WO2020138040A1 - 全固体電池 - Google Patents
全固体電池 Download PDFInfo
- Publication number
- WO2020138040A1 WO2020138040A1 PCT/JP2019/050536 JP2019050536W WO2020138040A1 WO 2020138040 A1 WO2020138040 A1 WO 2020138040A1 JP 2019050536 W JP2019050536 W JP 2019050536W WO 2020138040 A1 WO2020138040 A1 WO 2020138040A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- negative electrode
- positive electrode
- solid
- current collector
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/543—Terminals
- H01M50/547—Terminals characterised by the disposition of the terminals on the cells
- H01M50/548—Terminals characterised by the disposition of the terminals on the cells on opposite sides of the cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0585—Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/528—Fixed electrical connections, i.e. not intended for disconnection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/531—Electrode connections inside a battery casing
- H01M50/533—Electrode connections inside a battery casing characterised by the shape of the leads or tabs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to all-solid-state batteries.
- the present application claims priority based on Japanese Patent Application No. 2018-240461 filed in Japan on December 25, 2018, the contents of which are incorporated herein by reference.
- Patent Document 1 Japanese Patent Laying-Open No. 2007-5279 proposes an all-solid lithium secondary battery in which all the constituent elements are solid by using a non-flammable solid electrolyte.
- This all-solid-state lithium secondary battery includes an active material layer and a solid electrolyte layer joined to the active material layer by sintering, and the active material layer contains a crystalline first material capable of releasing and storing lithium ions. It is disclosed that the solid electrolyte layer includes a crystalline second material having lithium ion conductivity. Further, it is described that the filling rate of the solid electrolyte layer is preferably more than 70%.
- Patent Document 2 Japanese Patent Laid-Open No. 2007-294429 (hereinafter referred to as Patent Document 2) describes a lithium ion conductive solid electrolyte obtained by firing a molded body containing an inorganic powder and having a porosity of 10 vol% or less. There is.
- the solid electrolyte constituting the all-solid-state battery be dense.
- the solid electrolyte layer is densified, at the time of firing when manufacturing the all-solid-state battery, or due to the volume expansion and contraction of the electrode layer that occurs during charging and discharging of the all-solid-state battery, Internal stress was concentrated in the solid electrolyte layer, and cracks were sometimes generated. As a result, it was found that the internal resistance increased and the cycle characteristics deteriorated.
- Patent Document 3 International Publication No. WO 2013/175993 (hereinafter, referred to as Patent Document 3) forms a portion having a low porosity in a region of a solid electrolyte layer close to an electrode layer, and forms a portion in a region away from the electrode layer.
- Patent Document 3 forms a portion having a low porosity in a region of a solid electrolyte layer close to an electrode layer, and forms a portion in a region away from the electrode layer.
- a solid electrolyte layer forming a portion having a high porosity is described.
- Patent Document 3 when a portion having high porosity and a portion having low porosity are formed in the solid electrolyte layer, the internal resistance of the solid electrolyte layer rather increases, and sufficient cycle characteristics can be obtained. There wasn't.
- the present invention has been made to solve the above problems, and an object thereof is to provide an all-solid-state battery having excellent cycle characteristics.
- a positive electrode layer composed of a positive electrode current collector layer and a positive electrode active material layer, and a negative electrode layer composed of a negative electrode current collector layer and a negative electrode active material layer are solid electrolytes.
- a laminate including a battery element formed on one or both main surfaces of the layer, a positive electrode external electrode, and a negative electrode external electrode, and the positive electrode layer and the negative electrode layer each extend to a side surface of the laminate. And an area that does not extend to the side surface of the laminated body, and is connected to the positive electrode external electrode and the negative electrode external electrode through the respective extending ends, and at least does not extend. Includes a void adjacent to the region.
- the void is adjacent to at least one of the positive electrode current collector layer and the negative electrode current collector layer.
- the laminated body includes a margin layer formed on the same plane as the positive electrode layer and the negative electrode layer, and the void is formed at least in a part of the margin layer.
- the average cross-sectional area of the voids is S x
- the average cross-sectional area of the positive electrode current collector layer or the negative electrode current collector layer is the same in the stacking direction and parallel to the extending one end. average when the cross-sectional area was S y of, S x / S y preferably satisfies 0.0001 to 0.02.
- S x /S y satisfies 0.0006 to 0.008.
- the stress load due to volume expansion is relieved, and as a result, an all-solid-state battery having excellent cycle characteristics can be provided.
- the all-solid-state battery 1 includes a laminated body 20 in which a positive electrode layer 30 and a negative electrode layer 40 are laminated via a solid electrolyte layer 50.
- the battery element in which the positive electrode layer 30 and the negative electrode layer 40 are formed on one or both main surfaces of the solid electrolyte layer 50 constitutes at least a part of the stacked body 20.
- the positive electrode layer 30 includes a positive electrode current collector layer 31 and a positive electrode active material layer 32.
- the negative electrode layer 40 includes a negative electrode current collector layer 41 and a negative electrode active material layer 42.
- a margin layer 80 is formed on the same plane as the positive electrode layer 30 and the negative electrode layer 40.
- the stacked body 20 is a hexahedron, and has four side surfaces (first side surface 21, second side surface 22, third side surface 23, fourth side surface 24) formed as surfaces parallel to the stacking direction, and the stacking direction. It has an upper surface 25 and a lower surface 26 formed as surfaces orthogonal to the above.
- the positive electrode current collector layer is exposed on the first side surface 21, and the negative electrode current collector layer is exposed on the second side surface 22.
- the third side surface 23 is a side surface on the right side when the upper surface 25 is facing up and the first side surface 21 side. is there.
- the first side surface 21 and the second side surface 22 face each other, and the third side surface 23 and the fourth side surface 24 face each other.
- either or both of the positive electrode active material and the negative electrode active material are collectively referred to as an active material, and either one or both of the positive electrode active material layer 32 and the negative electrode active material layer 42 is referred to.
- an active material layer one or both of the positive electrode current collector layer 31 and the negative electrode current collector layer 41 are collectively referred to as a current collector layer, and either one of the positive electrode layer 30 and the negative electrode layer 40.
- both may be collectively referred to as an electrode layer.
- the positive electrode layer 30 is formed in a substantially rectangular shape when viewed from the upper surface 25, and includes four ends each. Each of the four ends includes a first end 301 and a second end 302 that face each other, and a third end 303 and a fourth end 304 that also face each other. Of these, the first end 301 is exposed (extended) to the first side surface 21 of the stacked body 20. Further, the second end 302, the third end 303, and the fourth end 304 are not exposed (extended) to the side surface of the stacked body 20, and the second side surface 22, the third side surface 23, and the third side surface 23 of the stacked body 20. The fourth side surfaces 24 are formed substantially parallel to each other. In the present embodiment, hereinafter, the first end 301 will be referred to as “extending end”, and the second end 302, the third end 303, and the fourth end 304 will be referred to as “non-extending region”. ..
- the negative electrode layer 40 is formed in a substantially rectangular shape when viewed from the upper surface 25, and includes four ends each. Each of the four ends includes a first end 401 and a second end 402 that face each other, and a third end 403 and a fourth end 404 that also face each other. Of these, the first end 401 is exposed (extended) to the second side surface 22 of the stacked body 20. In addition, the second end 402, the third end 403, and the fourth end 404 are not exposed (extended) to the side surface of the stacked body 20, and the first side surface 21, the third side surface 23 of the stacked body 20, The fourth side surfaces 24 are formed substantially parallel to each other. In the present embodiment, hereinafter, the first end 401 will be referred to as “extending end”, and the second end 402, the third end 403, and the fourth end 404 will be referred to as “non-extending region”. ..
- the margin layer 80 of the all-solid-state battery 1 of the present embodiment is preferably provided to eliminate the step between the solid electrolyte layer 50 and the positive electrode layer 30 and the step between the solid electrolyte layer 50 and the negative electrode layer 40. Therefore, the margin layer 80 indicates a region other than the positive electrode layer 30 and the negative electrode layer 40 on the main surface of the solid electrolyte layer 50.
- the presence of such a margin layer eliminates a step between the solid electrolyte layer 50 and the positive electrode layer 30 and the negative electrode layer 40, so that the denseness of the solid electrolyte layer 50 and the electrode layer becomes high, and the sintering of the all solid state battery is performed. Delamination and warpage due to the layer hardly occur.
- the margin layer 80 is formed outside the “non-extending region” of the positive electrode layer 30 and the negative electrode layer 40.
- the margin layer 80 forms a part of the side surface parallel to the “non-extending region” among the four side surfaces of the stacked body 20, so that the solid electrolyte layer 50 and the positive electrode layer 30 described above are formed. And the step between the solid electrolyte layer 50 and the negative electrode layer 40 are eliminated.
- a positive electrode external electrode 60 electrically connected to the positive electrode current collector layer 31 is attached to the first side surface 21 of the laminated body 20. Note that this electrical connection is made by connecting the positive electrode external electrode 60 to the positive electrode current collector layer 31 exposed on the “extending one end” side of the positive electrode layer 30.
- a negative electrode external electrode 70 electrically connected to the negative electrode current collector layer 41 is attached to the second side surface 22 of the laminated body 20. The electrical connection is made by connecting the negative electrode external electrode 70 to the negative electrode current collector layer 41 exposed on the “extending one end” side of the negative electrode layer 40.
- a void 90 is formed in at least a part of the area between the margin layer 80 and the “non-extending area” of the positive electrode layer 30 and the negative electrode layer 40.
- the void 90 is formed in a part of the area of the margin layer 80.
- the void 90 of the present embodiment is adjacent to the positive electrode current collector layer 31 or the negative electrode current collector layer 41 exposed in the “non-extending region”, and the portion excluding the adjacent portion is the margin. Adjacent to layer 80.
- the void 90 is adjacent to at least one of the positive electrode current collector layer 31 and the negative electrode current collector layer 41 in at least the “non-extending region” as in the present embodiment.
- the void 90 is preferably formed in at least a part of the area of the margin layer 80 as in the present embodiment.
- the positive electrode current collector layer 31 or the negative electrode current collector layer 41 is provided with the positive electrode active material layer 32 or the negative electrode active material layer 42 on one main surface or both main surfaces, so that Receives a stress load due to the volume expansion and contraction. Due to this stress load, the positive electrode current collector layer 31 and the negative electrode current collector layer 41 will be stretched in the lateral direction, but since the voids are provided adjacent to the “non-extending region”, Since the stress due to the stretching in the lateral direction can be relaxed, the stress load on the margin layer 80 due to charge/discharge can be reduced. As a result, an all-solid-state battery having better cycle characteristics than before can be obtained.
- the average cross-sectional area of the void 90 is S x , the positive electrode current collector layer.
- the ratio of S x /S y preferably satisfies 0.0001 to 0.02, and 0.0006 to It is more preferable to satisfy 0.008.
- the laminated body 20 of the present embodiment is provided with one positive electrode current collector layer 31 and one negative electrode current collector layer 41, but the present invention is not limited to this, and the positive electrode current collector layer 31 and the negative electrode current collector layer 41 are provided. A plurality of body layers 41 may be provided respectively.
- the average sectional area of the voids 90 is S x , the positive electrode current collector layer.
- the ratio of S x /S y preferably satisfies 0.0001 to 0.02, and 0.0006 to It is more preferable to satisfy 0.008.
- the solid electrolyte layer 50 of the all-solid-state battery 1 of the present embodiment includes a solid electrolyte material having low electron conductivity and high lithium ion conductivity.
- a general solid electrolyte material such as an oxide-based lithium ion conductor having a Nasicon type, garnet type, or perovskite type crystal structure can be used.
- lithium aluminum aluminum phosphate is (Li 1+x Al x Ti 2-x (PO 4 ) 3 (0 ⁇ x ⁇ 0.6)), Li 3+x1 Si x1 P 1-x1 O 4 (0.4 ⁇ x1 ⁇ 0.6), Li 3.4 V 0.4 Ge 0.6 O 4 , lithium germanium phosphate (LiGe 2 (PO 4 ) 3 ), Li 2 OV 2 O 5 —SiO 2 , Li 2 O -P 2 O 5 -B 2 O 3 , Li 3 PO 4 , Li 0.5 La 0.5 TiO 3 , Li 14 Zn(GeO 4 ) 4 , and Li 7 La 3 Zr 2 O 12 are selected. It is preferable to include at least one of
- a lithium ion conductor having a NASICON type crystal structure for example, LiTi 2 (PO 4 ) 3 (LTP), LiZr 2 (PO 4 ) 3 (LZP), Li 1+x Al x Ti 2-x (PO 4 ) 3 (LATP, 0 ⁇ x ⁇ 0.6)), Li 1+x Al x Ge 2-x (PO 4 ) 3 (LAGP, 0 ⁇ x ⁇ 0.6) , Li 1+x Y x Zr 2-x (PO 4 ) 3 (LYZP, 0 ⁇ x ⁇ 0.6) is preferably contained.
- the solid electrolyte layer 50 it is preferable to select the solid electrolyte layer 50 according to the active material used for the positive electrode layer 30 and the negative electrode layer 40.
- the solid electrolyte layer 50 more preferably contains the same element as the element forming the active material. Since the solid electrolyte layer 50 contains the same element as the element forming the active material, the bonding at the interface between the positive electrode active material layer 32 and the negative electrode active material layer 42 and the solid electrolyte layer 50 becomes strong. In addition, the contact area at the interface between the positive electrode active material layer 32 and the negative electrode active material layer 42 and the solid electrolyte layer 50 can be increased.
- the positive electrode active material layer 32 and the negative electrode active material layer 42 include a positive electrode active material or a negative electrode active material that exchanges lithium ions and electrons, respectively.
- a conductive auxiliary agent, an ion conductive auxiliary agent, and the like may be included.
- the positive electrode active material and the negative electrode active material are preferably capable of efficiently inserting and releasing lithium ions.
- the active materials forming the positive electrode active material layer 32 or the negative electrode active material layer 42 there is no clear distinction between the active materials forming the positive electrode active material layer 32 or the negative electrode active material layer 42, and the potentials of two kinds of compounds are compared, and a compound showing a more noble potential is used as the positive electrode active material. A compound exhibiting a base potential can be used as the negative electrode active material.
- the same compound may be used for the positive electrode active material layer 32 and the negative electrode active material layer 42 as long as the compound has both lithium ion release and lithium ion storage at the same time. Therefore, the active materials will be collectively described below.
- a transition metal oxide, a transition metal composite oxide, or the like can be used as the active material.
- metals and alloys such as Li metal, Li—Al alloy, Li—In alloy, carbon, silicon (Si), silicon oxide (SiO x ), titanium oxide (TiO 2 ), etc. , And metal oxides.
- the active material of the present embodiment preferably contains a phosphoric acid compound as a main component, and for example, lithium vanadium phosphate (LiVOPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 4 (VO)(PO 4 )). 2 ), lithium vanadium pyrophosphate (Li 2 VOP 2 O 7 , Li 2 VP 2 O 7 ), and Li 9 V 3 (P 2 O 7 ) 3 (PO 4 ) 2 which is one or more. Is particularly preferable, and one or both of LiVOPO 4 and Li 3 V 2 (PO 4 ) 3 is particularly preferable.
- LiVOPO 4 and Li 3 V 2 (PO 4 ) 3 is particularly preferable.
- the main component in the present embodiment means that the proportion of the phosphoric acid compound with respect to the entire active material in the active material layer is greater than 50 parts by mass, and the proportion of the phosphoric acid compound is preferably 80 parts by weight or more. ..
- LiVOPO 4 and Li 3 V 2 (PO 4 ) 3 preferably have a lithium deficiency, and Li x VOPO 4 (0.94 ⁇ x ⁇ 0.98) and Li x V 2 (PO 4 ) 3 (2 It is more preferable that 0.8 ⁇ x ⁇ 2.95).
- Examples of the conductive aid include carbon materials such as carbon black, acetylene black, Ketjen black, carbon nanotubes, graphite, graphene, activated carbon, and metal materials such as gold, silver, palladium, platinum, copper, tin.
- the ion-conducting auxiliary agent is, for example, a solid electrolyte.
- a solid electrolyte specifically, for example, the same material as the material used for the solid electrolyte layer 50 can be used.
- a solid electrolyte is used as the ion-conducting auxiliary agent, it is preferable to use the same material as the ion-conducting auxiliary agent and the solid electrolyte used for the solid electrolyte layer 50.
- the positive electrode current collector layer 31 and the negative electrode current collector layer 41 of the all-solid-state battery 1 of the present embodiment it is preferable to use a material having a high conductivity, for example, silver, palladium, gold, platinum, aluminum. It is preferable to use copper, nickel, or the like. In particular, copper is more preferable because it hardly reacts with lithium aluminum aluminum phosphate and has an effect of reducing the internal resistance of the all-solid-state battery.
- the materials forming the positive electrode current collector layer and the negative electrode current collector layer may be the same or different for the positive electrode and the negative electrode.
- the positive electrode current collector layer 31 and the negative electrode current collector layer 41 of the all-solid-state battery 1 of the present embodiment preferably include a positive electrode active material and a negative electrode active material, respectively.
- the positive electrode current collector layer 31 and the negative electrode current collector layer 41 include the positive electrode active material and the negative electrode active material, respectively, the positive electrode current collector layer 31 and the positive electrode active material layer 32, and the negative electrode current collector layer 41 and the negative electrode active material. It is desirable because the adhesion with the material layer 42 is improved.
- the ratio of the positive electrode active material and the negative electrode active material in the positive electrode current collector layer 31 and the negative electrode current collector layer 41 of the present embodiment is not particularly limited as long as it functions as a current collector, but the positive electrode current collector and the positive electrode active material are not particularly limited.
- the volume ratio of the negative electrode current collector to the negative electrode active material is preferably in the range of 90/10 to 70/30.
- the material forming the margin layer preferably includes the same material as the solid electrolyte layer 50, for example. Therefore, it is preferable to use a lithium ion conductor having a NASICON type crystal structure.
- a lithium ion conductor having a NASICON type crystal structure.
- LYZP 0 ⁇ x ⁇ 0.6
- the all-solid-state battery 1 of this embodiment can be manufactured by the following procedure as an example.
- Each material of the positive electrode current collector layer, the positive electrode active material layer, the solid electrolyte layer, the negative electrode active material layer, the negative electrode current collector layer, the margin layer, and the organic material for forming the voids is made into a paste.
- the method for forming a paste is not particularly limited, but for example, a paste can be obtained by mixing the powder of each material with a vehicle.
- the vehicle is a general term for a medium in a liquid phase, and includes a solvent, a binder and the like.
- the binder contained in the paste for forming the green sheet or the printed layer is not particularly limited, but polyvinyl acetal resin, cellulose resin, acrylic resin, urethane resin, vinyl acetate resin, polyvinyl alcohol resin, or the like can be used, for example,
- the slurry can include at least one of these resins.
- the paste may contain a plasticizer.
- the type of plasticizer is not particularly limited, but phthalic acid esters such as dioctyl phthalate and diisononyl phthalate may be used.
- a positive electrode current collector layer paste a positive electrode active material layer paste, a solid electrolyte layer paste, a negative electrode active material layer paste, a negative electrode current collector layer paste, a margin layer paste, and an organic material paste.
- the solid electrolyte layer paste prepared above is applied to a base material such as polyethylene terephthalate (PET) in a desired thickness and dried as necessary to prepare a solid electrolyte green sheet.
- a base material such as polyethylene terephthalate (PET)
- PET polyethylene terephthalate
- the method for producing the solid electrolyte green sheet is not particularly limited, and a known method such as a doctor blade method, a die coater, a comma coater, or a gravure coater can be adopted.
- the positive electrode active material layer 32, the positive electrode current collector layer 31, and the positive electrode active material layer 32 are sequentially printed and laminated by screen printing on the green sheet for solid electrolyte to form the positive electrode layer 30.
- a margin layer 80 is formed in a region other than the positive electrode layer 30 by screen printing to manufacture a positive electrode layer unit.
- the composition of the organic material paste is not particularly limited, but for example, it is preferable that it contains a large amount of organic components that are thermally decomposed by debinding or firing.
- the organic material paste the above-mentioned margin layer paste can be diverted, and one containing 1 to 100% by mass as an organic component can be preferably used.
- a binder, an organic solvent, and a void-forming agent may be included.
- the void-forming agent is preferably a material having a low melting point and no residue after debinding and firing, and examples thereof include polymethyl methacrylate (PMMA), polyphenylene sulfide, styrene butadiene rubber (SBR), polyethylene (PE), and polyamide imide.
- Particles of polyvinylidene fluoride, polyacrylic acid, carbon beads, albumin, etc. can be used.
- the particle size of the void-forming agent is preferably in the form of fine particles, and a void-forming agent having a particle size of about 10 nm to 5 ⁇ m can be preferably used.
- the negative electrode layer unit can be prepared in the same manner as the positive electrode layer unit, and the negative electrode layer 40 and the margin layer are formed by screen printing on the solid electrolyte green sheet to prepare the negative electrode layer unit.
- the space 90 adjacent to one end of the negative electrode current collector layer 41 it is preferable to form the space 90 between the negative electrode current collector layer 41 and the margin layer 80 by using an organic material paste.
- the positive electrode layer unit and the negative electrode layer unit are alternately laminated by offsetting so that one ends thereof do not coincide with each other, and if necessary, outer layers (cover layers) can be provided on both main surfaces of the laminate. ..
- outer layers cover layers
- a laminated substrate including a plurality of all-solid-state battery elements is manufactured.
- the same material as the solid electrolyte can be used for the outer layer, and a green sheet for solid electrolyte can be used.
- the manufacturing method is to manufacture a parallel-type all-solid-state battery, but the manufacturing method for the series-type all-solid-state battery is such that one end of the positive electrode layer 30 and one end of the negative electrode layer 40 are aligned, that is, offset. It suffices to stack without performing.
- the produced laminated substrates can be collectively pressed with a die press, a hot water isotropic pressure press (WIP), a cold water isotropic pressure press (CIP), a hydrostatic pressure press, etc. to improve the adhesion.
- Pressurization is preferably performed while heating, and can be performed at 40 to 95° C., for example.
- the laminated substrate produced is cut into chips using a dicing machine, and then debindered and fired to produce a laminated body of all-solid-state batteries.
- the binder removal and firing can be performed, for example, in a nitrogen atmosphere at a temperature of 600°C to 1000°C.
- the holding time for debinding and firing is, for example, 0.1 to 6 hours.
- the average cross-sectional area Sx of the voids in a cross section in the same direction as the stacking direction and parallel to the extending one end can be controlled by, for example, the size of the region formed by the organic material paste before debinding and firing.
- the region may have a thickness (width in the vertical direction of the paper surface in FIG. 2) of 1 ⁇ m to 5 ⁇ m and a width (width in the horizontal direction of the paper surface of FIG. 2) of 1 ⁇ m to 100 ⁇ m, but are not limited thereto.
- a positive electrode external electrode 60 and a negative electrode external electrode 70 can be provided in order to efficiently draw current from the stack of all solid state batteries.
- the positive electrode external electrode 60 is connected to one end of the positive electrode layer 30 extending to the end face of the laminate 20, and the negative electrode external electrode 70 is connected to one end of the negative electrode layer 40 extending to the end face of the laminate 20. Therefore, the positive electrode external electrode 60 and the negative electrode external electrode 70 are formed so as to sandwich the end surface of the stacked body 20.
- Examples of the method of forming the positive electrode external electrode 60 and the negative electrode external electrode 70 include a sputtering method, a screen printing method, a dip coating method, and the like.
- an external electrode paste containing metal powder, a resin, and a solvent is prepared, and this is formed as the positive electrode external electrode 60 and the negative electrode external electrode 70. Then, a plating process is performed to remove the solvent and to form terminal electrodes on the surfaces of the positive electrode external electrode 60 and the negative electrode external electrode 70. On the other hand, in the sputtering method, since the positive electrode external electrode 60, the negative electrode external electrode 70, and the terminal electrode can be directly formed, the baking process and the plating process are unnecessary.
- the laminated body of the all-solid-state battery 1 may be sealed in, for example, a coin cell in order to improve moisture resistance and impact resistance.
- the sealing method is not particularly limited, and the laminated body after firing may be sealed with resin, for example.
- an insulating paste having an insulating property such as Al2O3 may be applied or dip-coated around the laminated body, and the insulating paste may be heat-treated for sealing.
- the void 90 is adjacent to the entire “non-extending region” of the positive electrode layer 30 and the negative electrode layer 40, and above and below the solid electrolyte layer 50. Different from the first embodiment in that they are adjacent to each other. Even with such a configuration, it is possible to provide an all-solid-state battery in which the stress load due to volume expansion is alleviated as in the case of the first embodiment, and thus the cycle characteristics are excellent.
- the void 90 is adjacent to the positive electrode current collector layer 31 and the negative electrode current collector layer 41 in the “non-extending region” of the positive electrode layer 30 and the negative electrode layer 40.
- the positive electrode active material layers 32 formed on both main surfaces of the positive electrode current collector layer 31 are connected to each other in the “non-extending region”, and the negative electrode current collector is also collected.
- the negative electrode active material layers 42 formed on both main surfaces of the body layer 41 are connected to each other.
- the positive electrode current collector layer 31 and the negative electrode current collector layer 41 are not exposed, and instead, the “non-extending region” is formed by the positive electrode active material layer 32 and the negative electrode active material layer 42. 1 embodiment.
- the void 90 in the present embodiment is formed in at least a part of a region surrounded by the positive electrode current collector layer 31 and the negative electrode current collector layer 41, and the positive electrode active material layer 32 and the negative electrode active material layer 42. It is different from the first embodiment in that it is present. In other words, in the present embodiment, the void 90 is not adjacent to the margin layer 80, the positive electrode current collector layer 31 and the negative electrode current collector layer 41, the positive electrode active material layer 32 and the negative electrode active material layer 42, Is adjacent to. Even with such a configuration, it is possible to provide an all-solid-state battery in which the stress load due to volume expansion is alleviated as in the case of the first embodiment, and thus the cycle characteristics are excellent.
- Li 3 V 2 (PO 4 ) 3 manufactured by the following method was used as the positive electrode active material and the negative electrode active material.
- Li 2 CO 3 , V 2 O 5, and NH 4 H 2 PO 4 were used as starting materials, wet mixing was performed for 16 hours in a ball mill, and dehydration drying was performed to obtain a powder obtained at 850° C. It was calcined in a nitrogen-hydrogen mixed gas for 2 hours. The calcined product was wet-milled with a ball mill and then dehydrated and dried to obtain a positive electrode active material powder and a negative electrode active material powder. It was confirmed using an X-ray diffractometer that the composition of the produced powder was Li 3 V 2 (PO 4 ) 3 .
- Both the positive electrode active material layer paste and the negative electrode active material layer paste were mixed by adding 100 parts of Li 3 V 2 (PO 4 ) 3 powder, 15 parts of ethyl cellulose as a binder, and 65 parts of dihydroterpineol as a solvent. -Dispersion was performed to prepare a positive electrode active material layer paste and a negative electrode active material layer paste.
- the solid electrolyte layer paste was formed into a sheet by using the PET film as a base material by a doctor blade method to obtain a solid electrolyte layer sheet having a thickness of 15 ⁇ m.
- the margin layer paste is Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 powder, 100 parts of ethanol and 100 parts of toluene as solvents are added and wet mixed in a ball mill, and then a polyvinyl butyral system is used. 16 parts of binder and 4.8 parts of benzylbutyl phthalate were further added, mixed and dispersed to prepare a margin layer paste.
- the organic material paste was obtained by adding 100 parts of ethanol and 100 parts of toluene as a solvent to PMMA powder having a particle diameter of 200 nm, and wet mixing with a ball mill. Next, 16 parts of polyvinyl butyral binder and 4.8 parts of benzylbutyl phthalate were added, mixed and dispersed to prepare an organic material paste.
- thermosetting external electrode paste A silver powder, an epoxy resin, and a solvent were mixed and dispersed to prepare a thermosetting external electrode paste.
- a 5 ⁇ m-thick positive electrode active material layer (referred to as a first positive electrode active material layer) was formed on the above-mentioned solid electrolyte layer sheet by screen printing, and dried at 80° C. for 10 minutes.
- a positive electrode current collector layer having a thickness of 5 ⁇ m was formed thereon by screen printing, and dried at 80° C. for 10 minutes.
- a positive electrode active material layer (referred to as a second positive electrode active material layer) having a thickness of 5 ⁇ m is formed thereon again by screen printing, and dried at 80° C. for 10 minutes to form a positive electrode on the solid electrolyte layer sheet.
- the layers were made.
- a margin is formed on the outer periphery of one end of the positive electrode layer (three sides of the second side face, the third side face side, and the fourth side face side of the positive electrode layer) to be flush with the first positive electrode active material layer using screen printing.
- Layers were formed and dried at 80°C for 10 minutes.
- a region containing an organic material was formed on the margin layer with an organic material paste to have a thickness of 1.2 ⁇ m and a width of 1.2 ⁇ m, and dried at 80° C. for 10 minutes.
- a margin layer flush with the second positive electrode active material layer was formed so as to cover the region containing the organic material, and dried at 80° C. for 10 minutes.
- the PET film was peeled off to obtain a sheet of the positive electrode layer unit.
- the region containing the organic material was formed in order to thermally decompose and form voids in the firing process.
- a 5 ⁇ m-thick negative electrode active material layer (referred to as a first negative electrode active material layer) was formed on the above-mentioned solid electrolyte layer sheet by screen printing, and dried at 80° C. for 10 minutes.
- a 5 ⁇ m-thick negative electrode current collector layer was formed thereon by screen printing, and dried at 80° C. for 10 minutes.
- a negative electrode active material layer (referred to as a second negative electrode active material layer) having a thickness of 5 ⁇ m is formed thereon again by screen printing, and is dried at 80° C. for 10 minutes to form a negative electrode on the solid electrolyte layer sheet.
- the layers were made.
- a margin to be flush with the first negative electrode active material layer by screen printing is provided on the outer periphery of one end of the negative electrode layer (three sides of the first side face, the third side face side, and the fourth side face side of the negative electrode layer). Layers were formed and dried at 80°C for 10 minutes. Further, a region containing an organic material was formed on the margin layer with an organic material paste to have a thickness of 1.2 ⁇ m and a width of 1.2 ⁇ m, and dried at 80° C. for 10 minutes. Further, a margin layer flush with the second negative electrode active material layer was formed so as to cover the region containing the organic material, and dried at 80° C. for 10 minutes. Then, the PET film was peeled off to obtain a sheet of the negative electrode layer unit. The region containing the organic material was formed in order to thermally decompose and form voids in the firing process.
- the external electrode paste was applied to the end faces (first side face and second side face) of the laminated body of the all-solid-state battery after firing, and thermosetting was performed at 150° C. for 30 minutes to form a pair of external electrodes.
- Comparative Example 1 In the all-solid-state battery according to Comparative Example 1, in the production of the positive electrode layer unit and the negative electrode layer unit, the region containing the organic material using the organic material paste was not formed in the margin layer, and voids were formed in the all-solid battery after firing. An all-solid-state battery was manufactured in the same manner as in Example 1 except that it was not provided.
- Example 2 to 11 The all-solid-state batteries according to Examples 2 to 11 were the same as Example 1 except that the void size was adjusted to the void size shown in Table 1 by adjusting the content of PMMA contained in the organic material paste. An all-solid-state battery was manufactured by the method.
- Example 12 In the all-solid-state battery according to Example 12, by forming a region containing the organic material using the organic material paste only in the margin layer of the positive electrode unit, one end of the positive electrode layer (the second side surface side of the positive electrode layer, the third side surface). Side and the fourth side face side (three sides), an all-solid-state battery was manufactured in the same manner as in Example 5, except that the gap was formed.
- an all-solid-state battery by forming a region containing an organic material using an organic material paste only in the margin layer of the negative electrode unit, one end of the negative electrode layer (the first side face side of the negative electrode layer, the third side face) Side and the fourth side face side (three sides), an all-solid-state battery was manufactured in the same manner as in Example 5, except that the gap was formed.
- Example 14 In the all-solid-state battery according to Example 14, in the production of the positive electrode unit and the negative electrode unit, the region containing the organic material using the organic material paste was parallel to the third side surface and the fourth side surface (see FIG. 2), and It is formed only on one end of the electrode layer that does not extend to the side surface of the stacked body (two sides of the positive electrode layer on the third side surface side and the fourth side surface side, and two sides of the negative electrode layer on the third side surface side and the fourth side surface side). An all-solid-state battery was manufactured in the same manner as in Example 1 except for the above.
- the region containing the organic material using the organic material paste was formed in parallel to the third side surface and the fourth side surface and on the side surface of the stacked body. Except that it was formed only on one end of the non-extending electrode layer (two sides of the positive electrode layer on the third side surface side and the fourth side surface side, and two sides of the negative electrode layer on the third side surface side and the fourth side surface side)
- An all-solid-state battery was manufactured in the same manner as in Example 6.
- the region containing the organic material using the organic material paste was formed on the side surface of the laminate parallel to the third side surface and the fourth side surface. Except that it was formed only on one end of the non-extending electrode layer (two sides of the positive electrode layer on the third side surface side and the fourth side surface side, and two sides of the negative electrode layer on the third side surface side and fourth side surface side)
- An all-solid-state battery was produced in the same manner as in Example 10.
- Example 17 In the all-solid-state battery according to Example 17, in the production of the positive electrode unit and the negative electrode unit, the region containing the organic material using the organic material paste was parallel to the first side surface or the second side surface (see FIG. 1), and Same as Example 1 except that it was formed only on one end (one side on the second side surface of the positive electrode layer and one side on the first side surface of the negative electrode layer) of the electrode layer that did not extend to the side surface of the laminate. A solid state battery was produced.
- the region containing the organic material using the organic material paste was formed in parallel to the first side surface or the second side surface and on the side surface of the laminate.
- An all-solid-state battery was manufactured in the same manner as in Example 6 except that the electrode layer was not formed on only one end (one side of the positive electrode layer on the second side surface side and one side of the negative electrode layer on the first side surface side).
- the region containing the organic material using the organic material paste was arranged in parallel with the first side face or the second side face and An all-solid-state battery was manufactured in the same manner as in Example 10 except that the electrode layer was formed only on one end (one side of the positive electrode layer on the second side surface side and one side of the negative electrode layer on the first side surface side) that did not extend to the side surface. did.
- the voids included in the all-solid-state batteries produced in this example and comparative example can be evaluated as follows, for example.
- an acceleration voltage of 6 V, an Ar gas flow of 0.07 cm 3 /min, an inclination angle of 85°, an eccentricity of 4 mm, and a treatment time of 10 minutes were used, and the sample was irradiated with an Ar ion beam while rotating.
- the surface-exposed sample was subjected to Au sputtering for 2 minutes, and a FE-SEM (S-4700; manufactured by Hitachi, Ltd.) was used to reflect one end of each of the positive electrode layer and the negative electrode layer with a backscattered electron image (COMPO image). All were observed and the number of voids adjacent to the one end and all major and minor axes of the voids adjacent to the one end were measured. Then, the average major axis and the average minor axis of the voids were calculated from the following formulas.
- Average length ( ⁇ m) total length of all voids observed adjacent to one end of the positive electrode layer and negative electrode layer / number of observed voids
- Average minor axis ( ⁇ m) total minor axis of all voids observed adjacent to one end of the positive electrode layer and negative electrode layer / number of observed voids
- the cross-sectional area of the void was calculated as follows.
- the cross-sectional photograph of the observed COMPO image was subjected to monochrome (binarization) image processing by image processing, and the number of pixels was calculated by setting the voids to black and the other regions to white.
- the voids that were not adjacent to one end of the positive electrode layer or the negative electrode layer were treated as the other regions (white). Since the total number of pixels of the black color and the white color is the area of the observation region, the area per pixel was calculated from this, and the cross-sectional area of the void was calculated from the following formula.
- Cross-sectional area of void ( ⁇ m 2 ) number of black pixels ⁇ area per pixel ( ⁇ m 2 /pixel)
- the average cross-sectional area S y of the positive electrode current collector layer and the negative electrode current collector layer (hereinafter, positive and negative electrode The average cross-sectional area of the electric body layer) was calculated from the following formula.
- image processing of the positive electrode current collector layer and the negative electrode current collector layer monochrome image processing was performed with the positive electrode current collector layer and the negative electrode current collector layer being white and the other regions being black.
- the charge/discharge cycle characteristics of the all-solid-state battery manufactured in Example 1 were evaluated under the charge/discharge conditions shown below.
- the charging/discharging current will be referred to as C-rate notation hereinafter.
- the C rate is expressed as nC ( ⁇ A) (n is a numerical value), and means a current capable of charging and discharging the nominal capacity ( ⁇ Ah) at 1/n (h).
- 1 C means a charge/discharge current that can charge the nominal capacity in 1 h
- 2 C means a charge/discharge current that can charge the nominal capacity in 0.5 h.
- a 0.2C current is 20 ⁇ A and a 1C current is 100 ⁇ A.
- the charging/discharging cycle test conditions are as follows: constant temperature charging (CC charging) at a constant current of 0.2C rate until a battery voltage of 1.6V is reached at a constant current of 0.2C rate in an environment of 25°C. Was discharged until the battery voltage reached 0 V (CC discharge).
- the charge and discharge were set as one cycle, and the discharge capacity retention rate after repeating this for 1000 cycles was evaluated as the charge/discharge cycle characteristics.
- the charge/discharge cycle characteristics were calculated by the following calculation formula.
- Discharge capacity maintenance rate (%) after 1000 cycles (discharge capacity after 1000 cycles/discharge capacity after first cycle) ⁇ 100
- FIGS. 6 and 7 FE-SEM photographs of cross sections parallel to the first side surface (second side surface) of the all-solid-state batteries according to Example 6 and Comparative Example 1 are shown in FIGS. 6 and 7.
- FIGS. 6 and 7 In the cross-sectional photograph of FIG. 6 according to Example 6, it was confirmed that voids were formed at one end of the positive and negative electrode layers that were parallel to the third side surface and did not extend to the side surface.
- no void is formed at one end of the positive and negative electrode layers which are parallel to the third side surface and do not extend to the side surface of the stack. It was confirmed.
- Table 1 shows the positions of voids observed at one end of the positive and negative electrode layers of the all-solid-state batteries according to Examples and Comparative Examples, the minor and major diameters of the voids, the average cross-sectional area S x of the voids, and the disconnection of the current collector layer. The area S y and S x /S y are shown. Furthermore, the results of cycle characteristics as an all-solid-state battery are shown.
- the all-solid-state batteries according to Examples 1 to 11 had excellent cycle characteristics as compared with the all-solid-state batteries according to Comparative Example 1 having no void.
- S x /S y was set to 0.0001 to 0.020, excellent cycle characteristics with a capacity retention rate of 1000 cycles of 77% or more were obtained.
- S x /S y was set to 0.0006 to 0.0080, more excellent cycle characteristics such as a capacity retention rate of 1000 cycles of 84% or more were obtained.
- the cycle characteristics of the all-solid-state battery according to Example 11 in which S x /S y was 0.02 were slightly lower than those of the all-solid-state batteries according to Examples 1 to 10. This is probably because the average cross-sectional area of the voids became excessively large and the internal resistance of the all-solid-state battery increased, resulting in deterioration of cycle characteristics.
- the all-solid-state batteries according to Examples 12 to 13 also showed a capacity retention rate of 83% at 1000 cycles, and the cycle characteristics superior to those of Comparative Example 1 were obtained. Therefore, it was confirmed that the cycle characteristics were improved in the all-solid-state battery including the void in one end of the electrode layer in one of the positive electrode layer and the negative electrode layer.
- the all-solid-state batteries according to Examples 14 to 19 also showed the cycle characteristics superior to those of Comparative Example 1. Therefore, the inclusion of at least one void in one end of the electrode layer improves the cycle characteristics. It was confirmed.
- All-solid-state battery 20 ... Laminated body 21... First side surface 22... Second side surface 23... Third side surface 24... Fourth side surface 25... Top surface 26... Lower surface 30... Positive electrode layer 31... Positive electrode current collector layer 32... Positive electrode active material layer 40... Negative electrode layer 41... Negative electrode current collector layer 42... Negative electrode active material layer 50... Solid electrolyte layer 60... Positive electrode external electrode 70... Negative electrode 80... Margin layer 90... Void 301... First end 302... Second end 303... 3 one end 304... 4th end 401... 1st end 402... 2nd end 403... 3rd end 404... 4th end
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Connection Of Batteries Or Terminals (AREA)
Abstract
体積膨張収縮によるクラックを抑制し、サイクル特性に優れる全固体電池を提供する。 本発明に係る全固体電池は、正極集電体層と正極活物質層とで構成された正極層と、負極集電体層と負極活物質層とで構成された負極層とが、固体電解質層を挟持するように前記固体電解質層の両主面にそれぞれ形成され、前記正極層と前記負極層の各々の少なくとも1つの一端は、積層体の一側面に延出する一端と延出しない領域とを含み、延出しない領域の外周部には、正極層または負極層と同一平面にマージン層が各々形成された電池要素を含む積層体であって、少なくとも前記積層体の端面に延出しない正極層または負極層の一端において、隣接する空隙を含む。
Description
本発明は、全固体電池に関する。
本願は、2018年12月25日に、日本に出願された特願2018-240461号に基づき優先権を主張し、その内容をここに援用する。
本願は、2018年12月25日に、日本に出願された特願2018-240461号に基づき優先権を主張し、その内容をここに援用する。
近年、エレクトロニクス技術の発達はめざましく、携帯電子機器の小型軽量化、薄型化、多機能化が図られている。それに伴い、電子機器の電源となる電池に対しては、小型軽量化、薄型化、信頼性の向上が強く望まれている。現在、汎用的に使用されているリチウムイオン二次電池は、イオンを移動させるための媒体として有機溶媒等の電解質(電解液)が従来から使用されている。しかし、前記の構成の電池では、電解液が漏出するという危険性がある。また、電解液に用いられる有機溶媒等は可燃性物質であるため、より安全性の高い電池が求められている。
そこで、電池の安全性を高めるための一つの対策として、電解液に代えて、固体電解質を電解質として用いることが提案されている。さらに、電解質として固体電解質を用いるとともに、その他の構成要素も固体で構成されている全固体電池の開発が進められている。
例えば、特開2007-5279号公報(以下、特許文献1)には、不燃性の固体電解質を用いることで全ての構成要素を固体で構成した全固体リチウム二次電池が提案されている。この全固体リチウム二次電池は、活物質層と、活物質層に焼結によって接合された固体電解質層を含み、前記活物質層がリチウムイオンを放出および吸蔵し得る結晶性の第1物質を含み、前記固体電解質層がリチウムイオン伝導性を有する結晶性の第2物質を含むことが開示されている。また、前記固体電解質層の充填率は、70%を超えることが好ましいと記載されている。
一方、特開2007-294429号公報(以下、特許文献2)には、無機粉体を含む成形体を焼成してなり、気孔率が10vol%以下であるリチウムイオン伝導性固体電解質が記載されている。
特許文献1と特許文献2に記載されているように、全固体電池を構成する固体電解質は緻密であることが一般的に好ましいとされている。しかし、我々の鋭意検討では、固体電解質層を緻密化した全固体電池では、全固体電池を製造する際の焼成時に、または、全固体電池の充放電時に発生する電極層の体積膨張収縮によって、内部応力が固体電解質層に集中し、クラックが発生する場合があった。その結果、内部抵抗が増大し、サイクル特性が悪くなることがわかった。
このような課題に対し、国際公開第2013/175993号公報(以下、特許文献3)は、固体電解質層の電極層に近い領域に空隙率が低い部分を形成し、電極層から離れた領域に空隙率が高い部分を形成した固体電解質層が記載されている。しかし、我々の鋭意検討では、特許文献3のように、固体電解質層において空孔率の高い部分と低い部分を形成すると、固体電解質層の内部抵抗がかえって増大し、十分なサイクル特性が得られなかった。
本発明は、前記課題を解決するためになされたものであり、サイクル特性に優れる全固体電池を提供することにある。
本発明に係る全固体電池は、正極集電体層と正極活物質層とで構成された正極層と、負極集電体層と負極活物質層とで構成された負極層とが、固体電解質層の一方または両主面に形成された電池要素を含む積層体と、正極外部電極と、負極外部電極と、を含み、前記正極層と前記負極層はそれぞれ、前記積層体の側面に延出する一端と、前記積層体の側面に延出しない領域と、を含むとともに、それぞれの前記延出する一端を介して、それぞれ前記正極外部電極および前記負極外部電極に接続され、少なくとも前記延出しない領域に隣接する空隙を含む。
前記空隙は、前記正極集電体層および前記負極集電体層の少なくとも一方に隣接することがより好ましい。
また、前記積層体は、前記正極層および前記負極層と同一平面上に形成されたマージン層を含み、前記空隙は、少なくとも前記マージン層の一部に形成されていることが好ましい。
更に前記積層体は、積層方向と同一方向かつ前記延出する一端と平行な断面において、前記空隙の平均断面積をSx、前記正極集電体層の平均断面積または前記負極集電体層の平均断面積をSyとしたとき、Sx/Syが、0.0001~0.02を満たすことが好ましい。
更にSx/Syが、0.0006~0.008を満たすことが好ましい。
本発明によれば、体積膨張による応力負荷が緩和され、その結果、サイクル特性に優れる全固体電池を提供することができる。
以下、本発明の全固体電池について、図を適宜参照しながら詳細に説明する。以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合がある。したがって、図面に記載の各構成要素の寸法比率などは、実際とは異なっていることがある。以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施できる。
[第1の実施形態]
まず初めに、本発明の第1の実施形態に係る全固体電池について説明する。
まず初めに、本発明の第1の実施形態に係る全固体電池について説明する。
図1及び図2に示すように、全固体電池1は、正極層30と負極層40とが、固体電解質層50を介して積層された積層体20を含む。正極層30と負極層40とが固体電解質層50の一方または両主面に形成された電池要素が、積層体20の少なくとも一部を構成している。正極層30は、正極集電体層31と正極活物質層32とを有する。負極層40は、負極集電体層41と負極活物質層42とを有する。正極層30および負極層40の同一平面上には、マージン層80が形成されている。積層体20は、6面体であり、積層方向に対して平行な面として形成された4つの側面(第1側面21、第2側面22、第3側面23、第4側面24)と、積層方向と直交する面として形成された上面25及び下面26を有する。第1側面21には正極集電体層が露出し、第2側面22には負極集電体層が露出している。第3側面23は、上面25を上にして第1側面21側から見て右側の側面であり、第4側面24は、上面25を上にして第1側面21側から見て左側の側面である。また、第1側面21および第2側面22は対向し、第3側面23および第4側面24は対向している。
なお、以降の明細書中の説明として、正極活物質および負極活物質のいずれか一方または両方を総称として活物質と呼び、正極活物質層32および負極活物質層42のいずれか一方または両方を総称して活物質層と呼び、正極集電体層31および負極集電体層41のいずれか一方または両方を総称して集電体層と呼び、正極層30および負極層40のいずれか一方または両方を総称して電極層と呼ぶことがある。
図1および図2に示すように、正極層30は上面25から見て略矩形に形成されており、それぞれ4つの一端を含む。4つの一端は、それぞれ対向する第1の一端301および第2の一端302と、同じくそれぞれ対向する第3の一端303および第4の一端304と、からなる。このうち、第1の一端301は積層体20の第1側面21に露出(延出)している。また、第2の一端302、第3の一端303、第4の一端304は、積層体20の側面には露出(延出)せず、積層体20の第2側面22、第3側面23、第4側面24に対して、それぞれ略平行に形成されている。なお本実施形態において、以降は、第1の一端301を「延出する一端」と呼び、第2の一端302、第3の一端303、第4の一端304を「延出しない領域」と呼ぶ。
正極層30と同様に、負極層40は上面25から見て略矩形に形成されており、それぞれ4つの一端を含む。4つの一端は、それぞれ対向する第1の一端401および第2の一端402と、同じくそれぞれ対向する第3の一端403、と第4の一端404と、からなる。このうち、第1の一端401は積層体20の第2側面22に露出(延出)している。また、第2の一端402、第3の一端403、第4の一端404、は積層体20の側面には露出(延出)せず、積層体20の第1側面21、第3側面23、第4側面24に対して、それぞれ略平行に形成されている。なお本実施形態において、以降は、第1の一端401を「延出する一端」と呼び、第2の一端402、第3の一端403、第4の一端404を「延出しない領域」と呼ぶ。
本実施形態の全固体電池1のマージン層80は、固体電解質層50と正極層30との段差、ならびに固体電解質層50と負極層40との段差を解消するために設けることが好ましい。したがってマージン層80は、固体電解質層50の主面において、正極層30ならびに負極層40以外の領域を示す。このようなマージン層の存在により、固体電解質層50と正極層30ならびに負極層40との段差が解消されるため、固体電解質層50と電極層との緻密性が高くなり、全固体電池の焼成による層間剥離(デラミネーション)や反りが生じにくくなる。
図1に示すように、マージン層80は、正極層30および負極層40の「延出しない領域」の外側に形成されている。換言すればマージン層80は、積層体20の4つの側面のうち、「延出しない領域」に対して平行な側面の一部を形成することで、上述の固体電解質層50と正極層30との段差、ならびに固体電解質層50と負極層40との段差を解消している。
積層体20の第1側面21には、正極集電体層31に電気的に接続する正極外部電極60が付設されている。なお、この電気的な接続は、正極外部電極60が、正極層30の「延出する一端」側にて露出した正極集電体層31と接続することによってなされている。
積層体20の第2側面22には、負極集電体層41に電気的に接続する負極外部電極70が付設されている。なお、この電気的な接続は、負極外部電極70が、負極層40の「延出する一端」側にて露出した負極集電体層41と接続することによってなされている。
マージン層80と、正極層30および負極層40の「延出しない領域」と、の間の少なくとも一部の領域には、空隙90が形成されている。本実施形態においては、空隙90はマージン層80の領域の一部に形成されている。換言すれば、本実施形態の空隙90は、「延出しない領域」にて露出した正極集電体層31または負極集電体層41と隣接するとともに、その隣接する箇所を除いた部分がマージン層80と隣接している。
さらに空隙90は、本実施形態のように少なくとも「延出しない領域」における正極集電体層31および負極集電体層41の少なくとも一方に隣接していることがより好ましい。
さらに空隙90は、本実施形態のように少なくともマージン層80の領域の一部に形成されていることが好ましい。
正極集電体層31または負極集電体層41は、正極活物質層32または負極活物質層42を一方の主面、または両主面に備えているため、前記活物質層による上下方向からの体積膨張収縮によって応力負荷を受ける。この応力負荷によって、正極集電体層31ならびに負極集電体層41は横方向へ延伸されることとなるが、「延出しない領域」に隣接するかたちで空隙を備えていることから、当該横方向への延伸による応力を緩和させることができるため、充放電に伴うマージン層80への応力負荷を低減できる。これにより従来よりもサイクル特性に優れる全固体電池が得られる。
さらに積層体20の積層方向と同一方向且つ上記延出する一端と平行な断面(第1側面または第2側面に平行な断面)において、空隙90の平均断面積をSx、正極集電体層31の平均断面積または負極集電体層41の平均断面積をSy、としたときのSx/Syの比が、0.0001~0.02を満たすことが好ましく、0.0006~0.008を満たすことがより好ましい。
また、本実施形態の積層体20には、正極集電体層31および負極集電体層41が1個ずつ設けられているが、これに限らず、正極集電体層31および負極集電体層41がそれぞれ複数個設けられてもよい。
また、本実施形態の積層体20には、正極集電体層31および負極集電体層41が1個ずつ設けられているが、これに限らず、正極集電体層31および負極集電体層41がそれぞれ複数個設けられてもよい。
係る構成によれば、Sx/Syの比が0.0001~0.02を満たす場合、優れたサイクル特性が得られる。Sx/Syの比が0.0001よりも小さいと、空隙を含まない、または空隙サイズが小さすぎるため、体積膨張収縮による応力負荷の緩和が十分ではない。一方、Sx/Syの比が0.02よりも大きくなると、空隙サイズが過大であるため、体積膨張収縮による応力負荷によって、空隙が起点となって微細なクラックを誘発しやすくなる。その結果、サイクル特性の低下を引き起こす可能性がある。
さらに積層体20の積層方向と同一方向且つ上記延出する一端と垂直な断面(第3側面または第4側面に平行な断面)において、空隙90の平均断面積をSx、正極集電体層31の平均断面積または負極集電体層41の平均断面積をSy、としたときのSx/Syの比が、0.0001~0.02を満たすことが好ましく、0.0006~0.008を満たすことがより好ましい。
(固体電解質)
本実施形態の全固体電池1の固体電解質層50は、電子の伝導性が小さく、リチウムイオンの伝導性が高い固体電解質材料を含む。例えばナシコン型、ガーネット型、ペロブスカイト型の結晶構造を有する酸化物系リチウムイオン伝導体等の一般的な固体電解質材料を用いることができる。具体的には、リン酸チタンアルミニウムリチウムは(Li1+xAlxTi2-x(PO4)3(0≦x≦0.6))、Li3+x1Six1P1-x1O4(0.4≦x1≦0.6)、Li3.4V0.4Ge0.6O4、リン酸ゲルマニウムリチウム(LiGe2(PO4)3)、Li2OV2O5-SiO2、Li2O-P2O5-B2O3、Li3PO4、Li0.5La0.5TiO3、Li14Zn(GeO4)4、Li7La3Zr2O12よりなる群から選択される少なくとも1種を含むことが好ましい。
本実施形態の全固体電池1の固体電解質層50は、電子の伝導性が小さく、リチウムイオンの伝導性が高い固体電解質材料を含む。例えばナシコン型、ガーネット型、ペロブスカイト型の結晶構造を有する酸化物系リチウムイオン伝導体等の一般的な固体電解質材料を用いることができる。具体的には、リン酸チタンアルミニウムリチウムは(Li1+xAlxTi2-x(PO4)3(0≦x≦0.6))、Li3+x1Six1P1-x1O4(0.4≦x1≦0.6)、Li3.4V0.4Ge0.6O4、リン酸ゲルマニウムリチウム(LiGe2(PO4)3)、Li2OV2O5-SiO2、Li2O-P2O5-B2O3、Li3PO4、Li0.5La0.5TiO3、Li14Zn(GeO4)4、Li7La3Zr2O12よりなる群から選択される少なくとも1種を含むことが好ましい。
本実施形態の固体電解質材料として、ナシコン型の結晶構造を有するリチウムイオン伝導体を用いることが好ましく、例えば、LiTi2(PO4)3(LTP)、LiZr2(PO4)3(LZP)、Li1+xAlxTi2-x(PO4)3(LATP、0<x≦0.6))、Li1+xAlxGe2-x(PO4)3(LAGP、0<x≦0.6)、Li1+xYxZr2-x(PO4)3(LYZP、0<x≦0.6)で表される固体電解質材料を含むことが好ましい。
また、固体電解質層50を、正極層30及び負極層40に用いられる活物質に合わせて選択することが好ましい。例えば、固体電解質層50は、活物質を構成する元素と同一の元素を含むことがより好ましい。固体電解質層50が、活物質を構成する元素と同一の元素を含むことで、正極活物質層32及び負極活物質層42と固体電解質層50との界面における接合が、強固なものになる。また正極活物質層32及び負極活物質層42と固体電解質層50との界面における接触面積を広くできる。
正極活物質層32及び負極活物質層42は、それぞれリチウムイオンと電子を授受する正極活物質または負極活物質を含む。この他、導電助剤、導イオン助剤等を含んでもよい。正極活物質及び負極活物質は、リチウムイオンを効率的に挿入、脱離できることが好ましい。
正極活物質層32又は負極活物質層42を構成する活物質には明確な区別がなく、2種類の化合物の電位を比較して、より貴な電位を示す化合物を正極活物質として用い、より卑な電位を示す化合物を負極活物質として用いることができる。また、リチウムイオン放出とリチウムイオン吸蔵を同時に併せ持つ化合物であれば、正極活物質層32および負極活物質層42に同一の化合物を用いても良い。そのため、以下、まとめて活物質について説明する。
活物質には、遷移金属酸化物、遷移金属複合酸化物等を用いることができる。例えば、遷移金属酸化物、遷移金属複合酸化物としては、リチウムマンガン複合酸化物Li2MnaMa1-aO3(0.8≦a≦1、Ma=Co、Ni)、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、リチウムマンガンスピネル(LiMn2O4)、一般式:LiNixCoyMnzO2(x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表される複合金属酸化物、リチウムバナジウム化合物(LiV2O5)、オリビン型LiMbPO4(ただし、Mbは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素)、リン酸バナジウムリチウム(Li3V2(PO4)3又はLiVOPO4)、Li2MnO3-LiMcO2(Mc=Mn、Co、Ni)で表されるLi過剰系固溶体正極、チタン酸リチウム(Li4Ti5O12)、LisNitCouAlvO2(0.9<s<1.3、0.9<t+u+v<1.1)で表される複合金属酸化物等が挙げられる。また、上記複合金属酸化物の他、Li金属、Li-Al合金、Li-In合金、炭素、ケイ素(Si)、酸化ケイ素(SiOx)、チタン酸化物(TiO2)、等の金属、合金、金属酸化物が挙げられる。
本実施形態の活物質としては、リン酸化合物を主成分として含むことが好ましく、例えば、リン酸バナジウムリチウム(LiVOPO4、Li3V2(PO4)3、Li4(VO)(PO4)2)、ピロリン酸バナジウムリチウム(Li2VOP2O7、Li2VP2O7)、及びLi9V3(P2O7)3(PO4)2のいずれか一つまたは複数であることが好ましく、特に、LiVOPO4及びLi3V2(PO4)3の一方または両方であることが好ましい。
本実施形態における主成分とは、活物質層における活物質全体に対する、リン酸化合物の占める割合が50質量部より大きいことを指し、リン酸化合物の占める割合が80重量部以上であることが好ましい。
また、これらの活物質は、各元素の一部を異種元素に置換していたり、化学両論組成から変化していてもよい。LiVOPO4及びLi3V2(PO4)3は、リチウムの欠損がある方が好ましく、LixVOPO4(0.94≦x≦0.98)やLixV2(PO4)3(2.8≦x≦2.95)であればより好ましい。
導電助剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンナノチューブ、グラファイト、グラフェン、活性炭等の炭素材料、金、銀、パラジウム、白金、銅、スズ等の金属材料が挙げられる。
導イオン助剤としては、例えば、固体電解質である。この固体電解質は、具体的に例えば、固体電解質層50に用いられる材料と同様の材料を用いることができる。
導イオン助剤として固体電解質を用いる場合、導イオン助剤と、固体電解質層50に用いる固体電解質とが同じ材料を用いることが好ましい。
(正極集電体および負極集電体)
本実施形態の全固体電池1の正極集電体層31および負極集電体層41を構成する材料は、導電率が大きい材料を用いるのが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルなどを用いるのが好ましい。特に、銅はリン酸チタンアルミニウムリチウムと反応し難く、さらに全固体電池の内部抵抗の低減効果があるためより好ましい。正極集電体層および負極集電体層を構成する材料は、正極と負極で同じであっても良いし、異なっていても良い。
本実施形態の全固体電池1の正極集電体層31および負極集電体層41を構成する材料は、導電率が大きい材料を用いるのが好ましく、例えば、銀、パラジウム、金、プラチナ、アルミニウム、銅、ニッケルなどを用いるのが好ましい。特に、銅はリン酸チタンアルミニウムリチウムと反応し難く、さらに全固体電池の内部抵抗の低減効果があるためより好ましい。正極集電体層および負極集電体層を構成する材料は、正極と負極で同じであっても良いし、異なっていても良い。
また、本実施形態の全固体電池1の正極集電体層31および負極集電体層41は、それぞれ正極活物質および負極活物質を含むことが好ましい。
正極集電体層31および負極集電体層41が、それぞれ正極活物質および負極活物質を含むことにより、正極集電体層31と正極活物質層32および負極集電体層41と負極活物質層42との密着性が向上するため望ましい。
本実施形態の正極集電体層31および負極集電体層41における正極活物質および負極活物質の比率は、集電体として機能する限り特に限定はされないが、正極集電体と正極活物質、または負極集電体と負極活物質が、体積比率で90/10から70/30の範囲であることが好ましい。
マージン層を構成する材料は、例えば固体電解質層50と同じ材料を含むことが好ましい。したがって、ナシコン型の結晶構造を有するリチウムイオン伝導体を用いることが好ましく、例えば、LiTi2(PO4)3(LTP)、LiZr2(PO4)3(LZP)、Li1+xAlxTi2-x(PO4)3(LATP、0<x≦0.6))、Li1+xAlxGe2-x(PO4)3(LAGP、0<x≦0.6)、Li1+xYxZr2-x(PO4)3(LYZP、0<x≦0.6)で表される固体電解質材料を含むことが好ましい。
(全固体電池の製造方法)
本実施形態の全固体電池1は、一例として次のような手順で製造することができる。正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層、マージン層、および、空隙を形成するための有機材料の各材料をペースト化する。ペースト化の方法は、特に限定されないが、例えば、ビヒクルに前記各材料の粉末を混合してペーストを得ることができる。ここで、ビヒクルとは、液相における媒質の総称であり、溶媒、バインダー等が含まれる。グリーンシートまたは印刷層を成形するためのペーストに含まれるバインダーは、特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、アクリル樹脂、ウレタン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂などを用いることができ、例えばこれらの樹脂のうち少なくとも1種をスラリーが含むことができる。
本実施形態の全固体電池1は、一例として次のような手順で製造することができる。正極集電体層、正極活物質層、固体電解質層、負極活物質層、負極集電体層、マージン層、および、空隙を形成するための有機材料の各材料をペースト化する。ペースト化の方法は、特に限定されないが、例えば、ビヒクルに前記各材料の粉末を混合してペーストを得ることができる。ここで、ビヒクルとは、液相における媒質の総称であり、溶媒、バインダー等が含まれる。グリーンシートまたは印刷層を成形するためのペーストに含まれるバインダーは、特に限定されないが、ポリビニルアセタール樹脂、セルロース樹脂、アクリル樹脂、ウレタン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂などを用いることができ、例えばこれらの樹脂のうち少なくとも1種をスラリーが含むことができる。
また、ペーストには可塑剤を含んでいても良い。可塑剤の種類は特に限定されないが、フタル酸ジオクチル、フタル酸ジイソノニル等のフタル酸エステル等を使用しても良い。
係る方法により、正極集電体層用ペースト、正極活物質層用ペースト、固体電解質層用ペースト、負極活物質層用ペースト、負極集電体層用ペースト、マージン層用ペースト、および有機材料ペーストを作製する。
上記で作製した固体電解質層用ペーストをポリエチレンテレフタレート(PET)などの基材上に所望の厚みで塗布し、必要に応じ乾燥させ、固体電解質用グリーンシートを作製する。固体電解質用グリーンシートの作製方法は、特に限定されず、ドクターブレード法、ダイコーター、コンマコーター、グラビアコーター等の公知の方法を採用することができる。次いで固体電解質用グリーンシートの上に正極活物質層32、正極集電体層31、正極活物質層32を順にスクリーン印刷で印刷積層し、正極層30を形成する。さらに、固体電解質用グリーンシートと正極層30との段差を埋めるために、正極層30以外の領域にマージン層80をスクリーン印刷で形成し、正極層ユニットを作製する。なお、正極集電体層の一端に隣接する空隙を形成させるため、正極集電体層31とマージン層80との間に有機材料ペーストを用いて空隙90を形成させることが好ましい。
有機材料ペーストの組成は特に限定されないが、例えば、脱バインダーまたは焼成によって熱分解される有機成分を多く含むことが好ましい。有機材料ペーストは、前記マージン層用ペーストを流用することができ、有機成分として1~100質量%含んだものを好適に用いることができる。前記有機成分としては、バインダー、有機溶媒、その他に空隙形成剤を含ませても良い。空隙形成剤としては、融点が低く、脱バインダー・焼成後に残査が無い材料が好ましく、例えば、ポリメタクリル酸メチル(PMMA)、ポリフェニレンスルフィド、スチレンブタジエンラバー(SBR)、ポリエチレン(PE)、ポリアミドイミド、ポリフッ化ビニリデン、ポリアクリル酸、カーボンビース、アルブミンなどの粒子を用いることができる。空隙形成剤の粒子サイズとしては、微小な粒子形状ものが良く、10nm~5μm程度の空隙形成剤を好適に用いることができる。
負極層ユニットも正極層ユニットと同様の方法で作製することができ、固体電解質用グリーンシートの上に負極層40とマージン層をスクリーン印刷で形成し、負極層ユニットを作製する。なお、負極集電体層41の一端に隣接する空隙90を形成させるため、負極集電体層41とマージン層80との間に有機材料ペーストを用いて空隙90を形成させることが好ましい。
そして正極層ユニットと負極層ユニットを交互にそれぞれの一端が一致しないようにオフセットを行い積層し、さらに必要に応じて、前記積層体の両主面に、外層(カバー層)を設けることができる。外層を積層することで、全固体電池の素子が複数含まれた積層基板が作製される。なお、外層は固体電解質と同じ材料を用いることができ、固体電解質用グリーンシートを用いることができる。
前記製造方法は、並列型の全固体電池を作製するものであるが、直列型の全固体電池の製造方法は、正極層30の一端と負極層40の一端とが一致するように、つまりオフセットを行わないで積層すれば良い。
さらに作製した積層基板を一括して金型プレス、温水等方圧プレス(WIP)、冷水等方圧プレス(CIP)、静水圧プレスなどで加圧し、密着性を高めることができる。加圧は加熱しながら行う方が好ましく、例えば40~95℃で実施することができる。
作製した積層基板は、ダイシング装置を用いてチップに切断し、次いで脱バインダーおよび焼成することにより全固体電池の積層体が製造される。
脱バインダーおよび焼成は、例えば窒素雰囲気下で600℃~1000℃の温度で焼成を行うことができる。脱バインダーおよび焼成の保持時間は、例えば0.1~6時間とする。この脱バインダーおよび焼成によって、有機材料用ペーストとして用いた有機成分が消失し、空隙90を形成することができる。なお、脱バインダーおよび焼成の各条件は、空隙90が形成される条件であれば、上記に限定はされない。
積層方向と同一方向かつ前記延出する一端と平行な断面における、空隙の平均断面積Sxは、例えば脱バインダーおよび焼成前の有機材料ペーストによって形成された領域の大きさによってコントロールできる。前記領域は、一例では厚さ(図2における紙面上下方向における幅)を1μm~5μm、幅(図2における紙面左右方向における幅)を1μm~100μmとすることができるが、これに限定されない。
さらに全固体電池の積層体から効率的に電流を引き出すため、正極外部電極60、負極外部電極70を設けることができる。正極外部電極60は、積層体20の端面に延出する正極層30の一端に、負極外部電極70は、積層体20の端面に延出する負極層40の一端に、それぞれ接続されている。したがって、積層体20の端面を挟持するように、正極外部電極60、負極外部電極70が形成される。正極外部電極60および負極外部電極70の形成方法としては、スパッタリング法、スクリーン印刷法、またはディップコート法などが挙げられる。スクリーン印刷法、ディップコート法では、金属粉末、樹脂、溶剤を含む外部電極用ペーストを作製し、これを正極外部電極60および負極外部電極70として形成させる。次いで、溶剤を飛ばすための焼き付け工程、ならびに正極外部電極60および負極外部電極70の表面に端子電極を形成させるため、めっき処理を行う。一方、スパッタリング法では、正極外部電極60および負極外部電極70ならびに端子電極を直接形成することができるため、焼き付け工程、メッキ処理工程が不要となる。
全固体電池1の積層体は、耐湿性、耐衝撃性を高めるために、例えばコインセル内に封止しても良い。封止方法は特に限定されず、例えば焼成後の積層体を樹脂で封止しても良い。また、Al2O3等の絶縁性を有する絶縁体ペーストを積層体の周囲に塗布またはディップコーティングし、この絶縁ペーストを熱処理することにより封止しても良い。
[第2の実施形態]
次に、本発明の第2の実施形態に係る全固体電池について説明する。なお、第2の実施形態の説明では、第1の実施の全固体電池1と重複する構成については、同一の符号を付して、その説明を省略する。
次に、本発明の第2の実施形態に係る全固体電池について説明する。なお、第2の実施形態の説明では、第1の実施の全固体電池1と重複する構成については、同一の符号を付して、その説明を省略する。
図3に示すように、本実施形態では、空隙90は、正極層30および負極層40の「延出しない領域」全体と隣接しており、且つ、上方および下方においては、固体電解質層50と隣接している形で第1の実施形態と異なる。係る構成としても、第1の実施形態と同様に体積膨張による応力負荷が緩和され、ひいては、サイクル特性に優れる全固体電池を提供することができる。
[第3の実施形態]
次に、本発明の第3の実施形態に係る全固体電池について説明する。なお、第3の実施形態の説明では、第1の実施形態の全固体電池1と重複する構成については、同一の符号を付して、その説明を省略する。
次に、本発明の第3の実施形態に係る全固体電池について説明する。なお、第3の実施形態の説明では、第1の実施形態の全固体電池1と重複する構成については、同一の符号を付して、その説明を省略する。
図4に示すように、本実施形態では、空隙90は、正極層30および負極層40の「延出しない領域」における正極集電体層31および負極集電体層41と隣接している点では第1の実施形態と同様だが、上方および下方においては、正極活物質層32および負極活物質層42と隣接している形で第1の実施形態と異なる。係る構成としても、第1の実施形態と同様に体積膨張による応力負荷が緩和され、ひいては、サイクル特性に優れる全固体電池を提供することができる。
[第4の実施形態]
次に、本発明の第4の実施形態に係る全固体電池について説明する。なお、第4の実施形態の説明では、第1の実施形態の全固体電池1と重複する構成については、同一の符号を付して、その説明を省略する。
次に、本発明の第4の実施形態に係る全固体電池について説明する。なお、第4の実施形態の説明では、第1の実施形態の全固体電池1と重複する構成については、同一の符号を付して、その説明を省略する。
図5に示すように、本実施形態では、「延出しない領域」において正極集電体層31の両主面に形成された正極活物質層32が互いに連結されており、また、負極集電体層41の両主面に形成された負極活物質層42が互いに連結されている。これにより、正極集電体層31と負極集電体層41が露出せず、代わりに「延出しない領域」は正極活物質層32および負極活物質層42によって形成されている点で、第1の実施形態とは異なる。
また本実施形態における空隙90は、正極集電体層31および負極集電体層41と、正極活物質層32および負極活物質層42と、によって囲われた領域の少なくとも一部に形成されている点で第1の実施形態と異なる。換言すれば、本実施形態では、空隙90はマージン層80と隣接しておらず、正極集電体層31および負極集電体層41と、正極活物質層32および負極活物質層42と、に隣接している。係る構成としても、第1の実施形態と同様に体積膨張による応力負荷が緩和され、ひいては、サイクル特性に優れる全固体電池を提供することができる。
以上、本発明に係る実施形態について詳細に説明したが、本発明はこれらの実施形態に限定されるものではなく、種々変形可能である。
以下、前記の実施形態に基づいて、さらに実施例および比較例を用いて本発明をさらに詳細に説明するが、本発明はこれらの実施例に限定されない。なお、ペーストの作製における材料の仕込み量の「部」表示は、断りのない限り、「質量部」を意味する。
(実施例1)
(正極活物質および負極活物質の作製)
正極活物質および負極活物質として、以下の方法で作製したLi3V2(PO4)3を用いた。その作製方法としては、Li2CO3とV2O5とNH4H2PO4とを出発材料とし、ボールミルで16時間湿式混合を行い、脱水乾燥した後に得られた粉体を850℃で2時間、窒素水素混合ガス中で仮焼した。仮焼品をボールミルで湿式粉砕を行った後、脱水乾燥して正極活物質粉末および負極活物質粉末を得た。この作製した粉体の組成がLi3V2(PO4)3であることを、X線回折装置を使用して確認した。
正極活物質および負極活物質として、以下の方法で作製したLi3V2(PO4)3を用いた。その作製方法としては、Li2CO3とV2O5とNH4H2PO4とを出発材料とし、ボールミルで16時間湿式混合を行い、脱水乾燥した後に得られた粉体を850℃で2時間、窒素水素混合ガス中で仮焼した。仮焼品をボールミルで湿式粉砕を行った後、脱水乾燥して正極活物質粉末および負極活物質粉末を得た。この作製した粉体の組成がLi3V2(PO4)3であることを、X線回折装置を使用して確認した。
(正極活物質層用ペーストおよび負極活物質層用ペーストの作製)
正極活物質層用ペーストおよび負極活物質層用ペーストは、ともにLi3V2(PO4)3の粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、混合・分散して正極活物質層用ペーストおよび負極活物質層用ペーストを作製した。
正極活物質層用ペーストおよび負極活物質層用ペーストは、ともにLi3V2(PO4)3の粉末100部に、バインダーとしてエチルセルロース15部と、溶媒としてジヒドロターピネオール65部とを加えて、混合・分散して正極活物質層用ペーストおよび負極活物質層用ペーストを作製した。
(固体電解質層用ペーストの作製)
固体電解質として、以下の方法で作製したLi1.3Al0.3Ti1.7(PO4)3を用いた。Li2CO3とAl2O3とTiO2とNH4H2PO4を出発材料として、ボールミルで16時間湿式混合を行った後、脱水乾燥し、次いで得られた粉末を800℃で2時間、大気中で仮焼した。仮焼後、ボールミルで16時間湿式粉砕を行った後、脱水乾燥して固体電解質の粉末を得た。作製した粉体の組成がLi1.3Al0.3Ti1.7(PO4)3であることは、X線回折装置(XRD)を使用して確認した。
固体電解質として、以下の方法で作製したLi1.3Al0.3Ti1.7(PO4)3を用いた。Li2CO3とAl2O3とTiO2とNH4H2PO4を出発材料として、ボールミルで16時間湿式混合を行った後、脱水乾燥し、次いで得られた粉末を800℃で2時間、大気中で仮焼した。仮焼後、ボールミルで16時間湿式粉砕を行った後、脱水乾燥して固体電解質の粉末を得た。作製した粉体の組成がLi1.3Al0.3Ti1.7(PO4)3であることは、X線回折装置(XRD)を使用して確認した。
次いで、この粉末に、溶媒としてエタノール100部、トルエン200部を加えてボールミルで湿式混合した。その後、ポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合して固体電解質層用ペーストを作製した。
(固体電解質層用シートの作製)
固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシートを成形し、厚さ15μmの固体電解質層用シートを得た。
固体電解質層用ペーストをドクターブレード法でPETフィルムを基材としてシートを成形し、厚さ15μmの固体電解質層用シートを得た。
(正極集電体層用ペーストおよび負極集電体層用ペーストの作製)
正極集電体および負極集電体として、CuとLi3V2(PO4)3とを体積比率で80/20となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて、混合および分散させて正極集電体層用ペーストおよび負極集電体層用ペーストを作製した。
正極集電体および負極集電体として、CuとLi3V2(PO4)3とを体積比率で80/20となるように混合した後、バインダーとしてエチルセルロース10部と、溶媒としてジヒドロターピネオール50部を加えて、混合および分散させて正極集電体層用ペーストおよび負極集電体層用ペーストを作製した。
(マージン層用ペーストの作製)
マージン層用ペーストは、Li1.3Al0.3Ti1.7(PO4)3の粉末に、溶媒としてエタノール100部、トルエン100部を加えてボールミルで湿式混合し、次いでポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合および分散させてマージン層用ペーストを作製した。
マージン層用ペーストは、Li1.3Al0.3Ti1.7(PO4)3の粉末に、溶媒としてエタノール100部、トルエン100部を加えてボールミルで湿式混合し、次いでポリビニールブチラール系バインダー16部とフタル酸ベンジルブチル4.8部をさらに投入し、混合および分散させてマージン層用ペーストを作製した。
(有機材料ペーストの作製)
有機材料ペーストは、粒子径200nmのPMMAの粉末に、溶媒としてエタノール100部、トルエン100部を加えてボールミルで湿式混合した。次いでポリビニールブチラール系バインダー16部と、フタル酸ベンジルブチル4.8部を添加し、混合および分散させて有機材料ペーストを作製した。
有機材料ペーストは、粒子径200nmのPMMAの粉末に、溶媒としてエタノール100部、トルエン100部を加えてボールミルで湿式混合した。次いでポリビニールブチラール系バインダー16部と、フタル酸ベンジルブチル4.8部を添加し、混合および分散させて有機材料ペーストを作製した。
(外部電極ペーストの作製)
銀粉末とエポキシ樹脂、溶剤とを混合および分散させて、熱硬化型の外部電極ペーストを作製した。
銀粉末とエポキシ樹脂、溶剤とを混合および分散させて、熱硬化型の外部電極ペーストを作製した。
これらのペーストを用いて、以下のようにして全固体電池を作製した。
(正極層ユニットの作製)
前記の固体電解質層用シート上に、スクリーン印刷を用いて厚さ5μmの正極活物質層(第一正極活物質層と呼ぶ)を形成し、80℃で10分間乾燥した。次に、その上にスクリーン印刷を用いて厚さ5μmの正極集電体層を形成し、80℃で10分間乾燥した。さらにその上に、スクリーン印刷を用いて厚さ5μmの正極活物質層(第二正極活物質層と呼ぶ)を再度形成し、80℃で10分間乾燥することで、固体電解質層用シートに正極層を作製した。次いで、正極層の一端(正極層の第2側面側、第3側面側及び第4側面側の三辺)の外周に、スクリーン印刷を用いて前記第一正極活物質層と同一平面となるマージン層を形成し、80℃で10分間乾燥した。さらに前記マージン層の上に、有機材料ペーストを用いて有機材料を含む領域を厚さ1.2μm、幅1.2μmの幅で形成し、80℃で10分間乾燥した。さらに前記有機材料を含む領域を被覆するように、前記第二正極活物質層と同一平面となるマージン層を形成し、80℃で10分間乾燥した。次いで、PETフィルムを剥離することで、正極層ユニットのシートを得た。なお、前記有機材料を含む領域は、焼成工程にて熱分解させ、空隙を形成させるために形成した。
前記の固体電解質層用シート上に、スクリーン印刷を用いて厚さ5μmの正極活物質層(第一正極活物質層と呼ぶ)を形成し、80℃で10分間乾燥した。次に、その上にスクリーン印刷を用いて厚さ5μmの正極集電体層を形成し、80℃で10分間乾燥した。さらにその上に、スクリーン印刷を用いて厚さ5μmの正極活物質層(第二正極活物質層と呼ぶ)を再度形成し、80℃で10分間乾燥することで、固体電解質層用シートに正極層を作製した。次いで、正極層の一端(正極層の第2側面側、第3側面側及び第4側面側の三辺)の外周に、スクリーン印刷を用いて前記第一正極活物質層と同一平面となるマージン層を形成し、80℃で10分間乾燥した。さらに前記マージン層の上に、有機材料ペーストを用いて有機材料を含む領域を厚さ1.2μm、幅1.2μmの幅で形成し、80℃で10分間乾燥した。さらに前記有機材料を含む領域を被覆するように、前記第二正極活物質層と同一平面となるマージン層を形成し、80℃で10分間乾燥した。次いで、PETフィルムを剥離することで、正極層ユニットのシートを得た。なお、前記有機材料を含む領域は、焼成工程にて熱分解させ、空隙を形成させるために形成した。
(負極層ユニットの作製)
前記の固体電解質層用シート上に、スクリーン印刷を用いて厚さ5μmの負極活物質層(第一負極活物質層と呼ぶ)を形成し、80℃で10分間乾燥した。次に、その上にスクリーン印刷を用いて厚さ5μmの負極集電体層を形成し、80℃で10分間乾燥した。さらにその上に、スクリーン印刷を用いて厚さ5μmの負極活物質層(第二負極活物質層と呼ぶ)を再度形成し、80℃で10分間乾燥することで、固体電解質層用シートに負極層を作製した。次いで、負極層の一端(負極層の第1側面側、第3側面側及び第4側面側の三辺)の外周に、スクリーン印刷を用いて前記第一負極活物質層と同一平面となるマージン層を形成し、80℃で10分間乾燥した。さらに前記マージン層の上に、有機材料ペーストを用いて有機材料を含む領域を厚さ1.2μm、幅1.2μmの幅で形成し、80℃で10分間乾燥した。さらに前記有機材料を含む領域を被覆するように、前記第二負極活物質層と同一平面となるマージン層を形成し、80℃で10分間乾燥した。次いで、PETフィルムを剥離することで、負極層ユニットのシートを得た。なお、前記有機材料を含む領域は、焼成工程にて熱分解させ、空隙を形成させるために形成した。
前記の固体電解質層用シート上に、スクリーン印刷を用いて厚さ5μmの負極活物質層(第一負極活物質層と呼ぶ)を形成し、80℃で10分間乾燥した。次に、その上にスクリーン印刷を用いて厚さ5μmの負極集電体層を形成し、80℃で10分間乾燥した。さらにその上に、スクリーン印刷を用いて厚さ5μmの負極活物質層(第二負極活物質層と呼ぶ)を再度形成し、80℃で10分間乾燥することで、固体電解質層用シートに負極層を作製した。次いで、負極層の一端(負極層の第1側面側、第3側面側及び第4側面側の三辺)の外周に、スクリーン印刷を用いて前記第一負極活物質層と同一平面となるマージン層を形成し、80℃で10分間乾燥した。さらに前記マージン層の上に、有機材料ペーストを用いて有機材料を含む領域を厚さ1.2μm、幅1.2μmの幅で形成し、80℃で10分間乾燥した。さらに前記有機材料を含む領域を被覆するように、前記第二負極活物質層と同一平面となるマージン層を形成し、80℃で10分間乾燥した。次いで、PETフィルムを剥離することで、負極層ユニットのシートを得た。なお、前記有機材料を含む領域は、焼成工程にて熱分解させ、空隙を形成させるために形成した。
(積層体の作製)
正極層ユニットと負極層ユニットをそれぞれ3シートずつ用意し、正極層ユニット、負極層ユニットの順にそれぞれの一端が一致しないように交互にオフセットしながら積層し、積層基板を作製した。さら前記積層基板の両主面に、外層として固体電解質シートを複数積層し、500μmの外層を設けた。これを金型プレスにより熱圧着した後、切断して未焼成の全固体電池の積層体を作製した。次いで、未焼成の積層体を脱バインダー・焼成することで、全固体電池の積層体を作製した。前記焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に2時間保持し、自然冷却後に取り出した。
正極層ユニットと負極層ユニットをそれぞれ3シートずつ用意し、正極層ユニット、負極層ユニットの順にそれぞれの一端が一致しないように交互にオフセットしながら積層し、積層基板を作製した。さら前記積層基板の両主面に、外層として固体電解質シートを複数積層し、500μmの外層を設けた。これを金型プレスにより熱圧着した後、切断して未焼成の全固体電池の積層体を作製した。次いで、未焼成の積層体を脱バインダー・焼成することで、全固体電池の積層体を作製した。前記焼成は、窒素中で昇温速度200℃/時間で焼成温度850℃まで昇温して、その温度に2時間保持し、自然冷却後に取り出した。
(外部電極形成工程)
焼成後の前記全固体電池の積層体の端面(第1側面、第2側面)に外部電極ペーストを塗布し、150℃、30分の熱硬化を行い、一対の外部電極を形成した。
焼成後の前記全固体電池の積層体の端面(第1側面、第2側面)に外部電極ペーストを塗布し、150℃、30分の熱硬化を行い、一対の外部電極を形成した。
(比較例1)
比較例1に係る全固体電池は、正極層ユニットおよび負極層ユニットの作製において、有機材料ペーストを用いた有機材料を含む領域をマージン層に形成させず、焼成後の全固体電池において、空隙を設けなかったこと以外は、実施例1と同様にして全固体電池を作製した。
比較例1に係る全固体電池は、正極層ユニットおよび負極層ユニットの作製において、有機材料ペーストを用いた有機材料を含む領域をマージン層に形成させず、焼成後の全固体電池において、空隙を設けなかったこと以外は、実施例1と同様にして全固体電池を作製した。
(実施例2~11)
実施例2~11に係る全固体電池は、空隙サイズは有機材料ペーストに含ませるPMMAの含有量を調整することで表1に示す空隙サイズになるように調整した以外は、実施例1と同様の方法にて全固体電池を作製した。
実施例2~11に係る全固体電池は、空隙サイズは有機材料ペーストに含ませるPMMAの含有量を調整することで表1に示す空隙サイズになるように調整した以外は、実施例1と同様の方法にて全固体電池を作製した。
(実施例12~13)
実施例12に係る全固体電池は、正極ユニットのマージン層のみに有機材料ペーストを用いた有機材料を含む領域を形成することで、正極層の一端(正極層の第2側面側、第3側面側及び第4側面側の三辺)のみに空隙が形成されるように調整した以外は、実施例5と同様の方法にて全固体電池を作製した。
実施例12に係る全固体電池は、正極ユニットのマージン層のみに有機材料ペーストを用いた有機材料を含む領域を形成することで、正極層の一端(正極層の第2側面側、第3側面側及び第4側面側の三辺)のみに空隙が形成されるように調整した以外は、実施例5と同様の方法にて全固体電池を作製した。
実施例13に係る全固体電池は、負極ユニットのマージン層のみに有機材料ペーストを用いた有機材料を含む領域を形成することで、負極層の一端(負極層の第1側面側、第3側面側及び第4側面側の三辺)のみに空隙が形成されるように調整した以外は、実施例5と同様の方法にて全固体電池を作製した。
(実施例14~16)
実施例14に係る全固体電池は、正極ユニットと負極ユニットの作製において、有機材料ペーストを用いた有機材料を含む領域を、第3側面と第4側面(図2参照)と平行であってかつ積層体の側面に延出しない電極層の一端(正極層の第3側面側及び第4側面側の二辺、並びに負極層の第3側面側及び第4側面側の二辺)のみに形成させたこと以外は、実施例1と同様にして全固体電池を作製した。
実施例14に係る全固体電池は、正極ユニットと負極ユニットの作製において、有機材料ペーストを用いた有機材料を含む領域を、第3側面と第4側面(図2参照)と平行であってかつ積層体の側面に延出しない電極層の一端(正極層の第3側面側及び第4側面側の二辺、並びに負極層の第3側面側及び第4側面側の二辺)のみに形成させたこと以外は、実施例1と同様にして全固体電池を作製した。
実施例15に係る全固体電池は、正極ユニットと負極ユニットの作製において、有機材料ペーストを用いた有機材料を含む領域を、第3側面と第4側面と平行であってかつ積層体の側面に延出しない電極層の一端(正極層の第3側面側及び第4側面側の二辺、並びに負極層の第3側面側及び第4側面側の二辺)のみに形成させた以外は、実施例6と同様にして全固体電池を作製した。
実施例16に係る全固体電池は、正極ユニットと負極ユニットの作製において、有機材料ペーストを用いた有機材料を含む領域を、第3側面と第4側面と平行であってかつ積層体の側面に延出しない電極層の一端(正極層の第3側面側及び第4側面側の二辺、並びに負極層の第3側面側及び第4側面側の二辺)のみに形成させた以外は、実施例10と同様にして全固体電池を作製した。
(実施例17~19)
実施例17に係る全固体電池は、正極ユニットと負極ユニットの作製において、有機材料ペーストを用いた有機材料を含む領域を、第1側面または第2側面(図1参照)と平行であってかつ積層体の側面に延出しない電極層の一端(正極層の第2側面側の一辺及び負極層の第1側面側の一辺)のみに形成させたこと以外は、実施例1と同様にして全固体電池を作製した。
実施例17に係る全固体電池は、正極ユニットと負極ユニットの作製において、有機材料ペーストを用いた有機材料を含む領域を、第1側面または第2側面(図1参照)と平行であってかつ積層体の側面に延出しない電極層の一端(正極層の第2側面側の一辺及び負極層の第1側面側の一辺)のみに形成させたこと以外は、実施例1と同様にして全固体電池を作製した。
実施例18に係る全固体電池は、正極ユニットと負極ユニットの作製において、有機材料ペーストを用いた有機材料を含む領域を、第1側面または第2側面と平行であってかつ積層体の側面に延出しない電極層の一端(正極層の第2側面側の一辺及び負極層の第1側面側の一辺)のみに形成させた以外は、実施例6と同様にして全固体電池を作製した。
実施例19に係る全固体電池は、正極ユニットと負極ユニットの作製において、有機材料ペーストを用いた有機材料を含む領域を、前記第1側面または前記第2側面と平行であってかつ積層体の側面に延出しない電極層の一端(正極層の第2側面側の一辺及び負極層の第1側面側の一辺)のみに形成させた以外は、実施例10と同様にして全固体電池を作製した。
(空隙の評価)
本実施例および比較例で作製した全固体電池に含まれる空隙は、例えば次のように評価することができる。
本実施例および比較例で作製した全固体電池に含まれる空隙は、例えば次のように評価することができる。
[FE-SEM観察による空隙の断面積の算出]
各実施例および比較例で作製した全固体電池について、各5個ずつサンプルを採取し、それらを熱硬化性樹脂で包埋し、60℃で1時間乾燥させた。この樹脂包埋した全固体電池の第1側面(第2側面)に対して平行断面を自動回転研磨機によって面出しを行い、さらにフラットミリング(HM-3000:日立ハイテクノロジー社)を用いて、前記断面をエッチング加工した。条件としては、加速電圧6V、Arガスフロー:0.07cm3/min、傾斜角85°、偏心量4mm、処理時間10分にて、サンプルを回転させながらArイオンビームを照射させた。
各実施例および比較例で作製した全固体電池について、各5個ずつサンプルを採取し、それらを熱硬化性樹脂で包埋し、60℃で1時間乾燥させた。この樹脂包埋した全固体電池の第1側面(第2側面)に対して平行断面を自動回転研磨機によって面出しを行い、さらにフラットミリング(HM-3000:日立ハイテクノロジー社)を用いて、前記断面をエッチング加工した。条件としては、加速電圧6V、Arガスフロー:0.07cm3/min、傾斜角85°、偏心量4mm、処理時間10分にて、サンプルを回転させながらArイオンビームを照射させた。
前記面出ししたサンプルは、Auスパッタを2分間実施し、FE-SEM(S-4700;日立製作所社製)を用いて、反射電子像(COMPO像)にて正極層および負極層の各一端を全て観察し、前記一端に隣接する空隙数、ならびに前記一端に隣接する空隙の全ての長径と短径を測定した。そして空隙の平均長径と平均短径を以下の式から算出した。
平均長径(μm)=正極層および負極層の一端に隣接して観察された全ての空隙の長径の合計/観察された空隙数
平均短径(μm)=正極層および負極層の一端に隣接して観察された全ての空隙の短径の合計/観察された空隙数
次いで前記空隙の断面積を次のように算出した。前記観察したCOMPO像の断面写真を、画像処理によりモノクロ(二値化)に画像処理し、前記空隙を黒色、それ以外の領域を白色としてピクセル数をそれぞれ算出した。なお、正極層または負極層の一端と隣接していない空隙は、それ以外の領域(白色)として処理した。前記黒色と前記白色の全ピクセル数が、観察領域の面積となるため、これより1ピクセルあたりの面積を算出し、前記空隙の断面積を以下の式から算出した。
空隙の断面積(μm2)=黒色のピクセル数×1ピクセルあたりの面積(μm2/ピクセル)
前記手法を用いて、正極層および負極層の一端と隣接する空隙の断面積を個々に算出し、空隙の平均断面積Sxを、以下の式から算出した。
{空隙の平均断面積Sx(μm2)}=(観察された全ての空隙の断面積の合計/観察された全ての空隙数)
{空隙の平均断面積Sx(μm2)}=(観察された全ての空隙の断面積の合計/観察された全ての空隙数)
次いで正極集電体層と負極集電体層の断面積についても、前記同様の画像処理により、正極集電体層と負極集電体層の平均断面積Sy(以下、正・負極の集電体層の平均断面積)を、以下の式から算出した。なお、正極集電体層と負極集電体層の画像処理では、正極集電体層と負極集電体層を白色、それ以外の領域を黒色としてモノクロ画像処理した。
{正・負極の集電体層の平均断面積Sy(μm2)}=(正・負極の集電体層の断面積の和/正・負極集電体層の層数)
そして、正・負極集電体層の断面積に対する空隙の断面積の比率(Sx/Sy)を以下の式から算出した。
(Sx/Sy)={空隙の平均断面積(μm2)/正・負極集電体層の平均断面積(μm2)}
(Sx/Sy)={空隙の平均断面積(μm2)/正・負極集電体層の平均断面積(μm2)}
(電池評価)
本実施例ならびに比較例で作製した全固体電池を、下記の電池特性について評価した。
本実施例ならびに比較例で作製した全固体電池を、下記の電池特性について評価した。
[充放電サイクル試験]
本実施例1で作製した全固体電池を、以下に示す充放電条件によって充放電サイクル特性を評価した。充放電電流の表記は、以降Cレート表記を使う。CレートはnC(μA)と表記され(nは数値)、公称容量(μAh)を1/n(h)で充放電できる電流を意味する。例えば1Cとは、1hで公称容量を充電できる充放電電流であり、2Cであれば、0.5hで公称容量を充電できる充放電電流を意味する。例えば、公称容量100μAhの全固体電池の場合、0.1Cの電流は10μA(計算式100μA×0.1=10μA)である。同様に0.2Cの電流は20μA、1Cの電流は100μAである。
本実施例1で作製した全固体電池を、以下に示す充放電条件によって充放電サイクル特性を評価した。充放電電流の表記は、以降Cレート表記を使う。CレートはnC(μA)と表記され(nは数値)、公称容量(μAh)を1/n(h)で充放電できる電流を意味する。例えば1Cとは、1hで公称容量を充電できる充放電電流であり、2Cであれば、0.5hで公称容量を充電できる充放電電流を意味する。例えば、公称容量100μAhの全固体電池の場合、0.1Cの電流は10μA(計算式100μA×0.1=10μA)である。同様に0.2Cの電流は20μA、1Cの電流は100μAである。
充放電サイクル試験条件は、25℃の環境下において、0.2Cレートの定電流で1.6Vの電池電圧になるまで定電流充電(CC充電)を行い、その後、0.2Cレートの定電流で0Vの電池電圧になるまで放電させた(CC放電)。前記の充電と放電を1サイクルとし、これを1000サイクルまで繰り返した後の放電容量維持率を充放電サイクル特性として評価した。なお、充放電サイクル特性は、以下の計算式によって算出した。
1000サイクル後の放電容量維持率(%)=(1000サイクル後の放電容量÷初回サイクル後の放電容量)×100
1000サイクル後の放電容量維持率(%)=(1000サイクル後の放電容量÷初回サイクル後の放電容量)×100
(結果)
代表として、実施例6と比較例1に係る全固体電池の第1側面(第2側面)に対して平行断面のFE-SEM写真を図6および図7に示す。実施例6に係る図6の断面写真では、第3側面と平行であってかつ側面に延出しない正・負極層の一端において、空隙が形成されているのを確認した。
一方、比較例1に係る図7の全固体電池の断面写真では、第3側面と平行であってかつ積層体の側面に延出しない正・負極層の一端において、空隙が形成されていないことを確認した。なお、図は省略するが、実施例6に係る全固体電池において、第4側面と平行かつ、側面に延出しない正・負極層の一端においても空隙が形成されているのを確認した。さらに、第1側面または第2側面に対して平行であってかつ積層体の側面に延出しない正・負極層の一端においても空隙が形成されているのを確認した。換言すれば、実施例6に係る全固体電池の正極層および負極層は、側面に延出しない全ての一端に空隙が観察された。
代表として、実施例6と比較例1に係る全固体電池の第1側面(第2側面)に対して平行断面のFE-SEM写真を図6および図7に示す。実施例6に係る図6の断面写真では、第3側面と平行であってかつ側面に延出しない正・負極層の一端において、空隙が形成されているのを確認した。
一方、比較例1に係る図7の全固体電池の断面写真では、第3側面と平行であってかつ積層体の側面に延出しない正・負極層の一端において、空隙が形成されていないことを確認した。なお、図は省略するが、実施例6に係る全固体電池において、第4側面と平行かつ、側面に延出しない正・負極層の一端においても空隙が形成されているのを確認した。さらに、第1側面または第2側面に対して平行であってかつ積層体の側面に延出しない正・負極層の一端においても空隙が形成されているのを確認した。換言すれば、実施例6に係る全固体電池の正極層および負極層は、側面に延出しない全ての一端に空隙が観察された。
実施例1~5、実施例7~11に係る全固体電池についても同様に、SEMにて断面観察した結果、積層体の側面に延出しない正・負極層の全ての一端において空隙を観察した。
実施例12に係る全固体電池は、側面に延出しない正極層の全ての一端に空隙が観察された。一方、負極層の一端において空隙は観察されなかった。
実施例13に係る全固体電池は、側面に延出しない負極層の全ての一端に空隙が観察された。一方、正極層の一端において空隙は観察されなかった。
実施例14~16に係る全固体電池は、第3側面と第4側面と平行であってかつ積層体の側面に延出しない正・負極層の一端において空隙が観察された。一方、第1側面または第2側面と平行であってかつ積層体の側面に延出しない正・負極層の一端に空隙は確認されなかった。
実施例17~19に係る全固体電池は、第1側面または第2側面と平行であってかつ積層体の側面に延出しない正・負極層の一端において空隙が観察された。一方、第3側面と第4側面と平行であってかつ積層体の側面に延出しない正・負極層の一端に空隙は確認されなかった。
表1に、実施例および比較例に係る全固体電池の正・負極層の一端で観察された空隙の位置、空隙の短径と長径、空隙の平均断面積Sx、集電体層の断面積Sy、ならびにSx/Syを示す。さらに全固体電池としてのサイクル特性の結果を示す。
表1に示すように、実施例1~11に係る全固体電池は、比較例1に係る空隙を有さない全固体電池と比較して、優れたサイクル特性が得られた。特にSx/Syを、0.0001~0.020とした際に、1000サイクルの容量維持率が77%以上の優れたサイクル特性が得られた。更に、Sx/Syを、0.0006~0.0080とした際に、1000サイクルの容量維持率を84%以上の、より優れたサイクル特性が得られた。
ただし、Sx/Syが0.02である実施例11に係る全固体電池は、実施例1~10に係る全固体電池と比較してサイクル特性が若干低下した。これは、空隙の平均断面積が過大となり、全固体電池の内部抵抗が高まったことでサイクル特性が低下したと思われる。
ただし、Sx/Syが0.02である実施例11に係る全固体電池は、実施例1~10に係る全固体電池と比較してサイクル特性が若干低下した。これは、空隙の平均断面積が過大となり、全固体電池の内部抵抗が高まったことでサイクル特性が低下したと思われる。
実施例12~13に係る全固体電池においても1000サイクルの容量維持率が83%を示し、比較例1よりも優れたサイクル特性が得られた。したがって、正極層または負極層の一方において、電極層の一端に空隙を含む全固体電池では、サイクル特性が向上することが確認された。
さらに実施例14~19に係る全固体電池においても、比較例1よりも優れたサイクル特性を示したことから、電極層のいずれかの一端に少なくとも隣接した空隙を含むことでサイクル特性が向上することが確認された。
1・・・全固体電池
20・・・積層体
21・・・第1側面
22・・・第2側面
23・・・第3側面
24・・・第4側面
25・・・上面
26・・・下面
30・・・正極層
31・・・正極集電体層
32・・・正極活物質層
40・・・負極層
41・・・負極集電体層
42・・・負極活物質層
50・・・固体電解質層
60・・・正極外部電極
70・・・負極外部電極
80・・・マージン層
90・・・空隙
301・・・第1の一端
302・・・第2の一端
303・・・第3の一端
304・・・第4の一端
401・・・第1の一端
402・・・第2の一端
403・・・第3の一端
404・・・第4の一端
20・・・積層体
21・・・第1側面
22・・・第2側面
23・・・第3側面
24・・・第4側面
25・・・上面
26・・・下面
30・・・正極層
31・・・正極集電体層
32・・・正極活物質層
40・・・負極層
41・・・負極集電体層
42・・・負極活物質層
50・・・固体電解質層
60・・・正極外部電極
70・・・負極外部電極
80・・・マージン層
90・・・空隙
301・・・第1の一端
302・・・第2の一端
303・・・第3の一端
304・・・第4の一端
401・・・第1の一端
402・・・第2の一端
403・・・第3の一端
404・・・第4の一端
Claims (5)
- 正極集電体層と正極活物質層とで構成された正極層と、負極集電体層と負極活物質層とで構成された負極層とが、固体電解質層の一方または両主面に形成された電池要素を含む積層体と、正極外部電極と、負極外部電極と、を含み、
前記正極層と前記負極層はそれぞれ、前記積層体の側面に延出する一端と、前記積層体の側面に延出しない領域と、を含むとともに、それぞれの前記延出する一端を介して、それぞれ前記正極外部電極および前記負極外部電極に接続され、
少なくとも前記延出しない領域に隣接する空隙を含む、全固体電池。 - 前記空隙は、前記正極集電体層および前記負極集電体層の少なくとも一方に隣接する、請求項1に記載の全固体電池。
- 前記積層体は、前記正極層および前記負極層と同一平面上に形成されたマージン層を含み、
前記空隙は、少なくとも前記マージン層の一部に形成されている、請求項1または2に記載の全固体電池。 - 前記積層体は、積層方向と同一方向かつ前記延出する一端と平行な断面において、前記空隙の平均断面積をSx、前記正極集電体層の平均断面積または前記負極集電体層の平均断面積をSyとしたとき、Sx/Syが、0.0001~0.02を満たす、請求項1~3のいずれか一項に記載の全固体電池。
- Sx/Syが、0.0006~0.008を満たす、請求項4に記載の全固体電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020563288A JP7529571B2 (ja) | 2018-12-25 | 2019-12-24 | 全固体電池 |
US17/416,821 US12080847B2 (en) | 2018-12-25 | 2019-12-24 | All-solid-state battery |
CN201980085441.7A CN113228375B (zh) | 2018-12-25 | 2019-12-24 | 全固体电池 |
DE112019006390.1T DE112019006390T5 (de) | 2018-12-25 | 2019-12-24 | Festkörperbatterie |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018240461 | 2018-12-25 | ||
JP2018-240461 | 2018-12-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020138040A1 true WO2020138040A1 (ja) | 2020-07-02 |
Family
ID=71127134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/050536 WO2020138040A1 (ja) | 2018-12-25 | 2019-12-24 | 全固体電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US12080847B2 (ja) |
JP (1) | JP7529571B2 (ja) |
CN (1) | CN113228375B (ja) |
DE (1) | DE112019006390T5 (ja) |
WO (1) | WO2020138040A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024062778A1 (ja) * | 2022-09-21 | 2024-03-28 | パナソニックIpマネジメント株式会社 | 電池およびその製造方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115676796B (zh) * | 2022-11-08 | 2024-04-16 | 西北大学 | 单斜相焦磷酸钒氧钠及其制备方法和在钠离子电池中的应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003092092A (ja) * | 2001-09-18 | 2003-03-28 | Matsushita Electric Ind Co Ltd | 二次電池とその製法 |
JP2004273436A (ja) * | 2003-02-18 | 2004-09-30 | Matsushita Electric Ind Co Ltd | 全固体薄膜積層電池 |
JP2008078119A (ja) * | 2006-08-25 | 2008-04-03 | Ngk Insulators Ltd | 全固体蓄電素子 |
JP2011204511A (ja) * | 2010-03-26 | 2011-10-13 | Kyocera Corp | 全固体型リチウムイオン二次電池 |
JP2014192041A (ja) * | 2013-03-27 | 2014-10-06 | Taiyo Yuden Co Ltd | 全固体二次電池 |
JP2015076178A (ja) * | 2013-10-07 | 2015-04-20 | 古河機械金属株式会社 | 電気素子および電気素子の製造方法 |
WO2018092484A1 (ja) * | 2016-11-15 | 2018-05-24 | 株式会社村田製作所 | リチウムイオン伝導体、全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両 |
JP2018092772A (ja) * | 2016-12-01 | 2018-06-14 | トヨタ自動車株式会社 | 全固体電池 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040185336A1 (en) * | 2003-02-18 | 2004-09-23 | Matsushita Electric Industrial Co., Ltd. | All solid-state thin-film cell and application thereof |
JP5165843B2 (ja) | 2004-12-13 | 2013-03-21 | パナソニック株式会社 | 活物質層と固体電解質層とを含む積層体およびこれを用いた全固体リチウム二次電池 |
WO2006064774A1 (ja) | 2004-12-13 | 2006-06-22 | Matsushita Electric Industrial Co., Ltd. | 活物質層と固体電解質層とを含む積層体およびこれを用いた全固体リチウム二次電池 |
US7289926B2 (en) | 2005-06-28 | 2007-10-30 | International Business Machines Corporation | System and method for examining high-frequency clock-masking signal patterns at full speed |
JP2007294429A (ja) | 2006-03-30 | 2007-11-08 | Ohara Inc | リチウムイオン伝導性固体電解質およびその製造方法 |
US20070231704A1 (en) | 2006-03-30 | 2007-10-04 | Ohara Inc. | Lithium ion conductive solid electrolyte and production process thereof |
CN102163750A (zh) * | 2006-05-23 | 2011-08-24 | Iom技术公司 | 全固体二次电池 |
JP5516240B2 (ja) * | 2010-08-30 | 2014-06-11 | 日産自動車株式会社 | 双極型二次電池 |
JP5910737B2 (ja) | 2012-05-24 | 2016-04-27 | 株式会社村田製作所 | 全固体電池 |
US9627717B1 (en) * | 2012-10-16 | 2017-04-18 | Sakti3, Inc. | Embedded solid-state battery |
JP2016207540A (ja) * | 2015-04-24 | 2016-12-08 | ナミックス株式会社 | 高多層全固体型リチウムイオン二次電池の製造方法 |
CN106099169B (zh) * | 2015-04-27 | 2020-10-27 | 松下知识产权经营株式会社 | 电池 |
JP6693226B2 (ja) * | 2016-03-30 | 2020-05-13 | Tdk株式会社 | 全固体型二次電池 |
US10854917B2 (en) * | 2016-09-29 | 2020-12-01 | Tdk Corporation | All solid-state lithium ion secondary battery |
JP6772855B2 (ja) * | 2017-01-20 | 2020-10-21 | トヨタ自動車株式会社 | 全固体電池 |
JP6729796B2 (ja) * | 2017-04-04 | 2020-07-22 | 株式会社村田製作所 | 全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両 |
KR102440680B1 (ko) * | 2017-05-24 | 2022-09-05 | 현대자동차주식회사 | 쇼트 방지형 전고체 전지의 제조 방법 |
DE102017111972A1 (de) * | 2017-05-31 | 2018-12-06 | Epcos Ag | Energiespeicher |
KR102518686B1 (ko) * | 2017-10-31 | 2023-04-05 | 현대자동차주식회사 | 전고체 전지의 제조 방법 및 이에 의해 제조된 전고체 전지 |
JP7515059B2 (ja) * | 2018-12-28 | 2024-07-12 | パナソニックIpマネジメント株式会社 | 電池 |
-
2019
- 2019-12-24 JP JP2020563288A patent/JP7529571B2/ja active Active
- 2019-12-24 DE DE112019006390.1T patent/DE112019006390T5/de active Pending
- 2019-12-24 CN CN201980085441.7A patent/CN113228375B/zh active Active
- 2019-12-24 WO PCT/JP2019/050536 patent/WO2020138040A1/ja active Application Filing
- 2019-12-24 US US17/416,821 patent/US12080847B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003092092A (ja) * | 2001-09-18 | 2003-03-28 | Matsushita Electric Ind Co Ltd | 二次電池とその製法 |
JP2004273436A (ja) * | 2003-02-18 | 2004-09-30 | Matsushita Electric Ind Co Ltd | 全固体薄膜積層電池 |
JP2008078119A (ja) * | 2006-08-25 | 2008-04-03 | Ngk Insulators Ltd | 全固体蓄電素子 |
JP2011204511A (ja) * | 2010-03-26 | 2011-10-13 | Kyocera Corp | 全固体型リチウムイオン二次電池 |
JP2014192041A (ja) * | 2013-03-27 | 2014-10-06 | Taiyo Yuden Co Ltd | 全固体二次電池 |
JP2015076178A (ja) * | 2013-10-07 | 2015-04-20 | 古河機械金属株式会社 | 電気素子および電気素子の製造方法 |
WO2018092484A1 (ja) * | 2016-11-15 | 2018-05-24 | 株式会社村田製作所 | リチウムイオン伝導体、全固体電池、電子機器、電子カード、ウェアラブル機器および電動車両 |
JP2018092772A (ja) * | 2016-12-01 | 2018-06-14 | トヨタ自動車株式会社 | 全固体電池 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024062778A1 (ja) * | 2022-09-21 | 2024-03-28 | パナソニックIpマネジメント株式会社 | 電池およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113228375B (zh) | 2023-11-28 |
CN113228375A (zh) | 2021-08-06 |
US12080847B2 (en) | 2024-09-03 |
JP7529571B2 (ja) | 2024-08-06 |
DE112019006390T5 (de) | 2021-11-11 |
JPWO2020138040A1 (ja) | 2021-11-04 |
US20220059869A1 (en) | 2022-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6651708B2 (ja) | リチウムイオン二次電池 | |
JP7517995B2 (ja) | 全固体電池 | |
JP6919657B2 (ja) | 全固体リチウムイオン二次電池 | |
JP6623542B2 (ja) | リチウムイオン二次電池 | |
WO2018062079A1 (ja) | 活物質及び全固体リチウムイオン二次電池 | |
WO2020184476A1 (ja) | 全固体二次電池 | |
JP6881465B2 (ja) | 全固体リチウムイオン二次電池 | |
WO2020179934A1 (ja) | 全固体電池 | |
WO2021090774A1 (ja) | 全固体電池 | |
JP6316091B2 (ja) | リチウムイオン二次電池 | |
WO2020138040A1 (ja) | 全固体電池 | |
WO2021079698A1 (ja) | 全固体電池 | |
WO2020145226A1 (ja) | 全固体電池 | |
WO2021149460A1 (ja) | リチウムイオン二次電池 | |
WO2020189599A1 (ja) | 全固体二次電池 | |
US20220115663A1 (en) | All-solid-state battery | |
WO2023188470A1 (ja) | 全固体二次電池 | |
WO2022202866A1 (ja) | 全固体二次電池 | |
WO2021149458A1 (ja) | 積層型全固体電池 | |
WO2024135831A1 (ja) | 全固体電池及び電子機器 | |
JP2023168868A (ja) | 全固体二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19903261 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020563288 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19903261 Country of ref document: EP Kind code of ref document: A1 |