WO2021045158A1 - 固体電池の製造方法および固体電池 - Google Patents

固体電池の製造方法および固体電池 Download PDF

Info

Publication number
WO2021045158A1
WO2021045158A1 PCT/JP2020/033459 JP2020033459W WO2021045158A1 WO 2021045158 A1 WO2021045158 A1 WO 2021045158A1 JP 2020033459 W JP2020033459 W JP 2020033459W WO 2021045158 A1 WO2021045158 A1 WO 2021045158A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
solid
state battery
sheet
positive electrode
Prior art date
Application number
PCT/JP2020/033459
Other languages
English (en)
French (fr)
Inventor
賢二 大嶋
充 吉岡
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202080062275.1A priority Critical patent/CN114342107A/zh
Priority to JP2021544028A priority patent/JP7416073B2/ja
Publication of WO2021045158A1 publication Critical patent/WO2021045158A1/ja
Priority to US17/574,810 priority patent/US20220140404A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a solid-state battery and a solid-state battery.
  • Secondary batteries that can be repeatedly charged and discharged have been used for various purposes.
  • a secondary battery is used as a power source for electronic devices such as smartphones and notebook computers.
  • the solid-state battery manufacturing method includes a step of forming the solid-state battery precursor and a step of firing the formed solid-state battery precursor.
  • the step of forming the solid-state battery precursor 500 ⁇ ', the positive electrode layer sheet 10A ⁇ ', the solid electrolyte layer sheet 20 ⁇ ', and the negative electrode layer sheet 10B ⁇ ' are laminated in this order along the laminating direction, and the positive electrode layer sheet 10A ⁇ 'and This includes providing at least one of a solid electrolyte portion sheet and an insulating portion sheet that are in contact with each other so as to surround the terminal non-connecting portion of each outer edge portion of the negative electrode layer sheet 10B ⁇ '(see FIG. 3).
  • the inventors of the present application have newly found that the following problems may occur during the firing step of the solid-state battery precursor 500 ⁇ '.
  • the coefficient of thermal expansion of the components of the solid-state battery precursor 500 ⁇ ' may differ due to the difference in material properties.
  • at least one of the solid electrolyte portion sheet and the insulating portion sheet, 30 ⁇ ' is provided so as to be in contact with the outer edge portion of the electrode layer sheet 10 ⁇ '(positive electrode layer sheet 10A ⁇ '/ negative electrode layer sheet 10B ⁇ '), so that the terminal non-connecting portion contacts.
  • the outer edge of the electrode layer sheet 10 ⁇ ' due to the difference between the thermal expansion rate of at least one of the solid electrolyte material and the insulating material contained in the sheet 30 ⁇ 'and the thermal expansion rate of the electrode material contained in the electrode layer sheet 10 ⁇ '.
  • a main object of the present invention is to provide a method for producing a solid-state battery capable of suitably suppressing the occurrence of cracks during production, and a solid-state battery obtained from the production method.
  • the positive electrode layer sheet, the solid electrolyte layer sheet, and the negative electrode layer sheet are laminated in this order along the stacking direction, and the terminals are in contact with the terminal non-connecting portions of the outer edges of the positive electrode layer sheet and the negative electrode layer sheet.
  • Including a step of forming a solid-state battery precursor including providing a non-connecting partial contact sheet, and a step of firing the solid-state battery precursor.
  • the terminal non-connecting partial contact sheet the solid electrolyte material and insulation contained in the terminal non-connecting partial contact sheet with respect to the coefficient of thermal expansion of the electrode material contained in at least one of the positive electrode layer sheet and the negative electrode layer sheet.
  • a method for producing a solid-state battery is provided, which uses a material having a coefficient of thermal expansion ratio of at least one of 0.7 or more and less than 1.5.
  • At least one battery building block including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer is provided along the stacking direction.
  • the positive electrode layer and the negative electrode layer each include at least an electrode material layer.
  • Each outer edge portion of the positive electrode layer and the negative electrode layer includes a terminal non-connecting portion in contact with a low active material content portion.
  • a solid-state battery in which the ratio of the coefficient of thermal expansion of the active material low content portion to the coefficient of thermal expansion of at least one of the positive electrode layer and the negative electrode layer is 0.7 or more and less than 1.5.
  • FIG. 1 is a schematic view of a method for manufacturing a solid-state battery according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view schematically showing a solid-state battery according to an embodiment of the present invention.
  • FIG. 3 is a schematic view of a conventional method for manufacturing a solid-state battery.
  • solid-state battery refers to a battery whose components are composed of solids in a broad sense, and in a narrow sense, all of its components (particularly all components) are composed of solids.
  • the solid-state battery of the present invention is a laminated solid-state battery in which the layers forming the battery building unit are laminated to each other, and preferably such layers are made of a sintered body.
  • the "solid-state battery” referred to in the present specification may include not only a secondary battery capable of repeating charging and discharging but also a primary battery capable of only discharging.
  • the solid-state battery is a secondary battery.
  • the "secondary battery” is not overly bound by its name and may include, for example, a power storage device.
  • the "cross-sectional view” referred to in the present specification is a state when the solid-state battery is viewed from a direction substantially perpendicular to the thickness direction based on the stacking direction of the electrode material layers constituting the solid-state battery.
  • the term "planar view” as used herein refers to a state in which the solid-state battery is viewed from above or below along the thickness direction based on the stacking direction of the electrode material layers constituting the solid-state battery.
  • the "vertical direction” and “horizontal direction” used directly or indirectly in the present specification correspond to the vertical direction and the horizontal direction in the drawings, respectively. Unless otherwise specified, the same code or symbol shall indicate the same member / part or the same meaning. In one preferred embodiment, it can be considered that the vertical downward direction (that is, the direction in which gravity acts) corresponds to the "downward direction” and the opposite direction corresponds to the "upward direction”.
  • the solid-state battery adopts a configuration in which at least one battery building block including a positive electrode layer, a negative electrode layer, and a solid electrolyte layer interposed between the positive electrode layer and the negative electrode layer is provided along the stacking direction. ..
  • the solid-state battery has a structure in which the positive electrode layer, the solid electrolyte layer, and the negative electrode layer are integrally sintered.
  • the positive electrode layer includes at least a positive electrode material layer, and may additionally have a positive electrode current collector layer. In this case, the positive electrode material layer may be provided on at least one side of the positive electrode current collector layer.
  • the positive electrode material layer is composed of a sintered body containing positive electrode active material particles and solid electrolyte particles.
  • the negative electrode layer may have at least a negative electrode material layer, and may additionally have a negative electrode current collector layer. In this case, the negative electrode material layer may be provided on at least one surface of the negative electrode current collector layer.
  • the negative electrode material layer is composed of a sintered body containing negative electrode active material particles and solid electrolyte particles.
  • the positive electrode layer and / or the negative electrode layer may contain a conductive auxiliary agent.
  • the conductive auxiliary agent contained in the positive electrode layer and the negative electrode layer include at least one kind composed of a metal material such as silver, palladium, gold, platinum, aluminum, copper and nickel, carbon and the like.
  • carbon is preferable because it does not easily react with the positive electrode active material, the negative electrode active material, the solid electrolyte material, and the like, and is effective in reducing the internal resistance of the solid state battery.
  • the positive electrode layer and / or the negative electrode layer may contain a sintering aid.
  • a sintering aid at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, and silicon oxide can be mentioned.
  • the positive electrode active material contained in the positive electrode material layer and the negative electrode active material contained in the negative electrode material layer are substances involved in the transfer of electrons in a solid-state battery, and ions contained in the active material move between the positive electrode and the negative electrode ( Charging and discharging are performed by conducting) and transferring electrons.
  • the positive electrode material layer and the negative electrode material layer are particularly preferably layers capable of occluding and releasing lithium ions. That is, it is preferable to use a solid secondary battery in which lithium ions move between the positive electrode and the negative electrode via the solid electrolyte layer to charge and discharge the battery.
  • the positive electrode current collector and the negative electrode current collector may each have a foil form, but from the viewpoint of reducing the manufacturing cost of the solid-state battery and reducing the internal resistance of the solid-state battery by integral firing, the form of the sintered body is adopted. You may have.
  • the positive electrode current collector and the negative electrode current collector have the form of a sintered body, they may be composed of a sintered body containing a conductive auxiliary agent and a sintered auxiliary agent.
  • the conductive auxiliary agent contained in the positive electrode current collector and the negative electrode current collector may be selected from, for example, the same materials as the conductive auxiliary agent that can be contained in the positive electrode layer and the negative electrode layer.
  • the sintering aid contained in the positive electrode current collector and the negative electrode current collector may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
  • Examples of the positive electrode active material contained in the positive electrode material layer include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and lithium-containing having a spinel-type structure. At least one selected from the group consisting of oxides and the like can be mentioned.
  • Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 .
  • Examples of the lithium-containing phosphoric acid compound having an olivine type structure include LiFePO 4 , LiMnPO 4, and the like.
  • lithium-containing layered oxides examples include LiCoO 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2, and the like.
  • Examples of the lithium-containing oxide having a spinel-type structure include LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4, and the like.
  • Examples of the negative electrode active material contained in the negative electrode material layer include oxides containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo, graphite-lithium compounds, and lithium. At least one selected from the group consisting of an alloy, a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing oxide having a spinel-type structure, and the like can be mentioned.
  • An example of a lithium alloy is Li—Al or the like.
  • Examples of the lithium-containing phosphoric acid compound having a pear-con type structure include Li 3 V 2 (PO 4 ) 3 .
  • Examples of lithium-containing oxides having a spinel-type structure include Li 4 Ti 5 O 12 and the like.
  • Solid electrolyte material examples of the material of the solid electrolyte particles (that is, the solid electrolyte material) that can be contained in the solid electrolyte layer, the positive electrode material layer, and / or the negative electrode material layer include a lithium-containing phosphoric acid compound having a pearcon structure and an oxide having a perovskite structure. , Garnet type or oxide having a garnet type similar structure and the like.
  • the lithium-containing phosphoric acid compound having a NASICON structure Li x M y (PO 4 ) 3 (1 ⁇ x ⁇ 2,1 ⁇ y ⁇ 2, M is, Ti, Ge, Al, from the group consisting of Ga and Zr At least one selected).
  • Examples of the lithium-containing phosphoric acid compound having a pear-con structure include Li 1.2 Al 0.2 Ti 1.8 (PO 4 ) 3 .
  • Examples of oxides having a perovskite structure include La 0.55 Li 0.35 TiO 3 and the like.
  • Examples of oxides having a garnet-type or garnet-type similar structure include Li 7 La 3 Zr 2 O 12 and the like.
  • the solid electrolyte layer may contain a sintering aid.
  • the sintering aid contained in the solid electrolyte layer may be selected from, for example, the same materials as the sintering aid that can be contained in the positive electrode layer and the negative electrode layer.
  • Solid-state batteries are generally provided with an end face.
  • an end face is provided on the side surface of the solid-state battery.
  • a positive electrode terminal connected to the positive electrode layer and a negative electrode terminal connected to the negative electrode layer are provided.
  • Such terminals preferably include a material having a high conductivity.
  • the specific material of the terminal is not particularly limited, and may include at least one selected from the group consisting of silver, gold, platinum, aluminum, copper, tin and nickel.
  • a protective layer may be further provided which covers at least a part of the outer surface of at least one battery constituent unit except for the terminals.
  • the protective layer is formed on the outermost side of the solid-state battery and is for electrical, physical, and chemical protection.
  • the material it is preferable that the material has excellent insulation, durability, and moisture resistance, and is environmentally safe.
  • the inventors of the present application have diligently studied a solution capable of suitably suppressing the occurrence of cracks during the production of a solid-state battery.
  • the inventors of the present application have developed a manufacturing method according to an embodiment of the present invention based on the technical idea that "a terminal non-connecting partial contact sheet having an adjusted coefficient of thermal expansion is used when manufacturing a solid-state battery". I came up with the idea.
  • the inventors of the present application stated that "at least of the solid electrolyte material and the insulating material contained in the terminal non-connecting partial contact sheet with respect to the coefficient of thermal expansion of the electrode material contained in the electrode layer sheet at the time of manufacturing the solid state battery". Based on the technical idea that "the ratio of the coefficient of thermal expansion on one side is limited to a predetermined range", a manufacturing method according to an embodiment of the present invention has been devised.
  • terminal non-connecting partial contact sheet refers to a sheet containing at least one of an insulating part sheet containing an insulating material and a solid electrolyte part sheet containing a solid electrolyte material.
  • electrode material refers in a broad sense to a material constituting an electrode layer which is a component of a finally obtained solid-state battery, and in a narrow sense includes an electrode active material which is a component of the electrode layer. Refers to the material that constitutes the electrode material layer.
  • active material low content portion refers to at least one of an insulating portion and a solid electrolyte portion having an active material content of 0% by volume or more and less than 30% by volume.
  • insulating portion refers to a portion including an insulating material.
  • solid electrolyte portion refers to a portion containing a solid electrolyte material.
  • a terminal non-connecting portion contact sheet is provided so as to be in contact with the terminal non-connecting portion of the outer edge portion of the electrode layer sheet.
  • the coefficient of thermal expansion of at least one of the solid electrolyte material and the insulating material contained in the terminal non-connecting partial contact sheet and the coefficient of thermal expansion of the electrode material contained in the electrode layer sheet may differ. Therefore, due to this, in the firing step of the solid-state battery precursor (also referred to as unfired laminate), stress is applied in the contact region between the terminal non-connecting portion and the terminal non-connecting portion contact sheet at the outer edge of the electrode layer sheet. Can occur.
  • the ratio of the coefficient of thermal expansion of at least one of the solid electrolyte material and the insulating material contained in the terminal non-connecting partial contact sheet to the coefficient of thermal expansion of the electrode material contained in the electrode layer sheet. Is limited to within a predetermined range (specifically, 0.7 or more and less than 1.5).
  • a predetermined range specifically, 0.7 or more and less than 1.5.
  • the difference between the coefficient of thermal expansion of the electrode layer sheet and the coefficient of thermal expansion of the terminal non-connecting portion contact sheet can be limited.
  • the stress generated in the contact region between the terminal non-connecting portion and the terminal non-connecting portion contact sheet at the outer edge of the electrode layer sheet during the firing step of the solid-state battery precursor can be relaxed, and cracks occur when the firing step is completed. It can be suppressed from occurring. Therefore, it is finally possible to obtain a solid-state battery in which the occurrence of cracks is suppressed.
  • the solid-state battery according to the embodiment of the present invention can be manufactured by using the green sheet method using a green sheet.
  • the solid-state battery according to the embodiment of the present invention can be finally manufactured after forming a predetermined laminated body by the green sheet method.
  • a predetermined laminate may be formed by a screen printing method or the like.
  • each base material for example, PET film
  • a paste for a solid electrolyte layer a paste for a positive electrode material layer, a paste for a positive electrode current collector layer, a paste for a negative electrode material layer, a paste for a negative electrode current collector layer, and a protective layer Apply the paste.
  • Each paste uses a predetermined constituent material of each layer appropriately selected from the group consisting of a positive electrode active material, a negative electrode active material, a conductive material, a solid electrolyte material, an insulating material, and a sintering aid, and an organic material as a solvent. It can be produced by wet mixing with a dissolved organic vehicle.
  • the paste for the positive electrode material layer includes, for example, a positive electrode active material, a conductive material, a solid electrolyte material, an organic material and a solvent.
  • the paste for the negative electrode material layer includes, for example, a negative electrode active material, a conductive material, a solid electrolyte material, an organic material and a solvent.
  • the paste for the positive electrode current collector layer / the paste for the negative electrode current collector layer at least one may be selected from the group consisting of, for example, silver, palladium, gold, platinum, aluminum, copper, and nickel.
  • the paste for the solid electrolyte layer and the paste for the solid electrolyte portion described later include, for example, a solid electrolyte material, a sintering aid, an organic material and a solvent.
  • the protective layer paste includes, for example, insulating material materials, organic materials and solvents. Insulation pastes include, for example, insulating materials, organic materials and solvents.
  • the solid electrolyte part paste contains, for example, a solid electrolyte material, a sintering aid, an organic material and a solvent.
  • Media can be used in wet mixing, and specifically, a ball mill method, a viscomill method, or the like can be used. On the other hand, a wet mixing method that does not use media may be used, and a sand mill method, a high-pressure homogenizer method, a kneader dispersion method, or the like can be used.
  • a predetermined solid electrolyte layer paste and a solid electrolyte part paste By wet-mixing a predetermined solid electrolyte material, a sintering aid, and an organic vehicle in which an organic material is dissolved in a solvent, a predetermined solid electrolyte layer paste and a solid electrolyte part paste can be produced.
  • the material of the solid electrolyte particles include a lithium-containing phosphoric acid compound having a pearcon structure, an oxide having a perovskite structure, an oxide having a garnet type or a garnet type similar structure, and the like.
  • Examples of the positive electrode active material contained in the positive electrode material layer paste include a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing layered oxide, and a spinel-type structure. At least one is selected from the group consisting of lithium-containing oxides and the like.
  • the insulating material contained in the insulating paste may be composed of, for example, a glass material, a ceramic material, or the like.
  • the insulating material material contained in the protective layer paste for example, it is preferable to use at least one selected from the group consisting of glass materials, ceramic materials, thermosetting resin materials, photocurable resin materials and the like.
  • the organic material contained in the paste is not particularly limited, but at least one polymer material selected from the group consisting of polyvinyl acetal resin, cellulose resin, polyacrylic resin, polyurethane resin, polyvinyl acetate resin, polyvinyl alcohol resin and the like can be used. Can be used.
  • the solvent is not particularly limited as long as it can dissolve the organic material, and for example, toluene and / or ethanol can be used.
  • Examples of the negative electrode active material contained in the paste for the negative electrode material layer include an oxide containing at least one element selected from the group consisting of Ti, Si, Sn, Cr, Fe, Nb, and Mo, graphite-lithium. It is selected from at least one group consisting of a compound, a lithium alloy, a lithium-containing phosphoric acid compound having a pearcon-type structure, a lithium-containing phosphoric acid compound having an olivine-type structure, a lithium-containing oxide having a spinel-type structure, and the like.
  • the sintering aid may be at least one selected from the group consisting of lithium oxide, sodium oxide, potassium oxide, boron oxide, and silicon oxide.
  • a solid electrolyte layer sheet having a predetermined thickness on a base material for example, PET film
  • a positive electrode layer sheet containing a positive electrode material layer and a positive electrode layer sheet containing a positive electrode material layer
  • Each negative electrode layer sheet including the negative electrode material layer is formed.
  • a sheet including at least an electrode material layer is referred to as an electrode layer sheet.
  • each sheet is peeled off from the base material.
  • the sheets of each component of the battery constituent unit are laminated in order along the stacking direction (see FIG. 1). Specifically, the positive electrode layer sheet 10A', the solid electrolyte layer sheet 20', and the negative electrode layer sheet 10B' are laminated in this order along the laminating direction.
  • the terminals of the solid electrolyte sheet, the insulating sheet, etc. are screen-printed on the side region of the electrode layer sheet 10'so as to partially contact the outer edge 11' of the electrode layer sheet 10'in a plan view.
  • a non-connecting partial contact sheet 30' is provided.
  • the terminal non-connecting portion contact sheet 30' is provided so as to be in contact with the terminal non-connecting portion 13'excluding the portion 12'to which the terminal is connected later in the outer edge portion 11'of the electrode layer sheet 10'.
  • a terminal non-connecting portion contact sheet is provided so as to surround the terminal non-connecting portion 13'of the outer edge portion 11'of the electrode layer sheet 10'. That is, the terminal non-connecting portion contact sheet is provided so as to be in contact with the terminal non-connecting portion 13'of the outer edge portion 11'of the electrode layer sheet 10'and surround the terminal non-connecting portion 13'.
  • a terminal non-connecting portion contact sheet 30'with a "thermal expansion coefficient adjusted” is provided so as to be in contact with the terminal non-connecting portion 13'of the outer edge portion 11'of the electrode layer sheet 10'.
  • the thermal expansion of at least one of the solid electrolyte material and the insulating material contained in the terminal non-connecting partial contact sheet 30'with respect to the coefficient of thermal expansion of the electrode material contained in the electrode layer sheet 10' is provided so that the ratio of the rate is limited to a predetermined range (0.7 or more and less than 1.5).
  • the coefficient of thermal expansion can be set to a desired value by incorporating various ceramic materials into the glass material which is the constituent material of the insulating portion paste. Or it can be controlled to a range.
  • an insulating material may be further incorporated as a constituent material of the electrode material layer paste in addition to the active material, the conductive material, the solid electrolyte material, the organic material and the solvent.
  • the material ratios of the active material, the conductive material, the solid electrolyte material, the organic material, and the solvent as the constituent materials of the paste for the electrode material layer may be adjusted.
  • the coefficient of thermal expansion of the electrode material contained in the electrode layer sheet can be similarly controlled to a desired value or range. From the viewpoint of avoiding a decrease in the energy density of the finally obtained solid-state battery, it is more preferable to adjust so as not to decrease the content ratio of the active material contained in the paste for the electrode material layer.
  • thermocompression bonding at a predetermined pressure (for example, about 50 to about 100 MPa) and subsequent isotropic pressure pressing at a predetermined pressure (for example, about 150 to about 300 MPa).
  • a predetermined pressure for example, about 50 to about 100 MPa
  • subsequent isotropic pressure pressing at a predetermined pressure (for example, about 150 to about 300 MPa).
  • the obtained predetermined solid-state battery precursor 500'(unfired laminate) is subjected to firing.
  • the firing is carried out by heating at, for example, 600 ° C. to 1000 ° C. in a nitrogen gas atmosphere.
  • the coefficient of thermal expansion of at least one of the solid electrolyte material and the insulating material contained in the terminal non-connecting portion contact sheet 30'and the coefficient of thermal expansion of the electrode material contained in the electrode layer sheet 10' can be different. Therefore, due to this, in the firing step of the solid-state battery precursor 500'(also referred to as an unfired laminate), the terminal non-connecting portion 13'of the outer edge portion 11' of the electrode layer sheet 10'contacts the terminal non-connecting portion. Stress can occur in the contact area with the sheet 30'.
  • the expansion rate ratio is limited to a predetermined range (specifically, 0.7 or more and less than 1.5).
  • the terminals are provided so as to be electrically connectable to the positive electrode layer and the negative electrode layer, respectively.
  • the terminal is preferably composed of at least one selected from silver, gold, platinum, aluminum, copper, tin, and nickel.
  • the protective layer 300' it is preferable to provide the protective layer 300'to the extent that the terminals are not covered by sputtering, spray coating or the like.
  • the solid-state battery according to the embodiment of the present invention can be suitably manufactured.
  • the terminal non-connecting partial contact sheet 30' is provided in which the ratio of the coefficient of thermal expansion of at least one of the insulating materials is limited to a predetermined range (0.7 or more and less than 1.5).
  • Solid-state battery of the present invention The solid-state battery 500 according to the embodiment of the present invention obtained according to the above manufacturing method has the following technical features (see FIG. 2).
  • the solid-state battery 500 has a battery configuration including a positive electrode layer 10A, a negative electrode layer 10B, and a solid electrolyte layer 20 interposed between the positive electrode layer 10A and the negative electrode layer 10B. At least one unit 100 is provided along the stacking direction.
  • the positive electrode layer 10A includes a positive electrode material layer
  • the negative electrode layer 10B includes a negative electrode material layer.
  • the positive electrode layer 10A includes a main surface portion facing the solid electrolyte layer 20 and an outer edge portion 11A extending in a direction substantially perpendicular to the extending direction of the main surface portion.
  • the outer edge portion 11A includes a terminal connecting portion 12A and a terminal non-connecting portion 13A surrounded by a positive electrode active material low content portion 30A (active material low content portion 30).
  • the negative electrode layer 10B includes a main surface portion facing the solid electrolyte layer 20 and an outer edge portion 11B extending in a direction substantially perpendicular to the extending direction of the main surface portion.
  • the outer edge portion 11B includes an external terminal connecting portion 12B and a terminal non-connecting portion 13B surrounded by a positive electrode active material low content portion 30B (active material low content portion 30).
  • the electrode layer 10 (positive electrode layer 10A / negative electrode layer 10B) has a main surface portion facing the solid electrolyte layer 20 and an outer edge portion 11 extending in a direction substantially perpendicular to the extending direction of the main surface portion. It consists of.
  • the outer edge portion 11 includes a terminal connecting portion 12 and a terminal non-connecting portion 13 surrounded by the active material low content portion 30.
  • the solvent that can be contained in the electrode layer sheet 10'and the solvent that can be contained in the terminal non-connecting partial contact sheet 30' are volatilized. Therefore, the coefficient of thermal expansion of the electrode material contained in the electrode layer sheet during production and the coefficient of thermal expansion of at least one of the solid electrolyte material and the insulating material contained in the terminal non-connecting partial contact sheet are determined by the electrode layer after the production is completed. Specifically, it corresponds to the coefficient of thermal expansion of the electrode material layer) and the coefficient of thermal expansion of the portion containing a low amount of active material.
  • the ratio of the coefficient of thermal expansion of the active material low content portion 30 to the coefficient of thermal expansion of the electrode layer 10 is within a predetermined range. It will be limited to the inside (specifically, 0.7 or more and less than 1.5).
  • the thermal expansion of the electrode layer 10 corresponding to the electrode layer sheet 10'when the firing is completed
  • the heat of the active material low content portion 30 corresponding to the terminal non-connecting portion contact sheet 30' when the firing is completed
  • the difference from the expansion rate can be limited.
  • electrode layers 1 to 3 were used as the positive electrode layer sheet and / or the negative electrode layer sheet (see Table 1).
  • LAGP in Table 1 shows Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 .
  • a terminal non-connecting portion contact sheet (specifically, an insulating portion sheet) was provided in the side region of the electrode layer sheet by screen printing. Specifically, the insulating portion sheet is provided so as to be in contact with the terminal non-connecting portion other than the portion of the outer edge portion of the electrode layer sheet to which the terminal is connected.
  • insulation sheets 1, 4 to 8 were used as the insulation sheets.
  • thermocompression bonding at a predetermined pressure (75 MPa) and subsequent isotropic pressure pressing at a predetermined pressure (200 MPa) were carried out.
  • a solid-state battery precursor unfired laminate
  • the obtained solid-state battery precursor (unfired laminate) was subjected to firing.
  • the firing was carried out by heating at 750 ° C. in a nitrogen gas atmosphere. After firing, a protective layer was provided on the obtained laminate to the extent that the terminals and terminals were not covered.
  • the solid-state battery in the comparative example was manufactured. Next, 10 battery elements obtained in each Comparative Example were prepared, each battery element was embedded in resin, and the polished cross section was observed. Finally, the non-defective rate was calculated from the number of non-defective products out of 10.
  • the coefficient of thermal expansion of the electrode layer containing the electrode material (corresponding to the member composed of the active material, the conductive material, and the solid electrolyte material) as the main component, which is a component of the solid-state battery.
  • the ratio of the coefficient of thermal expansion of the insulating portion containing the insulating material as the main component is less than 0.7 (specifically, 0.6). ”In Comparative Example 8, it was found that the non-defective product ratio was 30%. It was.
  • the ratio of the coefficient of thermal expansion of the insulating portion containing the insulating material as the main component to the coefficient of thermal expansion of the electrode layer containing the electrode material as the main component, which is a component of the solid-state battery exceeds 1.5 (specifically). Is 1.6 or more) ”In Comparative Examples 1 to 7 and 9, it was found that the non-defective product rate was 30% or less.
  • Examples 1 to 15 will be described. It should be noted that the process for obtaining the solid-state battery is the same as that in the above comparative example.
  • a positive electrode layer sheet 10A', a solid electrolyte layer sheet 20', and a negative electrode layer sheet 10B', which are constituent elements of the battery constituent unit, were prepared.
  • electrode layers 1 to 3 were used as the positive electrode layer sheet 10A'and / or the negative electrode layer sheet 10B' (see Table 2).
  • LAGP in Table 2 shows Li 1.5 Al 0.5 Ge 1.5 (PO 4 ) 3 .
  • a terminal non-connecting portion contact sheet (specifically, an insulating portion sheet) 30'was provided in the side region of the electrode layer sheet 10'by screen printing.
  • the insulating portion sheet is provided so as to be in contact with the terminal non-connecting portion 13'excluding the portion 12'of the outer edge portion 11'of the electrode layer sheet 10'.
  • the insulating part sheets 1 to 6 and 8 were used as the insulating part sheets.
  • thermocompression bonding at a predetermined pressure (75 MPa) and subsequent isotropic pressure pressing at a predetermined pressure (200 MPa) were carried out.
  • the solid-state battery precursor 500'(unfired laminate) was formed.
  • the solid-state battery according to the embodiment of the present invention has been manufactured. Next, 10 battery elements obtained in each example were prepared, each battery element was embedded in resin, and the polished cross section was observed. Finally, the non-defective rate was calculated from the number of non-defective products out of 10.
  • the ratio of the coefficient of thermal expansion of the insulating portion containing an insulating material as a main component to the coefficient of thermal expansion of the electrode layer 10 containing (corresponding to) is 0.7 or more and less than 1.5.
  • the non-defective product rate. was found to be 70% or more. Specifically, it was found that the non-defective product rate was 70% or more when the ratio was 0.7 or more and 1.4 or less.
  • the non-defective product rate was 80% or more when the ratio was 0.8 or more and 1.4 or less. It was found that the non-defective rate was 90% or more when the ratio was 0.9 or more and 1.4 or less. It was found that the non-defective rate was 100% when the ratio was 0.9 or more and 1.2 or less.
  • the insulating part sheet is used in this embodiment, the solid electrolyte part sheet can also be used without being limited to this.
  • the secondary battery according to the embodiment of the present invention can be used in various fields where storage is expected.
  • the secondary battery according to the embodiment of the present invention particularly the non-aqueous electrolyte secondary battery, is used in the fields of electricity, information, and communication (for example, mobile phones, smartphones, notebooks, etc.) in which mobile devices and the like are used.
  • Mobile device fields such as personal computers and digital cameras, activity meters, arm computers, electronic paper), home / small industrial applications (for example, power tools, golf carts, home / nursing / industrial robot fields), large industries Applications (eg, forklifts, elevators, bay port cranes), transportation systems (eg, hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.), power system applications (eg, various power generation) , Road conditioner, smart grid, general household installation type power storage system, etc.), medical use (medical equipment field such as earphone hearing aid), medical use (field such as dose management system), IoT field, space / deep sea It can be used for various purposes (for example, in the fields of space explorers, submersible research vessels, etc.).
  • large industries Applications eg, forklifts, elevators, bay port cranes
  • transportation systems eg, hybrid vehicles, electric vehicles, buses, trains, electrically assisted bicycles, electric motorcycles, etc.
  • power system applications eg, various power generation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

本発明の一実施形態では、固体電池の製造方法が提供される。当該固体電池の製造方法では、積層方向に沿って、正極層シート、固体電解質層シート、および負極層シートを順に積層することと、前記正極層シートおよび前記負極層シートの各々の外縁部の端子非接続部分と接するように端子非接続部分接触シートを設けることとを含む固体電池前駆体の形成工程、ならびに前記固体電池前駆体の焼成工程を含み、前記端子非接続部分接触シートとして、前記正極層シートおよび前記負極層シートの少なくとも一方の電極層シートに含まれる電極材の熱膨張率に対する前記端子非接続部分接触シートに含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率の比率が0.7以上1.5未満であるものを用いる。

Description

固体電池の製造方法および固体電池
 本発明は、固体電池の製造方法および固体電池に関する。
 従前より充放電が繰り返し可能な二次電池が様々な用途に用いられている。例えば、二次電池は、スマートフォン、ノートパソコン等の電子機器の電源として用いられている。
 当該二次電池においてはイオンを移動させるための媒体として有機溶媒等の液体の電解質(電解液)が従来より使用されている。しかしながら、電解液を用いた二次電池においては、電解液の漏液等の問題がある。そのため、液体の電解質に代えて固体電解質を有して成る固体電池の開発が進められている。
特開2007-5279号公報
 ここで、固体電池を製造方法として、固体電池前駆体の形成工程と、形成した固体電池前駆体の焼成工程とが含まれる。当該固体電池前駆体500α’の形成工程は、積層方向に沿って、正極層シート10Aα’、固体電解質層シート20α’、および負極層シート10Bα’を順に積層することと、正極層シート10Aα’および負極層シート10Bα’の各々の外縁部の端子非接続部分を取り囲むように接する固体電解質部シートおよび絶縁部シートの少なくとも一方を設けることとを含む(図3参照)。
 本願発明者らは、上記固体電池前駆体500α’の焼成工程の実施時において、以下の問題が生じ得ることを新たに見出した。
 具体的には、固体電池前駆体500α’の構成要素の熱膨張率は材料特性の違いに起因して異なり得る。特に、固体電解質部シートおよび絶縁部シートの少なくとも一方30α’は電極層シート10α’(正極層シート10Aα’/負極層シート10Bα’)の外縁部と接するように設けられるため、端子非接続部分接触シート30α’に含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率と電極層シート10α’に含まれる電極材の熱膨張率との違いに起因して、電極層シート10α’の外縁部11α’の端子非接続部分13α’と端子非接続部分接触シート30α’との接触領域において応力が発生し得る。そのため、当該応力に起因して、固体電池前駆体500α’の焼成工程中に、電極層シート10α’と端子非接続部分接触シート30α’との接触領域にクラック40α’が生じ得る。その結果、最終的に得られる固体電池の充放電を好適に実施できない虞があり得る。
 本発明はかかる事情に鑑みて為されたものである。即ち、本発明の主たる目的は、製造時にクラックが発生することを好適に抑制可能な固体電池の製造方法および当該製造方法から得られる固体電池を提供することである。
 上記目的を達成するために、本発明の一実施形態では、
 積層方向に沿って、正極層シート、固体電解質層シート、および負極層シートを順に積層することと、前記正極層シートおよび前記負極層シートの各々の外縁部の端子非接続部分と接するように端子非接続部分接触シートを設けることとを含む固体電池前駆体の形成工程、ならびに
 前記固体電池前駆体の焼成工程
を含み、
 前記端子非接続部分接触シートとして、前記正極層シートおよび前記負極層シートの少なくとも一方の電極層シートに含まれる電極材の熱膨張率に対する前記端子非接続部分接触シートに含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率の比率が0.7以上1.5未満であるものを用いる、固体電池の製造方法が提供される。
 上記目的を達成するために、本発明の一実施形態では、
 正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備える電池構成単位を積層方向に沿って少なくとも1つ備え、
 前記正極層および前記負極層はそれぞれ少なくとも電極材層を含み、
 前記正極層および前記負極層の各々の外縁部が、活物質低含有部と接する端子非接続部分を含み、
 前記正極層および前記負極層の少なくとも一方の熱膨張率に対する前記活物質低含有部の熱膨張率の比率が0.7以上1.5未満である、固体電池が提供される。
 本発明の一実施形態によれば、製造時にクラックが発生することを好適に抑制することが可能である。
図1は、本発明の一実施形態に係る固体電池の製造方法の模式図である。 図2は、本発明の一実施形態に係る固体電池を模式的に示した分解斜視図である。 図3は、固体電池の従来の製造方法の模式図である。
 本発明の一実施形態に係る固体電池について説明する前に、固体電池の基本的構成について説明しておく。本明細書でいう「固体電池」とは、広義にはその構成要素が固体から構成されている電池を指し、狭義にはその構成要素(特に全ての構成要素)が固体から構成されている全固体電池を指す。ある好適な態様では、本発明の固体電池は、電池構成単位を成す各層が互いに積層するように構成された積層型固体電池であり、好ましくはそのような各層が焼結体から成っている。本明細書でいう「固体電池」は、充電および放電の繰り返しが可能な二次電池のみならず、放電のみが可能な一次電池をも包含し得る。本発明のある好適な態様では、固体電池は二次電池である。「二次電池」は、その名称に過度に拘泥されるものではなく、例えば、蓄電デバイスなども包含し得る。
 本明細書でいう「断面視」とは、固体電池を構成する電極材層の積層方向に基づく厚み方向に対して略垂直な方向から固体電池をみたときの状態のことである。本明細書でいう「平面視」とは、固体電池を構成する電極材層の積層方向に基づく厚み方向に沿って固体電池を上側または下側からみたときの状態のことである。本明細書で直接的または間接的に用いる“上下方向”および“左右方向”は、それぞれ図中における上下方向および左右方向に相当する。特記しない限り、同じ符号または記号は、同じ部材・部位または同じ意味内容を示すものとする。ある好適な態様では、鉛直方向下向き(すなわち、重力が働く方向)が「下方向」に相当し、その逆向きが「上方向」に相当すると捉えることができる。
[固体電池の基本的構成]
 固体電池は、相互に対向する正極層、負極層、および正極層と負極層との間に介在する固体電解質層を備えた電池構成単位が積層方向に沿って少なくとも1つ設けられた構成を採る。詳細には、固体電池は、正極層、固体電解質層および負極層は一体焼結された構成を採っている。
 正極層は少なくとも正極材層を有して成り、正極集電体層を付加的に更に有して成ってよい。この場合、正極集電体層の少なくとも片面に正極材層が設けられてよい。正極材層は、正極活物質粒子と固体電解質粒子とを含む焼結体により構成されている。負極層は少なくとも負極材層を有して成り、負極集電体層を付加的に更に有して成ってよい。この場合、負極集電体層の少なくとも片面に負極材層が設けられてよい。負極材層は、負極活物質粒子と固体電解質粒子とを含む焼結体により構成されている。
 正極層および/または負極層は、導電助剤を含んでいてもよい。正極層および負極層に含まれる導電助剤として、銀、パラジウム、金、プラチナ、アルミニウム、銅およびニッケル等の金属材料、ならびに炭素などから成る少なくとも1種を挙げることができる。特に限定されるわけではないが、炭素は、正極活物質、負極活物質および固体電解質材料などと反応し難く、固体電池の内部抵抗の低減に効果を奏するのでその点で好ましい。
 さらに、正極層および/または負極層は、焼結助剤を含んでいてもよい。焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、および酸化ケイ素から成る群から選択される少なくとも1種を挙げることができる。
 正極材層に含まれる正極活物質および負極材層に含まれる負極活物質は、固体電池において電子の受け渡しに関与する物質であり、活物質に含まれるイオンが正極と負極との間で移動(伝導)して電子の受け渡しが行われることで充放電がなされる。正極材層および負極材層は特にリチウムイオンを吸蔵放出可能な層であることが好ましい。つまり、固体電解質層を介してリチウムイオンが正極と負極との間で移動して電池の充放電が行われる固体二次電池であることが好ましい。
(正極集電体/負極集電体)
 正極集電体および負極集電体はそれぞれ箔の形態を有していてもよいが、一体焼成による固体電池の製造コスト低減および固体電池の内部抵抗低減などの観点から、焼結体の形態を有していてもよい。なお、正極集電体および負極集電体が焼結体の形態を有する場合、導電助剤および焼結助剤を含む焼結体により構成されてもよい。正極集電体および負極集電体に含まれる導電助剤は、例えば、正極層および負極層に含まれ得る導電助剤と同様の材料から選択されてよい。正極集電体および負極集電体に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。
(正極活物質)
 正極材層に含まれる正極活物質としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。オリビン型構造を有するリチウム含有リン酸化合物の一例としては、LiFePO、LiMnPO等が挙げられる。リチウム含有層状酸化物の一例としては、LiCoO、LiCo1/3Ni1/3Mn1/3等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiMn、LiNi0.5Mn1.5等が挙げられる。
(負極活物質)
 負極材層に含まれる負極活物質としては、例えば、Ti、Si、Sn、Cr、Fe、Nb、および、Moからなる群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から選択される少なくとも一種が挙げられる。リチウム合金の一例としては、Li-Al等が挙げられる。ナシコン型構造を有するリチウム含有リン酸化合物の一例としては、Li(PO等が挙げられる。スピネル型構造を有するリチウム含有酸化物の一例としては、LiTi12等が挙げられる。
(固体電解質材料)
 固体電解質層、正極材層、および/または負極材層に含まれ得る固体電解質粒子の材料(すなわち固体電解質材料)としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物としては、Li(PO(1≦x≦2、1≦y≦2、Mは、Ti、Ge、Al、GaおよびZrからなる群より選ばれた少なくとも一種)が挙げられる。ナシコン構造を有するリチウム含有リン酸化合物の一例としては、例えば、Li1.2Al0.2Ti1.8(PO等が挙げられる。ペロブスカイト構造を有する酸化物の一例としては、La0.55Li0.35TiO等が挙げられる。ガーネット型またはガーネット型類似構造を有する酸化物の一例としては、LiLaZr12等が挙げられる。固体電解質層は焼結助剤を含んでいてもよい。固体電解質層に含まれる焼結助剤は、例えば、正極層・負極層に含まれ得る焼結助剤と同様の材料から選択されてよい。
(端子)
 固体電池には、一般に端面が設けられている。特に、固体電池の側面に端面が設けられている。より具体的には、正極層と接続された正極端子と、負極層と接続された負極端子とが設けられている。そのような端子は、導電率が大きい材料を含んで成ることが好ましい。端子の具体的な材質としては、特に制限されるわけではないが、銀、金、プラチナ、アルミニウム、銅、スズおよびニッケルから成る群から選択される少なくとも一種を挙げることができる。
(保護層)    
 又、端子を除き、少なくとも1つの電池構成単位の外面の少なくとも一部を覆う保護層が更に設けられていてよい。保護層は、固体電池の最外側に形成されるもので、電気的、物理的、化学的に保護するためのものである。保護層を構成する材料としては絶縁性、耐久性、耐湿性に優れ、環境的に安全であることが好ましい。例えば、ガラス、セラミックス、熱硬化性樹脂、光硬化性樹脂等を用いることが好ましい。
[本発明の固体電池の製造方法]
 固体電池の基本的構成をふまえた上で、以下、本発明の一実施形態に係る固体電池の製造方法について説明する。
 本願発明者らは、固体電池の製造時にクラックが発生することを好適に抑制することが可能な解決策について鋭意検討した。その結果、本願発明者らは、「固体電池の製造時において、熱膨張率が調整された端子非接続部分接触シートを用いる」という技術的思想に基づき本発明の一実施形態に係る製造方法を案出するに至った。
 具体的には、本願発明者らは、「固体電池の製造時において、電極層シートに含まれる電極材の熱膨張率に対する端子非接続部分接触シートに含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率の比率を所定範囲内に限定する」という技術的思想に基づき本発明の一実施形態に係る製造方法を案出するに至った。
 本明細書でいう「端子非接続部分接触シート」とは、絶縁性材料を含む絶縁部シートおよび固体電解質材料を含む固体電解質部シートの少なくとも一方を含むシートを指す。本明細書でいう「電極材」とは広義には最終的に得られる固体電池の構成要素である電極層を構成する材料を指し、狭義には電極層の構成要素である電極活物質を含む電極材層を構成する材料を指す。本明細書でいう「活物質低含有部」とは、活物質の含有率が0体積%以上30体積%未満である絶縁部および固体電解質部の少なくとも一方を指す。本明細書でいう「絶縁部」とは絶縁性材料を含むものを指す。本明細書でいう「固体電解質部」とは固体電解質材料を含むものを指す。
 後述するが、固体電池の製造時において、電極層シートの外縁部の端子非接続部分と接するように端子非接続部分接触シートを設ける。端子非接続部分接触シートに含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率と電極層シートに含まれる電極材の熱膨張率とは異なり得る。そのため、これに起因して、固体電池前駆体(未焼成積層体ともいう)の焼成工程において、電極層シートの外縁部の端子非接続部分と端子非接続部分接触シートとの接触領域において応力が発生し得る。
 この点につき、上記技術的思想に従えば、電極層シートに含まれる電極材の熱膨張率に対する端子非接続部分接触シートに含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率の比率が所定範囲内(具体的には0.7以上1.5未満)に限定される。これにより、電極層シートの熱膨張率と端子非接続部分接触シートの熱膨張率との違いを限定的にすることができる。その結果、固体電池前駆体の焼成工程中に電極層シートの外縁部の端子非接続部分と端子非接続部分接触シートとの接触領域に生じる応力を緩和することができ、焼成工程完了時にクラックが生じることを抑制することができる。それ故、最終的にクラックの発生が抑制された固体電池を得ることができる。
 以下、本発明の一実施形態に係る固体電池の製造方法について具体的に説明する。なお、本製造方法は一例にすぎず、他の方法(スクリーン印刷法等)を用いる場合も排除されないことを予め述べておく。
 本発明の一実施形態に係る固体電池は、グリーンシートを用いるグリーンシート法を用いて製造することができる。一態様では、グリーンシート法により所定の積層体を形成した上で、最終的に本発明の一実施形態に係る固体電池を製造することができる。なお、以下では、当該態様を前提として説明するが、これに限定されることなく、スクリーン印刷法等により所定の積層体を形成してもよい。
(固体電池前駆体(未焼成積層体)の形成工程)
 まず、各基材(例えばPETフィルム)上に固体電解質層用ペースト、正極材層用ペースト、正極集電体層用ペースト、負極材層用ペースト、負極集電体層用ペースト、および保護層用ペーストを塗工する。
 各ペーストは、正極活物質、負極活物質、導電性材料、固体電解質材料、絶縁性物質、および焼結助剤から成る群から適宜選択される各層の所定の構成材料と、有機材料を溶剤に溶解した有機ビヒクルとを湿式混合することによって作製することができる。正極材層用ペーストは、例えば、正極活物質、導電材料、固体電解質材料、有機材料および溶剤を含む。負極材層用ペーストは、例えば、負極活物質、導電材料、固体電解質材料、有機材料および溶剤を含む。正極集電体層用ペースト/負極集電体層用ペーストとしては、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、およびニッケルから成る群から少なくとも一種選択されてよい。固体電解質層用ペーストおよび後述する固体電解質部ペーストは、例えば、固体電解質材料、焼結助剤、有機材料および溶剤を含む。保護層用ペーストは、例えば、絶縁性物質材料、有機材料および溶剤を含む。絶縁部ペーストは、例えば絶縁性材料、有機材料および溶剤を含む。固体電解質部ペーストは、例えば、固体電解質材料、焼結助剤、有機材料および溶剤を含む。
 湿式混合ではメディアを用いることができ、具体的には、ボールミル法またはビスコミル法等を用いることができる。一方、メディアを用いない湿式混合方法を用いてもよく、サンドミル法、高圧ホモジナイザー法またはニーダー分散法等を用いることができる。
 所定の固体電解質材料と焼結助剤と、有機材料を溶剤に溶解した有機ビヒクルとを湿式混合することによって、所定の固体電解質層用ペーストおよび固体電解質部ペーストを作製することができる。固体電解質粒子の材料(すなわち固体電解質材)としては、例えば、ナシコン構造を有するリチウム含有リン酸化合物、ペロブスカイト構造を有する酸化物、ガーネット型またはガーネット型類似構造を有する酸化物等が挙げられる。
 正極材層用ペーストに含まれる正極活物質材としては、例えば、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、リチウム含有層状酸化物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から少なくとも一種を選択する。
 後述する絶縁部ペーストに含まれる絶縁性材料としては、例えば、ガラス材、セラミック材等から構成され得る。保護層用ペーストに含まれる絶縁性物質材料としては、例えば、ガラス材、セラミックス材、熱硬化性樹脂材、光硬化性樹脂材等から成る群から選択される少なくとも1種を用いることが好ましい。
 ペーストに含まれる有機材料は特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、ポリアクリル樹脂、ポリウレタン樹脂、ポリ酢酸ビニル樹脂およびポリビニルアルコール樹脂などから成る群から選択される少なくとも1種の高分子材料を用いることができる。溶剤は上記有機材料を溶解可能な限り特に限定されず、例えば、トルエンおよび/またはエタノールなどを用いることができる。
 負極材層用ペーストに含まれる負極活物質材としては、例えば、Ti、Si、Sn、Cr、Fe、Nb、および、Moからなる群より選ばれる少なくとも一種の元素を含む酸化物、黒鉛-リチウム化合物、リチウム合金、ナシコン型構造を有するリチウム含有リン酸化合物、オリビン型構造を有するリチウム含有リン酸化合物、およびスピネル型構造を有するリチウム含有酸化物等から成る群から少なくとも一種から選択する。
 焼結助剤としては、リチウム酸化物、ナトリウム酸化物、カリウム酸化物、酸化ホウ素、および酸化ケイ素からなる群から選択される少なくとも1種であり得る。
 塗工したペーストを、30~50℃に加熱したホットプレート上で乾燥させることで、基材(例えばPETフィルム)上に所定厚みを有する固体電解質層シート、正極材層を含む正極層シート、および負極材層を含む負極層シートをそれぞれ形成する。なお、本明細書では、集電体は必須の構成要素ではないため、少なくとも電極材層を含むシートを電極層シートと表現する。
 次に、各シートを基材から剥離する。剥離後、積層方向に沿って電池構成単位の各構成要素のシートを順に積層する(図1参照)。具体的には、積層方向に沿って、正極層シート10A’、固体電解質層シート20’、および負極層シート10B’を順に積層する。
 当該積層の段階において、平面視で電極層シート10’の外縁部11’と部分的に接するように電極層シート10’の側部領域にスクリーン印刷により固体電解質部シート、絶縁部シート等の端子非接続部分接触シート30’を設ける。具体的には、電極層シート10’の外縁部11’のうち後刻に端子が接続される部分12’を除く端子非接続部分13’と接するように端子非接続部分接触シート30’を設ける。又、平面視で、電極層シート10’の外縁部11’の端子非接続部分13’を取り囲むように端子非接続部分接触シートを設ける。すなわち、電極層シート10’の外縁部11’の端子非接続部分13’と接しかつ端子非接続部分13’を取り囲むように端子非接続部分接触シートを設ける。
 より具体的には、電極層シート10’の外縁部11’のうち端子非接続部分13’と接するように「熱膨張率が調整された」端子非接続部分接触シート30’を設ける。特に、本発明の一実施形態では、「電極層シート10’ に含まれる電極材の熱膨張率に対する端子非接続部分接触シート30’ に含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率の比率が所定範囲内(0.7以上1.5未満)に限定された」端子非接続部分接触シート30’を設ける。
 なお、端子非接続部分接触シート30’として絶縁部シートを用いる場合を例にとると、上記絶縁部ペーストの構成材料であるガラス材に各種セラミックス材をとり入れることで、熱膨張率を所望の値又は範囲に制御することができる。
 又、電極層シートを作製する段階で、電極材層用ペーストの構成材料として、活物質、導電材料、固体電解質材料、有機材料および溶剤に加えて絶縁性材料を更にとり入れてよい。又は、電極材層用ペーストの構成材料としての、活物質、導電材料、固体電解質材料、有機材料および溶剤の各々の材料比率を調整してもよい。以上により、同様に電極層シートに含まれる電極材の熱膨張率を所望の値又は範囲に制御することができる。なお、最終的に得られる固体電池のエネルギー密度の低下を回避する観点から、電極材層用ペースト中に含まれる活物質の含有比率を下げないように調整することがより好ましい。
 次いで、所定圧力(例えば約50~約100MPa)による熱圧着と、これに続く所定圧力(例えば約150~約300MPa)での等方圧プレスを実施することが好ましい。以上により、所定の固体電池前駆体500’(未焼成積層体)を形成することができる。
(焼成工程)
 得られた所定の固体電池前駆体500’(未焼成積層体)を焼成に付す。当該焼成は、窒素ガス雰囲気中で例えば600℃~1000℃で加熱することで実施する。
 ここで、端子非接続部分接触シート30’ に含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率と電極層シート10’ に含まれる電極材の熱膨張率とは異なり得る。そのため、これに起因して、固体電池前駆体500’(未焼成積層体ともいう)の焼成工程において、電極層シート10’の外縁部11’の端子非接続部分13’と端子非接続部分接触シート30’との接触領域において応力が発生し得る。
 この点につき、本発明の一実施形態では、電極層シート10’ に含まれる電極材の熱膨張率に対する端子非接続部分接触シート30’ に含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率の比率が所定範囲内(具体的には0.7以上1.5未満)に限定される。これにより、電極層シート10’の熱膨張率と端子非接続部分接触シート30’の熱膨張率との違いを限定的にすることができる。その結果、電極層シートの外縁部11’の端子非接続部分13’と端子非接続部分接触シートとの接触領域に生じる応力を緩和することができる。
 次いで、得られた積層体に端子をつける。端子は正極層と負極層にそれぞれ電気的に接続可能に設ける。例えば、スパッタ等により端子を形成することが好ましい。特に限定されるものではないが、端子としては、銀、金、プラチナ、アルミニウム、銅、スズ、およびニッケルから選択される少なくとも一種から構成されることが好ましい。更に、スパッタ、スプレーコート等により端子が覆われない程度で保護層300’を設けることが好ましい。
 以上により、本発明の一実施形態に係る固体電池を好適に製造することができる。
 上述のように、本発明の一実施形態に係る製造方法では、焼成工程において「電極層シート10’ に含まれる電極材の熱膨張率に対する端子非接続部分接触シート30’ に含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率の比率が所定範囲内(0.7以上1.5未満)に限定された」端子非接続部分接触シート30’を設ける。その結果として、焼成工程中における電極層シートの外縁部11’の端子非接続部分13’と端子非接続部分接触シートとの接触領域に生じる応力を緩和することができる。その結果、焼成工程完了時にクラックが生じることを抑制することができる。それ故、最終的にクラックの発生が抑制された固体電池を得ることができ、かかる固体電池を用いて充放電を好適に実施することができる。
[本発明の固体電池]
 上記製造方法に従い得られた本発明の一実施形態に係る固体電池500は、下記技術的特徴を有する(図2参照)。
 図2に示すように、本発明の一実施形態に係る固体電池500は、正極層10A、負極層10B、および正極層10Aと負極層10Bとの間に介在する固体電解質層20を備える電池構成単位100を積層方向に沿って少なくとも1つ備える。正極層10Aは正極材層を含み、負極層10Bは負極材層を含む。
 正極層10Aは、固体電解質層20と対向する主面部と当該主面部の延在方向に対して略垂直な方向に延在する外縁部11Aとを有して成る。当該外縁部11Aは、端子接続部分12Aと正極活物質低含有部30A(活物質低含有部30)により取り囲まれる端子非接続部分13Aとを含む。
 負極層10Bは、固体電解質層20と対向する主面部と当該主面部の延在方向に対して略垂直な方向に延在する外縁部11Bとを有して成る。当該外縁部11Bは、外部端子接続部分12Bと正極活物質低含有部30B(活物質低含有部30)により取り囲まれる端子非接続部分13Bとを含む。
 即ち、電極層10(正極層10A/負極層10B)は、固体電解質層20と対向する主面部と当該主面部の延在方向に対して略垂直な方向に延在する外縁部11とを有して成る。当該外縁部11は、端子接続部分12と活物質低含有部30により取り囲まれる端子非接続部分13とを含む。
 なお、上記製造途中における焼成工程を経ると、電極層シート10’ に含まれ得る溶媒および端子非接続部分接触シート30’に含まれ得る溶媒等が揮発する。そのため、製造途中における電極層シートに含まれる電極材の熱膨張係数と端子非接続部分接触シートに含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張係数は、製造完了後の電極層(具体的には電極材層)の熱膨張係数と活物質低含有部の熱膨張係数にそれぞれ対応する。そのため、最終的に得られた固体電池500において、電極層10(具体的には電極層に含まれる電極材層)の熱膨張率に対する活物質低含有部30の熱膨張率の比率が所定範囲内(具体的には0.7以上1.5未満)に限定されることとなる。これにより、電池使用時に電極層10(焼成完了時の電極層シート10’に対応)の熱膨張と活物質低含有部30(焼成完了時の端子非接続部分接触シート30’に対応)の熱膨張率との違いを限定的にすることができる。従って、製法の欄で述べたように、製造途中におけるクラックの発生が抑制されることにより得られた固体電池500を用いて充放電を好適に開始できるのみでなく、かかる充放電を好適に継続することもできる。
比較例
 まず、比較例1~9について説明する。
(固体電池前駆体(未焼成積層体)の形成工程)
 まず、電池構成単位の構成要素である正極層シート、固体電解質層シート、および負極層シートをそれぞれ準備した。比較例では、正極層シートおよび/または負極層シートとしては、電極層1~3を用いた(表1参照)。なお、表1内のLAGPはLi1.5Al0.5Ge1.5(POを示す。各シートの準備後、積層方向に沿って電池構成単位の各構成要素である正極層シート、固体電解質層シート、および負極層シートを順に積層した。
 この積層段階にて、電極層シートの側部領域にスクリーン印刷により端子非接続部分接触シート(具体的には絶縁部シート)を設けた。具体的には、電極層シートの外縁部のうち端子が接続される部分を除く端子非接続部分と接するように絶縁部シートを設けた。比較例では絶縁部シートとして絶縁部シート1、4~8を用いた。
 次に、所定圧力(75MPa)による熱圧着と、これに続く所定圧力(200MPa)での等方圧プレスを実施した。以上により、固体電池前駆体(未焼成積層体)を形成した。
(焼成工程)
 次に、得られた固体電池前駆体(未焼成積層体)を焼成に付した。当該焼成は、窒素ガス雰囲気中で750℃で加熱することで実施した。焼成後、得られた積層体に端子および端子が覆われない程度で保護層を設けた。
 以上により、比較例における固体電池を製造した。次いで、各比較例で得られた電池素体をそれぞれ10個用意し、各電池素体を樹脂包埋し、研磨断面を観察した。最後に、10個中の良品数から良品率を求めた。
 その結果、表1に示すように、固体電池の構成要素である「主成分として電極材(活物質、導電材、および固体電解質材料から構成される部材に相当)を含む電極層の熱膨張率に対する、主成分として絶縁性材料を含む絶縁部の熱膨張率の比率が0.7未満(具体的には0.6)である」比較例8では、良品率が30%であることが分かった。又、固体電池の構成要素である「主成分として電極材を含む電極層の熱膨張率に対する主成分として絶縁性材料を含む絶縁部の熱膨張率の比率が1.5を上回る(具体的には1.6以上)」比較例1~7および9では、良品率30%以下であることが分かった。
(表1)
Figure JPOXMLDOC01-appb-I000001
実施例
 次に、実施例1~15について説明する。なお、固体電池を得るためのプロセスは上記比較例におけるものと同一である旨確認的に述べておく。
(固体電池前駆体(未焼成積層体)の形成工程)
 まず、電池構成単位の構成要素である正極層シート10A’、固体電解質層シート20’、および負極層シート10B’をそれぞれ準備した。本実施例では、正極層シート10A’および/または負極層シート10B’としては、電極層1~3を用いた(表2参照)。なお、表2内のLAGPはLi1.5Al0.5Ge1.5(POを示す。各シートの準備後、積層方向に沿って電池構成単位の各構成要素である正極層シート10A’、固体電解質層シート20’、および負極層シート10B’を順に積層した。
 この積層段階にて、電極層シート10’の側部領域にスクリーン印刷により端子非接続部分接触シート(具体的には絶縁部シート)30’を設けた。具体的には、電極層シート10’の外縁部11’のうち端子が接続される部分12’を除く端子非接続部分13’と接するように絶縁部シートを設けた。本実施例では絶縁部シートとして絶縁部シート1~6、8を用いた。
 次に、所定圧力(75MPa)による熱圧着と、これに続く所定圧力(200MPa)での等方圧プレスを実施した。以上により、固体電池前駆体500’(未焼成積層体)を形成した。
(焼成工程)
 次に、得られた固体電池前駆体500’(未焼成積層体)を焼成に付した。当該焼成は、窒素ガス雰囲気中で750℃で加熱することで実施した。焼成後、得られた積層体に端子および端子が覆われない程度で保護層を設けた。
 以上により、本発明の一実施形態に係る固体電池を製造した。次いで、各実施例で得られた電池素体をそれぞれ10個用意し、各電池素体を樹脂包埋し、研磨断面を観察した。最後に、10個中の良品数から良品率を求めた。
 その結果、表2に示すように、得られる本発明の一実施形態に係る固体電池の構成要素である「主成分として電極材(活物質、導電材、および固体電解質材料から構成される部材に相当)を含む電極層10の熱膨張率に対する、主成分として絶縁性材料を含む絶縁部の熱膨張率の比率が0.7以上1.5未満である」実施例1~15では、良品率が70%以上であることが分かった。具体的には、当該比率が0.7以上1.4以下である場合に良品率が70%以上であることが分かった。又、当該比率が0.8以上1.4以下である場合に良品率が80%以上であることが分かった。当該比率が0.9以上1.4以下である場合に良品率が90%以上であることが分かった。当該比率が0.9以上1.2以下である場合に良品率が100%であることが分かった。
(表2)
Figure JPOXMLDOC01-appb-I000002
 以上の事から、電極層10の熱膨張率に対する絶縁部の熱膨張率の比率を所定範囲内(具体的には0.7以上1.5未満)に限定することで、比較例と比べて、良品率の割合が高くなることが分かった。なお、本実施例では絶縁部シートを用いたが、これに限定されることなく固体電解質部シートを用いることもできる。
 以上、本発明の一実施形態について説明してきたが、本発明の適用範囲のうちの典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の改変がなされ得ることを当業者は容易に理解されよう。
 本発明の一実施形態に係る二次電池は、蓄電が想定される様々な分野に利用することができる。あくまでも例示にすぎないが、本発明の一実施形態に係る二次電池、特に非水電解質二次電池は、モバイル機器などが使用される電気・情報・通信分野(例えば、携帯電話、スマートフォン、ノートパソコンおよびデジタルカメラ、活動量計、アームコンピューター、電子ペーパーなどのモバイル機器分野)、家庭・小型産業用途(例えば、電動工具、ゴルフカート、家庭用・介護用・産業用ロボットの分野)、大型産業用途(例えば、フォークリフト、エレベーター、湾港クレーンの分野)、交通システム分野(例えば、ハイブリッド車、電気自動車、バス、電車、電動アシスト自転車、電動二輪車などの分野)、電力系統用途(例えば、各種発電、ロードコンディショナー、スマートグリッド、一般家庭設置型蓄電システムなどの分野)、医療用途(イヤホン補聴器などの医療用機器分野)、医療用途(服用管理システムなどの分野)、ならびに、IoT分野、宇宙・深海用途(例えば、宇宙探査機、潜水調査船、などの分野)などに利用することができる。
500  固体電池
500’、500α’ 固体電池の前駆体
300、300α’ 外装
300’ 外装の前駆体
100  電池構成単位
30  活物質低含有部
30’、30α’  端子非接続部分接触シート
30A  正極活物質低含有部
30A’、30Aα’ 端子非接続部分接触シート
30B  負極活物質低含有部
30B’、30Bα’ 端子非接続部分接触シート
20  固体電解質層
20’ 、20α’ 固体電解質層の前駆体
13、13A、13B、13’   外縁部(端子非接続部分)
12、12A、12B、12’   外縁部(端子接続部分)
11   電極層の外縁部
11A  正極層の外縁部
11B  負極層の外縁部
11’  電極層前駆体の外縁部
10  電極層
10’、10α’ 電極層の前駆体
10A  正極層
10A’、10Aα’ 正極層前駆体
10B  負極層
10B’ 、10Bα’ 負極層前駆体

Claims (16)

  1.  積層方向に沿って、正極層シート、固体電解質層シート、および負極層シートを順に積層することと、前記正極層シートおよび前記負極層シートの各々の外縁部の端子非接続部分と接するように端子非接続部分接触シートを設けることとを含む固体電池前駆体の形成工程、ならびに
     前記固体電池前駆体の焼成工程
    を含み、
     前記端子非接続部分接触シートとして、前記正極層シートおよび前記負極層シートの少なくとも一方の電極層シートに含まれる電極材の熱膨張率に対する前記端子非接続部分接触シートに含まれる固体電解質材料および絶縁性材料の少なくとも一方の熱膨張率の比率が0.7以上1.5未満であるものを用いる、固体電池の製造方法。
  2.  前記比率が0.7以上1.4以下である、請求項1に記載の製造方法。
  3.  前記比率が0.8以上1.4以下である、請求項1に記載の製造方法。
  4.  前記比率が0.9以上1.4以下である、請求項1に記載の製造方法。
  5.  前記比率が0.9以上1.2以下である、請求項1に記載の製造方法。
  6.  前記絶縁性材料がセラミックス材とガラス材とを含んで成る、請求項1に記載の製造方法。
  7.  平面視で、前記電極層シートの前記外縁部の前記端子非接続部分を取り囲むように前記端子非接続部分接触シートを設ける、請求項1に記載の製造方法。 
  8.  正極層、負極層、および該正極層と該負極層との間に介在する固体電解質層を備える電池構成単位を積層方向に沿って少なくとも1つ備え、
     前記正極層および前記負極層はそれぞれ少なくとも電極材層を含み、
     前記正極層および前記負極層の各々の外縁部が、活物質低含有部と接する端子非接続部分を含み、
     前記正極層および前記負極層の少なくとも一方の熱膨張率に対する前記活物質低含有部の熱膨張率の比率が0.7以上1.5未満である、固体電池。
  9.  前記比率が0.7以上1.4以下である、請求項8に記載の固体電池。
  10.  前記比率が0.8以上1.4以下である、請求項8に記載の固体電池。
  11.  前記比率が0.9以上1.4以下である、請求項8に記載の固体電池。
  12.  前記比率が0.9以上1.2以下である、請求項8に記載の固体電池。
  13.  前記活物質低含有部が、固体電解質部および絶縁部の少なくとも一方である、請求項8に記載の固体電池。
  14.  前記絶縁部が絶縁性材料を含んで成り、該絶縁性材料がセラミックス材とガラス材とを含んで成る、請求項13に記載の固体電池。
  15.  平面視で、前記活物質低含有部が前記端子非接続部分を取り囲むように設けられている、請求項8又は13に記載の固体電池。
  16.  前記正極層および前記負極層がリチウムイオンを吸蔵放出可能な層となっている、請求項8に記載の固体電池。
PCT/JP2020/033459 2019-09-04 2020-09-03 固体電池の製造方法および固体電池 WO2021045158A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080062275.1A CN114342107A (zh) 2019-09-04 2020-09-03 固体电池的制造方法及固体电池
JP2021544028A JP7416073B2 (ja) 2019-09-04 2020-09-03 固体電池の製造方法および固体電池
US17/574,810 US20220140404A1 (en) 2019-09-04 2022-01-13 Manufacturing method of solid state battery and solid state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019161456 2019-09-04
JP2019-161456 2019-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/574,810 Continuation US20220140404A1 (en) 2019-09-04 2022-01-13 Manufacturing method of solid state battery and solid state battery

Publications (1)

Publication Number Publication Date
WO2021045158A1 true WO2021045158A1 (ja) 2021-03-11

Family

ID=74852208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033459 WO2021045158A1 (ja) 2019-09-04 2020-09-03 固体電池の製造方法および固体電池

Country Status (4)

Country Link
US (1) US20220140404A1 (ja)
JP (1) JP7416073B2 (ja)
CN (1) CN114342107A (ja)
WO (1) WO2021045158A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340255A (ja) * 1999-05-28 2000-12-08 Kyocera Corp リチウム電池
WO2018092370A1 (ja) * 2016-11-16 2018-05-24 株式会社村田製作所 固体電池、電池パック、車両、蓄電システム、電動工具及び電子機器
WO2019139070A1 (ja) * 2018-01-10 2019-07-18 Tdk株式会社 全固体リチウムイオン二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001043892A (ja) * 1999-07-29 2001-02-16 Kyocera Corp リチウム電池
JP4043296B2 (ja) * 2002-06-13 2008-02-06 松下電器産業株式会社 全固体電池
JP5487719B2 (ja) * 2009-05-19 2014-05-07 トヨタ自動車株式会社 全固体リチウム二次電池の製造方法、及び当該製造方法により得られる全固体リチウム二次電池
JP2011009103A (ja) * 2009-06-26 2011-01-13 Toyota Motor Corp 全固体リチウム二次電池
JP2018073653A (ja) * 2016-10-31 2018-05-10 日本特殊陶業株式会社 電気化学セル、電気化学スタック、および、電気化学セルの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000340255A (ja) * 1999-05-28 2000-12-08 Kyocera Corp リチウム電池
WO2018092370A1 (ja) * 2016-11-16 2018-05-24 株式会社村田製作所 固体電池、電池パック、車両、蓄電システム、電動工具及び電子機器
WO2019139070A1 (ja) * 2018-01-10 2019-07-18 Tdk株式会社 全固体リチウムイオン二次電池

Also Published As

Publication number Publication date
CN114342107A (zh) 2022-04-12
JP7416073B2 (ja) 2024-01-17
US20220140404A1 (en) 2022-05-05
JPWO2021045158A1 (ja) 2021-03-11

Similar Documents

Publication Publication Date Title
WO2020195382A1 (ja) 固体電池
WO2020195381A1 (ja) 固体電池
US20210296736A1 (en) Solid state battery
WO2020203620A1 (ja) 固体電池
WO2021070601A1 (ja) 固体電池
JP7107389B2 (ja) 固体電池
US20220021024A1 (en) Solid-state battery
WO2021010231A1 (ja) 固体電池
WO2021070927A1 (ja) 固体電池
JP2021150055A (ja) 固体電池
WO2022114155A1 (ja) 固体電池および固体電池の製造方法
JPWO2020070990A1 (ja) 固体電池
US20210210790A1 (en) Solid-state battery
WO2021070929A1 (ja) 固体電池
WO2021045158A1 (ja) 固体電池の製造方法および固体電池
WO2020250981A1 (ja) 固体電池
WO2020031810A1 (ja) 固体電池
WO2021187494A1 (ja) 固体電池
WO2021206099A1 (ja) 固体電池
JP7259938B2 (ja) 固体電池
WO2022080404A1 (ja) 固体電池
WO2023127247A1 (ja) 固体電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859878

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544028

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859878

Country of ref document: EP

Kind code of ref document: A1