WO2018096817A1 - リチウムイオン二次電池、リチウムイオン二次電池の製造方法 - Google Patents

リチウムイオン二次電池、リチウムイオン二次電池の製造方法 Download PDF

Info

Publication number
WO2018096817A1
WO2018096817A1 PCT/JP2017/036836 JP2017036836W WO2018096817A1 WO 2018096817 A1 WO2018096817 A1 WO 2018096817A1 JP 2017036836 W JP2017036836 W JP 2017036836W WO 2018096817 A1 WO2018096817 A1 WO 2018096817A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode layer
solid electrolyte
battery
negative electrode
Prior art date
Application number
PCT/JP2017/036836
Other languages
English (en)
French (fr)
Inventor
坂脇 彰
安田 剛規
広治 南谷
Original Assignee
昭和電工株式会社
昭和電工パッケージング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017094347A external-priority patent/JP2018092885A/ja
Application filed by 昭和電工株式会社, 昭和電工パッケージング株式会社 filed Critical 昭和電工株式会社
Priority to CN201780064778.0A priority Critical patent/CN109845017A/zh
Priority to US16/345,338 priority patent/US20190252717A1/en
Publication of WO2018096817A1 publication Critical patent/WO2018096817A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium ion secondary battery and a method for manufacturing a lithium ion secondary battery.
  • a battery unit including a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, an electrolyte having lithium ion conductivity and interposed between the positive electrode and the negative electrode;
  • Patent Document 1 describes that an exterior part is configured by heat-sealing heat-seal films using a laminate exterior material formed by laminating a metal foil layer and a heat-sealable resin layer. Yes.
  • Patent Document 2 describes that a solid electrolyte made of an inorganic material is used as an electrolyte, and that the negative electrode, the solid electrolyte, and the positive electrode are all formed of a thin film.
  • An object of the present invention is to simplify the configuration of a thin-film lithium ion secondary battery including a solid electrolyte.
  • a lithium ion secondary battery to which the present invention is applied includes a conductive substrate, a first electrode layer that is stacked on one surface of the substrate, and stores and releases lithium ions with a first polarity, A solid electrolyte layer having an inorganic solid electrolyte exhibiting lithium ion conductivity laminated on one electrode layer, and a lithium ion is occluded and released with a second polarity opposite to the first polarity.
  • a resin layer laminated on the metal layer so that an exposed portion from which a part of the metal layer is exposed is formed on one surface of the metal layer; And the battery layer is sealed in a state where the metal layer is electrically connected to the second electrode layer at the exposed portion and the metal layer is electrically insulated from the substrate.
  • the battery unit is stacked on the other surface of the substrate, and the other first electrode layer that occludes and releases lithium ions with the first polarity;
  • Another solid electrolyte layer having an inorganic solid electrolyte exhibiting lithium ion conductivity laminated on one electrode layer, and another layer that is laminated on the other solid electrolyte layer and occludes and releases lithium ions in the second polarity.
  • the battery part is arranged on the inner side of the laminated film bent so that the resin layer is on the inner side, and the battery part is sealed by fusing the resin layer.
  • a part of the substrate may be exposed without being covered with the laminated film.
  • the second electrode layer provided in the battery part and the metal layer exposed at the exposed part of the laminated film are in direct contact with each other.
  • the method for producing a lithium ion secondary battery according to the present invention includes a step of forming a first electrode layer that occludes and releases lithium ions with a first polarity on one surface of a substrate.
  • the first electrode layer is formed by fusing the resin layer in a state in which a laminated film including a resin layer to be laminated is arranged so that the metal layer exposed to the exposed portion faces the second electrode layer. Sealing the solid electrolyte layer and the second electrode layer There.
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. (A), (b) is a perspective view of the battery unit in Embodiment 1.
  • FIG. (A), (b) is a perspective view of the laminated
  • FIG. 7 is a sectional view taken along line VII-VII in FIG.
  • FIG. (A), (b) is a perspective view of the battery unit in Embodiment 2.
  • FIG. (A), (b) is a perspective view of the laminated
  • FIG. It is a figure for demonstrating the modification of Embodiment 1, Comprising: It is II-II sectional drawing of Fig.1 (a).
  • (A), (b) is a perspective view of the battery unit in the modification of Embodiment 1.
  • FIG. 7 is a diagram for explaining a modification of the second embodiment, and is a cross-sectional view taken along the line VII-VII in FIG. (A), (b) is a perspective view of the battery unit in the modification of Embodiment 2.
  • FIG. 1 is a diagram for explaining the overall configuration of a lithium ion secondary battery 1 to which the exemplary embodiment is applied.
  • FIG. 1A is a diagram of the lithium ion secondary battery 1 viewed from the front (front surface)
  • FIG. 1B is a diagram of the lithium ion secondary battery 1 viewed from the back (back).
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG. 1A is a diagram when FIG. 2 is viewed from the IA direction
  • FIG. 1B is a diagram when FIG. 2 is viewed from the IB direction.
  • the lithium ion secondary battery 1 of the present embodiment includes a battery unit 50 including a battery unit 10 that performs charging and discharging using lithium ions, and the battery unit 10 from the outside air by housing the battery unit 10 therein. And an exterior portion 30 to be sealed.
  • the lithium ion secondary battery 1 of the present embodiment has a rectangular parallelepiped shape (actually a card shape) when viewed as a whole.
  • the battery unit 50 includes a substrate 5 that functions as one electrode (here, a positive electrode) in the lithium ion secondary battery 1 and a battery unit 10 that is provided on one surface (referred to as a surface) of the substrate 5. Yes.
  • the battery unit 10 since the battery unit 10 is formed on the surface of the substrate 5 by sputtering, the battery unit 50 has a structure in which the substrate 5 and the battery unit 10 are integrated. Yes.
  • FIG. 3A and 3B are diagrams for explaining the configuration of the battery unit 50 according to the present embodiment.
  • FIG. 3A is a perspective view seen from the front side (the upper side in FIG. 2)
  • FIG. FIG. 2 is a perspective view seen from the lower side.
  • the configuration of the battery unit 50 will be described with reference to FIG. 3 in addition to FIGS. 1 and 2.
  • the substrate 5 is a thin plate-like member having conductivity and is not particularly limited as long as it is suitable for film formation by sputtering.
  • various metal plates can be used.
  • the substrate 5 is used for forming the battery unit 10 by sputtering, it is preferable to use a stainless steel foil having high mechanical strength.
  • a metal foil plated with a conductive metal such as nickel, tin, copper, or chromium may be used.
  • a stainless steel foil is used as the substrate 5.
  • the thickness of the substrate 5 can be 20 ⁇ m or more and 200 ⁇ m or less.
  • the thickness of the substrate 5 is less than 20 ⁇ m, pinholes and tears are likely to occur during rolling and heat sealing when manufacturing a metal foil, and the electrical resistance value when used as a positive electrode increases. End up.
  • the thickness of the substrate 5 exceeds 200 ⁇ m, the volume energy density and the weight energy density decrease due to the increase in the thickness and weight of the battery. In addition, the flexibility of the battery is reduced.
  • the thickness of the substrate 5 is 30 ⁇ m.
  • the battery unit 10 includes a positive electrode layer 11 stacked on the surface of the substrate 5 (upper side in FIG. 2), a solid electrolyte layer 12 stacked on the positive electrode layer 11, and a negative electrode layer stacked on the solid electrolyte layer 12. 13 and a negative electrode current collector layer 14 laminated on the negative electrode layer 13.
  • the positive electrode layer 11 located at one end (lower side in FIG. 2) of the battery unit 10 is in contact with the surface of the substrate 5.
  • the negative electrode current collector layer 14 located at the other end (upper side in FIG. 2) of the battery unit 10 is in contact with a metal layer 313 provided on a laminated film 31 described later.
  • the positive electrode layer 11 as an example of the first electrode layer is a solid thin film, and is particularly limited as long as it includes a positive electrode active material that occludes and releases lithium ions with positive polarity as an example of the first polarity.
  • a positive electrode active material that occludes and releases lithium ions with positive polarity as an example of the first polarity.
  • Mn manganese
  • Co cobalt
  • Ni nickel
  • Fe iron
  • Mo molybdenum
  • V vanadium
  • Li 2 Mn 2 O 4 was used as the positive electrode layer 11.
  • the thickness of the positive electrode layer 11 can be, for example, 10 nm or more and 40 ⁇ m or less. When the thickness of the positive electrode layer 11 is less than 10 nm, the capacity of the battery unit 10 to be obtained becomes too small and becomes impractical. On the other hand, when the thickness of the positive electrode layer 11 exceeds 40 ⁇ m, it takes too much time to form the layer, and the productivity is lowered. In the present embodiment, the thickness of the positive electrode layer 11 is 600 nm.
  • the positive electrode layer 11 may have a crystal structure or an amorphous material having no crystal structure, but the expansion and contraction associated with the insertion and extraction of lithium ions is more isotropic. In terms, it is preferably amorphous.
  • a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, a sputtering method may be used. It is desirable to use (sputtering). In this case, a DC sputtering method or an RF sputtering method may be employed depending on the sputtering target used when forming the positive electrode layer 11. However, when the above Li 2 Mn 2 O 4 is used as the positive electrode layer 11, it is preferable to employ an RF sputtering method.
  • the solid electrolyte layer 12 is not particularly limited as long as it is a solid thin film composed of an inorganic material (inorganic solid electrolyte) and exhibits lithium ion conductivity. Oxide, nitride, sulfide For example, those composed of various materials can be used. In the present embodiment, LiPON (Li x PO y N z ) in which a part of oxygen in Li 3 PO 4 is replaced with nitrogen is used as the solid electrolyte layer 12.
  • the thickness of the solid electrolyte layer 12 can be, for example, 10 nm or more and 10 ⁇ m or less. When the thickness of the solid electrolyte layer 12 is less than 10 nm, leakage between the positive electrode layer 11 and the negative electrode layer 13 is likely to occur in the obtained battery unit 10. On the other hand, when the thickness of the solid electrolyte layer 12 exceeds 10 ⁇ m, the moving distance of lithium ions becomes long and the charge / discharge rate becomes slow. In the present embodiment, the thickness of the solid electrolyte layer 12 is 200 nm.
  • the solid electrolyte layer 12 may have a crystal structure or an amorphous material having no crystal structure. However, the solid electrolyte layer 12 is amorphous in that the expansion and contraction due to heat becomes more isotropic. Preferably there is.
  • a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, sputtering is possible. It is desirable to use the method (sputtering). In this case, since there are many insulators in the sputtering target used when forming the solid electrolyte layer 12, it is preferable to employ the RF sputtering method.
  • the negative electrode layer 13 as an example of the second polar layer is a solid thin film, and is particularly limited as long as it includes a negative electrode active material that absorbs and releases lithium ions with a negative polarity as an example of the second polarity.
  • a negative electrode active material that absorbs and releases lithium ions with a negative polarity as an example of the second polarity.
  • carbon (C) or silicon (Si) can be used.
  • silicon (Si) to which boron (B) is added is used as the negative electrode layer 13.
  • the thickness of the negative electrode layer 13 can be, for example, 10 nm or more and 40 ⁇ m or less. If the thickness of the negative electrode layer 13 is less than 10 nm, the capacity of the battery unit 10 to be obtained becomes too small and becomes impractical. On the other hand, when the thickness of the negative electrode layer 13 exceeds 40 ⁇ m, it takes too much time to form the layer, and productivity is lowered. In the present embodiment, the thickness of the negative electrode layer 13 is 100 nm.
  • the negative electrode layer 13 may have a crystal structure or may be an amorphous material having no crystal structure, but the expansion and contraction associated with insertion and extraction of lithium ions is more isotropic. In terms, it is preferably amorphous.
  • a known film forming method such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition) may be used, but from the viewpoint of production efficiency, a sputtering method may be used. It is desirable to use (sputtering). In this case, since there are many semiconductors in the sputtering target for forming the negative electrode layer 13, it is preferable to employ the DC sputtering method.
  • the negative electrode current collector layer 14 is not particularly limited as long as it is a solid thin film and has electron conductivity.
  • titanium (Ti), aluminum (Al), copper (Cu), platinum A conductive material containing a metal such as (Pt) or gold (Au) or an alloy thereof can be used.
  • titanium (Ti) is used as the negative electrode current collector layer 14.
  • the thickness of the negative electrode current collector layer 14 can be, for example, 5 nm or more and 50 ⁇ m or less. When the thickness of the negative electrode current collector layer 14 is less than 5 nm, the current collecting function is lowered, which is not practical. On the other hand, when the thickness of the negative electrode current collector layer 14 exceeds 50 ⁇ m, it takes too much time to form the layer, and productivity is lowered. In the present embodiment, the thickness of the negative electrode current collector layer 14 is 200 nm.
  • the negative electrode collector layer 14 As a manufacturing method of the negative electrode collector layer 14, you may use well-known film-forming methods, such as various PVD (physical vapor deposition) and various CVD (chemical vapor deposition), but if it is from a viewpoint of production efficiency. It is desirable to use a sputtering method (sputtering). In this case, since the sputter target for forming the negative electrode current collector layer 14 is metal (Ti), it is preferable to employ a DC sputtering method.
  • the exterior part 30 has a laminated film 31 formed by laminating a plurality of layers, and a heat-sealing film 33 for heat-sealing the laminated film 31 and the battery unit 50 (more specifically, the substrate 5). is doing. Then, the exterior part 30 folds the laminated film 31 in two, and with the battery unit 50 disposed inside, the laminated film 31 and the heat-sealing film 33 are thermally fused over the entire periphery of the battery part 10. The battery part 10 is sealed by wearing. However, the exterior part 30 seals the battery part 10 in a state where one end of the substrate 5 in the battery unit 50 is exposed to the outside.
  • FIG. 4A and 4B are diagrams for explaining the configuration of the laminated film 31 according to the present embodiment.
  • FIG. 4A is a perspective view of a portion that is inside when the laminated film 31 is folded in two, and FIG. The perspective view of the site
  • FIG. 4 the structure of the laminated film 31 is demonstrated, referring FIG. 4 in addition to FIG. 1 thru
  • the laminated film 31 is configured by laminating a heat resistant resin layer 311, an outer adhesive layer 312, a metal layer 313, an inner adhesive layer 314, and a heat-fusible resin layer 315 in this order. ing. That is, the laminated film 31 is configured by bonding the heat-resistant resin layer 311, the metal layer 313, and the heat-fusible resin layer 315 through the outer adhesive layer 312 and the inner adhesive layer 314.
  • An inner exposed portion 316 is provided as an example of an exposed portion where a part of the surface (inner surface) is exposed.
  • the inner exposed portion 316 is a portion for accommodating the battery portion 10 of the battery unit 50.
  • outer adhesive layer 312 and the heat resistant resin layer 311 are not present on the surface of the laminated film 31 where the heat resistant resin layer 311 is formed (outside in the exterior part 30), so that the other surface of the metal layer 313 (outside The outer exposed portion 317 is provided to partially expose the surface.
  • the heat-resistant resin layer 311 is the outermost layer in the exterior portion 30, has high resistance to external piercing and abrasion, and does not melt at the fusion temperature when the heat-fusible resin layer 315 is heat-sealed.
  • a heat resistant resin is used.
  • the heat-resistant resin layer 311 it is preferable to use a heat-resistant resin whose melting point is higher by 10 ° C. or more than the melting point of the heat-fusible resin constituting the heat-fusible resin layer 315. It is particularly preferable to use a heat-resistant resin having a melting point of 20 ° C. or more higher than the melting point of.
  • an insulating resin having a high electrical resistance value is used as the heat resistant resin layer 311 from the viewpoint of safety. Used.
  • the heat resistant resin layer 311 For example, a polyamide film, a polyester film, etc. are mentioned, These stretched films are used preferably. Among them, in terms of moldability and strength, a biaxially stretched polyamide film or a biaxially stretched polyester film, or a multilayer film containing these is particularly preferable, and the biaxially stretched polyamide film and the biaxially stretched polyester film are bonded together. It is preferable to use a multilayer film.
  • the polyamide film is not particularly limited, and examples thereof include 6-polyamide film, 6,6-polyamide film, MXD polyamide film and the like.
  • biaxially stretched polyester film examples include a biaxially stretched polybutylene terephthalate (PBT) film and a biaxially stretched polyethylene terephthalate (PET) film.
  • PBT polybutylene terephthalate
  • PET biaxially stretched polyethylene terephthalate
  • a nylon film (melting point: 220 ° C.) is used as the heat resistant resin layer 311.
  • the thickness of the heat resistant resin layer 311 can be 9 ⁇ m or more and 50 ⁇ m. When the thickness of the heat resistant resin layer 311 is less than 9 ⁇ m, it is difficult to ensure sufficient strength as the exterior portion 30 of the battery portion 10. On the other hand, when the thickness of the heat resistant resin layer 311 exceeds 50 ⁇ m, the battery becomes thick, which is not preferable. In addition, the manufacturing cost increases. In the present embodiment, the thickness of the heat resistant resin layer 311 is set to 25 ⁇ m.
  • the outer adhesive layer 312 is a layer for adhering the heat resistant resin layer 311 and the metal layer 313.
  • an adhesive containing a two-component curable polyester-urethane resin or a polyether-urethane resin using a polyester resin as a main agent and a polyfunctional isocyanate compound as a curing agent is used. Is preferred.
  • a two-component curable polyester-urethane adhesive is used as the outer adhesive layer 312.
  • the metal layer 313 prevents (barriers) entry of oxygen, moisture, and the like from the exterior of the exterior part 30 to the battery part 10 disposed therein. It is a layer that plays a role. Further, as will be described later, the metal layer 313 serves as a negative internal electrode of the battery unit 10 and serves as a negative external electrode that is electrically connected to a load (not shown) provided outside. And bear further. Therefore, a conductive metal foil is used for the metal layer 313.
  • metal layer 313 Although it does not specifically limit as the metal layer 313, For example, aluminum foil, copper foil, nickel foil, stainless steel foil, or this clad foil, these annealing foil or unannealed foil etc. are used preferably. Alternatively, a metal foil plated with a conductive metal such as nickel, tin, copper, or chromium may be used. In the present embodiment, as the metal layer 313, an aluminum foil made of an A8021H-O material defined by JIS H4160 is used as the metal layer 313, an aluminum foil made of an A8021H-O material defined by JIS H4160 is used.
  • the thickness of the metal layer 313 can be 20 ⁇ m or more and 200 ⁇ m or less. If the thickness of the metal layer 313 is less than 20 ⁇ m, pinholes and tears are likely to occur during rolling and heat sealing when manufacturing a metal foil, and the electrical resistance value when used as an electrode is increased. . On the other hand, when the thickness of the metal layer 313 exceeds 200 ⁇ m, a gap is easily formed in the folded portion when the laminated film 31 is folded in two. In addition, heat may be dispersed during heat fusion, resulting in incomplete heat fusion. In the present embodiment, the thickness of the metal layer 313 is 40 ⁇ m.
  • the inner adhesive layer 314 is a layer for bonding the metal layer 313 and the heat-fusible resin layer 315.
  • the inner adhesive layer 314 for example, it is preferable to use an adhesive formed of a polyurethane adhesive, an acrylic adhesive, an epoxy adhesive, a polyolefin adhesive, an elastomer adhesive, a fluorine adhesive, or the like. .
  • an acrylic adhesive or a polyolefin adhesive it is preferable to use an acrylic adhesive or a polyolefin adhesive. In this case, the barrier property of the laminated film 31 against water vapor can be improved.
  • an acid-modified adhesive such as polypropylene or polyethylene. In this embodiment, an acid-modified polypropylene adhesive is used as the inner adhesive layer 314.
  • the heat-fusible resin layer 315 as an example of the resin layer is the innermost layer in the exterior portion 30, has high resistance to the material constituting each layer of the battery portion 10, and melts at the above-mentioned fusion temperature to perform heat fusion.
  • a thermoplastic resin that is fused to the adhesive film 33 is used.
  • the heat-fusible resin layer 315 has an insulating property with a high electric resistance value. Resin is used.
  • the heat-fusible resin layer 315 is not particularly limited, and for example, polyethylene, polypropylene, olefin copolymers, acid-modified products thereof, ionomers, and the like are preferably used.
  • the olefin copolymer include EVA (ethylene / vinyl acetate copolymer), EAA (ethylene / acrylic acid copolymer), and EMAA (ethylene / methacrylic acid copolymer).
  • a polyamide film for example, 12 nylon
  • a polyimide film can be used.
  • a non-axially stretched polypropylene film (melting point: 165 ° C.) is used as the heat-fusible resin layer 315.
  • the thickness of the heat-fusible resin layer 315 can be 20 ⁇ m or more and 80 ⁇ m or less. If the thickness of the heat-fusible resin layer 315 is less than 20 ⁇ m, pinholes are likely to occur. On the other hand, when the thickness of the heat-fusible resin layer 315 exceeds 80 ⁇ m, the battery becomes thick, which is not preferable. Moreover, since heat insulation improves, heat fusion may become incomplete. In the present embodiment, the thickness of the heat-fusible resin layer 315 is 30 ⁇ m.
  • the heat-sealing film 33 is a layer (film) for heat-sealing the substrate 5 and the heat-fusible resin layer 315 in the laminated film 31.
  • the heat-sealing film for example, an acid-modified olefin film or the like is preferably used.
  • a film made of maleic anhydride-modified polypropylene (thickness 50 to 150 ⁇ m) having high adhesion to metal is used. It is preferable.
  • the negative electrode current collector layer 14 of the battery unit 10 is electrically connected to a portion of the one surface (inner surface) of the metal layer 313 provided on the laminated film 31 that is exposed to the inner exposed portion 316. A part of the other surface (outer surface) of the metal layer 313 provided in the laminated film 31 is exposed to the outside at the outer exposed portion 317, and this portion is provided outside as a negative electrode. It can be electrically connected to a load (not shown).
  • the substrate 5 becomes the positive electrode of the lithium ion secondary battery 1
  • the metal layer 313 provided on the laminated film 31 becomes the negative electrode of the lithium ion secondary battery 1.
  • the substrate 5 on the positive electrode side and the metal layer 313 on the negative electrode side are electrically insulated by the heat-fusible resin layer 315 provided on the laminated film 31 and the heat-sealing film 33. ing.
  • FIG. 5 is a flowchart for explaining a method of manufacturing the lithium ion secondary battery 1 shown in FIG.
  • the battery unit 10 is formed on the surface of the substrate 5 (step 10). That is, by forming the positive electrode layer 11, the solid electrolyte layer 12, the negative electrode layer 13, and the negative electrode current collector layer 14 in this order on the surface of the substrate 5, the battery unit 50 including the substrate 5 and the battery unit 10 is obtained. . Details of step 10 will be described later.
  • thermofusion film attachment process Next, among the battery units 50 obtained in step 10, heat fusion is performed over the entire circumference of the substrate 5 to a portion that later becomes a boundary between a portion where the substrate 5 is covered by the exterior portion 30 and a portion that is not covered.
  • the film 33 is attached (step 20).
  • the battery unit 50 to which the heat-sealing film 33 is attached and the laminated film 31 are introduced into a work box filled with an inert gas such as N 2 gas. Then, the negative electrode current collector layer 14 provided in the battery unit 10 of the battery unit 50 and the inner exposed part 316 provided in the laminated film 31 are opposed to each other. Then, the laminated film 31 is folded in half so that the battery unit 50 is located inside and one end of the substrate 5 is exposed to the outside.
  • an inert gas such as N 2 gas
  • the heat-fusible resin layers 315 in the laminated film 31 and the heat-fusible resin layer 315 and the heat-sealing film 33 attached to the battery unit 50 It fuse
  • the heat-fusible resin layer 315 and the heat-sealing film 33 are heat-sealed, so that the lithium ion secondary including the substrate 5, the battery part 10, and the exterior part 30 that seals the battery part 10. Battery 1 is obtained.
  • the substrate 5 and the battery unit 10 are joined (integrated) by film formation by a sputtering method.
  • the negative electrode current collector layer 14 of the battery unit 10 and the metal layer 313 of the laminated film 31 are the heat fusible resin layers 315 of the laminated film 31 and the heat fusible resin layer 315 and the heat fusible film 33. Are in close contact with each other by heat fusion with a negative pressure.
  • the substrate 5 was placed in a film forming chamber (chamber) of a sputtering apparatus (not shown). At this time, the surface of the substrate 5 was made to face the sputtering target. After the substrate 5 was placed in the chamber, Ar gas containing 5% O 2 gas was introduced to adjust the pressure in the chamber to 0.8 Pa. Then, the positive electrode layer 11 was formed (film formation) on the surface of the substrate 5 by RF sputtering using a sputtering target having a composition of Li 2 Mn 2 O 4 .
  • the film composition of the positive electrode layer 11 thus obtained was Li 2 Mn 2 O 4 , the thickness was 600 nm, and the crystal structure was amorphous.
  • the negative electrode layer 13 was formed (film formation) on the solid electrolyte layer 12 by DC sputtering using a sputtering target (P-type Si target) made of silicon (Si) doped with boron (B). .
  • the film composition of the negative electrode layer 13 thus obtained was Si doped with B, the thickness was 100 nm, and the crystal structure was amorphous.
  • the negative electrode current collector layer 14 is formed on the negative electrode layer 13 by DC sputtering using a sputtering target made of titanium (Ti) in a state where Ar gas is introduced and the pressure in the chamber is 0.8 Pa. (Film formation) was performed.
  • the negative electrode current collector layer 14 thus obtained had a film composition of Ti and a thickness of 200 nm.
  • the battery unit 50 formed by forming the battery part 10 on the surface of the substrate 5 was obtained by the above procedure. Then, the obtained battery unit 50 was taken out from the chamber.
  • the battery unit 10 is formed on the surface of the metal substrate 5, and the battery unit 10 is accommodated in the exterior unit 30.
  • the battery unit 10 and the metal layer 313 provided in the exterior unit 30 are electrically connected. Therefore, simplification of the structure of the lithium ion secondary battery 1 in which the solid electrolyte layer 12 was provided in the battery part 10 can be achieved.
  • the lithium ion secondary battery 1 is configured by housing a single battery unit 10 in the exterior unit 30.
  • a plurality of battery parts are accommodated in the exterior part 30, and the plurality of battery parts are connected in parallel using the substrate 5 and the exterior part 30, so that lithium having a larger capacity is obtained.
  • the ion secondary battery 1 is configured.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the battery unit 10 is referred to as a first battery unit 10.
  • the positive electrode layer 11, the solid electrolyte layer 12, the negative electrode layer 13, and the negative electrode current collector layer 14 are respectively composed of the first positive electrode layer 11, the first solid electrolyte layer 12, the first negative electrode layer 13, and This will be referred to as the first negative electrode current collector layer 14.
  • the inner exposed portion 316 provided in the laminated film 31 is referred to as a first inner exposed portion 316.
  • FIG. 6 is a diagram for explaining the overall configuration of the lithium ion secondary battery 1 to which the present exemplary embodiment is applied.
  • FIG. 6A is a diagram of the lithium ion secondary battery 1 viewed from the front (front surface)
  • FIG. 6B is a diagram of the lithium ion secondary battery 1 viewed from the back (back).
  • FIG. 7 shows a sectional view taken along line VII-VII in FIG. 6A is a diagram when FIG. 7 is viewed from the VIA direction
  • FIG. 6B is a diagram when FIG. 7 is viewed from the VIB direction.
  • the lithium ion secondary battery 1 of the present embodiment includes a battery unit 50 including a first battery unit 10 and a second battery unit 20 that perform charging and discharging using lithium ions, and a first battery unit 10 and a second battery.
  • the exterior part 30 which seals these 1st battery parts 10 and the 2nd battery parts 20 from external air etc. by accommodating the part 20 inside is provided.
  • the lithium ion secondary battery 1 of the present embodiment has a rectangular parallelepiped shape (actually a card shape) when viewed as a whole. In the present embodiment, both the first battery unit 10 and the second battery unit 20 function as “battery units”.
  • the battery unit 50 includes a substrate 5 functioning as one electrode (here, a positive electrode) in the lithium ion secondary battery 1, a first battery unit 10 provided on one surface (referred to as a surface) of the substrate 5, And a second battery unit 20 provided on the other surface (referred to as the back surface) of the substrate 5.
  • the battery unit 50 since the first battery unit 10 and the second battery unit 20 are formed on the front and back surfaces of the substrate 5 by sputtering, the battery unit 50 includes the substrate 5, the first battery unit 10, and the second battery unit 50.
  • the battery unit 20 is integrated.
  • FIGS. 8A and 8B are diagrams for explaining the configuration of the battery unit 50 according to the present embodiment.
  • FIG. 8A is a perspective view seen from the front side (the upper side in FIG. 7)
  • FIG. 7 is a perspective view seen from the lower side.
  • the configuration of the battery unit 50 will be described with reference to FIG. 8 in addition to FIGS. 6 and 7.
  • the substrate 5 is not particularly limited as long as it is a thin plate member having conductivity and is suitable for film formation by sputtering.
  • the materials described in the first embodiment can be used.
  • a stainless foil having a thickness of 30 ⁇ m is used as the substrate 5.
  • the first battery unit 10 includes a first positive electrode layer 11 stacked on the surface of the substrate 5 (upper side in FIG. 7), a first solid electrolyte layer 12 stacked on the first positive electrode layer 11, and a first solid. It has the 1st negative electrode layer 13 laminated
  • the first positive electrode layer 11 located at one end (lower side in FIG. 7) of the first battery unit 10 is in contact with the surface of the substrate 5.
  • the first negative electrode current collector layer 14 located at the other end (upper side in FIG. 7) of the first battery unit 10 is in contact with the metal layer 313 provided on the laminated film 31.
  • the first positive electrode layer 11, the first solid electrolyte layer 12, the first negative electrode layer 13, and the first negative electrode current collector layer 14 constituting the first battery unit 10 have been described in the first embodiment. Materials can be used.
  • Li 2 Mn 2 O 4 (amorphous) having a thickness of 600 nm is used as the first positive electrode layer 11, and LiPON (Li x PO y N z ) (amorphous) having a thickness of 200 nm is used as the first solid electrolyte layer 12.
  • the second battery unit 20 includes a second positive electrode layer 21 stacked on the back surface (lower side in FIG. 7) of the substrate 5, a second solid electrolyte layer 22 stacked on the second positive electrode layer 21, and a second It has the 2nd negative electrode layer 23 laminated
  • the second positive electrode layer 21 located at one end (the upper side in FIG. 7) of the second battery unit 20 is in contact with the back surface of the substrate 5.
  • the second negative electrode current collector layer 24 located on the other end (lower side in FIG. 7) of the second battery unit 20 is in contact with the metal layer 313 provided on the laminated film 31. .
  • the 2nd positive electrode layer 21 as an example of another 1st polar layer is a solid thin film, and contains the positive electrode active material which occludes and discharge
  • the material described in the first positive electrode layer 11 can be used.
  • the second positive electrode layer 21 and the first positive electrode layer 11 may be made of the same material or different materials.
  • the thickness of the second positive electrode layer 21 may be the same as that of the first positive electrode layer 11 or may be different. However, from the viewpoint of balancing the capacities of the first battery unit 10 and the second battery unit 20, it is preferable to make them the same.
  • Li 2 Mn 2 O 4 (amorphous) having a thickness of 600 nm is used as the second positive electrode layer 21.
  • the 2nd positive electrode layer 21 it may be the same as the 1st positive electrode layer 11, and may differ, but it is preferable that it is the same from a viewpoint of production efficiency, Furthermore, it is more preferable to form the first positive electrode layer 11 and the second positive electrode layer 21 simultaneously.
  • the second solid electrolyte layer 22 as an example of another solid electrolyte layer is not particularly limited as long as it is a solid thin film made of an inorganic material and exhibits lithium ion conductivity.
  • the material described in the first solid electrolyte layer 12 can be used.
  • the second solid electrolyte layer 22 and the first solid electrolyte layer 12 may be made of the same material or different materials.
  • the thickness of the second solid electrolyte layer 22 may be the same as that of the first solid electrolyte layer 12 or may be different. However, from the viewpoint of balancing the capacities of the first battery unit 10 and the second battery unit 20, it is preferable to make them the same.
  • LiPON (Li x PO y N z ) (amorphous) having a thickness of 200 nm is used as the second solid electrolyte layer 22.
  • the manufacturing method of the second solid electrolyte layer 22 may be the same as or different from that of the first solid electrolyte layer 12, but may be the same from the viewpoint of production efficiency. Further, it is more preferable to form the first solid electrolyte layer 12 and the second solid electrolyte layer 22 at the same time.
  • the 2nd negative electrode layer 23 as an example of another 2nd polar layer is a solid thin film, and contains the negative electrode active material which occludes and discharge
  • the materials described in the first negative electrode layer 13 can be used.
  • the second negative electrode layer 23 and the first negative electrode layer 13 may be made of the same material or different materials.
  • the thickness of the second negative electrode layer 23 may be the same as that of the first negative electrode layer 13 or may be different. However, from the viewpoint of balancing the capacities of the first battery unit 10 and the second battery unit 20, it is preferable to make them the same.
  • silicon (Si) (amorphous) to which boron (B) having a thickness of 100 nm is added is used as the second negative electrode layer 23.
  • the 2nd negative electrode layer 23 may be the same as the 1st negative electrode layer 13, and may differ, but it is preferable that it is the same from a viewpoint of production efficiency, Furthermore, it is more preferable to form the first negative electrode layer 13 and the second negative electrode layer 23 simultaneously.
  • the second negative electrode current collector layer 24 is not particularly limited as long as it is a solid thin film and has electronic conductivity.
  • the materials described in the first negative electrode current collector layer 14 can be used.
  • the second negative electrode current collector layer 24 and the first negative electrode current collector layer 14 may be made of the same material or different materials.
  • the thickness of the second negative electrode current collector layer 24 may be the same as that of the first negative electrode current collector layer 14 or may be different. However, from the viewpoint of balancing the capacities of the first battery unit 10 and the second battery unit 20, it is preferable to make them the same.
  • titanium (Ti) having a thickness of 100 nm is used as the second negative electrode current collector layer 24.
  • the 2nd negative electrode collector layer 24 it may be the same as the 1st negative electrode collector layer 14, and may differ, but it is the same from a viewpoint of production efficiency. It is preferable that the first negative electrode current collector layer 14 and the second negative electrode current collector layer 24 are formed simultaneously.
  • the exterior part 30 has a laminated film 31 formed by laminating a plurality of layers, and a heat-sealing film 33 for heat-sealing the laminated film 31 and the battery unit 50 (more specifically, the substrate 5). is doing. And the exterior part 30 folds this laminated
  • the first battery part 10 and the second battery part 20 are sealed by fusion over the entire circumference of each of the above. However, the exterior part 30 seals the first battery part 10 and the second battery part 20 with one end of the substrate 5 in the battery unit 50 exposed to the outside.
  • FIGS. 9A and 9B are diagrams for explaining the configuration of the laminated film 31 in the present embodiment, in which FIG. 9A is a perspective view of an inner portion when the laminated film 31 is folded in two, and FIG. The perspective view of the site
  • FIG. 9A is a perspective view of an inner portion when the laminated film 31 is folded in two
  • FIG. 9B The perspective view of the site
  • the configuration of the laminated film 31 will be described with reference to FIG. 9 in addition to FIGS.
  • the laminated film 31 is configured by laminating a heat resistant resin layer 311, an outer adhesive layer 312, a metal layer 313, an inner adhesive layer 314, and a heat-fusible resin layer 315 in this order. ing. That is, the configuration itself of the laminated film 31 is the same as that of the first embodiment.
  • a first inner exposed portion 316 and a second inner exposed portion 318 are provided in which a part of the surface (inner surface) is exposed.
  • the first inner exposed portion 316 serves as a part for accommodating the first battery portion 10 of the battery unit 50
  • the second inner exposed portion 318 as an example of another exposed portion is the second inner exposed portion 318 of the battery unit 50. It becomes a part for accommodating the battery part 20.
  • outer adhesive layer 312 and the heat resistant resin layer 311 are not present on the surface of the laminated film 31 where the heat resistant resin layer 311 is formed (outside in the exterior part 30), so that the other surface of the metal layer 313 (outside The outer exposed portion 317 is provided to partially expose the surface.
  • the heat-resistant resin layer 311, the outer adhesive layer 312, the metal layer 313, the inner adhesive layer 314, and the heat-fusible resin layer 315 constituting the laminated film 31 are the same as those described in the first embodiment. Can be used. In this embodiment, a 25 ⁇ m thick nylon film (melting point: 220 ° C.) is used as the heat-resistant resin layer 311, a two-component curable polyester-urethane adhesive is used as the outer adhesive layer 312, and a metal layer 313 is used as the thicker metal layer 313.
  • Heat-fusion film As the heat-sealing film 33, the materials described in the first embodiment can be used. In the present embodiment, a maleic anhydride-modified polypropylene film having a thickness of 100 ⁇ m is used as the heat fusion film 33.
  • the first negative electrode current collector layer 14 of the first battery unit 10 is electrically connected to a portion exposed to the first inner exposed portion 316 in one surface (inner surface) of the metal layer 313 provided on the laminated film 31.
  • the second negative electrode current collector layer 24 of the second battery unit 20 is a portion exposed to the second inner exposed portion 318 in one surface (inner surface) of the metal layer 313 provided in the laminated film 31.
  • a part of the other surface (outer surface) of the metal layer 313 provided in the laminated film 31 is exposed to the outside at the outer exposed portion 317, and this portion is provided outside as a negative electrode. It can be electrically connected to a load (not shown).
  • the substrate 5 becomes the positive electrode of the lithium ion secondary battery 1
  • the metal layer 313 provided on the laminated film 31 becomes the negative electrode of the lithium ion secondary battery 1.
  • the positive side of the first battery unit 10 and the positive side of the second battery unit 20 are on the substrate 5, and the negative side of the first battery unit 10 and the negative side of the second battery unit 20 are on the metal layer 313.
  • Each is electrically connected. Therefore, in the lithium ion secondary battery 1, the 1st battery part 10 and the 2nd battery part 20 are connected in parallel.
  • the substrate 5 on the positive electrode side and the metal layer 313 on the negative electrode side are electrically insulated by the heat-fusible resin layer 315 provided on the laminated film 31 and the heat-sealing film 33. ing.
  • the manufacturing method of the lithium ion secondary battery 1 of the present embodiment is basically the same as that of the first embodiment.
  • the battery unit forming process shown in step 10 is different in that the first battery part 10 and the second battery part 20 are formed simultaneously on the front and back surfaces of the substrate 5. More specifically, first, a sputtering target for the first battery unit 10 (for the surface of the substrate 5) and a sputtering target for the second battery unit 20 (for the back surface of the substrate 5) are placed in the chamber of the sputtering apparatus. And prepare each.
  • the 1st solid electrolyte layer 12 and the 2nd solid electrolyte layer 22 are formed simultaneously, and the 1st negative electrode layer 13 and the 1st negative electrode layer 13
  • the two negative electrode layers 23 are formed simultaneously, and the first negative electrode current collector layer 14 and the second negative electrode current collector layer 24 are formed simultaneously.
  • the first battery unit 10 is formed on the front surface of the metal substrate 5 and the second battery unit 20 is formed on the back surface thereof. 10 and the second battery part 20 are accommodated in the exterior part 30. Moreover, in this Embodiment, the 1st battery part 10 and the 2nd battery part 20, and the metal layer 313 provided in the exterior part 30 were electrically connected. Thereby, simplification of the structure of the lithium ion secondary battery 1 provided with the first solid electrolyte layer 12 in the first battery unit 10 and the second solid electrolyte layer 22 in the second battery unit 20 can be achieved. it can.
  • FIG. 10 is a diagram for explaining a modification of the first embodiment, and is a cross-sectional view taken along the line II-II in FIG.
  • FIGS. 11A and 11B are perspective views of battery unit 50 in a modification of the first embodiment.
  • the battery unit 10 constituting the battery unit 50 includes a positive electrode layer 11 laminated on one surface of the substrate 5, a solid electrolyte layer 12 laminated on the positive electrode layer 11, and a solid electrolyte. And a negative electrode layer 13 laminated on the layer 12. And the negative electrode layer 13 located in the other edge part (upper side in FIG. 10) of the battery part 10 is in direct contact with the metal layer 313 exposed to the inner side exposed part 316 of the laminated film 31.
  • the structure of the lithium ion secondary battery 1 can be simplified as compared with the configuration described in the first embodiment.
  • FIG. 12 is a diagram for explaining a modification of the second embodiment, and is a cross-sectional view taken along the line VII-VII in FIG.
  • FIGS. 13A and 13B are perspective views of the battery unit 50 in a modification of the second embodiment.
  • the first battery unit 10 constituting the battery unit 50 includes a first positive electrode layer 11 stacked on one surface of the substrate 5 and a first positive electrode layer 11 stacked on the first positive electrode layer 11.
  • a solid electrolyte layer 12 and a first negative electrode layer 13 laminated on the first solid electrolyte layer 12 are provided.
  • the 1st negative electrode layer 13 located in the other edge part (upper side in FIG. 12) of the 1st battery part 10 contacts the metal layer 313 exposed to the 1st inner side exposed part 316 of the laminated
  • the second battery unit 20 constituting the battery unit 50 includes a second positive electrode layer 21 stacked on the other surface of the substrate 5, a second solid electrolyte layer 22 stacked on the second positive electrode layer 21, And a second negative electrode layer 23 laminated on the two solid electrolyte layer 22. And the 2nd negative electrode layer 23 located in the other edge part (lower side in FIG. 12) of the 2nd battery part 20 is directly with the metal layer 313 exposed to the 2nd inner side exposed part 318 of the laminated
  • the structure of the lithium ion secondary battery 1 can be simplified as compared with the configuration described in the second embodiment.
  • the positive electrode layers (first positive electrode layer 11 (positive electrode layer 11) and second positive electrode layer 21) are arranged on the substrate 5 side, and the laminate constituting the exterior portion 30
  • the negative electrode layers (the first negative electrode layer 13 (negative electrode layer 13) and the second negative electrode layer 23) are disposed on the metal layer 313 side of the film 31, but the present invention is not limited to this, and the reverse may be possible. That is, the negative electrode side of each battery part may be arranged on the substrate 5 side, and the positive electrode side of each battery part may be arranged on each laminated film (metal layer) side.
  • the negative electrode current collector layer 14 or the first negative electrode current collector layer 14 and the second negative electrode current collector layer 24 of the battery unit 50 (in the modified example, the negative electrode layer 13 or the first negative electrode layer). 13 and the second negative electrode layer 23) and the metal layer 313 of the laminated film 31 are in contact (adhered) in a state where they are not fixed.
  • the present invention is not limited to this, for example, using a conductive adhesive or the like. The positional relationship may be fixed.
  • SYMBOLS 1 Lithium ion secondary battery, 5 ... Board
  • substrate 10 ... (1st) Battery part, 11 ... (1st) Positive electrode layer, 12 ... (1st) Solid electrolyte layer, 13 ... (1st) Negative electrode layer, 14 (First) negative electrode current collector layer, 20 ... second battery part, 21 ... second positive electrode layer, 22 ... second solid electrolyte layer, 23 ... second negative electrode layer, 24 ... second negative electrode current collector layer, DESCRIPTION OF SYMBOLS 30 ... Exterior part, 31 ... Laminated film, 33 ... Heat-fusion film, 50 ... Battery unit, 311 ... Heat-resistant resin layer, 312 ... Outer adhesive layer, 313 ... Metal layer, 314 ... Inner adhesive layer, 315 ... Thermal fusion Adhesive resin layer, 316 (first) inner exposed part, 317 ... outer exposed part, 318 ... second inner exposed part

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

リチウムイオン二次電池1は、金属製の基板5および基板5の表面に形成された電池部10を含む電池ユニット50と、電池部10を内部に収容する外装部30とを備えている。外装部30は、金属層313および熱融着性樹脂層315を含む積層フィルム31によって構成されるとともに、金属層313は電池部10の負極集電体層14と接続されており、基板5が電池部10の正の外部電極として、金属層313が電池部10の負の外部電極として、それぞれ機能する。

Description

リチウムイオン二次電池、リチウムイオン二次電池の製造方法
 本発明は、リチウムイオン二次電池、リチウムイオン二次電池の製造方法に関する。
 正極活物質を含む正極と、負極活物質を含む負極と、リチウムイオン伝導性を有し且つ正極と負極との間に介在する電解質とを含み、充放電が可能な電池部と、電池部を内部に収容することで電池部を外気等から封止する外装部とを備えたリチウムイオン二次電池が知られている。
 リチウムイオン二次電池の外装部には、気体、液体および固体に対する高いバリア性が要求される。特許文献1には、金属箔層と熱融着性樹脂層とを積層してなるラミネート外装材を用い、熱融着フィルム同士を熱融着することで外装部を構成することが記載されている。
 また、電池部を構成する電解質としては、従来から有機電解液等が用いられてきた。これに対し、特許文献2には、電解質として無機材料からなる固体電解質を用いるとともに、負極、固体電解質および正極をすべて薄膜で構成することが記載されている。
特開2016-129091号公報 特開2013-73846号公報
 ここで、薄膜型の電池部と、電池部を内部に収容する外装部とを用いてリチウムイオン二次電池を構成する場合、外装部や電池部の形成対象となる基板とは別に、電池部のための正負電極(タブ電極)を設ける必要があった。
 本発明は、固体電解質を備える薄膜型のリチウムイオン二次電池の構成の簡易化を図ることを目的とする。
 本発明が適用されるリチウムイオン二次電池は、導電性を有する基板と、前記基板の一方の面に積層され、第1極性にてリチウムイオンを吸蔵および放出する第1極層と、当該第1極層に積層され、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層と、当該固体電解質層に積層され、当該第1極性とは逆の第2極性にてリチウムイオンを吸蔵および放出する第2極層とを備える電池部と、金属層と、当該金属層の一方の面に当該金属層の一部が露出する露出部が形成されるように当該金属層に積層される樹脂層とを備え、当該露出部にて当該金属層が前記第2極層と電気的に接続されるとともに、当該金属層が前記基板と電気的に絶縁された状態で、前記電池部を封止する積層フィルムとを含んでいる。
 このようなリチウムイオン二次電池において、前記電池部は、前記基板の他方の面に積層され、前記第1極性にてリチウムイオンを吸蔵および放出する他の第1極層と、当該他の第1極層に積層され、リチウムイオン伝導性を示す無機固体電解質を有する他の固体電解質層と、当該他の固体電解質層に積層され、前記第2極性にてリチウムイオンを吸蔵および放出する他の第2極層とをさらに備え、前記積層フィルムにはさらに他の露出部が形成され、当該他の露出部にて前記金属層が前記他の第2極層と電気的に接続されることを特徴とすることができる。
 また、前記樹脂層が内側となるように折り曲げられた前記積層フィルムの当該内側に前記電池部が配置されており、前記樹脂層が融着されることで前記電池部を封止していることを特徴とすることができる。
 さらに、前記基板の一部が、前記積層フィルムに覆われることなく露出していることを特徴とすることができる。
 さらにまた、前記電池部に設けられた前記第2極層と、前記積層フィルムの前記露出部に露出する前記金属層とが、直接に接触していることを特徴とすることができる。
 また、他の観点から捉えると、本発明のリチウムイオン二次電池の製造方法は、基板の一方の面に、第1極性にてリチウムイオンを吸蔵および放出する第1極層を成膜する工程と、前記第1極層に、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層を成膜する工程と、前記固体電解質層に、前記第1極性とは逆の第2極性にてリチウムイオンを吸蔵および放出する第2極層を成膜する工程と、金属層と、当該金属層の一方の面に当該金属層の一部が露出する露出部が形成されるように当該金属層に積層される樹脂層とを備えた積層フィルムを、当該露出部に露出する金属層が前記第2極層と対峙するように配置した状態で、当該樹脂層を融着して前記第1極層、前記固体電解質層および当該第2極層を封止する工程とを含んでいる。
 本発明によれば、固体電解質を備える薄膜型のリチウムイオン二次電池の構成の簡易化を図ることができる。
(a)、(b)は、実施の形態1が適用されるリチウムイオン二次電池の全体構成を説明するための図である。 図1(a)のII-II断面図である。 (a)、(b)は、実施の形態1における電池ユニットの斜視図である。 (a)、(b)は、実施の形態1における積層フィルムの斜視図である。 リチウムイオン二次電池の製造方法を説明するためのフローチャートである。 (a)、(b)は、実施の形態2が適用されるリチウムイオン二次電池の全体構成を説明するための図である。 図6(a)のVII-VII断面図である。 (a)、(b)は、実施の形態2における電池ユニットの斜視図である。 (a)、(b)は、実施の形態2における積層フィルムの斜視図である。 実施の形態1の変形例を説明するための図であって、図1(a)のII-II断面図である。 (a)、(b)は、実施の形態1の変形例における電池ユニットの斜視図である。 実施の形態2の変形例を説明するための図であって、図6(a)のVII-VII断面図である。 (a)、(b)は、実施の形態2の変形例における電池ユニットの斜視図である。
 以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。なお、以下の説明で参照する図面における各部の大きさや厚さ等は、実際の寸法とは異なっている場合がある。
<実施の形態1>
[リチウムイオン二次電池の構成]
 図1は、本実施の形態が適用されるリチウムイオン二次電池1の全体構成を説明するための図である。ここで、図1(a)はリチウムイオン二次電池1を正面(表面)からみた図であり、図1(b)はリチウムイオン二次電池1を背面(裏面)からみた図である。
 また、図2は図1(a)のII-II断面図を示している。なお、図1(a)は、図2をIA方向からみた図であり、図1(b)は、図2をIB方向からみた図である。
 本実施の形態のリチウムイオン二次電池1は、リチウムイオンを用いた充電および放電を行う電池部10を含む電池ユニット50と、電池部10を内部に収容することで電池部10を外気等から封止する外装部30とを備えている。本実施の形態のリチウムイオン二次電池1は、全体としてみたときに直方体状(実際にはカード状)の形状を呈している。
[電池ユニットの構成]
 電池ユニット50は、リチウムイオン二次電池1における一方の電極(ここでは正の電極)として機能する基板5と、基板5の一方の面(表面と称する)に設けられる電池部10とを備えている。本実施の形態では、後述するように、電池部10を、基板5の表面にスパッタ法によって形成しているため、電池ユニット50は、基板5と電池部10とを一体化した構造となっている。
 図3は、本実施の形態における電池ユニット50の構成を説明するための図であり、(a)は正面側(図2においては上側)からみた斜視図を、(b)は背面側(図2においては下側)からみた斜視図を、それぞれ示している。以下では、図1および図2に加えて図3も参照しながら、電池ユニット50の構成を説明する。
[基板]
 基板5は、導電性を有する薄板状の部材であって、スパッタ法による成膜に適したものであれば、特に限定されるものではなく、例えば、各種金属板を用いることができる。ただし、基板5がスパッタ法による電池部10の形成に用いられることを考慮すると、機械的強度が高いステンレス箔を用いることが好ましい。また、ニッケル、錫、銅、クロム等の導電性金属でめっきした金属箔を用いてもよい。本実施の形態では、基板5として、ステンレス箔を用いた。
 基板5の厚さは、20μm以上200μm以下とすることができる。基板5の厚さが20μm未満であると、金属箔を製造する際の圧延時や熱封止時にピンホールや破れが生じやすく、また、正の電極として用いる場合の電気抵抗値が高くなってしまう。一方、基板5の厚さが200μmを超えると、電池の厚さおよび重量の増加により体積エネルギー密度および重量エネルギー密度が低下する。また、電池の柔軟性が低下する。本実施の形態では、基板5の厚さを30μmとした。
[電池部]
 電池部10は、基板5の表面(図2においては上側)に積層される正極層11と、正極層11上に積層される固体電解質層12と、固体電解質層12上に積層される負極層13と、負極層13上に積層される負極集電体層14とを有している。ここで、電池部10の一方の端部(図2においては下側)に位置する正極層11は、基板5の表面と接触している。これに対し、電池部10の他方の端部(図2においては上側)に位置する負極集電体層14は、後述する積層フィルム31に設けられた金属層313と接触している。
 電池部10の各構成要素について、より詳細な説明を行う。
(正極層)
 第1極層の一例としての正極層11は、固体薄膜であって、第1極性の一例としての正極性にてリチウムイオンを吸蔵および放出する正極活物質を含むものであれば、特に限定されるものではなく、例えば、マンガン(Mn)、コバルト(Co)、ニッケル(Ni)、鉄(Fe)、モリブデン(Mo)、バナジウム(V)から選ばれる一種以上の金属を含む、酸化物、硫化物あるいはリン酸化物など、各種材料で構成されたものを用いることができる。本実施の形態では、正極層11としてLiMnを用いた。
 正極層11の厚さは、例えば10nm以上40μm以下とすることができる。正極層11の厚さが10nm未満であると、得られる電池部10の容量が小さくなりすぎ、実用的ではなくなる。一方、正極層11の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。本実施の形態では、正極層11の厚さを600nmとした。
 また、正極層11は、結晶構造を持つものであっても、結晶構造を持たないアモルファスであってもかまわないが、リチウムイオンの吸蔵および放出に伴う膨張および収縮がより等方的になるという点で、アモルファスであることが好ましい。
 さらに、正極層11の製造方法としては、各種PVD(物理的蒸着)や各種CVD(化学的蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法(スパッタリング)を用いることが望ましい。この場合、正極層11を形成する際に使用するスパッタターゲットに応じて、DCスパッタ法を採用してもよいし、RFスパッタ法を採用してもよい。ただし、正極層11として上記LiMnを用いる場合にあっては、RFスパッタ法を採用することが好ましい。
(固体電解質層)
 固体電解質層12は、無機材料(無機固体電解質)で構成された固体薄膜であって、リチウムイオン伝導性を示すものであれば、特に限定されるものではなく、酸化物、窒化物、硫化物など、各種材料で構成されたものを用いることができる。本実施の形態では、固体電解質層12として、LiPOにおける酸素の一部を窒素に置き換えたLiPON(LiPO)を用いた。
 固体電解質層12の厚さは、例えば10nm以上10μm以下とすることができる。固体電解質層12の厚さが10nm未満であると、得られた電池部10において、正極層11と負極層13との間でのリークが生じやすくなる。一方、固体電解質層12の厚さが10μmを超えると、リチウムイオンの移動距離が長くなり、充放電速度が遅くなる。本実施の形態では、固体電解質層12の厚さを200nmとした。
 また、固体電解質層12は、結晶構造を持つものであっても、結晶構造を持たないアモルファスであってもかまわないが、熱による膨張および収縮がより等方的になるという点で、アモルファスであることが好ましい。
 さらに、固体電解質層12の製造方法としては、各種PVD(物理的蒸着)や各種CVD(化学的蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法(スパッタリング)を用いることが望ましい。この場合、固体電解質層12を形成する際に使用するスパッタターゲットには絶縁体が多いことから、RFスパッタ法を採用することが好ましい。
(負極層)
 第2極層の一例としての負極層13は、固体薄膜であって、第2極性の一例としての負極性にてリチウムイオンを吸蔵および放出する負極活物質を含むものであれば、特に限定されるものではなく、例えば、炭素(C)やシリコン(Si)を用いることができる。本実施の形態では、負極層13として、ホウ素(B)が添加されたシリコン(Si)を用いた。
 負極層13の厚さは、例えば10nm以上40μm以下とすることができる。負極層13の厚さが10nm未満であると、得られる電池部10の容量が小さくなりすぎ、実用的ではなくなる。一方、負極層13の厚さが40μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。本実施の形態では、負極層13の厚さを100nmとした。
 また、負極層13は、結晶構造を持つものであっても、結晶構造を持たないアモルファスであってもかまわないが、リチウムイオンの吸蔵および放出に伴う膨張および収縮がより等方的になるという点で、アモルファスであることが好ましい。
 さらに、負極層13の製造方法としては、各種PVD(物理的蒸着)や各種CVD(化学的蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法(スパッタリング)を用いることが望ましい。この場合、負極層13を形成するためのスパッタターゲットには半導体が多いことから、DCスパッタ法を採用することが好ましい。
(負極集電体層)
 負極集電体層14は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではなく、例えば、チタン(Ti)、アルミニウム(Al)、銅(Cu)、白金(Pt)、金(Au)などの金属や、これらの合金を含む導電性材料を用いることができる。本実施の形態では、負極集電体層14としてチタン(Ti)を用いた。
 負極集電体層14の厚さは、例えば5nm以上50μm以下とすることができる。負極集電体層14の厚さが5nm未満であると、集電機能が低下し、実用的ではなくなる。一方、負極集電体層14の厚さが50μmを超えると、層形成に時間がかかりすぎるようになってしまい、生産性が低下する。本実施の形態では、負極集電体層14の厚さを200nmとした。
 また、負極集電体層14の製造方法としては、各種PVD(物理的蒸着)や各種CVD(化学的蒸着)など、公知の成膜手法を用いてかまわないが、生産効率の観点からすれば、スパッタ法(スパッタリング)を用いることが望ましい。この場合、負極集電体層14を形成するためのスパッタターゲットは金属(Ti)であることから、DCスパッタ法を採用することが好ましい。
[外装部の構成]
 続いて、外装部30の構成について説明を行う。
 外装部30は、複数の層を積層してなる積層フィルム31と、積層フィルム31と電池ユニット50(より具体的には基板5)とを熱融着するための熱融着フィルム33とを有している。そして、外装部30は、この積層フィルム31を2つ折りし、その内側に電池ユニット50を配置した状態で、積層フィルム31および熱融着フィルム33を、電池部10の周囲の全周にわたって熱融着することで、電池部10を封止している。ただし、外装部30は、電池ユニット50における基板5の一端を外部に露出させた状態で、電池部10を封止している。
[積層フィルム]
 図4は、本実施の形態における積層フィルム31の構成を説明するための図であり、(a)は積層フィルム31を2つ折りしたときに内側となる部位の斜視図を、(b)は積層フィルム31を2つ折りしたときに外側となる部位の斜視図を、それぞれ示している。以下では、図1乃至図3に加えて図4も参照しながら、積層フィルム31の構成を説明する。
 積層フィルム31は、耐熱性樹脂層311と、外側接着層312と、金属層313と、内側接着層314と、熱融着性樹脂層315とを、この順でフィルム状に積層して構成されている。すなわち、積層フィルム31は、耐熱性樹脂層311と金属層313と熱融着性樹脂層315とを、外側接着層312および内側接着層314を介して貼り合わせることで構成されている。
 また、積層フィルム31における熱融着性樹脂層315の形成面側(外装部30において内側)には、熱融着性樹脂層315および内側接着層314が存在しないことで金属層313の一方の面(内側の面)が一部露出する、露出部の一例としての内側露出部316が設けられている。ここで、内側露出部316は、電池ユニット50の電池部10を収容するための部位となる。
 さらに、積層フィルム31における耐熱性樹脂層311の形成面側(外装部30において外側)には、外側接着層312および耐熱性樹脂層311が存在しないことで金属層313の他方の面(外側の面)が一部露出する、外側露出部317が設けられている。
 次に、積層フィルム31の各構成要素について、より詳細な説明を行う。
(耐熱性樹脂層)
 耐熱性樹脂層311は、外装部30における最外層であり、外部からの突き刺しや摩耗などに対する耐性が高く、且つ、熱融着性樹脂層315を熱融着する際の融着温度では溶融しない耐熱性樹脂が用いられる。ここで、耐熱性樹脂層311としては、熱融着性樹脂層315を構成する熱融着性樹脂の融点より10℃以上融点が高い耐熱性樹脂を用いるのが好ましく、この熱融着性樹脂の融点より20℃以上融点が高い耐熱性樹脂を用いるのが特に好ましい。また、本実施の形態では、後述するように、金属層313が電池部10の負の電極を兼ねることから、安全性の観点より、耐熱性樹脂層311として電気抵抗値の高い絶縁性樹脂が用いられる。
 耐熱性樹脂層311としては、特に限定されるものではないが、例えば、ポリアミドフィルム、ポリエステルフィルム等が挙げられ、これらの延伸フィルムが好ましく用いられる。中でも、成形性および強度の点で、二軸延伸ポリアミドフィルムまたは二軸延伸ポリエステルフィルム、あるいはこれらを含む複層フィルムが特に好ましく、さらに二軸延伸ポリアミドフィルムと二軸延伸ポリエステルフィルムとが貼り合わされた複層フィルムを用いることが好ましい。ポリアミドフィルムとしては、特に限定されるものではないが、例えば、6-ポリアミドフィルム、6,6-ポリアミドフィルム、MXDポリアミドフィルム等が挙げられる。また、二軸延伸ポリエステルフィルムとしては、二軸延伸ポリブチレンテレフタレート(PBT)フィルム、二軸延伸ポリエチレンテレフタレート(PET)フィルム等が挙げられる。本実施の形態では、耐熱性樹脂層311としてナイロンフィルム(融点:220℃)を用いた。
 耐熱性樹脂層311の厚さは、9μm以上50μmとすることができる。耐熱性樹脂層311の厚さが9μm未満であると、電池部10の外装部30として十分な強度を確保することが困難となる。一方、耐熱性樹脂層311の厚さが50μmを超えると、電池が厚くなるため好ましくない。また、製造コストが高くなる。本実施の形態では、耐熱性樹脂層311の厚さを25μmとした。
(外側接着層)
 外側接着層312は、耐熱性樹脂層311と金属層313とを接着するための層である。外側接着層312としては、例えば、主剤としてのポリエステル樹脂と硬化剤としての多官能イソシアネート化合物とによる二液硬化型ポリエステル-ウレタン系樹脂、あるいは、ポリエーテル-ウレタン系樹脂を含む接着剤を用いることが好ましい。本実施の形態では、外側接着層312として二液硬化型ポリエステル-ウレタン系接着剤を用いた。
(金属層)
 金属層313は、積層フィルム31を用いて外装部30を構成した場合に、外装部30の外部から、その内部に配置された電池部10に、酸素や水分等の侵入を阻止(バリア)する役割を担う層である。また、金属層313は、後述するように、電池部10の負の内部電極としての役割と、外部に設けられた負荷(図示せず)と電気的に接続される負の外部電極としての役割とをさらに担う。このため、金属層313には、導電性を有する金属箔を用いる。
 金属層313としては、特に限定されるものではないが、例えば、アルミニウム箔、銅箔、ニッケル箔、ステンレス箔、あるいはこれのクラッド箔、これらの焼鈍箔または未焼鈍箔等が好ましく用いられる。また、ニッケル、錫、銅、クロム等の導電性金属でめっきした金属箔を用いてもよい。本実施の形態では、金属層313として、JIS H4160で規定されたA8021H-O材からなるアルミニウム箔を用いた。
 金属層313の厚さは、20μm以上200μm以下とすることができる。金属層313の厚さが20μm未満であると、金属箔を製造する際の圧延時や熱封止時にピンホールや破れが生じやすく、また、電極として用いる場合の電気抵抗値が高くなってしまう。一方、金属層313の厚さが200μmを超えると、積層フィルム31を2つ折りする際に折り返し部分に隙間ができやすくなる。また、熱融着の際に熱が分散して熱融着が不完全になる可能性がある。本実施の形態では、金属層313の厚さを40μmとした。
(内側接着層)
 内側接着層314は、金属層313と熱融着性樹脂層315とを接着するための層である。内側接着層314としては、例えば、ポリウレタン系接着剤、アクリル系接着剤、エポキシ系接着剤、ポリオレフィン系接着剤、エラストマー系接着剤、フッ素系接着剤等により形成された接着剤を用いることが好ましい。中でも、アクリル系接着剤、ポリオレフィン系接着剤を用いるのが好ましく、この場合には、水蒸気に対する積層フィルム31のバリア性を向上させることができる。また、酸変成したポリプロピレンやポリエチレン等の接着剤を使用することが好ましい。本実施の形態では、内側接着層314として、酸変性ポリプロピレン系接着剤を用いた。
(熱融着性樹脂層)
 樹脂層の一例としての熱融着性樹脂層315は、外装部30における最内層であり、電池部10の各層を構成する材料に対する耐性が高く、且つ、上記融着温度で溶融し、熱融着フィルム33と融着する熱可塑性樹脂が用いられる。また、本実施の形態では、上述したように、金属層313が電池部10の負の電極を兼ねることから、安全性の観点より、熱融着性樹脂層315として電気抵抗値の高い絶縁性樹脂が用いられる。
 熱融着性樹脂層315としては、特に限定されるものではないが、例えば、ポリエチレン、ポリプロピレン、オレフィン系共重合体、これらの酸変性物およびアイオノマー等が好ましく用いられる。ここで、オレフィン系共重合体としては、EVA(エチレン・酢酸ビニル共重合体)、EAA(エチレン・アクリル酸共重合体)、EMAA(エチレン・メタアクリル酸共重合体)を例示できる。また、耐熱性樹脂層311との融点の関係を満足できるのであれば、ポリアミドフィルム(例えば12ナイロン)やポリイミドフィルムを使用することもできる。本実施の形態では、熱融着性樹脂層315として無軸延伸ポリプロピレンフィルム(融点:165℃)を用いた。
 熱融着性樹脂層315の厚さは、20μm以上80μm以下とすることができる。熱融着性樹脂層315の厚さが20μm未満であると、ピンホールが生じやすくなる。一方、熱融着性樹脂層315の厚さが80μmを超えると、電池が厚くなるため好ましくない。また、断熱性が高まるため熱融着が不完全になる可能性がある。本実施の形態では、熱融着性樹脂層315の厚さを30μmとした。
[熱融着フィルム]
 熱融着フィルム33は、基板5と、積層フィルム31における熱融着性樹脂層315とを熱融着するための層(フィルム)である。熱融着フィルムとしては、例えば、酸変性したオレフィン系のフィルム等を用いることが好ましく、特に、金属との接着性の高い無水マレイン酸変性ポリプロピレン製のフィルム(厚さ50~150μm)を使用することが好ましい。
[リチウムイオン二次電池における電気的な接続構造]
 ここで、本実施の形態のリチウムイオン二次電池1における電気的な接続構造について説明しておく。
 まず、電池部10では、正極層11、固体電解質層12、負極層13および負極集電体層14が、この順番で電気的に接続される。また、電池ユニット50では、基板5と電池部10の正極層11とが、電気的に接続される。ここで、基板5の一端側は、外装部30に覆われることなく外部に露出しており、この部位は、正極として、外部に設けられた負荷(図示せず)と電気的に接続することが可能である。
 電池部10の負極集電体層14は、積層フィルム31に設けられた金属層313の一方の面(内側の面)のうち、内側露出部316に露出する部位と電気的に接続される。そして、積層フィルム31に設けられた金属層313の他方の面(外側の面)の一部は、外側露出部317において外部に露出しており、この部位は、負極として、外部に設けられた負荷(図示せず)と電気的に接続することが可能である。
 したがって、この例では、基板5が、リチウムイオン二次電池1の正極となり、積層フィルム31に設けられた金属層313が、リチウムイオン二次電池1の負極となる。ここで、正極側となる基板5と、負極側となる金属層313とは、積層フィルム31に設けられた熱融着性樹脂層315と、熱融着フィルム33とによって、電気的に絶縁されている。
[リチウムイオン二次電池の製造方法]
 図5は、図1等に示すリチウムイオン二次電池1の製造方法を説明するためのフローチャートである。
(電池ユニット形成工程)
 まず、基板5の表面に電池部10を形成する(ステップ10)。すなわち、基板5の表面に、正極層11、固体電解質層12、負極層13および負極集電体層14をこの順で形成することで、基板5と電池部10とを含む電池ユニット50を得る。なお、ステップ10の詳細については後述する。
(熱融着フィルム取付工程)
 次に、ステップ10で得られた電池ユニット50のうち、後に、基板5が外装部30によって覆われる部位と覆われない部位との境界となる部位に対し、基板5の全周にわたって熱融着フィルム33を取り付ける(ステップ20)。
(積層フィルム露出部形成工程)
 続いて、耐熱性樹脂層311と金属層313と熱融着性樹脂層315とを、外側接着層312および内側接着層314を介して貼り合わせてなる積層フィルム31から、耐熱性樹脂層311、外側接着層312、内側接着層314および熱融着性樹脂層315の一部を除去する。これにより、積層フィルム31に、内側露出部316および外側露出部317を形成する(ステップ30)。
(融着工程)
 次いで、例えばNガス等の不活性ガスが充填された作業ボックス内に、熱融着フィルム33が取り付けられた電池ユニット50と、積層フィルム31とを導入する。そして、電池ユニット50の電池部10に設けられた負極集電体層14と、積層フィルム31に設けられた内側露出部316とを対峙させる。それから、電池ユニット50が内部に位置するとともに、基板5の一端が外部に露出するように、積層フィルム31を2つ折りする。
 その後、作業ボックス内を負圧に設定した状態で、積層フィルム31における熱融着性樹脂層315同士および熱融着性樹脂層315と電池ユニット50に取り付けられた熱融着フィルム33とを、電池部10の周縁の外側全周にわたって、加圧および加熱しながら融着する(ステップ40)。そして、熱融着性樹脂層315と熱融着フィルム33とが熱融着されることにより、基板5および電池部10と、電池部10を封止する外装部30とを含むリチウムイオン二次電池1が得られる。
 このとき、電池ユニット50では、基板5と電池部10とが、スパッタ法による成膜により接合(一体化)した状態となっている。また、電池部10の負極集電体層14と、積層フィルム31の金属層313とは、積層フィルム31の熱融着性樹脂層315同士および熱融着性樹脂層315と熱融着フィルム33とを負圧で熱融着することにより密着した状態となっている。
[電池ユニットの製造方法]
 では、上記ステップ10における電池ユニット50の製造手順について、具体例を挙げて説明を行う。
(正極層の形成)
 まず、基板5を、図示しないスパッタ装置の成膜室(チャンバ)内に設置した。このとき、基板5の表面が、スパッタリングターゲットに対向するようにした。チャンバ内に基板5を設置した後、5%のOガスを含むArガスを導入してチャンバ内の圧力を0.8Paとした。それから、LiMnなる組成を有するスパッタターゲットを用い、RFスパッタ法により、基板5の表面に正極層11の形成(成膜)を行った。このようにして得られた正極層11の膜組成はLiMnであり、厚さは600nmであり、結晶構造はアモルファスであった。
(固体電解質層の形成)
 次に、Nガスを導入してチャンバ内の圧力を0.8Paとした。それから、LiPOなる組成を有するスパッタターゲットを用い、RFスパッタ法により、正極層11上に固体電解質層12の形成(成膜)を行った。このようにして得られた固体電解質層12の膜組成はLiPONであり、厚さは200nmであり、それぞれ結晶構造はアモルファスであった。
(負極層の形成)
 続いて、Arガスを導入してチャンバ内の圧力を0.8Paとした。それから、ホウ素(B)をドープしたシリコン(Si)からなるスパッタターゲット(P型のSiターゲット)を用い、DCスパッタ法により、固体電解質層12上に負極層13の形成(成膜)を行った。このようにして得られた負極層13の膜組成はBがドープされたSiであり、厚さは100nmであり、結晶構造はアモルファスであった。
(負極集電体層の形成)
 さらに、Arガスを導入してチャンバ内の圧力を0.8Paとした状態で、チタン(Ti)からなるスパッタターゲットを用い、DCスパッタ法により、負極層13上に負極集電体層14の形成(成膜)を行った。このようにして得られた負極集電体層14の膜組成はTiであり、厚さは200nmであった。
 以上の手順にて、基板5の表面に電池部10を形成してなる電池ユニット50を得た。そして、得られた電池ユニット50をチャンバ内から取り出した。
[実施の形態1のまとめ]
 以上説明したように、本実施の形態によれば、金属製の基板5の表面に電池部10を形成するとともに、電池部10を外装部30の内部に収容するようにした。また、本実施の形態では、電池部10と外装部30に設けられた金属層313とを電気的に接続するようにした。これにより、電池部10に固体電解質層12が設けられたリチウムイオン二次電池1の構成の簡易化を図ることができる。
<実施の形態2>
 実施の形態1では、外装部30内に単数(1個)の電池部10を収容することで、リチウムイオン二次電池1を構成していた。これに対し、本実施の形態では、外装部30内に複数の電池部を収容するとともに、基板5および外装部30を用いてこれら複数の電池部を並列接続することで、より容量が大きいリチウムイオン二次電池1を構成するようにしたものである。なお、本実施の形態において、実施の形態1と同様のものについては、同じ符号を付してその詳細な説明を省略する。
 以下、本実施の形態では、電池部10を第1電池部10と呼ぶことにする。また、本実施の形態では、正極層11、固体電解質層12、負極層13および負極集電体層14を、それぞれ、第1正極層11、第1固体電解質層12、第1負極層13および第1負極集電体層14と呼ぶことにする。さらに、本実施の形態では、積層フィルム31に設けられる内側露出部316を、第1内側露出部316と呼ぶことにする。
[リチウムイオン二次電池の構成]
 図6は、本実施の形態が適用されるリチウムイオン二次電池1の全体構成を説明するための図である。ここで、図6(a)はリチウムイオン二次電池1を正面(表面)からみた図であり、図6(b)はリチウムイオン二次電池1を背面(裏面)からみた図である。
 また、図7は図6(a)のVII-VII断面図を示している。なお、図6(a)は、図7をVIA方向からみた図であり、図6(b)は、図7をVIB方向からみた図である。
 本実施の形態のリチウムイオン二次電池1は、リチウムイオンを用いた充電および放電を行う第1電池部10および第2電池部20を含む電池ユニット50と、第1電池部10および第2電池部20を内部に収容することでこれら第1電池部10および第2電池部20を外気等から封止する外装部30とを備えている。本実施の形態のリチウムイオン二次電池1は、全体としてみたときに直方体状(実際にはカード状)の形状を呈している。なお、本実施の形態では、第1電池部10および第2電池部20の両者が、「電池部」として機能している。
[電池ユニットの構成]
 電池ユニット50は、リチウムイオン二次電池1における一方の電極(ここでは正の電極)として機能する基板5と、基板5の一方の面(表面と称する)に設けられる第1電池部10と、基板5の他方の面(裏面と称する)に設けられる第2電池部20とを備えている。本実施の形態では、第1電池部10および第2電池部20を、基板5の表裏面にスパッタ法によって形成しているため、電池ユニット50は、基板5と第1電池部10と第2電池部20とを一体化した構造となっている。
 図8は、本実施の形態における電池ユニット50の構成を説明するための図であり、(a)は正面側(図7においては上側)からみた斜視図を、(b)は背面側(図7においては下側)からみた斜視図を、それぞれ示している。以下では、図6および図7に加えて図8も参照しながら、電池ユニット50の構成を説明する。
[基板]
 基板5は、導電性を有する薄板状の部材であって、スパッタ法による成膜に適したものであれば、特に限定されるものではない。
 そして、基板5としては、実施の形態1のところで説明した材料を用いることができる。本実施の形態では、基板5として、厚さ30μmのステンレス箔を用いた。
[第1電池部]
 第1電池部10は、基板5の表面(図7においては上側)に積層される第1正極層11と、第1正極層11上に積層される第1固体電解質層12と、第1固体電解質層12上に積層される第1負極層13と、第1負極層13上に積層される第1負極集電体層14とを有している。ここで、第1電池部10の一方の端部(図7においては下側)に位置する第1正極層11は、基板5の表面と接触している。これに対し、第1電池部10の他方の端部(図7においては上側)に位置する第1負極集電体層14は、積層フィルム31に設けられた金属層313と接触している。
 そして、第1電池部10を構成する第1正極層11、第1固体電解質層12、第1負極層13および第1負極集電体層14としては、それぞれ、実施の形態1のところで説明した材料を用いることができる。本実施の形態では、第1正極層11として厚さ600nmのLiMn(アモルファス)を、第1固体電解質層12として厚さ200nmのLiPON(LiPO)(アモルファス)を、第1負極層13として厚さ100nmのホウ素(B)が添加されたシリコン(Si)(アモルファス)を、第1負極集電体層14として厚さ100nmのチタン(Ti)を、それぞれ用いた。
[第2電池部]
 第2電池部20は、基板5の裏面(図7においては下側)に積層される第2正極層21と、第2正極層21上に積層される第2固体電解質層22と、第2固体電解質層22上に積層される第2負極層23と、第2負極層23上に積層される第2負極集電体層24とを有している。ここで、第2電池部20の一方の端部(図7においては上側)に位置する第2正極層21は、基板5の裏面と接触している。これに対し、第2電池部20の他方の端部(図7においては下側)に位置する第2負極集電体層24は、積層フィルム31に設けられた金属層313と接触している。
 第2電池部20の各構成要素について、より詳細な説明を行う。
(第2正極層)
 他の第1極層の一例としての第2正極層21は、固体薄膜であって、第1極性の一例としての正極性にてリチウムイオンを吸蔵および放出する正極活物質を含むものであれば、特に限定されるものではない。
 そして、第2正極層21としては、上記第1正極層11のところで説明した材料を用いることができる。このとき、第2正極層21と第1正極層11とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。また、第2正極層21の厚さも、第1正極層11と同じ厚さとしてもよいし、異なる厚さとしてもよい。ただし、第1電池部10および第2電池部20の各容量を均衡化するという観点からすれば、これらを同じにすることが好ましい。本実施の形態では、第2正極層21として、厚さ600nmのLiMn(アモルファス)を用いた。
 また、第2正極層21の製造方法としては、第1正極層11と同じであってもよいし、異なっていてもかまわないが、生産効率の観点からすれば、同じであることが好ましく、さらに、第1正極層11と第2正極層21とを、同時に形成することがより好ましい。
(第2固体電解質層)
 他の固体電解質層の一例としての第2固体電解質層22は、無機材料で構成された固体薄膜であって、リチウムイオン伝導性を示すものであれば、特に限定されるものではない。
 そして、第2固体電解質層22としては、上記第1固体電解質層12のところで説明した材料を用いることができる。このとき、第2固体電解質層22と第1固体電解質層12とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。また、第2固体電解質層22の厚さも、第1固体電解質層12と同じ厚さとしてもよいし、異なる厚さとしてもよい。ただし、第1電池部10および第2電池部20の各容量を均衡化するという観点からすれば、これらを同じにすることが好ましい。本実施の形態では、第2固体電解質層22として、厚さ200nmのLiPON(LiPO)(アモルファス)を用いた。
 また、第2固体電解質層22の製造方法としては、第1固体電解質層12と同じであってもよいし、異なっていてもかまわないが、生産効率の観点からすれば、同じであることが好ましく、さらに、第1固体電解質層12と第2固体電解質層22とを、同時に形成することがより好ましい。
(第2負極層)
 他の第2極層の一例としての第2負極層23は、固体薄膜であって、第2極性の一例としての負極性にてリチウムイオンを吸蔵および放出する負極活物質を含むものであれば、特に限定されるものではない。
 そして、第2負極層23としては、上記第1負極層13のところで説明した材料を用いることができる。このとき、第2負極層23と第1負極層13とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。また、第2負極層23の厚さも、第1負極層13と同じ厚さとしてもよいし、異なる厚さとしてもよい。ただし、第1電池部10および第2電池部20の各容量を均衡化するという観点からすれば、これらを同じにすることが好ましい。本実施の形態では、第2負極層23として、厚さ100nmのホウ素(B)が添加されたシリコン(Si)(アモルファス)を用いた。
 また、第2負極層23の製造方法としては、第1負極層13と同じであってもよいし、異なっていてもかまわないが、生産効率の観点からすれば、同じであることが好ましく、さらに、第1負極層13と第2負極層23とを、同時に形成することがより好ましい。
(第2負極集電体層)
 第2負極集電体層24は、固体薄膜であって、電子伝導性を有するものであれば、特に限定されるものではない。
 そして、第2負極集電体層24としては、上記第1負極集電体層14のところで説明した材料を用いることができる。このとき、第2負極集電体層24と第1負極集電体層14とは、同じ材料で構成してもよいし、異なる材料で構成してもよい。また、第2負極集電体層24の厚さも、第1負極集電体層14と同じ厚さとしてもよいし、異なる厚さとしてもよい。ただし、第1電池部10および第2電池部20の各容量を均衡化するという観点からすれば、これらを同じにすることが好ましい。本実施の形態では、第2負極集電体層24として、厚さ100nmのチタン(Ti)を用いた。
 また、第2負極集電体層24の製造方法としては、第1負極集電体層14と同じであってもよいし、異なっていてもかまわないが、生産効率の観点からすれば、同じであることが好ましく、さらに、第1負極集電体層14と第2負極集電体層24とを、同時に形成することがより好ましい。
[外装部の構成]
 続いて、外装部30の構成について説明を行う。
 外装部30は、複数の層を積層してなる積層フィルム31と、積層フィルム31と電池ユニット50(より具体的には基板5)とを熱融着するための熱融着フィルム33とを有している。そして、外装部30は、この積層フィルム31を2つ折りし、その内側に電池ユニット50を配置した状態で、積層フィルム31および熱融着フィルム33を、第1電池部10および第2電池部20のそれぞれの周囲の全周にわたって融着することで、第1電池部10および第2電池部20を封止している。ただし、外装部30は、電池ユニット50における基板5の一端を外部に露出させた状態で、第1電池部10および第2電池部20を封止している。
[積層フィルム]
 図9は、本実施の形態における積層フィルム31の構成を説明するための図であり、(a)は積層フィルム31を2つ折りしたときに内側となる部位の斜視図を、(b)は積層フィルム31を2つ折りしたときに外側となる部位の斜視図を、それぞれ示している。以下では、図6乃至図8に加えて図9も参照しながら、積層フィルム31の構成を説明する。
 積層フィルム31は、耐熱性樹脂層311と、外側接着層312と、金属層313と、内側接着層314と、熱融着性樹脂層315とを、この順でフィルム状に積層して構成されている。すなわち、積層フィルム31の構成そのものは、実施の形態1と同じである。
 また、積層フィルム31における熱融着性樹脂層315の形成面側(外装部30において内側)には、熱融着性樹脂層315および内側接着層314が存在しないことで金属層313の一方の面(内側の面)が一部露出する、第1内側露出部316および第2内側露出部318が設けられている。ここで、第1内側露出部316は、電池ユニット50の第1電池部10を収容するための部位となり、他の露出部の一例としての第2内側露出部318は、電池ユニット50の第2電池部20を収容するための部位となる。
 さらに、積層フィルム31における耐熱性樹脂層311の形成面側(外装部30において外側)には、外側接着層312および耐熱性樹脂層311が存在しないことで金属層313の他方の面(外側の面)が一部露出する、外側露出部317が設けられている。
 そして、積層フィルム31を構成する耐熱性樹脂層311、外側接着層312、金属層313、内側接着層314および熱融着性樹脂層315としては、それぞれ、実施の形態1のところで説明した材料を用いることができる。本実施の形態では、耐熱性樹脂層311として、厚さ25μmのナイロンフィルム(融点:220℃)を、外側接着層312として二液硬化型ポリエステル-ウレタン系接着剤を、金属層313として、厚さ40μmのアルミニウム箔(JIS H4160 A8021H-O)を、内側接着層314として酸変性ポリプロピレン系接着剤を、熱融着性樹脂層315として、厚さ30μmの無軸延伸ポリプロピレンフィルムを、それぞれ用いた。
[熱融着フィルム]
 熱融着フィルム33としては、実施の形態1のところで説明した材料を用いることができる。本実施の形態では、熱融着フィルム33として、厚さ100μmの無水マレイン酸変性ポリプロピレンフィルムを用いた。
[リチウムイオン二次電池における電気的な接続構造]
 ここで、本実施の形態のリチウムイオン二次電池1における電気的な接続構造について説明しておく。
 まず、第1電池部10では、第1正極層11、第1固体電解質層12、第1負極層13および第1負極集電体層14が、この順番で電気的に接続される。また、第2電池部20では、第2正極層21、第2固体電解質層22、第2負極層23および第2負極集電体層24が、この順番で電気的に接続される。そして、電池ユニット50では、基板5の表面に第1電池部10の第1正極層11が、基板5の裏面に第2電池部20の第2正極層21が、それぞれ電気的に接続される。ここで、基板5の一端側は、外装部30に覆われることなく外部に露出しており、この部位は、正極として、外部に設けられた負荷(図示せず)と電気的に接続することが可能である。
 第1電池部10の第1負極集電体層14は、積層フィルム31に設けられた金属層313の一方の面(内側の面)のうち、第1内側露出部316に露出する部位と電気的に接続される。また、第2電池部20の第2負極集電体層24は、積層フィルム31に設けられた金属層313の一方の面(内側の面)のうち、第2内側露出部318に露出する部位と電気的に接続される。そして、積層フィルム31に設けられた金属層313の他方の面(外側の面)の一部は、外側露出部317において外部に露出しており、この部位は、負極として、外部に設けられた負荷(図示せず)と電気的に接続することが可能である。
 したがって、この例では、基板5が、リチウムイオン二次電池1の正極となり、積層フィルム31に設けられた金属層313が、リチウムイオン二次電池1の負極となる。また、この例では、第1電池部10の正極側および第2電池部20の正極側は基板5に、第1電池部10の負極側および第2電池部20の負極側は金属層313に、それぞれ電気的に接続されている。したがって、リチウムイオン二次電池1内において、第1電池部10および第2電池部20は、並列に接続されていることになる。ここで、正極側となる基板5と、負極側となる金属層313とは、積層フィルム31に設けられた熱融着性樹脂層315と、熱融着フィルム33とによって、電気的に絶縁されている。
[リチウムイオン二次電池および電池ユニットの製造方法]
 本実施の形態のリチウムイオン二次電池1の製造方法は、基本的に実施の形態1と同じである。ただし、ステップ10に示す電池ユニット形成工程において、基板5の表裏面に、第1電池部10および第2電池部20を同時形成している点が異なる。より具体的に説明すると、まず、スパッタ装置のチャンバ内に、第1電池部10用(基板5の表面用)のスパッタターゲットと、第2電池部20用(基板5の裏面用)のスパッタターゲットとを、それぞれ用意しておく。そして、基板5の表裏面に第1正極層11および第2正極層21を同時に形成した後、第1固体電解質層12および第2固体電解質層22を同時に形成し、第1負極層13および第2負極層23を同時に形成し、第1負極集電体層14および第2負極集電体層24を同時に形成する。
[実施の形態2のまとめ]
 以上説明したように、本実施の形態によれば、金属製の基板5の表面には第1電池部10を、裏面には第2電池部20を、それぞれ形成するとともに、これら第1電池部10および第2電池部20を外装部30の内部に収容するようにした。また、本実施の形態では、第1電池部10および第2電池部20と外装部30に設けられた金属層313とを電気的に接続するようにした。これにより、第1電池部10に第1固体電解質層12が、第2電池部20に第2固体電解質層22が、それぞれ設けられたリチウムイオン二次電池1の構成の簡易化を図ることができる。
<実施の形態1の変形例>
 実施の形態1のリチウムイオン二次電池1では、電池部10が負極集電体層14を有していたが、負極集電体層14は必須ではない。
 図10は、実施の形態1の変形例を説明するための図であって、図1(a)のII-II断面図である。また、図11(a)、(b)は、実施の形態1の変形例における電池ユニット50の斜視図である。
 実施の形態1の変形例において、電池ユニット50を構成する電池部10は、基板5の一方の面に積層される正極層11と、正極層11に積層される固体電解質層12と、固体電解質層12に積層される負極層13とを備えている。そして、電池部10の他方の端部(図10においては上側)に位置する負極層13は、積層フィルム31の内側露出部316に露出する金属層313と、直接に接触している。
 このような構成を採用することにより、実施の形態1で説明した構成と比較して、リチウムイオン二次電池1の構造を簡易にすることができる。
<実施の形態2の変形例>
 実施の形態2のリチウムイオン二次電池1では、第1電池部10が第1負極集電体層14を有し、且つ、第2電池部20が第2負極集電体層24を有していたが、第1負極集電体層14および第2負極集電体層24は必須ではない。
 図12は、実施の形態2の変形例を説明するための図であって、図6(a)のVII-VII断面図である。また、図13(a)、(b)は、実施の形態2の変形例における電池ユニット50の斜視図である。
 実施の形態2の変形例において、電池ユニット50を構成する第1電池部10は、基板5の一方の面に積層される第1正極層11と、第1正極層11に積層される第1固体電解質層12と、第1固体電解質層12に積層される第1負極層13とを備えている。そして、第1電池部10の他方の端部(図12においては上側)に位置する第1負極層13は、積層フィルム31の第1内側露出部316に露出する金属層313と、直接に接触している。
 また、電池ユニット50を構成する第2電池部20は、基板5の他方の面に積層される第2正極層21と、第2正極層21に積層される第2固体電解質層22と、第2固体電解質層22に積層される第2負極層23とを備えている。そして、第2電池部20の他方の端部(図12においては下側)に位置する第2負極層23は、積層フィルム31の第2内側露出部318に露出する金属層313と、直接に接触している。
 このような構成を採用することにより、実施の形態2で説明した構成と比較して、リチウムイオン二次電池1の構造を簡易にすることができる。
<その他>
 なお、実施の形態1、2およびこれらの変形例では、基板5側に正極層(第1正極層11(正極層11)、第2正極層21)を配置し、外装部30を構成する積層フィルム31の金属層313側に負極層(第1負極層13(負極層13)、第2負極層23)を配置していたが、これに限られるものではなく、逆としてもよい。すなわち、基板5側に各電池部の負極側を配置し、各積層フィルム(金属層)側に各電池部の正極側を配置するようにしてもかまわない。
 また、実施の形態1、2では、電池ユニット50の負極集電体層14あるいは第1負極集電体層14および第2負極集電体層24(変形例では負極層13あるいは第1負極層13および第2負極層23)と積層フィルム31の金属層313とを固定しない状態で接触(密着)させていたが、これに限られるものではなく、例えば導電性接着剤等を用いて、これらの位置関係を固定するようにしてもかまわない。
1…リチウムイオン二次電池、5…基板、10…(第1)電池部、11…(第1)正極層、12…(第1)固体電解質層、13…(第1)負極層、14…(第1)負極集電体層、20…第2電池部、21…第2正極層、22…第2固体電解質層、23…第2負極層、24…第2負極集電体層、30…外装部、31…積層フィルム、33…熱融着フィルム、50…電池ユニット、311…耐熱性樹脂層、312…外側接着層、313…金属層、314…内側接着層、315…熱融着性樹脂層、316…(第1)内側露出部、317…外側露出部、318…第2内側露出部

Claims (6)

  1.  導電性を有する基板と、
     前記基板の一方の面に積層され、第1極性にてリチウムイオンを吸蔵および放出する第1極層と、当該第1極層に積層され、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層と、当該固体電解質層に積層され、当該第1極性とは逆の第2極性にてリチウムイオンを吸蔵および放出する第2極層とを備える電池部と、
     金属層と、当該金属層の一方の面に当該金属層の一部が露出する露出部が形成されるように当該金属層に積層される樹脂層とを備え、当該露出部にて当該金属層が前記第2極層と電気的に接続されるとともに、当該金属層が前記基板と電気的に絶縁された状態で、前記電池部を封止する積層フィルムと
    を含むリチウムイオン二次電池。
  2.  前記電池部は、前記基板の他方の面に積層され、前記第1極性にてリチウムイオンを吸蔵および放出する他の第1極層と、当該他の第1極層に積層され、リチウムイオン伝導性を示す無機固体電解質を有する他の固体電解質層と、当該他の固体電解質層に積層され、前記第2極性にてリチウムイオンを吸蔵および放出する他の第2極層とをさらに備え、
     前記積層フィルムにはさらに他の露出部が形成され、当該他の露出部にて前記金属層が前記他の第2極層と電気的に接続されること
    を特徴とする請求項1記載のリチウムイオン二次電池。
  3.  前記樹脂層が内側となるように折り曲げられた前記積層フィルムの当該内側に前記電池部が配置されており、
     前記樹脂層が融着されることで前記電池部を封止していることを特徴とする請求項1または2記載のリチウムイオン二次電池。
  4.  前記基板の一部が、前記積層フィルムに覆われることなく露出していることを特徴とする請求項3記載のリチウムイオン二次電池。
  5.  前記電池部に設けられた前記第2極層と、前記積層フィルムの前記露出部に露出する前記金属層とが、直接に接触していることを特徴とする請求項1乃至4のいずれか1項記載のリチウムイオン二次電池。
  6.  基板の一方の面に、第1極性にてリチウムイオンを吸蔵および放出する第1極層を成膜する工程と、
     前記第1極層に、リチウムイオン伝導性を示す無機固体電解質を有する固体電解質層を成膜する工程と、
     前記固体電解質層に、前記第1極性とは逆の第2極性にてリチウムイオンを吸蔵および放出する第2極層を成膜する工程と、
     金属層と、当該金属層の一方の面に当該金属層の一部が露出する露出部が形成されるように当該金属層に積層される樹脂層とを備えた積層フィルムを、当該露出部に露出する金属層が前記第2極層と対峙するように配置した状態で、当該樹脂層を融着して前記第1極層、前記固体電解質層および当該第2極層を封止する工程と
    を含むリチウムイオン二次電池の製造方法。
PCT/JP2017/036836 2016-11-25 2017-10-11 リチウムイオン二次電池、リチウムイオン二次電池の製造方法 WO2018096817A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780064778.0A CN109845017A (zh) 2016-11-25 2017-10-11 锂离子二次电池、锂离子二次电池的制造方法
US16/345,338 US20190252717A1 (en) 2016-11-25 2017-10-11 Lithium-ion rechargeable battery, and method for producing lithium-ion rechargeable battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016229554 2016-11-25
JP2016-229554 2016-11-25
JP2017094347A JP2018092885A (ja) 2016-11-25 2017-05-11 リチウムイオン二次電池、リチウムイオン二次電池の製造方法
JP2017-094347 2017-05-11

Publications (1)

Publication Number Publication Date
WO2018096817A1 true WO2018096817A1 (ja) 2018-05-31

Family

ID=62195823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036836 WO2018096817A1 (ja) 2016-11-25 2017-10-11 リチウムイオン二次電池、リチウムイオン二次電池の製造方法

Country Status (1)

Country Link
WO (1) WO2018096817A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158873A1 (ja) * 2019-01-30 2020-08-06 凸版印刷株式会社 全固体電池用外装材及びこれを用いた全固体電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963550A (ja) * 1995-08-24 1997-03-07 Sony Corp 電 池
JP2001126756A (ja) * 1999-10-25 2001-05-11 Kyocera Corp リチウム固体電解質電池およびその製造方法
JP2001176467A (ja) * 1999-12-15 2001-06-29 Sony Corp 電 池
JP2016143520A (ja) * 2015-01-30 2016-08-08 古河機械金属株式会社 全固体型リチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0963550A (ja) * 1995-08-24 1997-03-07 Sony Corp 電 池
JP2001126756A (ja) * 1999-10-25 2001-05-11 Kyocera Corp リチウム固体電解質電池およびその製造方法
JP2001176467A (ja) * 1999-12-15 2001-06-29 Sony Corp 電 池
JP2016143520A (ja) * 2015-01-30 2016-08-08 古河機械金属株式会社 全固体型リチウムイオン二次電池

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020158873A1 (ja) * 2019-01-30 2020-08-06 凸版印刷株式会社 全固体電池用外装材及びこれを用いた全固体電池

Similar Documents

Publication Publication Date Title
JP5395749B2 (ja) 二次電池
JP5298077B2 (ja) リチウムポリマー二次電池
US20120015226A1 (en) Pouch type lithium secondary battery
JP5363444B2 (ja) 二次電池及びその製造方法
JP5194059B2 (ja) 二次電池
US11545707B2 (en) Battery case comprising various kinds of metal barrier layers and battery cell including the same
KR101175057B1 (ko) 리튬 폴리머 이차 전지
KR101375398B1 (ko) 전기절연성과 수분침투성이 개선된 파우치형 이차전지
JP2018092885A (ja) リチウムイオン二次電池、リチウムイオン二次電池の製造方法
KR20100016719A (ko) 전기절연성과 수분침투성이 개선된 파우치형 이차전지
WO2018198461A1 (ja) リチウムイオン二次電池
JP2018098167A (ja) リチウムイオン二次電池、リチウムイオン二次電池の電池構造、リチウムイオン二次電池の製造方法
JP2018098168A (ja) リチウムイオン二次電池、リチウムイオン二次電池の電池構造、リチウムイオン二次電池の製造方法
KR101308296B1 (ko) 리튬 이차 전지
JP2020064742A (ja) 充電池パック、充電池パックの製造方法
KR101495948B1 (ko) 파우치형 2차전지
KR100995544B1 (ko) 전지 외장재 및 이를 이용한 파우치형 이차 전지
JP2018092886A (ja) リチウムイオン二次電池、リチウムイオン二次電池の製造方法
WO2018096817A1 (ja) リチウムイオン二次電池、リチウムイオン二次電池の製造方法
WO2018110130A1 (ja) リチウムイオン二次電池、リチウムイオン二次電池の電池構造、リチウムイオン二次電池の製造方法
WO2021230206A1 (ja) 二次電池
JP6736264B2 (ja) 二次電池
WO2018110129A1 (ja) リチウムイオン二次電池、リチウムイオン二次電池の電池構造、リチウムイオン二次電池の製造方法
WO2018096818A1 (ja) リチウムイオン二次電池、リチウムイオン二次電池の製造方法
JP2021039833A (ja) 蓄電素子及び蓄電素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875047

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875047

Country of ref document: EP

Kind code of ref document: A1