JP2011053957A - 参照電流生成回路 - Google Patents

参照電流生成回路 Download PDF

Info

Publication number
JP2011053957A
JP2011053957A JP2009202816A JP2009202816A JP2011053957A JP 2011053957 A JP2011053957 A JP 2011053957A JP 2009202816 A JP2009202816 A JP 2009202816A JP 2009202816 A JP2009202816 A JP 2009202816A JP 2011053957 A JP2011053957 A JP 2011053957A
Authority
JP
Japan
Prior art keywords
field effect
effect transistor
input
reference current
channel field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009202816A
Other languages
English (en)
Inventor
Kazuhiko Miki
和彦 三木
Toru Takahashi
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2009202816A priority Critical patent/JP2011053957A/ja
Priority to US12/716,831 priority patent/US8278996B2/en
Publication of JP2011053957A publication Critical patent/JP2011053957A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Read Only Memory (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Control Of Electrical Variables (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

【課題】使用環境などに依存する参照電流の変動分を製品出荷前に補正する。
【解決手段】オペアンプP1において、帰還電圧Vfb1と参照電圧Vrefとの差分に応じた出力電圧DRPEB1を生成してPチャンネル電界効果トランジスタMAのゲートに印加し、Pチャンネル電界効果トランジスタMAに流れるドレイン電流を基準電流Isd1として抵抗R0〜R7の直列回路に流入させ、スイッチSにて抵抗R0〜R7の各端点のいずれかが選択させることで、分圧電圧Vtrm0〜Vtrm7のいずれかを基準準圧VbiasとしてリファレンストランジスタMFのゲートに印加させる。
【選択図】図1

Description

本発明は参照電流生成回路に関し、特に、温度依存性による参照電流の設定値からのずれを補正する方法に適用して好適なものである。
フラッシュメモリでは、センス回路において、セル電流が参照電流より大きい場合には読み出しデータが“1”と判定され、参照電流より小さい場合には読み出しデータが“0”と判定される。ここで、“1”が記憶されたメモリセルはオンセル、“0”が記憶されたメモリセルはオフセルと呼ばれる。
このようなメモリセルがマトリックス状に配置されたメモリセルアレイでは、個々のメモリセルにおける特性ばらつきにより、オンセル電流およびオフセル電流は、ある幅を持って分布する。従って、メモリセル電流と比較される参照電流の値は、オンセル電流の分布の低い側の裾とオフセル電流の分布の高い側の裾のどちらにも含まれない中間領域内に設定することが望ましい。
また、例えば、特許文献1には、複数のセンス・アンプにリファレンス信号をセンス・アンプ・リファレンス回路から供給し、センス・アンプおよびセンス・アンプ・リファレンス回路にそれぞれ形成されたP型MOSトランジスタのゲート・サイズを好適に設計することで、リード・スピードへの影響なく、製造ばらつきの影響を抑制する方法が開示されている。
特開2005−302197号公報
しかしながら、従来の参照電流生成回路では、プロセスバラツキや使用温度や電源電圧によって参照電流が変動するため、読み出し動作マージンが小さくなり、このようなバラツキを許容する回路設計が困難になるという問題があった。
本発明の目的は、使用環境などに依存する参照電流の変動分を製品出荷前に補正することが可能な参照電流生成回路を提供することである。
本発明の一態様によれば、一方の入力端子に参照電圧が入力されるオペアンプと、前記オペアンプの出力電圧がゲートに入力される電界効果トランジスタと、前記電界効果トランジスタのドレインに直列に接続され、いずれかの接続点の電圧を前記オペアンプの他方の入力端子に帰還するk(kは2以上の整数)個の抵抗と、前記抵抗のいずれかの接続点の電圧を基準準圧として取り出すスイッチと、前記基準準圧がゲートに印加されることで参照電流を生成するリファレンストランジスタとを備えることを特徴とする参照電流生成回路を提供する。
本発明の一態様によれば、一方の入力端子に参照電圧が入力されるオペアンプと、前記オペアンプの出力電圧がゲートに入力されるN(Nは正の整数)個の第1の電界効果トランジスタと、前記N個の第1の電界効果トランジスタのドレインに接続され、前記オペアンプの他方の入力端子に帰還される電圧を発生させる抵抗と、前記オペアンプの出力電圧がゲートに入力されるM(Mは2以上の整数)個の第2の電界効果トランジスタと、前記第2の電界効果トランジスタの個数を選択し、その選択した第2の電界効果トランジスタに流れる電流を合流させることで参照電流を生成するスイッチとを備えることを特徴とする参照電流生成回路を提供する。
本発明の一態様によれば、一方の入力端子に参照電圧が入力されるオペアンプと、前記オペアンプの出力電圧がゲートに入力される第1の電界効果トランジスタと、前記第1の電界効果トランジスタのドレインに直列に接続され、いずれかの接続点の電圧を前記オペアンプの他方の入力端子に帰還するk(kは2以上の整数)個の抵抗と、前記オペアンプの出力電圧がゲートに入力され、ドレイン電流を参照電流として出力する第2の電界効果トランジスタとを備えることを特徴とする参照電流生成回路を提供する。
本発明によれば、使用環境などに依存する参照電流の変動分を製品出荷前に補正することが可能となる。
図1は、本発明の第1実施形態に係る参照電流生成回路の概略構成を示すブロック図。 図2は、本発明の第2実施形態に係る参照電流生成回路の概略構成を示すブロック図。 図3は、本発明の第3実施形態に係る参照電流生成回路の概略構成を示すブロック図。 図4は、本発明の第4実施形態に係る参照電流生成回路の概略構成を示すブロック図。 図5は、本発明の第5実施形態に係る参照電流生成回路の概略構成を示すブロック図。 図6は、本発明の第6実施形態に係る参照電流生成回路の概略構成を示すブロック図。 図7は、センスアンプ23の概略構成を示す回路図。 図8は、本発明の第7実施形態に係る参照電流生成回路が適用される半導体記憶装置の概略構成を示すブロック図。 図9は、本発明の第8実施形態に係る参照電流の設定方法を示す図。
以下、本発明の実施形態に係る参照電流生成回路について図面を参照しながら説明する。
(第1実施形態)
図1は、本発明の第1実施形態に係る参照電流生成回路の概略構成を示すブロック図である。
図1において、参照電流生成回路には、オペアンプP1、Pチャンネル電界効果トランジスタMA、コンデンサC1、抵抗R0〜R7、スイッチSが設けられている。また、センス回路9には、リファレンストランジスタMF、カラムデコーダ21、22およびセンスアンプ23が設けられている。
そして、抵抗R0〜R7は互いに直列に接続され、抵抗R0〜R7の各端点は、スイッチSに入力されるとともに、スイッチSの出力は、リファレンストランジスタMFのゲートに接続されている。なお、スイッチSは、抵抗R0〜R7の各端点のいずれか1つを選択して、リファレンストランジスタMFのゲートに接続することができる。また、抵抗R0〜R7のいずれかの端点は、オペアンプP2の反転入力端子に接続されている。
また、オペアンプP1の出力端子は、コンデンサC1に接続されるとともに、Pチャンネル電界効果トランジスタMAのゲートに接続されている。また、Pチャンネル電界効果トランジスタMAのソースは電源電位VDDAに接続され、Pチャンネル電界効果トランジスタMAのドレインは、抵抗R0〜R7の直列回路に接続されている。
また、リファレンストランジスタMFのドレインは、カラムデコーダ21を介してセンスアンプ23の一方の入力端子に入力され、メモリセルMCのドレインは、カラムデコーダ22を介してセンスアンプ23の他方の入力端子に入力されている。なお、メモリセルMCとしては、フラッシュメモリであってもよいし、強誘電体メモリであってもよいし、EEPROMであってもよい。
そして、オペアンプP1において、帰還電圧Vfb1と参照電圧Vrefとの差分に応じた出力電圧DRPEB1が生成され、Pチャンネル電界効果トランジスタMAのゲートに印加される。なお、参照電圧Vrefとしては、例えば、電源電圧依存性や温度依存性が少なく、製品寿命における経時変化も少ないバンドギャップレファレンス電圧を用いることができる。そして、Pチャンネル電界効果トランジスタMAにて生成されたドレイン電流が、抵抗R0〜R7の直列回路に流入することにより、基準電流Isd1が生成される。
そして、基準電流Isd1が生成された時に抵抗R0〜R7にて分圧された分圧電圧Vfb1はオペアンプP1の反転入力端子に入力され、オペアンプP1の非反転入力端子に入力された参照電圧Vrefと比較される。
また、基準電流Isd1が抵抗R0〜R7の直列回路に流れると、抵抗R0〜R7の各端点に分圧電圧Vtrm0〜Vtrm7がそれぞれ発生する。そして、スイッチSにて抵抗R0〜R7の各端点のいずれかが選択されることで、分圧電圧Vtrm0〜Vtrm7のいずれかが基準準圧VbiasとしてリファレンストランジスタMFのゲートに印加される。
そして、基準準圧VbiasがリファレンストランジスタMFのゲートに印加されると、リファレンストランジスタMFに参照電流Iref1が流れ、カラムデコーダ21を介してセンスアンプ23の一方の入力端子に入力される。
また、メモリセルMCから読み出されたセル電流Icellは、カラムデコーダ22を介してセンスアンプ23の他方の入力端子に入力される。そして、センスアンプ23において、セル電流Icellが参照電流Iref1と比較され、セル電流Icellが参照電流Iref1より大きい場合には読み出しデータが“1”と判定され、参照電流Iref1より小さい場合には読み出しデータが“0”と判定される。
ここで、オンセル電流の分布の低い側の裾とオフセル電流の分布の高い側の裾のどちらにも含まれない中間領域内に参照電流Iref1が設定されるように、スイッチSにて抵抗R0〜R7の各端点のいずれかを選択させることができる。
これにより、プロセスバラツキや使用温度や電源電圧などによってPチャンネル電界効果トランジスタMAの特性が変動し、それに伴って基準電流Isd1が変動する場合においても、基準準圧Vbiasの変動を打ち消させることが可能となり、参照電流Iref1の変動を抑制することができる。このため、Pチャンネル電界効果トランジスタMAの特性が変動する場合においても、オンセル電流の分布の低い側の裾とオフセル電流の分布の高い側の裾のどちらにも含まれない中間領域内に参照電流Iref1の値を調整することが可能となり、メモリセルMCからの誤読み出しを低減することができる。
(第2実施形態)
図2は、本発明の第2実施形態に係る参照電流生成回路の概略構成を示すブロック図である。
図2において、参照電流生成回路には、基準電流発生回路1およびトリミング回路2が設けられている。ここで、基準電流発生回路1には、オペアンプP2、N(Nは正の整数)個のPチャンネル電界効果トランジスタMA1〜MANおよびコンデンサC2が設けられている。また、トリミング回路2には、k(kは2以上の整数)個の抵抗R0〜Rk、スイッチS0、M(Mは2以上の整数)個のPチャンネル電界効果トランジスタMB1〜MBMおよびM個のスイッチS1〜SMが設けられている。なお、Pチャンネル電界効果トランジスタMA1〜MAN、MB1〜MBMのサイズおよび形状は互いに同じにすることができ、同一の半導体チップ状に近接させて配置することで、Pチャンネル電界効果トランジスタMA1〜MAN、MB1〜MBMの特性を一致させることが好ましい。
そして、抵抗R0〜Rkは互いに直列に接続され、抵抗R0〜Rkの各端点は、スイッチS0に入力されるとともに、スイッチS0の出力は、オペアンプP2の反転入力端子に接続されている。なお、スイッチS0は、抵抗R0〜Rkの各端点のいずれか1つを選択して、オペアンプP2の反転入力端子に接続することができる。また、オペアンプP2の出力端子は、コンデンサC1に接続されるとともに、Pチャンネル電界効果トランジスタMA1〜MAN、MB1〜MBMのゲートに接続されている。
また、Pチャンネル電界効果トランジスタMA1〜MAN、MB1〜MBMのソースは電源電位VDDAに接続され、Pチャンネル電界効果トランジスタMA1〜MANのドレインは、抵抗R0〜Rkの直列回路に接続され、Pチャンネル電界効果トランジスタMB1〜MBMのドレインは、スイッチS1〜SMをそれぞれ介してNチャンネル電界効果トランジスタM1のドレインに接続されている。なお、スイッチS1〜SMは、電界効果トランジスタMB1〜MBMの個数を選択し、その選択した電界効果トランジスタMB1〜MBMに流れる電流I0を合流させることで参照電流Iref2を生成することができる。また、Nチャンネル電界効果トランジスタM1のドレインは、Nチャンネル電界効果トランジスタM1のゲートおよびリファレンストランジスタMFのゲートに接続されている。
そして、基準電流発生回路1で発生された基準電流Isd2は、抵抗R0〜Rkを流れる。そして、抵抗R0〜Rkにて分圧された分圧電圧Vfb2はスイッチS0を介してオペアンプP2の反転入力端子に入力され、オペアンプP2の非反転入力端子に入力された参照電圧Vrefと比較される。なお、スイッチS0にて抵抗Riの端点から電圧が取り出されるものとすると、分圧電圧Vfb2は、Isd2×(R0+R1+・・・+Ri)で与えることができる。
そして、オペアンプP2において、分圧電圧Vfb2と参照電圧Vrefとの差分が0になるように出力電圧DRPEB2が生成され、Pチャンネル電界効果トランジスタMA1〜MAN、MB1〜MBMのゲートに印加される。ここで、Pチャンネル電界効果トランジスタMA1〜MAN、MB1〜MBMの特性が同じ場合、Pチャンネル電界効果トランジスタMA1〜MAN、MB1〜MBMのゲートに同一の出力電圧DRPEB1が印加されることで、Pチャンネル電界効果トランジスタMA1〜MAN、MB1〜MBMにて同一の値のドレイン電流I0が生成される。
そして、Pチャンネル電界効果トランジスタMA1〜MANにてそれぞれ生成されたドレイン電流I0が、抵抗R0〜Rkの直列回路に流入することにより、基準電流Isd2が生成される。なお、基準電流Isd2は、N×I0で与えることができる。
また、Pチャンネル電界効果トランジスタMB1〜MBMにてそれぞれ生成されたドレイン電流I0が、スイッチS1〜SMをそれぞれ介して合流することにより、参照電流Iref2が生成され、Nチャンネル電界効果トランジスタM1に供給される。
そして、この参照電流Iref2がNチャンネル電界効果トランジスタM1に供給されると、Nチャンネル電界効果トランジスタM1とリファレンストランジスタMFとのカレントミラー動作により、リファレンストランジスタMFに参照電流Iref2が流れ、カラムデコーダ21を介してセンスアンプ23の一方の入力端子に入力される。
また、メモリセルMCから読み出されたセル電流Icellは、カラムデコーダ22を介してセンスアンプ23の他方の入力端子に入力される。そして、センスアンプ23において、セル電流Icellが参照電流Iref1と比較され、セル電流Icellが参照電流Iref1より大きい場合には読み出しデータが“1”と判定され、参照電流Iref1より小さい場合には読み出しデータが“0”と判定される。
ここで、オンセル電流の分布の低い側の裾とオフセル電流の分布の高い側の裾のどちらにも含まれない中間領域内に参照電流Iref2が設定されるように、スイッチS0にて抵抗R0〜Rkの各端点のいずれかを選択させるとともに、スイッチS1〜SMにて電界効果トランジスタMB1〜MBMの個数を選択し、その選択した電界効果トランジスタMB1〜MBMに流れる電流I0を合流させることができる。
これにより、プロセスバラツキや使用温度や電源電圧などによってPチャンネル電界効果トランジスタMA1〜MANの特性が変動する場合においても、参照電流Iref2の変動を打ち消させることが可能となる。また、基準電流発生回路1にて発生された基準電流Isd2のカレントミラーにて参照電流Iref2を生成させることにより、リファレンストランジスタMFの特性が温度変化によって変動する場合においても、リファレンストランジスタMFに流れる参照電流Iref2が変動するのを防止することができる。
なお、スイッチS1〜SMがオンする個数がmで与えられるものとすると、参照電流Iref2は、m×I0=m/N×Isd2=m/N×Vref/(R0+R1+・・・+Ri)で与えることができる。
ここで、Vref/(R0+R1+・・・+Ri)の項で参照電流Iref2のセンター値を調整することができる。Pチャンネル電界効果トランジスタMA1〜MANの個数Nで参照電流Iref2のトリミングの粒度を決めることができる。スイッチS1〜SMがオンする個数mで参照電流Iref2のトリミング値を設定することができる。この場合、トリミング範囲はI0〜I0×Mになるため、Pチャンネル電界効果トランジスタMB1〜MBMの個数Mでトリミングの最大値を決めることができる。
そして、(R0+R1+・・・+Ri)のデバイスバラツキによる変動分は、製品出荷前にスイッチS1〜SMがオンする個数mを調整することで補正することができる。また、(R0+R1+・・・+Ri)以外のトランジスタ特性のバラツキによる変動分は、オペアンプP2による負帰還動作によって補正することができ、参照電流Iref2を高精度に設定することが可能となる。
なお、図2の実施形態では、基準電流Isd2を調整する抵抗R0〜RkおよびスイッチS0を設けるとともに、参照電流Iref2を調整するPチャンネル電界効果トランジスタMB1〜MBMおよびスイッチS1〜SMを設ける方法について説明したが、基準電流Isd2を調整する抵抗R0〜RkおよびスイッチS0の方だけを設けるようにしてもよいし、参照電流Iref2を調整するPチャンネル電界効果トランジスタMB1〜MBMおよびスイッチS1〜SMの方だけを設けるようにしてもよい。
(第3実施形態)
図3は、本発明の第3実施形態に係る参照電流生成回路の概略構成を示すブロック図である。
図3において、この参照電流生成回路には、図2の参照電流生成回路の構成に加え、Nチャンネル電界効果トランジスタM2、書き込み制御回路31、不揮発性メモリ32およびトリミング制御回路33が設けられている。
ここで、不揮発性メモリ32は、Pチャンネル電界効果トランジスタMB1〜MBMを選択するトリミング値H1を記憶することができる。書き込み制御回路31は、不揮発性メモリ32の書き込み制御を行うことができ、書き込み制御回路31の入力にはパッド電極D2が接続されている。トリミング制御回路33は、不揮発性メモリ32に記憶されているトリミング値H1に基づいて、スイッチS1〜SMにて選択させる電界効果トランジスタMB1〜MBMの個数を調整することができる。Nチャンネル電界効果トランジスタM2のゲートは、Nチャンネル電界効果トランジスタM1のゲートに接続され、Nチャンネル電界効果トランジスタM2のドレインは、パッド電極D1に接続されている。なお、Nチャンネル電界効果トランジスタM1、M2は、互いに同一のサイズおよび形状になるように構成することができる。
また、基準電流発生回路1、トリミング回路2、センス回路9、Nチャンネル電界効果トランジスタM1、M2、書き込み制御回路31、不揮発性メモリ32、トリミング制御回路33およびパッド電極D1、D2は、半導体チップCP1に形成することができる。
そして、製品の出荷前検査において参照電流Iref2のトリミングを行う場合、テスターT1の電流測定用端子にパッド電極D1を接続し、テスターT1のトリミング値出力用端子にパッド電極D2を接続する。そして、テスターT1からパッド電極D1にリファレンストランジスタMFのドレイン電圧Vrblを印加し、その時にNチャンネル電界効果トランジスタM2に流れる電流Imeasを測定する。
ここで、電流Imeasに応じてトリミング値H1を選択するテーブルを予め用意する。そして、そのテーブルを参照することにより、電流Imeasに応じてトリミング値H1を選択し、そのトリミング値H1をパッド電極D2を介して書き込み制御回路31に入力することにより、不揮発性メモリ32に書き込ませる。そして、トリミング制御回路33において、不揮発性メモリ32に書き込まれたトリミング値H1に従ってスイッチS1〜SMがそれぞれオン/オフされることにより、ドレイン電流I0が取り出される電界効果トランジスタMB1〜MBMの個数が調整され、参照電流Iref2が生成される。そして、参照電流Iref2が生成されると、Nチャンネル電界効果トランジスタM1、M2のカレントミラー動作により、参照電流Iref2と同一の値の電流ImeasがNチャンネル電界効果トランジスタM2に流れ、参照電流Iref2をモニターすることができる。
そして、製品出荷後において、電源が投入されると、不揮発性メモリ32に記憶されたトリミング値H1がトリミング制御回路33によって読み出され、そのトリミング値H1に従ってスイッチS1〜SMがそれぞれオン/オフされることにより、ドレイン電流I0が取り出される電界効果トランジスタMB1〜MBMの個数が調整される。そして、それらの電界効果トランジスタMB1〜MBMに流れるドレイン電流I0が合流されることにより、参照電流Iref2が生成され、Nチャンネル電界効果トランジスタM1に供給される。
(第4実施形態)
図4は、本発明の第4実施形態に係る参照電流生成回路の概略構成を示すブロック図である。
図4において、この参照電流生成回路には、図2の参照電流生成回路の構成に加え、Nチャンネル電界効果トランジスタM2、書き込み制御回路41、不揮発性メモリ42、トリミング制御回路43、自動トリミング値決定回路44およびセンスアンプ45が設けられている。
ここで、センスアンプ45は、Nチャンネル電界効果トランジスタM2のドレイン電流Irefpと入力電流−Iinとを比較することができる。そして、センスアンプ45の一方の入力端子は、パッド電極D11に接続され、センスアンプ45の他方の入力端子は、Nチャンネル電界効果トランジスタM2のドレインに接続されている。自動トリミング値決定回路44は、ドレイン電流Irefpと入力電流−Iinの差分が0になるように、スイッチS1〜SMによるトリミング値H11を決定することができる。不揮発性メモリ42は、Pチャンネル電界効果トランジスタMB1〜MBMを選択するトリミング値H11を記憶することができる。書き込み制御回路41は、不揮発性メモリ42の書き込み制御を行うことができる。トリミング制御回路43は、自動トリミング値決定回路44にて決定されたトリミング値H10または不揮発性メモリ42に記憶されているトリミング値H11に基づいて、スイッチS1〜SMにて選択させる電界効果トランジスタMB1〜MBMの個数を調整することができる。
なお、基準電流発生回路1、トリミング回路2、センス回路9、Nチャンネル電界効果トランジスタM1、M2、書き込み制御回路41、不揮発性メモリ42、トリミング制御回路43、自動トリミング値決定回路44、センスアンプ45およびパッド電極D11は、半導体チップCP2に形成することができる。
そして、製品の出荷前検査において参照電流Iref2のトリミングを行う場合、テスターT2の電流入力用端子にパッド電極D11を接続し、テスターT2からパッド電極D11に入力電流−Iinを供給する。そして、パッド電極D11に入力電流−Iinが供給されると、センスアンプ45の一方の入力端子に入力される。
また、自動トリミング値決定回路44からトリミング値H10がトリミング制御回路43に出力される。そして、トリミング値H10がトリミング制御回路43に出力されると、トリミング値H10に従ってスイッチS1〜SMがそれぞれオン/オフされることにより、ドレイン電流I0が取り出される電界効果トランジスタMB1〜MBMの個数が調整され、参照電流Iref2が生成される。そして、参照電流Iref2が生成されると、Nチャンネル電界効果トランジスタM1、M2のカレントミラー動作により、参照電流Iref2と同一の値の電流IrefpがNチャンネル電界効果トランジスタM2に流れ、センスアンプ45の他方の入力端子に入力される。
そして、センスアンプ45において、電流Irefpが入力電流−Iinと比較され、その比較結果が自動トリミング値決定回路44に入力される。そして、自動トリミング値決定回路44において、電流Irefpと入力電流−Iinとが等しくなるまでトリミング値H10の更新が繰り返され、電流Irefpと入力電流−Iinとが等しくなった時のトリミング値H11が書き込み制御回路41に入力され、そのトリミング値H11が不揮発性メモリ42に書き込まれる。
そして、製品出荷後において、電源が投入されると、不揮発性メモリ42に記憶されたトリミング値H11がトリミング制御回路43によって読み出され、そのトリミング値H11に従ってスイッチS1〜SMがそれぞれオン/オフされることにより、ドレイン電流I0が取り出される電界効果トランジスタMB1〜MBMの個数が調整される。そして、それらの電界効果トランジスタMB1〜MBMに流れるドレイン電流I0が合流されることにより、参照電流Iref2が生成され、Nチャンネル電界効果トランジスタM1に供給される。
(第5実施形態)
図5は、本発明の第5実施形態に係る参照電流生成回路の概略構成を示すブロック図である。
図5において、この参照電流生成回路には、図4の書き込み制御回路41、不揮発性メモリ42、トリミング制御回路43および自動トリミング値決定回路44の代わりに、書き込み制御回路51、不揮発性メモリ52、トリミング制御回路53および自動トリミング値決定回路54が設けられている。ここで、自動トリミング値決定回路54は、ドレイン電流Irefpと入力電流−Iinの差分が0になるように、スイッチS0、S1〜SMによるトリミング値H11´、H11をそれぞれ決定することができる。不揮発性メモリ52は、スイッチS0、S1〜SMによるトリミング値H11´、11を記憶することができる。書き込み制御回路51は、不揮発性メモリ52の書き込み制御を行うことができる。トリミング制御回路53は、自動トリミング値決定回路45にて決定されたトリミング値H10または不揮発性メモリ42に記憶されているトリミング値H11に基づいて、スイッチS1〜SMにて選択させる電界効果トランジスタMB1〜MBMの個数を調整するとともに、自動トリミング値決定回路45にて決定されたトリミング値H10´または不揮発性メモリ42に記憶されているトリミング値H11´に基づいて、スイッチS0による切り替え位置を調整することができる。
なお、基準電流発生回路1、トリミング回路2、センス回路9、Nチャンネル電界効果トランジスタM1、M2、書き込み制御回路51、不揮発性メモリ52、トリミング制御回路53、自動トリミング値決定回路54、センスアンプ45およびパッド電極D11は、半導体チップCP3に形成することができる。
そして、製品の出荷前検査において参照電流Iref2のトリミングを行う場合、テスターT2の電流入力用端子にパッド電極D11を接続し、テスターT2からパッド電極D11に入力電流−Iinを供給する。そして、パッド電極D11に入力電流−Iinが供給されると、センスアンプ45の一方の入力端子に入力される。
また、自動トリミング値決定回路54からトリミング値H10、H10´がトリミング制御回路53に出力される。そして、トリミング値H10、H10´がトリミング制御回路53に出力されると、トリミング値H10´に従ってスイッチS0が切り替えられることにより、抵抗R0〜Rkの各端点のいずれか1つが選択され、基準電流Isd2が調整されるとともに、トリミング値H10に従ってスイッチS1〜SMがそれぞれオン/オフされることにより、ドレイン電流I0が取り出される電界効果トランジスタMB1〜MBMの個数が調整され、参照電流Iref2が生成される。そして、参照電流Iref2が生成されると、Nチャンネル電界効果トランジスタM1、M2のカレントミラー動作により、参照電流Iref2と同一の値の電流IrefpがNチャンネル電界効果トランジスタM2に流れ、センスアンプ45の他方の入力端子に入力される。
そして、センスアンプ45において、電流Irefpが入力電流−Iinと比較され、その比較結果が自動トリミング値決定回路54に入力される。そして、自動トリミング値決定回路54において、電流Irefpと入力電流−Iinとが等しくなるまでトリミング値H10、H10´の更新が繰り返され、電流Irefpと入力電流−Iinとが等しくなった時のトリミング値H11、H11´が書き込み制御回路51に入力され、そのトリミング値H11、H11´が不揮発性メモリ52に書き込まれる。
そして、製品出荷後において、電源が投入されると、不揮発性メモリ52に記憶されたトリミング値H11、H11´がトリミング制御回路43によって読み出され、そのトリミング値H11´に従ってスイッチS0が切り替えられることにより、抵抗R0〜Rkの各端点のいずれか1つが選択され、基準電流Isd2が調整されるとともに、そのトリミング値H11に従ってスイッチS1〜SMがそれぞれオン/オフされることにより、ドレイン電流I0が取り出される電界効果トランジスタMB1〜MBMの個数が調整される。そして、それらの電界効果トランジスタMB1〜MBMに流れるドレイン電流I0が合流されることにより、参照電流Iref2が生成され、Nチャンネル電界効果トランジスタM1に供給される。
(第6実施形態)
図6は、本発明の第6実施形態に係る参照電流生成回路の概略構成を示すブロック図である。
図6において、この参照電流生成回路には、図2のPチャンネル電界効果トランジスタMB1〜MBMおよびスイッチS1〜SMの代わりにトリミングユニットU1〜U4が設けられている。
ここで、トリミングユニットU1には、Pチャンネル電界効果トランジスタM11およびスイッチS11が設けられている。そして、Pチャンネル電界効果トランジスタM11のゲートは、オペアンプP2の出力端子に接続され、Pチャンネル電界効果トランジスタM11のソースは電源電位VDDAに接続され、Pチャンネル電界効果トランジスタM11のドレインは、スイッチS11を介してNチャンネル電界効果トランジスタM1のドレインに接続されている。
トリミングユニットU2には、Pチャンネル電界効果トランジスタM21、M22およびスイッチS21が設けられている。そして、Pチャンネル電界効果トランジスタM21、M22のゲートは、オペアンプP2の出力端子に接続され、Pチャンネル電界効果トランジスタM21、M22のソースは電源電位VDDAに接続され、Pチャンネル電界効果トランジスタM21、M22のドレインは、スイッチS21を介してNチャンネル電界効果トランジスタM1のドレインに接続されている。
トリミングユニットU3には、Pチャンネル電界効果トランジスタM31〜M34およびスイッチS31が設けられている。そして、Pチャンネル電界効果トランジスタM31〜M34のゲートは、オペアンプP2の出力端子に接続され、Pチャンネル電界効果トランジスタM31〜M34のソースは電源電位VDDAに接続され、Pチャンネル電界効果トランジスタM31〜M34のドレインは、スイッチS31を介してNチャンネル電界効果トランジスタM1のドレインに接続されている。
トリミングユニットU4には、Pチャンネル電界効果トランジスタM41〜M48およびスイッチS41が設けられている。そして、Pチャンネル電界効果トランジスタM41〜M48のゲートは、オペアンプP2の出力端子に接続され、Pチャンネル電界効果トランジスタM41〜M48のソースは電源電位VDDAに接続され、Pチャンネル電界効果トランジスタM41〜M48のドレインは、スイッチS41を介してNチャンネル電界効果トランジスタM1のドレインに接続されている。
そして、参照電流Iref2のトリミングを行う場合、トリミングユニットU1〜U4の組み合わせにより、参照電流Iref2の生成に寄与する電界効果トランジスタM11、M21、M22、M31〜M34、M41〜M48の個数が調整される。
これにより、図2の参照電流Iref2の生成に寄与する電界効果トランジスタMB1〜MBMを個別に選択する方法に比べて回路規模を低減することが可能となり、チップ面積を縮小することができる。
なお、図6の実施形態では、トランジスタとスイッチの組み合わせが1、2、2、2個のトリミングユニットU1〜U4を設ける方法について説明したが、トランジスタとスイッチの組み合わせが2〜2(Eは正の整数)のトリミングユニットを設けるようにしてもよい。
図7は、センスアンプ23の概略構成を示す回路図である。
図7において、センスアンプ23には、Nチャンネル電界効果トランジスタMC4、MC7〜MC9およびPチャンネル電界効果トランジスタMC1〜MC3、MC5、MC6、MC10、MC11が設けられている。
ここで、Nチャンネル電界効果トランジスタMC4のドレインとPチャンネル電界効果トランジスタMC3のドレインとが互いに接続されるとともに、Nチャンネル電界効果トランジスタMC4のゲートとPチャンネル電界効果トランジスタMC2のゲートとが互いに接続されている。また、Nチャンネル電界効果トランジスタMC7のドレインとPチャンネル電界効果トランジスタMC6のドレインとが互いに接続されるとともに、Nチャンネル電界効果トランジスタMC7のゲートとPチャンネル電界効果トランジスタMC5のゲートとが互いに接続されている。
Nチャンネル電界効果トランジスタMC4のドレインとPチャンネル電界効果トランジスタMC3のドレインは、Nチャンネル電界効果トランジスタMC7のゲートとPチャンネル電界効果トランジスタMC5のゲートに接続され、Nチャンネル電界効果トランジスタMC7のドレインとPチャンネル電界効果トランジスタMC6のドレインは、Nチャンネル電界効果トランジスタMC4のゲートとPチャンネル電界効果トランジスタMC2のゲートに接続されている。
また、Pチャンネル電界効果トランジスタMC6にはPチャンネル電界効果トランジスタMC5が直列に接続されることでノードNAが構成され、Pチャンネル電界効果トランジスタMC3にはPチャンネル電界効果トランジスタMC2が直列に接続されることでノードNBが構成されている。そして、Pチャンネル電界効果トランジスタMC2、MC5のソースは、Pチャンネル電界効果トランジスタMC1を介して電源電位VDDに接続されている。また、Pチャンネル電界効果トランジスタMC3のゲートとPチャンネル電界効果トランジスタMC6のゲートとは互いに接続されている。また、ノードNAは、Pチャンネル電界効果トランジスタMC11を介してカラムデコーダ21に接続され、ノードNBは、Pチャンネル電界効果トランジスタMC10を介してカラムデコーダ22に接続されている。
また、Nチャンネル電界効果トランジスタMC9のドレインはNチャンネル電界効果トランジスタMC7のゲートに接続され、Nチャンネル電界効果トランジスタMC8のドレインはNチャンネル電界効果トランジスタMC4のゲートに接続されている。Nチャンネル電界効果トランジスタMC8、MC9のゲートは互いに接続され、Nチャンネル電界効果トランジスタMC4、MC7、MC8、MC9のソースは電源電位VSSに接続されている。また、Nチャンネル電界効果トランジスタMC4のゲートと、Nチャンネル電界効果トランジスタMC7のゲートとの間には、Nチャンネル電界効果トランジスタMC12が介挿されている。
そして、Pチャンネル電界効果トランジスタMC2のドレインとPチャンネル電界効果トランジスタMC3のソースとの接続点には、参照電流Iref2が入力され、Pチャンネル電界効果トランジスタMC5のドレインとPチャンネル電界効果トランジスタMC6のソースとの接続点には、セル電流Icellが入力される。また、Pチャンネル電界効果トランジスタMC1、MC10、MC11のゲートには、ACC信号が入力され、Pチャンネル電界効果トランジスタMC1は電流源を構成することができる。
また、Pチャンネル電界効果トランジスタMC6のドレインとNチャンネル電界効果トランジスタMC7のドレインとの接続点から出力信号OUTが出力され、Pチャンネル電界効果トランジスタMC3のドレインとNチャンネル電界効果トランジスタMC4のドレインとの接続点から出力信号OUTBが出力される。
また、Nチャンネル電界効果トランジスタMC8、MC9の各ゲートには、センスアンプイネーブル信号SEBが供給される。このセンスアンプイネーブル信号SEBがハイからロウに遷移すると、図4のセンスアンプ23はセンス動作を行う。図4のセンスアンプ23は、センスアンプイネーブル信号SEBの電圧レベルが高い間に電流センスを行い、センスアンプイネーブル信号SEBの電圧レベルが低くなると電圧センスを行う。
ここで、Pチャンネル電界効果トランジスタMC3、MC6のゲートにはロウレベル電位が入力され、Pチャンネル電界効果トランジスタMC3、MC6が常時オンされる。そして、センス動作を開始する前に、イコライズ信号SEQがハイにされ、出力信号OUTと出力信号OUTBの電圧レベルが一致された後、イコライズ信号SEQがロウにされる。
また、センス動作を開始する前は、センスアンプイネーブル信号SEBはハイである。従って、Nチャンネル電界効果トランジスタMC8、MC9はオンであり、Nチャンネル電界効果トランジスタMC8、MC9にそれぞれ流れる電流Ib、Iaは等しくなる。この時、出力信号OUT、OUTBはともにロウであり、Nチャンネル電界効果トランジスタMC4、MC7はともにオフし、Pチャンネル電界効果トランジスタMC2、MC5がともにオンする。このため、Pチャンネル電界効果トランジスタMC1からの電流の一部はメモリセルMC方向に流れ、残りの一部はPチャンネル電界効果トランジスタMC6およびNチャンネル電界効果MC8を通って接地端子に流れる。同様に、Pチャンネル電界効果トランジスタMC1からの電流の一部はNチャンネル電界効果トランジスタMF方向に流れ、残りの一部はPチャンネル電界効果トランジスタMC3およびNチャンネル電界効果MC9を通って接地端子に流れる。
その後、センスアンプイネーブル信号SEBの電圧レベルを徐々に下げていくと、Nチャンネル電界効果トランジスタMC8、MC9がオフする方向に動作し、Nチャンネル電界効果トランジスタMC8、MC9のドレイン−ソース間抵抗が上昇する。これにより、Nチャンネル電界効果トランジスタMC8、MC9のドレイン−ソース間に電流が流れにくくなり、Nチャンネル電界効果トランジスタMC8を流れる電流IbとNチャンネル電界効果トランジスタMC9を流れる電流Iaとの差分(Ib−Ia)は、セル電流Icellと参照電流Iref1の差分(Icell−Iref2)よりも大きくなる。この動作は電流センスと呼ばれる。例えば、Icell>Iref2の場合、電流センスによりIb−Iaは徐々に大きくなる。
さらに、センスアンプイネーブル信号SEBの電圧レベルが低下すると、電流Ibが電流Iaよりもかなり大きくなるとともに、Nチャンネル電界効果トランジスタMC8、MC9のドレイン−ソース間抵抗も増大するため、Nチャンネル電界効果トランジスタMC4のゲート電圧レベル、すなわち出力信号OUTの電圧レベルが上昇してNチャンネル電界効果トランジスタMC4がオンする方向に動作する。これにより、出力信号OUTBの電圧レベルが下がり、出力信号OUT、OUTBの電圧レベル差が徐々に大きくなる。この動作は電圧センスと呼ばれる。Icell>Iref2の場合、電圧レベル差が増幅された結果、出力信号OUTがハイ、出力信号OUTBがロウになり、論理が確定する。
(第7実施形態)
図8は、本発明の第7実施形態に係る参照電流生成回路が適用される半導体記憶装置の概略構成を示すブロック図である。
図8において、半導体記憶装置には、図1または図2のメモリセルMCがマトリックス状に配置されたメモリセルアレイ101、読み出し時にロウ方向のメモリセルMCを選択するロウデコーダ102、書き込み/消去時にロウ方向のメモリセルMCを選択するロウデコーダ103、書き込み時に入力データDiをラッチするデータラッチ部104、カラム方向のメモリセルMCを選択したり、読み出しデータを増幅したりするカラムデコーダ/センスアンプ105、マクロ制御時にコマンドシーケンスを生成するコマンド格納/制御部106、書き込み/消去アドレスを制御する書き込み/消去シーケンサ107、外部で指定された書き込み/消去アドレスAwまたは書き込み/消去シーケンサ107にて生成された書き込み/消去アドレスを選択するセレクタ108、書き込み/消去を行わせるために必要な電源を供給する電源供給部109、書き込み/消去の制御を行う書き込み/消去制御部110が設けられている。
なお、図1の参照電流生成回路を図8の半導体記憶装置に適用する場合、参照電圧Vrefは電源供給部109にて生成し、オペアンプP1、Pチャンネル電界効果トランジスタMA、コンデンサC1、抵抗R0〜R7およびスイッチSは書き込み/消去制御部110に設け、センス回路9はカラムデコーダ/センスアンプ105に設けることができる。
また、図2の参照電流生成回路を図8の半導体記憶装置に適用する場合、参照電圧Vrefは電源供給部109にて生成し、基準電流発生回路1およびトリミング回路2は書き込み/消去制御部110に設け、センス回路9およびNチャンネル電界効果トランジスタM1はカラムデコーダ/センスアンプ105に設けることができる。
そして、書き込み/消去時において外部で指定された書き込み/消去アドレスAwを用いる場合、書き込み/消去アドレスAwがセレクタ108を介してロウデコーダ103に入力され、ロウ方向のメモリセルMCが選択される。また、入力データDiがデータラッチ部104および書き込み/消去制御部110に入力され、入力データDiがラッチされるとともに、カラム方向のメモリセルMCが選択され、選択セルの書き込み/消去が行われる。
一方、書き込み/消去時において内部で指定された書き込み/消去アドレスを用いる場合、コマンド格納/制御部106にてコマンドシーケンスが生成される。そして、書き込み/消去シーケンサ107において書き込み/消去アドレスがインクメントまたはデクリメントされながら、セレクタ108を介してロウデコーダ103に入力され、ロウ方向のメモリセルMCが選択される。また、入力データDiがデータラッチ部104に入力され、入力データDiがラッチされるとともに、カラム方向のメモリセルMCが選択され、選択セルの書き込み/消去が行われる。
また、読み出し時には、読み出しアドレスArがロウデコーダ102およびカラムデコーダ/センスアンプ105に入力される。そして、ロウデコーダ102にてロウ方向のメモリセルMCが選択されるとともに、カラムデコーダ/センスアンプ105にてカラム方向のメモリセルMCが選択される。そして、カラムデコーダ/センスアンプ105において、メモリセルMCから読み出されたセル電流が参照電流と比較され、セル電流が参照電流より大きい場合には読み出しデータが“1”と判定され、参照電流より小さい場合には読み出しデータが“0”と判定される。
(第8実施形態)
図9は、本発明の第8実施形態に係る参照電流の設定方法を示す図である。
図9において、プロセスバラツキや使用温度や電源電圧などによってセル電流は変化し、ワード線電圧が0Vであっても、オンセル(消去セル)の電流ばらつきConの範囲はオフセル(書き込みセル)の電流ばらつきCoffの範囲の数倍になる。
ここで、オンセルとオフセルとを区別するには、図2の参照電流Iref2は、オンセルの電流ばらつきConの範囲とオフセルの電流ばらつきCoffの範囲のどちらにも含まれない中間領域内に設定する必要がある。理想的には、オフセル電流の分布の高い側の裾と図2の参照電流Iref2との差分をΔIa、オンセル電流の分布の低い側の裾と図2の参照電流Iref2との差分をΔIbとすると、ΔIa=ΔIbとなるように参照電流Iref2の値を設定することが好ましい。
ここで、図2のスイッチS0にて抵抗R0〜Rkの各端点のいずれかを選択させるとともに、スイッチS1〜SMにて電界効果トランジスタMB1〜MBMの個数を選択させることにより、オンセルの電流ばらつきConの範囲が変動する場合においても、ΔIa=ΔIbとなるように参照電流Iref2の値を設定することができる。
P1、P2 オペアンプ、MF リファレンストランジスタ、M1、M2、MC4、MC7〜MC9、MC12 Nチャンネル電界効果トランジスタ、MA、MA1〜MAN、MB1〜MBM、M11、M21、M22、M31〜M34、M41〜M48、MC1〜MC3、MC5、MC6、MC10、MC11 Pチャンネル電界効果トランジスタ、R0〜Rk 抵抗、C1、C2 コンデンサ、MC メモリセル、S、S0、S1〜SM、S11、S21、S31、S41 スイッチ、9 センス回路、21、22 カラムデコーダ、23、45 センスアンプ、D1、D2、D11 パッド電極、T1、T2 テスター、31、41、51 書き込み制御回路、32、42、52 不揮発性メモリ、33、43、53 トリミング制御回路、44、54 自動トリミング値決定回路、CP1〜CP3 半導体チップ、U1〜U4 トリミングユニット、101 メモリセルアレイ、102、103 ロウデコーダ、104 データラッチ部、105 カラムデコーダ/センスアンプ、106 コマンド格納/制御部、107 書き込み/消去シーケンサ、108 セレクタ、109 電源供給部、110 書き込み/消去制御部

Claims (5)

  1. 一方の入力端子に参照電圧が入力されるオペアンプと、
    前記オペアンプの出力電圧がゲートに入力される電界効果トランジスタと、
    前記電界効果トランジスタのドレインに直列に接続され、いずれかの接続点の電圧を前記オペアンプの他方の入力端子に帰還するk(kは2以上の整数)個の抵抗と、
    前記抵抗のいずれかの接続点の電圧を基準準圧として取り出すスイッチと、
    前記基準準圧がゲートに印加されることで参照電流を生成するリファレンストランジスタとを備えることを特徴とする参照電流生成回路。
  2. 一方の入力端子に参照電圧が入力されるオペアンプと、
    前記オペアンプの出力電圧がゲートに入力されるN(Nは正の整数)個の第1の電界効果トランジスタと、
    前記N個の第1の電界効果トランジスタのドレインに接続され、前記オペアンプの他方の入力端子に帰還される電圧を発生させる抵抗と、
    前記オペアンプの出力電圧がゲートに入力されるM(Mは2以上の整数)個の第2の電界効果トランジスタと、
    前記第2の電界効果トランジスタの個数を選択し、その選択した第2の電界効果トランジスタに流れる電流を合流させることで参照電流を生成するスイッチとを備えることを特徴とする参照電流生成回路。
  3. 前記第1の電界効果トランジスタと前記第2の電界効果トランジスタはサイズおよび形状が同一であることを特徴とする請求項2に記載の参照電流生成回路。
  4. 前記参照電流がゲートに入力される第3の電界効果トランジスタと、
    前記第3の電界効果トランジスタのドレイン電流と入力電流とを比較するセンスアンプと、
    前記ドレイン電流と前記入力電流の差分が0になるようにトリミング値を決定する自動トリミング値決定回路と、
    前記自動トリミング値決定回路にて決定されたトリミング値を記憶する不揮発性メモリと、
    前記不揮発性メモリの書き込み制御を行う書き込み制御回路と、
    前記自動トリミング値決定回路にて決定されたトリミング値または前記不揮発性メモリに記憶されているトリミング値に基づいて、前記スイッチにて選択させる前記第2の電界効果トランジスタの個数を調整するトリミング制御回路とを備えることを特徴とする請求項3または4に記載の参照電流生成回路。
  5. 一方の入力端子に参照電圧が入力されるオペアンプと、
    前記オペアンプの出力電圧がゲートに入力される第1の電界効果トランジスタと、
    前記第1の電界効果トランジスタのドレインに直列に接続され、いずれかの接続点の電圧を前記オペアンプの他方の入力端子に帰還するk(kは2以上の整数)個の抵抗と、
    前記オペアンプの出力電圧がゲートに入力され、ドレイン電流を参照電流として出力する第2の電界効果トランジスタとを備えることを特徴とする参照電流生成回路。
JP2009202816A 2009-09-02 2009-09-02 参照電流生成回路 Pending JP2011053957A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009202816A JP2011053957A (ja) 2009-09-02 2009-09-02 参照電流生成回路
US12/716,831 US8278996B2 (en) 2009-09-02 2010-03-03 Reference current generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009202816A JP2011053957A (ja) 2009-09-02 2009-09-02 参照電流生成回路

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011227927A Division JP2012014828A (ja) 2011-10-17 2011-10-17 参照電流生成回路

Publications (1)

Publication Number Publication Date
JP2011053957A true JP2011053957A (ja) 2011-03-17

Family

ID=43623946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009202816A Pending JP2011053957A (ja) 2009-09-02 2009-09-02 参照電流生成回路

Country Status (2)

Country Link
US (1) US8278996B2 (ja)
JP (1) JP2011053957A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212352A (ja) * 2011-03-31 2012-11-01 Renesas Electronics Corp 定電流生成回路及びこれを含むマイクロプロセッサ
WO2013128854A1 (ja) * 2012-02-29 2013-09-06 パナソニック株式会社 不揮発性半導体記憶装置
JP2013200910A (ja) * 2012-03-23 2013-10-03 Toshiba Corp 半導体記憶装置及び半導体記憶装置の電圧出力方法
JP2016173869A (ja) * 2015-03-17 2016-09-29 ルネサスエレクトロニクス株式会社 半導体装置
KR20170027506A (ko) * 2015-09-02 2017-03-10 삼성전자주식회사 단락된 메모리 셀의 가변 저항 소자를 갖는 반도체 메모리 장치

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4386113B2 (ja) * 2007-08-03 2009-12-16 ソニー株式会社 参照電圧回路および撮像回路
TWI469512B (zh) * 2010-12-20 2015-01-11 Ic Plus Corp 阻抗調整裝置
JP5454949B2 (ja) 2011-03-07 2014-03-26 株式会社東芝 半導体記憶装置
KR101389620B1 (ko) * 2011-10-28 2014-04-29 에스케이하이닉스 주식회사 멀티 레귤레이터 회로 및 이를 구비한 집적회로
ITTO20120479A1 (it) * 2012-05-31 2013-12-01 St Microelectronics Srl Circuito di generazione di una corrente elettrica di valore configurabile
US8736387B2 (en) * 2012-07-24 2014-05-27 Nxp B.V. Chopper based relaxation oscillator
US8829943B2 (en) * 2012-10-19 2014-09-09 Stmicroelectronics International N.V. Low supply voltage analog disconnection envelope detector
US9460785B2 (en) * 2014-03-06 2016-10-04 Kabushiki Kaisha Toshiba Semiconductor storage device
JP2015220384A (ja) 2014-05-20 2015-12-07 マイクロン テクノロジー, インク. 内部電圧発生回路及び半導体装置
US9704581B2 (en) * 2014-12-27 2017-07-11 Intel Corporation Voltage ramping detection
US10163479B2 (en) 2015-08-14 2018-12-25 Spin Transfer Technologies, Inc. Method and apparatus for bipolar memory write-verify
US10366774B2 (en) 2016-09-27 2019-07-30 Spin Memory, Inc. Device with dynamic redundancy registers
US10818331B2 (en) 2016-09-27 2020-10-27 Spin Memory, Inc. Multi-chip module for MRAM devices with levels of dynamic redundancy registers
US10546625B2 (en) 2016-09-27 2020-01-28 Spin Memory, Inc. Method of optimizing write voltage based on error buffer occupancy
US10437723B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of flushing the contents of a dynamic redundancy register to a secure storage area during a power down in a memory device
US10446210B2 (en) 2016-09-27 2019-10-15 Spin Memory, Inc. Memory instruction pipeline with a pre-read stage for a write operation for reducing power consumption in a memory device that uses dynamic redundancy registers
US10360964B2 (en) 2016-09-27 2019-07-23 Spin Memory, Inc. Method of writing contents in memory during a power up sequence using a dynamic redundancy register in a memory device
US10437491B2 (en) 2016-09-27 2019-10-08 Spin Memory, Inc. Method of processing incomplete memory operations in a memory device during a power up sequence and a power down sequence using a dynamic redundancy register
US10460781B2 (en) 2016-09-27 2019-10-29 Spin Memory, Inc. Memory device with a dual Y-multiplexer structure for performing two simultaneous operations on the same row of a memory bank
KR102324194B1 (ko) * 2017-05-22 2021-11-10 삼성전자주식회사 안티퓨즈들을 포함하는 전압 트리밍 회로, 그것의 동작 방법, 그리고 그 전압 트리밍 회로를 포함하는 집적 회로
US10489245B2 (en) 2017-10-24 2019-11-26 Spin Memory, Inc. Forcing stuck bits, waterfall bits, shunt bits and low TMR bits to short during testing and using on-the-fly bit failure detection and bit redundancy remapping techniques to correct them
US10481976B2 (en) 2017-10-24 2019-11-19 Spin Memory, Inc. Forcing bits as bad to widen the window between the distributions of acceptable high and low resistive bits thereby lowering the margin and increasing the speed of the sense amplifiers
US10656994B2 (en) 2017-10-24 2020-05-19 Spin Memory, Inc. Over-voltage write operation of tunnel magnet-resistance (“TMR”) memory device and correcting failure bits therefrom by using on-the-fly bit failure detection and bit redundancy remapping techniques
US10529439B2 (en) 2017-10-24 2020-01-07 Spin Memory, Inc. On-the-fly bit failure detection and bit redundancy remapping techniques to correct for fixed bit defects
US10891997B2 (en) 2017-12-28 2021-01-12 Spin Memory, Inc. Memory array with horizontal source line and a virtual source line
US10360962B1 (en) * 2017-12-28 2019-07-23 Spin Memory, Inc. Memory array with individually trimmable sense amplifiers
US10424726B2 (en) 2017-12-28 2019-09-24 Spin Memory, Inc. Process for improving photoresist pillar adhesion during MRAM fabrication
US10395711B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Perpendicular source and bit lines for an MRAM array
US10811594B2 (en) 2017-12-28 2020-10-20 Spin Memory, Inc. Process for hard mask development for MRAM pillar formation using photolithography
US10395712B2 (en) 2017-12-28 2019-08-27 Spin Memory, Inc. Memory array with horizontal source line and sacrificial bitline per virtual source
US10886330B2 (en) 2017-12-29 2021-01-05 Spin Memory, Inc. Memory device having overlapping magnetic tunnel junctions in compliance with a reference pitch
US10840436B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Perpendicular magnetic anisotropy interface tunnel junction devices and methods of manufacture
US10784439B2 (en) 2017-12-29 2020-09-22 Spin Memory, Inc. Precessional spin current magnetic tunnel junction devices and methods of manufacture
US10424723B2 (en) 2017-12-29 2019-09-24 Spin Memory, Inc. Magnetic tunnel junction devices including an optimization layer
US10546624B2 (en) 2017-12-29 2020-01-28 Spin Memory, Inc. Multi-port random access memory
US10840439B2 (en) 2017-12-29 2020-11-17 Spin Memory, Inc. Magnetic tunnel junction (MTJ) fabrication methods and systems
US10367139B2 (en) 2017-12-29 2019-07-30 Spin Memory, Inc. Methods of manufacturing magnetic tunnel junction devices
US10438996B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Methods of fabricating magnetic tunnel junctions integrated with selectors
US10438995B2 (en) 2018-01-08 2019-10-08 Spin Memory, Inc. Devices including magnetic tunnel junctions integrated with selectors
JP6501325B1 (ja) * 2018-01-30 2019-04-17 ウィンボンド エレクトロニクス コーポレーション 半導体記憶装置
US10446744B2 (en) 2018-03-08 2019-10-15 Spin Memory, Inc. Magnetic tunnel junction wafer adaptor used in magnetic annealing furnace and method of using the same
US11107974B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Magnetic tunnel junction devices including a free magnetic trench layer and a planar reference magnetic layer
US10784437B2 (en) 2018-03-23 2020-09-22 Spin Memory, Inc. Three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US20190296228A1 (en) 2018-03-23 2019-09-26 Spin Transfer Technologies, Inc. Three-Dimensional Arrays with Magnetic Tunnel Junction Devices Including an Annular Free Magnetic Layer and a Planar Reference Magnetic Layer
US11107978B2 (en) 2018-03-23 2021-08-31 Spin Memory, Inc. Methods of manufacturing three-dimensional arrays with MTJ devices including a free magnetic trench layer and a planar reference magnetic layer
US10411185B1 (en) 2018-05-30 2019-09-10 Spin Memory, Inc. Process for creating a high density magnetic tunnel junction array test platform
US10345841B1 (en) * 2018-06-12 2019-07-09 Nxp Usa, Inc. Current source with variable resistor circuit
US10600478B2 (en) 2018-07-06 2020-03-24 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10559338B2 (en) 2018-07-06 2020-02-11 Spin Memory, Inc. Multi-bit cell read-out techniques
US10692569B2 (en) 2018-07-06 2020-06-23 Spin Memory, Inc. Read-out techniques for multi-bit cells
US10593396B2 (en) 2018-07-06 2020-03-17 Spin Memory, Inc. Multi-bit cell read-out techniques for MRAM cells with mixed pinned magnetization orientations
US10650875B2 (en) 2018-08-21 2020-05-12 Spin Memory, Inc. System for a wide temperature range nonvolatile memory
US10699761B2 (en) 2018-09-18 2020-06-30 Spin Memory, Inc. Word line decoder memory architecture
US11621293B2 (en) 2018-10-01 2023-04-04 Integrated Silicon Solution, (Cayman) Inc. Multi terminal device stack systems and methods
US10971680B2 (en) 2018-10-01 2021-04-06 Spin Memory, Inc. Multi terminal device stack formation methods
US11107979B2 (en) 2018-12-28 2021-08-31 Spin Memory, Inc. Patterned silicide structures and methods of manufacture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164822A (ja) * 1984-02-08 1985-08-27 Nec Corp 直流電圧発生回路
JPH09106316A (ja) * 1995-10-11 1997-04-22 Nec Corp 基準電流発生回路
JP2005302197A (ja) * 2004-04-14 2005-10-27 Nec Electronics Corp 半導体メモリ装置
JP2009037372A (ja) * 2007-08-01 2009-02-19 Fuji Electric Device Technology Co Ltd 定電流・定電圧回路

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0470215A (ja) * 1990-07-11 1992-03-05 Sony Corp D/a変換器
US5231316A (en) * 1991-10-29 1993-07-27 Lattice Semiconductor Corporation Temperature compensated cmos voltage to current converter
US5739681A (en) * 1992-02-07 1998-04-14 Crosspoint Solutions, Inc. Voltage regulator with high gain cascode current mirror
US5291123A (en) * 1992-09-09 1994-03-01 Hewlett-Packard Company Precision reference current generator
US6087820A (en) 1999-03-09 2000-07-11 Siemens Aktiengesellschaft Current source
JP4767386B2 (ja) * 2000-02-28 2011-09-07 富士通セミコンダクター株式会社 内部電圧発生回路
US6373266B1 (en) * 2000-03-31 2002-04-16 Agere Systems Guardian Corp. Apparatus and method for determining process width variations in integrated circuits
FR2811090B1 (fr) * 2000-06-28 2002-10-11 St Microelectronics Sa Integration d'un regulateur de tension
GB0111313D0 (en) 2001-05-09 2001-07-04 Broadcom Corp Digital-to-analogue converter using an array of current sources
JP3851791B2 (ja) * 2001-09-04 2006-11-29 株式会社東芝 半導体集積回路
EP1298800A1 (en) * 2001-09-28 2003-04-02 STMicroelectronics Limited Ramp generator
JP3887229B2 (ja) * 2001-12-28 2007-02-28 沖電気工業株式会社 電流駆動型表示装置の駆動回路
JP2004146783A (ja) * 2002-08-28 2004-05-20 Fujitsu Ltd 半導体集積回路装置、および半導体集積回路装置の調整方法
US6703885B1 (en) * 2002-09-18 2004-03-09 Richtek Technology Corp. Trimmer method and device for circuits
WO2004102780A1 (ja) * 2003-05-13 2004-11-25 Fujitsu Limited 半導体集積回路装置
KR100543659B1 (ko) * 2003-06-20 2006-01-20 주식회사 하이닉스반도체 내부전압 생성용 액티브 드라이버
JP4662698B2 (ja) * 2003-06-25 2011-03-30 ルネサスエレクトロニクス株式会社 電流源回路、並びに電流設定方法
JP2005086108A (ja) * 2003-09-10 2005-03-31 Renesas Technology Corp 半導体集積回路
JP4088247B2 (ja) * 2003-12-25 2008-05-21 株式会社東芝 電圧減算回路及びそれを用いた強度検波回路
EP1653315A1 (en) * 2004-10-28 2006-05-03 STMicroelectronics S.r.l. An improved voltage down converter
EP1667158B1 (en) * 2004-10-28 2007-01-31 STMicroelectronics S.r.l. A voltage down-converter with reduced ripple
KR100684063B1 (ko) * 2004-11-17 2007-02-16 삼성전자주식회사 조절가능한 기준전압 발생회로
US7106032B2 (en) * 2005-02-03 2006-09-12 Aimtron Technology Corp. Linear voltage regulator with selectable light and heavy load paths
US7212043B2 (en) * 2005-03-11 2007-05-01 Broadcom Corporation Line regulator with high bandwidth (BW) and high power supply rejection ration (PSRR) and wide range of output current
FR2886746B1 (fr) * 2005-06-06 2007-08-10 Atmel Corp Regulation du niveau de tension de sortie
WO2007005634A1 (en) * 2005-07-04 2007-01-11 Micron Technology, Inc. Low power multiple bit sense amplifier
US7218168B1 (en) * 2005-08-24 2007-05-15 Xilinx, Inc. Linear voltage regulator with dynamically selectable drivers
US7417494B2 (en) * 2005-09-29 2008-08-26 Hynix Semiconductor Inc. Internal voltage generator
JP4861047B2 (ja) * 2006-04-24 2012-01-25 株式会社東芝 電圧発生回路及びこれを備える半導体記憶装置
TW200837705A (en) * 2007-03-09 2008-09-16 Novatek Microelectronics Corp Analog source driving apparatus
JP5057812B2 (ja) * 2007-03-20 2012-10-24 株式会社東芝 電源降圧回路
US7573323B2 (en) * 2007-05-31 2009-08-11 Aptina Imaging Corporation Current mirror bias trimming technique
US7675792B2 (en) * 2007-09-26 2010-03-09 Intel Corporation Generating reference currents compensated for process variation in non-volatile memories
US7880531B2 (en) * 2008-01-23 2011-02-01 Micron Technology, Inc. System, apparatus, and method for selectable voltage regulation
US7724600B1 (en) * 2008-03-05 2010-05-25 Xilinx, Inc. Electronic fuse programming current generator with on-chip reference
JP5120111B2 (ja) * 2008-06-30 2013-01-16 富士通株式会社 シリーズレギュレータ回路、電圧レギュレータ回路、及び半導体集積回路
JP2010252311A (ja) * 2009-03-23 2010-11-04 Toshiba Corp 電流供給回路
JP2011054248A (ja) * 2009-09-02 2011-03-17 Toshiba Corp 参照電流生成回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60164822A (ja) * 1984-02-08 1985-08-27 Nec Corp 直流電圧発生回路
JPH09106316A (ja) * 1995-10-11 1997-04-22 Nec Corp 基準電流発生回路
JP2005302197A (ja) * 2004-04-14 2005-10-27 Nec Electronics Corp 半導体メモリ装置
JP2009037372A (ja) * 2007-08-01 2009-02-19 Fuji Electric Device Technology Co Ltd 定電流・定電圧回路

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212352A (ja) * 2011-03-31 2012-11-01 Renesas Electronics Corp 定電流生成回路及びこれを含むマイクロプロセッサ
US9046910B2 (en) 2011-03-31 2015-06-02 Renesas Electronics Corporation Constant current generation circuit and microprocessor including the same
US9746870B2 (en) 2011-03-31 2017-08-29 Renesas Electronics Corporation Semiconductor device including a constant voltage generation unit
WO2013128854A1 (ja) * 2012-02-29 2013-09-06 パナソニック株式会社 不揮発性半導体記憶装置
JPWO2013128854A1 (ja) * 2012-02-29 2015-07-30 パナソニックIpマネジメント株式会社 不揮発性半導体記憶装置
JP2013200910A (ja) * 2012-03-23 2013-10-03 Toshiba Corp 半導体記憶装置及び半導体記憶装置の電圧出力方法
US9293175B2 (en) 2012-03-23 2016-03-22 Kabushiki Kaisha Toshiba Semiconductor memory and voltage output measuring method of the semiconductor memory
JP2016173869A (ja) * 2015-03-17 2016-09-29 ルネサスエレクトロニクス株式会社 半導体装置
KR20170027506A (ko) * 2015-09-02 2017-03-10 삼성전자주식회사 단락된 메모리 셀의 가변 저항 소자를 갖는 반도체 메모리 장치
KR102358564B1 (ko) * 2015-09-02 2022-02-04 삼성전자주식회사 단락된 메모리 셀의 가변 저항 소자를 갖는 반도체 메모리 장치

Also Published As

Publication number Publication date
US8278996B2 (en) 2012-10-02
US20110050330A1 (en) 2011-03-03

Similar Documents

Publication Publication Date Title
JP2011053957A (ja) 参照電流生成回路
JP3688899B2 (ja) 半導体集積回路装置
US7236409B2 (en) Semiconductor memory device provided with constant-current circuit having current trimming function
JP2011054248A (ja) 参照電流生成回路
JP5667260B1 (ja) 半導体記憶装置
CN105518798A (zh) 半导体存储装置及存储器系统
JP5160780B2 (ja) フラッシュメモリ装置の電圧生成器
US20200202956A1 (en) Semiconductor device
JP2007293545A (ja) 電圧発生回路及びこれを備える半導体記憶装置
JP2009016929A (ja) 負電圧検知回路及びこの負電圧検知回路を用いた半導体集積回路装置
US7512026B2 (en) Sense amplifying circuit capable of operating with lower voltage and nonvolatile memory device including the same
US7315475B2 (en) Non-volatile semiconductor memory device
JP5184310B2 (ja) 不揮発性半導体メモリ装置
JP2006294144A (ja) 不揮発性半導体記憶装置
KR102491358B1 (ko) 센스 앰프 구동 장치
KR101053700B1 (ko) 전압 생성 회로 및 이를 구비한 불휘발성 메모리 소자
JP2006351193A (ja) 半導体集積回路
KR102256760B1 (ko) 기준전압 발생회로, 파워 온 검출회로 및 반도체 장치
US20170062062A1 (en) Semiconductor memory device
CN107958688B (zh) 非易失性存储装置的感测电路及方法
CN213459059U (zh) 非易失性存储器设备和电压生成器电路
JP7273599B2 (ja) 半導体装置およびメモリの読み出し方法
KR20180057771A (ko) 센스 앰프 구동 장치
US10497449B2 (en) Apparatus and process for controlling sense current in a non-volatile memory
JP2012014828A (ja) 参照電流生成回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120104