WO2018198461A1 - リチウムイオン二次電池 - Google Patents

リチウムイオン二次電池 Download PDF

Info

Publication number
WO2018198461A1
WO2018198461A1 PCT/JP2018/003132 JP2018003132W WO2018198461A1 WO 2018198461 A1 WO2018198461 A1 WO 2018198461A1 JP 2018003132 W JP2018003132 W JP 2018003132W WO 2018198461 A1 WO2018198461 A1 WO 2018198461A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
battery
lithium ion
battery unit
Prior art date
Application number
PCT/JP2018/003132
Other languages
English (en)
French (fr)
Inventor
安田 剛規
功 河邊
広治 南谷
健祐 永田
Original Assignee
昭和電工株式会社
昭和電工パッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社, 昭和電工パッケージング株式会社 filed Critical 昭和電工株式会社
Priority to US16/608,616 priority Critical patent/US20200052342A1/en
Priority to CN201880027421.XA priority patent/CN110582884A/zh
Publication of WO2018198461A1 publication Critical patent/WO2018198461A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/124Primary casings; Jackets or wrappings characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery.
  • a battery unit including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, an electrolyte having lithium ion conductivity and interposed between the positive electrode and the negative electrode;
  • Patent Document 1 describes that an exterior part is configured by heat-sealing heat-seal films using a laminate exterior material formed by laminating a metal foil layer and a heat-sealable resin layer. Yes.
  • Patent Document 2 describes that a solid electrolyte made of an inorganic material is used as an electrolyte, and that the negative electrode, the solid electrolyte, and the positive electrode are all formed of a thin film.
  • An object of the present invention is to reduce the thickness of a thin-film lithium ion secondary battery including a solid electrolyte.
  • the lithium ion of the present invention includes a positive electrode layer containing a secondary battery positive electrode active material, a negative electrode layer containing a negative electrode active material, an inorganic solid electrolyte exhibiting lithium ion conductivity, and between the positive electrode layer and the negative electrode layer.
  • the metal layer is disposed so as to face the surface, and includes a laminated film that seals the battery portion between the substrate and the metal layer and the battery portion in a conductive state.
  • the substrate may be thicker than the metal layer of the laminated film.
  • a part of the metal layer in the laminated film may be exposed without being covered with the resin layer.
  • the positive electrode layer provided in the battery unit and the metal layer provided in the laminated film are in direct contact with each other.
  • the lithium ion secondary battery of the present invention includes a positive electrode layer containing a positive electrode active material, a negative electrode layer containing a negative electrode active material, an inorganic solid electrolyte exhibiting lithium ion conductivity, and A battery unit having a positive electrode layer and a solid electrolyte layer provided between the negative electrode layer, a substrate on which the battery unit is loaded and integrated with the battery unit, a metal layer, and a resin layer; The battery unit is sandwiched between the substrate by sandwiching the battery unit with the substrate in a state where the metal layer and the battery unit are electrically connected. And a sealing portion to be sealed.
  • a thin-film lithium ion secondary battery including a solid electrolyte can be thinned.
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of the lithium ion secondary battery according to Embodiment 1, and is a cross-sectional view taken along the line II-II in FIG. (A), (b) is a perspective view of the battery unit of Embodiment 1.
  • FIG. (A), (b) is a perspective view of a laminated
  • FIG. 1 is a diagram illustrating a cross-sectional configuration of the lithium ion secondary battery according to Embodiment 1, and is a cross-sectional view taken along the line II-II in FIG. (A), (b) is a perspective view of the battery unit of Embodiment 1.
  • FIG. (A), (b) is a perspective view of a laminated
  • FIG. 4 is a diagram showing a cross-sectional configuration of a modification of the first embodiment, and is a cross-sectional view taken along the line II-II in FIG. (A), (b) is a perspective view of the battery unit in the modification of Embodiment 1.
  • FIG. (A), (b) is a figure for demonstrating the whole structure of the lithium ion secondary battery of Embodiment 2.
  • FIG. 9 is a diagram illustrating a cross-sectional configuration of the lithium ion secondary battery according to the second embodiment, and is a cross-sectional view taken along the line IX-IX in FIG. (A), (b) is a perspective view of the battery unit of Embodiment 2.
  • FIG. 1 is a diagram for explaining the overall configuration of a lithium ion secondary battery 1 to which Embodiment 1 is applied.
  • FIG. 1A is a diagram of the lithium ion secondary battery 1 viewed from the front (front surface)
  • FIG. 1B is a diagram of the lithium ion secondary battery 1 viewed from the back (back).
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1A is a diagram when FIG. 2 is viewed from the IA direction
  • FIG. 1B is a diagram when FIG. 2 is viewed from the IB direction.
  • the lithium ion secondary battery 1 of the present embodiment includes a battery unit 100 including a battery unit 20 that performs charging and discharging using lithium ions, and the battery unit 20 from the outside air by housing the battery unit 20 therein. And an exterior part 200 to be sealed.
  • the lithium ion secondary battery 1 of the present embodiment has a rectangular parallelepiped shape (actually a card shape) when viewed as a whole.
  • the battery unit 100 includes a substrate 10 that functions as one electrode (here, a negative electrode) in the lithium ion secondary battery 1 and a battery unit 20 that is provided on one surface (referred to as a surface) of the substrate 10. Yes.
  • the battery unit 20 since the battery unit 20 is formed on the surface of the substrate 10 by sputtering, the battery unit 100 has a structure in which the substrate 10 and the battery unit 20 are integrated. Yes.
  • FIG. 3A and 3B are diagrams for explaining the configuration of the battery unit 100 according to the present embodiment.
  • FIG. 3A is a perspective view seen from the front side (the upper side in FIG. 2)
  • FIG. FIG. 2 is a perspective view seen from the lower side.
  • the configuration of the battery unit 100 will be described with reference to FIG. 3 in addition to FIGS. 1 and 2.
  • the substrate 10 is not particularly limited, and a substrate made of various materials such as metal, glass, and ceramics can be used.
  • the substrate 10 is made of a metal plate material having electronic conductivity for the purpose of functioning as a negative electrode current collector layer in the lithium ion secondary battery 1.
  • a stainless steel substrate having high mechanical strength.
  • a metal plate plated with a conductive metal such as nickel, tin, copper, or chromium may be used.
  • a stainless steel substrate is used as the substrate 10.
  • the thickness of the substrate 10 can be 50 ⁇ m or more and 200 ⁇ m or less. If the thickness of the substrate 10 is less than 20 ⁇ m, handling at the time of sputtering film formation becomes difficult, and the electric resistance value when used as a positive electrode becomes high. On the other hand, when the thickness of the substrate 10 exceeds 200 ⁇ m, the volume energy density and the weight energy density decrease due to the increase in the thickness and weight of the battery. In addition, the flexibility of the battery is reduced. In the present embodiment, the thickness of the substrate 10 is 50 ⁇ m.
  • the battery unit 20 includes a negative electrode layer 21 stacked on the surface of the substrate 10 (upper side in FIG. 2), a solid electrolyte layer 22 stacked on the negative electrode layer 21, and a positive electrode layer stacked on the solid electrolyte layer 22. 23 and a positive electrode current collector layer 24 laminated on the positive electrode layer 23.
  • the negative electrode layer 21 located at one end (lower side in FIG. 2) of the battery unit 20 is in contact with the surface of the substrate 10.
  • the positive electrode current collector layer 24 located at the other end (upper side in FIG. 2) of the battery unit 20 is in contact with a metal layer 33 provided on a laminated film 30 described later.
  • the negative electrode layer 21 is not particularly limited as long as it is a solid thin film and includes a negative electrode active material that absorbs and releases lithium ions in a negative polarity.
  • a negative electrode active material that absorbs and releases lithium ions in a negative polarity.
  • carbon (C) or silicon (Si ) Can be used.
  • silicon (Si) to which boron (B) is added is used as the negative electrode layer 21.
  • the thickness of the negative electrode layer 21 can be, for example, 10 nm or more and 40 ⁇ m or less. If the thickness of the negative electrode layer 21 is less than 10 nm, the capacity of the battery unit 20 obtained becomes too small and becomes impractical. On the other hand, when the thickness of the negative electrode layer 21 exceeds 40 ⁇ m, it takes too much time to form the layer, and productivity is lowered. In the present embodiment, the thickness of the negative electrode layer 21 is 100 nm.
  • the negative electrode layer 21 may have a crystal structure or may be an amorphous material having no crystal structure, but the expansion and contraction associated with insertion and extraction of lithium ions becomes more isotropic. In terms, it is preferably amorphous.
  • a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used. From the viewpoint of production efficiency, a sputtering method may be used. It is desirable to use (sputtering).
  • the solid electrolyte layer 22 is not particularly limited as long as it is a solid thin film and includes an inorganic material (inorganic solid electrolyte) exhibiting lithium ion conductivity, such as oxide, nitride, sulfide, Those composed of various materials can be used.
  • inorganic solid electrolyte inorganic solid electrolyte
  • LiPON Li x PO y N z
  • a part of oxygen in Li 3 PO 4 is replaced with nitrogen is used as the solid electrolyte layer 22.
  • the thickness of the solid electrolyte layer 22 can be, for example, 10 nm or more and 10 ⁇ m or less. When the thickness of the solid electrolyte layer 22 is less than 10 nm, leakage between the negative electrode layer 21 and the positive electrode layer 23 tends to occur in the obtained battery unit 20. On the other hand, when the thickness of the solid electrolyte layer 22 exceeds 10 ⁇ m, the moving distance of lithium ions becomes long and the charge / discharge rate becomes slow. In the present embodiment, the thickness of the solid electrolyte layer 22 is 200 nm.
  • the solid electrolyte layer 22 may have a crystal structure or may be amorphous without a crystal structure. However, the solid electrolyte layer 22 is amorphous in that expansion and contraction due to heat becomes more isotropic. Preferably there is.
  • a known film forming method such as various PVDs and various CVDs may be used, but it is desirable to use a sputtering method from the viewpoint of production efficiency.
  • the positive electrode layer 23 is not particularly limited as long as it is a solid thin film and includes a positive electrode active material that occludes and releases lithium ions with positive polarity.
  • a positive electrode active material that occludes and releases lithium ions with positive polarity.
  • manganese (Mn), cobalt (Co ), Nickel (Ni), iron (Fe), molybdenum (Mo), vanadium (V) containing one or more metals, oxides, sulfides, phosphorous oxides, etc. Can be used.
  • Li 1.5 Mn 2 O 4 was used as the positive electrode layer 23.
  • the thickness of the positive electrode layer 23 can be, for example, not less than 10 nm and not more than 40 ⁇ m. When the thickness of the positive electrode layer 23 is less than 10 nm, the capacity of the battery unit 20 obtained becomes too small and becomes impractical. On the other hand, when the thickness of the positive electrode layer 23 exceeds 40 ⁇ m, it takes too much time to form the layer, and productivity is lowered. In the present embodiment, the thickness of the positive electrode layer 23 is 600 nm.
  • the positive electrode layer 23 may have a crystal structure or an amorphous material having no crystal structure, but the expansion and contraction associated with the insertion and extraction of lithium ions is more isotropic. In terms, it is preferably amorphous.
  • a known film forming method such as various PVDs and various CVDs may be used, but from the viewpoint of production efficiency, it is desirable to use a sputtering method.
  • the positive electrode current collector layer 24 is not particularly limited as long as it is a solid thin film and has electron conductivity.
  • titanium (Ti), aluminum (Al), copper (Cu), platinum A conductive material containing a metal such as (Pt) or gold (Au) or an alloy thereof can be used.
  • titanium (Ti) is used as the positive electrode current collector layer 24.
  • the thickness of the positive electrode current collector layer 24 can be set to, for example, 5 nm or more and 50 ⁇ m or less. When the thickness of the positive electrode current collector layer 24 is less than 5 nm, the current collecting function is deteriorated and is not practical. On the other hand, when the thickness of the positive electrode current collector layer 24 exceeds 50 ⁇ m, it takes too much time to form the layer, and productivity is lowered. In the present embodiment, the thickness of the positive electrode current collector layer 24 is 200 nm.
  • the positive electrode current collector layer 24 As a method of manufacturing the positive electrode current collector layer 24, a known film forming method such as various PVDs or various CVDs may be used, but from the viewpoint of production efficiency, it is desirable to use a sputtering method.
  • the exterior part 200 has a laminated film 30 formed by laminating a plurality of layers.
  • one surface (hereinafter referred to as an inner surface) of the laminated film 30 faces the surface on which the battery part 20 is formed on the substrate 10.
  • substrate 10 are interposed through the heat-fusible resin layer 35 (details are mentioned later) provided in the laminated
  • the battery part 20 is sealed by heat-sealing over the entire periphery of the battery part 20. At this time, one end (the right end in FIG.
  • the substrate 10 in the battery unit 100 is exposed to the outside without being covered by the exterior part 200.
  • the substrate 10 is exposed over the entire back surface of the lithium ion secondary battery 1.
  • an insulating film may be attached to the entire back surface of the substrate 10 as necessary.
  • substrate 10 and the laminated film 30 are functioning as a sealing part.
  • the entire surface and side surfaces of the substrate 10 may be covered with the exterior portion 200 without being exposed.
  • an insulating film may be attached to a part of the back surface of the substrate 10 as necessary.
  • FIG. 4 is a view for explaining the configuration of the laminated film 30 in the present embodiment.
  • FIG. 4A is a perspective view of the inner surface facing the battery unit 100 when the lithium ion secondary battery 1 is configured
  • FIG. 4B is the lithium ion secondary battery 1 configured.
  • the perspective view of the outer surface which does not oppose the battery unit 100 at the time is shown, respectively.
  • the configuration of the laminated film 30 will be described with reference to FIG. 4 in addition to FIGS.
  • the laminated film 30 is configured by laminating a heat-resistant resin layer 31, an outer adhesive layer 32, a metal layer 33, an inner adhesive layer 34, and a heat-fusible resin layer 35 in this order. ing. That is, the laminated film 30 is configured by bonding the heat-resistant resin layer 31, the metal layer 33, and the heat-fusible resin layer 35 through the outer adhesive layer 32 and the inner adhesive layer 34.
  • the heat-fusible resin layer 35 is formed (inner surface)
  • the heat-fusing resin layer 35 and the inner adhesive layer 34 are not present, so that one surface of the metal layer 33 ( An inner exposed portion 36 is provided in which a part of the inner surface is exposed.
  • the inner exposed portion 36 is a portion for housing the battery portion 20 of the battery unit 100.
  • an outer exposed portion 37 is provided so that a part of the exposed portion 37 is exposed.
  • the heat-resistant resin layer 31 is the outermost layer in the exterior portion 200, has high resistance to external piercing and wear, and does not melt at the fusion temperature when the heat-fusible resin layer 35 is heat-sealed.
  • a heat resistant resin is used.
  • the heat-resistant resin layer 31 it is preferable to use a heat-resistant resin having a melting point of 10 ° C. or more higher than the melting point of the heat-fusible resin constituting the heat-fusible resin layer 35. It is particularly preferable to use a heat-resistant resin having a melting point of 20 ° C. or more higher than the melting point of.
  • an insulating resin having a high electrical resistance value is used as the heat resistant resin layer 31 from the viewpoint of safety. Used.
  • the heat resistant resin layer 31 For example, a polyamide film, a polyester film, etc. are mentioned, These stretched films are used preferably. Among them, in terms of moldability and strength, a biaxially stretched polyamide film or a biaxially stretched polyester film, or a multilayer film containing these is particularly preferable, and the biaxially stretched polyamide film and the biaxially stretched polyester film are bonded together. It is preferable to use a multilayer film.
  • the polyamide film is not particularly limited, and examples thereof include 6-polyamide film, 6,6-polyamide film, MXD polyamide film and the like.
  • biaxially stretched polyester film examples include a biaxially stretched polybutylene terephthalate (PBT) film and a biaxially stretched polyethylene terephthalate (PET) film.
  • PBT polybutylene terephthalate
  • PET biaxially stretched polyethylene terephthalate
  • a PET film (melting point: 260 ° C.) is used as the heat resistant resin layer 31.
  • the thickness of the heat resistant resin layer 31 can be 9 ⁇ m or more and 50 ⁇ m.
  • the thickness of the heat-resistant resin layer 31 is set to 12 ⁇ m.
  • the outer adhesive layer 32 is a layer for adhering the heat resistant resin layer 31 and the metal layer 33.
  • an adhesive containing a two-component curable polyester-urethane resin or a polyether-urethane resin using a polyester resin as a main agent and a polyfunctional isocyanate compound as a curing agent is used. Is preferred.
  • a two-component curable polyester-urethane adhesive is used as the outer adhesive layer 32.
  • the metal layer 33 prevents (barriers) entry of oxygen, moisture, and the like from the exterior of the exterior part 200 to the battery part 20 disposed therein. It is a layer that plays a role. Further, as will be described later, the metal layer 33 serves as a positive internal electrode of the battery unit 20 and serves as a positive external electrode that is electrically connected to a load (not shown) provided outside. And bear further.
  • metal layer 33 Although it does not specifically limit as the metal layer 33, for example, aluminum foil, copper foil, nickel foil, stainless steel foil, or these clad foils, these annealed foil, or unannealed foil etc. are used preferably. Alternatively, a metal foil plated with a conductive metal such as nickel, tin, copper, or chromium may be used. In the present embodiment, an aluminum foil made of an A8021H—O material defined by JIS H4160 is used as the metal layer 33.
  • the thickness of the metal layer 33 can be 5 ⁇ m or more and 200 ⁇ m or less.
  • the electrical resistance value when used as an electrode is increased.
  • the thickness of the metal layer 33 exceeds 200 ⁇ m, there is a possibility that heat is dispersed at the time of thermal fusion and the thermal fusion becomes incomplete.
  • the substrate 10 is preferably thicker than the metal layer 33. In the present embodiment, the thickness of the metal layer 33 is 20 ⁇ m.
  • the inner adhesive layer 34 is a layer for bonding the metal layer 33 and the heat-fusible resin layer 35.
  • an adhesive formed of a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, a fluorine adhesive, or the like is preferably used. .
  • an acrylic adhesive or a polyolefin adhesive it is preferable to use an acrylic adhesive or a polyolefin adhesive. In this case, the barrier property of the laminated film 30 against water vapor can be improved.
  • an acid-modified adhesive such as polypropylene or polyethylene.
  • a polyurethane-based adhesive is used as the inner adhesive layer 34.
  • the heat-fusible resin layer 35 is the innermost layer in the exterior part 200, has high resistance to the material constituting each layer of the battery part 20, and is a resin that melts at the fusion temperature and is fused to the substrate 10. Used.
  • the metal layer 33 also serves as the positive electrode of the battery unit 20, from the viewpoint of safety, as the heat-fusible resin layer 35, the insulating property having a high electric resistance value is used. Resin is used.
  • the heat-fusible resin layer 35 is not particularly limited.
  • polyethylene, polypropylene, olefin copolymers, acid-modified products thereof, ionomers, and the like are preferably used.
  • the olefin copolymer include EVA (ethylene / vinyl acetate copolymer), EAA (ethylene / acrylic acid copolymer), and EMAA (ethylene / methacrylic acid copolymer).
  • EVA ethylene / vinyl acetate copolymer
  • EAA ethylene / acrylic acid copolymer
  • EMAA ethylene / methacrylic acid copolymer
  • an ionomer film (melting point: 90 ° C.) having a low-temperature sealing property and a good sealing property with metal is used as the heat-fusible resin layer 35.
  • the thickness of the heat-fusible resin layer 35 can be 20 ⁇ m or more and 80 ⁇ m or less. If the thickness of the heat-fusible resin layer 35 is less than 20 ⁇ m, pinholes are likely to occur. On the other hand, when the thickness of the heat-fusible resin layer 35 exceeds 80 ⁇ m, the battery becomes thick, which is not preferable. Moreover, since heat insulation improves, heat fusion may become incomplete. In the present embodiment, the thickness of the heat-fusible resin layer 35 is 30 ⁇ m.
  • the positive electrode current collector layer 24 of the battery unit 20 is electrically connected to a portion exposed to the inner exposed portion 36 of one surface (inner surface) of the metal layer 33 provided on the laminated film 30. A part of the other surface (outer surface) of the metal layer 33 provided in the laminated film 30 is exposed to the outside at the outer exposed portion 37, and this portion is provided outside as a positive electrode. It can be electrically connected to a load (not shown).
  • the substrate 10 becomes the negative electrode of the lithium ion secondary battery 1
  • the metal layer 33 provided on the laminated film 30 becomes the positive electrode of the lithium ion secondary battery 1.
  • the substrate 10 on the negative electrode side and the metal layer 33 on the positive electrode side are electrically insulated by a heat-fusible resin layer 35 provided on the laminated film 30.
  • the negative electrode of the DC power source is connected to the substrate 10 functioning as the negative electrode current collector layer, and the positive electrode of the DC power source is connected to the positive electrode current collector layer 24, respectively. Is done. Then, lithium ions constituting the positive electrode active material in the positive electrode layer 23 move to the negative electrode layer 21 through the solid electrolyte layer 22, and are accommodated in the negative electrode active material in the negative electrode layer 21.
  • the substrate 10 functioning as the negative electrode current collector layer has a direct current load negative electrode
  • the positive current collector layer 24 has a direct current load positive electrode
  • Each is connected.
  • lithium ions accommodated in the negative electrode active material in the negative electrode layer 21 move to the positive electrode layer 23 through the solid electrolyte layer 22, and the positive electrode layer 23 constitutes the positive electrode active material.
  • FIG. 5 is a flowchart for explaining a method of manufacturing the lithium ion secondary battery 1 shown in FIG.
  • the battery unit 20 is formed on the surface of the substrate 10 (step 10). That is, the negative electrode layer 21, the solid electrolyte layer 22, the positive electrode layer 23, and the positive electrode current collector layer 24 are formed in this order on the surface of the substrate 10 to obtain the battery unit 100 including the substrate 10 and the battery unit 20. .
  • each of the negative electrode layer 21, the solid electrolyte layer 22, the positive electrode layer 23, and the positive electrode current collector layer 24 was produced by sputtering.
  • the battery unit 100 and the laminated film 30 are introduced into a work box filled with an inert gas such as N 2 gas. Then, in the work box, the positive electrode current collector layer 24 provided in the battery unit 20 of the battery unit 100 and the inner exposed part 36 provided in the laminated film 30 face each other.
  • an inert gas such as N 2 gas
  • Step 30 the heat-fusible resin layer 35 in the laminated film 30 and the substrate 10 of the battery unit 100 are pressurized and heated over the entire outer periphery of the periphery of the battery unit 20.
  • Step 30 the lithium ion provided with the battery unit 100 including the substrate 10 and the battery unit 20 and the exterior unit 200 including the laminated film 30 by thermally bonding the heat-fusible resin layer 35 and the substrate 10.
  • the secondary battery 1 is obtained.
  • the substrate 10 and the battery unit 20 are joined (integrated) by film formation by sputtering. Further, the positive electrode current collector layer 24 of the battery unit 20 and the metal layer 33 of the laminated film 30 are obtained by thermally fusing the heat-fusible resin layer 35 of the laminated film 30 and the substrate 10 with a negative pressure. It is in close contact.
  • the battery unit 20 side is covered with the laminated film 30 of the exterior unit 200 with respect to the battery unit 100 in which the battery unit 20 is formed on the surface of the metal substrate 10. I did it. That is, in the present embodiment, the substrate 10 constituting the battery unit 100 is used for sealing the battery part 20 together with the laminated film 30 constituting the exterior part 200. Thereby, compared with the case where both surfaces of the board
  • a configuration in which the negative electrode layer 21, the solid electrolyte layer 22, and the positive electrode layer 23 are stacked in this order on the substrate 10 is employed.
  • the present invention is not limited to this.
  • a configuration in which the positive electrode layer 23, the solid electrolyte layer 22, and the negative electrode layer 21 are stacked in this order on the substrate 10 may be employed.
  • a negative electrode current collector layer made of a solid thin film having electron conductivity may be provided on the negative electrode layer 21.
  • the battery unit 20 has the positive electrode current collector layer 24, but the positive electrode current collector layer 24 is not essential.
  • 6 is a view for explaining a modification of the first embodiment, and is a cross-sectional view taken along the line II-II in FIG.
  • FIGS. 7A and 7B are perspective views of battery unit 100 in a modification of the first embodiment.
  • the battery unit 20 constituting the battery unit 100 includes a negative electrode layer 21 laminated on one surface of the substrate 10, a solid electrolyte layer 22 laminated on the negative electrode layer 21, and a solid electrolyte. And a positive electrode layer 23 laminated on the layer 22.
  • the positive electrode layer 23 located at the other end (upper side in FIG. 6) of the battery unit 20 is in direct contact with the metal layer 33 exposed at the inner exposed portion 36 of the laminated film 30.
  • the structure of the lithium ion secondary battery 1 can be simplified as compared with the configuration described in the first embodiment.
  • the positive electrode layer 23 has a contact resistance with a metal rather than Li 1.5 Mn 2 O 4. It is preferable to use small LiNiO 2 .
  • Embodiment 2 the metallic substrate 10 having conductivity is used so that the substrate 10 functions as the negative electrode current collector layer of the battery unit 20.
  • an insulating substrate 10 is used and a negative electrode current collector layer is separately provided.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 8 is a diagram for explaining the overall configuration of the lithium ion secondary battery 1 to which the second embodiment is applied.
  • FIG. 8A is a diagram of the lithium ion secondary battery 1 viewed from the front (front surface)
  • FIG. 8B is a diagram of the lithium ion secondary battery 1 viewed from the back (back).
  • FIG. 9 is a sectional view taken along line IX-IX in FIG. 8A is a diagram when FIG. 9 is viewed from the VIIIA direction
  • FIG. 8B is a diagram when FIG. 9 is viewed from the VIIIB direction.
  • the lithium ion secondary battery 1 of the present embodiment also includes the battery unit 100 including the battery unit 20 that performs charging and discharging using lithium ions, and the battery unit 20 from the outside air by accommodating the battery unit 20 therein. And an exterior part 200 to be sealed.
  • the battery unit 100 includes a substrate 10 and a battery unit 20 provided on one surface (referred to as a front surface) of the substrate 10.
  • the battery unit 100 of the present embodiment also has a structure in which the substrate 10 and the battery unit 20 are integrated.
  • FIGS. 10A and 10B are diagrams for explaining the configuration of the battery unit 100 according to the present embodiment.
  • FIG. 10A is a perspective view seen from the front side (the upper side in FIG. 9)
  • FIG. 9 is a perspective view seen from the lower side.
  • the configuration of the battery unit 100 will be described with reference to FIG. 10 in addition to FIGS. 8 and 9.
  • the substrate 10 is composed of a plate made of an inorganic material having insulation properties.
  • a polycrystalline material such as alumina or zirconia
  • an amorphous material such as silica glass, a single crystal material such as sapphire, or the like can be used.
  • the thickness of the substrate 10 can be 50 ⁇ m or more and 500 ⁇ m or less. When the thickness of the substrate 10 is less than 50 ⁇ m, handling during sputtering film formation becomes difficult. On the other hand, when the thickness of the substrate 10 exceeds 500 ⁇ m, the volume energy density and the weight energy density decrease due to the increase in the thickness and weight of the battery. In the present embodiment, the thickness of the substrate 10 is 300 ⁇ m.
  • the battery unit 20 includes a negative electrode current collector layer 25 stacked on the surface of the substrate 10 (upper side in FIG. 9), a negative electrode layer 21 stacked on the negative electrode current collector layer 25, and a negative electrode layer 21.
  • the solid electrolyte layer 22 is laminated
  • the positive electrode layer 23 is laminated on the solid electrolyte layer 22
  • the positive electrode current collector layer 24 is laminated on the positive electrode layer 23.
  • the negative electrode current collector layer 25 located at one end (lower side in FIG. 9) of the battery unit 20 is in contact with the surface of the substrate 10.
  • the positive electrode current collector layer 24 located at the other end (upper side in FIG.
  • the negative electrode current collector layer 25 is not particularly limited as long as it is a solid thin film and has electron conductivity.
  • titanium (Ti), aluminum (Al), copper (Cu), platinum A conductive material containing a metal such as (Pt) or gold (Au) or an alloy thereof can be used.
  • titanium (Ti) is used as the negative electrode current collector layer 25.
  • the thickness of the negative electrode current collector layer 25 can be, for example, 5 nm or more and 50 ⁇ m or less. If the thickness of the negative electrode current collector layer 25 is less than 5 nm, the current collecting function is lowered, which is not practical. On the other hand, if the thickness of the negative electrode current collector layer 25 exceeds 50 ⁇ m, it takes too much time to form the layer, and productivity is lowered. In the present embodiment, the thickness of the negative electrode current collector layer 25 is 200 nm.
  • the negative electrode current collector layer 25 As a method of manufacturing the negative electrode current collector layer 25, a known film forming method such as various PVDs or various CVDs may be used, but from the viewpoint of production efficiency, it is desirable to use a sputtering method.
  • the negative electrode current collector layer 25 is formed (laminated) over the entire region of the surface of the substrate 10.
  • the negative electrode layer 21 to the positive electrode current collector layer 24 constituting the battery unit 20 together with the negative electrode current collector layer 25 are formed (laminated) in a partial region of the surface of the negative electrode current collector layer 25.
  • multilayer film 30 are bonded together so that a part of negative electrode collector layer 25 provided in the surface of the board
  • the lithium ion secondary battery 1 is configured.
  • a part of the negative electrode current collector layer 25 is exposed to the outside, thereby becoming an exposed portion 25a used for electrical connection with the outside.
  • the substrate 10 is made of an inorganic insulating material instead of a metal, in addition to the effects described in the first embodiment, the lithium ion secondary battery 1 Hardness can be made higher and weight can be made easier.
  • leakage to the case side housing the lithium ion secondary battery 1 is regarded as a problem, it is possible to insulate the battery side by adopting the configuration of the present embodiment.
  • the positive electrode current collector layer 24 is not essential also in the present embodiment, and the positive electrode layer 23 of the battery unit 20 and the metal layer 33 of the laminated film 30 are provided. You may make it contact directly.
  • SYMBOLS 1 Lithium ion secondary battery, 10 ... Board

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

リチウムイオン二次電池1は、金属製の基板10と、基板10上に薄膜を積層して構成される電池部20とを含む電池ユニット100と、基板10における電池部20の形成面側に設けられ、基板10とともに電池ユニット100を封止する外装部200とを備えており、外装部200は、金属層33および各種樹脂層を積層してなる積層フィルム30を有する。これらにより、固体電解質を備える薄膜型のリチウムイオン二次電池の薄型化を図る。

Description

リチウムイオン二次電池
 本発明は、リチウムイオン二次電池に関する。
 正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を有し且つ正極と負極との間に介在する電解質とを含み、充放電が可能な電池部と、電池部を内部に収容することで電池部を外気等から封止する外装部とを備えたリチウムイオン二次電池が知られている。
 リチウムイオン二次電池の外装部には、気体、液体および固体に対する高いバリア性が要求される。特許文献1には、金属箔層と熱融着性樹脂層とを積層してなるラミネート外装材を用い、熱融着フィルム同士を熱融着することで外装部を構成することが記載されている。
 また、電池部を構成する電解質としては、従来から有機電解液等が用いられてきた。これに対し、特許文献2には、電解質として無機材料からなる固体電解質を用いるとともに、負極、固体電解質および正極をすべて薄膜で構成することが記載されている。
特開2016-129091号公報 特開2013-73846号公報
 ここで、薄膜型の電池部と、電池部を内部に収容する袋状の外装部とを用いてリチウムイオン二次電池を構成する場合、電池部の表裏面のそれぞれに外装部の構成材料(ラミネート外装材等)が存在することになる。このため、得られるリチウムイオン二次電池の厚さが増大するおそれがあった。
 本発明は、固体電解質を備える薄膜型のリチウムイオン二次電池の薄型化を図ることを目的とする。
 本発明のリチウムイオンは、二次電池正極活物質を含む正極層と、負極活物質を含む負極層と、リチウムイオン伝導性を示す無機固体電解質を含み且つ当該正極層と当該負極層との間に設けられる固体電解質層とを有する電池部と、一方の面に前記電池部が積載される基板と、金属層と当該金属層に積層される樹脂層とを有し、前記基板の前記一方の面に当該金属層が対向して配置され、当該金属層と前記電池部とを導通させた状態で、当該基板との間で当該電池部を封止する積層フィルムとを含んでいる。
 このようなリチウムイオン二次電池において、前記基板は、前記積層フィルムの前記金属層よりも厚いことを特徴とすることができる。
 また、前記積層フィルムにおける前記金属層の一部が、前記樹脂層に覆われることなく露出していることを特徴とすることができる。
 さらに、前記電池部に設けられた前記正極層と、前記積層フィルムに設けられた前記金属層とが、直接に接触していることを特徴とすることができる。
 また、他の観点から捉えると、本発明のリチウムイオン二次電池は、正極活物質を含む正極層と、負極活物質を含む負極層と、リチウムイオン伝導性を示す無機固体電解質を含み且つ当該正極層と当該負極層との間に設けられる固体電解質層とを有する電池部と、一方の面に前記電池部が積載されるとともに当該電池部と一体化する基板と、金属層と樹脂層とを積層してなる積層フィルムとを有し、当該金属層と当該電池部とを導通させた状態で、当該基板との間に当該電池部を挟み込むことで当該基板との間で当該電池部を封止する封止部とを含んでいる。
 本発明によれば、固体電解質を備える薄膜型のリチウムイオン二次電池の薄型化を図ることができる。
(a)、(b)は、実施の形態1のリチウムイオン二次電池の全体構成を説明するための図である。 実施の形態1のリチウムイオン二次電池の断面構成を示す図であって、図1(a)のII-II断面図である。 (a)、(b)は、実施の形態1の電池ユニットの斜視図である。 (a)、(b)は、積層フィルムの斜視図である。 リチウムイオン二次電池の製造方法を説明するためのフローチャートである。 実施の形態1の変形例の断面構成を示す図であって、図1(a)のII-II断面図である。 (a)、(b)は、実施の形態1の変形例における電池ユニットの斜視図である。 (a)、(b)は、実施の形態2のリチウムイオン二次電池の全体構成を説明するための図である。 実施の形態2のリチウムイオン二次電池の断面構成を示す図であって、図8(a)のIX-IX断面図である。 (a)、(b)は、実施の形態2の電池ユニットの斜視図である。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、以下の説明で参照する図面における各部の大きさや厚さ等は、実際の寸法とは異なっている場合がある。
<実施の形態1>
[リチウムイオン二次電池の構成]
 図1は、実施の形態1が適用されるリチウムイオン二次電池1の全体構成を説明するための図である。ここで、図1(a)はリチウムイオン二次電池1を正面(表面)からみた図であり、図1(b)はリチウムイオン二次電池1を背面(裏面)からみた図である。
 また、図2は図1(a)のII-II断面図を示している。なお、図1(a)は、図2をIA方向からみた図であり、図1(b)は、図2をIB方向からみた図である。
 本実施の形態のリチウムイオン二次電池1は、リチウムイオンを用いた充電および放電を行う電池部20を含む電池ユニット100と、電池部20を内部に収容することで電池部20を外気等から封止する外装部200とを備えている。本実施の形態のリチウムイオン二次電池1は、全体としてみたときに直方体状(実際にはカード状)の形状を呈している。
[電池ユニットの構成]
 電池ユニット100は、リチウムイオン二次電池1における一方の電極(ここでは負の電極)として機能する基板10と、基板10の一方の面(表面と称する)に設けられる電池部20とを備えている。本実施の形態では、後述するように、電池部20を、基板10の表面にスパッタ法によって形成しているため、電池ユニット100は、基板10と電池部20とを一体化した構造となっている。
 図3は、本実施の形態における電池ユニット100の構成を説明するための図であり、(a)は正面側(図2においては上側)からみた斜視図を、(b)は背面側(図2においては下側)からみた斜視図を、それぞれ示している。以下では、図1および図2に加えて図3も参照しながら、電池ユニット100の構成を説明する。
[基板]
 基板10としては、特に限定されず、金属、ガラス、セラミックスなど、各種材料で構成されたものを用いることができる。
 本実施の形態では、基板10を、リチウムイオン二次電池1における負極集電体層として機能させる目的で、電子伝導性を有する金属製の板材で構成した。ここで、基板10がスパッタ法による電池部20の形成に用いられることを考慮すると、機械的強度が高いステンレス基板を用いることが好ましい。また、ニッケル、錫、銅、クロム等の導電性金属でめっきした金属板を用いてもよい。本実施の形態では、基板10として、ステンレス基板を用いた。
 基板10の厚さは、50μm以上200μm以下とすることができる。基板10の厚さが20μm未満であると、スパッタ成膜時の取扱いが困難になり、また、正の電極として用いる場合の電気抵抗値が高くなってしまう。一方、基板10の厚さが200μmを超えると、電池の厚さおよび重量の増加により体積エネルギー密度および重量エネルギー密度が低下する。また、電池の柔軟性が低下する。本実施の形態では、基板10の厚さを50μmとした。
[電池部]
 電池部20は、基板10の表面(図2においては上側)に積層される負極層21と、負極層21上に積層される固体電解質層22と、固体電解質層22上に積層される正極層23と、正極層23上に積層される正極集電体層24とを有している。ここで、電池部20の一方の端部(図2において下側)に位置する負極層21は、基板10の表面と接触している。これに対し、電池部20の他方の端部(図2において上側)に位置する正極集電体層24は、後述する積層フィルム30に設けられた金属層33と接触している。
 では、電池部20の各構成要素について、より詳細な説明を行う。
(負極層)
 負極層21は、固体薄膜であって、負極性にてリチウムイオンを吸蔵および放出する負極活物質を含むものであれば、特に限定されるものではなく、例えば、炭素(C)やシリコン(Si)を用いることができる。本実施の形態では、負極層21として、ホウ素(B)が添加されたシリコン(Si)を用いた。
 負極層21の厚さは、例えば10nm以上40μm以下とすることができる。負極層21の厚さが10nm未満であると、得られる電池部20の容量が小さくなりすぎ、実用的ではなくなる。一方、負極層21の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。本実施の形態では、負極層21の厚さを100nmとした。
 また、負極層21は、結晶構造を持つものであっても、結晶構造を持たないアモルファスであってもかまわないが、リチウムイオンの吸蔵および放出に伴う膨張および収縮がより等方的になるという点で、アモルファスであることが好ましい。
 さらに、負極層21の製造方法としては、各種PVD(物理的蒸着)や各種CVD(化学的蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法(スパッタリング)を用いることが望ましい。
(固体電解質層)
 固体電解質層22は、固体薄膜であって、リチウムイオン伝導性を示す無機材料(無機固体電解質)を含むものであれば、特に限定されるものではなく、酸化物、窒化物、硫化物など、各種材料で構成されたものを用いることができる。本実施の形態では、固体電解質層22として、LiPOにおける酸素の一部を窒素に置き換えたLiPON(LiPO)を用いた。
 固体電解質層22の厚さは、例えば10nm以上10μm以下とすることができる。固体電解質層22の厚さが10nm未満であると、得られた電池部20において、負極層21と正極層23との間でのリークが生じやすくなる。一方、固体電解質層22の厚さが10μmを超えると、リチウムイオンの移動距離が長くなり、充放電速度が遅くなる。本実施の形態では、固体電解質層22の厚さを200nmとした。
 また、固体電解質層22は、結晶構造を持つものであっても、結晶構造を持たないアモルファスであってもかまわないが、熱による膨張および収縮がより等方的になるという点で、アモルファスであることが好ましい。
 さらに、固体電解質層22の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
(正極層)
 正極層23は、固体薄膜であって、正極性にてリチウムイオンを吸蔵および放出する正極活物質を含むものであれば、特に限定されるものではなく、例えば、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)、バナジウム(V)から選ばれる一種以上の金属を含む、酸化物、硫化物あるいはリン酸化物など、各種材料で構成されたものを用いることができる。本実施の形態では、正極層23としてLi1.5Mnを用いた。
 正極層23の厚さは、例えば10nm以上40μm以下とすることができる。正極層23の厚さが10nm未満であると、得られる電池部20の容量が小さくなりすぎ、実用的ではなくなる。一方、正極層23の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。本実施の形態では、正極層23の厚さを600nmとした。
 また、正極層23は、結晶構造を持つものであっても、結晶構造を持たないアモルファスであってもかまわないが、リチウムイオンの吸蔵および放出に伴う膨張および収縮がより等方的になるという点で、アモルファスであることが好ましい。
 さらに、正極層23の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
(正極集電体層)
 正極集電体層24は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではなく、例えば、チタン(Ti)、アルミニウム(Al)、銅(Cu)、白金(Pt)、金(Au)などの金属や、これらの合金を含む導電性材料を用いることができる。本実施の形態では、正極集電体層24としてチタン(Ti)を用いた。
 正極集電体層24の厚さは、例えば5nm以上50μm以下とすることができる。正極集電体層24の厚さが5nm未満であると、集電機能が低下し、実用的ではなくなる。一方、正極集電体層24の厚さが50μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。本実施の形態では、正極集電体層24の厚さを200nmとした。
 また、正極集電体層24の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
[外装部の構成]
 外装部200は、複数の層を積層してなる積層フィルム30を有している。外装部200では、積層フィルム30の一方の面(以下では内側の面と呼ぶ)が、基板10における電池部20の形成面側と対峙している。そして、外装部200では、積層フィルム30の内側の面と基板10における電池部20の形成面とを、積層フィルム30に設けられた熱融着性樹脂層35(詳細は後述する)を介して電池部20の全周囲にわたって熱融着することで、電池部20を封止している。このとき、電池ユニット100における基板10の表面の一端(図1(a)における右側端)は、外装部200に覆われることなく外部に露出している。これに対し、リチウムイオン二次電池1の裏面には、基板10が全面にわたって露出するようになっている。ただし、基板10の裏面の全面には、必要に応じて、絶縁性フィルムを貼り付けるようにしてもかまわない。ここで、本実施の形態では、基板10および積層フィルム30が、封止部として機能している。
 また、基板10の表面および側面は、露出させず全面を外装部200で覆ってもよい。このとき、基板10の裏面の一部には、必要に応じて、絶縁性フィルムを貼り付けるようにしてもかまわない。
[積層フィルム]
 図4は、本実施の形態における積層フィルム30の構成を説明するための図である。ここで、図4(a)は、リチウムイオン二次電池1を構成した際に電池ユニット100と対向する内側の面の斜視図を、図4(b)はリチウムイオン二次電池1を構成した際に電池ユニット100と対向しない外側の面の斜視図を、それぞれ示している。以下では、図1~図3に加えて図4も参照しながら、積層フィルム30の構成を説明する。
 積層フィルム30は、耐熱性樹脂層31と、外側接着層32と、金属層33と、内側接着層34と、熱融着性樹脂層35とを、この順でフィルム状に積層して構成されている。すなわち、積層フィルム30は、耐熱性樹脂層31と金属層33と熱融着性樹脂層35とを、外側接着層32および内側接着層34を介して貼り合わせることで構成されている。
 また、積層フィルム30における熱融着性樹脂層35の形成面(内側の面)側には、熱融着性樹脂層35および内側接着層34が存在しないことで金属層33の一方の面(内側の面)の一部が露出する、内側露出部36が設けられている。ここで、内側露出部36は、電池ユニット100の電池部20を収容するための部位となる。
 さらに、積層フィルム30における耐熱性樹脂層31の形成面(外側の面)側には、外側接着層32および耐熱性樹脂層31が存在しないことで金属層33の他方の面(外側の面)の一部が露出する、外側露出部37が設けられている。
 次に、積層フィルム30の各構成要素について、より詳細な説明を行う。
(耐熱性樹脂層)
 耐熱性樹脂層31は、外装部200における最外層であり、外部からの突き刺しや摩耗などに対する耐性が高く、且つ、熱融着性樹脂層35を熱融着する際の融着温度では溶融しない耐熱性樹脂が用いられる。ここで、耐熱性樹脂層31としては、熱融着性樹脂層35を構成する熱融着性樹脂の融点より10℃以上融点が高い耐熱性樹脂を用いるのが好ましく、この熱融着性樹脂の融点より20℃以上融点が高い耐熱性樹脂を用いるのが特に好ましい。また、本実施の形態では、後述するように、金属層33が電池部20の正の電極を兼ねることから、安全性の観点より、耐熱性樹脂層31として電気抵抗値の高い絶縁性樹脂が用いられる。
 耐熱性樹脂層31としては、特に限定されるものではないが、例えば、ポリアミドフィルム、ポリエステルフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、成形性および強度の点で、二軸延伸ポリアミドフィルムまたは二軸延伸ポリエステルフィルム、あるいはこれらを含む複層フィルムが特に好ましく、さらに二軸延伸ポリアミドフィルムと二軸延伸ポリエステルフィルムとが貼り合わされた複層フィルムを用いることが好ましい。ポリアミドフィルムとしては、特に限定されるものではないが、例えば、6-ポリアミドフィルム、6,6-ポリアミドフィルム、MXDポリアミドフィルム等が挙げられる。また、二軸延伸ポリエステルフィルムとしては、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム等が挙げられる。本実施の形態では、耐熱性樹脂層31としてPETフィルム(融点:260℃)を用いた。
 耐熱性樹脂層31の厚さは、9μm以上50μmとすることができる。耐熱性樹脂層31の厚さが9μm未満であると、電池部20の外装部200として十分な強度を確保することが困難となる。一方、耐熱性樹脂層31の厚さが50μmを超えると、電池が厚くなるため好ましくない。また、製造コストが高くなる。本実施の形態では、耐熱性樹脂層31の厚さを12μmとした。
(外側接着層)
 外側接着層32は、耐熱性樹脂層31と金属層33とを接着するための層である。外側接着層32としては、例えば、主剤としてのポリエステル樹脂と硬化剤としての多官能イソシアネート化合物とによる二液硬化型ポリエステル-ウレタン系樹脂、あるいは、ポリエーテル-ウレタン系樹脂を含む接着剤を用いることが好ましい。本実施の形態では、外側接着層32として二液硬化型ポリエステル-ウレタン系接着剤を用いた。
(金属層)
 金属層33は、積層フィルム30を用いて外装部200を構成した場合に、外装部200の外部から、その内部に配置された電池部20に、酸素や水分等の侵入を阻止(バリア)する役割を担う層である。また、金属層33は、後述するように、電池部20の正の内部電極としての役割と、外部に設けられた負荷(図示せず)と電気的に接続される正の外部電極としての役割とをさらに担う。
 金属層33としては、特に限定されるものではないが、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔、あるいはこれらのクラッド箔、これらの焼鈍箔または未焼鈍箔等が好ましく用いられる。また、ニッケル、錫、銅、クロム等の導電性金属でめっきした金属箔を用いてもよい。本実施の形態では、金属層33として、JIS H4160で規定されたA8021H-O材からなるアルミニウム箔を用いた。
 金属層33の厚さは、5μm以上200μm以下とすることができる。金属層33の厚さが5μm未満であると、電極として用いる場合の電気抵抗値が高くなってしまう。一方、金属層33の厚さが200μmを超えると、熱融着の際に熱が分散して熱融着が不完全になる可能性がある。ここで、リチウムイオン二次電池1の機械的な強度を高めるという観点からすれば、上記基板10は、金属層33よりも厚いことが好ましい。本実施の形態では、金属層33の厚さを20μmとした。
(内側接着層)
 内側接着層34は、金属層33と熱融着性樹脂層35とを接着するための層である。内側接着層34としては、例えば、ポリウレタン系接着剤、アクリル系接着剤、エポキシ系接着剤、ポリオレフィン系接着剤、エラストマー系接着剤、フッ素系接着剤等により形成された接着剤を用いることが好ましい。中でも、アクリル系接着剤、ポリオレフィン系接着剤を用いるのが好ましく、この場合には、水蒸気に対する積層フィルム30のバリア性を向上させることができる。また、酸変成したポリプロピレンやポリエチレン等の接着剤を使用することが好ましい。本実施の形態では、内側接着層34として、ポリウレタン系接着剤を用いた。
(熱融着性樹脂層)
 熱融着性樹脂層35は、外装部200における最内層であり、電池部20の各層を構成する材料に対する耐性が高く、且つ、上記融着温度で溶融し、基板10と融着する樹脂が用いられる。また、本実施の形態では、上述したように、金属層33が電池部20の正の電極を兼ねることから、安全性の観点より、熱融着性樹脂層35として電気抵抗値の高い絶縁性樹脂が用いられる。
 熱融着性樹脂層35としては、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマー等が好ましく用いられる。ここで、オレフィン系共重合体としては、EVA(エチレン・酢酸ビニル共重合体)、EAA(エチレン・アクリル酸共重合体)、EMAA(エチレン・メタアクリル酸共重合体)を例示できる。本実施の形態では、熱融着性樹脂層35として低温シール性があり、金属とのシール性が良いアイオノマーフィルム(融点:90℃)を用いた。
 熱融着性樹脂層35の厚さは、20μm以上80μm以下とすることができる。熱融着性樹脂層35の厚さが20μm未満であると、ピンホールが生じやすくなる。一方、熱融着性樹脂層35の厚さが80μmを超えると、電池が厚くなるため好ましくない。また、断熱性が高まるため熱融着が不完全になる可能性がある。本実施の形態では、熱融着性樹脂層35の厚さを30μmとした。
[リチウムイオン二次電池における電気的な接続構造]
 ここで、本実施の形態のリチウムイオン二次電池1における電気的な接続構造について説明しておく。
 まず、電池部20では、負極層21、固体電解質層22、正極層23および正極集電体層24が、この順番で電気的に接続される。また、電池ユニット100では、基板10と電池部20の負極層21とが、電気的に接続される。ここで、基板10の表面の一端側および裏面は、外装部200に覆われることなく外部に露出しており、この部位は、負極として、外部に設けられた負荷(図示せず)と電気的に接続することが可能である。
 電池部20の正極集電体層24は、積層フィルム30に設けられた金属層33の一方の面(内側の面)のうち、内側露出部36に露出する部位と電気的に接続される。そして、積層フィルム30に設けられた金属層33の他方の面(外側の面)の一部は、外側露出部37において外部に露出しており、この部位は、正極として、外部に設けられた負荷(図示せず)と電気的に接続することが可能である。
 したがって、この例では、基板10が、リチウムイオン二次電池1の負極となり、積層フィルム30に設けられた金属層33が、リチウムイオン二次電池1の正極となる。ここで、負極側となる基板10と、正極側となる金属層33とは、積層フィルム30に設けられた熱融着性樹脂層35によって、電気的に絶縁されている。
[リチウムイオン二次電池の動作]
 本実施の形態のリチウムイオン二次電池1を充電する場合、負極集電体層として機能する基板10には直流電源の負極が、正極集電体層24には直流電源の正極が、それぞれ接続される。そして、正極層23で正極活物質を構成するリチウムイオンが、固体電解質層22を介して負極層21へと移動し、負極層21で負極活物質に収容される。
 また、充電したリチウムイオン二次電池1を使用(放電)する場合、負極集電体層として機能する基板10には直流負荷の負極が、正極集電体層24には直流負荷の正極が、それぞれ接続される。そして、負極層21で負極活物質に収容されるリチウムイオンが、固体電解質層22を介して正極層23へと移動し、正極層23で正極活物質を構成する。
[リチウムイオン二次電池の製造方法]
 図5は、図1等に示すリチウムイオン二次電池1の製造方法を説明するためのフローチャートである。
(電池ユニット作製工程)
 まず、基板10の表面に電池部20を形成する(ステップ10)。すなわち、基板10の表面に、負極層21、固体電解質層22、正極層23および正極集電体層24をこの順で形成することで、基板10と電池部20とを含む電池ユニット100を得る。なお、ここでは、負極層21、固体電解質層22、正極層23および正極集電体層24のそれぞれを、スパッタ法を用いて作製した。
(積層フィルム露出部形成工程)
 続いて、耐熱性樹脂層31と金属層33と熱融着性樹脂層35とを、外側接着層32および内側接着層34を介して貼り合わせてなる積層フィルム30から、耐熱性樹脂層31、外側接着層32、内側接着層34および熱融着性樹脂層35の一部を除去する。これにより、積層フィルム30に、内側露出部36および外側露出部37を形成する(ステップ20)。
(融着工程)
 次いで、例えばNガス等の不活性ガスが充填された作業ボックス内に、電池ユニット100と、積層フィルム30とを導入する。そして、作業ボックス内で、電池ユニット100の電池部20に設けられた正極集電体層24と、積層フィルム30に設けられた内側露出部36とを対峙させる。
 その後、作業ボックス内を負圧に設定した状態で、積層フィルム30における熱融着性樹脂層35と電池ユニット100の基板10とを、電池部20の周縁の外側全周にわたって、加圧および加熱しながら融着する(ステップ30)。そして、熱融着性樹脂層35と基板10とが熱融着されることにより、基板10および電池部20を含む電池ユニット100と、積層フィルム30を含む外装部200とを備えた、リチウムイオン二次電池1が得られる。
 このとき、電池ユニット100では、基板10と電池部20とが、スパッタ法による成膜により接合(一体化)した状態となっている。また、電池部20の正極集電体層24と、積層フィルム30の金属層33とは、積層フィルム30の熱融着性樹脂層35と基板10とを負圧で熱融着することにより、密着した状態となっている。
[実施の形態1のまとめ]
 以上説明したように、本実施の形態によれば、金属製の基板10の表面に電池部20を形成してなる電池ユニット100に対し、電池部20側を外装部200の積層フィルム30で覆うようにした。すなわち、本実施の形態では、外装部200を構成する積層フィルム30とともに、電池ユニット100を構成する基板10を、電池部20の封止に用いるようにした。これにより、電池ユニット100における基板10の両面を積層フィルム30で覆って、電池部20を封止する場合と比較して、リチウムイオン二次電池1の構成の簡易化を図ることができる。また、その結果、リチウムイオン二次電池1の薄型化を図ることができる。
[その他]
 なお、本実施の形態では、基板10上に、負極層21、固体電解質層22および正極層23を、この順番で積層した構成を採用しているが、これに限られるものではない。例えば基板10上に、正極層23、固体電解質層22および負極層21の順に積層した構成を採用してもよい。また、この場合には、負極層21の上に、電子伝導性を有する固体薄膜からなる負極集電体層を設けるとよい。
<実施の形態1の変形例>
 実施の形態1のリチウムイオン二次電池1では、電池部20が正極集電体層24を有していたが、正極集電体層24は必須ではない。
 図6は、実施の形態1の変形例を説明するための図であって、図1(a)のII-II断面図である。また、図7(a)、(b)は、実施の形態1の変形例における電池ユニット100の斜視図である。
 実施の形態1の変形例において、電池ユニット100を構成する電池部20は、基板10の一方の面に積層される負極層21と、負極層21に積層される固体電解質層22と、固体電解質層22に積層される正極層23とを備えている。そして、電池部20の他方の端部(図6においては上側)に位置する正極層23は、積層フィルム30の内側露出部36に露出する金属層33と、直接に接触している。
 このような構成を採用することにより、実施の形態1で説明した構成と比較して、リチウムイオン二次電池1の構造を簡易にすることができる。
 ただし、本変形例のように、電池部20に正極集電体層24を設けない構成を採用する場合は、正極層23として、Li1.5Mnよりも金属との接触抵抗が小さいLiNiOを用いることが好ましい。
<実施の形態2>
 実施の形態1では、導電性を有する金属性の基板10を用いることで、基板10を電池部20の負極集電体層として機能させていた。これに対し、本実施の形態は、絶縁性の基板10を用いるとともに、別に負極集電体層を設けるようにしたものである。なお、本実施の形態において、実施の形態1と同様のものについては、同じ符号を付してその詳細な説明を省略する。
[リチウムイオン二次電池の構成]
 図8は、実施の形態2が適用されるリチウムイオン二次電池1の全体構成を説明するための図である。ここで、図8(a)はリチウムイオン二次電池1を正面(表面)からみた図であり、図8(b)はリチウムイオン二次電池1を背面(裏面)からみた図である。
 また、図9は図8(a)のIX-IX断面図を示している。なお、図8(a)は、図9をVIIIA方向からみた図であり、図8(b)は、図9をVIIIB方向からみた図である。
 本実施の形態のリチウムイオン二次電池1も、リチウムイオンを用いた充電および放電を行う電池部20を含む電池ユニット100と、電池部20を内部に収容することで電池部20を外気等から封止する外装部200とを備えている。
[電池ユニットの構成]
 電池ユニット100は、基板10と、基板10の一方の面(表面と称する)に設けられる電池部20とを備えている。本実施の形態の電池ユニット100も、基板10と電池部20とを一体化した構造となっている。
 図10は、本実施の形態における電池ユニット100の構成を説明するための図であり、(a)は正面側(図9においては上側)からみた斜視図を、(b)は背面側(図9においては下側)からみた斜視図を、それぞれ示している。以下では、図8および図9に加えて図10も参照しながら、電池ユニット100の構成を説明する。
[基板]
 本実施の形態では、基板10として、絶縁性を有する無機材料製の板材で構成した。ここで、本実施の形態の基板10としては、例えばアルミナやジルコニア等の多結晶材料、シリカガラス等のアモルファス材料、サファイア等の単結晶材料等を用いることができる。
 基板10の厚さは、50μm以上500μm以下とすることができる。基板10の厚さが50μm未満であると、スパッタ成膜時の取り扱いが困難となる。一方、基板10の厚さが500μmを超えると、電池の厚さおよび重量の増加により体積エネルギー密度および重量エネルギー密度が低下する。本実施の形態では、基板10の厚さを300μmとした。
[電池部]
 電池部20は、基板10の表面(図9においては上側)に積層される負極集電体層25と、負極集電体層25の上に積層される負極層21と、負極層21上に積層される固体電解質層22と、固体電解質層22上に積層される正極層23と、正極層23上に積層される正極集電体層24とを有している。ここで、電池部20の一方の端部(図9において下側)に位置する負極集電体層25は、基板10の表面と接触している。これに対し、電池部20の他方の端部(図9において上側)に位置する正極集電体層24は、後述する積層フィルム30に設けられた金属層33と接触している。なお、電池部20を構成する負極層21、固体電解質層22、正極層23および正極集電体層24については、実施の形態1のところで説明したものと同じものを用いることができるため、ここでは詳細な説明を省略する。
(負極集電体層)
 負極集電体層25は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではなく、例えば、チタン(Ti)、アルミニウム(Al)、銅(Cu)、白金(Pt)、金(Au)などの金属や、これらの合金を含む導電性材料を用いることができる。本実施の形態では、負極集電体層25としてチタン(Ti)を用いた。
 負極集電体層25の厚さは、例えば5nm以上50μm以下とすることができる。負極集電体層25の厚さが5nm未満であると、集電機能が低下し、実用的ではなくなる。一方、負極集電体層25の厚さが50μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。本実施の形態では、負極集電体層25の厚さを200nmとした。
 また、負極集電体層25の製造方法としては、各種PVDや各種CVDなど、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法を用いることが望ましい。
 ここで、負極集電体層25は、基板10の表面の全領域にわたって形成(積層)されている。これに対し、負極集電体層25とともに電池部20を構成する負極層21~正極集電体層24は、負極集電体層25の表面の一部領域に形成(積層)されている。
 そして、本実施の形態では、電池ユニット100と、積層フィルム30からなる外装部200とを、基板10の表面に設けられた負極集電体層25の一部が外部に露出するように貼り合わせることで、リチウムイオン二次電池1を構成している。その結果、負極集電体層25の一部は、外部に露出することで外部との電気的な接続に用いられる露出部25aとなる。
[実施の形態2のまとめ]
 以上説明したように、本実施の形態によれば、基板10を、金属ではなく無機絶縁材料で構成しているので、実施の形態1で説明した効果に加えて、リチウムイオン二次電池1の硬度をより高くしやすく、重量をより軽くしやすくすることができる。また、リチウムイオン二次電池1を収めるケース側への漏電が問題視される場合は、本実施の形態の構成を採用することにより、電池側で絶縁を取ることが可能となる。
[その他]
 なお、上述した実施の形態1の変形例と同じく、本実施の形態においても、正極集電体層24は必須ではなく、電池部20の正極層23と、積層フィルム30の金属層33とを、直接に接触させるようにしてもかまわない。
1…リチウムイオン二次電池、10…基板、20…電池部、21…負極層、22…固体電解質層、23…正極層、24…正極集電体層、30…積層フィルム、31…耐熱性樹脂層、32…外側接着層、33…金属層、34…内側接着層、35…熱融着性樹脂層、36…内側露出部、37…外側露出部、100…電池ユニット、200…外装部

Claims (5)

  1.  正極活物質を含む正極層と、負極活物質を含む負極層と、リチウムイオン伝導性を示す無機固体電解質を含み且つ当該正極層と当該負極層との間に設けられる固体電解質層とを有する電池部と、
     一方の面に前記電池部が積載される基板と、
     金属層と当該金属層に積層される樹脂層とを有し、前記基板の前記一方の面に当該金属層が対向して配置され、当該金属層と前記電池部とを導通させた状態で、当該基板との間で当該電池部を封止する積層フィルムと
    を含むリチウムイオン二次電池。
  2.  前記基板は、前記積層フィルムの前記金属層よりも厚いことを特徴とする請求項1記載のリチウムイオン二次電池。
  3.  前記積層フィルムにおける前記金属層の一部が、前記樹脂層に覆われることなく露出していることを特徴とする請求項1または2記載のリチウムイオン二次電池。
  4.  前記電池部に設けられた前記正極層と、前記積層フィルムに設けられた前記金属層とが、直接に接触していることを特徴とする請求項1乃至3のいずれか1項記載のリチウムイオン二次電池。
  5.  正極活物質を含む正極層と、負極活物質を含む負極層と、リチウムイオン伝導性を示す無機固体電解質を含み且つ当該正極層と当該負極層との間に設けられる固体電解質層とを有する電池部と、
     一方の面に前記電池部が積載されるとともに当該電池部と一体化する基板と、金属層と樹脂層とを積層してなる積層フィルムとを有し、当該金属層と当該電池部とを導通させた状態で、当該基板との間に当該電池部を挟み込むことで当該基板との間で当該電池部を封止する封止部と
    を含むリチウムイオン二次電池。
PCT/JP2018/003132 2017-04-26 2018-01-31 リチウムイオン二次電池 WO2018198461A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/608,616 US20200052342A1 (en) 2017-04-26 2018-01-31 Lithium-ion rechargeable battery
CN201880027421.XA CN110582884A (zh) 2017-04-26 2018-01-31 锂离子二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-087508 2017-04-26
JP2017087508A JP2018186001A (ja) 2017-04-26 2017-04-26 リチウムイオン二次電池

Publications (1)

Publication Number Publication Date
WO2018198461A1 true WO2018198461A1 (ja) 2018-11-01

Family

ID=63919605

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003132 WO2018198461A1 (ja) 2017-04-26 2018-01-31 リチウムイオン二次電池

Country Status (4)

Country Link
US (1) US20200052342A1 (ja)
JP (1) JP2018186001A (ja)
CN (1) CN110582884A (ja)
WO (1) WO2018198461A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158873A1 (ja) 2019-01-30 2020-08-06 凸版印刷株式会社 全固体電池用外装材及びこれを用いた全固体電池
WO2023017683A1 (ja) * 2021-08-11 2023-02-16 昭和電工パッケージング株式会社 全固体電池用外装材および全固体電池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220027499A (ko) * 2020-08-27 2022-03-08 삼성에스디아이 주식회사 전고체 이차전지

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009181807A (ja) * 2008-01-30 2009-08-13 Sony Corp 固体電解質、および固体電解質電池、並びにリチウムイオン伝導体の製造方法、固体電解質の製造方法、および固体電解質電池の製造方法
JP2009544141A (ja) * 2006-07-18 2009-12-10 シンベット・コーポレイション フォトリソグラフィーによるソリッドステートマイクロ電池の製造、シンギュレーション及びパッシベーションの方法及び装置
JP2013521602A (ja) * 2010-03-01 2013-06-10 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ マイクロ電池及びその製造方法
JP2015228365A (ja) * 2014-05-08 2015-12-17 昭和電工パッケージング株式会社 電気化学デバイス
JP2016143520A (ja) * 2015-01-30 2016-08-08 古河機械金属株式会社 全固体型リチウムイオン二次電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009544141A (ja) * 2006-07-18 2009-12-10 シンベット・コーポレイション フォトリソグラフィーによるソリッドステートマイクロ電池の製造、シンギュレーション及びパッシベーションの方法及び装置
JP2009181807A (ja) * 2008-01-30 2009-08-13 Sony Corp 固体電解質、および固体電解質電池、並びにリチウムイオン伝導体の製造方法、固体電解質の製造方法、および固体電解質電池の製造方法
JP2013521602A (ja) * 2010-03-01 2013-06-10 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブ マイクロ電池及びその製造方法
JP2015228365A (ja) * 2014-05-08 2015-12-17 昭和電工パッケージング株式会社 電気化学デバイス
JP2016143520A (ja) * 2015-01-30 2016-08-08 古河機械金属株式会社 全固体型リチウムイオン二次電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158873A1 (ja) 2019-01-30 2020-08-06 凸版印刷株式会社 全固体電池用外装材及びこれを用いた全固体電池
CN113330627A (zh) * 2019-01-30 2021-08-31 凸版印刷株式会社 全固体电池用封装材料以及使用了该封装材料的全固体电池
WO2023017683A1 (ja) * 2021-08-11 2023-02-16 昭和電工パッケージング株式会社 全固体電池用外装材および全固体電池

Also Published As

Publication number Publication date
US20200052342A1 (en) 2020-02-13
JP2018186001A (ja) 2018-11-22
CN110582884A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
JP5395749B2 (ja) 二次電池
JP4828458B2 (ja) シーリング部の安全性が向上した二次電池
JP5534609B2 (ja) 二次電池
EP2899771B1 (en) Pouch-type secondary battery having sealing margin for improved durability
EP2434564A2 (en) Rechargeable lithium battery in pouch form
US11545707B2 (en) Battery case comprising various kinds of metal barrier layers and battery cell including the same
JP5363444B2 (ja) 二次電池及びその製造方法
WO2005086258A1 (ja) フィルム外装電気デバイスおよび該フィルム外装電気デバイス用の集電部被覆部材
KR101797338B1 (ko) 2차 전지
JP2015230812A (ja) 電気化学セル
US20230109891A1 (en) Solid state battery and method of manufacturing solid state battery
JP2010033922A (ja) 積層型二次電池
WO2018198461A1 (ja) リチウムイオン二次電池
KR101175057B1 (ko) 리튬 폴리머 이차 전지
JP2018092885A (ja) リチウムイオン二次電池、リチウムイオン二次電池の製造方法
JP2018098167A (ja) リチウムイオン二次電池、リチウムイオン二次電池の電池構造、リチウムイオン二次電池の製造方法
WO2005101546A1 (ja) ラミネート型電池、接合端子、組電池、および組電池の製造方法
KR100995544B1 (ko) 전지 외장재 및 이를 이용한 파우치형 이차 전지
JP4069885B2 (ja) フィルム外装電池の製造装置およびフィルム外装電池の製造方法
KR100635759B1 (ko) 파우치형 리튬 이차 전지
WO2022085682A1 (ja) 二次電池
WO2018096817A1 (ja) リチウムイオン二次電池、リチウムイオン二次電池の製造方法
WO2021230206A1 (ja) 二次電池
WO2021235451A1 (ja) 固体電池および固体電池用の外装体
WO2018110130A1 (ja) リチウムイオン二次電池、リチウムイオン二次電池の電池構造、リチウムイオン二次電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18791865

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18791865

Country of ref document: EP

Kind code of ref document: A1