WO2019167821A1 - 全固体電池 - Google Patents

全固体電池 Download PDF

Info

Publication number
WO2019167821A1
WO2019167821A1 PCT/JP2019/006704 JP2019006704W WO2019167821A1 WO 2019167821 A1 WO2019167821 A1 WO 2019167821A1 JP 2019006704 W JP2019006704 W JP 2019006704W WO 2019167821 A1 WO2019167821 A1 WO 2019167821A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
internal electrode
thickness
solid electrolyte
state battery
Prior art date
Application number
PCT/JP2019/006704
Other languages
English (en)
French (fr)
Inventor
馬場 彰
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2020503462A priority Critical patent/JP7047896B2/ja
Priority to CN201980006471.4A priority patent/CN111480260B/zh
Publication of WO2019167821A1 publication Critical patent/WO2019167821A1/ja
Priority to US16/898,475 priority patent/US11424487B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an all-solid battery.
  • the main object of the present invention is to provide an all-solid-state battery in which cracks are unlikely to occur.
  • the all solid state battery includes a battery body.
  • the battery main body includes first and second main surfaces extending along a length direction and a width direction of the battery main body, and first and second main surfaces extending along the length direction and a thickness direction of the battery main body.
  • the battery main body is provided with a functional portion that is a portion where the first and second internal electrodes and the solid electrolyte layer are provided, and the first internal electrode, the solid electrolyte layer, and the second insulating layer.
  • Each thickness of the 1st and 2nd edge part is thicker than the thickness of the said function part.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • FIG. 1 is a schematic perspective view of an all solid state battery 1 according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view taken along line II-II in FIG.
  • the all solid state battery 1 shown in FIGS. 1 and 2 uses a solid electrolyte as an electrolyte, and is a battery in which all the components that do not use a liquid electrolyte are solid.
  • the all solid state battery 1 is an all solid state lithium ion secondary battery
  • the all solid state battery according to the present invention may be a lithium ion secondary battery in which the capacity of the negative electrode is obtained by occlusion and release of lithium ions, or a lithium metal secondary battery in which the capacity of the negative electrode is obtained by precipitation dissolution of lithium metal. It may be.
  • the all solid state battery according to the present invention may be an all solid state battery other than the lithium ion secondary battery.
  • the all solid state battery 1 includes a battery body 10.
  • the battery body 10 has a substantially rectangular parallelepiped shape.
  • the “cuboid shape” includes a rectangular parallelepiped shape in which corners and ridges are chamfered or rounded.
  • the battery body 10 has first and second main surfaces 10a and 10b, first and second side surfaces 10c and 10d, and first and second end surfaces 10e and 10f.
  • the first and second main surfaces 10a and 10b extend along the length direction L and the width direction W, respectively.
  • the first and second side surfaces 10c and 10d extend along the length direction L and the thickness direction T, respectively.
  • the first and second end faces 10e, 10f extend along the width direction W and the thickness direction T, respectively.
  • the battery body 10 includes a positive electrode 11 constituting a first internal electrode, a negative electrode 12 constituting a second internal electrode, a solid electrolyte layer 13, and a first insulation. It has a layer 14 and a second insulating layer 15.
  • the positive electrode 11 extends along the length direction L and the width direction W.
  • the positive electrode 11 reaches the first end face 10e.
  • the positive electrode 11 does not reach the second end face 10f.
  • the tip of the positive electrode 11 on the second end face 10f side is separated from the second end face 10f.
  • the positive electrode 11 may be composed of a positive electrode active material layer, or may be composed of a positive electrode current collector and a positive electrode active material layer provided on the positive electrode current collector.
  • the positive electrode active material layer includes one type or two or more types of positive electrode active materials and a solid electrolyte.
  • the positive electrode active material is, for example, a material that can occlude and release lithium ions that are electrode reaction materials.
  • the positive electrode active material is preferably a lithium-containing compound or the like from the viewpoint of obtaining a high energy density, but is not limited thereto.
  • Lithium-containing compounds include, for example, composite oxides (lithium transition metal composite oxides) containing lithium and transition metal elements as constituent elements, and phosphate compounds (lithium transition metal phosphorus containing lithium and transition metal elements as constituent elements). Acid compound). Of these, lithium-containing compounds containing at least one fiber metal element selected from the group consisting of Co, Ni, Mn and Fe are preferably used. This is because the voltage of the all-solid-state battery 1 can be further increased.
  • lithium transition metal composite oxide preferably used include LiCoO 2 , LiNiO 2 , LiVO 2 , LiCrO 2 , LiMn 2 O 4 and the like.
  • lithium transition metal phosphate compound that is preferably used include LiFePO 4 , LiCoPO 4, and the like.
  • the positive electrode active material exists as positive electrode active material particles. At least a part of the surface of the positive electrode active material particles may be coated with a coating agent.
  • the coating agent is, for example, at least one of a solid electrolyte and a conductive agent.
  • the positive electrode active material layer may further contain a binder or a conductive agent as necessary.
  • the positive electrode active material may have a function as a binder.
  • the conductive agent include carbon materials, metals, metal oxides, and conductive polymers.
  • the positive electrode active material layer may contain only one type of these conductive agents, or may contain a plurality of types of conductive agents.
  • Examples of the carbon material include graphite, carbon fiber, carbon black, and carbon nanotube.
  • the conductive agent may be any material having conductivity, and is not limited to the above example.
  • the negative electrode 12 extends along the length direction L and the width direction W.
  • the negative electrode 12 faces the positive electrode 11 in the thickness direction T.
  • the negative electrode 12 reaches the second end face 10f.
  • the negative electrode 12 does not reach the first end face 10e.
  • the tip of the negative electrode 12 on the first end face 10e side is separated from the first end face 10e.
  • the negative electrode 12 may be composed of a negative electrode active material layer, or may be composed of a negative electrode current collector and a negative electrode active material layer provided on the negative electrode current collector.
  • the negative electrode active material layer includes one type or two or more types of negative electrode active materials and a solid electrolyte.
  • the negative electrode active material is a material that can occlude and release lithium ions that are electrode reactants.
  • the negative electrode active material is preferably a carbon material from the viewpoint of obtaining a high energy density, but is not limited thereto. Specific examples of the carbon material preferably used include graphite such as graphitizable carbon, non-graphitizable carbon, graphite, mesocarbon microbeads (MCMB), highly oriented graphite (HOPG), and the like.
  • the negative electrode active material layer may further contain a binder or a conductive agent as necessary.
  • the negative electrode active material may have a function as a binder.
  • Examples of the conductive agent preferably used include the same conductive agents as those preferably used for the positive electrode active material layer.
  • the negative electrode active material exists as negative electrode active material particles. At least a part of the surface of the negative electrode active material particles may be coated with a coating agent.
  • the coating agent is, for example, at least one of a solid electrolyte and a conductive agent.
  • the solid electrolyte layer 13 is provided between the positive electrode 11 and the negative electrode 12 in the thickness direction T.
  • the solid electrolyte layer 13 is provided across the first end face 10e and the second end face 10f.
  • the solid electrolyte layer 13 can be composed of, for example, an oxide glass-based lithium ion conductor.
  • the “oxide glass based lithium ion conductor” refers to a lithium ion conductor composed of oxide glass.
  • the oxide glass-based lithium ion conductor is a glass containing one or more of Ge (germanium), Si (silicon), B (boron), and P (phosphorus), Li (lithium), and O (oxygen). It is preferable that it is glass which contains Si (silicon), B (boron), Li (lithium), and O (oxygen).
  • glass refers to a crystallographically amorphous material in which halo is observed in X-ray diffraction or electron beam diffraction.
  • the content of Li 2 O is 20 mol% or more and 75 mol% or less, preferably more than 25 mol% and 75 mol% or less, more preferably 30 mol% or more and 75 mol% or less, and even more preferably 40 mol. % To 75 mol%, particularly preferably 50 mol% to 75 mol%. If oxide glass-based lithium ion conductor containing GeO 2, the content of GeO 2 is preferably less 80 mol% exceed 0 mol%. If oxide glass-based lithium ion conductor containing SiO 2, the SiO 2 content is preferably at most 70 mol% exceed 0 mol%.
  • oxide glass-based lithium ion conductor comprises a B 2 O 3
  • B 2 O 3 content is preferably less 60 mol% exceed 0 mol%.
  • oxide glass-based lithium ion conductor comprises a P 2 O 5
  • P 2 O 5 content is preferably less 50 mol% exceed 0 mol%. Note that the content of each oxide can be measured by using inductively coupled plasma optical emission spectrometry (ICP-AES) or the like.
  • ICP-AES inductively coupled plasma optical emission spectrometry
  • the oxide glass-based lithium ion conductor may further contain an additive element as necessary.
  • an additive element for example, Na (sodium), Mg (magnesium), Al (aluminum), K (potassium), Ca (calcium), Ti (titanium), V (vanadium), Cr (chromium), Mn (manganese) ), Fe (iron), Co (cobalt), Ni (nickel), Cu (copper), Zn (zinc), Ga (gallium), Se (selenium), Rb (rubidium), S (sulfur), Y (yttrium) ), Zr (zirconium), Nb (niobium), Mo (molybdenum), Ag (silver), In (indium), Sn (tin), Sb (antimony), Cs (cesium), Ba (barium), Hf (hafnium) ), Ta (tantalum), W (tungsten), Pb (lead), Bi (bismuth), Au (gold), La (lanthanum), N
  • the lithium ion conductivity of the oxide glass-based lithium ion conductor is preferably 5 ⁇ 10 ⁇ 7 S / cm or more.
  • Examples of the method for producing an oxide glass-based lithium ion conductor include a method in which a raw material is melted to a melt and allowed to cool, a method in which the melt is pressed with a metal plate or a roll, a mechanical milling method, a sol-gel method. Etc.
  • the first insulating layer 14 is provided so as to reach the second end surface 10f from the end of the positive electrode 11 on the second end surface 10f side.
  • the second insulating layer 15 is provided so as to reach the first end surface 10e from the end of the negative electrode 12 on the first end surface 10e side.
  • the first and second insulating layers 14 and 15 do not contain an active material and have substantially no ionic conductivity.
  • Each of the first and second insulating layers 14 and 15 can be made of the same material as that of the solid electrolyte layer 13, for example.
  • Each of the first and second insulating layers 14 and 15 may further include, for example, an insulating inorganic powder as an aggregate in addition to the same material as the solid electrolyte layer 13.
  • preferred aggregates include aluminum oxide, zirconium oxide, silicon oxide, SB—Na-based glass frit, and the like.
  • a first external electrode (positive electrode terminal electrode) 16 is provided on the first end face 10 e of the battery body 10.
  • the first external electrode 16 is specifically formed on the first end surface 10e from the first and second main surfaces 10a and 10b and the first and second side surfaces 10c and 10d. It is provided to reach the top.
  • the first external electrode 16 is electrically connected to the positive electrode 11 at the first end face 10e.
  • a second external electrode (negative electrode terminal electrode) 17 is provided on the second end face 10f of the battery body 10.
  • the second external electrode 17 is formed on the second end surface 10f from the first and second main surfaces 10a and 10b and the first and second side surfaces 10c and 10d. It is provided to reach the top.
  • the second external electrode 17 is electrically connected to the negative electrode 12 at the second end face 10f.
  • the first and second external electrodes 16 and 17 each include a conductive material such as a metal material.
  • a metal material such as a metal material.
  • the metal material include Ag, Au, Pt, Al, Cu, Sn, Ni, alloys containing these metals, and the like.
  • Each of the first and second external electrodes 16 and 17 may further include a binder, a solid electrolyte, or the like in addition to the conductive material.
  • the battery body 10 includes a functional part 10A, a first edge part 10B, and a second edge part 10C.
  • the 10 A of functional parts are parts which express the function of the all-solid-state battery 1.
  • the functions are charging / discharging and discharging of the all solid state battery 1.
  • the functional part 10A is a part where a positive electrode (first internal electrode) 11, a negative electrode (second internal electrode) 12, and a solid electrolyte layer 13 are provided.
  • the positive electrode 11 and the negative electrode 12 are opposed to each other with the solid electrolyte layer 13 interposed therebetween.
  • the first edge portion 10B is a portion located on the first end face 10e side of the functional portion 10A.
  • the first edge portion 10B is a portion where the positive electrode (first internal electrode) 11, the solid electrolyte layer 13, and the second insulating layer 15 are provided.
  • the negative electrode 12 is not provided in the first edge portion 10B. For this reason, charging / discharging is not substantially performed in the 1st edge part 10B.
  • the second end edge portion 10C is a portion located on the second end face 10f side of the functional portion 10A.
  • 10C of 2nd edge parts are the parts in which the negative electrode (2nd internal electrode) 12, the solid electrolyte layer 13, and the 1st insulating layer 14 were provided.
  • the positive electrode 11 is not provided on the second end edge portion 10C. For this reason, charging / discharging is not substantially performed in the 2nd edge part 10C.
  • the present inventor has found that a crack may occur in an all-solid-state battery during charging, and has reached the present invention.
  • the cause is that the positive electrode 11 and the negative electrode 12 expand due to expansion of the active material when the all-solid battery 1 is charged. Specifically, when the all solid state battery 1 is charged, the positive electrode 11 and the negative electrode 12 expand, while the first and second insulating layers 14 and 15 do not expand. For this reason, the positive electrode 11 and the negative electrode 12 are provided, the functional unit 10A in which charging is performed, the first and second insulating layers 14 and 15 are provided, and the first and second charging are not performed. Stress is generated at the interface with the edge portions 10B and 10C. Since stress is generated at the interface between the functional unit 10A and the first and second end edges 10B and 10C each time the battery is charged, the stress may cause the all solid state battery 1 to crack.
  • the thicknesses L1 and L2 of the first and second edge portions 10B and 10C are thicker than the thickness L0 of the functional portion 10A.
  • the inventors of the present invention have found that cracks are unlikely to occur in the all solid state battery 1 in this way. Therefore, according to the present embodiment, it is possible to effectively suppress the occurrence of cracks, and it is possible to realize the all solid state battery 1 having excellent reliability. However, cracks may also occur when the thicknesses L1 and L2 of the first and second edge portions 10B and 10C are too thicker than the thickness L0 of the functional portion 10A.
  • each thickness L1 and L2 of 1st and 2nd edge part 10B, 10C is 1.01 times or more and 1.2 times or less of thickness L0 of 10 A of functional parts. More preferably, it is 15 times or less.
  • the thickness L0 of the functional unit 10A can be measured in the following manner.
  • the measurer observes the all-solid-state battery 1 from the side surface by X-ray CT, and measures the distance (distance along the thickness direction T) between the upper surface and the lower surface of the functional unit 10A at the center in the length direction L. This distance is the thickness L0 of the functional unit 10A.
  • the upper surface of the functional unit 10A is the surface of the internal electrode located closest to the first main surface 10a side on the first main surface 10a side.
  • the lower surface of the functional unit 10A is the surface of the internal electrode located closest to the second main surface 10b side on the second main surface 10b side.
  • the thickness L1 of the first edge portion 10B can be measured in the following manner.
  • the measurer observes the all-solid-state battery 1 from the side surface by X-ray CT, and measures the distance (the distance along the thickness direction T) between the upper surface and the lower surface of the first end edge portion 10B on the first end surface 10e. To do. This distance is the thickness L1 of the first edge portion 10B.
  • the upper surface of the first edge portion 10B is the first principal surface of the layer located closest to the first principal surface 10a among the layers (internal electrodes and insulating layers) constituting the first edge portion 10B. 10a side surface.
  • the lower surface of the first edge portion 10B is the second main surface of the layer (internal electrode, insulating layer) that is located closest to the second main surface 10b among the layers (internal electrodes, insulating layers) constituting the first edge portion 10B. 10b side surface.
  • the thickness L2 of the second edge portion 10C can be measured in the following manner.
  • the measurer observes the all-solid-state battery 1 from the side surface by X-ray CT, and measures the distance (distance along the thickness direction T) between the upper surface and the lower surface of the second end edge portion 10C on the second end surface 10f. To do. This distance is the thickness L2 of the second end edge portion 10C.
  • the upper surface of the second end edge portion 10C is the first main surface of the layer located closest to the first main surface 10a among the layers (internal electrodes and insulating layers) constituting the second end edge portion 10C. 10a side surface.
  • the lower surface of the second edge portion 10C is the second principal surface of the layer (inner electrode, insulating layer) that is located closest to the second principal surface 10b among the layers (internal electrodes, insulating layers) constituting the second edge portion 10C. 10b side surface.
  • a solid electrolyte green sheet is formed as follows. A lithium ion conductor (solid electrolyte), an organic binder, and, if necessary, an additive are mixed and dispersed in an organic solvent to obtain a slurry.
  • an organic binder such as an acrylic resin can be used.
  • the solvent include lower alcohols having 4 or less carbon atoms such as methanol, ethanol, isopropanol, n-butanol, sec-butanol, t-butanol, ethylene glycol, propylene glycol (1,3-propanediol) 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, aliphatic glycols such as 2-methyl-1,3-propanediol, and ketones such as methylethylketone
  • amines such as dimethylethylamine, alicyclic alcohols such as terpineol, and the like can be used alone or in admi
  • the slurry may be filtered with a filter to remove foreign matters in the slurry. If necessary, the slurry may be subjected to vacuum defoaming for removing internal bubbles.
  • the solid electrolyte slurry thus produced is uniformly applied or printed on the surface of the support substrate, and further dried to obtain a solid electrolyte green sheet.
  • a polymer resin film such as a polyethylene terephthalate (PET) film
  • coating methods include die coating, micro gravure coating, wire bar coating, direct gravure coating, reverse roll coating, comma coating, knife coating, spray coating, curtain coating, dipping, and spin.
  • a coating method or the like can be used.
  • a printing method for example, a relief printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, a screen printing method and the like can be used.
  • the solid electrolyte green sheet In order to make it easy to peel the solid electrolyte green sheet from the surface of the supporting base material, it is preferable to perform a peeling treatment on the surface of the supporting base material in advance.
  • a peeling process the method of apply
  • the composition that imparts releasability include paints containing a binder as a main component and added with wax, fluorine, or the like, or silicone resins.
  • a positive electrode active material, a lithium ion conductor (solid electrolyte), an organic binder, and a conductive agent as necessary are mixed and dispersed in an organic solvent to obtain a positive electrode paste.
  • the dispersion method include a roll dispersion method, a stirring treatment method, an ultrasonic dispersion treatment method, a bead dispersion treatment method, a kneading treatment method, and a homogenizer treatment method.
  • a negative electrode active material, a lithium ion conductor (solid electrolyte), an organic binder, and, if necessary, a conductive agent are mixed and dispersed in an organic solvent to obtain a negative electrode paste.
  • the method for preparing the current collecting paste is the same as the method for preparing the positive electrode paste, except that a conductive agent is used instead of the positive electrode active material.
  • An insulating paste is prepared by mixing a low-melting glass, an aggregate, and an organic binder and dispersing them in an organic solvent.
  • the glass transition temperature of the low melting point glass is desirably lower than the firing temperature.
  • the low melting point glass may be the same material as the lithium ion conductor or may be different.
  • a positive electrode sheet is obtained by printing a positive electrode paste, an insulating paste, and a current collecting paste on the surface of the solid electrolyte green sheet. At this time, the insulating paste is printed thicker than the positive electrode paste. Note that it is not essential to print the current collecting paste.
  • a printing method for example, a relief printing method, an offset printing method, a gravure printing method, an intaglio printing method, a rubber plate printing method, a screen printing method and the like can be used.
  • a negative electrode sheet is obtained by printing a negative electrode paste and an insulating paste on the surface of the solid electrolyte green sheet. At this time, the insulating paste is printed thicker than the negative electrode paste.
  • a laminate After laminating a plurality of solid electrolyte green sheets, alternately laminating the obtained positive electrode sheets and negative electrode sheets, further laminating a plurality of solid electrolyte green sheets, and bonding by applying pressure in the thickness direction, A laminate is produced.
  • pressure it is desirable to heat to 30 ° C. or higher and 90 ° C. or lower.
  • the organic binder contained in each green sheet which comprises a laminated body fuse
  • Specific methods for pressing the laminated body while heating include, for example, a hot press method, a warm isostatic press (WIP), and the like.
  • the laminate is cut into a predetermined size and shape as necessary.
  • the organic binder contained in each green sheet constituting the laminate is degreased.
  • the degreased laminate is put into a mold and heated while applying pressure at least in the thickness direction to obtain a laminate-type all-solid battery sintered body.
  • the firing temperature is preferably 300 ° C. or higher and 600 ° C. or lower, more preferably 350 ° C. or higher and 500 ° C. or lower.
  • the upper and lower surfaces of the fired body are flat, but the internal structure of the fired body shows a fold due to the difference in printing thickness between the functional part and the edge part.
  • Positive electrode active material lithium cobaltate Negative electrode active material: graphite (graphite)
  • Conductive agent Acetylene black
  • Low melting point glass Glass similar to lithium ion conductor used for solid electrolyte layer
  • Aggregate Alumina Laminate structure: 15 positive electrode sheets and negative electrode sheet on 6 solid electrolyte green sheets 16 sheets are stacked alternately, and 6 sheets of solid electrolyte green sheets are stacked on top of each other (thickness measurement)
  • the internal structure of the sample before the charge / discharge test was imaged by X-ray CT, and the thicknesses of the first and second edge portions and the functional portion were measured. (Charge / discharge test)
  • the samples produced in each Example and each Comparative Example were charged at a constant current at 25 ° C.
  • the all solid state battery according to the embodiment includes a battery body.
  • the battery main body includes first and second main surfaces extending along a length direction and a width direction of the battery main body, and first and second main surfaces extending along the length direction and a thickness direction of the battery main body.
  • the battery main body is provided with a functional portion that is a portion where the first and second internal electrodes and the solid electrolyte layer are provided, and the first internal electrode, the solid electrolyte layer, and the second insulating layer.
  • Each thickness of the 1st and 2nd edge part is thicker than the thickness of the said function part.
  • the present inventor has found that the cause of cracking during charging is that the electrode expands as carrier ions are desorbed and inserted into the electrode during charging.
  • the present inventors have found that if the thickness of the first and second end edge portions is made thicker than the thickness of the functional portion, cracks are unlikely to occur. This is presumed to be because the stress acting between the first and second end edges and the functional part is relaxed.
  • the thicknesses of the first and second edge portions are 1.01 times or more and 1.15 times or less the thickness of the functional part.
  • the second internal electrode may contain a carbon material as a negative electrode active material.
  • the second internal electrode may include graphite as a negative electrode active material.
  • the all solid state battery according to the embodiment may be a lithium ion secondary battery.
  • the all solid state battery according to the embodiment has the following configuration. Referring to FIG. 2, the first end edge is located on the first end face side, the second end edge is located on the second end face side, and the functional part is: It is located between the first end edge and the second end edge.
  • the all solid state battery according to the embodiment has the following configuration.
  • the first end edge portion extends in the thickness direction as it approaches the first end face from the boundary between the first end edge portion and the functional portion
  • the second end edge portion expands in the thickness direction as it approaches the second end surface from the boundary between the second end edge portion and the functional portion.
  • the all solid state battery includes the battery body and a first external electrode formed on the first end face and electrically connected to the first internal electrode. And a second external electrode formed on the second end surface and electrically connected to the second internal electrode, and the thickness of the battery body is constant (substantially constant).
  • the function part, the first edge part, and the second edge part are arranged inside the battery body.
  • the all solid state battery according to the embodiment has the following configuration. Referring to FIG. 2, the thickness of the first insulating layer is thicker than the thickness of the first internal electrode, and the thickness of the second insulating layer is thicker than the thickness of the second internal electrode.
  • the thickness of the first insulating layer 14 is larger than the thickness of the positive electrode 11 (first internal electrode), and the thickness of the second insulating layer 15 is the negative electrode 12 (second internal electrode). Thicker than the thickness. This is because the insulating paste is printed thicker than the positive electrode paste on the surface of the fixed electrolyte green sheet, and the insulating paste is printed thicker than the negative electrode paste on the surface of the fixed electrolyte green sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

電池本体(10)は、機能部(10A)と、第1の端縁部(10B)と、第2の端縁部(10C)とを含む。機能部は、第1及び第2の内部電極(11、12)並びに固体電解質層(13)が設けられた部分である。第1の端縁部は、第1の内部電極、固体電解質層及び第2の絶縁層(15)が設けられた部分である。第2の端縁部は、第2の内部電極、固体電解質層及び第1の絶縁層(14)が設けられた部分である。第1及び第2の端縁部のそれぞれの厚みが、機能部の厚みよりも厚い。

Description

全固体電池
 本発明は、全固体電池に関する。
 従来、電解液を用いない全固体電池が知られている(例えば、特許文献1等)。全固体電池は、電解液を用いないため、高温雰囲気下での使用が可能であったり、安全性に優れているというメリットを有している。
 本発明者は、鋭意研究の結果、充電時に全固体電池にクラックが生じる場合があることを見出し、本発明を成すに至った。
特開2014-192041号公報
 本発明の主な目的は、クラックが生じ難い全固体電池を提供することにある。
 本発明の一局面に係る全固体電池は、電池本体を備える。前記電池本体は、前記電池本体の長さ方向及び幅方向に沿って延びる第1及び第2の主面と、前記長さ方向及び前記電池本体の厚み方向に沿って延びる第1及び第2の側面と、前記幅方向及び前記厚み方向に沿って延びる第1及び第2の端面と、前記長さ方向及び前記幅方向に沿って延びており、前記第1の端面に至っている一方、前記第2の端面には至っていない第1の内部電極と、前記長さ方向及び前記幅方向に沿って延び、前記厚み方向に前記第1の内部電極と対向しており、前記第2の端面に至っている一方、前記第1の端面には至っていない第2の内部電極と、前記第1の内部電極と前記第2の内部電極との間に設けられており、前記第1の端面と前記第2の端面とに跨がって設けられた固体電解質層と、前記第1の内部電極の前記第2の端面側の端部から前記第2の端面に至るように設けられている第1の絶縁層と、前記第2の内部電極の前記第1の端面側の端部から前記第1の端面に至るように設けられている第2の絶縁層と、を有する。前記電池本体は、前記第1及び第2の内部電極並びに前記固体電解質層が設けられた部分である機能部と、前記第1の内部電極、前記固体電解質層及び前記第2の絶縁層が設けられた部分である第1の端縁部と、前記第2の内部電極、前記固体電解質層及び前記第1の絶縁層が設けられた部分である第2の端縁部と、を含み、前記第1及び第2の端縁部のそれぞれの厚みが、前記機能部の厚みよりも厚い。
本発明に係る一実施形態に係る全固体電池の模式的斜視図である。 図1の線II-IIにおける模式的断面図である。
 以下、本発明を実施した好ましい形態の一例について説明する。但し、下記の実施形態は、単なる例示である。本発明は、下記の実施形態に何ら限定されない。
 また、実施形態等において参照する各図面において、実質的に同一の機能を有する部材は同一の符号で参照することとする。また、実施形態等において参照する図面は、模式的に記載されたものである。図面に描画された物体の寸法の比率などは、現実の物体の寸法の比率などとは異なる場合がある。図面相互間においても、物体の寸法比率等が異なる場合がある。具体的な物体の寸法比率等は、以下の説明を参酌して判断されるべきである。
 図1は、本実施形態に係る全固体電池1の模式的斜視図である。図2は、図1の線II-IIにおける模式的断面図である。
 図1及び図2に示す全固体電池1は、電解質として固体電解質を用い、液体の電解液を用いない全ての構成要素が固体である電池である。本実施形態では、具体的には、全固体電池1が、全固体リチウムイオン二次電池である例について説明する。本発明に係る全固体電池は、リチウムイオンの吸蔵放出により負極の容量が得られるリチウムイオン二次電池であってもよいし、リチウム金属の析出溶解により負極の容量が得られるリチウム金属二次電池であってもよい。もっとも、本発明に係る全固体電池は、リチウムイオン二次電池以外の全固体電池であってもよい。
 全固体電池1は、電池本体10を備えている。電池本体10は、略直方体状である。なお、「直方体状」には、角部や稜線部が面取り状または丸められた形状である直方体状が含まれるものとする。
 電池本体10は、第1及び第2の主面10a、10bと、第1及び第2の側面10c、10dと、第1及び第2の端面10e、10fとを有する。第1及び第2の主面10a、10bは、それぞれ、長さ方向L及び幅方向Wに沿って延びている。第1及び第2の側面10c、10dは、それぞれ、長さ方向L及び厚み方向Tに沿って延びている。第1及び第2の端面10e、10fは、それぞれ、幅方向W及び厚み方向Tに沿って延びている。
 図2に示すように、電池本体10は、第1の内部電極を構成している正極11と、第2の内部電極を構成している負極12と、固体電解質層13と、第1の絶縁層14と、第2の絶縁層15とを有している。
 正極11は、長さ方向L及び幅方向Wに沿って延びている。正極11は、第1の端面10eに至っている。正極11は、第2の端面10fには至っていない。正極11の第2の端面10f側の先端は、第2の端面10fから離間している。
 正極11は、正極活物質層により構成されていてもよいし、正極集電体と、正極集電体の上に設けられた正極活物質層により構成されていてもよい。
 正極活物質層は、1種類または2種類以上の正極活物質と、固体電解質とを含んでいる。
 正極活物質は、例えば、電極反応物質であるリチウムイオンを吸蔵放出可能な物質である。正極活物質は、高いエネルギー密度が得られる観点から、リチウム含有化合物などであることが好ましいが、これに限定されるものではない。
 リチウム含有化合物は、例えば、リチウムと遷移金属元素とを構成元素として含む複合酸化物(リチウム遷移金属複合酸化物)や、リチウムと遷移金属元素とを構成元素として含むリン酸化合物(リチウム遷移金属リン酸化合物)などである。なかでも、Co、Ni、Mn及びFeからなる群から選ばれた少なくとも1種の繊維金属元素を含むリチウム含有化合物が好ましく用いられる。全固体電池1の電圧をより高くできるためである。
 好ましく用いられるリチウム遷移金属複合酸化物の具体例としては、例えば、LiCoO、LiNiO、LiVO、LiCrO、LiMn等が挙げられる。
 好ましく用いられるリチウム遷移金属リン酸化合物の具体例としては、例えば、LiFePO、LiCoPO等が挙げられる。
 正極11において、正極活物質は、正極活物質粒子として存在する。正極活物質粒子の表面の少なくとも一部が、被覆剤により被覆されていてもよい。被覆剤は、例えば、固体電解質及び導電剤のうち少なくとも1種である。正極活物質粒子の表面を被覆剤で被覆することで、正極活物質粒子と固体電解質との界面抵抗を低減することができる。また、正極活物質粒子の構造の崩壊を抑制できるので、掃引電位幅を広げ、多くのリチウムを反応に使えるようになると共に、サイクル特性も向上できる。
 正極活物質層は、必要に応じて、結着剤や導電剤をさらに含んでいてもよい。正極活物質が結着剤としての機能を有していてもよい。
 好ましく用いられる導電剤としては、例えば、炭素材料、金属、金属酸化物、導電性高分子等が挙げられる。正極活物質層は、これらの導電剤のうちの1種のみを含んでいてもよいし、複数種類の導電剤を含んでいてもよい。炭素材料としては、例えば、黒鉛、炭素繊維、カーボンブラック、カーボンナノチューブなどが挙げられる。導電剤は、導電性を有する材料であればよく、上述の例に限定されるものではない。
 負極12は、長さ方向L及び幅方向Wに沿って延びている。負極12は、厚み方向Tにおいて正極11と対向している。負極12は、第2の端面10fに至っている。負極12は、第1の端面10eには至っていない。負極12の第1の端面10e側の先端は、第1の端面10eから離間している。
 負極12は、負極活物質層により構成されていてもよいし、負極集電体と、負極集電体の上に設けられた負極活物質層により構成されていてもよい。
 負極活物質層は、1種類または2種類以上の負極活物質と、固体電解質とを含んでいる。負極活物質は、電極反応物質であるリチウムイオンを吸蔵放出可能な材料である。負極活物質は、高いエネルギー密度が得られる観点から、炭素材料であることが好ましいが、これに限定されるものではない。好ましく用いられる炭素材料の具体例としては、例えば、易黒鉛化性炭素、難黒鉛化性炭素、黒鉛、メソカーボンマイクロビーズ(MCMB)、高配向性グラファイト(HOPG)などのグラファイト等が挙げられる。
 負極活物質層は、必要に応じて、結着剤や導電剤をさらに含んでいてもよい。負極活物質が結着剤としての機能を有していてもよい。好ましく用いられる導電剤としては、正極活物質層に好ましく用いられる導電剤と同様のものが挙げられる。
 負極12において、負極活物質は、負極活物質粒子として存在する。負極活物質粒子の表面の少なくとも一部が、被覆剤により被覆されていてもよい。被覆剤は、例えば、固体電解質及び導電剤のうち少なくとも1種である。負極活物質粒子の表面を被覆剤で被覆することで、負極活物質粒子と固体電解質との界面抵抗を低減することができる。また、負極活物質粒子の構造の崩壊を抑制できるので、掃引電位幅を広げ、多くのリチウムを反応に使えるようになると共に、サイクル特性も向上できる。
 固体電解質層13は、厚み方向Tにおいて正極11と負極12との間に設けられている。固体電解質層13は、第1の端面10eと第2の端面10fとに跨がって設けられている。
 固体電解質層13は、例えば、酸化物ガラス系リチウムイオン伝導体により構成することができる。ここで、「酸化物ガラス系リチウムイオン伝導体」とは、酸化物ガラスにより構成されるリチウムイオン伝導体のことをいう。酸化物ガラス系リチウムイオン伝導体は、Ge(ゲルマニウム)、Si(ケイ素)、B(ホウ素)およびP(リン)のうち1種以上と、Li(リチウム)と、O(酸素)とを含むガラスであることが好ましく、Si(ケイ素)と、B(ホウ素)と、Li(リチウム)と、O(酸素)とを含むガラスであることがより好ましい。ここで、「ガラス」とは、X線回折や電子線回折においてハローが観測されるなど、結晶学的に非晶質であるものをいう。
 酸化物ガラス系リチウムイオン伝導体において、LiOの含有量は、20mol%以上75mol%以下、好ましくは25mol%を超え75mol%以下、より好ましくは30mol%以上75mol%以下、さらにより好ましくは40mol%以上75mol%以下、特に好ましくは50mol%以上75mol%以下である。酸化物ガラス系リチウムイオン伝導体がGeOを含む場合、GeOの含有量は、0mol%を超え80mol%以下であることが好ましい。酸化物ガラス系リチウムイオン伝導体がSiOを含む場合、SiOの含有量は、0mol%を超え70mol%以下であることが好ましい。酸化物ガラス系リチウムイオン伝導体がBを含む場合、Bの含有量は、0mol%を超え60mol%以下であることが好ましい。酸化物ガラス系リチウムイオン伝導体がPを含む場合、Pの含有量は、0mol%を超え50mol%以下であることが好ましい。なお、各酸化物の含有量は、誘導結合プラズマ発光分光分析法(ICP-AES)などを用いて測定することが可能である。
 酸化物ガラス系リチウムイオン伝導体は、必要に応じて添加元素をさらに含んでいてもよい。添加元素としては、例えば、Na(ナトリウム)、Mg(マグネシウム)、Al(アルミニウム)、K(カリウム)、Ca(カルシウム)、Ti(チタン)、V(バナジウム)、Cr(クロム)、Mn(マンガン)、Fe(鉄)、Co(コバルト)、Ni(ニッケル)、Cu(銅)、Zn(亜鉛)、Ga(ガリウム)、Se(セレン)、Rb(ルビジウム)、S(硫黄)、Y(イットリウム)、Zr(ジルコニウム)、Nb(ニオブ)、Mo(モリブデン)、Ag(銀)、In(インジウム)、Sn(スズ)、Sb(アンチモン)、Cs(セシウム)、Ba(バリウム)、Hf(ハフニウム)、Ta(タンタル)、W(タングステン)、Pb(鉛)、Bi(ビスマス)、Au(金)、La(ランタン)、Nd(ネオジム)及びEu(ユーロピウム)からなる群より選ばれる1種以上が挙げられる。
 酸化物ガラス系リチウムイオン伝導体のリチウムイオン伝導度は、5×10-7S/cm以上であることが好ましい。
 酸化物ガラス系リチウムイオン伝導体の製造方法としては、例えば原料を融液まで溶融し、放冷する方法、融液を金属板やロールなどでプレスする方法、あるいはメカニカルミリング法、ゾル-ゲル法等が挙げられる。
 第1の絶縁層14は、正極11の第2の端面10f側の端部から第2の端面10fに至るように設けられている。
 第2の絶縁層15は、負極12の第1の端面10e側の端部から第1の端面10eに至るように設けられている。
 第1及び第2の絶縁層14、15は、活物質を含んでおらず、イオン伝導性を実質的に有していない。第1及び第2の絶縁層14,15は、それぞれ、例えば、固体電解質層13と同様の材料で構成することができる。第1及び第2の絶縁層14,15は、それぞれ、例えば、固体電解質層13と同様の材料に加え、骨材として、絶縁性の無機物粉末をさらに含んでいてもよい。好ましい骨材の具体例としては、例えば、酸化アルミニウム、酸化ジルコニウム、酸化ケイ素、S-B-Na系のガラスフリット等が挙げられる。
 電池本体10の第1の端面10eの上には、第1の外部電極(正極端子電極)16が設けられている。本実施形態では、第1の外部電極16は、具体的には、第1の端面10eの上から、第1及び第2の主面10a、10b並びに第1及び第2の側面10c、10dの上に至るように設けられている。第1の外部電極16は、第1の端面10eにおいて、正極11と電気的に接続されている。
 電池本体10の第2の端面10fの上には、第2の外部電極(負極端子電極)17が設けられている。本実施形態では、第2の外部電極17は、具体的には、第2の端面10fの上から、第1及び第2の主面10a、10b並びに第1及び第2の側面10c、10dの上に至るように設けられている。第2の外部電極17は、第2の端面10fにおいて、負極12と電気的に接続されている。
 第1及び第2の外部電極16、17は、それぞれ、金属材料などの導電性材料を含む。好ましく用いられる金属材料としては、例えば、Ag、Au、Pt、Al、Cu、Sn、Ni、それらの金属を含む合金等が挙げられる。なお、第1及び第2の外部電極16、17は、それぞれ、導電性材料に加え、結着剤や固体電解質等をさらに含んでいてもよい。
 電池本体10は、機能部10Aと、第1の端縁部10Bと、第2の端縁部10Cとを備えている。
 機能部10Aは、全固体電池1の機能を発現する部分である。機能とは、全固体電池1の充放及び放電である。機能部10Aは、正極(第1の内部電極)11、負極(第2の内部電極)12及び固体電解質層13が設けられた部分である。機能部10Aにおいて、正極11と負極12とは、固体電解質層13を介して対向している。
 第1の端縁部10Bは、機能部10Aの第1の端面10e側に位置している部分である。第1の端縁部10Bは、正極(第1の内部電極)11、固体電解質層13及び第2の絶縁層15が設けられた部分である。第1の端縁部10Bには、負極12が設けられていない。このため、第1の端縁部10Bでは、充放電は実質的に行われない。
 第2の端縁部10Cは、機能部10Aの第2の端面10f側に位置している部分である。第2の端縁部10Cは、負極(第2の内部電極)12、固体電解質層13及び第1の絶縁層14が設けられた部分である。第2の端縁部10Cには、正極11が設けられていない。このため、第2の端縁部10Cでは、充放電が実質的に行われない。
 本発明者は、鋭意研究の結果、充電時に全固体電池にクラックが生じる場合があることを見出し、本発明を成すに至った。本発明者は、さらに鋭意研究の結果、その原因が、全固体電池1の充電時に、活物質が膨張することに起因して、正極11及び負極12が膨張することにあることを見出した。詳細には、全固体電池1の充電時には、正極11及び負極12が膨張する一方、第1及び第2の絶縁層14、15は、膨張しない。このため、正極11及び負極12が設けられており、充電が行われる機能部10Aと、第1及び第2の絶縁層14、15が設けられており、充電が行われない第1及び第2の端縁部10B、10Cとの界面に応力が生じる。充電する度に、機能部10Aと、第1及び第2の端縁部10B、10Cとの界面に応力が生じるため、この応力が原因となり、全固体電池1にクラックが生じる虞がある。
 本実施形態の全固体電池1では、第1及び第2の端縁部10B、10Cのそれぞれの厚みL1、L2が、機能部10Aの厚みL0よりも厚い。本発明者らは、このようにすれば全固体電池1にクラックが発生し難いことを発見した。従って、本実施形態によれば、クラックが発生することを効果的に抑制でき、優れた信頼性を有する全固体電池1を実現することができる。但し、第1及び第2の端縁部10B、10Cのそれぞれの厚みL1、L2が、機能部10Aの厚みL0よりも厚すぎる場合も、クラックが生じる場合がある。このため、第1及び第2の端縁部10B、10Cのそれぞれの厚みL1、L2は、機能部10Aの厚みL0の1.01倍以上、1.2倍以下であることが好ましく、1.15倍以下であることがより好ましい。
 (機能部10Aの厚みL0)
 なお、機能部10Aの厚みL0は、以下の要領で測定することができる。測定者は、全固体電池1を側面からX線CTにより観察し、長さ方向Lの中央において、機能部10Aの上面と下面との距離(厚み方向Tに沿った距離)を測定する。この距離が機能部10Aの厚みL0となる。機能部10Aの上面は、最も第1の主面10a側に位置する内部電極の第1の主面10a側の表面である。機能部10Aの下面は、最も第2の主面10b側に位置する内部電極の第2の主面10b側の表面である。
 (第1の端縁部10Bの厚みL1)
 第1の端縁部10Bの厚みL1は、以下の要領で測定することができる。測定者は、全固体電池1を側面からX線CTにより観察し、第1の端面10eにおいて、第1の端縁部10Bの上面と下面との距離(厚み方向Tに沿った距離)を測定する。この距離が第1の端縁部10Bの厚みL1となる。第1の端縁部10Bの上面は、第1の端縁部10Bを構成する層(内部電極、絶縁層)のうち、最も第1の主面10a側に位置する層の第1の主面10a側の表面である。第1の端縁部10Bの下面は、第1の端縁部10Bを構成する層(内部電極、絶縁層)のうち、最も第2の主面10b側に位置する層の第2の主面10b側の表面である。
 (第2の端縁部10Cの厚みL2)
 第2の端縁部10Cの厚みL2は、以下の要領で測定することができる。測定者は、全固体電池1を側面からX線CTにより観察し、第2の端面10fにおいて、第2の端縁部10Cの上面と下面との距離(厚み方向Tに沿った距離)を測定する。この距離が第2の端縁部10Cの厚みL2となる。第2の端縁部10Cの上面は、第2の端縁部10Cを構成する層(内部電極、絶縁層)のうち、最も第1の主面10a側に位置する層の第1の主面10a側の表面である。第2の端縁部10Cの下面は、第2の端縁部10Cを構成する層(内部電極、絶縁層)のうち、最も第2の主面10b側に位置する層の第2の主面10b側の表面である。
 (全固体電池1の製造方法)
 次に、全固体電池1の製造方法の一例について説明する。
 (固体電解質グリーンシートの作製)
 固体電解質グリーンシートを次のようにして形成する。リチウムイオン伝導体(固体電解質)と、有機系結着剤と、必要に応じて添加剤とを混合して、有機溶剤などに分散させてスラリーを得る。
 有機系結着剤としては、例えば、アクリル樹脂などの有機結着剤を用いることができる。溶媒としては、特に限定されないが、グリーンシートの焼成温度よりも低い温度領域で焼失するものが好ましく用いられる。溶媒の具体例としては、例えば、メタノール、エタノール、イソプロパノール、n-ブタノール、sec-ブタノール、t-ブタノールなどの炭素数が4以下の低級アルコール、エチレングリコール、プロピレングリコール(1,3-プロパンジオール)、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオールなどの脂肪族グリコール、メチルエチルケトンなどのケトン類、ジメチルエチルアミンなどのアミン類、テルピネオールなどの脂環族アルコールなどを単独または2種以上混合して用いることができる。分散処理方法としては、例えば、攪拌処理方法、超音波分散処理方法、ビーズ分散処理方法、混錬処理方法、ホモジナイザー処理方法などが挙げられる。
 必要に応じて、フィルタによりスラリーをろ過し、スラリー中の異物を除去するようにしてもよい。必要に応じて、スラリーに対して、内部の気泡を除去するための真空脱泡を行うようにしてもよい。
 このようにして作製した固体電解質スラリーを支持基材の表面に均一に塗布または印刷し、更にこれを乾燥することにより固体電解質グリーンシートを得る。支持基体としては、例えば、ポリエチレンテレフタレート(PET)フィルムなどの高分子樹脂フィルムなどを用いることができる。塗布方法としては、例えば、ダイコート法、マイクログラビアコート法、ワイヤーバーコート法、ダイレクトグラビアコート法、リバースロールコート法、コンマコート法、ナイフコート法、スプレーコート法、カーテンコート法、ディップ法、スピンコート法などを用いることができる。印刷方法としては、例えば、凸版印刷法、オフセット印刷法、グラビア印刷法、凹版印刷法、ゴム版印刷法、スクリーン印刷法などを用いることができる。
 固体電解質グリーンシートを支持基材の表面から剥がしやすくするために、支持基材の表面に剥離処理を予め施しておくことが好ましい。剥離処理としては、例えば、剥離性を付与する組成物を支持基材の表面に予め塗布または印刷する方法が挙げられる。剥離性を付与する組成物としては、例えば、バインダーを主成分とし、ワックスやフッ素などが添加された塗料、またはシリコーン樹脂などが挙げられる。
 (正極ペーストの調製)
 次に、正極ペーストの調製方法について説明する。正極活物質とリチウムイオン伝導体(固体電解質)と、有機系結着剤と、必要に応じて導電剤とを混合して、有機溶剤などに分散させて、正極ペーストを得る。分散方法としては、例えば、ロール分散方法、攪拌処理方法、超音波分散処理方法、ビーズ分散処理方法、混錬処理方法、ホモジナイザー処理方法などが挙げられる。
 (負極ペーストの調製)
 次に、負極ペーストの調製方法について説明する。負極活物質とリチウムイオン伝導体(固体電解質)と、有機系結着剤と、必要に応じて導電剤とを混合して、有機溶剤などに分散させて、負極ペーストを得る。
 (集電ペーストの調製)
 集電ペーストの調製方法は、正極活物質のかわりに導電剤を用いることを除き、正極ペーストの調製方法と同様である。
 (絶縁性ペースト)
 低融点ガラスと骨材と有機系結着剤とを混合して、有機溶剤などに分散させることにより絶縁性ペーストを調製する。低融点ガラスのガラス転移温度は焼成温度よりも低いことが望ましい。また、低融点ガラスはリチウムイオン伝導体と同じ材質であってもよいし、異なっていてもよい。
 (正極シートの作製)
 固体電解質グリーンシートの表面に、正極ペースト、絶縁性ペースト、集電ペースト印刷することにより、正極シートを得る。この際に、絶縁性ペーストを正極ペーストよりも厚く印刷する。なお、集電ペーストの印刷は必須ではない。印刷方法としては、例えば、凸版印刷法、オフセット印刷法、グラビア印刷法、凹版印刷法、ゴム版印刷法、スクリーン印刷法などを用いることができる。
 (負極シートの作製)
 固体電解質グリーンシートの表面に、負極ペースト、絶縁性ペーストを印刷することにより負極シートを得る。この際に、絶縁性ペーストを負極ペーストよりも厚く印刷する。
 (積層体の作製)
 複数枚の固体電解質グリーンシートを積層した後に、得られた正極シートと負極シートを交互に積層し、さらに複数枚の固体電解質グリーンシートを積層し、厚み方向に圧力を加えることにより接着して、積層体を作製する。圧力を加える際には30℃以上90℃以下に加温をすることが望ましい。これにより、積層体を構成する各グリーンシートに含まれる有機系結着剤が溶融し、積層体を構成する各グリーンシート間の密着性が向上する。積層体を加熱しながらプレスする具体的な方法としては、例えば、ホットプレス法、温間等方圧プレス(Warm Isostatic Press:WIP)などが挙げられる。
 (積層体の焼成)
 次に、必要に応じて積層体を所定の大きさ及び形状に切断する。次に、積層体を焼成することにより、積層体を構成する各グリーンシート中に含まれる有機系結着剤を脱脂する。脱脂済みの積層体を型枠に入れ、少なくとも厚み方向に圧力を印加しながら加熱することで、積層型の全固体電池焼結体を得る。焼成温度は300℃以上600℃以下が好ましく、より好ましくは350℃以上500℃以下である。
 剛体でプレスしながら焼成しているため、焼成体の上下面は平坦であるが、焼成体の内部構造には機能部と端縁部の印刷厚みの差に起因する褶曲が見られる。
 以下、本発明について、具体的な実施例に基づいて、さらに詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能である。
 (実施例1~15、比較例1~4)
 上記製造方法で、以下の条件で、機能部10A、第1の端縁部10B、第2の端縁部10Cの厚みが異なる種々の全固体電池をそれぞれ30個作製した。
 正極活物質:コバルト酸リチウム
 負極活物質:黒鉛(グラファイト)
 導電剤:アセチレンブラック
 低融点ガラス:固体電解質層に用いたリチウムイオン伝導体と同様のガラス
 骨材:アルミナ
 積層体の構成:6枚の固体電解質グリーンシートの上に、正極シート15枚と負極シート16枚とを交互に積層し、さらにその上に、6枚の固体電解質グリーンシートを積層 (厚み測定)
 充放電試験前サンプルの内部構造を、X線CTにて撮像し、第1及び第2の端縁部並びに機能部の厚みを測定した。
(充放電試験)
 各実施例及び各比較例において作製したサンプルにつき、25℃で、10mAで4.2Vに到達するまでは定電流充電し、4.2V到達後、2時間定電圧充電した。その後、25℃で、定電流10mA、カットオフ電圧2Vで放電した。上記を1サイクルとして、30サイクルの充放電をおこなった。
 (クラックの有無の観察)
 充放電試験を行ったサンプルについて、X線CT及び研磨によって、クラックの有無を観察した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 また、各実施例において作製したサンプルに対して、上記充放電試験を30サイクル実施したが、その後においてもクラックが発見されたサンプルは存在しなかった。
 表1に示す結果から、第1及び第2の端縁部のそれぞれの厚みを、機能部の厚みよりも厚くすることによりクラックの発生を抑制できることが分かる。
(実施形態の纏め)
 実施形態に係る全固体電池は、電池本体を備える。前記電池本体は、前記電池本体の長さ方向及び幅方向に沿って延びる第1及び第2の主面と、前記長さ方向及び前記電池本体の厚み方向に沿って延びる第1及び第2の側面と、前記幅方向及び前記厚み方向に沿って延びる第1及び第2の端面と、前記長さ方向及び前記幅方向に沿って延びており、前記第1の端面に至っている一方、前記第2の端面には至っていない第1の内部電極と、前記長さ方向及び前記幅方向に沿って延び、前記厚み方向に前記第1の内部電極と対向しており、前記第2の端面に至っている一方、前記第1の端面には至っていない第2の内部電極と、前記第1の内部電極と前記第2の内部電極との間に設けられており、前記第1の端面と前記第2の端面とに跨がって設けられた固体電解質層と、前記第1の内部電極の前記第2の端面側の端部から前記第2の端面に至るように設けられている第1の絶縁層と、前記第2の内部電極の前記第1の端面側の端部から前記第1の端面に至るように設けられている第2の絶縁層と、を有する。前記電池本体は、前記第1及び第2の内部電極並びに前記固体電解質層が設けられた部分である機能部と、前記第1の内部電極、前記固体電解質層及び前記第2の絶縁層が設けられた部分である第1の端縁部と、前記第2の内部電極、前記固体電解質層及び前記第1の絶縁層が設けられた部分である第2の端縁部と、を含み、前記第1及び第2の端縁部のそれぞれの厚みが、前記機能部の厚みよりも厚い。
 本発明者は、鋭意研究の結果、充電時にクラックが生じる原因が、充電時における電極へのキャリアイオンの脱挿入に伴って電極が膨張することにあることを見出した。本発明者らは、第1および第2の端縁部の厚みを機能部の厚みより厚くすれば、クラックが発生し難いことを見出した。これは、第1および第2の端縁部と機能部との間に作用する応力が緩和されるからだと推定される。
 実施形態に係る全固体電池では、第1及び第2の端縁部のそれぞれの厚みが、機能部の厚みの1.01倍以上、1.15倍以下であることが好ましい。
 実施形態に係る全固体電池では、第2の内部電極が、負極活物質として炭素材料を含んでいてもよい。
 実施形態に係る全固体電池では、第2の内部電極が、負極活物質としてグラファイトを含んでいてもよい。
 実施形態に係る全固体電池は、リチウムイオン二次電池であってもよい。
 実施形態に係る全固体電池は、以下の構成を有する。図2を参照して、前記第1の端縁部は、前記第1の端面側に位置し、前記第2の端縁部は、前記第2の端面側に位置し、前記機能部は、前記第1の端縁部と前記第2の端縁部の間に位置している。
 実施形態に係る全固体電池は、以下の構成を有する。図2を参照して、前記第1の端縁部は、前記第1の端縁部と前記機能部との境界から前記第1の端面に近づくに従って、前記厚み方向に拡がっており、前記第2の端縁部は、前記第2の端縁部と前記機能部との境界から前記第2の端面に近づくに従って、前記厚み方向に拡がっている。
 図2を参照して、実施形態に係る全固体電池は、前記電池本体と、前記第1の端面の上に形成され、前記第1の内部電極と電気的に接続された第1の外部電極と、前記第2の端面の上に形成され、前記第2の内部電極と電気的に接続された第2の外部電極と、を有し、前記電池本体の厚みは一定(略一定)であり、前記電池本体の内部には、前記機能部、前記第1の端縁部および前記第2の端縁部が配置されている。
 実施形態に係る全固体電池は、以下の構成を有する。図2を参照して、前記第1の絶縁層の厚みは、前記第1の内部電極の厚みより厚く、前記第2の絶縁層の厚みは、前記第2の内部電極の厚みより厚い。
 図2では示されていないが、第1の絶縁層14の厚みは正極11(第1の内部電極)の厚みより厚く、第2の絶縁層15の厚みは負極12(第2の内部電極)の厚みより厚い。固定電解質グリーンシートの表面において、絶縁性ペーストが正極ペーストよりも厚く印刷され、固定電解質グリーンシートの表面において、絶縁性ペーストが負極ペーストよりも厚く印刷されるからである。

Claims (5)

  1.  電池本体を備える全固体電池であって、
     前記電池本体は、
     前記電池本体の長さ方向及び幅方向に沿って延びる第1及び第2の主面と、
     前記長さ方向及び前記電池本体の厚み方向に沿って延びる第1及び第2の側面と、
     前記幅方向及び前記厚み方向に沿って延びる第1及び第2の端面と、
     前記長さ方向及び前記幅方向に沿って延びており、前記第1の端面に至っている一方、前記第2の端面には至っていない第1の内部電極と、
     前記長さ方向及び前記幅方向に沿って延び、前記厚み方向に前記第1の内部電極と対向しており、前記第2の端面に至っている一方、前記第1の端面には至っていない第2の内部電極と、
     前記第1の内部電極と前記第2の内部電極との間に設けられており、前記第1の端面と前記第2の端面とに跨がって設けられた固体電解質層と、
     前記第1の内部電極の前記第2の端面側の端部から前記第2の端面に至るように設けられている第1の絶縁層と、
     前記第2の内部電極の前記第1の端面側の端部から前記第1の端面に至るように設けられている第2の絶縁層と、
     を有し、
     前記電池本体は、
     前記第1及び第2の内部電極並びに前記固体電解質層が設けられた部分である機能部と、
     前記第1の内部電極、前記固体電解質層及び前記第2の絶縁層が設けられた部分である第1の端縁部と、
     前記第2の内部電極、前記固体電解質層及び前記第1の絶縁層が設けられた部分である第2の端縁部と、
     を含み、
     前記第1及び第2の端縁部のそれぞれの厚みが、前記機能部の厚みよりも厚い、全固体電池。
  2.  前記第1及び第2の端縁部のそれぞれの厚みが、前記機能部の厚みの1.01倍以上、1.15倍以下である、請求項1に記載の全固体電池。
  3.  前記第2の内部電極は、負極活物質として炭素材料を含む、請求項1または2に記載の全固体電池。
  4.  前記第2の内部電極は、負極活物質としてグラファイトを含む、請求項3に記載の全固体電池。
  5.  前記全固体電池は、リチウムイオン二次電池である、請求項1~4のいずれか一項に記載の全固体電池。
PCT/JP2019/006704 2018-03-02 2019-02-22 全固体電池 WO2019167821A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020503462A JP7047896B2 (ja) 2018-03-02 2019-02-22 全固体電池
CN201980006471.4A CN111480260B (zh) 2018-03-02 2019-02-22 全固体电池
US16/898,475 US11424487B2 (en) 2018-03-02 2020-06-11 Solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018037226 2018-03-02
JP2018-037226 2018-03-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/898,475 Continuation US11424487B2 (en) 2018-03-02 2020-06-11 Solid-state battery

Publications (1)

Publication Number Publication Date
WO2019167821A1 true WO2019167821A1 (ja) 2019-09-06

Family

ID=67805725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006704 WO2019167821A1 (ja) 2018-03-02 2019-02-22 全固体電池

Country Status (4)

Country Link
US (1) US11424487B2 (ja)
JP (1) JP7047896B2 (ja)
CN (1) CN111480260B (ja)
WO (1) WO2019167821A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070989A1 (ja) * 2018-10-02 2020-04-09 株式会社村田製作所 固体電池
WO2021112083A1 (ja) * 2019-12-04 2021-06-10 株式会社村田製作所 固体電池
WO2023214476A1 (ja) * 2022-05-02 2023-11-09 太陽誘電株式会社 全固体電池およびその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020699A1 (ja) * 2010-08-09 2012-02-16 株式会社 村田製作所 積層型固体電池
JP2013127861A (ja) * 2011-12-16 2013-06-27 Fujitsu Ltd 二次電池
JP2014192041A (ja) * 2013-03-27 2014-10-06 Taiyo Yuden Co Ltd 全固体二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9853274B2 (en) * 2011-02-24 2017-12-26 Toyota Jidosha Kabushiki Kaisha Solid battery
JP5935405B2 (ja) * 2012-03-08 2016-06-15 日産自動車株式会社 積層構造電池
JP6575136B2 (ja) * 2014-05-19 2019-09-18 Tdk株式会社 固体電池及びそれを用いた組電池
US10439260B2 (en) * 2016-06-30 2019-10-08 Toyota Jidosha Kabushiki Kaisha Battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020699A1 (ja) * 2010-08-09 2012-02-16 株式会社 村田製作所 積層型固体電池
JP2013127861A (ja) * 2011-12-16 2013-06-27 Fujitsu Ltd 二次電池
JP2014192041A (ja) * 2013-03-27 2014-10-06 Taiyo Yuden Co Ltd 全固体二次電池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020070989A1 (ja) * 2018-10-02 2020-04-09 株式会社村田製作所 固体電池
US11942605B2 (en) 2018-10-02 2024-03-26 Murata Manufacturing Co., Ltd. Solid-state battery
WO2021112083A1 (ja) * 2019-12-04 2021-06-10 株式会社村田製作所 固体電池
JPWO2021112083A1 (ja) * 2019-12-04 2021-06-10
JP7279818B2 (ja) 2019-12-04 2023-05-23 株式会社村田製作所 固体電池
WO2023214476A1 (ja) * 2022-05-02 2023-11-09 太陽誘電株式会社 全固体電池およびその製造方法

Also Published As

Publication number Publication date
US20200303781A1 (en) 2020-09-24
JP7047896B2 (ja) 2022-04-05
CN111480260A (zh) 2020-07-31
CN111480260B (zh) 2023-07-25
JPWO2019167821A1 (ja) 2020-12-03
US11424487B2 (en) 2022-08-23

Similar Documents

Publication Publication Date Title
JP6175934B2 (ja) 全固体電池の製造方法
US8778542B2 (en) Lithium ion secondary battery comprising an active material and solid electrolyte forming a matrix structure and method for manufacturing same
US10033037B2 (en) Lithium ion secondary battery including a composition containing lithium and boron
US11424487B2 (en) Solid-state battery
US11532812B2 (en) All-solid lithium ion secondary battery
JP7009761B2 (ja) 全固体型二次電池
JP7127540B2 (ja) 全固体リチウムイオン二次電池
CN110574208A (zh) 全固态电池
US20220006068A1 (en) Solid-state battery
WO2018062092A1 (ja) リチウムイオン伝導性固体電解質および全固体リチウムイオン二次電池
US20220140388A1 (en) Solid-state battery
JP6316091B2 (ja) リチウムイオン二次電池
JP6192540B2 (ja) 全固体電池およびその製造方法
US20220069347A1 (en) Solid-state battery
WO2021132500A1 (ja) 固体電池
JP2020140963A (ja) 固体電解質、並びに全固体二次電池及びその製造方法
WO2023188470A1 (ja) 全固体二次電池
WO2021131467A1 (ja) 固体電池
WO2023176967A1 (ja) 固体電解質層、及び全固体二次電池
WO2023176968A1 (ja) 固体電解質層、及び全固体二次電池
WO2021124809A1 (ja) 固体電池
JP2023168868A (ja) 全固体二次電池
JP2023060591A (ja) 固体電解質材料および全固体電池
JP2020155288A (ja) 直列型全固体組電池の製造方法
JP2018116938A (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503462

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760089

Country of ref document: EP

Kind code of ref document: A1