WO2012036130A1 - フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法 - Google Patents

フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法 Download PDF

Info

Publication number
WO2012036130A1
WO2012036130A1 PCT/JP2011/070750 JP2011070750W WO2012036130A1 WO 2012036130 A1 WO2012036130 A1 WO 2012036130A1 JP 2011070750 W JP2011070750 W JP 2011070750W WO 2012036130 A1 WO2012036130 A1 WO 2012036130A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
acid
resin composition
compound
photosensitive resin
Prior art date
Application number
PCT/JP2011/070750
Other languages
English (en)
French (fr)
Inventor
佐々木 隆弘
李 軍
Original Assignee
旭化成イーマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成イーマテリアルズ株式会社 filed Critical 旭化成イーマテリアルズ株式会社
Priority to US13/820,772 priority Critical patent/US9029270B2/en
Priority to KR1020177031042A priority patent/KR102032629B1/ko
Priority to KR1020137006499A priority patent/KR20130054366A/ko
Priority to CN201180044345.1A priority patent/CN103097460B/zh
Priority to KR1020157009385A priority patent/KR101827069B1/ko
Publication of WO2012036130A1 publication Critical patent/WO2012036130A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • G03F7/0236Condensation products of carbonyl compounds and phenolic compounds, e.g. novolak resins
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/038Macromolecular compounds which are rendered insoluble or differentially wettable
    • G03F7/0381Macromolecular compounds which are rendered insoluble or differentially wettable using a combination of a phenolic resin and a polyoxyethylene resin
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3424Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms non-conjugated, e.g. paracyclophanes or xylenes

Definitions

  • the first aspect of the present invention relates to a photosensitive resin composition for a semiconductor element surface protective film or an interlayer insulating film. More specifically, the present invention relates to a relief pattern forming material such as a surface protective film (buffer coat film) or an interlayer insulating film (passivation film) such as a semiconductor element, a method for producing a relief pattern using the relief pattern forming material, and The present invention relates to a semiconductor device having the relief pattern.
  • a second aspect of the present invention is a phenol resin composition useful for forming a surface protective film or an interlayer insulating film in a semiconductor device, a method for producing a highly heat-resistant cured relief pattern using the composition, and the method
  • the present invention relates to a semiconductor device having a cured relief pattern.
  • a polyimide resin or a polybenzoxazole resin having excellent heat resistance, electrical characteristics, mechanical characteristics, and the like has been widely used for the surface protective film and interlayer insulating film of semiconductor devices. Since these resins have low solubility in various solvents, they are generally used as a composition dissolved in a solvent in the form of a precursor. Therefore, a step of cyclizing the precursor is required for use. This ring-closing process is usually performed by thermosetting which is heated to 300 ° C. or higher.
  • thermosetting temperature has been required for the material for forming the surface protective film or the interlayer insulating film.
  • thermosetting properties are required.
  • Patent Documents 1 and 2 do not require a ring-closing step, are excellent in cost and photosensitivity, and are condensed by condensing phenols and aldehydes widely used as base resins in the resist field.
  • a material using crosslinkable fine particles or a core-shell polymer has been proposed.
  • Patent Document 3 in order to improve the thermal shock resistance of the phenol resin, when synthesizing the phenol resin, an ⁇ , ⁇ ′-dihaloxylene compound, ⁇ , ⁇ ′- A material obtained by using at least one substituted xylene compound selected from the group consisting of a dihydroxyxylene compound and an ⁇ , ⁇ ′-dialkoxyxylene compound and condensing it with a phenol compound has also been proposed.
  • Patent Document 4 also describes a material in which a phenol resin having a condensate of a biphenyl compound and a phenol as a skeleton and a photoacid generator are used in combination.
  • Patent Document 4 discloses the material as a material for forming a liquid crystal alignment control protrusion and / or a spacer, or as a material for simultaneously forming a liquid crystal alignment control protrusion and a spacer.
  • Patent Document 1 or 3 has improved thermal shock resistance, it is one of the important film properties when applied to a semiconductor device as a surface protective film or an interlayer insulating film. Has not been studied at all.
  • the problem to be solved by the present invention is that the polyimide resin has high elongation even when applied to a semiconductor device and cured with heat of 250 ° C. or less.
  • Another object of the present invention is to provide a phenol resin composition that can be used as a substitute material for a polybenzoxazole resin, a method for producing a cured relief pattern using the composition, and a semiconductor device having the cured relief pattern.
  • the problem to be solved by the present invention is that, even when applied to a semiconductor device and cured with heat of 250 ° C. or less, the reliability is high and the polyimide resin and the polybenzoxazole A phenol resin composition that can be used as an alternative material for a resin, a method for producing a cured relief pattern using the composition, and a semiconductor device having the cured relief pattern.
  • the present inventors have found that a semiconductor having excellent elongation even when applied to a semiconductor device even at a low thermosetting temperature of 250 ° C. or less.
  • a material capable of forming a protective film or an interlayer insulating film was unexpectedly found, and the first aspect of the present invention was completed. That is, the first aspect of the present invention is as follows.
  • Phenol resin (A) having a biphenyldiyl structure in the main chain 100 parts by mass
  • Photoacid generator (B) 1 to 30 parts by mass
  • the phenol resin (A) is represented by the following general formula (1): ⁇ Wherein R is a halogen atom, a carboxyl group, a hydroxyl group, an aliphatic group optionally having an unsaturated bond having 1 to 10 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, and 6 carbon atoms.
  • R is an integer
  • r is an integer of 0 to 3
  • each R may be the same or different.
  • the photoacid generator (B) is an ester compound of a phenol compound and 1,2-naphthoquinone-2-diazide-5-sulfonic acid or 1,2-naphthoquinone-2-diazide-4-sulfonic acid.
  • the photosensitive resin composition according to any one of [1] to [3].
  • the photoacid generator (B) has the following formula: ⁇ Wherein Q is a hydrogen atom or the following: And all Qs are not simultaneously hydrogen atoms. ⁇
  • the compound (C) is an epoxy group, an oxetane group, a —N— (CH 2 —OR ′) group (wherein R ′ is hydrogen or an alkyl group having 1 to 4 carbon atoms).
  • R ′ is hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • a —C— (CH 2 —OR ′) group ⁇ wherein R ′ is hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • the photosensitive resin composition according to any one of [1] to [5], which has at least two groups selected from the group consisting of:
  • the present inventor when applied to a semiconductor device, is a material capable of forming a highly reliable film even at a low thermosetting temperature such as 250 ° C. or lower. It has been found that the elongation must be a specific value or more, and the second aspect of the present invention has been achieved. That is, the second aspect of the present invention is as follows.
  • a phenol resin composition containing a phenol resin and a solvent The composition is spin coated on a silicon wafer, the silicon wafer and the spin coat film are heated on a hot plate at 100 ° C. for 3 minutes, and the spin coat film is cured at 250 ° C. for 1 hour in a nitrogen atmosphere.
  • a cured product having a thickness of 10 ⁇ m is obtained, the cured product is cut with a dicing saw at a width of 3 mm, and the silicon wafer is peeled off by treatment with a 23% by mass hydrofluoric acid aqueous solution.
  • the manufacturing method of a hardening relief pattern including a process.
  • the photosensitive resin composition of the present invention that can be cured at a low temperature and is excellent in mechanical properties of a cured film such as elongation, it is highly reliable.
  • a semiconductor element and a highly reliable semiconductor device using the semiconductor element can be manufactured.
  • the thermosetting temperature for forming the surface protective film or interlayer insulating film of the semiconductor device can be set to a relatively low temperature (for example, 250 ° C. or lower). Moreover, according to the present invention, not only can the surface protection film or the interlayer insulating film be reduced in cracks to increase the reliability thereof, but also the reliability of the semiconductor device having the same can be increased.
  • the photosensitive resin composition according to the first embodiment of the present invention contains the following components (A) to (C): biphenyldiyl in the main chain in a solvent.
  • the phenol resin (A) having a biphenyldiyl structure in the main chain includes a repeating unit having a phenol structure and a biphenyldiyl structure. It is a polymer.
  • the phenol structure and the biphenyldiyl structure may be bonded in any order.
  • the phenol structure and the biphenyldiyl structure are preferably bonded via a methylene group from the viewpoint of further elongation.
  • the biphenyldiyl-phenolic resin may have an alkylene structure having 20 or less carbon atoms, for example, a structure such as methylene and ethylene, in addition to the phenol structure and the biphenyldiyl structure.
  • the biphenyldiyl-phenol resin can be produced by any known method.
  • Examples of the production method include a condensation reaction between a compound having a biphenyldiyl structure (hereinafter also simply referred to as “biphenyldiyl compound”) and a phenol compound.
  • -Biphenyl-2,2'-dicarboxylic acid 4,4'-bischloromethyl-2-methylbiphenyl, 4,4'-bischloromethyl-2,2'-dimethylbiphenyl, 4,4'-biphenyldimethanol 4,4′-bis (methoxymethyl) biphenyl, and the like.
  • those having various substituents or reactive groups may be employed.
  • a 4,4′-structure is given as a specific example of a biphenyldiyl compound.
  • a compound having another substitution structure such as 2,2′-, 2,3′-, 3,4′-, etc. There may be.
  • 4,4′-substituted biphenyldiyl compounds are preferred from the viewpoint of further elongation.
  • These biphenyldiyl compounds may be used alone or in combination of two or more.
  • the phenol compound to be condensed with the biphenyldiyl compound is an aromatic compound having at least one phenolic hydroxyl group in one molecule, and specific examples thereof include phenol, cresol, ethylphenol, n-propylphenol, Various o-, m-, and p-isomers of alkylphenols such as isobutylphenol, t-butylphenol, octylphenol, nonylphenol, xylenol, methylbutylphenol, di-t-butylphenol, etc., vinylphenol, allylphenol, propenylphenol, Various o-, m-, and p-isomers of ethynylphenol, cyclopentylphenol, cyclohexylphenol, cyclohexylresole, etc.
  • Substituted phenols such Lumpur and the like.
  • Specific examples having two or more phenolic hydroxyl groups in one molecule include catechol, resorcinol, hydroquinone, pyrogallol, phloroglucinol, 1,2,4-trihydroxybenzene, and the like. These phenols may be used alone or in combination of two or more.
  • the resin can be obtained by polymerizing the biphenyldiyl compound and the phenol compound while dehydrating or dealcoholizing them, but a catalyst may be used during the polymerization.
  • Acidic catalysts include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphorous acid, methanesulfonic acid, p-toluenesulfonic acid, dimethyl sulfuric acid, diethyl sulfuric acid, acetic acid, oxalic acid, 1-hydroxyethylidene-1,1'-diphosphone
  • acids include acid, zinc acetate, boron trifluoride, boron trifluoride / phenol complex, boron trifluoride / ether complex, and the like.
  • alkaline catalysts include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, triethylamine, pyridine, 4-N, N-dimethylaminopyridine, piperidine, piperazine, 1 , 4-diazabicyclo [2.2.2] octane, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3.0] -5-nonene, ammonia, hexa And methylenetetramine.
  • organic solvent When carrying out the synthesis reaction of biphenyldiyl-phenol resin, an organic solvent can be used if necessary.
  • organic solvents include bis (2-methoxyethyl) ether, methyl cellosolve, ethyl cellosolve, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, cyclohexanone, cyclopentanone, Examples include toluene, xylene, ⁇ -butyrolactone, N-methyl-2-pyrrolidone, but are not limited thereto.
  • the amount of the organic solvent used is usually 10 to 1000 parts by mass, preferably 20 to 500 parts by mass with respect to 100 parts by mass as the total mass of the raw materials charged.
  • the reaction temperature is usually from 40 to 250 ° C., more preferably from 100 to 200 ° C.
  • the reaction time is usually 1 to 10 hours.
  • the biphenyldiyl-phenolic resin used in the first composition is preferably the following formula (1): ⁇ Wherein R is a halogen atom, a carboxyl group, a hydroxyl group, an aliphatic group optionally having an unsaturated bond having 1 to 10 carbon atoms, an alicyclic group having 3 to 10 carbon atoms, and 6 carbon atoms. And a hydrogen atom of each group may be further substituted with a halogen atom, a carboxyl group, or a hydroxyl group.
  • p and q are each independently an integer of 0 to 4, and r is an integer of 0 to 3. When p, q, or r is 2 or more, each R may be the same or different.
  • ⁇ It is a phenol resin containing the repeating unit represented by this.
  • the number of repeating units of the above formula (1) is 2 to 100, more preferably 8 to 80, and still more preferably 18 to 80 from the viewpoint of elongation.
  • the biphenyldiyl structure is preferably connected at the 4,4'-position from the viewpoint of elongation.
  • the biphenyldiyl-phenol resin used in the first composition is more preferably the following formula (2): It is a phenol resin containing the repeating unit represented by these.
  • the number of repeating units of the above formula (2) is 2 to 100, more preferably 8 to 80, and still more preferably 18 to 80 from the viewpoint of elongation.
  • the weight average molecular weight of the biphenyldiyl-phenol resin is 700 to 35,000, preferably 2,500 to 25,000, more preferably 5,000 to 25,000.
  • the weight average molecular weight is preferably 700 or more from the viewpoint of elongation, and is preferably 35,000 or less from the viewpoint of alkali solubility of the composition.
  • aqueous alkali-soluble resins include phenol resins that do not contain a biphenyldiyl structure, polymer resins of phenol and unsaturated bond-containing compounds, polyhydroxystyrene resins, polyamides, polyimides, and derivatives of these resins. , Precursors or copolymers.
  • the phenol resin not containing the biphenyldiyl structure can be obtained by polymerizing phenol or a derivative thereof and an aldehyde compound, a ketone compound, a methylol compound, or an alkoxymethyl compound.
  • phenol or derivatives thereof include phenol, cresol, ethylphenol, propylphenol, butylphenol, amylphenol, benzylphenol, adamantanephenol, benzyloxyphenol, xylenol, catechol, resorcinol, ethylresorcinol, hexylresorcinol, hydroquinone, pyrogallol, Phloroglucinol, 1,2,4-trihydroxybenzene, pararozolic acid, biphenol, bisphenol A, bisphenol AF, bisphenol B, bisphenol F, bisphenol S, dihydroxydiphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,4-bis (3-hydroxyphenoxybenzene), 2,2-bis (4-hydride) Xyl-3-methylphenyl) propane, ⁇ , ⁇ '-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene, 9,9-bis
  • Aldehyde compounds include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, pivalaldehyde, butyraldehyde, pentanal, hexanal, trioxane, glyoxal, cyclohexylaldehyde, diphenylacetaldehyde, ethylbutyraldehyde, benzaldehyde, glyoxylic acid, 5-norbornene-2 -Carboxaldehyde, malondialdehyde, succindialdehyde, glutaraldehyde, salicylaldehyde, naphthaldehyde, terephthalaldehyde and the like.
  • ketone compounds include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dicyclohexyl ketone, dibenzyl ketone, cyclopentanone, cyclohexanone, bicyclohexanone, cyclohexanedione, 3-butyn-2-one, 2-norbornanone, adamantanone, Examples include 2,2-bis (4-oxocyclohexyl) propane.
  • methylol compounds include 1,3-bis (hydroxymethyl) urea, ribitol, arabitol, allitol, 2,2-bis (hydroxymethyl) butyric acid, 2-benzyloxy-1,3-propanediol, cyclohexanedimethanol, 2 , 2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, monoacetin, 2-methyl-2-nitro-1,3-propanediol, 5-norbornene-2,2- Dimethanol, 5-norbornene-2,3-dimethanol, pentaerythritol, 2-phenyl-1,3-propanediol, trimethylolethane, trimethylolpropane, 3,6-bis (hydroxymethyl) durene, 2,6 -Bis (hydroxymethyl) -p-cresol, 2,3-bis (hydride) Xymethyl) naphthalene, 2,2′-bis
  • alkoxymethyl compound examples include 1,4-bis (methoxymethyl) benzene, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 2,4,6-tris [bis (methoxymethyl) amino] -1 3,5-triazine and the like.
  • the polymerization resin of the phenol and the unsaturated bond-containing compound can be obtained by polymerizing phenol or a derivative thereof and the unsaturated bond-containing compound.
  • the same ones as described above can be used.
  • the unsaturated bond-containing compound include butadiene, pentadiene, 1,3-butanediol-dimethacrylate, cyclohexadiene, cyclopentadiene, allyl ether. Allyl sulfide, diallyl adipate, dicyclopentadiene, 1-hydroxydicyclopentadiene, 1-methylcyclopentadiene, 2,5-norbornadiene, tetrahydroindene, 5-ethylidene-2-norbornene, 5-vinyl-2-norbornene, Examples include triallyl cyanurate.
  • the polyamide, polyimide and precursor thereof, or a copolymer of these resins can be synthesized by a known method.
  • polyamide is synthesized by a condensation reaction of a dicarboxylic acid or an acid chloride derivative thereof and a diamine.
  • the polyimide and its precursor can be synthesized from a condensation reaction of tetracarboxylic dianhydride and diamine. From the viewpoint of ensuring the solubility in an aqueous alkali solution, it is preferable that the structural formula of diamine used when synthesizing the polyamide, polyimide and its precursor has at least one phenolic hydroxyl group.
  • diamines include 3,3′-diamino-4,4′-dihydroxybiphenyl, 4,4′-diamino-3,3′-dihydroxybiphenyl, 3,3′-diamino-4, 4'-dihydroxydiphenylsulfone, 4,4'-diamino-3,3'-dihydroxydiphenylsulfone, bis- (3-amino-4-hydroxyphenyl) methane, 2,2-bis- (3-amino-4- Hydroxyphenyl) propane, 2,2-bis- (3-amino-4-hydroxyphenyl) hexafluoropropane, 2,2-bis- (4-amino-3-hydroxyphenyl) hexafluoropropane, bis- (4- Amino-3-hydroxyphenyl) methane, 2,2-bis- (4-amino-3-hydroxyphenyl) propane, 4,4'-diamy ⁇ 3,3′-dihydroxybenzophenone,
  • the content of the biphenyldiyl-phenolic resin in the composition of the mixed resin is 50% by mass or more from the viewpoint of elongation. It is preferable that it is 60 mass% or more.
  • the elongation when the photosensitive resin composition is a cured product is preferably 8% or more, more preferably 10% or more, from the viewpoint of reliability of the semiconductor element or semiconductor component using the semiconductor element.
  • the first composition is not particularly limited as long as it is a composition that can form a resin pattern in response to radiation including ultraviolet rays, electron beams, and X-rays. It may be a photosensitive composition.
  • the photoacid generator (B) When the first composition is used as a negative photosensitive composition, the photoacid generator (B) generates an acid upon irradiation with radiation, and the generated acid is the phenol resin (A) and the later-described acid. It can cause a crosslinking reaction with other components of the first composition.
  • the photoacid generator (B) When the first composition is used as a negative photosensitive composition, the photoacid generator (B) generates an acid upon irradiation with radiation, and the generated acid is the phenol resin (A) and the later-described acid. It can cause a crosslinking reaction with other components of the first composition. Examples of such compounds include the following compounds:
  • Diaryliodoniums Diphenyliodonium tetrafluoroborate, diphenyliodonium tetrafluorophosphate, diphenyliodonium tetrafluoroarsenate, diphenyliodonium trifluoromethanesulfonate, diphenyliodonium trifluoroacetate, diphenyliodonium-p-toluenesulfonate, 4-methoxy Phenylphenyliodonium tetrafluoroborate, 4-methoxyphenylphenyliodonium hexafluorophosphonate, 4-methoxyphenylphenyliodonium hexafluoroarsenate, 4-methoxyphenylphenyliodonium trifluoromethanesulfonate, 4-methoxyphenylphenyliodonium trifluoroacetate, 4 - Methoxyphenylphenyl
  • Triarylsulfonium salts Triphenylsulfonium tetrafluoroborate, triphenylsulfonium hexafluorophosphonate, triphenylsulfonium hexafluoroarsenate, triphenylsulfonium methanesulfonate, triphenylsulfonium trifluoroacetate, triphenylsulfonium-p-toluene Sulfonate, 4-methoxyphenyldiphenylsulfonium tetrafluoroborate, 4-methoxyphenyldiphenylsulfonium hexafluorophosphonate, 4-methoxyphenyldiphenylsulfonium hexafluoroarsenate, 4-methoxyphenyldiphenylsulfonium methanesulfonate, 4-methoxyphenyldiphenylsulfonium Trifluoroa
  • trichloromethyl-S-triazines include 2- (3-chlorophenyl) -bis (4,6-trichloromethyl) -S-triazine, 2- (4-chlorophenyl) -bis (4, 6-trichloromethyl) -S-triazine, 2- (4-methylthiophenyl) -bis (4,6-trichloromethyl) -S-triazine, 2- (4-methoxy- ⁇ -styryl) -bis (4,6 -Trichloromethyl) -S-triazine, 2- (4-methoxynaphthyl) -bis (4,6-trichloromethyl) -S-triazine and the like as diaryl iodonium salts include diphenyl iodonium trifluoroacetate, diphenyl iodonium trifluoromethane Sulfonate, 4-methoxyphenylphenyliodonium trifluorome
  • Diazoketone compound examples include a 1,3-diketo-2-diazo compound, a diazobenzoquinone compound, a diazonaphthoquinone compound, and the like, and specific examples include 1,2-naphthoquinonediazide of phenols. There may be mentioned 4-sulfonic acid ester compounds.
  • Sulfone Compounds of the sulfone compound include ⁇ -ketosulfone compounds, ⁇ -sulfonylsulfone compounds and ⁇ -diazo compounds of these compounds. Specific examples include 4-trisphenacylsulfone, mesitylphena. Examples include silsulfone and bis (phenacylsulfonyl) methane.
  • Sulfonic acid compound examples include alkyl sulfonic acid esters, haloalkyl sulfonic acid esters, aryl sulfonic acid esters, and imino sulfonates.
  • Preferred examples include benzoin tosylate, pyrogallol tris trifluoromethane sulfonate, o-nitrobenzyl trifluoromethane sulfonate, o-nitrobenzyl-p-toluene sulfonate, and the like.
  • Sulfonimide compound examples include N- (trifluoromethylsulfonyloxy) succinimide, N- (trifluoromethylsulfonyloxy) phthalimide, N- (trifluoromethylsulfonyloxy) diphenylmaleimide, N- ( (Trifluoromethylsulfonyloxy) bicyclo [2.2.1] hept-5-ene-2,3-dicarboximide, N- (trifluoromethylsulfonyloxy) naphthylimide and the like.
  • Oxime ester compound As an oxime ester compound, specifically, 2- [2- (4-methylphenylsulfonyloxyimino)]-2,3-dihydrothiophene-3-ylidene] -2- (2-methyl Phenyl) acetonitrile (trade name “Irgacure PAG121” by Ciba Specialty Chemicals), [2- (propylsulfonyloxyimino) -2,3-dihydrothiophene-3-ylidene] -2- (2-methylphenyl) acetonitrile (Ciba Specialty) Chemicals trade name “Irgacure PAG103”), [2- (n-octanesulfonyloxyimino) -2,3-dihydrothiophene-3-ylidene] -2- (2-methylphenyl) acetonitrile (Ciba Specialty Chemicals trade name) "Irgacure PAG
  • Diazomethane compound examples include bis (trifluoromethylsulfonyl) diazomethane, bis (cyclohexylsulfonyl) diazomethane, and bis (phenylsulfonyl) diazomethane.
  • the oxime ester compound is particularly preferable from the viewpoint of sensitivity.
  • the amount of the compound (B) that generates an acid by light irradiation is 100 parts by weight of the biphenyldiyl-phenol resin that is the component (A) of the first composition. 1 to 30 parts by mass. If this addition amount is 1 part by mass or more, the amount of acid generated by radiation irradiation will be sufficient and the sensitivity will be improved. If this addition amount is 30 parts by mass or less, the mechanical properties after curing will be good. .
  • the first composition can also be used as a positive photosensitive composition.
  • the photoacid generator (B) preferably contains a naphthoquinonediazide derivative.
  • the naphthoquinonediazide derivative include compounds having a 1,2-benzoquinonediazide structure or a 1,2-naphthoquinonediazide structure. These compounds are disclosed in, for example, US Pat. No. 2,772,972, US Pat. No. 2,797,213, US Pat. No. 3,669,658 and the like.
  • the naphthoquinonediazide derivative is obtained from 1,2-naphthoquinonediazide-4-sulfonic acid ester of a polyhydroxy compound having a specific structure described in detail below, and 1,2-naphthoquinonediazide-5-sulfonic acid ester of the polyhydroxy compound. And at least one compound selected from the group consisting of the following (hereinafter also referred to as “NQD compound”).
  • the NQD compound is obtained by subjecting the naphthoquinone diazide sulfonic acid compound to sulfonyl chloride with chlorosulfonic acid or thionyl chloride according to a conventional method, and subjecting the resulting naphthoquinone diazide sulfonyl chloride to a polyhydroxy compound.
  • a polyhydroxy compound and a predetermined amount of 1,2-naphthoquinonediazide-5-sulfonyl chloride or 1,2-naphthoquinonediazide-4-sulfonyl chloride in a solvent such as dioxane, acetone or tetrahydrofuran, a base such as triethylamine can be obtained by reacting in the presence of a sex catalyst to carry out esterification, and washing the resulting product with water and drying.
  • Examples of preferable NQD compounds from the viewpoint of physical properties of the cured film such as sensitivity and elongation include the following. ⁇ Wherein Q is a hydrogen atom or the following: And all Qs are not simultaneously hydrogen atoms. ⁇ .
  • a naphthoquinone diazide sulfonyl ester compound in which 4-naphthoquinone diazide sulfonyl group and 5-naphthoquinone diazide sulfonyl group are used in the same molecule can be used, or 4-naphthoquinone diazide sulfonyl ester compound and 5-naphthoquinone diazide. It can also be used by mixing with a sulfonyl ester compound.
  • the amount of the naphthoquinone diazide derivative used as the component (B) in the first composition is 1 to 30 parts by mass with respect to 100 parts by mass of the biphenyldiyl-phenol resin (A) of the first composition.
  • the amount is preferably 1 to 20 parts by mass.
  • this addition amount is 1 part by mass or more, the amount of acid generated by radiation irradiation is sufficient, the sensitivity is improved, and the patterning property is good.
  • this addition amount is 30 parts by mass or less, curing is achieved. The mechanical properties of the subsequent film are good and there is little development residue (scum) in the exposed area.
  • the above naphthoquinonediazide derivatives may be used alone or in combination of two or more.
  • (C) a compound capable of reacting with the component (A) by an acid generated from the photoacid generator (B) or by heat An acid generated from the photoacid generator (B) or a compound capable of reacting with the biphenyldiyl-phenol resin as the component (A) by the action of heat (hereinafter also simply referred to as “crosslinking agent”) is used as the component (A).
  • crosslinking agent a compound capable of reacting with the component (A) by the action of heat
  • crosslinking agent is used as the component (A).
  • film properties such as mechanical properties, heat resistance, and chemical resistance can be enhanced when the coating film is heated and cured.
  • the cross-linking agent is preferably an epoxy group, an oxetane group, a —N— (CH 2 —OR ′) group, wherein R ′ is hydrogen or a carbon number of 1 to 4 It is an alkyl group.
  • R ′ is hydrogen or a carbon number of 1 to 4 It is an alkyl group.
  • ⁇ and a —C— (CH 2 —OR ′) group ⁇ wherein R ′ is hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • R ′ is hydrogen or an alkyl group having 1 to 4 carbon atoms.
  • a melamine resin or urea resin in which the N-position is substituted with a methylol group or an alkoxymethyl group is exemplified.
  • melamine resin, benzoguanamine resin, glycoluril resin, hydroxyethylene urea resin, urea resin, glycol urea resin, alkoxymethylated melamine resin, alkoxymethylated benzoguanamine resin, alkoxymethylated glycoluril resin, alkoxymethylated urea Resins can be mentioned.
  • alkoxymethylated melamine resins alkoxymethylated benzoguanamine resins, alkoxymethylated glycoluril resins, and alkoxymethylated urea resins are known methylolated melamine resins, methylolated benzoguanamine resins, and methylol groups of methylolated urea resins. Obtained by conversion to an alkoxymethyl group.
  • alkoxymethyl group examples include a methoxymethyl group, an ethoxymethyl group, a propoxymethyl group, a butoxymethyl group, and the like, but commercially available Cymel 300, 301, 303, 370, 325. 327, 701, 266, 267, 238, 1141, 272, 202, 1156, 1158, 1123, 1170, 1174, UFR65, 300 (manufactured by Mitsui Cytec Co., Ltd.), Nicarax MX-270, -280, -290, Nicalac MS-11, Nicalac MW-30, -100, -300, -390, -750 (manufactured by Sanwa Chemical Co., Ltd.) and the like can be preferably used. These compounds can be used alone or in combination.
  • a C— (CH 2 —OR ′) group ⁇ wherein R ′ is hydrogen or an alkyl group.
  • R ′ is hydrogen or an alkyl group.
  • 1,4-bis (methoxymethyl) benzene, 4,4′-biphenyldimethanol, 4,4′-bis (methoxymethyl) biphenyl commercially available 26DMPC, 46DMOC, DM-BIPC-F, DM-BIOC-F, TM-BIP-A (manufactured by Asahi Organic Materials Co., Ltd.), DML-MBPC, DML-MBOC, DML-OCHP, DML-PC, DML-PCHP, DML-PTBP, DML-34X, DML-EP, DML-POP, DML-OC, dimethylol-Bis-C, dimethylol-BisOC-P, DML-BisOC-Z, DML-BisOCHP-Z, DML-PFP, DML- PSBP
  • cross-linking agent having two or more epoxy groups or oxetane groups in the molecular structural formula examples include 1,1,2,2-tetra (p-hydroxyphenyl) ethane tetraglycidyl ether, glycerol triglycidyl ether, and the like.
  • the addition amount of these crosslinking agents is 1 to 60 parts by mass, preferably 3 to 50 parts by mass with respect to 100 parts by mass of the biphenyldiyl-phenol resin (A).
  • this addition amount is 1 part by mass or more, crosslinking proceeds sufficiently, and an effect of enhancing film properties can be obtained. If this addition amount is 60 parts by mass or less, the elongation is maintained.
  • crosslinking agent used in the first composition for example, 2,2′-bis (2-oxazoline), 2,2′-isopropylidenebis (4-phenyl-2-oxazoline), 1 , 3-bis (4,5-dihydro-2-oxazolyl) benzene, 1,4-bis (4,5-dihydro-2-oxazolyl) benzene, Epocross K-2010E, K-2020E, K-2030E, WS- 500, WS-700, RPS-1005 (trade name, manufactured by Nippon Shokubai Co., Ltd.) and other oxazoline compounds, carbodilite SV-02, V-01, V-02, V-03, V-04, V-05, V- Carbodiimide compounds such as 07, V-09, E-01, E-02, LA-1 (trade name, manufactured by Nisshinbo Chemical Co., Ltd.), formaldehyde, glutaraldehyde, hexamethyle Aldehyde
  • the first composition may further contain (D) a thermal base generator from the viewpoint of improving the physical properties of the cured film.
  • a thermal base generator from the viewpoint of improving the physical properties of the cured film.
  • the crosslinking agent as component (C) contains an epoxy group or oxetane group
  • the crosslinking reaction between the crosslinking agent as component (C) and the resin as component (A) is accelerated during thermosetting.
  • the thermal decomposition temperature of the thermal base generator used in the first composition is 50 ° C. or higher, preferably 70 ° C. or higher, more preferably 90 ° C. or higher.
  • Specific examples of the thermal base generator include compounds represented by the following formulae. ⁇ Wherein n is an integer of 1-20. ⁇ ⁇ Wherein, m and n are each independently an integer of 1 to 20. ⁇ .
  • the (D) thermal base generator used in the first composition has the following formula: It is represented by
  • the amount of the (D) thermal base generator added is preferably 0.1 to 40 parts by mass with respect to 100 parts by mass of the biphenyldiyl-phenol resin (A).
  • the amount is preferably 0.5 to 30 parts by mass. From the viewpoint of sufficiently promoting the cross-linking and obtaining the effect of enhancing the film properties, 0.1 part by mass or more is preferable, and from the viewpoint of elongation, 40 parts by mass or less is preferable.
  • solvent used in the first composition examples include amides, sulfoxides, ureas, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, and the like.
  • N-methyl-2-pyrrolidone N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, acetic acid Methyl, ethyl acetate, butyl acetate, diethyl oxalate, ethyl lactate, methyl lactate, butyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, benzyl alcohol, phenyl glycol, tetra
  • the addition amount of the solvent in the first composition is 100 to 1000 parts by weight, preferably 120 to 700 parts by weight, more preferably 150 to 700 parts by weight with respect to 100 parts by weight of the biphenyldiyl-phenol resin (A).
  • the range is 500 parts by mass.
  • the first composition contains, as necessary, a dye, a surfactant, an adhesion aid for enhancing adhesion to the substrate, a dissolution accelerator, a crosslinking accelerator, and the like. Can do.
  • the dye examples include methyl violet, crystal violet, and malachite green.
  • the blending amount of the dye is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the biphenyldiyl-phenol resin (A).
  • non-ionic surfactants composed of polyglycols such as polypropylene glycol and polyoxyethylene lauryl ether or derivatives thereof, for example, Fluorard (registered trademark, trade name, manufactured by Sumitomo 3M) Fluorosurfactants such as Megafac (registered trademark, trade name, manufactured by Dainippon Ink and Chemicals), Lumiflon (registered trademark, trade name, manufactured by Asahi Glass), for example, KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) ), DBE (trade name, manufactured by Chisso Corporation), granol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), and other organosiloxane surfactants.
  • Fluorard registered trademark, trade name, manufactured by Sumitomo 3M
  • Fluorosurfactants such as Megafac (registered trademark, trade name, manufactured by Dainippon Ink and Chemicals), Lumiflon (registere
  • the amount of the surfactant used is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the biphenyldiyl-phenol resin (A).
  • adhesion assistant examples include various alkoxysilanes such as alkyl imidazoline, butyric acid, alkyl acid, polyhydroxystyrene, polyvinyl methyl ether, t-butyl novolac, epoxy silane, and epoxy polymer.
  • alkoxysilane examples include tetraalkoxysilane, bis (trialkoxysilyl) methane, bis (trialkoxysilyl) ethane, bis (trialkoxysilyl) ethylene, bis (trialkoxysilyl) hexane, and bis (trialkoxysilyl).
  • Octane bis (trialkoxysilyl) octadiene, bis [3- (trialkoxysilyl) propyl] disulfide, N-phenyl-3-aminopropyltrialkoxysilane, 3-mercaptopropyltrialkoxysilane, 2- (trialkoxysilylethyl) ) Pyridine, 3-methacryloxypropyltrialkoxysilane, 3-methacryloxypropyl dialkoxyalkylsilane, vinyltrialkoxysilane, 3-ureidopropyltrialkoxysilane, 3 Isocyanatopropyltrialkoxysilane, 3- (trialkoxysilyl) propyl succinic anhydride, N- (3-trialkoxysilylpropyl) -4,5-dihydroimidazole, 2- (3,4-epoxycyclohexyl) ethyltrialkoxy Reaction of silane, 3-
  • Examples of the alkyl group in the above compound include methyl group, ethyl group, propyl group, butyl group and the like
  • examples of the acid anhydride include maleic acid anhydride, phthalic acid anhydride, 5-norbornene-2,3-
  • examples of the acid dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and 4,4′-oxydiphthalic dianhydride.
  • Examples of the urethane group include a t-butoxycarbonylamino group, and examples of the urea group include a phenylaminocarbonylamino group.
  • the amount of the adhesive aid used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the biphenyldiyl-phenol resin (A).
  • a compound having a hydroxyl group or a carboxyl group is preferable.
  • the compound having a hydroxyl group include ballast agents, paracumylphenol, bisphenols, resorcinols, and linear phenolic compounds such as MtrisPC and MtetraPC, which are used in the naphthoquinonediazide compound, TrisP-HAP, TrisP- Non-linear phenolic compounds such as PHBA, TrisP-PA (all manufactured by Honshu Chemical Industry Co., Ltd.), 2-5 phenol substitutes of diphenylmethane, 1-5 phenol substitutes of 3,3-diphenylpropane, 2 , 2-bis- (3-amino-4-hydroxyphenyl) hexafluoropropane and a one-to-two reaction product of 5-norbornene-2,3-dicarboxylic anhydride, bis- (3-amino-4-hydroxyphenyl) ) 1 of sulfone and
  • Examples of the compound having a carboxyl group include 3-phenyllactic acid, 4-hydroxyphenyllactic acid, 4-hydroxymandelic acid, 3,4-dihydroxymandelic acid, 4-hydroxy-3-methoxymandelic acid, 2-methoxy-2 -(1-naphthyl) propionic acid, mandelic acid, atrolactic acid, acetylmandelic acid, ⁇ -methoxyphenylacetic acid, 3-phenyllactic acid, 4-hydroxyphenyllactic acid, 4-hydroxymandelic acid, 3,4-dihydroxymandelic acid 4-hydroxy-3-methoxymandelic acid, 2-methoxy-2- (1-naphthyl) propionic acid, mandelic acid, atrolactic acid, O-acetylmandelic acid, ⁇ -methoxyphenylacetic acid, 4-hydroxymandelic acid, 3,4-dihydroxymandelic acid, 4-hydroxy-3-methoxy Examples include simandelic acid, mandelic acid, atrolactic
  • the blending amount is preferably 0.1 to 50 parts by mass with respect to 100 parts by mass of the biphenyldiyl-phenol resin (A).
  • radicals generated by heat or light include alkylphenones such as Irgacure 651, 184, 2959, 127, 907, 369, 379 (trade name, manufactured by BASF Japan), Irgacure 819 (trade name, manufactured by BASF Japan). ), Etc., titanocene such as Irgacure 784 (trade name, manufactured by BASF Japan), and oxime ester such as Irgacure OXE01, 02 (trade name, manufactured by BASF Japan).
  • the first composition is applied to a suitable support such as a silicon wafer, ceramic, aluminum substrate, copper substrate and the like.
  • a suitable support such as a silicon wafer, ceramic, aluminum substrate, copper substrate and the like.
  • an adhesion assistant such as a silane coupling agent may be applied to the support in advance.
  • the first composition can be applied by spin coating using a spinner, spray coating using a spray coater, dipping, printing, roll coating, or the like.
  • the film is pre-baked at 80 to 140 ° C. to dry the coating film, and then irradiated with actinic radiation using an exposure apparatus such as a contact aligner, mirror projection, or stepper.
  • the actinic radiation X-rays, electron beams, ultraviolet rays, visible rays and the like can be used, but those having a wavelength of 200 to 500 nm are preferable.
  • the light source wavelength is preferably g-line, h-line or i-line of a mercury lamp, which may be used alone or in combination.
  • a contact aligner, a mirror projection, and a stepper are particularly preferable.
  • developers include inorganic alkalis such as sodium hydroxide, sodium carbonate, sodium silicate, aqueous ammonia, organic amines such as ethylamine, diethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide.
  • inorganic alkalis such as sodium hydroxide, sodium carbonate, sodium silicate, aqueous ammonia
  • organic amines such as ethylamine, diethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide.
  • An aqueous solution of a quaternary ammonium salt such as quaternary ammonium salt or the like, and an aqueous solution to which an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant is added as required can be used.
  • a quaternary ammonium salt such as quaternary ammonium salt or the like
  • an aqueous solution to which an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant is added as required
  • an aqueous tetramethylammonium hydroxide solution is preferable, and the concentration thereof is 0.5 to 10% by weight, preferably 1.0 to 5% by weight.
  • the pattern film can be obtained by washing with a rinse solution to remove the developer.
  • a rinse solution distilled water, methanol, ethanol, isopropanol or the like can be used alone or in combination.
  • a cured relief pattern can be obtained by heating the relief pattern thus obtained.
  • the heating temperature is preferably 150 ° C. or higher.
  • a general method for forming a cured relief pattern using a polyimide or polybenzoxazole precursor composition it is necessary to convert it to polyimide or polybenzoxazole by heating to 300 ° C. or more to advance a dehydration cyclization reaction.
  • this method can be suitably used for heat-sensitive semiconductor devices.
  • the heat treatment may be performed at 300 to 400 ° C. in this method as well.
  • a heat treatment apparatus a hot plate, an oven, and a temperature rising oven capable of setting a temperature program can be used. Air may be used as the atmospheric gas when performing the heat treatment, and an inert gas such as nitrogen or argon may be used. Further, when it is necessary to perform heat treatment at a lower temperature, heating may be performed under reduced pressure using a vacuum pump or the like.
  • ⁇ Semiconductor device> The above-described cured relief pattern is used as a surface protective film, an interlayer insulating film, a rewiring insulating film, a protective film for a flip chip device, a protective film for a device having a bump structure, and a process in a known method for manufacturing a semiconductor device In combination, the semiconductor device according to the first aspect of the present invention can be manufactured.
  • a semiconductor element surface protective film or an interlayer insulating film can be produced using the first composition.
  • the first aspect of the present invention also relates to the use of the first composition in the production of a semiconductor element surface protective film or an interlayer insulating film.
  • the phenol resin composition is a phenol resin composition containing a phenol resin and a solvent
  • the composition is spin-coated on a silicon wafer
  • the silicon wafer and The spin coat film is heated at 100 ° C. for 3 minutes, and the spin coat film is cured at 250 ° C. for 1 hour in a nitrogen atmosphere to obtain a cured product having a thickness of 10 ⁇ m.
  • the cured product is 3 mm wide by a dicing saw.
  • the silicon wafer was peeled by cutting and treating with a 23% by mass hydrofluoric acid aqueous solution, and left in an atmosphere at a temperature of 23 ° C. and a humidity of 50% for 24 hours or more to obtain 20 samples.
  • the average value of the top five points of the tensile elongation of the sample when measured by a tensile tester is 20% or more, A phenol resin composition.
  • the reliability of a surface protective film or an interlayer insulating film applied to a semiconductor device refers to sputtering, annealing, etching, curing of the surface protective film (curing), adhesion to a die attach film, and semiconductor in a later process of manufacturing the semiconductor device. It is to operate normally as a semiconductor device through a series of processes such as chip-to-chip connection, semiconductor chip-to-interposer connection, wire bonding, underfill injection, molding with sealing resin, solder reflow, burn-in, etc.
  • the reliability is considered to be the overall performance of the surface protective film or the interlayer insulating film.
  • the inventors have a history of heat in the series of various stages described above, and stress is generated due to the difference in thermal expansion coefficient between different materials of the semiconductor device, which results in warping of the semiconductor device. If the surface protective film or interlayer insulating film cannot withstand warping, defects such as cracks occur in the film, and the stress reduction due to the sealing resin filler originally expected for the surface protective film or interlayer insulating film etc. It was thought that the insulation and the ⁇ -ray shielding effect could not be exhibited.
  • the present inventors examined the tensile elongation of a film existing as a surface protective film or an interlayer insulating film, and the average value of the tensile elongation measured under the specific conditions as described above is a specific value (that is, And about 20%) or more, it was found that even if warpage occurs, the expected function is maintained without causing defects such as cracks in the film.
  • the average value of the tensile elongation is preferably 25% or more, more preferably 50% or more, and further preferably 54% or more from the viewpoint of reliability.
  • the upper limit is preferably as the numerical value is larger, but is, for example, 100%.
  • the tensile elongation measurement method and measurement conditions are as follows.
  • a phenol resin composition is spin coated on a silicon wafer, the silicon wafer and the spin coat film are heated on a hot plate at 100 ° C. for 3 minutes, and the spin coat film is cured at 250 ° C. for 1 hour in a nitrogen atmosphere.
  • This cured product is cut with a dicing saw at a width of 3 mm, and the silicon wafer is peeled off by treating with a 23% by mass hydrofluoric acid aqueous solution, and further left to stand in an atmosphere at a temperature of 23 ° C. and a humidity of 50% for 24 hours or more.
  • the Young's modulus of the film obtained by thermosetting the phenol resin composition is preferably lower because the film can begin to deform even with a smaller stress and can exhibit a stress relaxation function.
  • the Young's modulus is preferably less than 4.0 GPa, more preferably less than 3.5 GPa, and most preferably less than 3.0 GPa.
  • the Young's modulus is preferably 1.0 GPa or more, and more preferably 1.5 GPa or more.
  • the measuring method and measuring conditions of the Young's modulus are as follows. ⁇ Young's modulus measurement method> Film formation, sample preparation, and measurement are performed under the same conditions as the tensile elongation measurement method described above. The obtained SS curve is obtained according to JIS K 7161. The average value of is adopted.
  • the phenol resin composition in the second aspect of the present invention (hereinafter also referred to as “second composition”) is a phenol resin among resins having a weight average molecular weight of 1,500 or more contained in the composition. Is 55% by mass or more, preferably 75% by mass or more, more preferably 95% by mass or more, and most preferably 100% by mass.
  • the phenol resin used in the second composition is a polymer compound containing a phenol derivative in its repeating unit.
  • the phenol resin is a resin obtained by polymerizing an aldehyde compound, a ketone compound, a methylol compound, or an alkoxymethyl compound with a phenol derivative; a phenol-diene polymer resin; a polyhydroxystyrene resin. And derivatives of these resins.
  • the weight average molecular weight of the phenol resin used for a 2nd composition is 1,500 or more.
  • a resin obtained by polymerizing an aldehyde compound, a ketone compound, a methylol compound, or an alkoxymethyl compound with respect to the phenol derivative will be described below.
  • phenol derivatives include phenol, cresol, ethylphenol, propylphenol, butylphenol, amylphenol, benzylphenol, adamantanephenol, benzyloxyphenol, xylenol, catechol, resorcinol, ethylresorcinol, hexylresorcinol, hydroquinone, pyrogallol, phloroglucinol 1,2,4-trihydroxybenzene, pararozolic acid, biphenol, bisphenol A, bisphenol AF, bisphenol B, bisphenol F, bisphenol S, dihydroxydiphenylmethane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 1,4 -Bis (3-hydroxyphenoxybenzene), 2,2-bis (4-hydroxy-3- Tilphenyl) propane, ⁇ , ⁇ ′-bis (4-hydroxyphenyl) -1,4-diisopropylbenzene, 9,9-bis (4-hydroxy-3
  • aldehyde compounds include formaldehyde, paraformaldehyde, acetaldehyde, propionaldehyde, pivalaldehyde, butyraldehyde, pentanal, hexanal, trioxane, glyoxal, cyclohexylaldehyde, diphenylacetaldehyde, ethylbutyraldehyde, benzaldehyde, glyoxylic acid, 5-norbornene-2- Examples include carboxaldehyde, malondialdehyde, succindialdehyde, glutaraldehyde, salicylaldehyde, naphthaldehyde, terephthalaldehyde, and the like.
  • ketone compound examples include acetone, methyl ethyl ketone, diethyl ketone, dipropyl ketone, dicyclohexyl ketone, dibenzyl ketone, cyclopentanone, cyclohexanone, bicyclohexanone, cyclohexanedione, 3-butyn-2-one, 2-norbornanone, adamantanone, 2 , 2-bis (4-oxocyclohexyl) propane and the like.
  • methylol compounds include 1,3-bis (hydroxymethyl) urea, ribitol, arabitol, allitol, 2,2-bis (hydroxymethyl) butyric acid, 2-benzyloxy-1,3-propanediol, cyclohexanedimethanol, 2, 2-dimethyl-1,3-propanediol, 2,2-diethyl-1,3-propanediol, monoacetin, 2-methyl-2-nitro-1,3-propanediol, 5-norbornene-2,2-di Methanol, 5-norbornene-2,3-dimethanol, pentaerythritol, 2-phenyl-1,3-propanediol, trimethylolethane, trimethylolpropane, 3,6-bis (hydroxymethyl) durene, 2,6- Bis (hydroxymethyl) -p-cresol, 2,3-bis (hydro Cymethyl) naphthalene, 2,2′-bis (hydroxymethyl)
  • alkoxymethyl compounds include 1,4-bis (methoxymethyl) benzene, 4,4′-bis (methoxymethyl) biphenyl, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 2,4,6- And tris [bis (methoxymethyl) amino] -1,3,5-triazine.
  • the same phenol derivative as described above can be used as a phenol derivative obtained by polymerizing a phenol derivative and a diene compound.
  • the diene compound include butadiene, pentadiene, Hexadiene, heptadiene, octadiene, 3-methyl-1,3-butadiene, 1,3-butanediol-dimethacrylate, 2,4-hexadiene-1-ol, methylcyclohexadiene, cyclopentadiene, cyclohexadiene, cyclohexadiene, Cyclooctadiene, dicyclopentadiene, 1-hydroxydicyclopentadiene, 1-methylcyclopentadiene, methyldicyclopentadiene, diallyl ether, diallyl sulfide, diallyl adipate, 2,5-norbornadi Emissions, tetrahydroinden
  • the polyhydroxystyrene resin can be obtained by addition polymerization of a phenol derivative having an unsaturated bond.
  • Phenol derivatives used in the synthesis of resins obtained by addition polymerization of phenol derivatives having unsaturated bonds include hydroxystyrene, dihydroxystyrene, allylphenol, coumaric acid, hydroxychalcone, N-hydroxyphenyl-5-norbornene-2,3- Examples include dicarboxylic imide, resveratrol, hydroxystilbene and the like.
  • Acidic catalysts include hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, phosphorous acid, methanesulfonic acid, p-toluenesulfonic acid, dimethyl sulfuric acid, diethyl sulfuric acid, acetic acid, oxalic acid, 1-hydroxyethylidene-1,1'-diphosphone Examples thereof include acid, zinc acetate, boron trifluoride, boron trifluoride / phenol complex, boron trifluoride / ether complex, and the like.
  • alkaline catalysts include lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, barium hydroxide, sodium carbonate, triethylamine, pyridine, 4-N, N-dimethylaminopyridine, piperidine, piperazine, 1 , 4-diazabicyclo [2.2.2] octane, 1,8-diazabicyclo [5.4.0] -7-undecene, 1,5-diazabicyclo [4.3.0] -5-nonene, ammonia, hexa And methylenetetramine.
  • the phenol resin may be a copolymer of a plurality of components, and a compound having no phenolic hydroxyl group as a part of the phenol derivative may be used in the copolymerization.
  • the weight average molecular weight of the phenol resin is preferably 1,500 to 200,000, more preferably 1,500 to 100,000, and most preferably 2,000 to 50,000.
  • the second composition is characterized by high tensile elongation when formed into a cured film.
  • the ratio of the number of oxygen atoms and nitrogen atoms to the number of carbon atoms is preferably 0.1 or less, more preferably 0.08 or less, and most preferably 0.06 or less.
  • the interaction between polymers including hydrogen bonds falls within an appropriate range.
  • solvent used in the second composition examples include amides, sulfoxides, ureas, ketones, esters, lactones, ethers, halogenated hydrocarbons, hydrocarbons, and the like.
  • -Methyl-2-pyrrolidone N, N-dimethylacetamide, N, N-dimethylformamide, dimethyl sulfoxide, tetramethylurea, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, methyl acetate, ethyl acetate, butyl acetate , Diethyl oxalate, ethyl lactate, methyl lactate, butyl lactate, ⁇ -butyrolactone, propylene glycol monomethyl ether acetate, propylene glycol monomethyl ether, benzyl alcohol, phenyl glycol, tetrahydr
  • N-methyl-2-pyrrolidone dimethyl sulfoxide, tetramethylurea, butyl acetate, ethyl lactate, ⁇ -butyrolactone, propylene glycol from the viewpoints of resin solubility, resin composition stability, and adhesion to a substrate.
  • Monomethyl ether acetate, propylene glycol monomethyl ether, benzyl alcohol, phenyl glycol, and tetrahydrofurfuryl alcohol are preferred.
  • the amount of the solvent added is 100 to 1000 parts by weight, preferably 120 to 700 parts by weight, and more preferably 150 to 500 parts by weight with respect to 100 parts by weight of the phenol resin. is there.
  • cross-linking agent is contained in the second composition.
  • cross-linking agents include 1,1,2,2-tetra (p-hydroxyphenyl) ethanetetraglycidyl ether, glycerol triglycidyl ether, ortho-secondary butylphenyl glycidyl ether, 1,6-bis (2,3-epoxypropoxy) Naphthalene, diglycerol polyglycidyl ether, polyethylene glycol glycidyl ether, triglycidyl isocyanurate, epiclone 830, 850, 1050, N-680, N-690, N-695, N-770, HP-7200, HP-820, EXA -4850-1000 (trade name, manufactured by DIC), Denacol EX-201, EX-313, EX-314, EX-321, EX-411, EX-511, EX-512, EX-612, EX-6
  • Oxazoline compounds carbodilite SV-02, V-01, V-02, V-03, V-04, V-05, V-07, V-09, E-01, E-02, LA-1 Name, manufactured by Nisshinbo Chemical Co., Ltd.), formaldehyde, glutaraldehyde, hexamethylenetetramine, trioxane, glyoxal, malondialdehyde Aldehydes such as succindialdehyde and modified aldehydes, 4,4′-diphenylmethane diisocyanate, tolylene diisocyanate, 1,3-phenylene bismethylene diisocyanate, dicyclohexylmethane-4,4′-diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, Takenate 500, 600, Cosmonate NBDI, ND (trade name, manufactured by Mitsui Chemicals) Duranate 17B-60PX, TPA
  • Epicron 830, 850, 1050, N-680, N-690, N-695, N-770, HP-7200 from the viewpoint of elongation and heat resistance of the obtained thermosetting film HP-820, EXA-4850-1000, Denacol EX-201, EX-313, EX-314, EX-321, EX-411, EX-511, EX-512, EX-612, EX-614, EX-614B , EX-731, EX-810, EX-911, EM-150, xylylene bisoxetane, 3-ethyl-3 ⁇ [(3-ethyloxetane-yl) methoxy] methyl ⁇ oxetane, 1,3-bis (4 , 5-dihydro-2-oxazolyl) benzene, Nicarak MW-30MH, MW-100LH, BL-60, MX-270, MX-280,
  • the amount of the crosslinking agent used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the phenol resin.
  • the second composition preferably contains a photosensitizer.
  • the second composition can be made positive or negative.
  • a photoacid generator As the photoacid generator, a naphthoquinone diazide (NQD) compound, an onium salt, a halogen-containing compound, and the like can be used. From the viewpoint of solvent solubility and storage stability, a photoactive compound having an NQD structure described later is preferable.
  • onium salt examples include iodonium salts, sulfonium salts, phosphonium salts, ammonium salts, diazonium salts, and the like, and onium salts selected from the group consisting of diaryliodonium salts, triarylsulfonium salts, and trialkylsulfonium salts are preferable.
  • halogen-containing compound examples include haloalkyl group-containing hydrocarbon compounds, and trichloromethyltriazine is preferable.
  • naphthoquinone diazide compound examples include compounds having a 1,2-benzoquinone diazide structure or a 1,2-naphthoquinone diazide structure. These compounds include, for example, US Pat. No. 2,772,972, US Pat. No. 2,797. No. 213, U.S. Pat. No. 3,669,658, and the like.
  • the naphthoquinonediazide structure includes 1,2-naphthoquinonediazide-4-sulfonic acid ester of a polyhydroxy compound having a specific structure described in detail below, and 1,2-naphthoquinonediazide-5-sulfonic acid ester of the polyhydroxy compound. At least one compound selected from the group consisting of (hereinafter also referred to as “NQD compound”).
  • the NQD compound is obtained by subjecting the naphthoquinone diazide sulfonic acid compound to sulfonyl chloride with chlorosulfonic acid or thionyl chloride according to a conventional method, and subjecting the resulting naphthoquinone diazide sulfonyl chloride to a polyhydroxy compound.
  • the NQD compound can be obtained by reacting in the presence of a basic catalyst for esterification, and washing the resulting product with water and drying.
  • NQD compounds examples include the following. ⁇ Wherein Q is a hydrogen atom or the following: Of naphthoquinonediazide sulfonate groups, and all Qs are not simultaneously hydrogen atoms. ⁇
  • a naphthoquinone diazide sulfonyl ester compound in which a 4-naphthoquinone diazide sulfonyl group and a 5-naphthoquinone diazide sulfonyl group are used in the same molecule can be used, or a 4-naphthoquinone diazide sulfonyl ester compound and a 5-naphthoquinone diazide sulfonyl ester compound. Can also be used as a mixture.
  • the blending amount of the photosensitizer with respect to 100 parts by mass of the phenol resin is preferably 1 to 50 parts by mass, and more preferably 5 to 30 parts by mass.
  • the blending amount of the photosensitizer is 1 part by mass or more, the patterning property of the resin is good, and when it is 50 parts by mass or less, the tensile elongation rate of the cured film is good and the exposed portion is developed. There is little residue (scum).
  • the second composition can contain a dye, a surfactant, an adhesion assistant for enhancing adhesion to the substrate, a dissolution accelerator, a crosslinking accelerator, and the like.
  • the dye examples include methyl violet, crystal violet, and malachite green.
  • the blending amount of the dye is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the phenol resin.
  • surfactant examples include non-ionic surfactants composed of polyglycols such as polypropylene glycol and polyoxyethylene lauryl ether or derivatives thereof, and Fluorard (registered trademark, trade name, manufactured by Sumitomo 3M), for example.
  • Fluorosurfactants such as Megafac (registered trademark, trade name, manufactured by Dainippon Ink and Chemicals), Lumiflon (registered trademark, trade name, manufactured by Asahi Glass), for example, KP341 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.) ), DBE (trade name, manufactured by Chisso Corporation), granol (trade name, manufactured by Kyoeisha Chemical Co., Ltd.), and other organosiloxane surfactants.
  • Megafac registered trademark, trade name, manufactured by Dainippon Ink and Chemicals
  • Lumiflon registered trademark, trade name, manufactured by Asahi Glass
  • KP341 trade name, manufactured by Shin-Etsu Chemical Co., Ltd.
  • DBE trade name, manufactured by Chisso Corporation
  • granol trade name, manufactured by Kyoeisha Chemical Co., Ltd.
  • the amount of the surfactant used is preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the phenol resin.
  • adhesion assistant examples include alkyl imidazoline, butyric acid, alkyl acid, polyhydroxystyrene, polyvinyl methyl ether, t-butyl novolac, epoxy silane, epoxy polymer, and various alkoxy silanes.
  • alkoxysilane examples include, for example, tetraalkoxysilane, bis (trialkoxysilyl) methane, bis (trialkoxysilyl) ethane, bis (trialkoxysilyl) ethylene, bis (trialkoxysilyl) hexane, and bis (trialkoxy).
  • Examples of the alkyl group in the above compound include methyl group, ethyl group, propyl group, butyl group and the like
  • examples of the acid anhydride include maleic acid anhydride, phthalic acid anhydride, 5-norbornene-2,3-
  • examples of the acid dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, and 4,4′-oxydiphthalic dianhydride.
  • Examples of the urethane group include a t-butoxycarbonylamino group, and examples of the urea group include a phenylaminocarbonylamino group.
  • the amount of the adhesive aid used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the phenol resin.
  • a compound having a hydroxyl group or a carboxyl group is preferable.
  • the compound having a hydroxyl group include a ballast agent used in the above-mentioned naphthoquinone diazide compound, paracumylphenol, bisphenols, resorcinol, and linear phenol compounds such as MtrisPC and MtetraPC, TrisP-HAP, TrisP -Non-linear phenolic compounds such as PHBA and TrisP-PA (all manufactured by Honshu Chemical Industry Co., Ltd.), 2-5 phenol substitutes of diphenylmethane, 1-5 phenol substitutes of 3,3-diphenylpropane, A one-to-two reaction product of 2,2-bis- (3-amino-4-hydroxyphenyl) hexafluoropropane and 5-norbornene-2,3-dicarboxylic anhydride, bis- (3-amino-4-hydroxy Phenyl) sulfone
  • Examples of the compound having a carboxyl group include 3-phenyllactic acid, 4-hydroxyphenyllactic acid, 4-hydroxymandelic acid, 3,4-dihydroxymandelic acid, 4-hydroxy-3-methoxymandelic acid, 2-methoxy-2 -(1-naphthyl) propionic acid, mandelic acid, atrolactic acid, acetylmandelic acid, ⁇ -methoxyphenylacetic acid, 3-phenyllactic acid, 4-hydroxyphenyllactic acid, 4-hydroxymandelic acid, 3,4-dihydroxymandelic acid 4-hydroxy-3-methoxymandelic acid, 2-methoxy-2- (1-naphthyl) propionic acid, mandelic acid, atrolactic acid, O-acetylmandelic acid, ⁇ -methoxyphenylacetic acid, 4-hydroxymandelic acid, 3,4-dihydroxymandelic acid, 4-hydroxy-3-methoxy Examples thereof include simandelic acid, mandelic acid, atro
  • the blending amount is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the phenol resin.
  • crosslinking accelerator those that generate an acid, a base, or a radical by heat or light are preferable.
  • examples of those that generate acid by heat or light include TPS-105, 1000, DTS-105, NDS-105, 165 (trade name, manufactured by Midori Chemical Co., Ltd.), DPI-DMAS, TTBPS-TF, TPS-TF, DTBPI.
  • Sulfonates such as onium salts such as -TF (trade name, manufactured by Toyo Gosei Co., Ltd.), methyl methanesulfonate, ethyl methanesulfonate, methyl benzenesulfonate, methyl p-toluenesulfonate, methoxyethyl p-toluenesulfonate , NAI-100, 101, 105, 106, PAI-101 (trade name, manufactured by Midori Chemical Co., Ltd.), Irgacure PAG-103, 108, 121, 203, CGI-1380, 725, NIT, 1907, PNBT (trade name, Oxime sulfonates such as BASF Japan) .
  • -TF trade name, manufactured by Toyo Gosei Co., Ltd.
  • methyl methanesulfonate ethyl methanesulfonate
  • U-CATSA-1, 102, 506, 603, 810 (trade name, manufactured by San Apro), CGI-1237, 1290, 1293 (trade name, manufactured by BASF Japan) are those that generate bases by heat or light.
  • amine salts such as 2,6-piperidine or butylamine, diethylamine, dibutylamine, N, N'-diethyl-1,6-diaminohexane, hexamethylenediamine, etc. converted to urethane groups or urea groups, etc. Is mentioned.
  • Examples of the urethane group include a t-butoxycarbonylamino group, and examples of the urea group include a phenylaminocarbonylamino group.
  • radicals generated by heat or light examples include alkylphenones such as Irgacure 651, 184, 2959, 127, 907, 369, 379 (trade name, manufactured by BASF Japan), Irgacure 819 (trade name, manufactured by BASF Japan). ), Etc., titanocene such as Irgacure 784 (trade name, manufactured by BASF Japan), and oxime ester such as Irgacure OXE01, 02 (trade name, manufactured by BASF Japan).
  • alkylphenones such as Irgacure 651, 184, 2959, 127, 907, 369, 379 (trade name, manufactured by BASF Japan), Irgacure 819 (trade name, manufactured by BASF Japan).
  • Etc. titanocene
  • Irgacure 784 trade name, manufactured by BASF Japan
  • oxime ester such as Irgacure OXE01, 02 (trade name, manufactured by BASF Japan).
  • a second composition containing a photosensitizer is applied to an appropriate support or substrate, such as a silicon wafer, ceramic, aluminum substrate or the like.
  • an adhesion assistant such as a silane coupling agent may be applied to the support or the substrate in advance.
  • the composition is applied by spin coating using a spinner, spray coating using a spray coater, dipping, printing, roll coating, or the like.
  • prebaking at 80 to 140 ° C. to dry the coating film the phenol resin composition is exposed.
  • the actinic radiation to be exposed X-rays, electron beams, ultraviolet rays, visible rays and the like can be used, but those having a wavelength of 200 to 500 nm are preferable.
  • the light source wavelength is preferably g-line, h-line or i-line of a mercury lamp, which may be used alone or in combination.
  • a contact aligner, a mirror projection, and a stepper are particularly preferable.
  • developers include inorganic alkalis such as sodium hydroxide, sodium carbonate, sodium silicate, aqueous ammonia, organic amines such as ethylamine, diethylamine, triethylamine, triethanolamine, tetramethylammonium hydroxide, tetrabutylammonium hydroxide.
  • An aqueous solution such as a quaternary ammonium salt such as quaternary ammonium salt and an aqueous solution to which an appropriate amount of a water-soluble organic solvent such as methanol or ethanol or a surfactant is added as required can be used.
  • an aqueous tetramethylammonium hydroxide solution is preferable, and the concentration thereof is preferably 0.5 to 10% by mass, and more preferably 1.0 to 5% by mass.
  • the pattern film can be obtained by washing with a rinse solution to remove the developer.
  • a rinse solution distilled water, methanol, ethanol, isopropanol or the like can be used alone or in combination.
  • a cured relief pattern can be obtained by heating the relief pattern thus obtained.
  • the heating temperature is preferably 150 ° C. or higher and 280 ° C. or lower.
  • the polyimide or polybenzoxazole is heated by heating to 300 ° C. or more to advance a dehydration cyclization reaction.
  • a heat-sensitive semiconductor device or the like it is preferably used for a semiconductor device having an insulating layer made of a high-dielectric material or a ferroelectric material having a process temperature restriction, such as an oxide of a refractory metal such as titanium, tantalum, or hafnium.
  • the heat treatment may be performed at 300 to 400 ° C. in this method as well.
  • Such heat treatment can be performed by using a hot plate, an oven, or a temperature rising oven in which a temperature program can be set. Air may be used as the atmospheric gas when performing the heat treatment, and an inert gas such as nitrogen or argon may be used. Further, when it is necessary to perform heat treatment at a lower temperature, heating may be performed under reduced pressure using a vacuum pump or the like.
  • a relief pattern can be formed by forming a relief pattern in the coating process of the second composition or by processing with a laser or the like after the coating process. it can.
  • the phenol resin composition can be printed and applied in a relief pattern by screen printing, letterpress printing, planographic printing, or the like.
  • a relief pattern can also be formed by discharging a solution containing a phenol resin composition from a nozzle by spraying using an inkjet method, a dispenser method, or direct drawing using a plotter.
  • a laser for example, an excimer laser or a UV-YAG laser is used, and a portion other than the relief pattern is lasered.
  • a relief pattern can be formed by burning off.
  • a cured relief pattern can be obtained by heating the obtained relief pattern.
  • a semiconductor device comprising a semiconductor element and a cured film provided on the semiconductor element, wherein the cured film is a cured relief pattern manufactured using the second composition is also a second aspect of the present invention. It is an aspect.
  • the above-mentioned cured relief pattern is used as a protective film for a device having a surface protective film, an interlayer insulating film, a rewiring insulating film, a flip chip device protective film, or a bump structure. It can be manufactured by combining with a known method for manufacturing a semiconductor device.
  • the second aspect of the present invention also relates to the use of the second composition in the production of a semiconductor element surface protective film or an interlayer insulating film.
  • a 500 mL separable flask was charged with 43.7 g (0.2 mol) of di-t-butyl dicarbonate and 0.25 g (0.002 mol) of 4-N, N-dimethylaminopyridine, and heated to 35 ° C. with stirring. 21.04 g (0.1 mol) of 1,3-di-4-piperidylpropane was added over 30 minutes so that the temperature of the reaction solution did not exceed 40 ° C. After completion of the addition, the temperature was raised to 55 ° C. and stirred for 8 hours.
  • A-1 and A-2 are commercially available MEH-7851 series phenolic resins having a biphenyldiyl structure in the resin skeleton, and A-3 is a biphenyldiyl structure in the resin skeleton. It is a cresol type phenol resin manufactured by Asahi Organic Materials Co., Ltd., which does not contain.
  • Component B-1 Photoacid generator represented by the following formula ⁇ In the formula, 83% of Q is the following: The remainder is a hydrogen atom. ⁇ .
  • C Component C-1: Nikaluck MX-390 manufactured by Sanwa Chemical Co., Ltd.
  • C-2 Nikaluck MX-270 manufactured by Sanwa Chemical Co., Ltd.
  • C-3 Denasel EX-321L manufactured by Nagase ChemteX Corporation
  • C-4 ETERNACOLL OXBP manufactured by Ube Industries, Ltd.
  • a sample for measuring elongation according to the present invention was produced by the following method.
  • the photosensitive resin compositions obtained in Examples and Comparative Examples of the present invention were spin-coated on a 6-inch silicon wafer substrate provided with an aluminum vapor deposition layer on the outermost surface so that the film thickness after curing was about 10 ⁇ m. Then, it was heated at 250 ° C. for 2 hours under a nitrogen atmosphere to obtain a cured resin film.
  • the obtained cured resin film was cut into a width of 3 mm with a dicing saw, and then peeled off from the wafer with a dilute hydrochloric acid aqueous solution, and the obtained 20 samples were left in an atmosphere at a temperature of 23 ° C.
  • ⁇ Preparation Example 1> In a 1 L separable flask, 141.2 g (1.5 mol) of phenol was added, heated to 80 ° C. in an oil bath while stirring under a nitrogen stream, and 3.0 g of boron trifluoride / phenol complex was added. The temperature was raised to 130 ° C., and 132.2 g (1.0 mol) of dicyclopentadiene was added dropwise over 2 hours. After completion of dropping, the mixture was further stirred at 130 ° C. for 5 hours.
  • the acid catalyst was neutralized with calcium hydroxide and distilled under reduced pressure to remove unreacted phenol by distillation to obtain 203 g of phenol-dicyclopentadiene resin (P-1).
  • the weight average molecular weight (Mw, converted to polystyrene) of P-1 by GPC was 10200.
  • Preparation Example 3 The same operation was performed except that the amounts of pyridine and propionyl chloride in Preparation Example 2 were changed to 39.6 g (0.50 mol) and 46.3 g (0.50 mol), respectively, blocking 76% of the hydroxyl groups of cresol novolac. Resin (P-3) was obtained. The fact that 76% of the hydroxyl groups were blocked by P-3 was confirmed by 1 H-NMR that the peak intensity of hydroxyl groups near 9 ppm was reduced by 76% compared to untreated EP4080G. The weight average molecular weight (Mw, converted to polystyrene) of P-3 by GPC was 5100.
  • the evaluation items in Table 2 were tested as follows.
  • TC Thermal cycle (TC) test> The phenol resin composition was spin-coated on a silicon wafer, heated for 3 minutes on a hot plate at 100 ° C., and then cured at 250 ° C. for 1 hour in a nitrogen atmosphere to obtain a cured film having a thickness of 10 ⁇ m. This was subjected to 1000 cycles of tests at ⁇ 65 ° C. to 135 ° C. for 30 minutes using a thermal cycle chamber TSE-11 (manufactured by Espec Corp.), and the film surface was observed with an optical microscope. A film with no cracks was marked with ⁇ , and a film with no cracks.
  • the phenol resin composition was spin-coated on a silicon wafer, heated for 3 minutes on a hot plate at 100 ° C., and then cured at 250 ° C. for 1 hour in a nitrogen atmosphere to obtain a cured film having a thickness of 10 ⁇ m. After cutting this into a 3 mm width with a dicing saw, 20 samples obtained by peeling from a silicon wafer using a 23% hydrofluoric acid aqueous solution were left in an atmosphere at a temperature of 23 ° C.
  • the Young's modulus was calculated by obtaining the slope in the elastic region from the obtained SS curve according to the method of JIS K-7161, and the average value of the lower five points was adopted. As is clear from the results in Table 1, those having a tensile elongation of 20% or more do not cause cracks in the TC test. Moreover, the phenol resin which produces such a result has a small ratio of (oxygen atom + nitrogen atom) / carbon atom, and this does not correlate with the molecular weight, which is a general method for improving the tensile elongation.
  • a photosensitive resin composition for a semiconductor element surface protective film or an interlayer insulating film is used for a semiconductor element surface protective film, for a surface protective film of a semiconductor device and a light emitting device, for a flip chip device. It can be suitably used as a protective film, a protective film of a device having a bump structure, and as an interlayer insulating film, for a rewiring insulating film, an interlayer insulating film of a multilayer circuit, or the like.
  • the phenol composition according to the second aspect of the present invention includes a surface protective film for a semiconductor device and a light emitting device, an interlayer insulating film, an insulating film for rewiring, a protective film for a flip chip device, a protective film for a device having a bump structure, and a multilayer It can be suitably used as an interlayer insulating film of a circuit, a cover coat of a flexible copper-clad plate, a solder resist film, a liquid crystal alignment film, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials For Photolithography (AREA)

Abstract

 溶剤中に、以下の成分:主鎖にビフェニルジイル構造を有するフェノール樹脂(A):100質量部;光酸発生剤(B):1~30質量部;及び上記光酸発生剤(B)から発生した酸、又は熱により、上記(A)成分と反応しうる化合物(C):1~60質量部;を含有する、半導体素子表面保護膜又は層間絶縁膜用の感光性樹脂組成物が提供される。

Description

フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法
 本発明の第一の態様は、半導体素子表面保護膜又は層間絶縁膜用の感光性樹脂組成物に関する。より詳しくは、本発明は、半導体素子などの表面保護膜(バッファーコート膜)又は層間絶縁膜(パッシベーション膜)などのレリーフパターン形成材料、該レリーフパターン形成材料を用いたレリーフパターンの製造方法、及び該レリーフパターンを有する半導体装置に関する。
 本発明の第二の態様は、半導体装置における表面保護膜又は層間絶縁膜等を形成するために有用なフェノール樹脂組成物、該組成物を用いた高耐熱性の硬化レリーフパターンの製造方法及び該硬化レリーフパターンを有する半導体装置に関する。
 従来から、半導体装置の表面保護膜及び層間絶縁膜には、優れた耐熱性、電気特性、機械特性などを併せ持つポリイミド樹脂又はポリベンゾオキサゾール樹脂が広く用いられている。これらの樹脂は各種溶剤への溶解性が低いため、一般的に前駆体の形で溶剤へ溶解させた組成物として使用される。従って、使用の際には前駆体を閉環させる工程が必要となる。この閉環工程は通常300℃以上に加熱する熱硬化によって行われている。
 しかしながら、近年では、従来品に比べて耐熱性に劣る半導体装置が開発され、表面保護膜又は層間絶縁膜の形成材料にも熱硬化温度の低下が求められるようになっており、特に250℃以下での熱硬化性を求められることも多くなっている。
 かかる要求に対し、以下の特許文献1及び2には、閉環工程を必要とせず、コスト、感光性能に優れ、レジスト分野でベース樹脂として広く使用されるフェノール類とアルデヒド類とを縮合させることにより得られたフェノール樹脂と、このフェノール樹脂の対熱衝撃性を改善するために、架橋性微粒子又はコアシェルポリマーとを用いた材料が提案されている。
 また、以下の特許文献3には、フェノール樹脂の対熱衝撃性を改善するために、フェノール樹脂を合成する時に、アルデヒド類化合物の替わりに、α,α’-ジハロキシレン化合物、α,α’-ジヒドロキシキシレン化合物、及びα,α’-ジアルコキシキシレン化合物から成る群から選択される少なくとも1種の置換キシレン化合物を用い、これとフェノール類化合物とを縮合させて得られる材料も提案されている。
 さらに、以下の特許文献4には、ビフェニル化合物とフェノール類との縮合体を骨格に持つフェノール樹脂と、光酸発生剤とを併用した材料も記載されている。しかしながら、特許文献4には、該材料は、液晶配向制御突起及び/又はスペーサーを形成するためのものとして、又は液晶配向制御突起及びスペーサーを同時に形成するためのものとして開示されている。
 しかしながら、これらの材料を表面保護膜又は層間絶縁膜として半導体装置に適用しても、その信頼性は低く、ポリイミド樹脂及びポリベンゾオキサゾール樹脂の代替材料とすることは困難であった。
特開2003-215789号公報 特開2009-237125号公報 特開2007-057595号公報 特開2008-292677号公報
 上記特許文献1又は3に開示された材料は、対熱衝撃性が改善できているものの、表面保護膜や層間絶縁膜として半導体装置に適用する場合に重要な膜物性の一つである伸度に関しては全く検討されていない。
 かかる現状に鑑み、本発明の第一の態様において、本発明が解決しようとする課題は、半導体装置に適用して、250℃以下の熱で硬化させた際でも、伸度が高く、ポリイミド樹脂、ポリベンゾオキサゾール樹脂の代替材料となり得るフェノール樹脂組成物、該組成物を用いた硬化レリーフパターンの製造方法、及び該硬化レリーフパターンを有して成る半導体装置を提供することである。
 本発明の第二の態様において、本発明が解決しようとする課題は、半導体装置に適用して、250℃以下の熱で硬化させた際でも、信頼性が高く、かつポリイミド樹脂及びポリベンゾオキサゾール樹脂の代替材料となり得るフェノール樹脂組成物、該組成物を用いた硬化レリーフパターンの製造方法、及び該硬化レリーフパターンを有して成る半導体装置を提供することである。
 本発明者らは、かかる課題を解決すべく鋭意検討し、実験を重ねた結果、半導体装置に適用したときに、250℃以下といった低い熱硬化温度であっても、優れた伸度を有する半導体保護膜又は層間絶縁膜を形成できる材料を予想外に見出し、本発明の第一の態様を完成するに至った。
 すなわち、本発明の第一の態様は以下の通りのものである。
 [1] 溶剤中に、以下の成分:
 主鎖にビフェニルジイル構造を有するフェノール樹脂(A):100質量部;
 光酸発生剤(B):1~30質量部;及び
 上記光酸発生剤(B)から発生した酸、又は熱により、上記(A)成分と反応しうる化合物(C):1~60質量部;
を含有する、半導体素子表面保護膜又は層間絶縁膜用の感光性樹脂組成物。
 [2] 前記フェノール樹脂(A)は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000004
{式中、Rは、ハロゲン原子、カルボキシル基、水酸基、炭素数1~10の不飽和結合を有していてもよい脂肪族基、炭素数3~10の脂環式基、及び炭素数6~20の芳香族基から成る群から選ばれる基であり、各々の基の水素原子は、さらにハロゲン原子、カルボキシル基及び/又は水酸基で置換されていてもよく、p及びqは0~4の整数であり、rは0~3の整数であり、そしてp、q又はrが2以上の場合、各々のRはそれぞれ同じであっても、異なってもよい。}で表される繰り返しユニットを含む、[1]に記載の感光性樹脂組成物。
 [3] 前記フェノール樹脂(A)の繰り返しユニットの繰り返し単位数が8以上100以下である、[1]又は[2]に記載の感光性樹脂組成物。
 [4] 前記光酸発生剤(B)は、フェノール化合物と1,2-ナフトキノン-2-ジアジド-5-スルホン酸又は1,2-ナフトキノン-2-ジアジド-4-スルホン酸とのエステル化合物である、[1]~[3]のいずれか一つに記載の感光性樹脂組成物。
 [5] 前記光酸発生剤(B)は、下記式:
Figure JPOXMLDOC01-appb-C000005
{式中、Qは、水素原子又は下記:
Figure JPOXMLDOC01-appb-C000006
で表されるナフトキノンジアジドスルホン酸エステル基であり、全てのQが同時に水素原子であることはない。}で示される化合物である、[1]~[4]のいずれか1つに記載の感光性樹脂組成物。
 [6] 前記化合物(C)は、エポキシ基、オキセタン基、-N-(CH-OR’)基{式中、R’は、水素又は炭素数1~4のアルキル基である。}、及び-C-(CH-OR’)基{式中、R’は、水素又は炭素数1~4のアルキル基である。}から成る群から選ばれる少なくとも2つの基を有する、[1]~[5]のいずれか一つに記載の感光性樹脂組成物。
 [7] 熱塩基発生剤(D)をさらに含有する、[1]~[6]のいずれか一つに記載の感光性樹脂組成物。
 [8] 以下の工程:
 半導体基板上に、[1]~[7]のいずれか一つに記載の感光性樹脂組成物から成る感光性樹脂層を形成する工程、
 該感光性樹脂層を活性光線で露光する工程、
 該露光された感光性樹脂層を現像してレリーフパターンを得る工程、及び
 得られたレリーフパターンを加熱する工程
を含む、半導体装置の製造方法。
 [9] [8]に記載の方法により製造された半導体装置。
 [10] [1]~[7]のいずれか一つに記載の感光性樹脂組成物を用いて半導体素子表面保護膜又は層間絶縁膜を製造する方法。
 [11] 半導体素子表面保護膜又は層間絶縁膜の製造における[1]~[7]のいずれか一つに記載の感光性樹脂組成物の使用。
 また、本発明者は、半導体装置に適用したときに、250℃以下などの低い熱硬化温度であっても、信頼性の高い膜を形成できる材料であるためには、熱硬化した膜の引っ張り伸度が特定の値以上であることが必要であることを見出し、本発明の第二の態様を為すに至った。
 すなわち、本発明の第二の態様は以下の通りのものである。
 [1]フェノール樹脂及び溶剤を含むフェノール樹脂組成物であって、
該組成物をシリコンウエハー上にスピンコートして、ホットプレート上において該シリコンウエハー及びスピンコート膜を100℃で3分間加熱して、窒素雰囲気下において該スピンコート膜を250℃で1時間硬化して厚さ10μmの硬化物を得て、該硬化物を3mm幅でダイシングソーにより切断して、23質量%フッ酸水溶液で処理することにより該シリコンウエハーを剥離して、温度23℃・湿度50%の雰囲気に24時間以上静置して20本のサンプルを得て、該20本のサンプルを引っ張り試験機により測定したときに該サンプルの引っ張り伸度の上位5点の平均値が20%以上であることを特徴とする、前記フェノール樹脂組成物。
 [2]前記引っ張り伸度の上位5点の平均値が50%以上である、[1]に記載のフェノール樹脂組成物。
 [3]前記サンプルのヤング率の下位5点の平均値が4.0GPa未満である、[1]又は[2]に記載のフェノール樹脂組成物。
 [4]前記フェノール樹脂の繰り返し単位において、炭素原子の数に対する酸素原子及び窒素原子の数の割合が0.1以下である、[1]~[3]のいずれか1項に記載のフェノール樹脂組成物。
 [5]さらに架橋剤を含む、[1]~[4]のいずれか1項に記載のフェノール樹脂組成物。
 [6]さらに感光剤を含む、[1]~[5]のいずれか1項に記載のフェノール樹脂組成物。
 [7]前記[1]~[5]のいずれか1項に記載のフェノール樹脂組成物を基板に塗布してレリーフパターンを形成する工程、及び該レリーフパターンを加熱して硬化レリーフパターンを形成する工程を含む、硬化レリーフパターンの製造方法。
 [8]前記[6]に記載のフェノール樹脂組成物を基板に塗布する工程、該フェノール樹脂組成物を露光する工程、露光したフェノール樹脂組成物を現像してレリーフパターンを形成する工程、及び該レリーフパターンを加熱して硬化レリーフパターンを形成する工程を含む、硬化レリーフパターンの製造方法。
[9]半導体素子と、該半導体素子の上部に設けられた硬化膜とを備え、該硬化膜は、前記[7]又は[8]に記載の製造方法により得られる硬化レリーフパターンであることを特徴とする半導体装置。
 [10]半導体素子表面保護膜又は層間絶縁膜の製造における[1]~[6]のいずれか1項に記載のフェノール樹脂組成物の使用。
 本発明の第一の態様によれば、低温で硬化が可能であり、かつ伸度などの硬化膜の機械的物性に優れる本発明の感光性樹脂組成物を使用することにより、信頼性の高い半導体素子及び該半導体素子を用いた信頼性の高い半導体装置を製造することができる。
 本発明の第二の態様によれば、半導体装置の表面保護膜又は層間絶縁膜を形成するための熱硬化温度を比較的低い温度(例えば、250℃以下)にすることができる。また、本発明によれば、表面保護膜又は層間絶縁膜のクラックを減らして、それの信頼性を高めるだけでなく、それを有して成る半導体装置の信頼性を高めることもできる。
<感光性樹脂組成物>
 本発明の第一の態様における感光性樹脂組成物(以下、単に「第一の組成物」ともいう。)は、溶剤中に、以下の成分(A)~(C):主鎖にビフェニルジイル構造を有するフェノール樹脂(A):100質量部;光酸発生剤(B):1~30質量部;光酸発生剤(B)から発生した酸、又は熱により、(A)成分と反応しうる化合物(C):1~60質量部;を含有することを特徴とする。
 以下、第一の組成物の各成分について詳細に説明するが、かかる説明は、例示であり、本発明の第一の態様はこれに限定されるものではない。
[主鎖にビフェニルジイル構造を有するフェノール樹脂(A)]
 第一の組成物に用いられる主鎖にビフェニルジイル構造を有するフェノール樹脂(A)(以下、単に「ビフェニルジイル-フェノール樹脂」ともいう。)は、フェノール構造及びビフェニルジイル構造を有する繰り返し単位を含むポリマーである。フェノール構造とビフェニルジイル構造とは任意の順で結合していてもよい。フェノール構造とビフェニルジイル構造とは、メチレン基を介して結合していることが更なる伸度の観点から好ましい。
 ビフェニルジイル-フェノール樹脂は、フェノール構造、ビフェニルジイル構造以外に、炭素数20以下のアルキレン構造、例えば、メチレン、エチレン等の構造を有していてもよい。
 ビフェニルジイル-フェノール樹脂は、任意の公知の方法によって製造することができる。製造方法としては、例えば、ビフェニルジイル構造を有する化合物(以下、単に「ビフェニルジイル化合物」ともいう。)とフェノール類化合物との縮合反応が挙げられる。
 フェノール類化合物との縮合可能なビフェニルジイル化合物としては、例えば、4,4´-ビスクロロメチルビフェニル、4,4´-ビスクロロメチル-ビフェニル-2-カルボン酸、4,4´-ビスクロロメチル-ビフェニル-2,2´-ジカルボン酸、4,4’-ビスクロロメチル-2-メチルビフェニル、4,4´-ビスクロロメチル-2,2´-ジメチルビフェニル、4,4’-ビフェニルジメタノール、4,4’-ビス(メトキシメチル)ビフェニルなどが挙げられる。この他にも種々の置換基又は反応性基を有するものを採用し得る。上記では、ビフェニルジイル化合物の具体例として4,4’-構造を挙げたが、例えば、2,2’-、2,3’-、3,4’-等、他の置換構造を有する化合物であってもよい。中でも更なる伸度の観点から4,4’-置換のビフェニルジイル化合物が好ましい。これらのビフェニルジイル化合物は、1種を単独で又は2種以上を組み合わせで用いてもよい。
 一方、ビフェニルジイル化合物と縮合させるフェノール類化合物とは、フェノール性水酸基を1分子中に少なくとも1個有する芳香族化合物をいい、その具体例としては、フェノール、クレゾール、エチルフェノール、n-プロピルフェノール、イソブチルフェノール、t-ブチルフェノール、オクチルフェノール、ノニルフェノール、キシレノール、メチルブチルフェノール、ジ-t-ブチルフェノール等を代表例とするアルキルフェノールの各種o-,m-,p-異性体、ビニルフェノール、アリルフェノール、プロペニルフェノール、エチニルフェノールの各種o-、m-、p-異性体、シクロペンチルフェノール、シクロヘキシルフェノール、シクロヘキシルクレゾール等を代表例とするシクロアルキルフェノール、フェニルフェノールなどの置換フェノール類が挙げられる。また、フェノール性水酸基を1分子中に2個以上有する具体例として、例えば、カテコール、レソルシノール、ハイドロキノン、ピロガロール、フロログルシノール、1,2,4-トリヒドロキシベンゼンなどが挙げられる。これらのフェノール類は、1種を単独で又は2種以上を組み合わせて用いてもよい。
 これらのビフェニルジイル化合物とフェノール類化合物との縮合反応について、以下、簡単に述べる。
 ビフェニルジイル化合物とフェノール類化合物とを脱水、若しくは脱アルコールさせながら重合させることにより樹脂化することができるが、重合時に触媒を用いてもよい。酸性の触媒としては塩酸、硫酸、硝酸、リン酸、亜リン酸、メタンスルホン酸、p-トルエンスルホン酸、ジメチル硫酸、ジエチル硫酸、酢酸、シュウ酸、1-ヒドロキシエチリデン-1,1’-ジホスホン酸、酢酸亜鉛、三フッ化ホウ素、三フッ化ホウ素・フェノール錯体、三フッ化ホウ素・エーテル錯体等が挙げられる。一方で、アルカリ性の触媒としては水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、トリエチルアミン、ピリジン、4-N,N-ジメチルアミノピリジン、ピペリジン、ピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、アンモニア、ヘキサメチレンテトラミン等が挙げられる。
 ビフェニルジイル-フェノール樹脂の合成反応を行う際には、必要に応じて有機溶剤を使用することができる。使用できる有機溶剤の具体例としては、ビス(2-メトキシエチル)エーテル、メチルセロソルブ、エチルセロソルブ、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールジメチルエーテル、シクロヘキサノン、シクロペンタノン、トルエン、キシレン、γ―ブチロラクトン、N-メチル-2-ピロリドン等が挙げられるが、これらに限定されるものではない。有機溶剤の使用量は、仕込み原料の総質量100質量部に対して、通常10~1000質量部、好ましくは20~500質量部である。また反応温度は通常40~250℃であり、100~200℃の範囲がより好ましい。また反応時間は通常1~10時間である。
 第一の組成物に用いられるビフェニルジイル-フェノール樹脂は、好ましくは、下記式(1):
Figure JPOXMLDOC01-appb-C000007
 {式中、Rは、ハロゲン原子、カルボキシル基、水酸基、炭素数1~10の不飽和結合を有していてもよい脂肪族基、炭素数3~10の脂環式基、及び炭素数6~20の芳香族基から成る群から選ばれる基であり、各々の基の水素原子は、さらにハロゲン原子、カルボキシル基、水酸基で置換されていてもよい。p及びqはそれぞれ独立に0~4の整数であり、rは0~3の整数である。p、q、又はrが2以上の場合、各々のRはそれぞれ同じであっても、異なってもよい。}で表される繰り返しユニットを含むフェノール樹脂である。
 上記式(1)の繰り返しユニットの繰り返し単位数は、2~100、伸度の観点から、より好ましくは8~80、更に好ましくは18~80である。
 上記式(1)中、ビフェニルジイル構造に含まれるRは、それぞれ独立に、フッ素、メチル基又はトリフルオロメチル基、あるいはp=q=0(すなわち、置換されていない)であることが、さらなる伸度の観点から、より好ましい。フェノール構造に含まれるRは、水酸基又はr=0(すなわち、置換されていない)であることが、さらなる伸度の観点から、好ましい。上記式(1)の中、ビフェニルジイル構造は、4,4’-の位置で連結していることが伸度の観点から好ましい。
 第一の組成物に用いられるビフェニルジイル-フェノール樹脂は、さらに好ましくは、下記式(2):
Figure JPOXMLDOC01-appb-C000008
で表される繰り返しユニットを含むフェノール樹脂である。上記式(2)の繰り返しユニットの繰り返し単位数は、2~100、伸度の観点から、より好ましくは8~80、更に好ましくは18~80である。
 上記式(2)で表されるものの具体例としては、例えば、市販品である明和化成株式会社製MEH-7851シリーズフェノール樹脂が挙げられる。
 本発明の第一の態様においては、ビフェニルジイル-フェノール樹脂の重量平均分子量は700~35,000であり、好ましくは2,500~25,000、より好ましくは5,000~25,000である。重量平均分子量は、伸度の観点から、700以上であることが好ましく、組成物のアルカリ溶解性の観点から、35,000以下であることが好ましい。
 また、本発明の第一の態様が奏する効果に影響を与えない限り、感光性樹脂組成物には、上記フェノール樹脂(A)以外の他のアルカリ水溶液可溶性樹脂と混合して使用することも可能である。他のアルカリ水溶液可溶性樹脂としては、具体的には、ビフェニルジイル構造を含有しないフェノール樹脂、フェノールと不飽和結合含有化合物との重合樹脂、ポリヒドロキシスチレン系樹脂、ポリアミド、ポリイミド、これらの樹脂の誘導体、前駆体又は共重合体などが挙げられる。
 前記ビフェニルジイル構造を含有しないフェノール樹脂は、フェノールまたはその誘導体と、アルデヒド化合物、ケトン化合物、メチロール化合物又はアルコキシメチル化合物とを重合させて得ることができる。
 フェノールまたはその誘導体としては、例えば、フェノール、クレゾール、エチルフェノール、プロピルフェノール、ブチルフェノール、アミルフェノール、ベンジルフェノール、アダマンタンフェノール、ベンジルオキシフェノール、キシレノール、カテコール、レゾルシノール、エチルレゾルシノール、ヘキシルレゾルシノール、ハイドロキノン、ピロガロール、フロログルシノール、1,2,4-トリヒドロキシベンゼン、パラロゾール酸、ビフェノール、ビスフェノールA、ビスフェノールAF、ビスフェノールB、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,4-ビス(3-ヒドロキシフェノキシベンゼン)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、α,α‘-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2,2-ビス(2-ヒドロキシ-5-ビフェニルイル)プロパン、ジヒドロキシ安息香酸などが挙げられる。
 アルデヒド化合物としては、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ピバルアルデヒド、ブチルアルデヒド、ペンタナール、ヘキサナール、トリオキサン、グリオキザール、シクロヘキシルアルデヒド、ジフェニルアセトアルデヒド、エチルブチルアルデヒド、ベンズアルデヒド、グリオキシル酸、5-ノルボルネン-2-カルボキシアルデヒド、マロンジアルデヒド、スクシンジアルデヒド、グルタルアルデヒド、サリチルアルデヒド、ナフトアルデヒド、テレフタルアルデヒドなどが挙げられる。
 ケトン化合物としては、アセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジシクロヘキシルケトン、ジベンジルケトン、シクロペンタノン、シクロヘキサノン、ビシクロヘキサノン、シクロヘキサンジオン、3-ブチン-2-オン、2-ノルボルナノン、アダマンタノン、2,2-ビス(4-オキソシクロヘキシル)プロパンなどが挙げられる。
 メチロール化合物としては、1,3-ビス(ヒドロキシメチル)尿素、リビトール、アラビトール、アリトール、2,2-ビス(ヒドロキシメチル)酪酸、2-ベンジルオキシ-1,3-プロパンジオール、シクロヘキサンジメタノール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、モノアセチン、2-メチル-2-ニトロ-1,3-プロパンジオール、5-ノルボルネン-2,2-ジメタノール、5-ノルボルネン-2,3-ジメタノール、ペンタエリスリトール、2-フェニル-1,3-プロパンジオール、トリメチロールエタン、トリメチロールプロパン、3,6-ビス(ヒドロキシメチル)デュレン、2,6-ビス(ヒドロキシメチル)-p-クレゾール、2,3-ビス(ヒドロキシメチル)ナフタレン、2,2’-ビス(ヒドロキシメチル)ジフェニルエーテル、1,8-ビス(ヒドロキシメチル)アントラセン、2,6-ビス(ヒドロキシメチル)-1,4-ジメトキシベンゼン、1,4-ベンゼンジメタノール、2-ニトロ-p-キシリレングリコール、1,3-ベンゼンジメタノール等が挙げられる。
 アルコキシメチル化合物としては、1,4-ビス(メトキシメチル)ベンゼン、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、2,4,6-トリス[ビス(メトキシメチル)アミノ]-1,3,5-トリアジン等が挙げられる。
 前記フェノールと不飽和結合含有化合物との重合樹脂は、フェノール又はその誘導体と不飽和結合含有化合物とを重合させて得ることができる。
 フェノール又はその誘導体としては、上述したものと同じものを用いることができ、不飽和結合含有化合物としては、ブタジエン、ペンタジエン、1,3-ブタンジオール-ジメタクリラート、シクロヘキサジエン、シクロペンタジエン、アリルエーテル、アリルスルフィド、アジピン酸ジアリル、ジシクロペンタジエン、1-ヒドロキシジシクロペンタジエン、1-メチルシクロペンタジエン、2,5-ノルボルナジエン、テトラヒドロインデン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、シアヌル酸トリアリル等が挙げられる。
 前記ポリアミド、ポリイミドとその前駆体、又はこれらの樹脂の共重合体は、公知の方法より合成することができ、例えば、ポリアミドはジカルボン酸又はその酸クロ誘導体とジアミンとの縮合反応で合成することができる。ポリイミド及びその前駆体は、テトラカルボン酸二無水物とジアミンとの縮合反応から合成することができる。アルカリ水溶液溶解性を確保する観点から、前記ポリアミド、ポリイミドとその前駆体を合成する時に使用されるジアミンの構造式中に、少なくともひとつのフェノール性水酸基を有することが好ましい。これらのジアミンとしては、具体的には、3,3’-ジアミノ-4,4’-ジヒドロキシビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシビフェニル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルスルホン、ビス-(3-アミノ-4-ヒドロキシフェニル)メタン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、2,2-ビス-(4-アミノ-3-ヒドロキシフェニル)ヘキサフルオロプロパン、ビス-(4-アミノ-3-ヒドロキシフェニル)メタン、2,2-ビス-(4-アミノ-3-ヒドロキシフェニル)プロパン、4,4’-ジアミノ-3,3’-ジヒドロキシベンゾフェノン、3,3’-ジアミノ-4,4’-ジヒドロキシベンゾフェノン、4,4’-ジアミノ-3,3’-ジヒドロキシジフェニルエーテル、3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルエーテル、1,4-ジアミノ-2,5-ジヒドロキシベンゼン、1,3-ジアミノ-2,4-ジヒドロキシベンゼン、1,3-ジアミノ-4,6-ジヒドロキシベンゼンなどが挙げられる。これらのジアミン化合物は、単独で又は混合して使用してもよい。
 なお、ビフェニルジイル-フェノール樹脂を、他のアルカリ水溶液可溶性樹脂と混合して使用する場合、混合樹脂の組成の中のビフェニルジイル-フェノール樹脂の含有率は、伸度の観点から、50質量%以上であることが好ましく、60質量%以上であることがより好ましい。
 感光性樹脂組成物を硬化物としたときの伸度は、半導体素子またはその半導体素子を使用した半導体部品の信頼性観点から8%以上であることが好ましく、より好ましくは10%以上である。
[光酸発生剤(B)]
 第一の組成物は、紫外線、電子線、X線をはじめとする放射線に感応して樹脂パターンを形成できる組成物であれば、特に限定されるものではなく、ネガ型、ポジ型のいずれの感光性組成物であってもよい。
 第一の組成物がネガ型の感光性組成物として使用される場合、光酸発生剤(B)は、放射線照射を受けて酸を発生し、発生した酸は上記フェノール樹脂(A)と後述する第一の組成物の他の成分との架橋反応を引き起こすことができる。このような化合物としては、例えば、以下の化合物が挙げられる:
 (i)トリクロロメチル-s-トリアジン類
 トリス(2,4,6-トリクロロメチル)-s-トリアジン、2-フェニル-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-クロロフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-クロロフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メトキシフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メトキシフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-メトキシフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メチルチオフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メチルチオフェニル)ビス(4,6-トリクロロメチル-s-トリアジン、2-(2-メチルチオフェニル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メトキシナフチル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メトキシナフチル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-メトキシナフチル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3,4,5-トリメトキシ-β-スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(4-メチルチオ-β―スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(3-メチルチオ-β―スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン、2-(2-メチルチオ-β-スチリル)-ビス(4,6-トリクロロメチル)-s-トリアジン等;
 (ii)ジアリールヨードニウム類
 ジフェニルヨードニウムテトラフルオロボレート、ジフェニルヨードニウムテトラフルオロホスフェート、ジフェニルヨードニウムテトラフルオロアルセネート、ジフェニルヨードニウムトリフルオロメタンスルホナート、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウム-p-トルエンスルホナート、4-メトキシフェニルフェニルヨードニウムテトラフルオロボレート、4-メトキシフェニルフェニルヨードニウムヘキサフルオロホスホネート、4-メトキシフェニルフェニルヨードニウムヘキサフルオロアルセネート、4-メトキシフェニルフェニルヨードニウムトリフルオロメタンスホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロアセテート、4-メトキシフェニルフェニルヨードニウム-p-トルエンスルホナート、ビス(4-ter-ブチルフェニル)ヨードニウムテトラフルオロボレート、ビス(4-ter-ブチルフェニル)ヨードニウムヘキサフルオロアルセネート、ビス(4-ter-ブチルフェニル)ヨードニウムトリフルオロメタンスルホナート、ビス(4-ter-ブチルフェニル)ヨードニウムトリフルオロアセテート、ビス(4-ter-ブチルフェニル)ヨードニウム-p-トルエンスルホナート等;
 (iii)トリアリールスルホニウム塩類
 トリフェニルスルホニウムテトラフルオロボレート、トリフェニルスルホニウムヘキサフルオロホスホネート、トリフェニルスルホニウムヘキサフルオロアルセネート、トリフェニルスルホニウムメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、トリフェニルスルホニウム-p-トルエンスルホナート、4-メトキシフェニルジフェニルスルホニウムテトラフルオロボレート、4-メトキシフェニルジフェニルスルホニウムヘキサフルオロホスホネート、4-メトキシフェニルジフェニルスルホニウムヘキサフルオロアルセネート、4-メトキシフェニルジフェニルスルホニウムメタンスルホナート、4-メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4-メトキシフェニルジフェニルスルホニウム-p-トルエンスルホナート、4-フェニルチオフェニルジフェニルテトラフルオロボレート、4-フェニルチオフェニルジフェニルヘキサフルオロホスホネート、4-フェニルチオフェニルジフェニルヘキサフルオロアルセネート、4-フェニルチオフェニルジフェニルトリフルオロメタンスルホナート、4-フェニルチオフェニルジフェニルトリフルオロアセテート、4-フェニルチオフェニルジフェニルーp-トルエンスルホナート等。
 これらの化合物の内、トリクロロメチル-S-トリアジン類としては、2-(3-クロロフェニル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-クロロフェニル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-メチルチオフェニル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-メトキシ-β―スチリル)-ビス(4,6-トリクロロメチル)-S-トリアジン、2-(4-メトキシナフチル)-ビス(4,6-トリクロロメチル)-S-トリアジン等を、ジアリールヨードニウム塩類としては、ジフェニルヨードニウムトリフルオロアセテート、ジフェニルヨードニウムトリフルオロメタンスルホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロメタンスルホナート、4-メトキシフェニルフェニルヨードニウムトリフルオロアセテート等を、そしてトリアリールスルホニウム塩類としては、トリフェニルスルホニウムメタンスルホナート、トリフェニルスルホニウムトリフルオロアセテート、4-メトキシフェニルジフェニルスルホニウムメタンスルホナート、4-メトキシフェニルジフェニルスルホニウムトリフルオロアセテート、4-フェニルチオフェニルジフェニルトリフルオロメタンスルホナート、4-フェニルチオフェニルジフェニルトリフルオロアセテート等を、好適なものとして挙げることができる。
 この他にも、光酸発生剤(B)として、以下に示す化合物を用いることもできる:
 (1)ジアゾケトン化合物
 ジアゾケトン化合物として、例えば、1,3-ジケト-2-ジアゾ化合物、ジアゾベンゾキノン化合物、ジアゾナフトキノン化合物等を挙げることができ、具体例としてはフェノール類の1,2-ナフトキノンジアジド-4-スルホン酸エステル化合物を挙げることができる。
 (2)スルホン化合物
 スルホン化合物として、例えば、β-ケトスルホン化合物、β-スルホニルスルホン化合物及びこれらの化合物のα-ジアゾ化合物を挙げることができ、具体例として、4-トリスフェナシルスルホン、メシチルフェナシルスルホン、ビス(フェナシルスルホニル)メタン等を挙げることができる。
 (3)スルホン酸化合物
 スルホン酸化合物として、例えば、アルキルスルホン酸エステル類、ハロアルキルスルホン酸エステル類、アリールスルホン酸エステル類、イミノスルホネート類等を挙げることができる。好ましい具体例としては、ベンゾイントシレート、ピロガロールトリストリフルオロメタンスルホネート、o-ニトロベンジルトリフルオロメタンスルホネート、o-ニトロベンジル-p-トルエンスルホネート等を挙げることができる。
 (4)スルホンイミド化合物
 スルホンイミド化合物として、例えば、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフチルイミド等を挙げることができる。
 (5)オキシムエステル化合物
 オキシムエステル化合物として、具体的には、2-[2-(4-メチルフェニルスルホニルオキシイミノ)]-2,3-ジヒドロチオフェン-3-イリデン]-2-(2-メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG121」)、[2-(プロピルスルホニルオキシイミノ)-2,3-ジヒドロチオフェン-3-イリデン]-2-(2-メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG103」)、[2-(n-オクタンスルホニルオキシイミノ)-2,3-ジヒドロチオフェン-3-イリデン]-2-(2-メチルフェニル)アセトニトリル(チバスペシャルティケミカルズ社商品名「イルガキュアPAG108」)、α-(n-オクタンスルホニルオキシイミノ)-4-メトキシベンジルシアニド(チバスペシャルティケミカルズ社商品名「CGI725」)等を挙げることができる。
 (6)ジアゾメタン化合物
 ジアゾメタン化合物として、具体的には、ビス(トリフルオロメチルスルホニル)ジアゾメタン、ビス(シクロヘキシルスルホニル)ジアゾメタン、ビス(フェニルスルホニル)ジアゾメタン等を挙げることができる。
 感度の観点から、とりわけ、上記(5)オキシムエステル化合物が特に好ましい。
 第一の組成物中の、(B)成分である光照射により酸を発生する化合物の使用量は、第一の組成物の(A)成分であるビフェニルジイル-フェノール樹脂100質量部に対して、1~30質量部である。この添加量が1質量部以上であると、放射線照射により発生する酸の量が十分となり、感度が向上し、この添加量が30質量部以下であれば、硬化後の機械物性が良好となる。
 第一の組成物はポジ型の感光性組成物として使用することも可能である。この場合、光酸発生剤(B)は、ナフトキノンジアジド誘導体を含むことが好ましい。前記ナフトキノンジアジド誘導体としては、1,2-ベンゾキノンジアジド構造又は1,2-ナフトキノンジアジド構造を有する化合物が挙げられ、これらの化合物は、例えば、米国特許第2,772,972号明細書、米国特許第2,797,213号明細書、米国特許第3,669,658号明細書等により公知である。該ナフトキノンジアジド誘導体は、以下詳述する特定構造を有するポリヒドロキシ化合物の1,2-ナフトキノンジアジド-4-スルホン酸エステル、及び該ポリヒドロキシ化合物の1,2-ナフトキノンジアジド-5-スルホン酸エステルから成る群から選択される少なくとも1種の化合物(以下、「NQD化合物」ともいう。)である。
 該NQD化合物は、常法に従って、ナフトキノンジアジドスルホン酸化合物を、クロルスルホン酸又は塩化チオニルでスルホニルクロライドとし、得られたナフトキノンジアジドスルホニルクロライドと、ポリヒドロキシ化合物とを縮合反応させることにより得られる。例えば、ポリヒドロキシ化合物と、1,2-ナフトキノンジアジド-5-スルホニルクロリド又は1,2-ナフトキノンジアジド-4-スルホニルクロリドの所定量とを、ジオキサン、アセトン又はテトラヒドロフラン等の溶媒中、トリエチルアミン等の塩基性触媒の存在下で反応させてエステル化を行い、得られた生成物を水洗、乾燥することにより得ることができる。
 感度及び伸度等硬化膜物性の観点から好ましいNQD化合物の例としては、例えば、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000009
{式中、Qは、水素原子又は下記:
Figure JPOXMLDOC01-appb-C000010
で表されるナフトキノンジアジドスルホン酸エステル基であり、全てのQが同時に水素原子であることはない。}。
 また、NQD化合物として、同一分子中に4-ナフトキノンジアジドスルホニル基及び5-ナフトキノンジアジドスルホニル基を併用したナフトキノンジアジドスルホニルエステル化合物を用いることもできるし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物とを混合して使用することもできる。
 第一の組成物中の、(B)成分であるナフトキノンジアジド誘導体使用量は、第一の組成物のビフェニルジイル-フェノール樹脂(A)100質量部に対して、1~30質量部であり、好ましくは1~20質量部である。この添加量が1質量部以上だと、放射線照射により発生する酸の量が十分となり、感度が向上し、パターニング性が良好であり、一方、この添加量が30質量部以下であれば、硬化後の膜の機械物性が良好であり、かつ露光部の現像残さ(スカム)が少ない。
 上記ナフトキノンジアジド誘導体は、単独で使用しても2種類以上混合して使用してもよい。
[(C)光酸発生剤(B)から発生した酸、又は熱により、上記(A)成分と反応しうる化合物]
 光酸発生剤(B)から発生した酸、又は熱の作用により(A)成分のビフェニルジイル-フェノール樹脂と反応し得る化合物(以下、単に「架橋剤」ともいう。)を、(A)成分と(B)成分に添加すると、塗膜を加熱硬化する際に、機械物性、耐熱性、耐薬品性などの膜性能を強化することができる。膜性能を十分に強化するためには、架橋剤は、好ましくは、エポキシ基、オキセタン基、-N-(CH-OR’)基{式中、R’は、水素又は炭素数1~4のアルキル基である。}、及び-C-(CH-OR’)基{式中、R’は、水素又は炭素数1~4のアルキル基である。}から成る群から選ばれる少なくとも2つの基を有する化合物である。
 前記架橋剤の分子構造式中、N-(CH-OR’)基{式中、R’は、水素又は炭素数1~4のアルキル基である。}を2つ以上有するものとしては、例えば、N位がメチロール基又はアルコキシメチル基で置換されたメラミン樹脂、尿素樹脂が挙げられる。具体的には、メラミン樹脂、ベンゾグアナミン樹脂、グリコールウリル樹脂、ヒドロキシエチレン尿素樹脂、尿素樹脂、グリコール尿素樹脂、アルコキシメチル化メラミン樹脂、アルコキシメチル化ベンゾグアナミン樹脂、アルコキシメチル化グリコールウリル樹脂、アルコキシメチル化尿素樹脂を挙げることができる。これらの内、アルコキシメチル化メラミン樹脂、アルコキシメチル化ベンゾグアナミン樹脂、アルコキシメチル化グリコールウリル樹脂、アルコキシメチル化尿素樹脂は、公知のメチロール化メラミン樹脂、メチロール化ベンゾグアナミン樹脂、メチロール化尿素樹脂のメチロール基をアルコキシメチル基に変換することにより得られる。
 このアルコキシメチル基の種類としては、例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基等を挙げることができるが、実用上市販されているサイメル300、301、303、370、325、327、701、266、267、238、1141、272、202、1156、1158、1123、1170、1174、UFR65、300(三井サイテック(株)製)、ニカラックMX-270、-280、-290、ニカラックMS―11、ニカラックMW―30、-100、-300、-390、-750(三和ケミカル社製)等を好ましく使用することができる。これらの化合物は単独で又は混合して使用することができる。
 前記架橋剤の分子構造式中、C-(CH-OR’)基{式中、R’は、水素又はアルキル基である。}を2つ以上有するものとしては、例えば、1,4-ビス(メトキシメチル)ベンゼン、4,4’-ビフェニルジメタノール、4,4’-ビス(メトキシメチル)ビフェニル、市販されている26DMPC、46DMOC、DM-BIPC-F、DM-BIOC-F、TM-BIP-A(旭有機材工業(株)製)、DML-MBPC、DML-MBOC、DML-OCHP、DML-PC、DML-PCHP、DML-PTBP、DML-34X、DML-EP、DML-POP、DML-OC、ジメチロール-Bis-C、ジメチロール-BisOC-P、DML-BisOC-Z、DML-BisOCHP-Z、DML-PFP、DML-PSBP、DML-MB25、DML-MTrisPC、DML-Bis25X-34XL、DML-Bis25X-PCHP、2,6-ジメトキシメチル-4-t-ブチルフェノール、2,6-ジメトキシメチル-p-クレゾール、2,6-ジアセトキシメル-p-クレゾール、TriML-P、TriML-35XL、TriML-TrisCR-HAP、HML-TPPHBA、HML-TPHAP、HMOM-TPPHBA、HMOM-TPHAP(本州化学工業(株)製)等が挙げられる。これらの化合物は単独で又は混合して使用することができる。
 前記架橋剤の分子構造式中、エポキシ基又は、オキセタン基を2つ以上有するものとしては、例えば、1,1,2,2-テトラ(p-ヒドロキシフェニル)エタンテトラグリシジルエーテル、グリセロールトリグリシジルエーテル、オルソセカンダリーブチルフェニルグリシジルエーテル、1,6-ビス(2,3-エポキシプロポキシ)ナフタレン、ジグリセロールポリグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、イソシアヌル酸トリグリシジル、デナコールEX-201、EX-313、EX-314、EX-321、EX-411、EX-511、EX-512、EX-612、EX-614、EX-614B、EX-731、EX-810、EX-911、EM-150(商品名、ナガセケムテックス社製)等のエポキシ化合物、キシリレンビスオキセタン、3-エチル-3{[(3-エチルオキセタン―イル)メトキシ]メチル}オキセタン等のオキセタン化合物が挙げられる。これらの化合物は単独で又は混合して使用することができる。
 これらの架橋剤の添加量は、ビフェニルジイル-フェノール樹脂(A)100質量部に対して、1~60質量部であり、好ましくは、3~50質量部である。この添加量が1質量部以上であると架橋が十分に進行し、膜物性の強化効果が得られる。この添加量が60質量部以下であれば、伸度は保たれる。
 第一の組成物に用いられる架橋剤として、上記したもの他、例えば、2,2’-ビス(2-オキサゾリン)、2,2’-イソプロピリデンビス(4-フェニル-2-オキサゾリン)、1,3-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン、1,4-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン、エポクロスK-2010E、K-2020E、K-2030E、WS-500、WS-700、RPS-1005(商品名、日本触媒社製)等のオキサゾリン化合物、カルボジライトSV-02、V-01、V-02、V-03、V-04、V-05、V-07、V-09、E-01、E-02、LA-1(商品名、日清紡ケミカル社製)等のカルボジイミド化合物、ホルムアルデヒド、グルタルアルデヒド、ヘキサメチレンテトラミン、トリオキサン、グリオキザール、マロンジアルデヒド、スクシンジアルデヒド等のアルデヒド及びアルデヒド変性体、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアナート、1,3-フェニレンビスメチレンジイソシアネート、ジシクロヘキシルメタン―4,4’-ジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、タケネート500、600、コスモネートNBDI、ND(商品名、三井化学社製)デュラネート17B-60PX、TPA-B80E、MF-B60X、MF-K60X、E402-B80T(商品名、旭化成ケミカル社製)等のイソシアネート系架橋剤、アセチルアセトンアルミ(III)塩、アセチルアセトンチタン(IV)塩、アセチルアセトンクロム(III)塩、アセチルアセトンマグネシウム(II)塩、アセチルアセトンニッケル(II)塩、トリフルオロアセチルアセトンアルミ(III)塩、トリフルオロアセチルアセトンチタン(IV)塩、トリフルオロアセチルアセトンクロム(III)塩、トリフルオロアセチルアセトンマグネシウム(II)塩、トリフルオロアセチルアセトンニッケル(II)塩等の金属キレート剤、酢酸ビニル、トリメチロールプロパントリメタクリレート、1,3,5-ベンゼントリカルボン酸トリアリル、トリメリット酸トリアリル、ピロメリット酸テトラアリルエステル、ペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、BANI-M、BANI-X(商品名、丸善石油化学株式会社製)等の不飽和結合含有化合物等を、使用することができる。
 (D)熱塩基発生剤
 第一の組成物は、硬化膜の物性向上の観点から、(D)熱塩基発生剤を更に含有することができる。特に、(C)成分である架橋剤がエポキシ基又はオキセタン基を含有する場合、熱硬化の時に、(C)成分である架橋剤と(A)成分である樹脂との間の架橋反応が促進され、第一の組成物の膜物性がより一層強化することができるため、(D)熱塩基発生剤を更に含有することが好ましい。第一の組成物に使用する熱塩基発生剤の熱分解温度としては50℃以上、好ましくは70℃以上、より好ましくは90℃以上である。(D)熱塩基発生剤としては、具体的には、下記式で示される化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000011
{式中、nは、1~20の整数である。}
Figure JPOXMLDOC01-appb-C000012
{式中、m、及びnは、それぞれ独立に、1~20の整数である。}。
 特に好ましくは、第一の組成物に使用される(D)熱塩基発生剤は下記式:
Figure JPOXMLDOC01-appb-C000013
で表される。
 第一の組成物に添加する場合、(D)熱塩基発生剤の添加量は、ビフェニルジイル-フェノール樹脂(A)100質量部に対して、好ましくは0.1~40質量部であり、より好ましくは0.5~30質量部である。架橋促進が十分に進行し、膜物性の強化効果が得られる観点から、0.1質量部以上が好ましく、伸度の観点から、40質量部以下が好ましい。
 (E)溶剤
 第一の組成物に用いられる溶剤としては、アミド類、スルホキシド類、ウレア類、ケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類、炭化水素類等が挙げられ、例えば、溶剤として、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、乳酸エチル、乳酸メチル、乳酸ブチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ベンジルアルコール、フェニルグリコール、テトラヒドロフルフリルアルコール、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、モルフォリン、ジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、クロロベンゼン、o-ジクロロベンゼン、アニソール、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン等を使用することができる。
 第一の組成物中の溶剤の添加量は、ビフェニルジイル-フェノール樹脂(A)100質量部に対して100~1000質量部であり、好ましくは120~700質量部であり、より好ましくは150~500質量部の範囲である。
 (F)その他の成分
 第一の組成物には、必要に応じて、染料、界面活性剤、基板との密着性を高めるための接着助剤、溶解促進剤、架橋促進剤等を含有させることができる。
 染料としては、例えば、メチルバイオレット、クリスタルバイオレット、マラカイトグリーン等が挙げられる。染料の配合量としては、ビフェニルジイル-フェノール樹脂(A)100質量部に対して、0.1~30質量部であることが好ましい。
 界面活性剤としては、例えば、ポリプロピレングリコール、ポリオキシエチレンラウリルエーテル等のポリグリコール類又はその誘導体から成る非イオン系界面活性剤の他、例えば、フロラード(登録商標、商品名、住友3M社製)、メガファック(登録商標、商品名、大日本インキ化学工業社製)、ルミフロン(登録商標、商品名、旭硝子社製)等のフッ素系界面活性剤、例えばKP341(商品名、信越化学工業社製)、DBE(商品名、チッソ社製)、グラノール(商品名、共栄社化学社製)等の有機シロキサン界面活性剤が挙げられる。
 界面活性剤を使用する場合の配合量としては、ビフェニルジイル-フェノール樹脂(A)100質量部に対して、0.01~10質量部が好ましい。
 接着助剤としては、例えば、アルキルイミダゾリン、酪酸、アルキル酸、ポリヒドロキシスチレン、ポリビニルメチルエーテル、t-ブチルノボラック、エポキシシラン、エポキシポリマー等、各種アルコキシシランが挙げられる。
 アルコキシシランの好ましい例としては、テトラアルコキシシラン、ビス(トリアルコキシシリル)メタン、ビス(トリアルコキシシリル)エタン、ビス(トリアルコキシシリル)エチレン、ビス(トリアルコキシシリル)ヘキサン、ビス(トリアルコキシシリル)オクタン、ビス(トリアルコキシシリル)オクタジエン、ビス[3-(トリアルコキシシリル)プロピル]ジスルフィド、N-フェニル-3-アミノプロピルトリアルコキシシラン、3-メルカプトプロピルトリアルコキシシラン、2-(トリアルコキシシリルエチル)ピリジン、3-メタクリロキシプロピルトリアルコキシシラン、3-メタクリロキシプロピルジアルコキシアルキルシラン、ビニルトリアルコキシシラン、3-ウレイドプロピルトリアルコキシシラン、3-イソシアネートプロピルトリアルコキシシラン、3-(トリアルコキシシリル)プロピルコハク酸無水物、N-(3-トリアルコキシシリルプロピル)-4,5-ジヒドロイミダゾール、2-(3,4-エポキシシクロヘキシル)エチルトリアルコキシシラン、3-グリシドキシプロピルトリアルコキシシラン、3-グリシドキシプロピルジアルコキシアルキルシラン、3-アミノプロピルトリアルコキシシラン及び3-アミノプロピルジアルコキシアルキルシラン並びに酸無水物又は酸二無水物の反応物、3-アミノプロピルトリアルコキシシラン又は3-アミノプロピルジアルコキシアルキルシランのアミノ基をウレタン基又はウレア基に変換したもの等を挙げることができる。なお、上記した化合物中のアルキル基としてはメチル基、エチル基、プロピル基、ブチル基等が挙げられ、酸無水物としてはマレイン酸無水物、フタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物等が挙げられ、酸二無水物としてはピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物等が挙げられ、ウレタン基としてはt-ブトキシカルボニルアミノ基等が挙げられ、ウレア基としてはフェニルアミノカルボニルアミノ基等が挙げられる。
 接着助剤を使用する場合の配合量としては、ビフェニルジイル-フェノール樹脂(A)100質量部に対して、0.1~30質量部が好ましい。
 溶解促進剤としては、水酸基又はカルボキシル基を有する化合物が好ましい。水酸基を有する化合物の例としては、前述のナフトキノンジアジド化合物に使用しているバラスト剤、パラクミルフェノール、ビスフェノール類、レゾルシノール類、及びMtrisPC、MtetraPC等の直鎖状フェノール化合物、TrisP-HAP、TrisP-PHBA、TrisP-PA等の非直鎖状フェノール化合物(全て本州化学工業社製)、ジフェニルメタンの2~5個のフェノール置換体、3,3-ジフェニルプロパンの1~5個のフェノール置換体、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと5-ノルボルネン-2,3-ジカルボン酸無水物との1対2反応物、ビス-(3-アミノ-4-ヒドロキシフェニル)スルホンと1,2-シクロヘキシルジカルボン酸無水物との1対2反応物、N-ヒドロキシコハク酸イミド、N-ヒドロキシフタル酸イミド、N-ヒドロキシ5-ノルボルネン-2,3-ジカルボン酸イミド等が挙げられる。
 カルボキシル基を有する化合物の例としては、3-フェニル乳酸、4-ヒドロキシフェニル乳酸、4-ヒドロキシマンデル酸、3,4-ジヒドロキシマンデル酸、4-ヒドロキシ-3-メトキシマンデル酸、2-メトキシ-2-(1-ナフチル)プロピオン酸、マンデル酸、アトロラクチン酸、アセチルマンデル酸、α-メトキシフェニル酢酸、3-フェニル乳酸、4-ヒドロキシフェニル乳酸、4-ヒドロキシマンデル酸、3,4-ジヒドロキシマンデル酸、4-ヒドロキシ-3-メトキシマンデル酸、2-メトキシ-2-(1-ナフチル)プロピオン酸、マンデル酸、アトロラクチン酸、O-アセチルマンデル酸、α-メトキシフェニル酢酸、4-ヒドロキシマンデル酸、3,4-ジヒドロキシマンデル酸、4-ヒドロキシ-3-メトキシマンデル酸、マンデル酸、アトロラクチン酸、O-アセチルマンデル酸、α-メトキシフェニル酢酸、O-アセチルマンデル酸、α-メトキシフェニル酢酸等が挙げられる。
 溶解促進剤を使用する場合の配合量としては、ビフェニルジイル-フェノール樹脂(A)100質量部に対して、0.1~50質量部であることが好ましい。
 架橋促進剤としては、熱又は光によりラジカルを発生するものが好ましい。熱又は光によりラジカルを発生するものとしては、イルガキュア651、184、2959、127、907、369、379(商品名、BASFジャパン社製)等のアルキルフェノン、イルガキュア819(商品名、BASFジャパン社製)等のアシルフォスフィンオキサイド、イルガキュア784(商品名、BASFジャパン社製)等のチタノセン、イルガキュアOXE01、02(商品名、BASFジャパン社製)等のオキシムエステル等を挙げることができる。
<硬化レリーフパターンの形成方法>
 以下、第一の組成物に感光剤を加えた際に基板上に硬化レリーフパターンを形成する方法の一例を示す。
 まず、第一の組成物を適当な支持体、例えば、シリコンウエハー、セラミック、アルミ基板、銅基板などに塗布する。この時、形成するパターンと支持体との耐水接着性を確保するため、予め支持体にシランカップリング剤などの接着助剤を塗布しておいてもよい。第一の組成物の塗布方法はスピンナーを用いた回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロールコーティング等で行うことができる。次に、80~140℃でプリベークして塗膜を乾燥後、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて化学線を照射する。化学線としては、X線、電子線、紫外線、可視光線などが使用できるが、200~500nmの波長のものが好ましい。パターンの解像度及び取り扱い性の点で、その光源波長は水銀ランプのg線、h線又はi線が好ましく、単独でも混合していてもよい。露光装置としてはコンタクトアライナー、ミラープロジェクション、ステッパーが特に好ましい。
 次に、現像を行うが、現像方法は、浸漬法、パドル法、回転スプレー法等の方法から選択することができる。現像液としては、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン等の有機アミン類、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の4級アンモニウム塩類等の水溶液、さらに必要に応じメタノール、エタノール、等の水溶性有機溶媒又は界面活性剤を適当量添加した水溶液を使用することができる。とりわけ、テトラメチルアンモニウムヒドロキシド水溶液が好ましく、その濃度は、0.5~10重量%であり、好ましくは1.0~5重量%である。
 現像後、リンス液により洗浄を行い現像液を除去することにより、パターンフィルムを得ることができる。リンス液としては、蒸留水、メタノール、エタノール、イソプロパノール等を、単独又は組み合わせて用いることができる。
 最後に、このようにして得られたレリーフパターンを加熱することで硬化レリーフパターンを得ることができる。加熱温度として150℃以上であることが好ましい。
 ポリイミド又はポリベンゾオキサゾール前駆体組成物を用いる一般的な硬化レリーフパターンの形成方法においては、300℃以上に加熱して脱水環化反応を進行させることにより、ポリイミド又はポリベンズオキサゾール等に変換する必要があるが、本方法においてはその必要性はないので、熱に弱い半導体装置等にも好適に使用することができる。一例を挙げるならば、プロセス温度に制約のある高誘電体材料又は強誘電体材料、例えば、チタン、タンタル、ハフニウムなどの高融点金属の酸化物から成る絶縁層を有する半導体装置に好適に用いられる。
 半導体装置がこのような耐熱性上の制約を持たない場合であれば、もちろん、本方法においても300~400℃に加熱処理をしてもよい。このような加熱処理装置としては、ホットプレート、オーブン、温度プログラムを設定できる昇温式オーブンを用いることができる。加熱処理を行う際の雰囲気気体として、空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。また、より低温にて熱処理を行う必要が有る際には、真空ポンプ等を利用して減圧下にて加熱を行ってもよい。
 <半導体装置>
 上述の硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、バンプ構造を有する装置の保護膜として用い、さらに、公知の半導体装置の製造方法における工程と組み合わせることで、本発明の第一の態様における半導体装置を製造することができる。
 <半導体素子表面保護膜又は層間絶縁膜>
 本発明の第一の態様では、上記第一の組成物を用いて半導体素子表面保護膜又は層間絶縁膜を製造することができる。また、本発明の第一の態様は、半導体素子表面保護膜又は層間絶縁膜の製造における上記第一の組成物の使用にも関する。
 本発明の第二の態様では、フェノール樹脂組成物は、フェノール樹脂と溶剤を含むフェノール樹脂組成物であって、該組成物をシリコンウエハー上にスピンコートして、ホットプレート上において該シリコンウエハー及びスピンコート膜を100℃で3分間加熱して、窒素雰囲気下において該スピンコート膜を250℃で1時間硬化して厚さ10μmの硬化物を得て、該硬化物を3mm幅でダイシングソーにより切断して、23質量%フッ酸水溶液で処理することにより該シリコンウエハーを剥離して、温度23℃・湿度50%の雰囲気に24時間以上静置して20本のサンプルを得て、該20本のサンプルを引っ張り試験機により測定したときに該サンプルの引っ張り伸度の上位5点の平均値が20%以上であることを特徴とする、前記フェノール樹脂組成物である。
 本発明の第二の態様におけるフェノール樹脂組成物を特徴づける、前記「引っ張り伸度」について、以下に説明する。
 <引っ張り伸度>
 半導体装置に適用される表面保護膜又は層間絶縁膜の信頼性とは、半導体装置作製の後工程における、スパッタ、アニーリング、エッチング、表面保護膜の硬化(キュア)、ダイアタッチフィルムとの接着、半導体チップ間の接続、半導体チップとインターポーザーとの接続、ワイヤーボンディング、アンダーフィルの注入、封止樹脂によるモールディング、半田リフロー、バーンインなどの一連の工程を経ても半導体装置として正常に作動することであり、信頼性は表面保護膜又は層間絶縁膜の総合的な性能であると考えられている。
 しかしながら、本発明者らは、前述した一連の様々な段階で熱の履歴がかかり、半導体装置の異種材料間での熱膨張率の差により応力が発生し、半導体装置のそりとなり、この時に、表面保護膜又は層間絶縁膜等がそりに堪えられないと、膜にクラックなどの欠陥が生じ、元来、表面保護膜又は層間絶縁膜等に期待されていた封止樹脂のフィラーによる応力の低減、絶縁性、α線遮蔽効果等が発揮できなくなるのではないかと考えた。
 そこで本発明者らは、表面保護膜又は層間絶縁膜等として存在する膜の引っ張り伸度について検討したところ、上記のような特定条件で測定した引っ張り伸度の平均値が、特定の値(すなわち、約20%)以上であると、そりが発生しても、膜にクラックなどの欠陥を発生させることがなく、期待されていた機能が保持されることを見出した。
 この引っ張り伸度の平均値は、信頼性の観点から、25%以上であることが好ましく、50%以上であることがより好ましく、54%以上であることが更に好ましい。上限値は数値が大きいほど好ましいが、例えば100%である。
 前記引っ張り伸度の測定方法及び測定条件は、以下の通りである。
 フェノール樹脂組成物をシリコンウエハー上にスピンコートし、ホットプレート上において該シリコンウエハー及びスピンコート膜を100℃で3分間加熱して、窒素雰囲気下において該スピンコート膜を250℃で1時間硬化して厚さ10μmの硬化物を得る。この硬化物を3mm幅でダイシングソーにより切断して、23質量%フッ酸水溶液で処理することによりシリコンウエハーを剥離して、さらに温度23℃・湿度50%の雰囲気に24時間以上静置して、20本のサンプルを得て、引っ張り試験機(例えば、テンシロン(登録商標、オリンテック社製))にて各サンプルの引っ張り伸度を測定し、20本のサンプルの結果のうち、上位5点のサンプルの平均値を得る。引っ張り試験機の測定条件は以下の通りとする。
温度:23℃
湿度:50%
初期試料長さ:50mm
試験速度:40mm/min.
ロードセル定格:2kgf
 <ヤング率>
 また、本発明の第二の態様では、フェノール樹脂組成物を熱硬化した膜のヤング率は、より低い方がより小さな応力でも膜が変形し始めることができ、応力緩和機能を発揮できるため好適であり、ヤング率が4.0GPa未満であることが好ましく、3.5GPa未満であることがより好ましく、3.0GPa未満であることが最も好ましい。一方、膜の耐熱性等を考慮するとヤング率が1.0GPa以上であることが好ましく、1.5GPa以上であることがより好ましい。
 前記ヤング率の測定方法及び測定条件は、以下の通りである。
<ヤング率測定法>
 上記、引っ張り伸度測定法と同条件で、製膜、サンプル作製、測定を行い、得られたS-S曲線よりJIS K 7161に従って求め、20本の試料の値の中の下位5点のサンプルの平均値を採用する。
 <フェノール樹脂組成物>
 本発明の第二の態様におけるフェノール樹脂組成物(以下、「第二の組成物」ともいう。)とは、組成物中に含まれる重量平均分子量が1,500以上の樹脂のうち、フェノール樹脂を55質量%以上、好ましくは75質量%以上、より好ましくは95質量%以上、最も好ましくは100質量%含むものをいう。
 第二の組成物を構成する成分について、以下に説明する。
 <フェノール樹脂>
 第二の組成物に用いられるフェノール樹脂は、その繰り返し単位にフェノール誘導体を含む高分子化合物である。フェノール樹脂としては、具体的には、フェノール誘導体に対し、アルデヒド化合物、ケトン化合物、メチロール化合物、又はアルコキシメチル化合物を重合させて得られる樹脂;、フェノール-ジエン系重合樹脂;、ポリヒドロキシスチレン系樹脂;、及びこれらの樹脂の誘導体が挙げられる。また、第二の組成物に用いられるフェノール樹脂の重量平均分子量は、1,500以上である。
 前記フェノール誘導体に対し、アルデヒド化合物、ケトン化合物、メチロール化合物、又はアルコキシメチル化合物を重合させて得られる樹脂について、以下説明する。
 フェノール誘導体としては例えば、フェノール、クレゾール、エチルフェノール、プロピルフェノール、ブチルフェノール、アミルフェノール、ベンジルフェノール、アダマンタンフェノール、ベンジルオキシフェノール、キシレノール、カテコール、レゾルシノール、エチルレゾルシノール、ヘキシルレゾルシノール、ハイドロキノン、ピロガロール、フロログルシノール、1,2,4-トリヒドロキシベンゼン、パラロゾール酸、ビフェノール、ビスフェノールA、ビスフェノールAF、ビスフェノールB、ビスフェノールF、ビスフェノールS、ジヒドロキシジフェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,4-ビス(3-ヒドロキシフェノキシベンゼン)、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、α,α’-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2,2-ビス(2-ヒドロキシ-5-ビフェニルイル)プロパン、ジヒドロキシ安息香酸などが挙げられる。
 アルデヒド化合物としてはホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド、ピバルアルデヒド、ブチルアルデヒド、ペンタナール、ヘキサナール、トリオキサン、グリオキザール、シクロヘキシルアルデヒド、ジフェニルアセトアルデヒド、エチルブチルアルデヒド、ベンズアルデヒド、グリオキシル酸、5-ノルボルネン-2-カルボキシアルデヒド、マロンジアルデヒド、スクシンジアルデヒド、グルタルアルデヒド、サリチルアルデヒド、ナフトアルデヒド、テレフタルアルデヒドなどが挙げられる。
 ケトン化合物としてはアセトン、メチルエチルケトン、ジエチルケトン、ジプロピルケトン、ジシクロヘキシルケトン、ジベンジルケトン、シクロペンタノン、シクロヘキサノン、ビシクロヘキサノン、シクロヘキサンジオン、3-ブチン-2-オン、2-ノルボルナノン、アダマンタノン、2,2-ビス(4-オキソシクロヘキシル)プロパンなどが挙げられる。
 メチロール化合物としては1,3-ビス(ヒドロキシメチル)尿素、リビトール、アラビトール、アリトール、2,2-ビス(ヒドロキシメチル)酪酸、2-ベンジルオキシ-1,3-プロパンジオール、シクロヘキサンジメタノール、2,2-ジメチル-1,3-プロパンジオール、2,2-ジエチル-1,3-プロパンジオール、モノアセチン、2-メチル-2-ニトロ-1,3-プロパンジオール、5-ノルボルネン-2,2-ジメタノール、5-ノルボルネン-2,3-ジメタノール、ペンタエリスリトール、2-フェニル-1,3-プロパンジオール、トリメチロールエタン、トリメチロールプロパン、3,6-ビス(ヒドロキシメチル)デュレン、2,6-ビス(ヒドロキシメチル)-p-クレゾール、2,3-ビス(ヒドロキシメチル)ナフタレン、2,2’-ビス(ヒドロキシメチル)ジフェニルエーテル、1,8-ビス(ヒドロキシメチル)アントラセン、2,6-ビス(ヒドロキシメチル)-1,4-ジメトキシベンゼン、4,4’-ビフェニルジメタノール、1,4-ベンゼンジメタノール、2-ニトロ-p-キシリレングリコール、1,3-ベンゼンジメタノール等が挙げられる。
 アルコキシメチル化合物としては1,4-ビス(メトキシメチル)ベンゼン、4,4’-ビス(メトキシメチル)ビフェニル、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、2,4,6-トリス[ビス(メトキシメチル)アミノ]-1,3,5-トリアジン等が挙げられる。
 前記フェノール-ジエン系重合樹脂は、フェノール誘導体とジエン系化合物とを重合させて得ることができるフェノール誘導体としては上述したものと同じものを用いることができ、ジエン系化合物としては、ブタジエン、ペンタジエン、ヘキサジエン、ヘプタジエン、オクタジエン、3-メチル-1,3-ブタジエン、1,3-ブタンジオール-ジメタクリラート、2,4-ヘキサジエン-1-オール、メチルシクロヘキサジエン、シクロペンタジエン、シクロヘキサジエン、シクロヘキサジエン、シクロオクタジエン、ジシクロペンタジエン、1-ヒドロキシジシクロペンタジエン、1-メチルシクロペンタジエン、メチルジシクロペンタジエン、ジアリルエーテル、ジアリルスルフィド、アジピン酸ジアリル、2,5-ノルボルナジエン、テトラヒドロインデン、5-エチリデン-2-ノルボルネン、5-ビニル-2-ノルボルネン、シアヌル酸トリアリル、イソシアヌル酸ジアリル、イソシアヌル酸トリアリル、イソシアヌル酸ジアリルプロピル等が挙げられる。
 前記ポリヒドロキシスチレン系樹脂は、不飽和結合をもつフェノール誘導体を付加重合させて得ることができる。不飽和結合をもつフェノール誘導体を付加重合させた樹脂を合成する際のフェノール誘導体としてはヒドロキシスチレン、ジヒドロキシスチレン、アリルフェノール、クマル酸、ヒドロキシカルコン、N-ヒドロキシフェニル-5-ノルボルネン-2,3-ジカルボン酸イミド、レスベラトロール、ヒドロキシスチルベン等が挙げられる。
 上述のフェノール誘導体を脱水、若しくは脱アルコール、又は不飽和結合を開裂させながら重合させることにより樹脂化することができるが、重合時に触媒を用いてもよい。酸性の触媒としては塩酸、硫酸、硝酸、リン酸、亜リン酸、メタンスルホン酸、p-トルエンスルホン酸、ジメチル硫酸、ジエチル硫酸、酢酸、シュウ酸、1-ヒドロキシエチリデン-1,1’-ジホスホン酸、酢酸亜鉛、三フッ化ホウ素、三フッ化ホウ素・フェノール錯体、三フッ化ホウ素・エーテル錯体等が挙げられる。一方で、アルカリ性の触媒としては水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、水酸化バリウム、炭酸ナトリウム、トリエチルアミン、ピリジン、4-N,N-ジメチルアミノピリジン、ピペリジン、ピペラジン、1,4-ジアザビシクロ[2.2.2]オクタン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、1,5-ジアザビシクロ[4.3.0]-5-ノネン、アンモニア、ヘキサメチレンテトラミン等が挙げられる。
 フェノール樹脂は複数の成分の共重合でもよく、その共重合の際に、フェノール誘導体の一部にフェノール性水酸基を有さない化合物を用いてもよい。
 フェノール樹脂の重量平均分子量は1,500~200,000が好ましく、1,500~100,000がより好ましく、2,000~50,000が最も好ましい。
 第二の組成物は硬化膜とした際の引っ張り伸度が高いことが特徴である。そのためには、水素結合又はベンゼン環同士のπ電子の相互作用、ファンデルワールス力等を統合したポリマー間の相互作用が適度であることが重要で、特に水素結合を弱めるためにフェノール樹脂の繰り返し単位において、炭素原子の数に対する酸素原子及び窒素原子の数の割合が、0.1以下であることが好ましく、0.08以下であることがさらに好ましく、0.06以下であることが最も好ましい。また、フェノール樹脂の繰り返し単位において、炭素原子の数に対する水素原子及び窒素原子の数の割合が、0.01以上であれば、水素結合を含めたポリマー間の相互作用が適度な範囲に入る。
 <溶剤>
 第二の組成物に用いられる溶剤としては、アミド類、スルホキシド類、ウレア類、ケトン類、エステル類、ラクトン類、エーテル類、ハロゲン化炭化水素類、炭化水素類等が挙げられ、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、ジメチルスルホキシド、テトラメチル尿素、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、酢酸メチル、酢酸エチル、酢酸ブチル、シュウ酸ジエチル、乳酸エチル、乳酸メチル、乳酸ブチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ベンジルアルコール、フェニルグリコール、テトラヒドロフルフリルアルコール、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、テトラヒドロフラン、モルフォリン、ジクロロメタン、1,2-ジクロロエタン、1,4-ジクロロブタン、クロロベンゼン、o-ジクロロベンゼン、アニソール、ヘキサン、ヘプタン、ベンゼン、トルエン、キシレン、メシチレン等を使用することができる。中でも、樹脂の溶解性、樹脂組成物の安定性、基板への接着性の観点から、N-メチル-2-ピロリドン、ジメチルスルホキシド、テトラメチル尿素、酢酸ブチル、乳酸エチル、γ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、ベンジルアルコール、フェニルグリコール、テトラヒドロフルフリルアルコールが好ましい。
 第二の組成物において、溶剤の添加量は、フェノール樹脂100質量部に対して100~1000質量部であり、好ましくは120~700質量部であり、さらに好ましくは150~500質量部の範囲である。
 <架橋剤>
 第二の組成物には架橋剤が含有されていることが好ましい。架橋剤としては、1,1,2,2-テトラ(p-ヒドロキシフェニル)エタンテトラグリシジルエーテル、グリセロールトリグリシジルエーテル、オルソセカンダリーブチルフェニルグリシジルエーテル、1,6-ビス(2,3-エポキシプロポキシ)ナフタレン、ジグリセロールポリグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、イソシアヌル酸トリグリシジル、エピクロン830、850、1050、N-680、N-690、N-695、N-770、HP-7200、HP-820、EXA-4850-1000(商品名、DIC社製)、デナコールEX-201、EX-313、EX-314、EX-321、EX-411、EX-511、EX-512、EX-612、EX-614、EX-614B、EX-731、EX-810、EX-911、EM-150(商品名、ナガセケムテックス社製)等のエポキシ化合物、キシリレンビスオキセタン、3-エチル-3{[(3-エチルオキセタン―イル)メトキシ]メチル}オキセタン等のオキセタン化合物、
 2,2’-ビス(2-オキサゾリン)、2,2’-イソプロピリデンビス(4-フェニル-2-オキサゾリン)、1,3-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン、1,4-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン、エポクロスK-2010E、K-2020E、K-2030E、WS-500、WS-700、RPS-1005(商品名、日本触媒社製)等のオキサゾリン化合物、カルボジライトSV-02、V-01、V-02、V-03、V-04、V-05、V-07、V-09、E-01、E-02、LA-1(商品名、日清紡ケミカル社製)等のカルボジイミド化合物、ホルムアルデヒド、グルタルアルデヒド、ヘキサメチレンテトラミン、トリオキサン、グリオキザール、マロンジアルデヒド、スクシンジアルデヒド等のアルデヒド及びアルデヒド変性体、4,4’-ジフェニルメタンジイソシアネート、トリレンジイソシアナート、1,3-フェニレンビスメチレンジイソシアネート、ジシクロヘキシルメタン―4,4’-ジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、タケネート500、600、コスモネートNBDI、ND(商品名、三井化学社製)デュラネート17B-60PX、TPA-B80E、MF-B60X、MF-K60X、E402-B80T(商品名、旭化成ケミカル社製)等のイソシアネート系架橋剤、
 アセチルアセトンアルミニウム(III)塩、アセチルアセトンチタン(IV)塩、アセチルアセトンクロム(III)塩、アセチルアセトンマグネシウム(II)塩、アセチルアセトンニッケル(II)塩、トリフルオロアセチルアセトンアルミニウム(III)塩、トリフルオロアセチルアセトンチタン(IV)塩、トリフルオロアセチルアセトンクロム(III)塩、トリフルオロアセチルアセトンマグネシウム(II)塩、トリフルオロアセチルアセトンニッケル(II)塩等の金属キレート剤、ニカラックMW-30MH、MW-100LH、BL-60、MX-270、MX-280、MX-290(商品名、三和ケミカル社製)、サイメル300、303、1123、マイコート102、105(商品名、日本サイテック社製)等のN-メチロール系化合物、1,4-ビス(メトキシメチル)ベンゼン、4,4’-ビス(メトキシメチル)ビフェニル等のC-メチロール系化合物、酢酸ビニル、トリメチロールプロパントリメタクリレート、1,3,5-ベンゼントリカルボン酸トリアリル、トリメリット酸トリアリル、ピロメリット酸テトラアリルエステル、ペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、NKエステル1G、2G、3G、4G、9G、14G、NPG、BPE-100、BPE-200、BPE-500、BPE-1400、A-200、A-400、A-600、TMPT、A-TMM-3(商品名、新中村化学工業社製)、BANI-M、BANI-X(商品名、丸善石油化学株式会社製)等の不飽和結合含有化合物等が挙げられる。
 上述の架橋剤の中でも、得られた熱硬化膜の伸度及び耐熱性の観点から、エピクロン830、850、1050、N-680、N-690、N-695、N-770、HP-7200、HP-820、EXA-4850-1000、デナコールEX-201、EX-313、EX-314、EX-321、EX-411、EX-511、EX-512、EX-612、EX-614、EX-614B、EX-731、EX-810、EX-911、EM-150、キシリレンビスオキセタン、3-エチル-3{[(3-エチルオキセタン―イル)メトキシ]メチル}オキセタン、1,3-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン、ニカラックMW-30MH、MW-100LH、BL-60、MX-270、MX-280、MX-290、サイメル300、303、1123、マイコート102、105、1,4-ビス(メトキシメチル)ベンゼン、4,4’-ビス(メトキシメチル)ビフェニル、酢酸ビニル、トリメチロールプロパントリメタクリレート、1,3,5-ベンゼントリカルボン酸トリアリル、トリメリット酸トリアリル、ピロメリット酸テトラアリルエステル、ペンタエリスリトールペンタアクリレート、ジペンタエリスリトールペンタアクリレート、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、BANI-M、及びBANI-Xが好ましい。
 架橋剤を使用する場合の配合量としては、フェノール樹脂100質量部に対して、0.1~30質量部が好ましい。
 <感光剤>
 第二の組成物には、感光剤が含有されていることが好ましい。感光剤の種類を選択することにより、第二の組成物をポジ型にすることもできるし、ネガ型とすることもできる。第二の組成物をポジ型にする場合は、感光剤として光酸発生剤を選ぶことが必要である。光酸発生剤としてはナフトキノンジアジド(NQD)化合物、オニウム塩、ハロゲン含有化合物等を用いることができるが、溶剤溶解性及び保存安定性の観点から、後述のNQD構造を有する光活性化合物が好ましい。
 上記オニウム塩としては、ヨードニウム塩、スルホニウム塩、ホスホニウム塩、アンモニウム塩、ジアゾニウム塩等が挙げられ、ジアリールヨードニウム塩、トリアリールスルホニウム塩、及びトリアルキルスルホニウム塩から成る群から選ばれるオニウム塩が好ましい。
 上記ハロゲン含有化合物としては、ハロアルキル基含有炭化水素化合物等が挙げられ、トリクロロメチルトリアジンが好ましい。
 上記ナフトキノンジアジド化合物としては、1,2-ベンゾキノンジアジド構造又は1,2-ナフトキノンジアジド構造を有する化合物が挙げられ、これらは例えば米国特許第2,772,972号明細書、米国特許第2,797,213号明細書、及び米国特許第3,669,658号明細書等に記述されている。該ナフトキノンジアジド構造は、以下に詳述する特定構造を有するポリヒドロキシ化合物の1,2-ナフトキノンジアジド-4-スルホン酸エステル、及び該ポリヒドロキシ化合物の1,2-ナフトキノンジアジド-5-スルホン酸エステルから成る群から選択される少なくとも1種の化合物(以下、「NQD化合物」ともいう。)である。
 該NQD化合物は、常法に従って、ナフトキノンジアジドスルホン酸化合物を、クロルスルホン酸又は塩化チオニルでスルホニルクロライドとし、得られたナフトキノンジアジドスルホニルクロライドと、ポリヒドロキシ化合物とを縮合反応させることにより得られる。例えば、ポリヒドロキシ化合物と、所定量の1,2-ナフトキノンジアジド-5-スルホニルクロリド又は1,2-ナフトキノンジアジド-4-スルホニルクロリドとを、ジオキサン、アセトン、テトラヒドロフラン等の溶媒中において、トリエチルアミン等の塩基性触媒の存在下で反応させてエステル化を行い、得られた生成物を水洗、乾燥することによりNQD化合物を得ることができる。
 好ましいNQD化合物の例としては、例えば、下記のものが挙げられる。
Figure JPOXMLDOC01-appb-C000014
{式中、Qは水素原子又は下記:
Figure JPOXMLDOC01-appb-C000015
のナフトキノンジアジドスルホン酸エステル基であり、すべてのQが同時に水素原子であることはない。}
 また、同一分子中に4-ナフトキノンジアジドスルホニル基及び5-ナフトキノンジアジドスルホニル基を併用した、ナフトキノンジアジドスルホニルエステル化合物を用いることもできるし、4-ナフトキノンジアジドスルホニルエステル化合物と5-ナフトキノンジアジドスルホニルエステル化合物とを混合して使用することもできる。
 本発明の第二の態様において、フェノール樹脂100質量部に対する感光剤の配合量は、1~50質量部であることが好ましく、5~30質量部であることがより好ましい。感光剤の上記配合量が1質量部以上である場合、樹脂のパターニング性が良好であり、50質量部以下である場合、硬化後の膜の引張り伸び率が良好であり、かつ露光部の現像残さ(スカム)が少ない。
 <その他>
 第二の組成物には、必要に応じて、染料、界面活性剤、基板との密着性を高めるための接着助剤、溶解促進剤、架橋促進剤等を含有させることが可能である。
 上記染料としては、例えば、メチルバイオレット、クリスタルバイオレット、マラカイトグリーン等が挙げられる。染料の配合量としては、フェノール樹脂100質量部に対して、0.1~30質量部が好ましい。
 上記界面活性剤としては、例えば、ポリプロピレングリコール、ポリオキシエチレンラウリルエーテル等のポリグリコール類又はその誘導体から成る非イオン系界面活性剤の他、例えばフロラード(登録商標、商品名、住友3M社製)、メガファック(登録商標、商品名、大日本インキ化学工業社製)、ルミフロン(登録商標、商品名、旭硝子社製)等のフッ素系界面活性剤、例えばKP341(商品名、信越化学工業社製)、DBE(商品名、チッソ社製)、グラノール(商品名、共栄社化学社製)等の有機シロキサン界面活性剤が挙げられる。
 界面活性剤を使用する場合の配合量としては、フェノール樹脂100質量部に対して、0.01~10質量部が好ましい。
 上記接着助剤としては、例えば、アルキルイミダゾリン、酪酸、アルキル酸、ポリヒドロキシスチレン、ポリビニルメチルエーテル、t-ブチルノボラック、エポキシシラン、エポキシポリマー等、及び各種アルコキシシランが挙げられる。
 アルコキシシランの好ましい例としては、例えば、テトラアルコキシシラン、ビス(トリアルコキシシリル)メタン、ビス(トリアルコキシシリル)エタン、ビス(トリアルコキシシリル)エチレン、ビス(トリアルコキシシリル)ヘキサン、ビス(トリアルコキシシリル)オクタン、ビス(トリアルコキシシリル)オクタジエン、ビス[3-(トリアルコキシシリル)プロピル]ジスルフィド、N-フェニル-3-アミノプロピルトリアルコキシシラン、3-メルカプトプロピルトリアルコキシシラン、2-(トリアルコキシシリルエチル)ピリジン、3-メタクリロキシプロピルトリアルコキシシラン、3-メタクリロキシプロピルジアルコキシアルキルシラン、ビニルトリアルコキシシラン、3-ウレイドプロピルトリアルコキシシラン、3-イソシアネートプロピルトリアルコキシシラン、3-(トリアルコキシシリル)プロピルコハク酸無水物、N-(3-トリアルコキシシリルプロピル)-4,5-ジヒドロイミダゾール、2-(3,4-エポキシシクロヘキシル)エチルトリアルコキシシラン、3-グリシドキシプロピルトリアルコキシシラン、3-グリシドキシプロピルジアルコキシアルキルシラン、3-アミノプロピルトリアルコキシシラン及び3-アミノプロピルジアルコキシアルキルシラン並びに酸無水物又は酸二無水物の反応物、3-アミノプロピルトリアルコキシシラン又は3-アミノプロピルジアルコキシアルキルシランのアミノ基をウレタン基又はウレア基に変換したもの等を挙げることができる。なお、上記した化合物中のアルキル基としてはメチル基、エチル基、プロピル基、ブチル基等が挙げられ、酸無水物としてはマレイン酸無水物、フタル酸無水物、5-ノルボルネン-2,3-ジカルボン酸無水物等が挙げられ、酸二無水物としてはピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、4,4’-オキシジフタル酸二無水物等が挙げられ、ウレタン基としてはt-ブトキシカルボニルアミノ基等が挙げられ、ウレア基としてはフェニルアミノカルボニルアミノ基等が挙げられる。
 接着助剤を使用する場合の配合量としては、フェノール樹脂100質量部に対して、0.1~30質量部が好ましい。
 上記溶解促進剤としては、水酸基又はカルボキシル基を有する化合物が好ましい。水酸基を有する化合物の例としては、前述のナフトキノンジアジド化合物に使用しているバラスト剤、並びにパラクミルフェノール、ビスフェノール類、レゾルシノール類、及びMtrisPC、MtetraPC等の直鎖状フェノール化合物、TrisP-HAP、TrisP-PHBA、TrisP-PA等の非直鎖状フェノール化合物(全て本州化学工業社製)、ジフェニルメタンの2~5個のフェノール置換体、3,3-ジフェニルプロパンの1~5個のフェノール置換体、2,2-ビス-(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパンと5-ノルボルネン-2,3-ジカルボン酸無水物との1対2反応物、ビス-(3-アミノ-4-ヒドロキシフェニル)スルホンと1,2-シクロヘキシルジカルボン酸無水物との1対2反応物、N-ヒドロキシコハク酸イミド、N-ヒドロキシフタル酸イミド、N-ヒドロキシ5-ノルボルネン-2,3-ジカルボン酸イミド等が挙げられる。
 カルボキシル基を有する化合物の例としては、3-フェニル乳酸、4-ヒドロキシフェニル乳酸、4-ヒドロキシマンデル酸、3,4-ジヒドロキシマンデル酸、4-ヒドロキシ-3-メトキシマンデル酸、2-メトキシ-2-(1-ナフチル)プロピオン酸、マンデル酸、アトロラクチン酸、アセチルマンデル酸、α-メトキシフェニル酢酸、3-フェニル乳酸、4-ヒドロキシフェニル乳酸、4-ヒドロキシマンデル酸、3,4-ジヒドロキシマンデル酸、4-ヒドロキシ-3-メトキシマンデル酸、2-メトキシ-2-(1-ナフチル)プロピオン酸、マンデル酸、アトロラクチン酸、O-アセチルマンデル酸、α-メトキシフェニル酢酸、4-ヒドロキシマンデル酸、3,4-ジヒドロキシマンデル酸、4-ヒドロキシ-3-メトキシマンデル酸、マンデル酸、アトロラクチン酸、O-アセチルマンデル酸、α-メトキシフェニル酢酸、O-アセチルマンデル酸、α-メトキシフェニル酢酸等を挙げることができる。
 溶解促進剤を使用する場合の配合量としては、フェノール樹脂100質量部に対して、0.1~30質量部が好ましい。
 上記架橋促進剤としては、熱又は光により酸、塩基、ラジカルを発生するものが好ましい。熱又は光により酸を発生するものとしては、TPS-105、1000、DTS-105、NDS-105、165(商品名、みどり化学社製)、DPI-DMAS、TTBPS-TF、TPS-TF、DTBPI-TF(商品名、東洋合成社製)等のオニウム塩、メタンスルホン酸メチル、メタンスルホン酸エチル、ベンゼンスルホン酸メチル、p-トルエンスルホン酸メチル、p-トルエンスルホン酸メトキシエチルなどのスルホン酸エステル、NAI-100、101、105、106、PAI-101(商品名、みどり化学社製)、イルガキュアPAG-103、108、121、203、CGI-1380、725、NIT、1907、PNBT(商品名、BASFジャパン社製)等のオキシムスルホネート等を挙げることができる。熱又は光により塩基を発生するものとしては、U-CATSA-1、102、506、603、810(商品名、サンアプロ社製)、CGI-1237、1290、1293(商品名、BASFジャパン社製)等のアミン塩、2,6-ピペリジン又はブチルアミン、ジエチルアミン、ジブチルアミン、N,N’-ジエチル-1,6-ジアミノヘキサン、ヘキサメチレンジアミンなどのアミノ基をウレタン基又はウレア基に変換したものなどが挙げられる。ウレタン基としてはt-ブトキシカルボニルアミノ基等が挙げられ、ウレア基としてはフェニルアミノカルボニルアミノ基等が挙げられる。熱又は光によりラジカルを発生するものとしては、イルガキュア651、184、2959、127、907、369、379(商品名、BASFジャパン社製)等のアルキルフェノン、イルガキュア819(商品名、BASFジャパン社製)等のアシルフォスフィンオキサイド、イルガキュア784(商品名、BASFジャパン社製)等のチタノセン、イルガキュアOXE01、02(商品名、BASFジャパン社製)等のオキシムエステル等を挙げることができる。
<硬化レリーフパターンの形成方法>
 第二の組成物として、感光剤を含有する組成物を用いた場合における基板上に硬化レリーフパターンを形成する方法の一例を以下に示す。
 まず感光剤を含有する第二の組成物を適当な支持体又は基板、例えばシリコンウエハー、セラミック、アルミ基板などに塗布する。この時、形成するパターンと支持体との耐水接着性を確保するため、あらかじめ支持体又は基板にシランカップリング剤などの接着助剤を塗布しておいてもよい。該組成物の塗布方法はスピンナーを用いた回転塗布、スプレーコーターを用いた噴霧塗布、浸漬、印刷、ロールコーティング等で行う。次に、80~140℃でプリベークして塗膜を乾燥後、フェノール樹脂組成物を露光する。露光する化学線としては、X線、電子線、紫外線、可視光線などが使用できるが、200~500nmの波長のものが好ましい。パターンの解像度及び取り扱い性の点で、その光源波長は水銀ランプのg線、h線又はi線が好ましく、単独でも混合していてもよい。露光装置としてはコンタクトアライナー、ミラープロジェクション、及びステッパーが特に好ましい。
 次に現像が行われるが、浸漬法、パドル法、回転スプレー法等の方法から選択して行うことができる。現像により、塗布されたフェノール樹脂組成物から、露光部又は未露光部を溶出除去され、レリーフパターンを得ることができる。現像液としては、水酸化ナトリウム、炭酸ナトリウム、ケイ酸ナトリウム、アンモニア水等の無機アルカリ類、エチルアミン、ジエチルアミン、トリエチルアミン、トリエタノールアミン等の有機アミン類、テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の4級アンモニウム塩類等の水溶液、及び必要に応じてメタノール、エタノール等の水溶性有機溶媒又は界面活性剤を適当量添加した水溶液を使用することができる。これらの中で、テトラメチルアンモニウムヒドロキシド水溶液が好ましく、その濃度は、好ましくは、0.5~10質量%であり、さらに好ましくは、1.0~5質量%である。
 現像後、リンス液により洗浄を行い現像液を除去することにより、パターンフィルムを得ることができる。リンス液としては、蒸留水、メタノール、エタノール、イソプロパノール等を単独又は組み合わせて用いることができる。
 最後に、このようにして得られたレリーフパターンを加熱することで硬化レリーフパターンを得ることができる。加熱温度は150℃以上280℃以下が好ましい。
 一般的に使われているポリイミド又はポリベンゾオキサゾール前駆体組成物を用いた硬化レリーフパターンの形成方法においては、300℃以上に加熱して脱水環化反応を進行させることにより、ポリイミド又はポリベンズオキサゾール等に変換する必要があるが、本発明の第二の態様の硬化レリーフパターンの製造方法においてはその必要性がないので、熱に弱い半導体装置等にも好適に使用することが出来る。一例を挙げるならば、プロセス温度に制約のある高誘電体材料又は強誘電体材料、例えばチタン、タンタル、又はハフニウムなどの高融点金属の酸化物から成る絶縁層を有する半導体装置に好適に用いられる。
 半導体装置がこのような耐熱性上の制約を持たない場合であれば、もちろん、本方法においても300~400℃に加熱処理をしてもよい。このような加熱処理は、ホットプレート、オーブン、又は温度プログラムを設定できる昇温式オーブンを用いることにより行うことが出来る。加熱処理を行う際の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることもできる。また、より低温にて熱処理を行う必要が有る際には、真空ポンプ等を利用して減圧下にて加熱を行ってもよい。
 一方で、フェノール樹脂組成物が非感光性である場合は、第二の組成物の塗布工程においてレリーフパターンを形成するか、塗布工程の後にレーザー等で加工することによりレリーフパターンを形成することができる。
 塗布工程においてレリーフパターンを形成する場合は、スクリーン印刷、凸版印刷、平版印刷等によりレリーフパターン状にフェノール樹脂組成物を印刷塗布することができる。インクジェット方式、ディスペンサー方式による吹き付け、又はプロッターなどによる直接描画によってノズルからフェノール樹脂組成物を含む溶液を吐出させレリーフパターンを形成することもできる。
 塗布工程の後にレーザー等で加工することによりレリーフパターンを形成する場合には、スピンコート等で塗布した後にレーザー、例えば、エキシマレーザー又はUV-YAGレーザーを用いて、レリーフパターン以外の部分をレーザーで焼き飛ばすことにより、レリーフパターンを形成することができる。
 その後、上述の感光性フェノール樹脂組成物の場合と同様に、得られたレリーフパターンを加熱することで硬化レリーフパターンを得ることができる。
 <半導体装置>
 また、半導体素子と、該半導体素子の上部に設けられた硬化膜とを備え、該硬化膜は、第二の組成物を用いて製造した硬化レリーフパターンである半導体装置も本発明の第二の態様である。本発明の第二の態様の半導体装置は、上述の硬化レリーフパターンを、表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、又はバンプ構造を有する装置の保護膜として、公知の半導体装置の製造方法と組み合わせることで製造することができる。また、本発明の第二の態様は、半導体素子表面保護膜又は層間絶縁膜の製造における上記第二の組成物の使用にも関する。
本発明の第一の態様
 以下、本発明の第一の態様を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
<合成例>
 下記式:
Figure JPOXMLDOC01-appb-C000016
で表される熱塩基発生剤(D-1)を、下記方法に従い合成した。
 500mLのセパラブルフラスコに二炭酸ジ-t-ブチル43.7g(0.2mol)、4-N,N-ジメチルアミノピリジン0.25g(0.002mol)を入れ、35℃まで加熱、撹拌しながら1,3-ジ-4-ピペリジルプロパン21.04g(0.1mol)を、反応液の温度が40℃を超えないように、30分間かけて添加した。添加終了後、55℃に昇温して8時間撹拌した。反応終了後、不溶物をろ別し、ろ液に水200gを加えた後、有機層を酢酸エチルで抽出し、炭酸水素ナトリウム水溶液で洗浄し、硫酸マグネシウムで乾燥してから溶媒を減圧留去して、熱塩基発生剤(D-1)32.5gを得た。
 <感光性樹脂組成物の調製>
[実施例1~7、比較例1~4]
 本発明の実施例及び比較例において使用した各成分は、それぞれ以下のものであった。
 (A)成分
  A-1:明和化成株式会社製MEH-7851 4H (重量平均分子量=9986)
  A-2:明和化成株式会社製MEH-7851 H (重量平均分子量=2769)
Figure JPOXMLDOC01-appb-C000017
  A-3:旭有機材工業株式会社EP4020G (重量平均分子量=11719)
Figure JPOXMLDOC01-appb-C000018
 上記(A)成分の重量平均分子量は、ゲルパーミエイションクロマトグラフィー(GPC)により、標準ポリスチレン(昭和電工社製 有機溶媒系標準試料 STANDARD SM-105)換算で算出した。
 使用したGPC装置及び測定条件は以下の通りであった。
  ポンプ:JASCO PU-980
  検出器:JASCO RI-930
  カラムオーブン:JASCO CO-965 40℃
  カラム:Shodex KD-806M 直列に2本
  移動相:0.1mol/l EtBr/NMP
  流速:1ml/min.
 A-1及びA-2は、樹脂骨格中にビフェニルジイル構造を有し、市販される明和化成株式会社製MEH-7851シリーズフェノール樹脂であり、A-3は、樹脂骨格中に、ビフェニルジイル構造を含有しない市販される旭有機材工業株式会社製クレゾールタイプフェノール樹脂である。
 (B)成分
  B-1:下記式で示す光酸発生剤
Figure JPOXMLDOC01-appb-C000019
{式中、Qの内83%が以下の:
Figure JPOXMLDOC01-appb-C000020
で表される構造であり、残余が水素原子である。}。
  B-2:下記式で示す光酸発生剤
Figure JPOXMLDOC01-appb-C000021
(C)成分
  C-1:三和ケミカル株式会社製 ニカラックMX-390
  C-2:三和ケミカル株式会社製 ニカラックMX-270
  C-3:ナガセケムテックス株式会社製 デナコールEX-321L
  C-4:宇部興産株式会社製 ETERNACOLL OXBP
Figure JPOXMLDOC01-appb-C000022
(D)成分:
  D-1:
Figure JPOXMLDOC01-appb-C000023
 (E)溶媒
 γ-ブチロラクトン(GBL)
 実施例1~7と比較例1~4の組成を、以下の表1に示す。
 表中の数字は各組成分の添加質量部を示す。各組成分を混合溶解した後、0.2μmのテフロン(登録商標)フィルターで濾過して感光性ワニスを得た。
Figure JPOXMLDOC01-appb-T000024
<伸度評価>
 本発明の伸度測定用サンプルを以下の方法で作製した。
 最表面にアルミ蒸着層を設けた6インチシリコンウエハー基板に、本発明の実施例及び比較例で得られた感光性樹脂組成物を、硬化後の膜厚が約10μmとなるように回転塗布し、窒素雰囲気下250℃で2時間加熱して、樹脂硬化膜を得た。得られた樹脂硬化膜を、ダイシングソーで3mm幅にカットした後に、希塩酸水溶液によりウエハーから剥離し、得られる20本の試料を温度23℃、湿度50%の雰囲気に24時間以上静置後、引っ張り試験機(例えば、テンシロン)にて伸度を測定した。引っ張り試験機の測定条件は以下の通りであった。
  温度:23℃
  湿度:50%
  初期試料長さ:50mm
  試験速度:40mm/min
  ロードセル定格:2kgf
 (A)成分としてビフェニルジイル-フェノール樹脂を使用した実施例1~7では、硬化膜の平均伸度(サンプル20点平均値)が8%以上という高い値を示した。これに対し、(A)成分の骨格中にビフェニルジイル構造を有しない比較例1~4では、硬化膜の平均伸度は低かった。
[参考例]
本発明の第二の態様
 以下、参考例により本発明の第二の態様を具体的に説明するが、本発明の第二の態様はこれに限定されるものではない。
<調製例1>
 1Lのセパラブルフラスコにフェノール141.2g(1.5mol)を入れ、窒素気流下で撹拌しながら、オイルバスで80℃に加熱し、三フッ化ホウ素・フェノール錯体3.0gを添加し、さらに130℃に昇温して、ジシクロペンタジエン132.2g(1.0mol)を2時間かけて滴下した。滴下終了後、さらに130℃で5時間撹拌した。
 反応終了後、水酸化カルシウムで酸触媒を中和した後、減圧蒸留し、未反応のフェノールを蒸留除去し、フェノール-ジシクロペンタジエン樹脂(P-1)203gを得た。P-1のGPCによる重量平均分子量(Mw、ポリスチレン換算)は10200であった。
<調製例2>
 1LのセパラブルフラスコにEP4080G(クレゾールノボラック樹脂、商品名、旭有機材工業社製)75g、ピリジン19.8g(0.25mol)及びガンマブチロラクトン(GBL)125gを入れ、撹拌しながらプロピオニルクロリド23.1g(0.25mol)を10分間かけて滴下した。滴下終了後、室温で8時間撹拌した。
 反応終了後、反応液を500gの水中に滴下し、析出物を濾過して、濾滓をGBL150gに溶解する操作を3回繰り返した後、減圧下乾燥し、クレゾールノボラックの水酸基の38%をブロックした樹脂(P-2)を得た。
 P-2において水酸基の38%がブロックされていることは、H-NMRにおいて、9ppm付近の水酸基のピーク強度が、未処理のEP4080Gと比較して38%減少していることで確認した。P-2のGPCによる重量平均分子量(Mw、ポリスチレン換算)は4900であった。
<調製例3>
 調製例2のピリジン、及びプロピオニルクロリドの量を各々39.6g(0.50mol)、46.3g(0.50mol)とした以外は同様の操作を行い、クレゾールノボラックの水酸基の76%をブロックした樹脂(P-3)を得た。
 P-3で水酸基の76%がブロックされていることは、H-NMRにおいて、9ppm付近の水酸基のピーク強度が、未処理のEP4080Gと比較して76%減少していることで確認した。P-3のGPCによる重量平均分子量(Mw、ポリスチレン換算)は5100であった。
 <調製例4>
 500mLのセパラブルフラスコに二炭酸ジ-t-ブチル43.7g(0.2mol)、4-N,N-ジメチルアミノピリジン0.25g(0.002mol)を入れ、撹拌しながらN,N’-ジエチル-1,6-ジアミノヘキサン17.2g(0.1mol)を10分間かけて滴下した。滴下終了後、50℃に昇温して8時間撹拌した。
 反応終了後、反応液に水200gを加えた後、有機層を酢酸エチルで抽出し、炭酸水素ナトリウム水溶液、及び飽和食塩水で洗浄し、硫酸マグネシウムで乾燥してから溶媒を減圧留去して、アミノ基をウレタン基に変換した熱塩基発生剤(TBG-1)29.5gを得た。
<フェノール樹脂組成物の調製>
 表2に示す各成分を混合して均一溶液とした後、孔径1μmのメンブレンフィルターでろ過して、フェノール樹脂組成物溶液を調製した。
Figure JPOXMLDOC01-appb-T000025
 ここで、各参考例において使用した物質で、調製例で示したもの以外は以下の通りである。
ポリマー
MEH-7851-4H(フェノール-ビフェニレン樹脂、商品名、明和化成社製)
MEH-7851-M(フェノール-ビフェニレン樹脂、商品名、明和化成社製)
MEH-7851-SS(フェノール-ビフェニレン樹脂、商品名、明和化成社製)
MEH-7500(フェノール-サリチルアルデヒド樹脂、商品名、明和化成社製)
EP4020G(クレゾールノボラック、商品名、旭有機材工業社製)
EP4080G(クレゾールノボラック、商品名、旭有機材工業社製)
架橋剤
MX-270(ニカラックMX-270、商品名、三和ケミカル社製)
EX-321(デナコールEX-321、商品名、ナガセケムテックス社製)
感光剤
TPPA{以下:
Figure JPOXMLDOC01-appb-C000026
に構造を示す。}
 表2の中のポリマーに関しての記載は以下のように求めた。
<Mw>
 ゲルパーミエイションクロマトグラフィー(GPC)により、標準ポリスチレン換算で算出した。使用したGPC装置及び測定条件は以下の通りである。
 ポンプ:JASCO PU-980
 検出器:JASCO RI-930
 カラムオーブン:JASCO CO-965 40℃
 カラム:Shodex KD-806M 直列に2本
 移動相:0.1mol/l EtBr/NMP
 流速:1ml/min.
<(酸素原子+窒素原子)/炭素原子>
 フェノール樹脂の繰り返し単位の化学構造式を書き、各々の数を数えて計算する。この時、フェノールユニットの反応位置が3つ以上あっても、そのうちの2つしか反応しないと仮定する。例えば、MEH-7851の場合、フェノールはアルデヒド化合物と主に2,4,6‐位で反応する可能性があるが、そのうちの2,6-位のみで反応しているとすると、繰り返し単位の化学構造式は、以下:
Figure JPOXMLDOC01-appb-C000027
の通りとなる。
 従って、(酸素原子+窒素原子)/炭素原子=1/20=0.050
 フェノール樹脂を混合した場合は、各々について、上記計算をした後、混合比に応じてその加重平均を取った。
 表2の中の評価項目は以下のように試験を行った。
<サーマルサイクル(TC)試験>
 フェノール樹脂組成物をシリコンウエハー上にスピンコートし、100℃のホットプレートで3分間加熱した後、窒素雰囲気下で250℃で1時間硬化を行い、厚さ10μmの硬化膜を得た。これをサーマルサイクルチャンバーTSE-11(エスペック社製)を使用して、-65℃~135℃で30分ずつ、1000サイクルの試験を行った後、膜表面を光学顕微鏡で観察した。膜にクラックがないものを○、あるものを×とした。
<伸度、ヤング率>
 フェノール樹脂組成物をシリコンウエハー上にスピンコートし、100℃のホットプレートで3分間加熱した後、窒素雰囲気下で250℃で1時間硬化を行い、厚さ10μmの硬化膜を得た。これをダイシングソーで3mm幅にカットした後に、23%フッ酸水溶液を用いてシリコンウエハーから剥離して得られる20本の試料を温度23℃、湿度50%の雰囲気に24時間以上静置後、万能試験機テンシロンUTM-II-20(オリエンテック社製)にて測定し、上位5点の平均値を採用した。引っ張り試験機の測定条件は以下の通りである。
温度:23℃
湿度:50%
初期試料長さ:50mm
試験速度:40mm/min.
ロードセル定格:2kgf
 ヤング率は得られたS-S曲線からJIS K-7161の方法に従い、弾性領域での傾きを求めることにより算出し、下位5点の平均値を採用した。
 表1の結果より明らかなように、引っ張り伸度が20%以上であるものは、TC試験でクラックが生じない。また、そのような結果が出るフェノール樹脂は(酸素原子+窒素原子)/炭素原子の割合が小さく、これは引っ張り伸度を向上させるための一般的な手法である分子量の大きさとは相関しない。
 本発明の第一の態様では、半導体素子表面保護膜又は層間絶縁膜用の感光性樹脂組成物は、半導体素子表面保護膜用としては、半導体装置及び発光装置の表面保護膜、フリップチップ装置用保護膜、バンプ構造を有する装置の保護膜に、また、層間絶縁膜用としては、再配線用絶縁膜、多層回路の層間絶縁膜等に、好適に利用できる。
 本発明の第二の態様におけるフェノール組成物は、半導体装置及び発光装置の表面保護膜、層間絶縁膜、再配線用絶縁膜、フリップチップ装置用保護膜、バンプ構造を有する装置の保護膜、多層回路の層間絶縁膜、フレキシブル銅張板のカバーコート、ソルダーレジスト膜、並びに液晶配向膜等として好適に利用できる。

Claims (11)

  1.  溶剤中に、以下の成分:
     主鎖にビフェニルジイル構造を有するフェノール樹脂(A):100質量部;
     光酸発生剤(B):1~30質量部;及び
     上記光酸発生剤(B)から発生した酸、又は熱により、上記(A)成分と反応しうる化合物(C):1~60質量部;
    を含有する、半導体素子表面保護膜又は層間絶縁膜用の感光性樹脂組成物。
  2.  前記フェノール樹脂(A)は、下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    {式中、Rは、ハロゲン原子、カルボキシル基、水酸基、炭素数1~10の不飽和結合を有していてもよい脂肪族基、炭素数3~10の脂環式基、及び炭素数6~20の芳香族基から成る群から選ばれる基であり、各々の基の水素原子は、さらにハロゲン原子、カルボキシル基及び/又は水酸基で置換されていてもよく、p及びqは0~4の整数であり、rは0~3の整数であり、そしてp、q又はrが2以上の場合、各々のRはそれぞれ同じであっても、異なってもよい。}で表される繰り返しユニットを含む、請求項1に記載の感光性樹脂組成物。
  3.  前記フェノール樹脂(A)の繰り返しユニットの繰り返し単位数が8以上100以下である、請求項1又は2に記載の感光性樹脂組成物。
  4.  前記光酸発生剤(B)は、フェノール化合物と1,2-ナフトキノン-2-ジアジド-5-スルホン酸又は1,2-ナフトキノン-2-ジアジド-4-スルホン酸とのエステル化合物である、請求項1又は2に記載の感光性樹脂組成物。
  5.  前記光酸発生剤(B)は、下記式:
    Figure JPOXMLDOC01-appb-C000002
    {式中、Qは、水素原子又は下記:
    Figure JPOXMLDOC01-appb-C000003
    で表されるナフトキノンジアジドスルホン酸エステル基であり、全てのQが同時に水素原子であることはない。}で示される化合物である、請求項1又は2に記載の感光性樹脂組成物。
  6.  前記化合物(C)は、エポキシ基、オキセタン基、-N-(CH-OR’)基{式中、R’は、水素又は炭素数1~4のアルキル基である。}、及び-C-(CH-OR’)基{式中、R’は、水素又は炭素数1~4のアルキル基である。}から成る群から選ばれる少なくとも2つの基を有する、請求項1又は2に記載の感光性樹脂組成物。
  7.  熱塩基発生剤(D)をさらに含有する、請求項1又は2に記載の感光性樹脂組成物。
  8.  以下の工程:
     半導体基板上に、請求項1又は2に記載の感光性樹脂組成物から成る感光性樹脂層を形成する工程、
     該感光性樹脂層を活性光線で露光する工程、
     該露光された感光性樹脂層を現像してレリーフパターンを得る工程、及び
     得られたレリーフパターンを加熱する工程
    を含む、半導体装置の製造方法。
  9.  請求項8に記載の方法により製造された半導体装置。
  10.  請求項1又は2に記載の感光性樹脂組成物を用いて半導体素子表面保護膜又は層間絶縁膜を製造する方法。
  11.  半導体素子表面保護膜又は層間絶縁膜の製造における請求項1又は2に記載の感光性樹脂組成物の使用。
PCT/JP2011/070750 2010-09-15 2011-09-12 フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法 WO2012036130A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/820,772 US9029270B2 (en) 2010-09-15 2011-09-12 Phenolic resin composition, and methods for manufacturing cured relief pattern and semiconductor
KR1020177031042A KR102032629B1 (ko) 2010-09-15 2011-09-12 페놀 수지 조성물 그리고 경화 릴리프 패턴 및 반도체의 제조 방법
KR1020137006499A KR20130054366A (ko) 2010-09-15 2011-09-12 페놀 수지 조성물 그리고 경화 릴리프 패턴 및 반도체의 제조 방법
CN201180044345.1A CN103097460B (zh) 2010-09-15 2011-09-12 酚醛树脂组合物、固化浮雕图案及半导体的制造方法
KR1020157009385A KR101827069B1 (ko) 2010-09-15 2011-09-12 페놀 수지 조성물 그리고 경화 릴리프 패턴 및 반도체의 제조 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-206427 2010-09-15
JP2010206427 2010-09-15
JP2010-257006 2010-11-17
JP2010257006 2010-11-17

Publications (1)

Publication Number Publication Date
WO2012036130A1 true WO2012036130A1 (ja) 2012-03-22

Family

ID=45831590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070750 WO2012036130A1 (ja) 2010-09-15 2011-09-12 フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法

Country Status (5)

Country Link
US (1) US9029270B2 (ja)
KR (3) KR101827069B1 (ja)
CN (1) CN103097460B (ja)
TW (1) TWI481657B (ja)
WO (1) WO2012036130A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082404A (ja) * 2010-09-15 2012-04-26 Asahi Kasei E-Materials Corp フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法
JP2014164050A (ja) * 2013-02-22 2014-09-08 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び表示体装置
JP2014178471A (ja) * 2013-03-14 2014-09-25 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び表示体装置
JP2014186124A (ja) * 2013-03-22 2014-10-02 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び、表示体装置
WO2016132784A1 (ja) * 2015-02-20 2016-08-25 Jsr株式会社 絶縁膜の製造方法および絶縁膜、レーザーアブレーション用樹脂組成物、ならびに電子部品
US20170102613A1 (en) * 2011-12-09 2017-04-13 Asahi Kasei E-Materials Corporation Photosensitive resin composition, method for producing hardened relief pattern, semiconductor device and display device
KR101767023B1 (ko) 2010-12-27 2017-08-09 아사히 가세이 이-매터리얼즈 가부시키가이샤 알칼리 현상용 감광성 페놀 수지 조성물, 경화 릴리프 패턴 및 반도체의 제조 방법, 그리고 비페닐디일트리하이드록시벤젠 수지
US20210143511A1 (en) * 2018-01-22 2021-05-13 Celgard, Llc Improved coated separators, lithium batteries, and related methods
TWI731037B (zh) * 2016-03-31 2021-06-21 日商東京應化工業股份有限公司 在基板上形成配線或端子之方法
JP2022008428A (ja) * 2016-04-14 2022-01-13 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5673784B2 (ja) 2013-02-21 2015-02-18 Jsr株式会社 感光性組成物、硬化膜およびその製造方法ならびに電子部品
JP2015135481A (ja) * 2013-12-20 2015-07-27 日立化成株式会社 感光性樹脂組成物、これを用いた感光性エレメント、レジストパターンの形成方法及びタッチパネルの製造方法
CN105739239B (zh) * 2014-12-10 2020-04-03 太阳油墨(苏州)有限公司 光固化性热固化性树脂组合物、干膜、固化物、及印刷电路板
US20180039174A1 (en) * 2015-03-26 2018-02-08 Toray Industries, Inc. Photosensitive resin composition
TWI830588B (zh) * 2016-08-01 2024-01-21 日商富士軟片股份有限公司 感光性樹脂組成物、硬化膜、積層體、硬化膜的製造方法、積層體的製造方法及半導體元件
TWI751568B (zh) * 2020-05-29 2022-01-01 新應材股份有限公司 蝕刻劑組成物、增黏劑、鹼溶液、移除聚醯亞胺的方法以及蝕刻製程

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078656A (ja) * 1996-09-03 1998-03-24 Mitsui Petrochem Ind Ltd 平板印刷用感光性樹脂組成物および感光性平板印刷板
JP2003082025A (ja) * 2001-09-13 2003-03-19 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2004514173A (ja) * 2000-11-15 2004-05-13 バンティコ株式会社 ポジ型感光性エポキシ樹脂組成物およびそれを用いるプリント回路板
JP2006243161A (ja) * 2005-03-01 2006-09-14 Rohm & Haas Electronic Materials Llc エポキシ含有物質を含むネガ型感光性樹脂組成物
JP2008045086A (ja) * 2006-08-21 2008-02-28 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3812654B2 (ja) 2002-01-23 2006-08-23 Jsr株式会社 ポジ型感光性絶縁樹脂組成物およびその硬化物
EP1471540A4 (en) * 2002-01-28 2009-09-23 Jsr Corp COMPOSITION FOR FORMING A LIGHT-SENSITIVE DIELECTRIC MATERIAL, TRANSFER FILM, DIELECTRIC MATERIAL AND ELECTRONIC PARTS THEREWITH
JP4640037B2 (ja) 2005-08-22 2011-03-02 Jsr株式会社 ポジ型感光性絶縁樹脂組成物およびその硬化物
JP2008292677A (ja) 2007-05-23 2008-12-04 Mitsubishi Chemicals Corp 反応性樹脂組成物、カラーフィルター及び画像表示装置
JP5234573B2 (ja) * 2007-07-17 2013-07-10 旭化成イーマテリアルズ株式会社 ポジ型感光性樹脂組成物
JP5247080B2 (ja) * 2007-07-25 2013-07-24 旭化成イーマテリアルズ株式会社 ポジ型感光性樹脂組成物
JP5239446B2 (ja) 2008-03-26 2013-07-17 日立化成株式会社 ポジ型感光性樹脂組成物、レジストパターンの製造方法及び電子部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1078656A (ja) * 1996-09-03 1998-03-24 Mitsui Petrochem Ind Ltd 平板印刷用感光性樹脂組成物および感光性平板印刷板
JP2004514173A (ja) * 2000-11-15 2004-05-13 バンティコ株式会社 ポジ型感光性エポキシ樹脂組成物およびそれを用いるプリント回路板
JP2003082025A (ja) * 2001-09-13 2003-03-19 Nippon Kayaku Co Ltd 樹脂組成物、ソルダーレジスト樹脂組成物及びこれらの硬化物
JP2006243161A (ja) * 2005-03-01 2006-09-14 Rohm & Haas Electronic Materials Llc エポキシ含有物質を含むネガ型感光性樹脂組成物
JP2008045086A (ja) * 2006-08-21 2008-02-28 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012082404A (ja) * 2010-09-15 2012-04-26 Asahi Kasei E-Materials Corp フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法
KR101767023B1 (ko) 2010-12-27 2017-08-09 아사히 가세이 이-매터리얼즈 가부시키가이샤 알칼리 현상용 감광성 페놀 수지 조성물, 경화 릴리프 패턴 및 반도체의 제조 방법, 그리고 비페닐디일트리하이드록시벤젠 수지
US20170102613A1 (en) * 2011-12-09 2017-04-13 Asahi Kasei E-Materials Corporation Photosensitive resin composition, method for producing hardened relief pattern, semiconductor device and display device
JP2014164050A (ja) * 2013-02-22 2014-09-08 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び表示体装置
JP2014178471A (ja) * 2013-03-14 2014-09-25 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び表示体装置
JP2014186124A (ja) * 2013-03-22 2014-10-02 Asahi Kasei E-Materials Corp 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び、表示体装置
WO2016132784A1 (ja) * 2015-02-20 2016-08-25 Jsr株式会社 絶縁膜の製造方法および絶縁膜、レーザーアブレーション用樹脂組成物、ならびに電子部品
TWI731037B (zh) * 2016-03-31 2021-06-21 日商東京應化工業股份有限公司 在基板上形成配線或端子之方法
JP2022008428A (ja) * 2016-04-14 2022-01-13 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
JP7293299B2 (ja) 2016-04-14 2023-06-19 旭化成株式会社 感光性樹脂組成物、硬化レリーフパターンの製造方法及び半導体装置
US20210143511A1 (en) * 2018-01-22 2021-05-13 Celgard, Llc Improved coated separators, lithium batteries, and related methods
US11949124B2 (en) * 2018-01-22 2024-04-02 Celgard, Llc Coated separators, lithium batteries, and related methods

Also Published As

Publication number Publication date
CN103097460B (zh) 2015-10-21
US20130168829A1 (en) 2013-07-04
US9029270B2 (en) 2015-05-12
KR20130054366A (ko) 2013-05-24
KR20170123352A (ko) 2017-11-07
TW201224046A (en) 2012-06-16
TWI481657B (zh) 2015-04-21
KR101827069B1 (ko) 2018-02-07
KR102032629B1 (ko) 2019-10-15
KR20150047632A (ko) 2015-05-04
CN103097460A (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
KR101827069B1 (ko) 페놀 수지 조성물 그리고 경화 릴리프 패턴 및 반도체의 제조 방법
JP6026097B2 (ja) 半導体素子表面保護膜又は層間絶縁膜用の感光性樹脂組成物
JP6000416B2 (ja) ビフェニルジイルトリヒドロキシベンゼン樹脂、感光性樹脂組成物及び半導体装置
JP6099313B2 (ja) 感光性樹脂組成物、及び硬化レリーフパターンの製造方法
JP6451065B2 (ja) 感光性樹脂組成物、硬化膜、保護膜、絶縁膜および電子装置
JP6209035B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、及び半導体装置の製造方法
JP5981738B2 (ja) 感光性樹脂組成物、及び硬化レリーフパターンの製造方法
JP5825860B2 (ja) 感光性樹脂組成物
JP5825884B2 (ja) フェノール樹脂組成物、及び硬化レリーフパターンの製造方法
JP5981737B2 (ja) 感光性樹脂組成物、及び硬化レリーフパターンの製造方法
JP6116954B2 (ja) 感光性樹脂組成物及び硬化レリーフパターンの製造方法
JP6294023B2 (ja) 感光性樹脂組成物、硬化レリーフパターンの製造方法、半導体装置及び表示体装置
JP5859257B2 (ja) フェノール樹脂組成物並びに硬化レリーフパターン及び半導体の製造方法
JP5879088B2 (ja) 感光性樹脂組成物、及び、硬化レリーフパターンの製造方法
JP5981739B2 (ja) 感光性樹脂組成物、及び硬化レリーフパターンの製造方法
JP5808155B2 (ja) フェノール樹脂組成物並びにこれを用いた硬化レリーフパターンの製造方法
JP6503160B2 (ja) 感光性樹脂組成物、及び硬化レリーフパターンの形成方法
JP5948538B2 (ja) 絶縁膜を有するシリコンウエハの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044345.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825132

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13820772

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137006499

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11825132

Country of ref document: EP

Kind code of ref document: A1