し、また、必要に応じて集電層を印刷する。正極用ペーストから得られる正極活物質領域の前駆体は、それが狭窄形状を有するように印刷形成されることが好ましい。また、正極層の周囲の“余白部”については、絶縁性ペーストの印刷により、その前駆体を得ることが好ましい。このような形態については例えば図14の下側図を参照されたい。
・同様にして、シート上に負極用ペーストを印刷し、また、必要に応じて集電層を印刷する。負極用ペーストから得られる負極活物質領域の前駆体は、それが狭窄形状を有するように印刷形成されることが好ましい。また、負極層の周囲の“余白部”については、絶縁性ペーストの印刷により、その前駆体を得ることが好ましい。このような形態については例えば図14の下側図を参照されたい。
・正極用ペーストを印刷したシート(即ち、正極層の前駆体)と、負極用ペーストを印刷したシート(即ち、負極層の前駆体)とを交互に積層して積層体を得る。なお、積層体の最外層(最上層および/または最下層)についていえば、それが固体電解質層となる若しくは絶縁層となるものでよく、あるいは、電極層となるものでもよい。
・固体電解質、有機バインダー、溶剤および任意の添加剤を混合してスラリーを調製する。次いで、調製されたスラリーからシート成形によって、焼成後の厚みが例えば5μm~50μm程度のシートを得る。当該シートは、最終的には固体電池積層体において固体電解質層を成すことになる。
・正極活物質、固体電解質、導電助剤、有機バインダー、溶剤および任意の添加剤を混合して正極用ペーストを作成する。同様にして、負極活物質、固体電解質、導電助剤、有機バインダー、溶剤および任意の添加剤を混合して負極用ペーストを作成する。ここで用いる有機バインダー、溶剤および添加剤などは、固体電池の製造に常套的に用いられるものを利用してよい。
・シート上に正極用ペーストを印刷し、また、必要に応じて集電層を印刷する。正極用ペーストから得られる正極活物質領域の前駆体は、それが狭窄形状を有するように印刷形成されることが好ましい。また、正極層の周囲の“余白部”については、絶縁性ペーストの印刷により、その前駆体を得ることが好ましい。このような形態については例えば図14の下側図を参照されたい。
・同様にして、シート上に負極用ペーストを印刷し、また、必要に応じて集電層を印刷する。負極用ペーストから得られる負極活物質領域の前駆体は、それが狭窄形状を有するように印刷形成されることが好ましい。また、負極層の周囲の“余白部”については、絶縁性ペーストの印刷により、その前駆体を得ることが好ましい。このような形態については例えば図14の下側図を参照されたい。
・正極用ペーストを印刷したシート(即ち、正極層の前駆体)と、負極用ペーストを印刷したシート(即ち、負極層の前駆体)とを交互に積層して積層体を得る。なお、積層体の最外層(最上層および/または最下層)についていえば、それが固体電解質層となる若しくは絶縁層となるものでよく、あるいは、電極層となるものでもよい。
なお、正極層の前駆体では、その平面視輪郭に至るまで正極用ペーストが設けられている輪郭部と、平面視輪郭に至るまで正極用ペーストが設けられていない輪郭部とを形成しておくことが好ましい。例えば印刷法でそのような正極前駆体の形成を行うができる。平面視輪郭に至るまで正極用ペーストが設けられている輪郭部は、最終的に固体電池積層体にて「平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部」となり、平面視輪郭に至るまで正極用ペーストが設けられていない輪郭部は、最終的に固体電池積層体にて「平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部」となる。同様にして、負極層の前駆体でも、その平面視輪郭に至るまで負極用ペーストが設けられている輪郭部と、平面視輪郭に至るまで負極用ペーストが設けられていない輪郭部とを形成しておくことが好ましい。例えば印刷法でそのような負極前駆体の形成を行うができる。平面視輪郭に至るまで負極用ペーストが設けられている輪郭部は、最終的に固体電池積層体にて「平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部」となり、平面視輪郭に至るまで負極用ペーストが設けられていない輪郭部は、最終的に固体電池積層体にて「平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部」となる。正極層の前駆体は複数用いてよいが、その複数の正極層の前駆体においては、互いに平面視輪郭の同じ箇所に活物質輪郭部および非活物質輪郭部が位置するように形成しておくことが好ましい。同様に、負極層の前駆体は複数用いてよいが、その複数の負極層の前駆体においては、互いに平面視輪郭の同じ箇所に活物質輪郭部および非活物質輪郭部が位置するように形成しておくことが好ましい。つまり、それらを積層させて最終的に固体電池積層体を得るに際しては、複数の正極層の活物質輪郭部と複数の負極層の活物質輪郭部とが互いに積層方法で対向しないような位置関係を有するように、正極層および負極層のそれぞれの前駆体を形成することが好ましい。これは、固体電池積層体とした際に正極層の活物質輪郭部と負極層の非活物質輪郭部とが互いに積層方向で対向する位置関係となるように、および/または、正極層の非活物質輪郭部と負極層の活物質輪郭部とが互いに積層方向で対向する位置関係となるように、正極層および負極層のそれぞれの前駆体を形成しておくことが好ましいことを意味する。
(電池焼結体形成)
得られた積層体は圧着一体化させた後、積層体を脱脂および焼成に付す。これにより、焼結された固体電池積層体を得る。なお、必要に応じてカット処理に付してよい(かかるカット処理は、脱脂および/または焼成の前に行ってよく、あるいは、脱脂および/または焼成の後に行ってもよい)。
得られた積層体は圧着一体化させた後、積層体を脱脂および焼成に付す。これにより、焼結された固体電池積層体を得る。なお、必要に応じてカット処理に付してよい(かかるカット処理は、脱脂および/または焼成の前に行ってよく、あるいは、脱脂および/または焼成の後に行ってもよい)。
(外部端子の形成)
正極側の外部端子は、例えば、焼結積層体における正極露出側面(特に、正極側の“活物質輪郭部”)に対して導電性ペーストを塗布することを通じて形成できる。同様にして、負極側の外部端子は、例えば、焼結積層体における負極露出側面(特に、負極側の“活物質輪郭部”)に対して導電性ペーストを塗布することを通じて形成してよい。かかる塗布自体は、常套的な手法を利用してよい。別法にて、所定の金属部材を貼り付けるように配置することで外部端子を設けてもよい。このような外部端子の主材質としては、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから選択される少なくとも一種から選択され得る。
正極側の外部端子は、例えば、焼結積層体における正極露出側面(特に、正極側の“活物質輪郭部”)に対して導電性ペーストを塗布することを通じて形成できる。同様にして、負極側の外部端子は、例えば、焼結積層体における負極露出側面(特に、負極側の“活物質輪郭部”)に対して導電性ペーストを塗布することを通じて形成してよい。かかる塗布自体は、常套的な手法を利用してよい。別法にて、所定の金属部材を貼り付けるように配置することで外部端子を設けてもよい。このような外部端子の主材質としては、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから選択される少なくとも一種から選択され得る。
なお、正極側および負極側の外部端子は、積層体の焼結後に形成することに限らず、焼成前に形成し、同時焼結に付してもよい。
以上の如くの工程を経ることによって、最終的に所望の固体電池積層体を得ることができる。本発明の固体電池は、固体電池積層体そのものであってよいものの、必要に応じて固体電池積層体の表面に付加的な保護被膜などを形成したり、あるいは、適当な外装体に封入することなどの付加的な処理により得られ得る。このような付加的な保護被膜または付加的な処理自体は、常套的なものであってよい。
このような本発明の製造方法は、以下の態様を有し得ることを確認的に述べておく。
第1態様:固体電池の製造方法であって、
正極活物質を有する正極層、負極活物質を有する負極層、および該正極層と該負極層との間に介在する固体電解質層を有する固体電池積層体を形成すること
を含み、
固体電池積層体では、前記正極層および前記負極層の一方において前記固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部と、該正極層および該負極層の他方において前記平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部とを積層方向で互いに対向させており、
正極外部端子および負極外部端子の一方が、前記平面視輪郭のうちで、前記互いに対向させている箇所に対して位置付けられるように選択的に配置される。
第2態様:前記正極層および前記負極層の前記他方において前記固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている第2の活物質輪郭部と、該正極層および該負極層の前記一方において前記平面視輪郭に至るまで電極活物質が設けられていない第2の非活物質輪郭部とが積層方向で互いに対向しており、
正極外部端子および負極外部端子の他方が、前記平面視輪郭のうちで、前記第2に関して前記互いに対向させている箇所に対して位置付けられるように選択的に配置される。
このような態様ゆえ、本発明の製造方法においては正極および負極の外部端子の配置の点で比較的制約が少なく、それらを比較的自由に配置できる。
第1態様:固体電池の製造方法であって、
正極活物質を有する正極層、負極活物質を有する負極層、および該正極層と該負極層との間に介在する固体電解質層を有する固体電池積層体を形成すること
を含み、
固体電池積層体では、前記正極層および前記負極層の一方において前記固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部と、該正極層および該負極層の他方において前記平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部とを積層方向で互いに対向させており、
正極外部端子および負極外部端子の一方が、前記平面視輪郭のうちで、前記互いに対向させている箇所に対して位置付けられるように選択的に配置される。
第2態様:前記正極層および前記負極層の前記他方において前記固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている第2の活物質輪郭部と、該正極層および該負極層の前記一方において前記平面視輪郭に至るまで電極活物質が設けられていない第2の非活物質輪郭部とが積層方向で互いに対向しており、
正極外部端子および負極外部端子の他方が、前記平面視輪郭のうちで、前記第2に関して前記互いに対向させている箇所に対して位置付けられるように選択的に配置される。
このような態様ゆえ、本発明の製造方法においては正極および負極の外部端子の配置の点で比較的制約が少なく、それらを比較的自由に配置できる。
以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。本発明はこれに限定されず、本発明の要旨を変更しない範囲において種々の態様が考えられることを当業者は容易に理解されよう。
例えば、上記説明で参照した図においては、電極層に集電層が含まれる形態となっていないが、本発明はそれに限定されない。電池反応に起因して活物質で発生した電子を集めたり供給したりするのに資する層として集電層を付加的に設けてもよい。つまり、正極層に対して正極集電層を設けたり、および/または、負極層に対して負極集電層を設けたりしてよい。例えば、負極層には集電層を設けない一方、正極層にのみ集電層(すなわち、正極集電層)を設けてよい。このように集電層を設ける場合、集電層が狭窄部を成すようになっていてよい。例えば、正極層に正極集電層が設けられる場合、図16に示すように正極集電層の部分115’が固体電池積層体の平面視輪郭へと突出するような平面視形態となることで正極狭窄部がもたらされてよい。
例えば、上記説明で参照した図において、電極狭窄部は、その輪郭が角張った形態を有しているが、本発明はこれに限定されない。すなわち、狭窄部の輪郭は、直線状であることに限らず、曲線状であってよく、あるいは、そのような曲線状の部分を一部に含むものであってもよい。図17に示すように、平面視において、狭窄部の輪郭コーナー(118,228)に部にRが付けられているかRが付けられていてもよい。かかる場合、その輪郭コーナーでの不都合な応力集中を減じることができるといった効果が奏され得る。
本発明に係る固体電池は、電池使用または蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の固体電池は、エレクトロニクス実装分野で用いることができる。また、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパー、ウェアラブルデバイスなどや、RFIDタグ、カード型電子マネー、スマートウォッチなどの小型電子機などを含む電気・電子機器分野あるいはモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医薬用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船などの分野)などにも本発明の固体電池を利用することができる。
100 正極層
110 正極活物質領域
115 正極狭窄部
118 狭窄部の輪郭コーナー
140 活物質輪郭部(第2の活物質輪郭部)
160 非活物質輪郭部
170 非活物質領域(正極側)
200 負極層
220 負極活物質領域
225 負極狭窄部
228 狭窄部の輪郭コーナー
240 活物質輪郭部
240I 活物質輪郭部
240II 活物質輪郭部
240III 活物質輪郭部
240IV 活物質輪郭部
260 非活物質輪郭部(第2の非活物質輪郭部)
270 非活物質領域(負極側)
300 固体電解質層
400 外部端子
400A 正極外部端子
400A’正極引き出し部
400B 負極外部端子
400B’負極引き出し部
500 固体電池積層体
510 同一側面
550I~IV 固体電池積層体の平面視輪郭
600 基板
110 正極活物質領域
115 正極狭窄部
118 狭窄部の輪郭コーナー
140 活物質輪郭部(第2の活物質輪郭部)
160 非活物質輪郭部
170 非活物質領域(正極側)
200 負極層
220 負極活物質領域
225 負極狭窄部
228 狭窄部の輪郭コーナー
240 活物質輪郭部
240I 活物質輪郭部
240II 活物質輪郭部
240III 活物質輪郭部
240IV 活物質輪郭部
260 非活物質輪郭部(第2の非活物質輪郭部)
270 非活物質領域(負極側)
300 固体電解質層
400 外部端子
400A 正極外部端子
400A’正極引き出し部
400B 負極外部端子
400B’負極引き出し部
500 固体電池積層体
510 同一側面
550I~IV 固体電池積層体の平面視輪郭
600 基板
Claims (14)
- 固体電池であって、
正極活物質を有する正極層、負極活物質を有する負極層、および該正極層と該負極層との間に介在する固体電解質層を有する固体電池積層体を有して成り、
前記正極層および前記負極層の一方において前記固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部と、該正極層および該負極層の他方において前記平面視輪郭に至るまで電極活物質が設けられていない非活物質輪郭部とが積層方向で互いに対向している、固体電池。 - 前記正極層および前記負極層の前記他方において前記固体電池積層体の平面視輪郭に至るまで電極活物質が設けられている第2の活物質輪郭部と、該正極層および該負極層の前記一方において前記平面視輪郭に至るまで電極活物質が設けられていない第2の非活物質輪郭部とが積層方向で互いに対向しており、
前記活物質輪郭部と前記非活物質輪郭部とが対向する面と、前記第2の活物質輪郭部と前記第2の非活物質輪郭部とが対向する面とが互いに異なる、請求項1に記載の固体電池。 - 前記活物質輪郭部が、前記平面視輪郭を成す辺から選択される少なくとも1つの辺に設けられており、
前記非活物質輪郭領域が、前記平面視輪郭を成す辺から選択される少なくとも1つの辺に設けられている、請求項1または2に記載の固体電池。 - 前記活物質輪郭部が、前記平面視輪郭を成す辺から選択される少なくとも2つの辺に設けられており、
前記非活物質輪郭領域が、前記平面視輪郭を成す辺から選択される少なくとも2つの辺に設けられている、請求項1~3のいずれか1項に記載の固体電池。 - 前記活物質輪郭部が、前記平面視輪郭を成す辺について全ての辺に設けられており、
前記非活物質輪郭部が、前記平面視輪郭を成す辺について全ての辺に設けられている、請求項1~4のいずれか1項に記載の固体電池。 - 前記一方が前記負極層であり、該負極層の負極活物質領域が前記平面視輪郭を成す辺に向かって狭窄する狭窄形状を有し、
前記他方が前記正極層であり、該正極層の正極活物質領域が前記平面視輪郭を成す辺に向かって狭窄する狭窄形状を有する、請求項1~5いずれか1項に記載の固体電池。 - 前記負極活物質領域が、前記正極活物質領域よりも大きい、請求項6に記載の固体電池。
- 前記正極活物質領域における前記狭窄形状の幅寸法が前記負極活物質領域における前記狭窄形状の幅寸法よりも大きい、請求項6または7に記載の固体電池。
- 前記非活物質輪郭部が絶縁材を含んで成る、請求項1~8のいずれか1項に記載の固体電池。
- 前記一方の前記活物質輪郭部と接するように正極外部端子および負極外部端子の一方が設けられ、
前記他方において前記平面視輪郭に至るまで電極活物質が設けられている活物質輪郭部と接するように前記正極外部端子および前記負極外部端子の他方が設けられている、請求項1~9のいずれか1項に記載の固体電池。 - 前記固体電池積層体が直方体の全体形状を有している、請求項1~10のいずれか1項に記載の固体電池。
- 前記正極外部端子および前記負極外部端子の前記一方と、該正極外部端子および該負極外部端子の前記他方とが、前記固体電池積層体の互いに非対向の側面に設けられている、請求項11に記載の固体電池。
- 前記固体電池積層体が焼結体から成る、請求項1~12のいずれか1項に記載の固体電池。
- 前記正極層および前記負極層は、リチウムイオンを吸蔵放出可能な層となっている、請求項1~13のいずれか1項に記載の固体電池。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021564041A JP7388449B2 (ja) | 2019-12-11 | 2020-12-10 | 固体電池 |
CN202080085902.3A CN114830396A (zh) | 2019-12-11 | 2020-12-10 | 固体电池 |
US17/834,192 US20220302507A1 (en) | 2019-12-11 | 2022-06-07 | Solid-state battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-223855 | 2019-12-11 | ||
JP2019223855 | 2019-12-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/834,192 Continuation US20220302507A1 (en) | 2019-12-11 | 2022-06-07 | Solid-state battery |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021117827A1 true WO2021117827A1 (ja) | 2021-06-17 |
Family
ID=76329920
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/046114 WO2021117827A1 (ja) | 2019-12-11 | 2020-12-10 | 固体電池 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20220302507A1 (ja) |
JP (1) | JP7388449B2 (ja) |
CN (1) | CN114830396A (ja) |
WO (1) | WO2021117827A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220199968A1 (en) * | 2020-12-22 | 2022-06-23 | Sion Power Corporation | Laser cutting of components for electrochemical cells |
WO2023047842A1 (ja) * | 2021-09-27 | 2023-03-30 | 太陽誘電株式会社 | 全固体電池とその製造方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002270241A (ja) * | 2001-03-13 | 2002-09-20 | Osaka Gas Co Ltd | 非水系二次電池 |
JP2008053125A (ja) * | 2006-08-25 | 2008-03-06 | Ngk Insulators Ltd | 全固体蓄電素子 |
JP2011198692A (ja) * | 2010-03-23 | 2011-10-06 | Namics Corp | リチウムイオン二次電池及びその製造方法 |
WO2018186442A1 (ja) * | 2017-04-04 | 2018-10-11 | 株式会社村田製作所 | 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両 |
WO2018203474A1 (ja) * | 2017-05-01 | 2018-11-08 | 株式会社村田製作所 | 固体電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
-
2020
- 2020-12-10 WO PCT/JP2020/046114 patent/WO2021117827A1/ja active Application Filing
- 2020-12-10 CN CN202080085902.3A patent/CN114830396A/zh active Pending
- 2020-12-10 JP JP2021564041A patent/JP7388449B2/ja active Active
-
2022
- 2022-06-07 US US17/834,192 patent/US20220302507A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002270241A (ja) * | 2001-03-13 | 2002-09-20 | Osaka Gas Co Ltd | 非水系二次電池 |
JP2008053125A (ja) * | 2006-08-25 | 2008-03-06 | Ngk Insulators Ltd | 全固体蓄電素子 |
JP2011198692A (ja) * | 2010-03-23 | 2011-10-06 | Namics Corp | リチウムイオン二次電池及びその製造方法 |
WO2018186442A1 (ja) * | 2017-04-04 | 2018-10-11 | 株式会社村田製作所 | 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両 |
WO2018203474A1 (ja) * | 2017-05-01 | 2018-11-08 | 株式会社村田製作所 | 固体電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220199968A1 (en) * | 2020-12-22 | 2022-06-23 | Sion Power Corporation | Laser cutting of components for electrochemical cells |
WO2023047842A1 (ja) * | 2021-09-27 | 2023-03-30 | 太陽誘電株式会社 | 全固体電池とその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021117827A1 (ja) | 2021-06-17 |
JP7388449B2 (ja) | 2023-11-29 |
US20220302507A1 (en) | 2022-09-22 |
CN114830396A (zh) | 2022-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220302507A1 (en) | Solid-state battery | |
US20210249697A1 (en) | Solid state battery | |
US20220006068A1 (en) | Solid-state battery | |
JP7405151B2 (ja) | 固体電池 | |
US20220006127A1 (en) | Solid-state battery | |
JP7120318B2 (ja) | 固体電池 | |
US12034124B2 (en) | Solid state battery comprising a concavoconvex shape | |
JP7259980B2 (ja) | 固体電池 | |
JP7180685B2 (ja) | 固体電池 | |
WO2020195684A1 (ja) | 固体電池 | |
US20220238913A1 (en) | Solid state battery | |
WO2021256398A1 (ja) | 固体電池 | |
CN114270591B (zh) | 固体电池 | |
WO2021117828A1 (ja) | 固体電池 | |
JP7352206B2 (ja) | 固体電池 | |
JP7364076B2 (ja) | 固体電池 | |
WO2024009963A1 (ja) | 固体電池 | |
WO2023127247A1 (ja) | 固体電池 | |
CN115362589A (zh) | 固体电池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20898727 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021564041 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20898727 Country of ref document: EP Kind code of ref document: A1 |