JP2014186124A - 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び、表示体装置 - Google Patents

感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び、表示体装置 Download PDF

Info

Publication number
JP2014186124A
JP2014186124A JP2013060161A JP2013060161A JP2014186124A JP 2014186124 A JP2014186124 A JP 2014186124A JP 2013060161 A JP2013060161 A JP 2013060161A JP 2013060161 A JP2013060161 A JP 2013060161A JP 2014186124 A JP2014186124 A JP 2014186124A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
acid
photosensitive resin
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013060161A
Other languages
English (en)
Other versions
JP6116954B2 (ja
Inventor
Toshiaki Okuda
敏章 奥田
Takahiro Sasaki
隆弘 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2013060161A priority Critical patent/JP6116954B2/ja
Publication of JP2014186124A publication Critical patent/JP2014186124A/ja
Application granted granted Critical
Publication of JP6116954B2 publication Critical patent/JP6116954B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Photolithography (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】現像後の残渣を抑制し、低温での硬化が可能であり、硬化後の硬化膜の引っ張り伸度に優れる、感光性樹脂組成物及び、該感光性樹脂組成物を用いた硬化膜、パターンを形成する硬化レリーフパターンとその製造方法、並びに、該硬化レリーフパターンを有する半導体装置及び表示体装置を提供することを目的とする。
【解決手段】以下の成分(A)〜(C):(A)フェノール樹脂:100質量部、(B)不飽和結合を有する炭素数3〜35のモノカルボン酸化合物、及び不飽和結合を有する炭素数4〜100のカルボン酸エステル化合物からなる群から選択される少なくとも1つのカルボン酸又はその誘導体:0.01〜20質量部、並びに(C)光酸発生剤:0.1〜20質量部、を含む感光性樹脂組成物。
【選択図】なし

Description

本発明は、感光性樹脂組成物に関する。本発明はまた、該感光性樹脂組成物を硬化させてなる硬化レリーフパターンを有する半導体装置及び表示体装置に関する。
従来から、半導体装置に用いられる永久膜、例えば表面保護膜及び層間絶縁膜には、優れた耐熱性、電気特性、及び機械特性を併せ持つ、ポリイミド樹脂及びポリベンゾオキサゾール樹脂が広く用いられてきた。これらの樹脂は環状構造を有しておりそのままでは各種溶剤への溶解性が低いため、一般に該環状構造を開環させた前駆体を溶剤へ溶解させた組成物が使用される。従って、半導体装置を製造するためには、半導体素子上に該組成物を塗布する工程の後に、かかる前駆体を閉環させる工程が必要となる。この閉環工程は通常、塗布膜を300℃以上に加熱する熱硬化によって行われる。
しかしながら、近年、従来品に比べて耐熱性の低い半導体装置が開発され、表面保護膜及び層間絶縁膜の形成材料にも熱硬化温度の低下が求められるようになり、特に250℃以下での熱硬化性を求められることも多くなっている。
かかる要求に対し、特許文献1には、フェノール類とアルデヒド類とを縮合させることにより得られたフェノール樹脂と、このフェノール樹脂の耐熱衝撃性を改善するための架橋性微粒子とを用いた組成物が提案されている。フェノール樹脂は、半導体装置製造時にエッチング又は成膜工程でマスクとして一時的に用いられるレジストのベース樹脂として広く使用されている樹脂であり、上記閉環工程を必要としないので低温で熱硬化させることができ、コスト、及び感光性能に優れる。
また、特許文献2には、特定構造を有するフェノール樹脂を用いた表面保護膜及び層間絶縁膜用感光性樹脂組成物も提案され、かかる組成物から得られる硬化物は、250℃の低温硬化した場合においても機械的特性に優れる。
一方、特許文献3には、アルカリ可溶性ノボラック樹脂、感光剤、および特定の脂肪酸エステルを含む、レジスト用途のスリットコート法に適した感光性樹脂が提案されている。
特開2003−215789号公報 国際公開第2012/036130号パンフレット 特開2007−206256号公報
樹脂膜を永久膜として半導体装置に適用する場合には、硬化後の樹脂膜の伸度が重要な膜物性の一つである。しかしながら、前述の特許文献3には、硬化レリーフパターンの伸度に関しては記載がない。本発明者が検討したところ、実用化されている保護膜、絶縁膜と比較して、伸度については改良すべき余地があった(後述の比較例11参照)。
また、半導体プロセスでは、歩留り及び信頼性の向上が求められているが、半導体の保護膜、絶縁膜のプロセス中の現像後に残渣等のディフェクトが発生すると、歩留りの低下につながる。特にプロセスの諸条件が変わった場合(半導体装置等を製造するクリーンルームの雰囲気の違い、半導体製造装置の違い、基板となるウエハー材料の違い、等)は、ディフェクトが発生する場合がある。そこで、諸条件が変わってもディフェクトが発生することがない安定したプロセスが求められている。
そこで、本発明は、現像後に溶解されない樹脂組成物の残渣を抑制し、低温での硬化が可能であり、硬化後の硬化膜の引っ張り伸度に優れる、感光性樹脂組成物及び、該感光性樹脂組成物を用いた硬化膜、パターンを形成する硬化レリーフパターンとその製造方法、並びに、該硬化レリーフパターンを有する半導体装置及び表示体装置を提供することを目的とする。
即ち、本発明は以下の通りである。
[1]
(A)フェノール樹脂:100重量部、
(B)不飽和結合を有する炭素数3〜35のモノカルボン酸化合物、及び不飽和結合を有する炭素数4〜100のカルボン酸エステル化合物、からなる群から選択される少なくとも1つのカルボン酸又はその誘導体:0.01〜20質量部、
(C)光酸発生剤:0.1〜20質量部、
を含み、
前記(A)フェノール樹脂が、下記一般式(1)で表される構造を有するフェノール樹脂:
Figure 2014186124
{式中、aは、1〜3の整数であり、bは、0〜3の整数であり、1≦(a+b)≦4であり、Rは、炭素数1〜20の1価の有機基、ハロゲン原子、ニトロ基、及びシアノ基からなる群から選ばれる少なくとも1つの1価の置換基を表し、bが2又は3である場合には、複数のRは、互いに同一でも又は異なっていてもよく、そしてXは、不飽和結合を有していてもよい炭素数2〜10の2価の脂肪族基、炭素数3〜20の2価の脂環式基、下記一般式(2):
Figure 2014186124
(式中、pは、1〜10の整数である。)で表される2価のアルキレンオキシド基、及び炭素数6〜12の芳香族環を有する2価の有機基からなる群から選択される2価の有機基を表す。}、及び
エーテル結合、ヒドロキシル基、エステル結合、カルボキシル基、チオエーテル結合、チオール基、チオエステル結合、スルホ基、スルホニル基、ウレタン結合、ウレア結合、チオウレタン結合、及びチオ尿素結合からなる群から選択される少なくとも一つの官能基を有する炭素数4〜100の化合物で変性したフェノール樹脂、
からなる群から選択される少なくとも1種のフェノール樹脂を含む、感光性樹脂組成物。
[2]
前記カルボン酸又はその酸誘導体が、下記一般式(3):
Figure 2014186124
{式中、Pは、不飽和結合を有し、水酸基で置換されていてもよい、炭素数2〜30の1価の脂肪族基、炭素数3〜30の1価の脂環式基、及び炭素数6〜30の芳香族環を有する1価の有機基からなる群から選ばれる1価の有機基を表す。}で表される構造を有するモノカルボン酸化合物である、[1]に記載の感光性樹脂組成物。
[3]
前記一般式(3)中のPが、不飽和結合を有し、水酸基で置換されていてもよい、炭素数2〜30の1価の脂肪族基、及び炭素数3〜30の1価の脂環式基、からなる群から選ばれる1価の有機基である、[2]に記載の感光性樹脂組成物。
[4]
前記カルボン酸又はその酸誘導体が、上記一般式(3)で表されるモノカルボン酸化合物と、炭素数1〜20のアルコール化合物とがエステル結合しているカルボン酸エステル化合物である、[1]に記載の感光性樹脂組成物。
[5]
前記炭素数1〜20のアルコール化合物が、グリセリンである、[4]に記載の感光性樹脂組成物。
[6]
前記(A)フェノール樹脂が、前記一般式(1)で表される構造を有するフェノール樹脂を含み、前記一般式(1)中のXが、
下記一般式(4):
Figure 2014186124
{式中、R、R、R、及びRは、それぞれ独立に、水素原子、炭素数1〜10の1価の脂肪族基、又は水素原子の一部若しくは全部がフッ素原子で置換されてなる炭素数1〜10の1価の脂肪族基であり、nは0〜4の整数であって、nが1〜4の整数である場合のRは、ハロゲン原子、又は炭素数1〜12の1価の有機基であり、nが2〜4の整数である場合の複数のRは互いに同一でも又は異なっていてもよい。}で表される2価の基、及び
下記一般式(5):
Figure 2014186124
{式中、R、R、R及びR10は、それぞれ独立に、水素原子、炭素数1〜10の1価の脂肪族基、又は水素原子の一部若しくは全部がフッ素原子で置換されてなる炭素数1〜10の1価の脂肪族基を表し、Wは、単結合、フッ素原子で置換されていてもよい炭素数1〜10の脂肪族基、フッ素原子で置換されていてもよい炭素数3〜20の脂環式基、下記一般式(2):
Figure 2014186124
(式中、pは、1〜10の整数である。)で表される2価のアルキレンオキシド基、及び下記式(6):
Figure 2014186124
で表される2価の基からなる群から選ばれる2価の有機基である。}で表される2価の基からなる群から選ばれる少なくとも1つの2価の有機基を含む、請求項1〜5のいずれか1項に記載の感光性樹脂組成物。
[7]
前記一般式(1)中の、Xが、下記式(7):
Figure 2014186124
で表される2価の有機基を含む、[6]に記載の感光性樹脂組成物。
[8]
前記一般式(1)中の、Xが、下記式(8):
Figure 2014186124
で表される2価の有機基を含む、[7]に記載の感光性樹脂組成物。
[9]
前記(A)フェノール樹脂が、下記一般式(9):
Figure 2014186124
{式中、R11は炭化水素基及びアルコキシ基からなる群から選ばれる炭素数1〜10の1価の基であり、nは1〜3であり、nは0〜2の整数であり、mは1〜500の整数であり、2≦(n+n)≦4であり、nが2の場合には、複数のR11は互いに同一でも又は異なっていてもよい。)}で表される繰り返し単位、及び
下記一般式(10):
Figure 2014186124
{式中、R12及びR13はそれぞれ独立に炭化水素基及びアルコキシ基からなる群から選ばれる炭素数1〜10の1価の基であり、nは1〜3の整数であり、nは0〜2の整数であり、nは0〜3の整数であり、mは1〜500の整数であり、2≦(n+n)≦4であり、nが2の場合には、複数のR12は互いに同一でも又は異なっていてもよく、nが2又は3の場合には、複数のR13は互いに同一でも又は異なっていてもよい。}で表される繰り返し単位の両方を、同一樹脂骨格内に有するフェノール樹脂である、[8]に記載の感光性樹脂組成物。
[10]
前記(A)フェノール樹脂が、前記少なくとも一つの官能基を有する炭素数4〜100の化合物で変性したフェノール樹脂を含み、該官能基が、エステル結合、及びカルボキシル基からなる群から選択される、[1]〜[5]のいずれか1項に記載の感光性樹脂組成物。
[11]
前記少なくとも一つの官能基を有する炭素数4〜100の化合物が、炭素数4〜100の不飽和脂肪酸、及び不飽和脂肪酸エステルからなる群から選択される、[10]に記載の感光性樹脂組成物。
[12]
前記(C)光酸発生剤がキノンジアジド基を有する化合物である、[1]〜[11]のいずれか1項に記載の感光性樹脂組成物。
[13]
更に(D)架橋剤:0.1〜40質量部を含む、[1]〜[12]のいずれか1項に記載の感光性樹脂組成物。
[14]
以下の工程:
(1)[1]〜[13]のいずれか1項に記載の感光性樹脂組成物を含む感光性樹脂層を基板上に形成する工程、
(2)該感光性樹脂層を露光する工程、
(3)現像液により露光部又は、未露光部を除去して、レリーフパターンを得る工程、及び
(4)該レリーフパターンを加熱処理する工程、
を含む、硬化レリーフパターンの製造方法。
[15]
[14]に記載の方法により製造された、硬化レリーフパターン。
[16]
半導体素子と、該半導体素子の上部に設けられた硬化膜とを備える半導体装置であって、該硬化膜は、[15]に記載の硬化レリーフパターンである、前記半導体装置。
[17]
表示体素子と、該表示体素子の上部に設けられた硬化膜とを備える表示体装置であって、該硬化膜は、[15]に記載の硬化レリーフパターンである、前記表示体装置。
本発明により、現像後に溶解されない樹脂組成物の残渣を抑制し、低温での硬化が可能であり、硬化後の硬化膜の引っ張り伸度に優れる、感光性樹脂組成物及び、該感光性樹脂組成物を用いた硬化膜、パターンを形成する硬化レリーフパターンとその製造方法、並びに、該硬化レリーフパターンを有する半導体装置及び表示体装置を提供することができる。
以下、本発明を実施するための形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。なお本明細書を通じ、一般式において同一符号で表されている構造は、分子中に複数存在する場合に、互いに同一であるか、又は異なっていることができる。
<感光性樹脂組成物>
本発明の一態様が提供する感光性樹脂組成物は、
(A)特定構造のフェノール樹脂:100質量部、
(B)不飽和結合を有するモノカルボン酸化合物又はカルボン酸エステル化合物:0.01〜20質量部、及び
(C)光酸発生剤:0.1〜20質量部、
を含有する。以下各成分を順に説明する。
[(A)フェノール樹脂]
本実施形態におけるフェノール樹脂は、一般式(1):
Figure 2014186124
{式中、aは、1〜3の整数であり、bは、0〜3の整数であり、1≦(a+b)≦4であり、Rは、炭素数1〜20の1価の有機基、ハロゲン原子、ニトロ基及びシアノ基からなる群から選ばれる少なくとも1つの1価の置換基を表し、bが2又は3である場合には、複数のRは、互いに同一でも又は異なっていてもよく、そしてXは、不飽和結合を有していてもよい炭素数2〜10の2価の脂肪族基、炭素数3〜20の2価の脂環式基、下記一般式(2):
Figure 2014186124
(式中、pは、1〜10の整数である。)で表される2価のアルキレンオキシド基、及び炭素数6〜12の芳香族環を有する2価の有機基からなる群から選択される2価の有機基を表す。}
で表される構造を有するフェノール樹脂及び、エーテル結合、ヒドロキシル基、エステル結合、カルボキシル基、チオエーテル結合、チオール基、チオエステル結合、スルホ基、スルホニル基、ウレタン結合、ウレア結合、チオウレタン結合、及びチオ尿素結合からなる群から選択される少なくとも一つの官能基を有する炭素数4〜100の化合物で変性したフェノール樹脂(以下、単に変性フェノール樹脂ともいう)からなる群から選択される少なくとも一つの樹脂を含む。
(A)フェノール樹脂は、ポリイミド樹脂でのように熱硬化時のポリイミド前駆体の環化(イミド化)による構造変化がおこらないため、低温(例えば250℃以下)での硬化が可能であるという利点を有する。
本実施形態では、(A)フェノール樹脂の重量平均分子量は、好ましくは700〜100,000であり、より好ましくは1,500〜80,000であり、更に好ましくは2,000〜50,000である。重量平均分子量は、硬化膜の耐熱性及び、機械的特性の観点から、700以上であることが好ましく、一方で、組成物のアルカリ溶解性の観点から、100,000以下であることが好ましい。
本開示における重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィー(GPC)により行い、標準ポリスチレンを用いて作成した検量線により算出することができる。
本実施形態において、フェノール樹脂として最も汎用されているノボラックを用いたときは、半導体の保護膜、絶縁膜に求められる重要な特性の一つである硬化膜の引っ張り伸度が、保護膜、絶縁膜として実用化されているポリイミド、ポリベンゾオキサゾールと比較すると小さかった(後述する比較例11参照)。ノボラックの場合、引っ張り伸度が小さかったのは、ポリマー内/間に働く分子間相互作用が小さかったためと推定される。
一方、フェノール樹脂として、一般式(1)で表されるフェノール樹脂、及び変性フェノール樹脂からなる群から選択される少なくとも一つの樹脂を用いた場合は、200℃で硬化した場合の引っ張り伸度は十分大きな値を示した(後述する実施例参照)。高伸度を発現したメカニズムについては定かではないが、ポリマー内/間に働く分子間相互作用が大きかったためと推定される。すなわち、一般式(1)で表されるフェノール樹脂については、分子構造にビフェニル等を有しており、ポリマー分子内/間にππスタッキングが生じたためであり、一方、変性フェノール樹脂については、フェノール性水酸基とエステル結合等が水素結合を形成したため、ポリマー分子内/間が疑似的に架橋した状態となり、硬化膜の高伸度を発現したと推定される。
上記炭素数4〜100の化合物で変性したフェノール樹脂としては、フェノール性OHと水素結合しうる官能基を有する化合物で変性したフェノール樹脂であれば限定されないが、エーテル結合、ヒドロキシル基、エステル結合、カルボキシル基、チオエーテル結合、チオール基、チオエステル結合、スルホ基、スルホニル基、ウレタン結合、ウレア結合、チオウレタン結合、及びチオ尿素結合からなる群から選択される少なくとも一つの官能基を有する炭素数4〜100の化合物で変性したフェノール樹脂が挙げられる。
これらの中でも、コスト、硬化膜の引っ張り伸度の観点から、エステル結合又はカルボキシル基を有する炭素数4〜100の化合物で変性したフェノール樹脂が好ましい。
[一般式(1)で表されるフェノール樹脂]
本実施形態では、(A)フェノール樹脂は、下記一般式(1):
Figure 2014186124
{式中、aは、1〜3の整数であり、bは、0〜3の整数であり、1≦(a+b)≦4であり、Rは、炭素数1〜20の1価の有機基、ハロゲン原子、ニトロ基及びシアノ基からなる群から選ばれる少なくとも1つの1価の置換基を表し、bが2又は3である場合には、複数のRは、互いに同一でも又は異なっていてもよく、そしてXは、不飽和結合を有していてもよい炭素数2〜10の2価の脂肪族基、炭素数3〜20の2価の脂環式基、下記一般式(2):
Figure 2014186124
(式中、pは、1〜10の整数である。)で表される2価のアルキレンオキシド基、及び炭素数6〜12の芳香族環を有する2価の有機基からなる群から選択される2価の有機基を表す。}で表される繰り返し単位を有する。上記の繰り返し単位を有するフェノール樹脂(A)は、例えば従来使用されてきたポリイミド樹脂及びポリベンゾオキサゾール樹脂と比べて低温での硬化が可能であり、かつ良好な伸度を有する硬化膜の形成を可能にする。
上記一般式(1)において、Rは、一般式(1)にかかる樹脂を合成する際の反応性の観点から、炭素数1〜20の1価の有機基、ハロゲン原子、ニトロ基及びシアノ基から成る群から選ばれる1価の置換基であれば限定されない。組成物のアルカリ溶解性の観点から、Rは、ハロゲン原子、ニトロ基、シアノ基、不飽和結合を有していてもよい炭素数1〜10の脂肪族基、炭素数6〜12の芳香族基、及び下記一般式(11):
Figure 2014186124
{式中、R14、R15及びR16は、それぞれ独立に、水素原子、不飽和結合を有していてもよい炭素数1〜10の脂肪族基、炭素数3〜19の脂環式基、又は炭素数6〜19の芳香族基を表し、そしてR17は、不飽和結合を有していてもよい炭素数1〜10の2価の脂肪族基、炭素数3〜18の2価の脂環式基、又は炭素数6〜18の2価の芳香族基を表す。}で表される4つの基から成る群から選ばれる1価の置換基であることが好ましい。
本実施形態では、上記一般式(1)において、aは、1〜3の整数であれば限定されないが組成物のアルカリ溶解性及び硬化膜の伸度の観点から2が好ましい。また、aが2である場合には、水酸基同士の置換位置は、オルト、メタ及びパラ位のいずれであってもよい。そしてaが3である場合には、水酸基同士の置換位置は、1,2,3−位、1,2,4−位及び1,3,5−位等、いずれであってもよい。
本実施形態では、上記一般式(1)において、aが1の場合は、アルカリ溶解性を向上するために、フェノール樹脂(a1)にさらにノボラック及びポリヒドロキシスチレンから選択されるフェノール樹脂(以下a2とする)を混合することができる。
(a1)と(a2)の混合比は、好ましくは質量比で(a1)/(a2)=10/90〜90/10の範囲である。この混合比は、組成物のアルカリ溶解性、及び硬化膜の伸度の観点から、(a1)/(a2)=10/90〜90/10が好ましく、(a1)/(a2)=20/80〜80/20であることがより好ましく、(a1)/(a2)=30/70〜70/30であることがさらに好ましい。
上記(a2)樹脂としてのノボラックは、フェノール類とホルムアルデヒドを触媒の存在下で縮合させることにより得ることができる。上記フェノール類としては、例えば、フェノール、o−クレゾール、m−クレゾール、p−クレゾール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール、o−ブチルフェノール、m−ブチルフェノール、p−ブチルフェノール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール、2,3,5−トリメチルフェノール、3,4,5−トリメチルフェノール、カテコール、レゾルシノール、ピロガロール、α−ナフトール、β−ナフトール等が挙げられる。具体的なノボラックとしては、例えば、フェノール/ホルムアルデヒド縮合ノボラック樹脂、クレゾール/ホルムアルデヒド縮合ノボラック樹脂、フェノール−ナフトール/ホルムアルデヒド縮合ノボラック樹脂等が挙げられる。
上記(a2)樹脂としてのポリヒドロキシスチレンは、ポリパラビニルフェノールであることが好ましい。ポリパラビニルフェノールは、パラビニルフェノールを重合単位として含有するポリマーであれば特に限定されるものではない。本発明の目的に反しない限りは、ポリパラビニルフェノールを構成するために、パラビニルフェノール以外の重合単位を使用することができる。パラビニルフェノール以外の重合単位は、パラビニルフェノールと共重合可能な任意の化合物でよい。パラビニルフェノール以外の重合単位としては、限定されるものではないが、例えば、メチルアクリレート、メチルメタクリレート、ヒドロキシエチルアクリレート、ブチルメタクリレート、オクチルアクリレート、2−エトキシエチルメタアクリレート、t−ブチルアクリレート、1,5−ペンタンジオールジアクリレート、N,N−ジエチルアミノエチルアクリレート、エチレングリコールジアクリレート、1,3−プロパンジオールジアクリレート、デカメチレングリコールジアクリレート、デカメチレングリコールジメタクリレート、1,4−シクロヘキサンジオールジアクリレート、2,2−ジメチロールプロパンジアクリレート、グリセロールジアクリレート、トリプロピレングリコールジアクリレート、グリセロールトリアクリレート、2,2−ジ(p−ヒドロキシフェニル)−プロパンジメタクリレート、トリエチレングリコールジアクリレート、ポリオキシエチル−2−2−ジ(p−ヒドロキシフェニル)−プロパンジメタクリレート、トリエチレングリコールジメタクリレート、ポリオキシプロピルトリメチロールプロパントリアクリレート、エチレングリコールジメタクリレート、ブチレングリコールジメタクリレート、1,3−プロパンジオールジメタクリレート、ブチレングリコールジメタクリレート、1,3−プロパンジオールジメタクリレート、1,2,4−ブタントリオールトリメタクリレート、2,2,4−トリメチル−1,3−ペンタンジオールジメタクリレート、ペンタエリスリトールトリメタクリレート、1−フェニルエチレン−1,2−ジメタクリレート、ペンタエリスリトールテトラメタクリレート、トリメチロールプロパントリメタクリレート、1,5−ペンタンジオールジメタクリレート及び1,4−ベンゼンジオールジメタクリレートのようなアクリル酸のエステル;スチレン並びに、例えば、2−メチルスチレンおよびビニルトルエンのような置換スチレン;例えば、ビニルアクリレート及びビニルメタクリレートのようなビニルエステル等のモノマー;並びにo−ビニルフェノール、m−ビニルフェノールなどが挙げられる。
また、上記で説明されたノボラック、ポリヒドロキシスチレンは、1種を単独で又は2種以上を組み合わせて使用されることができる。
実施の形態では、ノボラック、ポリヒドロキシスチレンの質量平均分子量は、好ましくは700〜100,000であり、より好ましくは1,500〜80,000であり、更に好ましくは2,000〜50,000である。質量平均分子量は、硬化膜の耐熱性、機械的特性の観点から、700以上であることが好ましく、一方で、感光性樹脂組成物のアルカリ溶解性の観点から、100,000以下であることが好ましい。
本実施形態では、上記一般式(1)において、bは、0〜3の整数であるが、アルカリ溶解性及び伸度の観点から、0又は1であることが好ましい。また、bが2又は3である場合には、複数のRは、互いに同一でも又は異なっていてもよい。
さらに、本実施形態では、上記一般式(1)において、a及びbは、1≦(a+b)≦4の関係を満たす。
本実施形態では、上記一般式(1)において、Xは、硬化レリーフパターン形状及び、硬化膜の伸度の観点から、不飽和結合を有していてもよい炭素数2〜10の2価の脂肪族基、炭素数3〜20の2価の脂環式基、上記一般式(2)で表されるアルキレンオキシド基、及び炭素数6〜12の芳香族環を有する2価の有機基からなる群から選択される2価の有機基である。これらの2価の有機基の中で、硬化後の膜の強靭性の観点から、Xは、下記一般式(4):
Figure 2014186124
{式中、R、R、R、及びRは、それぞれ独立に、水素原子、炭素数1〜10の1価の脂肪族基、又は水素原子の一部若しくは全部がフッ素原子で置換されてなる炭素数1〜10の1価の脂肪族基であり、nは0〜4の整数であって、nが1〜4の整数である場合のRは、ハロゲン原子、又は炭素数1〜12の1価の有機基であり、nが2〜4の整数である場合の複数のRは互いに同一でも又は異なっていてもよい。}で表される基、及び
下記一般式(5):
Figure 2014186124
{式中、R7、R8、R9及びR10は、それぞれ独立に、水素原子、炭素数1〜10の1価の脂肪族基、又は水素原子の一部若しくは全部がフッ素原子で置換されてなる炭素数1〜10の1価の脂肪族基を表し、Wは、単結合、フッ素原子で置換されていてもよい炭素数1〜10の脂肪族基、フッ素原子で置換されていてもよい炭素数3〜20の脂環式基、下記一般式(2):
Figure 2014186124
(式中、pは、1〜10の整数である。)で表される2価のアルキレンオキシド基、及び下記式(6):
Figure 2014186124
で表される2価の基から成る群から選ばれる2価の有機基である。}で表される基から成る群から選ばれる少なくとも1つの有機基を含むことが好ましい。
上記炭素数6〜12の芳香族環を有する2価の有機基の炭素数は、好ましくは8〜75、より好ましくは8〜40である。なお上記炭素数6〜12の芳香族環を有する2価の有機基の構造は、一般的には、上記一般式(1)中、OH基及び任意のR基が芳香環に結合している構造とは異なる。
更に、上記一般式(5)で表される2価の有機基は、樹脂組成物のパターン形成性、及び硬化後の硬化膜の伸度が良好である観点から、下記式(7):
Figure 2014186124
で表される2価の有機基であることがより好ましく、さらに下記式(8):
Figure 2014186124
で表される2価の有機基であることが特に好ましい。
一般式(1)におけるXは、前記式(7)又は(8)で表される構造が特に好ましく、Xにおける式(7)又は(8)で表される構造で表される部位の割合は、硬化膜の伸度の観点から、20質量%以上であることが好ましく、30質量%以上であることがより好ましい。上記割合は、組成物のアルカリ溶解性の観点から、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。
また、上記式(1)で表される構造を有するフェノール樹脂の中で、下記一般式(9)で表される構造及び下記一般式(10)で表される構造の両方を同一樹脂骨格内に有する構造であることが組成物のアルカリ溶解性及び、硬化膜の伸度の観点から特に好ましい:
Figure 2014186124
{式中、R11は炭化水素基及びアルコキシ基からなる群から選ばれる炭素数1〜10の1価の基であり、nは1〜3であり、nは0〜2の整数であり、mは1〜500の整数であり、2≦(n+n)≦4であり、nが2の場合には、複数のR11は互いに同一でも又は異なっていてもよい。)}
Figure 2014186124
{式中、R12及びR13はそれぞれ独立に炭化水素基及びアルコキシ基からなる群から選ばれる炭素数1〜10の1価の基であり、nは1〜3の整数であり、nは0〜2の整数であり、nは0〜3の整数であり、mは1〜500の整数であり、2≦(n+n)≦4であり、nが2の場合には、複数のR12は互いに同一でも又は異なっていてもよく、nが2又は3の場合には、複数のR13は互いに同一でも又は異なっていてもよい。}。
上記一般式(9)のm及び上記一般式(10)のmは、フェノール樹脂の主鎖におけるそれぞれの繰り返し単位の総数を表す。すなわち、(A)フェノール樹脂において、上記一般式(9)で表される構造における括弧内の繰り返し単位と上記一般式(10)で表される構造における括弧内の繰り返し単位とは、ランダム、ブロック又はこれらの組合せで配列されていることができる。m及びmはそれぞれ独立に1〜500の整数であり、下限値は、好ましくは2、より好ましくは3であり、上限値は、好ましくは450、より好ましくは400、さらに好ましくは350である。m及びmは、それぞれ独立に、硬化後の膜の強靭性の観点から、2以上であることが好ましく、組成物のアルカリ溶解性の観点から、450以下であることが好ましい。m及びmの合計は、硬化後の膜の強靭性の観点から、好ましくは2以上、より好ましくは4以上、更に好ましくは6以上であり、組成物のアルカリ溶解性の観点から、好ましくは200以下、より好ましくは175以下、更に好ましくは150以下である。
上記一般式(9)で表される構造及び上記一般式(10)で表される構造の両方を同一樹脂骨格内に有する(A)フェノール樹脂において、上記一般式(9)で表される構造のモル比率が高いほど、硬化後の膜物性が良好であり、耐熱性にも優れ、一方、上記一般式(10)で表される構造のモル比率が高いほど、組成物のアルカリ溶解性が良好であり、硬化後のパターン形状に優れる。従って、上記一般式(9)で表される構造の上記一般式(10)で表される構造に対する比率m/mは、硬化後の膜物性の観点から、好ましくは20/80以上、より好ましくは40/60以上、特に好ましくは50/50以上であり、組成物のアルカリ溶解性及び硬化レリーフパターン形状の観点から、好ましくは90/10以下、より好ましくは80/20以下、さらに好ましくは70/30以下である。
一般式(1)で表される繰り返し単位を有するフェノール樹脂は、典型的には、フェノール化合物と、共重合成分(具体的には、アルデヒド基を有する化合物(トリオキサンのように分解してアルデヒド化合物を生成する化合物も含む)、ケトン基を有する化合物、メチロール基を分子内に2個有する化合物、アルコキシメチル基を分子内に2個有する化合物、及びハロアルキル基を分子内に2個有する化合物からなる群から選択される1種類以上の化合物)とを含み、より典型的にはこれらからなるモノマー成分を、重合反応させることによって合成できる。例えば、下記に示すようなフェノール及び/又はフェノール誘導体(以下、総称して「フェノール化合物」ともいう。)に対し、アルデヒド化合物、ケトン化合物、メチロール化合物、アルコキシメチル化合物、ジエン化合物、又はハロアルキル化合物等の共重合成分を重合させて(A)フェノール樹脂を得ることができる。この場合、上記一般式(1)中、OH基及び任意のR基が芳香環に結合している構造で表される部分は上記フェノール化合物に由来し、Xで表される部分は上記共重合成分に由来することになる。反応制御、並びに得られた(A)フェノール樹脂及び感光性樹脂組成物の安定性の観点から、フェノール化合物と上記共重合成分との仕込みモル比(フェノール化合物):(共重合成分)は、5:1〜1.01:1であることが好ましく、2.5:1〜1.1:1であることがより好ましい。
本実施形態では、(A)一般式(1)で表されるフェノール樹脂の重量平均分子量は、好ましくは700〜100,000であり、より好ましくは1,500〜80,000であり、更に好ましくは2,000〜50,000である。重量平均分子量は、硬化膜の体熱性、機械的特性の観点から、700以上であることが好ましく、一方で、組成物のアルカリ溶解性の観点から、100,000以下であることが好ましい。
重量平均分子量の測定は、ゲルパーミエーションクロマトグラフィー(GPC)により行い、標準ポリスチレンを用いて作成した検量線により算出することができる。
一般式(1)で表される繰り返し単位を有するフェノール樹脂を得るために使用できるフェノール化合物としては、例えば、クレゾール、エチルフェノール、プロピルフェノール、ブチルフェノール、アミルフェノール、シクロヘキシルフェノール、ヒドロキシビフェニル、ベンジルフェノール、ニトロベンジルフェノール、シアノベンジルフェノール、アダマンタンフェノール、ニトロフェノール、フルオロフェノール、クロロフェノール、ブロモフェノール、トリフルオロメチルフェノール、N−(ヒドロキシフェニル)−5−ノルボルネン−2,3−ジカルボキシイミド、N−(ヒドロキシフェニル)−5−メチル−5−ノルボルネン−2,3−ジカルボキシイミド、トリフルオロメチルフェノール、ヒドロキシ安息香酸、ヒドロキシ安息香酸メチル、ヒドロキシ安息香酸エチル、ヒドロキシ安息香酸ベンジル、ヒドロキシベンズアミド、ヒドロキシベンズアルデヒド、ヒドロキシアセトフェノン、ヒドロキシベンゾフェノン、ヒドロキシベンゾニトリル、レゾルシノール、キシレノール、カテコール、メチルカテコール、エチルカテコール、ヘキシルカテコール、ベンジルカテコール、ニトロベンジルカテコール、メチルレゾルシノール、エチルレゾルシノール、ヘキシルレゾルシノール、ベンジルレゾルシノール、ニトロベンジルレゾルシノール、ハイドロキノン、カフェイン酸、ジヒドロキシ安息香酸、ジヒドロキシ安息香酸メチル、ジヒドロキシ安息香酸エチル、ジヒドロキシ安息香酸ブチル、ジヒドロキシ安息香酸プロピル、ジヒドロキシ安息香酸ベンジル、ジヒドロキシベンズアミド、ジヒドロキシベンズアルデヒド、ジヒドロキシアセトフェノン、ジヒドロキシベンゾフェノン、ジヒドロキシベンゾニトリル、N−(ジヒドロキシフェニル)−5−ノルボルネン−2,3−ジカルボキシイミド、N−(ジヒドロキシフェニル)−5−メチル−5−ノルボルネン−2,3−ジカルボキシイミド、ニトロカテコール、フルオロカテコール、クロロカテコール、ブロモカテコール、トリフルオロメチルカテコール、ニトロレゾルシノール、フルオロレゾルシノール、クロロレゾルシノール、ブロモレゾルシノール、トリフルオロメチルレゾルシノール、ピロガロール、フロログルシノール、1,2,4−トリヒドロキシベンゼン、トリヒドロキシ安息香酸、トリヒドロキシ安息香酸メチル、トリヒドロキシ安息香酸エチル、トリヒドロキシ安息香酸ブチル、トリヒドロキシ安息香酸プロピル、トリヒドロキシ安息香酸ベンジル、トリヒドロキシベンズアミド、トリヒドロキシベンズアルデヒド、トリヒドロキシアセトフェノン、トリヒドロキシベンゾフェノン、トリヒドロキシベンゾニトリル等が挙げられる。
上記アルデヒド化合物としては、例えば、アセトアルデヒド、プロピオンアルデヒド、ピバルアルデヒド、ブチルアルデヒド、ペンタナール、ヘキサナール、トリオキサン、グリオキザール、シクロヘキシルアルデヒド、ジフェニルアセトアルデヒド、エチルブチルアルデヒド、ベンズアルデヒド、グリオキシル酸、5−ノルボルネン−2−カルボキシアルデヒド、マロンジアルデヒド、スクシンジアルデヒド、グルタルアルデヒド、サリチルアルデヒド、ナフトアルデヒド、テレフタルアルデヒド等が挙げられる。
上記ケトン化合物としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジシクロヘキシルケトン、ジベンジルケトン、シクロペンタノン、シクロヘキサノン、ビシクロヘキサノン、シクロヘキサンジオン、3−ブチン−2−オン、2−ノルボルナノン、アダマンタノン、2,2−ビス(4−オキソシクロヘキシル)プロパン等が挙げられる。
上記メチロール化合物としては、例えば、2,6−ビス(ヒドロキシメチル)−p−クレゾール、2,6−ビス(ヒドロキシメチル)−4−エチルフェノール、2,6−ビス(ヒドロキシメチル)−4−プロピルフェノール、2,6−ビス(ヒドロキシメチル)−4−n−ブチルフェノール、2,6−ビス(ヒドロキシメチル)−4−t−ブチルフェノール、2,6−ビス(ヒドロキシメチル)−4−メトキシフェノール、2,6−ビス(ヒドロキシメチル)−4−エトキシフェノール、2,6−ビス(ヒドロキシメチル)−4−プロポキシフェノール、2,6−ビス(ヒドロキシメチル)−4−n−ブトキシフェノール、2,6−ビス(ヒドロキシメチル)−4−t−ブトキシフェノール、1,3−ビス(ヒドロキシメチル)尿素、リビトール、アラビトール、アリトール、2,2−ビス(ヒドロキシメチル)酪酸、2−ベンジルオキシ−1,3−プロパンジオール、2,2−ジメチル−1,3−プロパンジオール、2,2−ジエチル−1,3−プロパンジオール、モノアセチン、2−メチル−2−ニトロ−1,3−プロパンジオール、5−ノルボルネン−2,2−ジメタノール、5−ノルボルネン−2,3−ジメタノール、ペンタエリスリトール、2−フェニル−1,3−プロパンジオール、トリメチロールエタン、トリメチロールプロパン、3,6−ビス(ヒドロキシメチル)デュレン、2−ニトロ−p−キシリレングリコール、1,10−ジヒドロキシデカン、1,12−ジヒドロキシドデカン、1,4−ビス(ヒドロキシメチル)シクロヘキサン、1,4−ビス(ヒドロキシメチル)シクロヘキセン、1,6−ビス(ヒドロキシメチル)アダマンタン、1,4−ベンゼンジメタノール、1,3−ベンゼンジメタノール、2,6−ビス(ヒドロキシメチル)−1,4−ジメトキシベンゼン、2,3−ビス(ヒドロキシメチル)ナフタレン、2,6−ビス(ヒドロキシメチル)ナフタレン、1,8−ビス(ヒドロキシメチル)アントラセン、2,2’−ビス(ヒドロキシメチル)ジフェニルエーテル、4,4’−ビス(ヒドロキシメチル)ジフェニルエーテル、4,4’−ビス(ヒドロキシメチル)ジフェニルチオエーテル、4,4’−ビス(ヒドロキシメチル)ベンゾフェノン、4−ヒドロキシメチル安息香酸−4’−ヒドロキシメチルフェニル、4−ヒドロキシメチル安息香酸−4’−ヒドロキシメチルアニリド、4,4’−ビス(ヒドロキシメチル)フェニルウレア、4,4’−ビス(ヒドロキシメチル)フェニルウレタン、1,8−ビス(ヒドロキシメチル)アントラセン、4,4’−ビス(ヒドロキシメチル)ビフェニル、2,2’−ジメチル−4,4’−ビス(ヒドロキシメチル)ビフェニル、2,2−ビス(4−ヒドロキシメチルフェニル)プロパン、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール、テトラプロピレングリコール等が挙げられる。
上記アルコキシメチル化合物としては、例えば、2,6−ビス(メトキシメチル)−p−クレゾール、2,6−ビス(メトキシメチル)−4−エチルフェノール、2,6−ビス(メトキシメチル)−4−プロピルフェノール、2,6−ビス(メトキシメチル)−4−n−ブチルフェノール、2,6−ビス(メトキシメチル)−4−t−ブチルフェノール、2,6−ビス(メトキシメチル)−4−メトキシフェノール、2,6−ビス(メトキシメチル)−4−エトキシフェノール、2,6−ビス(メトキシメチル)−4−プロポキシフェノール、2,6−ビス(メトキシメチル)−4−n−ブトキシフェノール、2,6−ビス(メトキシメチル)−4−t−ブトキシフェノール、1,3−ビス(メトキシメチル)尿素、2,2−ビス(メトキシメチル)酪酸、2,2−ビス(メトキシメチル)―5−ノルボルネン、2,3−ビス(メトキシメチル)―5−ノルボルネン、1,4−ビス(メトキシメチル)シクロヘキサン、1,4−ビス(メトキシメチル)シクロヘキセン、1,6−ビス(メトキシメチル)アダマンタン、1,4−ビス(メトキシメチル)ベンゼン、1,3−ビス(メトキシメチル)ベンゼン、2,6−ビス(メトキシメチル)−1,4−ジメトキシベンゼン、2,3−ビス(メトキシメチル)ナフタレン、2,6−ビス(メトキシメチル)ナフタレン、1,8−ビス(メトキシメチル)アントラセン、2,2’−ビス(メトキシメチル)ジフェニルエーテル、4,4’−ビス(メトキシメチル)ジフェニルエーテル、4,4’−ビス(メトキシメチル)ジフェニルチオエーテル、4,4’−ビス(メトキシメチル)ベンゾフェノン、4−メトキシメチル安息香酸−4’−メトキシメチルフェニル、4−メトキシメチル安息香酸−4’−メトキシメチルアニリド、4,4’−ビス(メトキシメチル)フェニルウレア、4,4’−ビス(メトキシメチル)フェニルウレタン、1,8−ビス(メトキシメチル)アントラセン、4,4’−ビス(メトキシメチル)ビフェニル、2,2’−ジメチル−4,4’−ビス(メトキシメチル)ビフェニル、2,2−ビス(4−メトキシメチルフェニル)プロパン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、プロピレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールジメチルエーテル、テトラプロピレングリコールジメチルエーテル等が挙げられる。
上記ジエン化合物としては、例えば、ブタジエン、ペンタジエン、ヘキサジエン、ヘプタジエン、オクタジエン、3−メチル−1,3−ブタジエン、1,3−ブタンジオール−ジメタクリラート、2,4−ヘキサジエン−1−オール、メチルシクロヘキサジエン、シクロペンタジエン、シクロヘキサジエン、シクロヘプタジエン、シクロオクタジエン、ジシクロペンタジエン、1−ヒドロキシジシクロペンタジエン、1−メチルシクロペンタジエン、メチルジシクロペンタジエン、ジアリルエーテル、ジアリルスルフィド、アジピン酸ジアリル、2,5−ノルボルナジエン、テトラヒドロインデン、5−エチリデン−2−ノルボルネン、5−ビニル−2−ノルボルネン、シアヌル酸トリアリル、イソシアヌル酸ジアリル、イソシアヌル酸トリアリル、イソシアヌル酸ジアリルプロピル等が挙げられる。
上記ハロアルキル化合物としては、例えば、キシレンジクロライド、ビスクロロメチルジメトキシベンゼン、ビスクロロメチルデュレン、ビスクロロメチルビフェニル、ビスクロロメチル−ビフェニルカルボン酸、ビスクロロメチル−ビフェニルジカルボン酸、ビスクロロメチル−メチルビフェニル、ビスクロロメチル−ジメチルビフェニル、ビスクロロメチルアントラセン、エチレングリコールビス(クロロエチル)エーテル、ジエチレングリコールビス(クロロエチル)エーテル、トリエチレングリコールビス(クロロエチル)エーテル、テトラエチレングリコールビス(クロロエチル)エーテル等が挙げられる。
上述のフェノール化合物と共重合成分とを、脱水、脱ハロゲン化水素、若しくは脱アルコールにより縮合させるか、又は不飽和結合を開裂させながら重合させることにより、(A)一般式(2)で表されるフェノール樹脂を得ることができるが、重合時に触媒を用いてもよい。酸性の触媒としては、例えば、塩酸、硫酸、硝酸、リン酸、亜リン酸、メタンスルホン酸、p−トルエンスルホン酸、ジメチル硫酸、ジエチル硫酸、酢酸、シュウ酸、1−ヒドロキシエチリデン−1,1’−ジホスホン酸、酢酸亜鉛、三フッ化ホウ素、三フッ化ホウ素・フェノール錯体、三フッ化ホウ素・エーテル錯体等が挙げられる。一方で、アルカリ性の触媒としては、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、トリエチルアミン、ピリジン、4−N,N−ジメチルアミノピリジン、ピペリジン、ピペラジン、1,4−ジアザビシクロ[2.2.2]オクタン、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン、1,5−ジアザビシクロ[4.3.0]−5−ノネン、アンモニア、ヘキサメチレンテトラミン等が挙げられる。
本実施形態では、(A)一般式(1)で表されるフェノール樹脂を得るために使用される触媒の量は、共重合成分の合計モル数、好ましくは、アルデヒド化合物、ケトン化合物、メチロール化合物、アルコキシメチル化合物、ジエン化合物及びハロアルキル化合物の合計モル数100モル%に対して、0.01モル%〜100モル%の範囲であることが好ましい。
(A)一般式(1)で表されるフェノール樹脂の合成反応を行う際には、必要に応じて有機溶剤を使用することができる。使用できる有機溶剤の具体例としては、ビス(2−メトキシエチル)エーテル、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン、トルエン、キシレン、γ―ブチロラクトン、N−メチル−2−ピロリドン等が挙げられるが、これらに限定されるものではない。これらの有機溶剤の使用量としては、仕込み原料の総質量を100質量部としたときに、通常10質量部〜1000質量部であり、好ましくは20質量部〜500質量部である。また、(A)一般式(1)で表されるフェノール樹脂の合成反応において、反応温度は、通常40℃〜250℃であることが好ましく、100℃〜200℃の範囲であることがより好ましく、そして反応時間は、概ね1時間〜10時間であることが好ましい。
なお、(A)一般式(1)で表されるフェノール樹脂は、一般式(1)の構造の原料とはならないフェノール化合物を、本発明の効果を損なわない範囲で重合させたものであってもよい。本発明の効果を損なわない範囲とは、例えば(A)一般式(1)で表されるフェノール樹脂の原料となるフェノール化合物全モル数の30%以下である。
[変性フェノール樹脂]
本実施形態における、エーテル結合、ヒドロキシル基、エステル結合、カルボキシル基、チオエーテル結合、チオール基、チオエステル結合、スルホ基、スルホニル基、ウレタン結合、ウレア結合、チオウレタン結合、及びチオ尿素結合からなる群から選択される少なくとも一つの官能基を有する炭素数4〜100の化合物で変性したフェノール樹脂は、エーテル結合、ヒドロキシル基、エステル結合、カルボキシル基、チオエーテル結合、チオール基、チオエステル結合、スルホ基、スルホニル基、ウレタン結合、ウレア結合、チオウレタン結合、及びチオ尿素結合からなる群から選択される少なくとも一つの官能基を有する炭素数4〜100の化合物で変性されたフェノール樹脂であれば限定されない。
その中で、分子内にエステル結合又はカルボキシル基を有する炭素数4〜100の化合物で変性されたフェノール樹脂が、硬化膜の耐熱性、機械的特性の観点から好ましい。
エステル結合又はカルボキシル基を有する炭素数4〜100の化合物(以下、「エステル結合又はカルボキシル基含有化合物」ともいう。)は、フェノール及びその誘導体又は、フェノール樹脂と反応しうる化合物であれば限定されないが、反応性の観点から、不飽和炭化水素基を有していることが好ましい。この不飽和炭化水素基は、硬化膜の残留応力及び、伸度の観点から、2以上の不飽和基を含むことが好ましい。また、樹脂組成物の相溶性及び硬化膜の可撓性の観点からは、不飽和炭化水素基の炭素数は好ましくは炭素数8〜80、より好ましくは炭素数10〜60である。
エステル結合又はカルボキシル基含有化合物で変性されたフェノール樹脂は、フェノール又はその誘導体とエステル結合又はカルボキシル基を有する化合物との反応生成物(以下「エステル結合又はカルボキシル基含有化合物変性フェノール誘導体」ともいう。)と、アルデヒド類との縮重合生成物、又は、フェノール樹脂とエステル結合又はカルボキシル基含有化合物との反応生成物からなる群から選択される少なくとも一つ化合物をさす。
フェノール誘導体としては、例えば、フェノール;o−クレゾール、m−クレゾール、p−クレゾール、o−エチルフェノール、m−エチルフェノール、p−エチルフェノール、o−ブチルフェノール、m−ブチルフェノール、p−ブチルフェノール、2,3−キシレノール、2,4−キシレノール、2,5−キシレノール、2,6−キシレノール、3,4−キシレノール、3,5−キシレノール、2,3,5−トリメチルフェノール、3,4,5−トリメチルフェノール等のアルキルフェノール;メトキシフェノール、2−メトキシ−4−メチルフェノール等のアルコキシフェノール;ビニルフェノール、アリルフェノール等のアルケニルフェノール;ベンジルフェノール等のアラルキルフェノール;メトキシカルボニルフェノール等のアルコキシカルボニルフェノール;ベンゾイルオキシフェノール等のアリールカルボニルフェノール;クロロフェノール等のハロゲン化フェノール;カテコール、レゾルシノール、ピロガロール等のポリヒドロキシベンゼン;ビスフェノールA、ビスフェノールF等のビスフェノール;α−又はβ−ナフトール等のナフトール誘導体;p−ヒドロキシフェニル−2−エタノール、p−ヒドロキシフェニル−3−プロパノール、p−ヒドロキシフェニル−4−ブタノール等のヒドロキシアルキルフェノール;ヒドロキシエチルクレゾール等のヒドロキシアルキルクレゾール;ビスフェノールのモノエチレンオキサイド付加物;ビスフェノールのモノプロピレンオキサイド付加物等のアルコール性水酸基含有フェノール誘導体;p−ヒドロキシフェニル酢酸、p−ヒドロキシフェニルプロピオン酸、p−ヒドロキシフェニルブタン酸、p−ヒドロキシ桂皮酸、ヒドロキシ安息香酸、ヒドロキシフェニル安息香酸、ヒドロキシフェノキシ安息香酸、ジフェノール酸等のカルボキシル基含有フェノール誘導体が挙げられる。また、ビスヒドロキシメチル−p−クレゾール等の上記フェノール誘導体のメチロール化物をフェノール誘導体として用いてもよい。フェノール誘導体は、1種を単独で又は2種以上を組み合わせて用いられる。
エステル結合又はカルボキシル基含有化合物としては、例えば不飽和脂肪酸エステル、不飽和脂肪酸が挙げられる。好適な不飽和脂肪酸エステル、不飽和脂肪酸としては、植物油、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、ガドレイン酸、エルカ酸、ネルボン酸、リノール酸、α−リノレン酸、エレオステアリン酸、ステアリドン酸、アラキドン酸、エイコサペンタエン酸、イワシ酸及びドコサヘキサエン酸、が挙げられる。これらの中でも特に、不飽和脂肪酸エステルである植物油が特に好ましい。
植物油は、グリセリンと不飽和脂肪酸とのエステルであり、ヨウ素価が100以下の不乾性油、100を超えて130未満の半乾性油又は130以上の乾性油がある。不乾性油として、例えば、オリーブ油、あさがお種子油、カシュウ実油、さざんか油、つばき油、ひまし油及び落花生油等が挙げられる。半乾性油として、例えば、コーン油、綿実油及びごま油等が挙げられる。乾性油としては、例えば、桐油、亜麻仁油、大豆油、胡桃油、サフラワー油、ひまわり油、荏の油及び芥子油等が挙げられる。また、これらの植物油を加工して得られる加工植物油を用いてもよい。
上記植物油の中で、フェノール若しくはその誘導体又はフェノール樹脂と植物油との反応において、過度の反応の進行に伴うゲル化を防ぎ、歩留まりが向上する観点から、不乾性油を用いることが好ましい。一方、レジストパターンの密着性、機械特性及び耐熱衝撃性の観点では乾性油を用いることが好ましい。乾性油の中でも、本発明による効果をより有効かつ確実に発揮できることから、桐油、亜麻仁油、大豆油、胡桃油及びサフラワー油が好ましく、桐油及び亜麻仁油がより好ましい。これら植物油は1種を単独で又は2種以上を組み合わせて用いられる。
フェノール又はその誘導体と、エステル結合又はカルボキシル基含有化合物との反応は、50〜130℃で行うことが好ましい。フェノール又はその誘導体と、エステル結合又はカルボキシル基含有化合物との反応割合は、硬化膜の残留応力の観点から、フェノール又はその誘導体100質量部に対し、エステル結合又はカルボキシル基含有化合物1〜100質量部であることが好ましく、5〜50質量部であることがより好ましい。エステル結合又はカルボキシル基含有化合物が1質量部未満では、硬化膜の可とう性が低下する傾向があり、100質量部を超えると、硬化膜の耐熱性が低下する傾向がある。上記反応においては、必要に応じて、p−トルエンスルホン酸、トリフルオロメタンスルホン酸等を触媒として用いてもよい。
上記反応により生成するエステル結合又はカルボキシル基含有化合物変性フェノール誘導体と、アルデヒド類とを重縮合させることにより、エステル結合又はカルボキシル基含有化合物によって変性されたフェノール樹脂が生成する。アルデヒド類は、例えば、ホルムアルデヒド、アセトアルデヒド、フルフラール、ベンズアルデヒド、ヒドロキシベンズアルデヒド、メトキシベンズアルデヒド、ヒドロキシフェニルアセトアルデヒド、メトキシフェニルアセトアルデヒド、クロトンアルデヒド、クロロアセトアルデヒド、クロロフェニルアセトアルデヒド、アセトン、グリセルアルデヒド、グリオキシル酸、グリオキシル酸メチル、グリオキシル酸フェニル、グリオキシル酸ヒドロキシフェニル、ホルミル酢酸、ホルミル酢酸メチル、2−ホルミルプロピオン酸、2−ホルミルプロピオン酸メチル、ピルビン酸、レプリン酸、4−アセチルブチル酸、アセトンジカルボン酸及び3,3’−4,4’−ベンゾフェノンテトラカルボン酸から選ばれる。また、パラホルムアルデヒド、トリオキサン等のホルムアルデヒドの前駆体を用いてもよい。これらのアルデヒド類は1種を単独で又は2種以上を組み合わせて用いられる。
上記アルデヒド類と、上記エステル結合又はカルボキシル基含有化合物変性フェノール誘導体との反応は、重縮合反応であり、従来公知のフェノール樹脂の合成条件を用いることができる。反応は酸又は塩基等の触媒の存在下で行うことが好ましく、樹脂の重合度(分子量)の観点から酸触媒を用いることがより好ましい。酸触媒としては、例えば、塩酸、硫酸、ぎ酸、酢酸、p−トルエンスルホン酸及びシュウ酸が挙げられる。これらの酸触媒は、1種を単独で又は2種以上を組み合わせて用いることができる。
上記重縮合反応は、通常反応温度100〜120℃で行うことが好ましい。また、反応時間は使用する触媒の種類や量により異なるが、通常1〜50時間である。反応終了後、反応生成物を200℃以下の温度で減圧脱水することでエステル結合又はカルボキシル基含有化合物によって変性されたフェノール樹脂が得られる。なお、反応には、トルエン、キシレン、メタノール等の溶媒を用いることができる。
エステル結合又はカルボキシル基含有化合物によって変性されたフェノール樹脂は、上述のエステル結合又はカルボキシル基含有化合物変性フェノール誘導体を、m−キシレンのようなフェノール以外の化合物とともにアルデヒド類と重縮合することにより得ることもできる。この場合、フェノール誘導体とエステル結合又はカルボキシル基含有化合物とを反応させて得られる化合物に対するフェノール以外の化合物のモル比は、仕込み0.5未満であると好ましい。
エステル結合又はカルボキシル基含有化合物で変性されたフェノール樹脂は、フェノール樹脂と、エステル結合又はカルボキシル基含有化合物とを反応させて得ることもできる。フェノール樹脂は、フェノール誘導体とアルデヒド類の重縮合生成物である。この場合、フェノール誘導体及びアルデヒド類としては、上述したフェノール誘導体及びアルデヒド類と同様のものを用いることができ、上述したような従来公知の条件でフェノール樹脂を合成することができる。
フェノール誘導体とアルデヒド類から得られるフェノール樹脂の具体例としては、フェノール/ホルムアルデヒドノボラック樹脂、クレゾール/ホルムアルデヒドノボラック樹脂、キシリレノール/ホルムアルデヒドノボラック樹脂、レゾルシノール/ホルムアルデヒドノボラック樹脂及びフェノール−ナフトール/ホルムアルデヒドノボラック樹脂が挙げられる。
フェノール樹脂とエステル結合又はカルボキシル基含有化合物との反応は、通常50〜130℃で行うことが好ましい。また、フェノール樹脂と、エステル結合又はカルボキシル基含有化合物との反応割合は、硬化膜の可とう性の観点から、フェノール樹脂100質量部に対し、エステル結合又はカルボキシル基含有化合物1〜100質量部であることが好ましく、2〜70質量部であることがより好ましく、5〜50質量部であることが更に好ましい。エステル結合又はカルボキシル基含有化合物が1質量部以上であれば、硬化膜の可とう性が十分に高い傾向にあり、100質量部以下であれば、反応中にゲル化が抑えられ、かつ硬化膜の耐熱性が高い傾向にある。このとき、必要に応じて、p−トルエンスルホン酸、トリフルオロメタンスルホン酸等を触媒として用いてもよい。なお、反応にはトルエン、キシレン、メタノール、テトラヒドロフランなどの溶媒を用いることができる。
以上のような方法により生成するエステル結合又はカルボキシル基含有化合物によって変性されたフェノール樹脂のフェノール性水酸基に、更に多塩基酸無水物を反応させることにより酸変性したフェノール樹脂を用いることもできる。多塩基酸無水物で酸変性することにより、カルボキシ基が導入され、アルカリ水溶液(現像液)に対する溶解性がより一層向上する。
多塩基酸無水物は、複数のカルボキシ基を有する多塩基酸のカルボキシ基が脱水縮合して形成された酸無水物基を有していれば、特に限定されない。多塩基酸無水物としては、例えば無水フタル酸、無水コハク酸、オクテニル無水コハク酸、ペンタドデセニル無水コハク酸、無水マレイン酸、無水イタコン酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、無水ナジック酸、3,6−エンドメチレンテトラヒドロ無水フタル酸、メチルエンドメチレンテトラヒドロ無水フタル酸、テトラブロモ無水フタル酸及び無水トリメリット酸等の二塩基酸無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、ジフェニルエーテルテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、無水ピロメリット酸及びベンゾフェノンテトラカルボン酸二無水物等の芳香族四塩基酸二無水物が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いてもよい。これらの中でも、多塩基酸無水物は二塩基酸無水物であることが好ましく、テトラヒドロ無水フタル酸、無水コハク酸及びヘキサヒドロ無水フタル酸からなる群より選ばれる1種以上であることがより好ましい。この場合、さらに良好な形状を有するレジストパターンを形成できるという利点がある。
フェノール性水酸基と多塩基酸無水物との反応は、50〜130℃で行うことができる。この反応において、多塩基酸無水物をフェノール性水酸基1モルに対して、0.10〜0.80モルを反応させることが好ましく、0.15〜0.60モル反応させることがより好ましく、0.20〜0.40モル反応させることが更に好ましい。多塩基酸無水物が0.10モル未満では、現像性が低下する傾向にあり、0.80モルを超えると、未露光部の耐アルカリ性が低下する傾向にある。
なお、上記反応には、反応を迅速に行う観点から、必要に応じて、触媒を含有させてもよい。触媒としては、トリエチルアミン等の3級アミン、トリエチルベンジルアンモニウムクロライド等の4級アンモニウム塩、2−エチル−4−メチルイミダゾール等のイミダゾール化合物、トリフェニルホスフィン等のリン化合物が挙げられる。
多塩基酸無水物で更に変性したフェノール樹脂の酸価は、30〜200mgKOH/gであることが好ましく、40〜170mgKOH/gであることがより好ましく、50〜150mgKOH/gであることが更に好ましい。酸価が30mgKOH/g以上であれば、アルカリ現像時間が短時間の傾向にあり、200mgKOH/g以下であれば、未露光部の耐現像液性が向上する傾向にある。
エステル結合又はカルボキシル基含有化合物で変性されたフェノール樹脂の分子量は、アルカリ水溶液に対する溶解性や、感光特性と硬化膜物性とのバランスを考慮すると、重量平均分子量で1,000〜100,000が好ましく、2000〜100,000がより好ましい。ここで、重量平均分子量は、ゲルパーミエーションクロマトグラフィー法により測定し、標準ポリスチレン検量線より換算して得た値である。
本実施形態では、前記一般式(1)で表される繰り返し単位を有するフェノール樹脂、及びエステル結合又はカルボキシル基含有化合物で変性されたフェノール樹脂から選択される少なくとも1種のフェノール樹脂(a3)にさらにノボラック、ポリヒドロキシスチレンから選択されるフェノール樹脂(以下a4とする)を混合することができる。(a3)と(a4)の混合比は、質量比で(a3)/(a4)=5/95〜95/5の範囲である。この混合比は、アルカリ水溶液への溶解性、レジストパターンを形成する際の感度と解像性、及び硬化膜の残留応力及び、伸度の観点から、(a3)/(a4)=5/95〜95/5が好ましく、(a3)/(a4)=10/90〜90/10であることがより好ましく、(a3)/(a4)=15/85〜85/15であることがさらに好ましい。当該混合用のノボラック、ポリヒドロキシスチレンは、上記[一般式(1)で表されるフェノール樹脂]の欄の一般式(1)において、aが1の場合において用いる混合用のノボラック、ポリヒドロキシスチレンに示したものと同じである。また、上記のノボラック、ポリヒドロキシスチレン以外のフェノール樹脂やアルカリ溶解性の樹脂も本実施形態の組成物に含むことができ、この場合、それらは、前記一般式(1)で表される繰り返し単位を有するフェノール樹脂、及び/又は前記少なくとも一つの官能基を有する炭素数4〜100の化合物で変性したフェノール樹脂と当該その他のフェノール樹脂やアルカリ溶解性の総量に対して、10〜90質量%の範囲で含まれ、より好ましくは15〜85質量%の範囲で含まれる。
[(B)カルボン酸又はその誘導体]
本実施形態では、不飽和結合を有する炭素数3〜35のモノカルボン酸化合物、不飽和結合を有する炭素数4〜100のカルボン酸エステル化合物、及びこれらの混合物からなる群から選択される少なくとも1つのカルボン又はその酸誘導体を含む。
(B)不飽和結合を有するカルボン酸又はその誘導体を組成物中に含むことより、これらの化合物を用いない場合と比較して、アルカリ現像後の残渣を低減することができる。残渣が低減される化学メカニズムは定かではないが、次のように考えられる。現像後の残渣の原因としては、フェノール樹脂骨格中のフェノール部位がアルカリ現像時に酸化され、キノン等になり、アルカリ溶解性が低下し、残渣を発生すると考えられる。特に、現像時間が長い場合、多サイクル現像の場合等は、より残渣が発生しやすい傾向にある。 一方、不飽和結合を有するカルボン酸又はその誘導体を組成物中に含むことにより、化合物のカルボキシル基又はエステル基が、フェノール樹脂骨格中のフェノール水酸基と水素結合を形成し、かつ、不飽和結合は反応性が高いため、フェノールの酸化が抑制され、現像時の残渣除去効果が高かったと考えられる。
不飽和結合を有する炭素数3〜35のモノカルボン酸化合物は、1以上の不飽和結合を有し、炭素数3〜35の1価のカルボン酸であれば限定されないが、現像後の残渣抑制の観点から、下記一般式(3):
Figure 2014186124
{式中、Pは、不飽和結合を有し、水酸基で置換されていてもよい、炭素数2〜30の1価の脂肪族基、炭素数3〜30の1価の脂環式基、及び炭素数6〜30の芳香族環を有する1価の有機基からなる群から選ばれる1価の有機基を表す。}
で表される構造を有するモノカルボン酸であることが好ましく、これらの中でも、前記一般式(3)中のPが、不飽和結合を有し、水酸基で置換されていてもよい、炭素数2〜30の1価の脂肪族基、炭素数3〜30の1価の脂環式基、からなる群から選ばれる1価の有機基で表される構造を有するモノカルボン酸であることがさらに好ましい。
また、Pは、溶媒への溶解性の観点から、不飽和結合を有する炭素数2〜30の1価の脂肪族基であることが好ましい。そして、硬化膜の耐熱性及び、伸度の観点から、Pは、2以上の不飽和結合を有することが好ましく、現像後の残渣抑制及び、硬化膜の残留応力の観点から、Pは、不飽和結合を有する炭素数8〜28の1価の脂環式基が好ましく、また不飽和結合を有する炭素数10〜26の1価の脂環式基がさらに好ましい。
不飽和結合を有する炭素数3〜35のモノカルボン酸の具体例としては、クロトン酸、ミリストレイン酸、パルミトレイン酸、オレイン酸、エライジン酸、バクセン酸、リシノール酸、ガドレイン酸、エルカ酸、ネルボン酸、リノール酸、α−リノレン酸、エレオステアリン酸、ステアリドン酸、アラキドン酸、エイコサペンタエン酸、イワシ酸及びドコサヘキサエン酸などが挙げられるが、これらに限定されるものではない。これらは単独で又は2種類以上を組み合わせて使用される。
不飽和結合を有する炭素数4〜100のカルボン酸エステル化合物は、1以上の不飽和結合を有し、炭素数4〜100のカルボン酸エステルであれば限定されないが、組成物の保存安定性の観点から、上記一般式(3)のモノカルボン酸化合物と、炭素数1〜20のアルコール化合物とがエステル結合しているカルボン酸エステルであることが好ましい。
その中でも、コストの観点から、上記一般式(3)のモノカルボン酸化合物とグリセリンとがエステル結合しているカルボン酸エステル化合物であることが好ましい。
一般式(3)のモノカルボン酸化合物と炭素数1〜20のアルコール化合物とがエステル結合しているカルボン酸エステル化合物の具体例としては、アクリル酸メチル、バクセン酸メチル、オレイン酸メチル、リノール酸メチル、リノレン酸メチル、アラキドン酸メチル、エルカ酸メチル、イワシ酸メチル、ネルボン酸メチル及び、当該カルボン酸エステルを含む下記の植物油が挙げられるが、これらに限定されるものではない。
一般式(3)のモノカルボン酸化合物とグリセリンとがエステル結合しているカルボン酸エステル化合物を含む混合物の具体例としては、植物油が挙げられる。植物油には、ヨウ素価が100以下の不乾性油、100を超えて130未満の半乾性油、130以上の乾性油があり、不乾性油として、例えば、オリーブ油、あさがお種子油、カシュウ実油、さざんか油、つばき油、ひまし油及び落花生油が挙げられる。半乾性油として、例えば、コーン油、綿実油及びごま油が挙げられる。乾性油としては、例えば、桐油、亜麻仁油、大豆油、胡桃油、サフラワー油、ひまわり油、荏の油及び芥子油などが挙げられるが、これらに限定されるものではない。桐油の成分としては、エレオステアリン酸、オレイン酸、その他のカルボン酸及び、これらのカルボン酸とグリセリンとがエステル結合しているカルボン酸エステル等、が挙げられ、亜麻仁油の成分としては、α−リノレン酸、リノール酸、その他のカルボン酸及び、これらのカルボン酸とグリセリンとがエステル結合しているカルボン酸エステル、等が挙げられ、大豆油の成分としては、リノール酸、オレイン酸、パルミチン酸、リノレン酸、その他のカルボン酸及び、これらのカルボン酸とグリセリンとがエステル結合しているカルボン酸エステル、等が挙げられ、胡桃油の成分としては、リノール酸、オレイン酸、リノレン酸、その他のカルボン酸及び、これらのカルボン酸とグリセリンとがエステル結合しているカルボン酸エステル、等が挙げられ、サフラワー油の成分としては、オレイン酸、リノール酸、パルミチン酸、リノレン酸、その他のカルボン酸及び、これらのカルボン酸とグリセリンとがエステル結合しているカルボン酸エステル、等が挙げられる。また、これらの植物油を加工又は、精製して得られる植物油を用いてもよい。これらは単独で又は2種類以上を組み合わせて使用される。
(B)カルボン酸又はその誘導体の配合量は、(A)樹脂100質量部に対し、0.01〜20質量部であり、好ましくは0.05〜10質量部であり、さらに好ましくは0.1〜5質量部、最も好ましくは0.5〜2質量部である。上記配合量が0.01質量部以上である場合、現像後の残渣を抑制することができ、一方、10質量部以下である場合、組成物の保存安定性に優れる。
[(C)光酸発生剤]
本実施形態では、感光性樹脂組成物は、紫外線、電子線、X線等に代表される活性光線(すなわち放射線)に感応して樹脂パターンを形成できる組成物である。感光性樹脂組成物は、ネガ型(すなわち未照射部が現像により溶出するもの)又はポジ型(すなわち照射部が現像により溶出するもの)のいずれであってもよい。
本実施形態では、感光性樹脂組成物がネガ型の感光性樹脂組成物として使用される場合、(C)光酸発生剤が放射線照射を受けて酸を発生し、発生した酸が上記フェノール樹脂(A)と架橋剤との架橋反応を引き起こすことで、放射線照射部が現像液に不溶となる。ネガ型に使用できる(C)光酸発生剤としては、例えば、以下の化合物が挙げられる:
(i)トリクロロメチル−s−トリアジン類
トリス(2,4,6−トリクロロメチル)−s−トリアジン、2−フェニル−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3−クロロフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(2−クロロフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メトキシフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3−メトキシフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(2−メトキシフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メチルチオフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3−メチルチオフェニル)ビス(4,6−トリクロロメチル−s−トリアジン、2−(2−メチルチオフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メトキシナフチル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3−メトキシナフチル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(2−メトキシナフチル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3,4,5−トリメトキシ−β−スチリル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メチルチオ−β―スチリル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(3−メチルチオ−β―スチリル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(2−メチルチオ−β−スチリル)−ビス(4,6−トリクロロメチル)−s−トリアジン等;
(ii)ジアリールヨードニウム塩類
ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラフルオロホスフェート、ジフェニルヨードニウムテトラフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホナート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム−p−トルエンスルホナート、4−メトキシフェニルフェニルヨードニウムテトラフルオロボレート、4−メトキシフェニルフェニルヨードニウムヘキサフルオロホスホネート、4−メトキシフェニルフェニルヨードニウムヘキサフルオロアルセネート、4−メトキシフェニルフェニルヨードニウムトリフルオロメタンスホナート、4−メトキシフェニルフェニルヨードニウムトリフルオロアセテート、4−メトキシフェニルフェニルヨードニウム−p−トルエンスルホナート、ビス(4−ter−ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(4−ter−ブチルフェニル)ヨードニウムヘキサフルオロアルセネート、ビス(4−ter−ブチルフェニル)ヨードニウムトリフルオロメタンスルホナート、ビス(4−ter−ブチルフェニル)ヨードニウムトリフルオロアセテート、ビス(4−ter−ブチルフェニル)ヨードニウム−p−トルエンスルホナート等;
(iii)トリアリールスルホニウム塩類
トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロホスホネート、トリフェニルスルホニウムヘキサフルオロアルセネート、トリフェニルスルホニウムメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム−p−トルエンスルホナート、4−メトキシフェニルジフェニルスルホニウムテトラフルオロボレート、4−メトキシフェニルジフェニルスルホニウムヘキサフルオロホスホネート、4−メトキシフェニルジフェニルスルホニウムヘキサフルオロアルセネート、4−メトキシフェニルジフェニルスルホニウムメタンスルホナート、4−メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4−メトキシフェニルジフェニルスルホニウム−p−トルエンスルホナート、4−フェニルチオフェニルジフェニルテトラフルオロボレート、4−フェニルチオフェニルジフェニルヘキサフルオロホスホネート、4−フェニルチオフェニルジフェニルヘキサフルオロアルセネート、4−フェニルチオフェニルジフェニルトリフルオロメタンスルホナート、4−フェニルチオフェニルジフェニルトリフルオロアセテート、4−フェニルチオフェニルジフェニルーp−トルエンスルホナート等。
これらの化合物の内、トリクロロメチル−s−トリアジン類としては、2−(3−クロロフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−クロロフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メチルチオフェニル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メトキシ−β−スチリル)−ビス(4,6−トリクロロメチル)−s−トリアジン、2−(4−メトキシナフチル)−ビス(4,6−トリクロロメチル)−s−トリアジン等を、ジアリールヨードニウム塩類としては、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウムトリフルオロメタンスルホナート、4−メトキシフェニルフェニルヨードニウムトリフルオロメタンスルホナート、4−メトキシフェニルフェニルヨードニウムトリフルオロアセテート等を、そしてトリアリールスルホニウム塩類としては、トリフェニルスルホニウムメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、4−メトキシフェニルジフェニルスルホニウムメタンスルホナート、4−メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4−フェニルチオフェニルジフェニルトリフルオロメタンスルホナート、4−フェニルチオフェニルジフェニルトリフルオロアセテート等を、好適なものとして挙げることができる。
この他にも、(C)光酸発生剤として、以下に示す化合物を用いることもできる。
(1)ジアゾケトン化合物
ジアゾケトン化合物として、例えば、1,3−ジケト−2−ジアゾ化合物、ジアゾベンゾキノン化合物、ジアゾナフトキノン化合物等を挙げることができ、具体例としてはフェノール類の1,2−ナフトキノンジアジド−4−スルホン酸エステル化合物を挙げることができる。
(2)スルホン化合物
スルホン化合物として、例えば、β−ケトスルホン化合物、β−スルホニルスルホン化合物及びこれらの化合物のα−ジアゾ化合物を挙げることができ、具体例として、4−トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェナシルスルホニル)メタン等を挙げることができる。
(3)スルホン酸化合物
スルホン酸化合物として、例えば、アルキルスルホン酸エステル類、ハロアルキルスルホン酸エステル類、アリールスルホン酸エステル類、イミノスルホネート類等を挙げることができる。好ましい具体例としては、ベンゾイントシレート、ピロガロールトリストリフルオロメタンスルホネート、o−ニトロベンジルトリフルオロメタンスルホネート、o−ニトロベンジル−p−トルエンスルホネート等を挙げることができる。
(4)スルホンイミド化合物
スルホンイミド化合物として、例えば、N−(トリフルオロメチルスルホニルオキシ)スクシンイミド、N−(トリフルオロメチルスルホニルオキシ)フタルイミド、N−(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N−(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト−5−エン−2,3−ジカルボキシイミド、N−(トリフルオロメチルスルホニルオキシ)ナフチルイミド等を挙げることができる。
(5)オキシムエステル化合物
オキシムエステル化合物として、具体的には、2−[2−(4−メチルフェニルスルホニルオキシイミノ)]−2,3−ジヒドロチオフェン−3−イリデン]−2−(2−メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG121」)、[2−(プロピルスルホニルオキシイミノ)−2,3−ジヒドロチオフェン−3−イリデン]−2−(2−メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG103」)、[2−(n−オクタンスルホニルオキシイミノ)−2,3−ジヒドロチオフェン−3−イリデン]−2−(2−メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG108」)、α−(n−オクタンスルフォニルオキシイミノ)−4−メトキシベンジルシアニド(チバスペシャルティケミカルズ社商品名「CGI725」)等を挙げることができる。
(6)ジアゾメタン化合物
ジアゾメタン化合物として、具体的には、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン等を挙げることができる。
感度の観点から、とりわけ、上記(5)オキシムエステル化合物が特に好ましい。
本実施形態では、感光性樹脂組成物がネガ型である場合の、フェノール樹脂(A)100質量部に対する(C)光酸発生剤の配合量は、0.1〜50質量部であることが好ましく、1〜40質量部であることがより好ましい。該配合量が0.1質量部以上であれば感度の向上効果を良好に得ることができ、該配合量が50質量部以下であれば硬化膜の機械物性が良好である。
本実施形態では、感光性樹脂組成物はポジ型の感光性樹脂組成物として使用することも可能である。この場合、上記(i)〜(iii)、及び(1)〜(6)で示される光酸発生剤及び/又はキノンジアジド化合物が好適に用いられる。その中でも硬化後の物性の観点からキノンジアジド化合物が好ましい。これはキノンジアジド化合物が硬化時に熱分解し、硬化後の膜中に残存する量が極めて低いためである。
ポジ型の(C)光酸発生剤は、キノンジアジド化合物であることが好ましい。前記のキノンジアジド化合物としては、1,2−ベンゾキノンジアジド構造又は1,2−ナフトキノンジアジド構造(後者の構造を有する化合物を、以下、「NQD化合物」ともいう。)を有する化合物が挙げられ、これらの化合物は、例えば、米国特許第2,772,972号明細書、米国特許第2,797,213号明細書、米国特許第3,669,658号明細書等により公知である。該NQD化合物は、以下詳述する複数のフェノール性水酸基を有する化合物(以下「ポリヒドロキシ化合物」ともいう。)の1,2−ナフトキノンジアジド−4−スルホン酸エステル、及び該ポリヒドロキシ化合物の1,2−ナフトキノンジアジド−5−スルホン酸エステルから成る群から選ばれる少なくとも1種の化合物である。
該NQD化合物は、常法に従って、ナフトキノンジアジドスルホン酸を、クロルスルホン酸又は塩化チオニル等でスルホニルクロライドとし、得られたナフトキノンジアジドスルホニルクロライドと、ポリヒドロキシ化合物とを縮合反応させることにより得られる。例えば、ポリヒドロキシ化合物と、1,2−ナフトキノンジアジド−5−スルホニルクロライド又は1,2−ナフトキノンジアジド−4−スルホニルクロライドの所定量とを、ジオキサン、アセトン、又はテトラヒドロフラン等の溶媒中、トリエチルアミン等の塩基性触媒の存在下で反応させてエステル化を行い、得られた生成物を水洗、乾燥することにより得ることができる。
感度及び伸度等の硬化膜物性の観点から好ましいNQD化合物の例としては、例えば、下記一般式群で表されるものが挙げられる。
Figure 2014186124
{式中、Qは、水素原子、又は下記式群:
Figure 2014186124
のいずれかで表されるナフトキノンジアジドスルホン酸エステル基であるが、全てのQが同時に水素原子であることはない。}。
また、NQD化合物として、同一分子中に4−ナフトキノンジアジドスルホニル基及び5−ナフトキノンジアジドスルホニル基を有するナフトキノンジアジドスルホニルエステル化合物を用いることもできるし、4−ナフトキノンジアジドスルホニルエステル化合物と5−ナフトキノンジアジドスルホニルエステル化合物とを混合して使用することもできる。
上記NQD化合物は、単独で使用しても2種類以上混合して使用してもよい。
本実施形態では、感光性樹脂組成物がポジ型である場合の(C)光酸発生剤の使用量は、本組成物のフェノール樹脂(A)100質量部に対して、好ましくは0.1〜70質量部であり、より好ましくは1〜40質量部、さらに好ましくは5〜30質量部である。この使用量が0.1質量部以上であれば良好な感度が得られ、70質量部以下であれば硬化膜の機械物性が良好である。
[溶剤]
本実施形態における感光性樹脂組成物には、必要に応じて溶剤を含むことができる。
溶剤としては、アミド類、スルホキシド類、ウレア類、ケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類、炭化水素類等が挙げられ、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、乳酸エチル、乳酸メチル、乳酸ブチル、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ベンジルアルコール、フェニルグリコール、テトラヒドロフルフリルアルコール、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、モルフォリン、ジクロロメタン、1,2−ジクロロエタン、1,4−ジクロロブタン、クロロベンゼン、o−ジクロロベンゼン、アニソール、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン等を使用することができる。中でも、樹脂の溶解性、樹脂組成物の安定性、及び基板への接着性の観点から、N−メチル−2−ピロリドン、ジメチルスルホキシド、テトラメチル尿素、酢酸ブチル、乳酸エチル、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ジエチレングリコールジメチルエーテル、ベンジルアルコール、フェニルグリコール、及びテトラヒドロフルフリルアルコールが好ましい。
本発明の感光性樹脂組成物において、溶剤の使用量は、(A)フェノール樹脂100質量部に対して、好ましくは100〜1000質量部であり、より好ましくは120〜700質量部であり、さらに好ましくは125〜500質量部の範囲である。
[その他の成分]
本発明の感光性樹脂組成物には、必要に応じて、(D)架橋剤、(E)熱酸発生剤、シランカップリング剤、染料、溶解促進剤を含有させることが可能である。
架橋剤は、本発明の感光性樹脂組成物を用いて形成されたレリーフパターンを加熱硬化する際に、(A)フェノール樹脂と架橋しうるか、または架橋剤自身が架橋ネットワークを形成することが出来る化合物をいう。架橋剤は分子内に架橋基を2個以上有する構造を取り、感光性樹脂組成物から形成された硬化膜の熱特性、機械特性、リフロー処理適用性をさらに向上することが出来る。
架橋剤としては、例えば、メチロール基および/またはアルコキシメチル基含有化合物である、サイメル(登録商標)300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170、1174、UFR65、300、マイコート102、105(以上、三井サイテック社製)、ニカラック(登録商標)MX−270、−280、−290、ニカラックMS―11、ニカラックMW―30、−100、−300、−390、−750(以上、三和ケミカル社製)、DML−OCHP、DML−MBPC、DML−BPC、DML−PEP、DML−34X、DML−PSBP、DML−PTBP、DML−PCHP、DML−POP、DML−PFP、DML−MBOC、BisCMP−F、DML−BisOC−Z、DML−BisOCHP−Z、DML−BisOC−P、DMOM−PTBT、TMOM−BP、TMOM−BPA、TML−BPAF−MF(以上、本州化学工業社製)、ベンゼンジメタノール、ビス(ヒドロキシメチル)クレゾール、ビス(ヒドロキシメチル)ジメトキシベンゼン、ビス(ヒドロキシメチル)ジフェニルエーテル、ビス(ヒドロキシメチル)ベンゾフェノン、ヒドロキシメチル安息香酸ヒドロキシメチルフェニル、ビス(ヒドロキシメチル)ビフェニル、ジメチルビス(ヒドロキシメチル)ビフェニル、ビス(メトキシメチル)ベンゼン、ビス(メトキシメチル)クレゾール、ビス(メトキシメチル)ジメトキシベンゼン、ビス(メトキシメチル)ジフェニルエーテル、ビス(メトキシメチル)ベンゾフェノン、メトキシメチル安息香酸メトキシメチルフェニル、ビス(メトキシメチル)ビフェニル、ジメチルビス(メトキシメチル)ビフェニル等が挙げられる。
また、オキシラン化合物であるフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノール型エポキシ樹脂、トリスフェノール型エポキシ樹脂、テトラフェノール型エポキシ樹脂、フェノール−キシリレン型エポキシ樹脂、ナフトール−キシリレン型エポキシ樹脂、フェノール− ナフトール型エポキシ樹脂、フェノール−ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族エポキシ樹脂、ジエチレングリコールジグリシジルエーテル、ソルビトールポリグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリメチロールプロパンポリグルシジルエーテル、1,1,2,2−テトラ(p−ヒドロキシフェニル)エタンテトラグリシジルエーテル、グリセロールトリグリシジルエーテル、オルソセカンダリーブチルフェニルグリシジルエーテル、1,6−ビス(2,3−エポキシプロポキシ)ナフタレン、ジグリセロールポリグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、YDB − 340、YDB−412、YDF−2001、YDF−2004(以上商品名、新日鐵化学(株)製 )、NC−3000−H、EPPN−501H、EOCN−1020、NC−7000L、EPPN−201L 、XD−1000、EOCN−4600(以上商品名、日本化薬(株)製)、エピコート(登録商標)1001、エピコート1007、エピコート1009、エピコート5050、エピコート5051、エピコート1031S 、エピコート180S65、エピコート157H70、YX−315−75(以上商品名、ジャパンエポキシレジン(株)製)、EHPE3150 、プラクセルG402、PUE101、PUE105(以上商品名、ダイセル化学工業(株)製)、エピクロン(登録商標)830、850、1050、N−680、N−690、N−695、N−770、HP−7200、HP−820、EXA−4850−1000(以上商品名、DIC社製)、デナコール(登録商標)EX−201、EX−251、EX−203、EX−313、EX−314、EX−321、EX−411、EX−511、EX−512、EX−612、EX−614、EX−614B、EX−711、EX−731、EX−810、EX−911、EM−150(以上商品名、ナガセケムテックス社製)、エポライト(登録商標)70P、エポライト100MF(以上商品名、共栄社化学製)等が挙げられる。
また、イソシアネート基含有化合物である、4,4’−ジフェニルメタンジイソシアネート、トリレンジイソシアナート、1,3−フェニレンビスメチレンジイソシアネート、ジシクロヘキシルメタン―4,4’−ジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、タケネート(登録商標)500、600、コスモネート(登録商標)NBDI、ND(以上商品名、三井化学社製)デュラネート(登録商標)17B−60PX、TPA−B80E、MF−B60X、MF−K60X、E402−B80T(以上商品名、旭化成ケミカルズ社製)等が挙げられる。
また、ビスマレイミド化合物である、4,4’−ジフェニルメタンビスマレイミド、フェニルメタンマレイミド、m−フェニレンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド、3,3’−ジメチル−5,5’−ジエチル−4,4’−ジフェニルメタンビスマレイミド、4−メチル−1,3−フェニレンビスマレイミド、1,6’−ビスマレイミド−(2,2,4−トリメチル)ヘキサン、4,4’−ジフェニルエーテルビスマレイミド、4,4’−ジフェニルスルフォンビスマレイミド、1,3−ビス(3−マレイミドフェノキシ)ベンゼン、1,3−ビス(4−マレイミドフェノキシ)ベンゼン、BMI−1000、BMI−1100、BMI−2000、BMI−2300、BMI−3000、BMI−4000、BMI−5100、BMI−7000、BMI−TMH、BMI−6000、BMI−8000(以上商品名、大和化成工業(株)製)等が挙げられるが、上述した様に熱架橋する化合物であれば、これらに限定されない。
架橋剤を使用する場合の配合量としては、フェノール樹脂(A)100質量部に対して、0.1〜40質量部が好ましく、1〜30質量部がより好ましい。該配合量が0.1質量部以上であれば熱硬化膜の熱物性及び機械強度が良好であり、40質量部以下であれば組成物のワニス状態での安定性及び熱硬化膜の引っ張り伸度が良好である。
熱酸発生剤は、硬化温度を下げた場合でも、良好な硬化物の熱物性および機械的物性を発現させるという観点から、配合することが好ましい。
熱酸発生剤としては、熱により酸を生成する機能を有するオニウム塩等の強酸と塩基とから形成される塩や、イミドスルホナートが挙げられる。
オニウム塩としては、例えば、アリールジアゾニウム塩、ジフェニルヨードニウム塩等のジアリールヨードニウム塩;ジ(t−ブチルフェニル)ヨードニウム塩等のジ(アルキルアリール)ヨードニウム塩;トリメチルスルホニウム塩のようなトリアルキルスルホニウム塩;ジメチルフェニルスルホニウム塩等のジアルキルモノアリールスルホニウム塩;ジフェニルメチルスルホニウム塩等のジアリールモノアルキルヨードニウム塩;トリアリールスルホニウム塩等が挙げられる。
これらの中で、パラトルエンスルホン酸のジ(t−ブチルフェニル)ヨードニウム塩、トリフルオロメタンスルホン酸のジ(t−ブチルフェニル)ヨードニウム塩、トリフルオロメタンスルホン酸のトリメチルスルホニウム塩、トリフルオロメタンスルホン酸のジメチルフェニルスルホニウム塩、トリフルオロメタンスルホン酸のジフェニルメチルスルホニウム塩、ノナフルオロブタンスルホン酸のジ(t−ブチルフェニル)ヨードニウム塩、カンファースルホン酸のジフェニルヨードニウム塩、エタンスルホン酸のジフェニルヨードニウム塩、ベンゼンスルホン酸のジメチルフェニルスルホニウム塩、トルエンスルホン酸のジフェニルメチルスルホニウム塩が好ましい。
また、強酸と塩基とから形成される塩としては、上述のオニウム塩の他、次のような強酸と塩基とから形成される塩、例えば、ピリジニウム塩を用いることもできる。強酸としては、p−トルエンスルホン酸、ベンゼンスルホン酸のようなアリールスルホン酸、カンファースルホン酸、トリフルオロメタンスルホン酸、ノナフルオロブタンスルホン酸のようなパーフルオロアルキルスルホン酸、メタンスルホン酸、エタンスルホン酸、ブタンスルホン酸のようなアルキルスルホン酸等が挙げられる。塩基としては、ピリジン、2,4,6−トリメチルピリジンのようなアルキルピリジン、2−クロロ−N−メチルピリジンのようなN−アルキルピリジン、ハロゲン化−N−アルキルピリジン等が挙げられる。
イミドスルホナートとしては、例えば、ナフトイルイミドスルホナートやフタルイミドスルホナート等を用いることができるが、熱により酸が発生する化合物であれば限定されない。
熱酸発生剤を使用する場合の配合量としては、(A)フェノール樹脂100質量部に対し、0.1〜30質量部が好ましく、0.5〜10質量部がより好ましく、1〜5質量部であることがさらに好ましい。
シランカップリング剤としては、3−メルカプトプロピルトリメトキシシラン(信越化学工業株式会社製:商品名 KBM803、チッソ株式会社製:商品名 サイラエースS810)、3−メルカプトプロピルトリエトキシシラン(アズマックス株式会社製:商品名 SIM6475.0)、3−メルカプトプロピルメチルジメトキシシラン(信越化学工業株式会社製:商品名 LS1375、アズマックス株式会社製:商品名 SIM6474.0)、メルカプトメチルトリメトキシシラン(アズマックス株式会社製:商品名 SIM6473.5C)、メルカプトメチルメチルジメトキシシラン(アズマックス株式会社製:商品名 SIM6473.0)、3−メルカプトプロピルジエトキシメトキシシラン、3−メルカプトプロピルエトキシジメトキシシラン、3−メルカプトプロピルトリプロポキシシラン、3−メルカプトプロピルジエトキシプロポキシシラン、3−メルカプトプロピルエトキシジプロポキシシラン、3−メルカプトプロピルジメトキシプロポキシシラン、3−メルカプトプロピルメトキシジプロポキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルジエトキシメトキシシラン、2−メルカプトエチルエトキシジメトキシシラン、2−メルカプトエチルトリプロポキシシラン、2−メルカプトエチルトリプロポキシシラン、2−メルカプトエチルエトキシジプロポキシシラン、2−メルカプトエチルジメトキシプロポキシシラン、2−メルカプトエチルメトキシジプロポキシシラン、4−メルカプトブチルトリメトキシシラン、4−メルカプトブチルトリエトキシシラン、4−メルカプトブチルトリプロポキシシラン、N−(3−トリエトキシシリルプロピル)ウレア(信越化学工業株式会社製:商品名 LS3610、アズマックス株式会社製:商品名 SIU9055.0)、N−(3−トリメトキシシリルプロピル)ウレア(アズマックス株式会社製:商品名 SIU9058.0)、N−(3−ジエトキシメトキシシリルプロピル)ウレア、N−(3−エトキシジメトキシシリルプロピル)ウレア、N−(3−トリプロポキシシリルプロピル)ウレア、N−(3−ジエトキシプロポキシシリルプロピル)ウレア、N−(3−エトキシジプロポキシシリルプロピル)ウレア、N−(3−ジメトキシプロポキシシリルプロピル)ウレア、N−(3−メトキシジプロポキシシリルプロピル)ウレア、N−(3−トリメトキシシリルエチル)ウレア、N−(3−エトキシジメトキシシリルエチル)ウレア、N−(3−トリプロポキシシリルエチル)ウレア、N−(3−トリプロポキシシリルエチル)ウレア、N−(3−エトキシジプロポキシシリルエチル)ウレア、N−(3−ジメトキシプロポキシシリルエチル)ウレア、N−(3−メトキシジプロポキシシリルエチル)ウレア、N−(3−トリメトキシシリルブチル)ウレア、N−(3−トリエトキシシリルブチル)ウレア、N−(3−トリプロポキシシリルブチル)ウレア、3−(m−アミノフェノキシ)プロピルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0598.0)、m−アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.0)、p−アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.1)アミノフェニルトリメトキシシラン(アズマックス株式会社製:商品名 SLA0599.2)、2−(トリメトキシシリルエチル)ピリジン(アズマックス株式会社製:商品名 SIT8396.0)、2−(トリエトキシシリルエチル)ピリジン、2−(ジメトキシシリルメチルエチル)ピリジン、2−(ジエトキシシリルメチルエチル)ピリジン、(3−トリエトキシシリルプロピル)−t−ブチルカルバメート、(3−グリシドキシプロピル)トリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、テトラ−n−プロポキシシラン、テトラ−i−プロポキシシラン、テトラ−n−ブトキシシラン、テトラ−i−ブトキシシラン、テトラ−t−ブトキシシラン、テトラキス(メトキシエトキシシラン)、テトラキス(メトキシ−n−プロポキシシラン)、テトラキス(エトキシエトキシシラン)、テトラキス(メトキシエトキシエトキシシラン)、ビス(トリメトキシシリル)エタン、ビス(トリメトキシシリル)ヘキサン、ビス(トリエトキシシリル)メタン、ビス(トリエトキシシリル)エタン、ビス(トリエトキシシリル)エチレン、ビス(トリエトキシシリル)オクタン、ビス(トリエトキシシリル)オクタジエン、ビス[3−(トリエトキシシリル)プロピル]ジスルフィド、ビス[3−(トリエトキシシリル)プロピル]テトラスルフィド、ジ−t−ブトキシジアセトキシシラン、ジ−i−ブトキシアルミノキシトリエトキシシラン、ビス(ペンタジオネート)チタン−O,O’−ビス(オキシエチル)−アミノプロピルトリエトキシシラン、フェニルシラントリオール、メチルフェニルシランジオール、エチルフェニルシランジオール、n−プロピルフェニルシランジオール、イソプロピルフェニルシランジオール、n−ブチルシフェニルシランジオール、イソブチルフェニルシランジオール、tert−ブチルフェニルシランジオール、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、エチルメチルフェニルシラノール、n−プロピルメチルフェニルシラノール、イソプロピルメチルフェニルシラノール、n−ブチルメチルフェニルシラノール、イソブチルメチルフェニルシラノール、tert−ブチルメチルフェニルシラノール、エチルn−プロピルフェニルシラノール、エチルイソプロピルフェニルシラノール、n−ブチルエチルフェニルシラノール、イソブチルエチルフェニルシラノール、tert−ブチルエチルフェニルシラノール、メチルジフェニルシラノール、エチルジフェニルシラノール、n−プロピルジフェニルシラノール、イソプロピルジフェニルシラノール、n−ブチルジフェニルシラノール、イソブチルジフェニルシラノール、tert−ブチルジフェニルシラノール、トリフェニルシラノール等が挙げられるが、これらに限定されない。これらは単独でも複数組み合わせて用いてもよい。
シランカップリング剤としては、前記したシランカップリング剤の中でも、組成物の保存安定性の観点から、フェニルシラントリオール、トリメトキシフェニルシラン、トリメトキシ(p-トリル)シラン、ジフェニルシランジオール、ジメトキシジフェニルシラン、ジエトキシジフェニルシラン、ジメトキシジ-p-トリルシラン、トリフェニルシラノール、及び下記構造で表されるシランカップリング剤であることが好ましい。
Figure 2014186124
シランカップリング剤を使用する場合の配合量としては、(A)フェノール樹脂100質量部に対して、0.01〜20質量部が好ましい。
染料としては、例えば、メチルバイオレット、クリスタルバイオレット、マラカイトグリーン等が挙げられる。染料の配合量としては、(A)フェノール樹脂100質量部に対して、0.1〜30質量部が好ましい。
溶解促進剤としては、水酸基又はカルボキシル基を有する化合物が好ましい。水酸基を有する化合物の例としては、前述のナフトキノンジアジド化合物に使用しているバラスト剤、並びにパラクミルフェノール、ビスフェノール類、レゾルシノール類、及びMtrisPC、MtetraPC等の直鎖状フェノール化合物、TrisP−HAP、TrisP−PHBA、TrisP−PA等の非直鎖状フェノール化合物(全て本州化学工業社製)、ジフェニルメタンの2〜5個のフェノール置換体、3,3−ジフェニルプロパンの1〜5個のフェノール置換体、2,2−ビス−(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパンと5−ノルボルネン−2,3−ジカルボン酸無水物とをモル比1対2で反応させて得られる化合物、ビス−(3−アミノ−4−ヒドロキシフェニル)スルホンと1,2−シクロヘキシルジカルボン酸無水物とをモル比1対2で反応させて得られる化合物、N−ヒドロキシコハク酸イミド、N−ヒドロキシフタル酸イミド、N−ヒドロキシ5−ノルボルネン−2,3−ジカルボン酸イミド等が挙げられる。カルボキシル基を有する化合物の例としては、3−フェニル乳酸、4−ヒドロキシフェニル乳酸、4−ヒドロキシマンデル酸、3,4−ジヒドロキシマンデル酸、4−ヒドロキシ−3−メトキシマンデル酸、2−メトキシ−2−(1−ナフチル)プロピオン酸、マンデル酸、アトロラクチン酸、α−メトキシフェニル酢酸、O−アセチルマンデル酸、イタコン酸等を挙げることができる。
溶解促進剤を使用する場合の配合量としては、(A)フェノール樹脂100質量部に対して、0.1〜30質量部が好ましい。
<感光性樹脂組成物の製造方法>
本実施形態の別の態様は、少なくとも上記のフェノール樹脂、カルボン酸誘導体、及び光酸発生剤を、上記溶媒に添加して溶解させることを含む、感光性樹脂組成物の製造方法を提供する。ここで、各成分の好ましい配合量は上記のとおりである。
<硬化レリーフパターンの製造方法>
本実施形態の別の態様は、(1)上述した本発明の感光性樹脂組成物を含む感光性樹脂層を基板上に形成する工程、(2)該感光性樹脂層を露光する工程、(3)現像液により露光部又は、未露光部を除去して、レリーフパターンを得る工程、及び(4)該レリーフパターンを加熱処理する工程を含む、硬化レリーフパターンの製造方法を提供する。この方法の一例を以下に説明する。
まず、本実施形態の感光性樹脂組成物を適当な支持体又は基板、例えばシリコンウエハー、セラミック基板、アルミ基板等に塗布する。ここでいう基板には、未加工の基板以外に、例えば半導体素子又は表示体素子が表面に形成された基板も含む。この時、形成するパターンと支持体との耐水接着性を確保するため、あらかじめ支持体又は基板にシランカップリング剤等の接着助剤を塗布しておいてもよい。感光性樹脂組成物の塗布はスピンナーを用いた回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロールコーティング等で行う。
次に、80〜140℃でプリベークして感光性樹脂組成物の塗膜を乾燥させる。乾燥後の感光性樹脂層の厚さとしては、1〜500μmが好ましい。
次に、感光性樹脂層を露光する。露光用の化学線としては、X線、電子線、紫外線、可視光線等が使用できるが、200〜500nmの波長のものが好ましい。パターンの解像度及び取り扱い性の点で、光源波長は水銀ランプのg線、h線又はi線の領域であることが好ましく、単独でも2つ以上の化学線を混合していてもよい。露光装置としてはコンタクトアライナー、ミラープロジェクション、及びステッパーが特に好ましい。露光後、必要に応じて再度80〜140℃で塗膜を加熱しても良い。
次に現像を、現像液を用い、浸漬法、パドル法、回転スプレー法等の方法から選択して行うことができる。現像により、塗布された感光性樹脂層から、露光部を溶出除去し、レリーフパターンを得ることができる。
現像液としては、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン等の有機アミン類、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の4級アンモニウム塩類等の水溶液、及び必要に応じて、メタノール、エタノール等の水溶性有機溶媒、又は界面活性剤を適当量添加した水溶液を使用することができる。これらの中で、テトラメチルアンモニウムヒドロキシド水溶液が好ましく、該テトラメチルアンモニウムヒドロキシドの濃度は、好ましくは、0.5〜10質量%であり、さらに好ましくは、1〜5質量%である。
現像後、リンス液により洗浄を行い、現像液を除去することにより、レリーフパターンが形成された基板を得ることができる。リンス液としては、蒸留水、メタノール、エタノール、イソプロパノール等を単独で又は2種以上組み合わせて用いることができる。
最後に、このようにして得られたレリーフパターンを加熱することで硬化レリーフパターンを得ることができる。加熱温度は150℃以上300℃以下が好ましく、250℃以下がより好ましく、更に好ましくは170℃以上220℃以下である。本発明が提供する感光性樹脂組成物は、例えば上記温度のような低温での硬化でも十分な膜物性(例えば硬化膜の伸度)を実現できるという利点を有する。
半導体装置の永久膜用途に一般的に使われているポリイミド又はポリベンゾオキサゾールの前駆体の組成物を用いた硬化レリーフパターンの形成方法においては、前駆体を300℃以上に加熱して脱水環化反応を進行させることにより、ポリイミド又はポリベンゾオキサゾール等に変換する必要がある。しかし本発明の硬化レリーフパターンの製造方法においてはより低温の加熱でも感光性樹脂組成物を硬化させることができるので、熱に弱い半導体装置及び表示体装置にも好適に使用することが出来る。一例を挙げるならば、本発明に係る感光性樹脂組成物は、プロセス温度に制約のある高誘電体材料又は強誘電体材料、例えばチタン、タンタル、又はハフニウム等の高融点金属の酸化物から成る絶縁層を有する半導体装置に好適に用いられる。
半導体装置がこのような耐熱性上の制約を持たない場合であれば、もちろん、本方法においても300〜400℃に加熱処理をしてもよい。このような加熱処理は、ホットプレート、オーブン、又は温度プログラムを設定できる昇温式オーブンを用いることにより行うことが出来る。加熱処理を行う際の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。また、より低温にて熱処理を行う必要が有る際には、真空ポンプ等を利用して減圧下にて加熱を行ってもよい。
<半導体装置>
また、本実施形態の感光性樹脂組成物を用いて上述の方法で製造された硬化レリーフパターンを有して成る半導体装置も本実施形態の一態様である。本実施形態の半導体装置は、半導体素子と該半導体素子の上部に設けられた硬化膜とを備え、該硬化膜は上述の硬化レリーフパターンである。ここで当該硬化レリーフパターンは、当該半導体素子に直接接して積層されていてもよく、別の層を間に挟んで積層されていてもよい。例えば、該硬化膜として、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、及びバンプ構造を有する半導体装置の保護膜が挙げられる。本実施形態の半導体装置は、公知の半導体装置の製造方法と上述した本発明の硬化レリーフパターンの製造方法とを組み合わせることで製造することができる。
<表示体装置>
本実施形態の表示体装置は、表示体素子と該表示体素子の上部に設けられた硬化膜とを備え、該硬化膜は上述の硬化レリーフパターンである。ここで当該硬化レリーフパターンは、当該表示体素子に直接接して積層されていてもよく、別の層を間に挟んで積層されていてもよい。例えば、該硬化膜として、TFT液晶表示素子及びカラーフィルター素子の表面保護膜、絶縁膜、及び平坦化膜、MVA型液晶表示装置用の突起、並びに有機EL素子陰極用の隔壁を挙げることができる。
本実施形態の表示体装置は、本実施形態の半導体装置と同様に、公知の表示体装置の製造方法と上述した本実施形態の硬化レリーフパターンの製造方法とを組み合わせることで製造することができる。
以下、合成例、実施例及び比較例により本実施形態を具体的に説明するが、本発明はこれに限定されるものではない。
なお、実施例中の測定条件は以下に示すとおりである。
<現像後残渣評価>
実施例及び比較例で得られた感光性樹脂組成物をスピンコーター(東京エレクトロン社製 クリーントラックMark8)にて、6インチのシリコンウエハーにスピン塗布し、ホットプレート上100℃で180秒間プリベークし、膜厚10μmの塗膜を得た。膜厚は膜厚測定装置(大日本スクリーン製造社製ラムダエース)にて測定した。
この塗膜に、テストパターン付きレチクルを通してi線(365nm)の露光波長を有するステッパー(ニコン社製NSR2005i8A)を用いて露光量を250mJ/cm〜800mJ/cmへと段階的に変化させて露光した。
これをアルカリ現像液(AZエレクトロニックマテリアルズ社製AZ300MIFデベロッパー、2.38質量%水酸化テトラメチルアンモニウム水溶液)を用い、23℃の条件下で100秒間現像し、その後純水にてリンスを行い、実施例1〜22、比較例1〜7,9〜11についてはポジ型を、実施例23,24、比較例7,8についてはネガ型のレリーフパターンを形成した。
上記条件で作製したレリーフパターンを光学顕微鏡で観察し、100μmラインアンドスペースの抜きパターンが完全に溶解除去しうる最低露光量において、解像している最小の正方形の抜きレリーフパターンにおいて、パターンの四隅に溶解されない樹脂組成物の残渣が発生しているかを観察した。評価基準は下記の通りである。結果を表2に記載する。
OK:最小解像パターンの四隅に残渣が発生していない
NG:最小解像パターンの四隅に残渣が発生している
<引っ張り伸度測定>
伸度測定用サンプルを以下の方法で作製した。最表面にアルミ蒸着層を設けた6インチシリコンウエハー基板に、実施例及び比較例で得られた感光性樹脂組成物を、硬化後の膜厚が約10μmとなるように回転塗布し、120℃で180秒間ホットプレートにてプリベークを行い、塗膜を形成した。膜厚は大日本スクリーン製造社製膜厚測定装置(ラムダエース)にて測定した。この塗膜を縦型キュア炉VF200B(光洋サーモシステム社製)にて窒素雰囲気下で、比較的低温である200℃で1時間加熱し、膜厚10μmの膜を得た。得られた樹脂硬化膜を、ダイシングソーで3mm幅にカットした後に、希塩酸水溶液によりウエハーから剥離し、得られる20本の試料を温度23℃、相対湿度50%の雰囲気に24時間以上静置後、引っ張り試験機(テンシロン)にて伸度を測定した。測定値として最大値を用い、試料数20点の測定値を平均した。引っ張り試験機の測定条件は以下の通りであった。結果を表2に示す。
温度:23℃
相対湿度:50%
初期試料長さ:50mm
試験速度:40mm/min
ロードセル定格:2kgf
[合成例1]
<フェノール樹脂(A−1)の合成>
容量0.5リットルのディーン・スターク装置付きセパラブルフラスラスコ中で、フロログルシノール100.9g(0.8mol)、4,4’−ビス(メトキシメチル)ビフェニル(以下「BMMB」ともいう。)121.2g(0.5mol)、ジエチル硫酸3.9g(0.025mol)、ジエチレングリコールジメチルエーテル140gを70℃で混合攪拌し、固形物を溶解させた。
混合溶液をオイルバスにより140℃に加温し、反応液よりメタノールの発生を確認した。そのまま140℃で反応液を2時間攪拌した。
次に反応容器を大気中で冷却し、これに別途100gのテトラヒドロフランを加えて攪拌した。上記反応希釈液を4Lの水に高速攪拌下で滴下し樹脂を分散析出させ、これを回収し、適宜水洗、脱水の後に真空乾燥を施し、フロログルシノール/BMMBからなる共重合体(フェノール樹脂(A−1))を収率70%で得た。
各合成例で得られた樹脂の重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用い、以下の条件で測定し、標準ポリスチレン換算での重量平均分子量を求めた。
ポンプ:JASCO PU−980
検出器:JASCO RI−930
カラムオーブン:JASCO CO−965 40℃
カラム:Shodex KD−806M 直列に2本
移動相:0.1mol/l LiBr/NMP
流速:1ml/min.
このA−1のGPC法の標準ポリスチレン換算により求めた重量平均分子量は15,000であった。
[合成例2]
<フェノール樹脂(A−2)の合成>
合成例1のフロログルシノールの代わりに、3,5−ジヒドロキシ安息香酸メチル128.3g(0.76mol)を用いて、合成例1と同様に合成を行い、3,5−ジヒドロキシ安息香酸メチル/BMMBからなる共重合体(フェノール樹脂(A−2))を収率65%で得た。このA−2のGPC法の標準ポリスチレン換算により求めた重量平均分子量は21,000であった。
[合成例3]
<フェノール樹脂(A−3)の合成>
容量1.0Lのディーン・スターク装置付きセパラブルフラスコを窒素置換し、その後、該セパラブルフラスコ中で、レゾルシノール81.3g(0.738mol)、BMMB84.8g(0.35mol)、p−トルエンスルホン酸3.81g(0.02mol)、プロピレングリコールモノメチルエーテル(以下、PGMEとも言う)116gを50℃で混合攪拌し、固形物を溶解させた。
混合溶液をオイルバスにより120℃に加温し、反応液よりメタノールの発生を確認した。そのまま120℃で反応液を3時間攪拌した。
次に、別の容器で2,6−ビス(ヒドロキシメチル)−p−クレゾール24.9(0.150mol)g、PGME249gを混合撹拌し、均一溶解させた溶液を、滴下漏斗を用いて、該セパラブルフラスコに1時間で滴下し、滴下後更に2時間撹拌した。
反応終了後は合成例1と同様の処理を行い、レゾルシノール/BMMB/2,6−ビス(ヒドロキシメチル)−p−クレゾールからなる共重合体(フェノール樹脂(A−3))を収率77%で得た。このA−3のGPC法の標準ポリスチレン換算により求めた重量平均分子量は9,900であった。
[合成例4]
<フェノール樹脂(A−5)の合成>
フェノール100質量部、亜麻仁油43質量部及びトリフロオロメタンスルホン酸0.1質量部を混合し、120℃で2時間撹拌し、乾性油変性フェノール誘導体を得た。次いで、上記乾性油変性フェノール誘導体130g、パラホルムアルデヒド16.3g及びシュウ酸1.0gを混合し、90℃で3時間撹拌し反応を行った。次に、120℃に昇温して減圧下で3時間撹拌後、反応液を大気圧下で室温まで冷却し、反応生成物である乾性油変性フェノール樹脂(A−5)を得た。このA−5のGPC法の標準ポリスチレン換算により求めた重量平均分子量は25,000であった。
[合成例5]
<フェノール樹脂(A−6)の合成>
上記乾性油変性フェノール誘導体130g、パラホルムアルデヒド16.3g及びシュウ酸1.0gを混合し、90℃で3時間撹拌し反応を行った。次いで、120℃に昇温して減圧下で3時間撹拌した後、反応液に無水コハク酸29g及びトリエチルアミン0.3gを加え、大気圧下、100℃で1時間撹拌した。反応液を室温まで冷却し、反応生成物である乾性油変性フェノール樹脂(A−6)を得た。このA−6のGPC法の標準ポリスチレン換算により求めた重量平均分子量は28,000であった。
[実施例1]
表1に示すとおり、フェノール樹脂(A−1)100質量部、カルボン酸誘導体(B−1)1質量部、光酸発生剤(C−1)12質量部を、組成物の濾過後粘度が1.2Pa・sになるように溶剤γ−ブチロラクトンに溶解させ、0.1μmのフィルターで濾過してポジ型感光性樹脂組成物を調製した。この粘度は、E型粘度計RE−80(東機産業社製)で23℃における粘度を測定した。この組成物及びその硬化膜の特性を前記の評価方法に従って測定した。得られた結果を表2に示す。
[実施例2〜22]
表1に示した成分からなる組成物を実施例1と同様に調製し、組成物及びその硬化膜の特性を実施例1と同様に測定した。得られた結果を表2に示す。
[実施例23]
表1に示すとおり、フェノール樹脂(A−1)100質量部、カルボン酸誘導体(B−1)1質量部、光酸発生剤(C−2)5質量部及び、架橋剤(D−1)10質量部を、組成物の濾過後粘度が1.2Pa・sになるように溶剤γ−ブチロラクトンに溶解させ、0.1μmのフィルターで濾過してネガ型感光性樹脂組成物を調製した。この粘度は、E型粘度計RE−80(東機産業社製)で23℃における粘度を測定した。この組成物及びその硬化膜の特性を前記の評価方法に従って測定した。得られた結果を表2に示す。
[実施例24、比較例7,8]
表1に示した成分からなる組成物を実施例23と同様に調製し、組成物及びその硬化膜の特性を実施例23と同様に測定した。得られた結果を表2に示す。
[比較例1〜6,9〜11]
表1に示した成分からなる組成物を実施例1と同様に調製し、組成物及びその硬化膜の特性を実施例1と同様に測定した。得られた結果を表2に示す。
Figure 2014186124
表1に記載の組成は、以下のとおりである。
<フェノール樹脂(A)>
A−1:フロログルシノール/BMMBからなる共重合体、ポリスチレン換算重量平均分子量(Mw)=15,000
A−2:3,5−ジヒドロキシ安息香酸メチル/BMMBからなる共重合体、ポリスチレン換算重量平均分子量(Mw)=21,000
A−3:レゾルシノール/BMMB/2,6−ビス(ヒドロキシメチル)−p−クレゾールからなる共重合体、ポリスチレン換算重量平均分子量(Mw)=9,900
A−4:フェノール/ビフェニレン樹脂、ポリスチレン換算重量平均分子量(Mw)=2,400(明和化成社製、製品名MEH−7851M)
A−5:炭素数4〜100の不飽和炭化水素基を有する化合物(乾性油)変性フェノール樹脂、ポリスチレン換算重量平均分子量(Mw)=25,000
A−6:炭素数4〜100の不飽和炭化水素基を有する化合物(乾性油)変性フェノール樹脂、ポリスチレン換算重量平均分子量(Mw)=28,000
A−7:ノボラック樹脂、ポリスチレン換算重量平均分子量(Mw)=10,600(旭有機材社製、製品名EP−4080G)
<カルボン酸誘導体(B)>
B−1:オレイン酸
B−2:リノール酸
B−3:桐油(エレオステアリン酸、オレイン酸、その他のカルボン酸及び、これらのカルボン酸とグリセリンとがエステル結合しているカルボン酸エステルとの混合物)
B−4:亜麻仁油(α−リノレン酸、リノール酸、その他のカルボン酸及び、これらのカルボン酸とグリセリンとがエステル結合しているカルボン酸エステルとの混合物)
B−5:ステアリン酸エチル
<光酸発生剤(C)>
C−1:下記式で表される光酸発生剤:
Figure 2014186124
(式中、Qの内83%が以下の:
Figure 2014186124
で表される構造であり、残余が水素原子である。)
C−2:イルガキュア PAG121(商品名、BASFジャパン社製)
<その他の添加剤>
D−1(架橋剤):1,3,4,6−テトラキス(メトキシメチル)グリコールウリル(三和ケミカル製、商品名;ニカラックMX−270)
E−1(熱酸発生剤):トリメチルスルホニウムメチルスルフェート(フルオロケム社製)
Figure 2014186124
表2に示した結果から分かるように、各実施例においては、現像後の残渣を抑制し、低温硬化が可能であり、そして、得られた硬化膜の引っ張り伸度に優れる。したがって、本発明によれば、これらの諸特性に優れた半導体素子用の層間絶縁膜、表面保護膜等を提供することができる。
本発明の感光性樹脂組成物は、半導体装置、表示体装置及び発光装置の表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、バンプ構造を有する装置の保護膜、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、並びに液晶配向膜等として好適に利用できる。

Claims (17)

  1. (A)フェノール樹脂:100重量部、
    (B)不飽和結合を有する炭素数3〜35のモノカルボン酸化合物、及び不飽和結合を有する炭素数4〜100のカルボン酸エステル化合物、からなる群から選択される少なくとも1つのカルボン酸又はその誘導体:0.01〜20質量部、
    (C)光酸発生剤:0.1〜20質量部、
    を含み、
    前記(A)フェノール樹脂が、下記一般式(1)で表される構造を有するフェノール樹脂:
    Figure 2014186124
    {式中、aは、1〜3の整数であり、bは、0〜3の整数であり、1≦(a+b)≦4であり、R1は、炭素数1〜20の1価の有機基、ハロゲン原子、ニトロ基、及びシアノ基からなる群から選ばれる少なくとも1つの1価の置換基を表し、bが2又は3である場合には、複数のR1は、互いに同一でも又は異なっていてもよく、そしてXは、不飽和結合を有していてもよい炭素数2〜10の2価の脂肪族基、炭素数3〜20の2価の脂環式基、下記一般式(2):
    Figure 2014186124
    (式中、pは、1〜10の整数である。)で表される2価のアルキレンオキシド基、及び炭素数6〜12の芳香族環を有する2価の有機基からなる群から選択される2価の有機基を表す。}、及び
    エーテル結合、ヒドロキシル基、エステル結合、カルボキシル基、チオエーテル結合、チオール基、チオエステル結合、スルホ基、スルホニル基、ウレタン結合、ウレア結合、チオウレタン結合、及びチオ尿素結合からなる群から選択される少なくとも一つの官能基を有する炭素数4〜100の化合物で変性したフェノール樹脂、
    からなる群から選択される少なくとも1種のフェノール樹脂を含む、感光性樹脂組成物。
  2. 前記カルボン酸又はその誘導体が、下記一般式(3):
    Figure 2014186124
    {式中、Pは、不飽和結合を有し、水酸基で置換されていてもよい、炭素数2〜30の1価の脂肪族基、炭素数3〜30の1価の脂環式基、及び炭素数6〜30の芳香族環を有する1価の有機基からなる群から選ばれる1価の有機基を表す。}で表される構造を有するモノカルボン酸化合物である、請求項1に記載の感光性樹脂組成物。
  3. 前記一般式(3)中のPが、不飽和結合を有し、水酸基で置換されていてもよい、炭素数2〜30の1価の脂肪族基、及び炭素数3〜30の1価の脂環式基、からなる群から選ばれる1価の有機基である、請求項2に記載の感光性樹脂組成物。
  4. 前記カルボン酸誘導体又はその誘導体が、上記一般式(3)で表されるモノカルボン酸化合物と、炭素数1〜20のアルコール化合物とがエステル結合しているカルボン酸エステル化合物である、請求項1に記載の感光性樹脂組成物。
  5. 前記炭素数1〜20のアルコール化合物が、グリセリンである、請求項4に記載の感光性樹脂組成物。
  6. 前記(A)フェノール樹脂が、前記一般式(1)で表される構造を有するフェノール樹脂を含み、前記一般式(1)中のXが、
    下記一般式(4):
    Figure 2014186124
    {式中、R2、R、R、及びR5は、それぞれ独立に、水素原子、炭素数1〜10の1価の脂肪族基、又は水素原子の一部若しくは全部がフッ素原子で置換されてなる炭素数1〜10の1価の脂肪族基であり、n1は0〜4の整数であって、n1が1〜4の整数である場合のR6は、ハロゲン原子、又は炭素数1〜12の1価の有機基であり、n1が2〜4の整数である場合の複数のR6は互いに同一でも又は異なっていてもよい。}で表される2価の基、及び
    下記一般式(5):
    Figure 2014186124
    {式中、R7、R8、R9及びR10は、それぞれ独立に、水素原子、炭素数1〜10の1価の脂肪族基、又は水素原子の一部若しくは全部がフッ素原子で置換されてなる炭素数1〜10の1価の脂肪族基を表し、Wは、単結合、フッ素原子で置換されていてもよい炭素数1〜10の脂肪族基、フッ素原子で置換されていてもよい炭素数3〜20の脂環式基、下記一般式(2):
    Figure 2014186124
    (式中、pは、1〜10の整数である。)で表される2価のアルキレンオキシド基、及び下記式(6):
    Figure 2014186124
    で表される2価の基からなる群から選ばれる2価の有機基である。}で表される2価の基
    からなる群から選ばれる少なくとも1つの2価の有機基を含む、請求項1〜5のいずれか1項に記載の感光性樹脂組成物。
  7. 前記一般式(1)中の、Xが、下記式(7):
    Figure 2014186124
    で表される2価の有機基を含む、請求項6に記載の感光性樹脂組成物。
  8. 前記一般式(1)中の、Xが、下記式(8):
    Figure 2014186124
    で表される2価の有機基を含む、請求項7に記載の感光性樹脂組成物。
  9. 前記(A)フェノール樹脂が、
    下記一般式(9):
    Figure 2014186124
    {式中、R11は炭化水素基及びアルコキシ基からなる群から選ばれる炭素数1〜10の1価の基であり、n2は1〜3であり、n3は0〜2の整数であり、m1は1〜500の整数であり、2≦(n2+n3)≦4であり、n3が2の場合には、複数のR11は互いに同一でも又は異なっていてもよい。)}で表される繰り返し単位、及び
    下記一般式(10):
    Figure 2014186124
    {式中、R12及びR13はそれぞれ独立に炭化水素基及びアルコキシ基からなる群から選ばれる炭素数1〜10の1価の基であり、n4は1〜3の整数であり、n5は0〜2の整数であり、n6は0〜3の整数であり、m2は1〜500の整数であり、2≦(n4+n5)≦4であり、n5が2の場合には、複数のR12は互いに同一でも又は異なっていてもよく、n6が2又は3の場合には、複数のR13は互いに同一でも又は異なっていてもよい。}で表される繰り返し単位
    の両方を、同一樹脂骨格内に有するフェノール樹脂である、請求項8に記載の感光性樹脂組成物。
  10. 前記(A)フェノール樹脂が、前記少なくとも一つの官能基を有する炭素数4〜100の化合物で変性したフェノール樹脂を含み、該官能基が、エステル結合、及びカルボキシル基からなる群から選択される、請求項1〜9のいずれか1項に記載の感光性樹脂組成物。
  11. 前記少なくとも一つの官能基を有する炭素数4〜100の化合物が、炭素数4〜100の不飽和脂肪酸、及び不飽和脂肪酸エステルからなる群から選択される、請求項10に記載の感光性樹脂組成物。
  12. 前記(C)光酸発生剤がキノンジアジド基を有する化合物である、請求項1〜11のいずれか1項に記載の感光性樹脂組成物。
  13. 更に(D)架橋剤:0.1〜40質量部を含む、請求項1〜12のいずれか1項に記載の感光性樹脂組成物。
  14. 以下の工程:
    (1)請求項1〜13のいずれか1項に記載の感光性樹脂組成物を含む感光性樹脂層を基板上に形成する工程、
    (2)該感光性樹脂層を露光する工程、
    (3)現像液により露光部又は、未露光部を除去して、レリーフパターンを得る工程、及び
    (4)該レリーフパターンを加熱処理する工程、
    を含む、硬化レリーフパターンの製造方法。
  15. 請求項14に記載の方法により製造された、硬化レリーフパターン。
  16. 半導体素子と、該半導体素子の上部に設けられた硬化膜とを備える半導体装置であって、該硬化膜は、請求項15に記載の硬化レリーフパターンである、前記半導体装置。
  17. 表示体素子と、該表示体素子の上部に設けられた硬化膜とを備える表示体装置であって、該硬化膜は、請求項15に記載の硬化レリーフパターンである、前記表示体装置。
JP2013060161A 2013-03-22 2013-03-22 感光性樹脂組成物及び硬化レリーフパターンの製造方法 Active JP6116954B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013060161A JP6116954B2 (ja) 2013-03-22 2013-03-22 感光性樹脂組成物及び硬化レリーフパターンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013060161A JP6116954B2 (ja) 2013-03-22 2013-03-22 感光性樹脂組成物及び硬化レリーフパターンの製造方法

Publications (2)

Publication Number Publication Date
JP2014186124A true JP2014186124A (ja) 2014-10-02
JP6116954B2 JP6116954B2 (ja) 2017-04-19

Family

ID=51833782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013060161A Active JP6116954B2 (ja) 2013-03-22 2013-03-22 感光性樹脂組成物及び硬化レリーフパターンの製造方法

Country Status (1)

Country Link
JP (1) JP6116954B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194677A (ja) * 2016-04-14 2017-10-26 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
CN113416380A (zh) * 2021-05-21 2021-09-21 东莞爱的合成材料科技有限公司 一种树脂组合物及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110183809B (zh) * 2019-06-20 2021-04-16 中原工学院 一种以硫化铜和碳纳米管为复合导电剂的柔性导电材料的制备方法
CN110204758B (zh) * 2019-06-20 2021-04-16 中原工学院 一种硫化铜/聚氮丙啶/聚丙烯腈复合导电材料的制备方法

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258824A (ja) * 1993-03-02 1994-09-16 Sumitomo Chem Co Ltd ポジ型レジスト組成物
WO2003071355A2 (en) * 2002-02-19 2003-08-28 Kodak Polychrome Graphics Japan Ltd. Photosensitive composition, photosensitive planographic printing plate, and method for manufacturing planographic printing plate using the same
JP2004085622A (ja) * 2002-08-22 2004-03-18 Toray Ind Inc ポジ型感光性樹脂前駆体組成物およびそれを用いた半導体用電子部品ならびに有機電界発光素子用表示装置
JP2004102091A (ja) * 2002-09-12 2004-04-02 Mitsubishi Chemicals Corp 感光性組成物、及びそれを用いた画像形成方法
JP2004133435A (ja) * 2002-09-17 2004-04-30 Toray Ind Inc ネガ型感光性樹脂前駆体組成物およびそれを用いた電子部品ならびに表示装置
JP2004233693A (ja) * 2003-01-30 2004-08-19 Rohm & Haas Electronic Materials Llc エポキシ含有物質を含むネガ型感光性樹脂組成物
WO2008020573A1 (fr) * 2006-08-15 2008-02-21 Asahi Kasei Emd Corporation Composition de résine photosensible positive
WO2010073948A1 (ja) * 2008-12-26 2010-07-01 日立化成工業株式会社 ポジ型感光性樹脂組成物、レジストパターンの製造方法、半導体装置及び電子デバイス
JP2011138116A (ja) * 2009-12-04 2011-07-14 Jsr Corp 感放射線性樹脂組成物、層間絶縁膜並びにそれらの形成方法
JP2011242676A (ja) * 2010-05-20 2011-12-01 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP2012027490A (ja) * 2010-04-28 2012-02-09 Asahi Kasei E-Materials Corp 感光性樹脂組成物
WO2012036130A1 (ja) * 2010-09-15 2012-03-22 旭化成イーマテリアルズ株式会社 フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法
WO2012090965A1 (ja) * 2010-12-27 2012-07-05 旭化成イーマテリアルズ株式会社 アルカリ現像用感光性フェノール樹脂組成物、硬化レリーフパターン及び半導体の製造方法、並びにビフェニルジイルトリヒドロキシベンゼン樹脂
JP2012226044A (ja) * 2011-04-18 2012-11-15 Hitachi Chem Co Ltd ポジ型感光性樹脂組成物、レジストパターンの製造方法、半導体装置及び電子デバイス
JP2012252273A (ja) * 2011-06-06 2012-12-20 Asahi Kasei E-Materials Corp 感光性樹脂組成物、及び新規フェノール樹脂
WO2013122208A1 (ja) * 2012-02-17 2013-08-22 日立化成株式会社 感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品
JP2013167693A (ja) * 2012-02-14 2013-08-29 Hitachi Chemical Co Ltd 感光性樹脂組成物、パターン硬化膜の製造方法、及び、該パターン硬化膜を有する半導体装置
JP2014041264A (ja) * 2012-08-22 2014-03-06 Sumitomo Bakelite Co Ltd 感光性樹脂組成物、硬化膜、保護膜、絶縁膜、およびそれを用いた半導体装置、表示体装置

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06258824A (ja) * 1993-03-02 1994-09-16 Sumitomo Chem Co Ltd ポジ型レジスト組成物
WO2003071355A2 (en) * 2002-02-19 2003-08-28 Kodak Polychrome Graphics Japan Ltd. Photosensitive composition, photosensitive planographic printing plate, and method for manufacturing planographic printing plate using the same
JP2003315995A (ja) * 2002-02-19 2003-11-06 Kodak Polychrome Graphics Japan Ltd 感光性組成物、感光性平版印刷版およびこれを用いた平版印刷版の作製方法
JP2004085622A (ja) * 2002-08-22 2004-03-18 Toray Ind Inc ポジ型感光性樹脂前駆体組成物およびそれを用いた半導体用電子部品ならびに有機電界発光素子用表示装置
JP2004102091A (ja) * 2002-09-12 2004-04-02 Mitsubishi Chemicals Corp 感光性組成物、及びそれを用いた画像形成方法
JP2004133435A (ja) * 2002-09-17 2004-04-30 Toray Ind Inc ネガ型感光性樹脂前駆体組成物およびそれを用いた電子部品ならびに表示装置
JP2004233693A (ja) * 2003-01-30 2004-08-19 Rohm & Haas Electronic Materials Llc エポキシ含有物質を含むネガ型感光性樹脂組成物
WO2008020573A1 (fr) * 2006-08-15 2008-02-21 Asahi Kasei Emd Corporation Composition de résine photosensible positive
WO2010073948A1 (ja) * 2008-12-26 2010-07-01 日立化成工業株式会社 ポジ型感光性樹脂組成物、レジストパターンの製造方法、半導体装置及び電子デバイス
JP2011138116A (ja) * 2009-12-04 2011-07-14 Jsr Corp 感放射線性樹脂組成物、層間絶縁膜並びにそれらの形成方法
JP2012027490A (ja) * 2010-04-28 2012-02-09 Asahi Kasei E-Materials Corp 感光性樹脂組成物
JP2011242676A (ja) * 2010-05-20 2011-12-01 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
WO2012036130A1 (ja) * 2010-09-15 2012-03-22 旭化成イーマテリアルズ株式会社 フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法
WO2012090965A1 (ja) * 2010-12-27 2012-07-05 旭化成イーマテリアルズ株式会社 アルカリ現像用感光性フェノール樹脂組成物、硬化レリーフパターン及び半導体の製造方法、並びにビフェニルジイルトリヒドロキシベンゼン樹脂
JP2012226044A (ja) * 2011-04-18 2012-11-15 Hitachi Chem Co Ltd ポジ型感光性樹脂組成物、レジストパターンの製造方法、半導体装置及び電子デバイス
JP2012252273A (ja) * 2011-06-06 2012-12-20 Asahi Kasei E-Materials Corp 感光性樹脂組成物、及び新規フェノール樹脂
JP2013167693A (ja) * 2012-02-14 2013-08-29 Hitachi Chemical Co Ltd 感光性樹脂組成物、パターン硬化膜の製造方法、及び、該パターン硬化膜を有する半導体装置
WO2013122208A1 (ja) * 2012-02-17 2013-08-22 日立化成株式会社 感光性樹脂組成物、パターン硬化膜の製造方法及び電子部品
JP2014041264A (ja) * 2012-08-22 2014-03-06 Sumitomo Bakelite Co Ltd 感光性樹脂組成物、硬化膜、保護膜、絶縁膜、およびそれを用いた半導体装置、表示体装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017194677A (ja) * 2016-04-14 2017-10-26 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
CN113416380A (zh) * 2021-05-21 2021-09-21 东莞爱的合成材料科技有限公司 一种树脂组合物及其制备方法和应用

Also Published As

Publication number Publication date
JP6116954B2 (ja) 2017-04-19

Similar Documents

Publication Publication Date Title
KR101769190B1 (ko) 감광성 수지 조성물, 경화 릴리프 패턴의 제조 방법, 반도체 장치 및 표시체 장치
JP6000416B2 (ja) ビフェニルジイルトリヒドロキシベンゼン樹脂、感光性樹脂組成物及び半導体装置
WO2012036130A1 (ja) フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法
JP6026097B2 (ja) 半導体素子表面保護膜又は層間絶縁膜用の感光性樹脂組成物
JP6209035B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置の製造方法
JP6099313B2 (ja) 感光性樹脂組成物、及び硬化レリーフパターンの製造方法
JP5981738B2 (ja) 感光性樹脂組成物、及び硬化レリーフパターンの製造方法
JP6116954B2 (ja) 感光性樹脂組成物及び硬化レリーフパターンの製造方法
JP6108869B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び表示体装置
JP5825884B2 (ja) フェノール樹脂組成物、及び硬化レリーフパターンの製造方法
JP5825860B2 (ja) 感光性樹脂組成物
JP6294023B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び表示体装置
JP5981737B2 (ja) 感光性樹脂組成物、及び硬化レリーフパターンの製造方法
JP6270372B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び表示体装置
JP6208959B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び表示体装置
JP5981739B2 (ja) 感光性樹脂組成物、及び硬化レリーフパターンの製造方法
JP5879088B2 (ja) 感光性樹脂組成物、及び、硬化レリーフパターンの製造方法
JP6454769B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び表示体装置
JP2017090486A (ja) 感光性樹脂組成物、及び硬化レリーフパターンの製造方法
JP6503160B2 (ja) 感光性樹脂組成物、及び硬化レリーフパターンの形成方法
JP6328896B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置
JP5999939B2 (ja) 感光性樹脂組成物及び硬化レリーフパターンの製造方法
JP5808155B2 (ja) フェノール樹脂組成物並びにこれを用いた硬化レリーフパターンの製造方法
JP2017126023A (ja) 感光性フィルム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151215

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170322

R150 Certificate of patent or registration of utility model

Ref document number: 6116954

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350