JP2007504917A - 心臓関連パラメータの測定方法及び装置 - Google Patents

心臓関連パラメータの測定方法及び装置 Download PDF

Info

Publication number
JP2007504917A
JP2007504917A JP2006526407A JP2006526407A JP2007504917A JP 2007504917 A JP2007504917 A JP 2007504917A JP 2006526407 A JP2006526407 A JP 2006526407A JP 2006526407 A JP2006526407 A JP 2006526407A JP 2007504917 A JP2007504917 A JP 2007504917A
Authority
JP
Japan
Prior art keywords
signal
electrode
sensor
human body
heart related
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006526407A
Other languages
English (en)
Other versions
JP2007504917A5 (ja
JP5174348B2 (ja
Inventor
ファリンドン,ジョナサン
スチボリック,ジョン,エム
テラー,エリック
アンドレ,デービッド
ボーンケ,スコット,ケイ
ガスバロ,ジェームズ
コバクス,グレゴリ
ペレティア,レイモンド
カサバック,クリストファー
Original Assignee
ボディーメディア インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボディーメディア インコーポレイテッド filed Critical ボディーメディア インコーポレイテッド
Publication of JP2007504917A publication Critical patent/JP2007504917A/ja
Publication of JP2007504917A5 publication Critical patent/JP2007504917A5/ja
Application granted granted Critical
Publication of JP5174348B2 publication Critical patent/JP5174348B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/721Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4812Detecting sleep stages or cycles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device

Abstract

開示されるモニター装置及びその関連方法は、ECGを含む心臓関連パラメータをモニターする自蔵型で、比較的小型且つ継続着用可能なパッケージを提供する。心臓関連パラメータの検知は、心臓の電気的活動を検知する目的で等価であると通常定義される人体の単肢上領域内での不等電位信号の位置選定に基づく。心拍動の検出及び表示用分析ツールと共に増幅、フィルタリング及び信号処理方法及び装置が記載されている。

Description

本発明は、人体の普通の定義による等価領域内から心臓関連パラメータを正確に測定する方法及び装置に係る。さらに詳細には、人体の単一の肢からECG信号及び心拍動または心拍数のような他の心臓関連パラメータを測定する方法及び装置が開示される。さらに詳細には心臓関連パラメータは左の上腕または右の上腕から採取される。
心臓は、自然の電気系統の制御により心臓の筋肉を収縮させて血液を肺または身体の残部へ圧送することにより酸素と共に他の所要の栄養素を運ぶ筋肉ポンプである。心臓は、その4つの心室の収縮頻度及びタイミング並びにかかる収縮を生ぜしめる電気信号のパターンを含む、心臓の状態を表す1組のパラメータにより特徴付けることができる。これらのパラメータを検知する多数の方法が当該技術分野で周知であるが、これらの方法には、心臓の電気インパルスを感知する方法、血液が動脈を流れる時のパルスを感知する方法、ドップラーまたは他の音響的方法、キャパシタンス、マイクロインパルスレーダーによる方法、圧電気素子または歪み計を利用するような圧力及び/または運動に基く方法並びに血液の脈動をパルスオキシメータにおいて外部からみるような光学的方法が含まれる。
今日、心臓関連パラメータの測定に用いられる最もよく知られた普通の方法は心電図による方法である。心電図またはECG信号は、心臓組織の電気的活動により発生する心臓の電位を表面測定するものである。この測定は、人体が全体的に導電性であるため皮膚の表面上に配置した電極により行うことができる。
図1は1つの心拍動より発生する典型的なECG信号を示す。信号強度をY軸、時間をX軸で示す。信号の個々のスパイクまたは及びディップを波と呼ぶ。図1に示すP波は心房の収縮を表す。QRS群と呼ぶQ、R及びS波は心室筋の収縮を表す。T波は心室筋の回復または極性回復を表す。典型的なECG信号の振幅は、良好な接触の電極により胸部から測定すると約1乃至2mVである。
ECG測定値により、医学的診断、健康増進及びスポーツのような多数の目的のために心拍動の速さ、即ち心拍数を含む(これらに限定されない)多数の心臓関連パラメータについての情報が与えられる。ECGに基づく最も信頼性の高い心拍数の計算は各QRS群、従って各心拍動を検知することにより行われるが、その理由は、QRS群が最も多量のエネルギー量を含み、そのスペクトルが運動アーチファクトのスペクトルと十分に相違するからである。心拍動は通常、各R点(ピーク)でカウントされ、最初のR点と次のR点との間の距離がR−Rインターバルとして知られる。このインターバルの逆数が瞬時心拍数である。心拍数変動性のような他のパラメータもR−Rインターバルのセットから算定可能である。
上述したように、心臓は心臓筋肉を収縮させる電気的活動に起因する電位差発生源である。この電位差は当該技術分野では心臓の活動電位として知られる。ECG信号はこの活動電位を測定したものである。さらに、心臓は左胸部領域にあり、垂直からわずかにずれた方向に向いている。ECG測定の伝統的なモデルによると、ECGの測定は心臓にまたがって行う必要があるが、これは心臓の中心を延びる仮想線の両側上に電極を配置することを意味する。心臓の電気的活動の種々の局面を測定するための電極の配置に関して、多くの研究者が多種多様なやり方で人体表面の種々のセクションを特定している。
一般的に、これらの配置場所は2つのやり方で特定される。第1に、電極対は2つの点間の電位差の測定に使用されることが多い。2つの点が心臓の活動により変化する電位信号を示す場合、それらは互いに等電位でなく、従って、不等電位であると言う。従って、不等電位とは、EMGのような他の電圧差発生源でなく、心臓の活動電位の差のことに限られる。さらに、本明細書では、場所を、2つの場所が不等電位である時それらの場所から心臓の電気的活動の異なる局面を測定する所として説明する。電極は、通常、電極間の最大電位差を得るように配置される。従って、図1Aに示すように、人体は、通常、四分区間I、II、III、IVに分割される。電極は通常、人体上の2つの異なる四分区間に配置されるが、身体1は心臓を貫く2つの平面により4つのセクションまたは四分区間に分割される。これらの平面の場所はこの領域における知識の進歩につれて修正されているが、矢状面2は心臓をほぼ垂直に延び、横断面3はほぼ水平に延びる点でかなりそれほど変化していない。これら2つの面は、患者の前方から二次元透視法で見ると互いに直交している。この用途の目的では、心臓を通るこれらの仮想面の位置を評価するのが重要である。矢状面2は、時として、身体の正中線と一致すると考えられる。しかしながら、他の図では、傾斜した軸に沿うベクトルが胸部空洞内における心臓のわずかに非対称的な方向と一致するように向いている。横断面3は矢状面2と直交する。電極の双極配置では、2つの電極は通常、2つの異なる四分区間に配置され、これにより心臓の活動電位が測定できる。心臓からのECG信号を読み取るもう1つの方法は、1つの点で単一の電極を使用し、その後、もう1つの点で多数の電極の平均値を利用する単極読み取り方法である。これにより種々の方向から心臓をみることができ、また、ただ2個の電極では不可能である心臓図を作成することが可能となる。12個のリードによる標準型ECGにおける前胸部または胸部上の配置はこの種の配置例である。
他のモデルにはアイントーベン三角(Einthoven triangle)が含まれるが、これは底辺が左と右の肩関節間を延び、頂点が胸骨の下方の肋骨の底部にほぼ位置する胸部上のほぼ倒立二等辺三角形の領域を表す。このモデルはECG信号の第1の局面を有する左肩部に形成される角度と、かかる第2の局面を有する腹部の角度及び第3の局面を有する左肩部の角度を想定する。ベイリーの三軸システム(Bayley triaxial system)及び六軸システム(Hexaxial system)はそれぞれ胸部及び腹部領域を各々がECG信号の単一局面または混合局面に割り当てられる多数のセクションまたは領域に分割する。
従来技術の位置特定システムは全て、電極を身体の四分区間の少なくとも2つに配置する必要がある。従って、各四分区間の表面領域は人体上の等価領域として定義され、四分区間の境界に近い身体の部分はかかる等価領域から除外されるが、その理由は、心臓の拍動により、または人が動くと境界がわずかに移動することと、これらの境界には人体内の心臓の向きの小さな相違により個人差がありうることを普通理解されるからである。かくして、等価領域は図1Aにおいて四分区間として定義される。ECGを測定する以前のシステムでは全ての電極をこれらの等価領域の少なくとも2つに配置する必要がある。これらの等価領域は従来技術の人体表面に適用される多種多様なマッピングと共に、これらの四分区間内で得られる信号は人体が均質な物質で構成されていると考えられるため均質的であるという原理に従うものと理解することができる。
伝統的モデルに基づきECGを測定する幾つかの従来型装置が存在する。例えば、臨床用または医学用ECG装置は胸部、腕及び脚部上に配置される幾つかの電極により、選択された電極対から多数の異なるECG信号を測定するが、各対の一方の電極は1つの等価領域に配置され、もう一方の電極は異なる等価領域に配置される。臨床医は、種々の読みを組み合わせて多数の異なる角度から心臓の三次元的電気的活動の機能をみることができる。多くの場合、心臓関連パラメータを検知しモニターする能力を有する装置は静止型であり、静止状態の患者のモニターを意図している。
かかる装置は高精度であるが、非常に高価で扱いにくいため、自由な生活環境におけるような外来的使用または長期間の使用に適さない。ホルター心電図モニターは、通常は24−48時間の区間にわたって継続して外来的ECG測定を行える装置である。これらのホルター心電図装置は予め設定したスケジュールまたは通常は128hzまたは256hzの周波数に従って生の電気的データを収集する。従って、これらの装置はこのデータを収集するために有意な大きさのメモリ及び/または記録メディアの収蔵が必要である。この装置は物理的にかさばるだけでなく付属品が扱いにくいためその継続的な使用は比較的短期間に制限される。各装置は臨床用またはデータ検知のためのモニター用の少なくとも2つの電極と、通常はアース用の第3の電極を有する。リード線は心臓にまたがるかあるいは少なくとも矢状面2と考えられる所にまたがる胸部に装着するように設計され、電極に接続されたモニター装置を患者が携行または着用するが、この装置は患者の腰部にクリップ留めするか肩からかけるバッグ内に配置される矩形の重い箱である。この装置と併用されるセンサーは臨床的手順に従って固着されるが、信号品質を改善するために着用前に電極またはセンサーの下の皮膚の毛を剃り、そして/または研摩し、アルコールのような皮膚準備液できれいにする。その結果、従って、センサーの取替えは容易でなく、センサーにより身体的または衛生上の活動が制限されることがある。ホルター心電図モニターはかなり高価であり、上述した理由により長期間及び/または活動的な着用状況では着け心地はあまりよくない。
ループモニターは同様な構成で、着用されるが、長期間動作するよう設計されている。これらのシステムは、着用者が対象となる活動を行うかまたは胸部または心臓に関連の痛みを感じて時間表示ボタンを押すことにより合図を送ると短期間またはループ状の生のデータを記録するように設計されている。この装置は通常、時間表示の30秒前と30秒後の記録を行う。長期間の着用性及び心地良さに関してはある程度成功を収めているが、これらのループモニター装置は毎日使用するには依然として扱いづらく、装置からリード線が延びており、接着剤で身体に固定したスナップオンセンサーは毎日の皮膚の手当てとセンサーの元の位置への定期的な位置合わせを必要とする。
最近では、少数のモニターに幾つかの自動機能が設けられており、装置は、人間の介入なしに、ある特定の予め設定した状態になるかまたは異常な心拍間インターバルまたは心拍数の急変のような測定しきい値に検知される心臓関連活動が到達するとある特定のループ状データを記録することができる。同様な機能を有する埋め込み型ループ記録器も開発されているが、侵襲性の埋め込みには付随する問題点または危険性がある。
事象記録器として別の診断装置が知られているが、この装置はハンドヘルド型であり、2つの電極が所望の距離だけ離れて裏に設けられている。この装置には記録機能があり、患者が指示通りに心臓の上方または身体の側部にまたがる皮膚の上に配置すると患者が心臓関連の兆候を感じる時にデータのセグメントを記録することができる。この装置は継続的モニタリング用としては利用されず、記録能力は限られた数の事象記録に見合うにすぎない。この装置にはまた、メディアの記憶能力がいっぱいになると、通常は電話回線によりデータを臨床医または臨床サービスまたは医師へ解析のために送信する機能がある。
医学的または臨床用として設計されていないが、心拍数の測定に使用される多数の胸部ストラップ型心拍数モニターが開発されており、最近の装置の幾つかは検知された各心拍動を時間表示と共に記録することができる。かかる市販の従来型モニターの例としてフィンランドのオウルのポーラーエレクトロオイ社の装置と、バージニア州スターリングのアクメン社の装置が含まれる。これらの胸部ストラップ型モニターは胸部直下の胴部に巻き付けるように設計されており、ECG信号測定用として心臓の通常は横断面3の両側に配置する2つの電極を有する。この装置は胸筋のすぐ下方に従来型電極を配置する。この装置はこの場所に配置されるが、その理由は、筋肉活動によるノイズ及び運動信号アーチファクトが最小であり、信号振幅がかなりしっかりしたものであり、一貫性があって回路またはソフトウェアアプリケーションにより識別可能であることによる。このタイプの胸部ストラップ型モニターは、運動環境下での使用を奨励されるが、着け心地は特によいことはなく特に着用者が仰向けになっている時は身体からはずれやすい。
最後に、多数の時計型ECG心拍数モニターが市販されており、その一例としてブリティッシュコロンビア州バンクーバーのフィジカルエンタープライズ社により販売されるMIOウォッチのようなものがある。かかる時計は着用すると着用者の一方の腕に接触する時計の裏側に固着された第1の電極と、時計の前方表面上に設けられた1またはそれ以上の第2の電極を有する。ECG信号、従って心拍数を得るために、着用者は第2の電極を反対側の即ち、時計を着用していない手の1本またはそれ以上の指に触れさせる必要がある。従って、一方の腕に着用しているにもかかわらず時計は従来の方法に従ってECGを測定し、それは心臓にまたがって再び心臓の普通考えられる矢状面2の両側で測定するが、その理由は、2つの電極が両方の腕に接触するからである。かかる時計は着け心地はいいが、この特定の態様で接触する時に測定を行い、従って、長期間または食事、睡眠、運動またはコンピュータのキーボードをたたくような毎日の活動を行っている時にECG及び心拍数を継続的にモニターするには適当でない。
1991年9月24日付けの米国特許第5,050,612号(発明者:松村)は、ある特定のタイプの心臓パラメータを検知するためにニューヨーク州ハンプステッドのコンピュータ・インストルメンツ社により製造されるハートウォッチという多数の電極を有する感知時計装置の使用を開示している。松村はハートウォッチ装置の従来型の使用は胸部ストラップと併用することを開示しているが、マルチセンサー時計装置それ自体だけに依存する別の使用法もしている。この装置は心臓から腕に沿って種々の距離だけ離れた2つの電極を有し、一方の電極から検知される波形がもう一方の電極の波形から減算されて信号が得られる。松村はこの信号をECGに似た信号と同定していないが、SPセグメントSP波の減少を検知するのに有用と述べている。心拍数または他の心臓関連パラメータの識別を行うこの方法の有効性については何の教示も示唆もなされていない。
上述したようにECG測定の伝統的なモデルは心臓の活動電位を想定せず、従って、ECGが単一の四分区間または単一の等価領域内の2つの点から検知され測定される。さらに、伝統的なモデルは同じ四肢上の2つの場所の活動電位の測定をリジェクトする。従来技術は人体の三次元性を利用して人体の前と後に配置した電極または身体の同じ側であって胴体の高いステップと低いステップの間の心臓の活動電位を測定できるセンサーの幾つかの配置方法を測定している当業者は、従来技術では2またはそれ以上の電極が多数の四分区間または等価領域に配置されるセンサー配置だけを利用することを認識するであろう。
外来用の装置の別の有意な欠点は電気ノイズである。ノイズは身体の周りの周囲ノイズ源からだけでなく身体の内部の運動及び期間のノイズ並びにもっとも重要なのは身体自体の運動により生じるものであり、筋肉アーチファクト、運動アーチファクト、皮膚ストレッチング、電極と皮膚との間の電極が含まれる。多種多様な特許及び他の参考文献が心拍数の検知を含む多数のシステムにおけるノイズのフィルタリングによる除去について述べている。1996年6月11日付けの特許第5,524,631(発明者:ザホリアン他)では、胎児の心拍数を検知するシステムが開示されている。その環境には、母親の心臓活動を含む有意なノイズの問題だけでなく、母親の腹部内の液体内の体重の場所により生じる有意な雑音またはひずみが存在する。ザホリアンは、胎児の心拍数を明らかにするために多数の並列非線形フィルタリングによりかかるノイズ及びひずみを除去している。このシステムは、多数の従来技術と同様に、モニター装置の着用性または長期間にわたる継続的モニター能力には無関心である。
上述したシステムは何れもコンパクトな装置における着用性及び正確性を組み合わせるものではない。従って、従来技術において欠落しているのは、図1Aまたは単一の四肢上の図1Aに示すような単一の四分区間内のような単一の等価領域内の2つの場所からECGを測定する能力を備えた装置である。従来技術には単一の等価領域内において不等電位対の可能性を認識する幾つかの例があるが、従来技術は利用可能な信号を得るためのこれらの対を利用については教示していない。普通でない場所からのこれらの信号を利用できることに対する幾つかの障害があるが、それには、信号の振幅が小さいこと(信号が最も普通に配置される電極の場所で測定される信号の10分の1未満である)とその信号に比べてノイズの量が多いことと共に普通でない場所から得られるノイズ及び精度及び振幅の問題点を克服するためにはかなりの努力と危険性があることが含まれる。さらに当該技術分野に欠落しているのはサイズが比較的小さく、臨床的な観察、利用または調製条件を最小限に抑えるセンサーと併用して長期間継続的に着用しモニターするようになっている装置である。かかる装置は着け心地の良さ、単純さ及びモニタリング性の改善を含む継続して心臓モニターする新しい機会を与える。さらに、当該技術分において欠落しているのは心臓関連パラメータの継続的なモニタリングを着用者の物理的活動を検知し識別しそして記録してそれを心臓関連パラメータと相関することができる装置と組み合わせる能力である。
発明の概要
開示されるモニター装置及びその関連の方法は、ECGを含む心臓関連パラメータをモニターする自蔵型で比較的小型の着用可能なパッケージを提供する。このモニター装置はユーザーの身体に一時的に固定されるという意味で着用可能である。しかしながら、本願の一部を形成する2003年3月4日付け米国特許第6,527,711号(発明者:スチボリック他)に記載された意味で着用可能な簡単でかさばらないハウジングを主として有する。スチボリックは、身体に固着される物品の大きさ、柔軟性及び場所が着用者が身体の一部としてその物品を認識する能力に有意な影響を与え、かかる物品の長期間着用に付随するいらだたしさを減少することを教示している。さらに、適当な形状、材料及び場所の使用により通常の身体の動き及び活動に対するその物品の干渉が減少する。これらの要因がそれぞれ物品の着用性を向上させ、従って、着用者が長期間継続的に着用するようになる。
さらに詳細に説明すると、このモニター装置は本願の一部を形成する2003年8月12日付け米国特許第6,605,038号(発明者:テラー他)に記載されたタイプである。このモニター装置それ自体の主要な特徴は、長期間着用しても着け心地がよく毎日の通常の活動の間、定位置に留まるため、高品質の信号またはデータ記録を継続的に行うことができ、また、ノイズや装置それ自体により生じる信号に対する他の干渉を減少させるハウジングまたは他のパッケージに以下に述べるような機能を提供することである。この装置の1つの特徴は、ハードウェアの全てまたは少なくとも大部分を取り込む自蔵型ハウジングを提供することである。このモニター装置は、テラーの装置に加えて、付属品または剛性的ハウジングの代わりとして切り傷や擦り傷に使用されるものに似た大型の接着性ストリップを含み、吸着材の現在の位置内にセンサーパッケージを含む。重量及び特に運動のような過酷な状態の下で装置を正しい場所だけでなく身体に適正に接触する状態に固定する能力を増加させる上で非常に重要である。この装置が広い範囲の、または臨床的な皮膚の準備を必要とせずに着用及び取り外しを簡単に行うことができる。この装置には、装置重量によりスナップ接続または他の接続部が外れるかまたは電極が皮膚から引き剥がれるのを防止するに必要な適当な種類及び強度の接着材が設けられている。この装置の主要な利点は目障りで不便であるだけでなくシステムへのノイズ入力を発生させる大型アンテナとして働く長いリード線がないことである。スナップ接続を減少することによりホルター装置及びループ装置に共通のこれらのノイズが減少する。現在のプロセッサ及びセンサーのサイズでは必ずしも可能でないが、ハードウェアを適正に小型化すると、このシステムは同じ基本的な方法及び装置を使用することにより時計またはめがねの上に簡単に摺着することが可能である。
さらに詳しくは、本願のモニター装置は個人の身体に着用される少なくとも1またはそれ以上の種類またはカテゴリーのセンサーを有する。多数の電極または等価タイプの他の副次的感知装置を含むセンサーはコンテキストセンサー及び生理学的センサーのカテゴリーから選択可能である。生理学的センサーは、呼吸数センサー、温度センサー、熱束センサー、体コンダクタンスセンサー、体抵抗センサー、体電位センサー、脳活動センサー、血圧センサー、体インピーダンスセンサー、体運動センサー、酸素消費量センサー、体化学センサー、間質液センサー、体位置センサー、体圧力センサー、光吸収センサー、体音センサー、圧電気センサー、電気化学センサー、歪み計、光学的センサーを含む群から選択される。センサーは個人の感知したパラメータを示すデータを発生するよう組み込まれる。個人のかかる1またはそれ以上のパラメータがあるかもしれず、少なくとも1つのかかるパラメータは生理学的パラメータである。装置はまた少なくとも1つの生理学的パラメータを示すデータの少なくとも一部を受けるプロセッサを有する。この装置は単一の集合関連パラメータ、即ち心拍動の検知に特に向けられている。さらに別のセンサーによりまたはそれによらずにさらに別のパラメータが検知されることを特に理解されたい。プロセッサはかかる検知されるパラメータを示すデータの少なくとも一部から導出されるデータを発生するように構成可能であり、その導出データは個人のさらに別のパラメータより成る。そのさらに別のパラメータは任意のセンサーで直接検知できない個人の状態パラメータである。
これらのセンサーは、生理学的センサーか、少なくとも1つの生理学的センサーと1またはそれ以上のオプションとしてのコンテキストセンサーでよい。モニター装置はさらに個人の身体の上に着用されるハウジングを有し、このハウジングはセンサーを支持するかまたは少なくとも1つのセンサーがハウジングから離れて位置する。この装置はさらに第1及び第2の部材が個人の身体の一部に巻き付けられるそのハウジングを支持する柔軟性のある部材を有する。この柔軟性のある部材は1またはそれ以上のセンサーを支持する。この装置はさらにハウジングと個人の身体の間の接触を維持するためにハウジングに結合された巻き付け手段を有し、この巻き付け手段は1またはそれ以上のセンサーを有する。
モニター装置は、データ記憶装置を含む少なくとも2つのセンサーから遠隔の外部の中央モニターユニットを内蔵するかまたはオプションとしてそれと併用される。データ記憶装置はプロセッサからの導出データを受け取り、かかる導出データを取り出し自在に記憶する。この装置はまた中央モニターユニットから受け手へ導出データに基づく情報を送信する手段を有し、この受け手は個人または個人により権限を与えられた第三者を含む。プロセッサは個人の身体に着用されるハウジングにより支持されるかあるいは中央モニターユニットの一部でよい。
さらに別の実施例として、導出データまたは他の算定データを発生するようにプログラムされそして/または構成されたモニター装置内のプロセッサでなくて、パソコンのような別個の計算機をそのようにプログラムすることができる。この実施例ではモニター装置はユーザーの種々の生理学的及び/またはコンテキストパラメータを示すデータを収集しそして/または発生するが、これはメモリ内に記憶される。その後、このデータは計算装置に周期的にアップロードされ、この計算装置は導出データ及び/または他の算定データを発生する。あるいは、モニター装置のプロセッサは導出データを発生するようにプログラムすることが可能であり、別個のコンピュータは生理学的及び/またはコンテキストデータ、それから導出された第1のデータ、ユーザーにより手動入力されるデータ及び/またはモニター装置または協働する第3の装置からアップロードされる装置と装置の間の相互作用の結果入力されるデータに基づきさらにまたは二次的導出データを発生するに必要なユーティリティー及びアルゴリズムを含むようにプログラム及び/または構成される。これらの別の実施例の計算装置はインターネットのような電子ネットワークに接続して中央モニターユニットなどと通信できるようにすることができる。
この装置に個人の生活活動データを取得するか検知するように構成することが可能であり、中央モニターユニットから送られる情報もまた生活活動データに基づいている。中央モニターユニットはまた個人が勧告されるルーチンに従う度合いに関するフィードバックを発生しこれを与えるように構成することができる。フィードバックは生理学的パラメータ、導出データ及び生活活動データを示すデータのうちの少なくとも1つの少なくとも一部から発生することができる。
中央モニターユニットはまた、個人の健康及びライフスタイルの少なくとも1つの局面の管理に関するフィードバックを発生して受け手に与えるように構成することができる。このフィードバックは、第1のパラメータを示すデータ、第2のパラメータを示すデータ及び導出データのうちの少なくとも1つから発生することができる。
このシステムは着用者による相互作用を必要とせずにデータを継続的に収集するように設計されているが、かかる相互作用は必要に応じて特に日時表示能力のような別の機能のために可能となる。心臓関連パラメータを継続的にモニターする能力により、上述したようにある事象の発生時または導出データの状態に基づくしきい値状態の検知時に手動でトリガーする必要が制限される。システムは継続的にデータを収集するよう設計されているが、一部の実施例では、ユーザーは日時表面ボタンを使用してその表示された日時のあたりの期間においてある特定の心拍数パラメータを収集すべきであるという合図を送ることができる。この装置の別の機能はコンテキスト及び活動の検知である。装置に設けられた生理学的及びコンテキストセンサーの両方を使用することにより、データパラメータのいかなる組み合わせがある特定の活動と関連性があるかを学習し、モデル化しあるいは確かめる能力を得ることができる。ユーザーが行う活動の種類を検知し識別する能力により、ユーザーはその後のチェック時に心臓出力データと相関させるためにこれらの活動を手動記録する必要性から解放される。
モニター装置の機能は身体の単一領域内の多数の不等電位心臓パラメータ信号、さらに詳細には身体の上の多数の検知可能な活動電位信号の検知に基づく。この装置及び方法は心臓の活動電位に関して不等電位信号を得るために身体の上のある特定の点の対を特定しモニターする。従って、センサーの場所はこれらの検知可能な不等電位活動電位信号に対するそれらの関係により決定されるが、それらは人体の種々の四分区間を分類する図1Aに示す平面の周りに配置される。
装置の物理的形状及び/またはハウジングは図示説明するそれらの実施例に限定されないことを特に注意されたい。さらに柔軟性を必要とするまたは使い捨ての性質を意図されているさらに別の実施例は、ハウジングが全くなくてもよく、触角のような延長部またはそれに固着された別個の配線のセンサーを有するパッチのような一時的あるいは柔軟性のある容器内の電子的または他の機能を含む。その装置事態の好ましい場所として、特に特定される三角筋及び上腕の三頭筋の場所、頸部及び隣接する内側肩領域の下部の裏側、身体の側部を下にして安静状態の時の上腕に隣接する胸部の側部、及び腰部に隣接する左及び右下側前方の腹部の大腿部領域が含まれる。
さらに、この装置を他の同様な装置と協働するように組み合わすことができるが、それから導出される信号をさらに処理するか解析するために使用できる。例えば妊娠中の女性の場合、第1のかかる装置を胎児の心臓関連パラメータを検知する可能性の低い場所に母親の心臓関連パラメータを検知する場所で母親の心臓関連パラメータを検知するように配置し、第2のかかる装置、特に接着剤または他のパッチの形の装置を母親の腹部上の胎児に隣接する所に配置してもよい。母親の装置からの振動を用いて胎児のデータから母親の心臓関連パラメータのノイズを除去することができる。
システムからのフィードバックは標準的なビジュアルグラフィック法を含む多数の形態をとることができるが、好ましい実施例は音声フィードバックも含む。この音声コンポーネントは骨電話または他の種類のように身体の中で共鳴/伝達される音声の形でありその音声が心拍動を表すためにデジタル的に作られてもこの感じは親しみがわくものである。デジタル式またはアナログ式の聴診器をシステムに組み込んで適当な音声の発生を助けることもできる。腹部の上のかかる装置は最も適当な信号場所をサーチする必要性を減少するためドップラーまたはECG電極のアレイにより構成してもよい。この装置は埋め込み可能な装置または他の消費データ検知器と協働して動作するように構成することも可能である。
本発明のさらに別の特徴及び利点は添付図面に関連する本発明の以下の詳細な説明から明らかになるであろう。
心臓学/ECGの分野のこれまでの考え方はECG信号は心臓にまたがって測定する必要あり、これは電極を心臓の普通定義される矢状面及び横断面の2つの異なる四分区間に配置することを意味する。本願にはかかる測定にとって従来は不適当と考えられていた人体の領域内のある特定の対の点からECG信号を測定できる装置及び方法が記載されている。記載された装置及び方法は電極の場所として以前定義された等価領域内のある特定の場所の特定に向けられている。これらの電極場所の多くは単一の四分区間内にある。即ち、電極場所を組織を通して直接幾何学的につなぐとそれにより形成される線は別の四分区間を横断しない。
換言すれば、1つの四分区間内のある特定の点は異なる四分区間に従来関連するECG信号の電位と相関関係があるが、その理由は反対側からの電位がその点へ、組織内の内部信号リード線として見なすことができる、人体を介する低インピーダンス非均質的電位または電気通路に思われる所を介して内部を運ばれるからである。従って、この方法は人体のある特定の四分区間から得られるこれらの局面をより狭く画定するのではなくてECG信号の2つの異なる局面に焦点を当てている。かくして、従来技術の教示とは異なり、ECG信号は単一の四分区間内に配置された電極対を用いて検知及び測定されるがこれら2つの点の間の有意な電位を検知するものである。換言すれば、2つの点は互いに不等電位である。大部分の例では、皮膚表面のそれぞれ独立の領域内に位置する電極場所を平面的なあるいは不規則的な境界により分離さえていると見るとわかりやすい。
本発明の好ましい実施例では、左腕またはそれに近い所で対を形成する場所がECG信号の異なる局面を検知するために電極を配置する場所として特定されている。等価領域内の同様な場所は右腕及び左腕、腕の下の腋下部、骨盤に隣接する前大腿部、頸部の後底部、脊椎の後底部を含む人体の多数の場所に見られることを注意されたい。詳述すると左腕上のある特定の場所はECGの1つの局面を運び、左腕上またはそれに近いある特定の場所はECG信号の異なる局面を運ぶ。解剖学的名前、特に筋肉または筋肉群の名前を用いて人体上の場所を特定するが、電極の配置はこれらの基準場所のすぐ近くの皮膚表面にする必要があるにすぎず侵襲性は意図されていないことに特に注意されたい。左腕の裏面図及び正面図である図2A及び2Bを参照して、発明者等は、左手首5、左三頭筋10、左上腕筋15が三角筋20、大円筋25及び後背筋30の周辺の場所と対を形成すると2つの四分区間で測定される従来の信号に関連性がある電位信号を発生できることを発見している。詳述すると、左腕上のこれらの点対からの信号は心室の収縮に付随するQRS群と相関関係がある。
かくして、一つの電極を手首5、三頭筋10または上腕筋15上に、また第2の電極を三角筋20上に配置することにより、心臓の活動電位従って、ECG信号を検知することが可能である。これらの電極は三角筋及び三頭筋の中心点近くに、約130mm、より詳細には70−80mm離隔し、腕の正中線から後ろの方に約30−45度(30度が最も好ましい)傾斜させて位置させるのが好ましい。左腕上またはその近くのある特定の好ましい場所をECG信号の第2の局面の電位と関連性があると述べたが、これらの場所は例示的であるにすぎず、ECG信号の第2の局面の電位に関連性を有する左腕上またはその近くの他の場所を電位測定を行うために特定できることを理解されたい。さらに、腕の下方部分全体5´は手首5を同じ信号を与えるものとして特定されていることを特に注意されたい。図2Cを参照して、三角筋上20上の2つの場所と三頭筋10の種々の局面上の2つの場所とを有する4つの特定対の場所が示されている。これらの場所の間の破線は有効な対を示しており、中実点と空白点はこれらの場所から得られるECG信号の相対的な局面を表すことを注意されたい。ECG信号の2つの局面を与える4つの可能な組み合わせを示す。図示した有効でない対13は、特定の筋肉または筋肉群をただ選択しても適当な信号を得るには十分でなく特定の場所の入念な選択が必要であることを示している。
別の実施例において、ECG信号を検知するための電極を配置する右腕上またはその近くにおいて対を形成する場所を特定する。図3A及び3Bを参照して僧帽筋35、胸筋40及び三角筋20の底部がECG信号の第2の局面の電位に関連する場所であり、これらの場所が心臓の従来定義されていた右側活動電位に関連する電位にあることを意味する。特にその外側頭部領域の三頭筋10及び二等筋45はECG信号の第1の局面の電位に関連する場所であり、これらの場所が四分区間iiiにあるが心臓の従来定義されていた左側活動電位に関連することを意味する。かくして、上述した左腕実施例と同様に、1つの電極を三頭筋10上に、第2の電極を三角筋20上に配置することにより心臓の活動電位、従って、ECG信号を検知することができる。再び右腕上またはその近くのある特定の好ましい場所をECG信号の第1の局面の電位に関連するものとして説明したが、これらの場所は例示的であるにすぎず、ECG信号の第1の局面の電位に関連する右腕上またはその近くの他の場所も電位測定により特定できることを理解されたい。
図3C、3D及び3Eを参照して、一連の電極対の場所が示されている。図3C及び3Dにおいて、従来定義されていた矢状面2及び横断面3を胴体をほぼ分断する破線で示す。有効な対をそれぞれ、図2Cでは中実点と空白点及び鎖線で特定する。有効でない対はX印と鎖線とにより示す。上述したように、有効でない対は場所をただランダムに選択しても、あるいは独立した筋肉または筋肉群を選択しても有効な対の場所を見つけるには十分でないことを示す。既知の有効実施例及び好ましい実施例内において特定される特定の場所を以下の表4に示す。
表 4
参照文字 第1の場所(空白) 第2の場所(中実)
A 三頭筋 三角筋
B 三頭筋 三角筋(上部)
C 右僧帽筋 左僧帽筋
D 下外腹斜筋 上外腹斜筋
E 上外腹斜筋 下胸筋
F 広背筋 上外腹斜筋
G 上外腹斜筋 上外腹斜筋
H 大殿筋 下外腹斜筋
I 鼠径靭帯 下外腹斜筋
J 下外腹斜筋 大腿直筋
JJ 鼠径靭帯 大腿直筋
K 大菱形筋 広背筋
L 広背筋 広背筋
LL 胸腰筋膜 広背筋
M 左胸筋 三角筋
N 広背筋 上外腹斜筋
O 右僧帽筋 下左僧帽筋
P 左胸筋 左胸筋
Q 右大腿 左大腿
R 右二頭筋 右胸筋
S 右鼠径靭帯 左外腹斜筋
T 上外腹斜筋 左腕
U 右大殿筋 左大殿筋
同様に、本発明はかかる点が単なる例示であるため四分区間iiまたはiii内からECGを測定するために左腕または右腕上の電極対の配置に限定されないことを理解すべきである。その代わり単一の四分区間内の他の場所を特定することも可能である。かかる場所には、互いに不等電位である上述した頸部、胸側部及び腰部領域上において対を形成する場所が含まれるがそれらに限定されない。かくして、本願発明は任意特定の場所に限定されるとみるべきではなく、単一の四分区間内の任意2つの不等電位場所に適応可能である。
これらの信号を検知するにあたり主要な課題の1つは2つの場所の間から得られる振幅が比較的小さいまたは2つの場所の間で得られる振幅が比較的小さいことである。さらに、この低振幅信号は装置自体により発生されるノイズだけでなく身体が動くと発生する電気的ノイズにより遮蔽及び/または歪まされることが重要である。この文脈において、ノイズがセンサーに到達すると信号の一部として検知される電子ノイズだけでなく人体と装置の運動及びそれらの相互作用により発生する接触ノイズのことをいう。ノイズを除去する上で重要なことは所望の信号とノイズとの間の差を大きくすることである。1つの方法では、1つのセンサーまたはセンサーアレイを腕を超えて胸部または肩関節をちょうど過ぎるところまで延ばすことにより信号強度を増加する。
センサーの配置について2つの競合する好ましい結果、即ち、信号強度及び信号差の増加とセンサーアレイのコンパクト性を考慮する必要がある。コンパクト性はもちろんセンサーを収納するか支持する装置の最終的なサイズと大きな関連性を有する。特にさらに詳しく説明するように、別に実施例では、装置のハウジングのコンパクト性を維持しながら、依然として四分区間i内にある左肩のような装置それ自体からある短い距離だけ離れたセンサー配置場所あるいは別のもう一方の腕まで延びるリード線を組み込むことによりセンサー間の距離を増加させようとするセンサー配置を用いる。このシステムはさらに低振幅信号に対処するための電子増幅回路を備えている。
図4を参照して該図はECG信号を検知し心拍数のような他の心臓パラメータを算定するための回路100のブロック図である。回路100は本願の一部として引用する本出願人の米国特許第6,605,038号及び米国特許出願第10/682,293号に記載されたアームバンド人体モニター装置のような着用可能な人体モニター装置において実現可能である。図4の左から右に向けて、回路100は電極105A、105Bを有し、その一方はECG信号の第1の局面の電位に関連する上述した場所に接続され、もう一方は、例え電極105A、105Bが単一の余分四分区間内に配置されるとしても、ECG信号の第2の局面の電位に関連する人体上の場所に接続される。皮膚と第1段増幅器115との間のインターフェイスは、これにより心拍数信号がいかに良好に検知されるかが決定されるため重要である。電極の接触インピーダンス及び電位は第1段増幅器ブロック及び関連のバイアス/結合回路を設計する上で重要な設計事項である。
電極105A及び105Bは比較的小さな電圧、この場合は心臓の筋肉活動を示す20μVのオーダーの電圧を感知するために皮膚上に保持される。適当な電極には、3Mにより市販される使い捨てで一度だけ使用可能なレッドロッド接着剤付き電極、例えばステンレス鋼、導電性炭化ゴムで作られた公知の再使用可能な電極もしくはカナダのアドバンストバイオエレクトリックのある特定の製品のような他の導電性基体が含まれる。アドバンストバイオエレクトリック社製品とは異なり、もっとも最近の再使用可能な電極は回路100の性能に影響を与えかねない高い結合インピーダンスを有するのが通常であることを注意されたい。従って、この問題に対処するため、ニュージャージー州のジャージーシティーのレッドリズムインコーポレイテッドにより製造されるブーバンプのようなジェルまたはローションを皮膚とのインピーダンスを減少させるよう皮膚に接触配置する時に電極105A及び105Bと併用することができる。さらに、電極105にはとりわけ皮膚との電気的接触を増進して表皮内またはその下方の間質液にリアルタイムでアクセスできるようにするための複数の顕微針を設けることができる。顕微針は皮膚の角質層を貫通して表皮に到達することにより電気的接触を増進する。ECG信号の測定は表皮の下方位置で行うのが得策であるが、その理由は上述したように、電圧が20μVのオーダーで小さく、信号が表皮を通過することによりノイズアーチファクトが導入されることが多いためである。かくして、顕微針の使用は測定信号に良好な信号対ノイズ比を与え、皮膚の準備を最小限にする。かかる顕微針は当該技術分野で周知であり、金属、ケイ素またはプラスチック材料で作成可能である。従来技術の顕微針はプロクターアンドギャンブル社の所有になる米国特許第6,312,612号に例えば記載されている。特定の用途に応じて、顕微針の数、密度、長さ、先端または底部における幅、分布及び間隔が異なるであろう。顕微針は導電性、低アレルギー性の目的でメッキをしてもよく、またECG測定のための電位を依然として増加させながら他の生理学的電気化学的信号またはパラメータの感知もするために生化学的な被覆を施すこともできる。顕微針はまた、電気的、化学的または電気化学的な感知を行うために表皮内で液体を伝達するミクロレベルの毛細管と連通するチャンネルを介して間質液の同時的なサンプリングを行うように構成することもできる。顕微針はさらにユーザーが動いても電極が皮膚の上に適正に配置された状態を保つ能力を増加させる。しかしながら、顕微針を使用すると大型の装置またはハウジングにセンサーを取り付ける能力が制限されるが、その理由は大型の装置の重量により顕微針が移動時にせん断変形するからである。基本的なセンサー上に顕微針だけでなく接着剤だけを用いるかも考えられる。以下にさらに説明するように、異なる可撓性の材料を用いるかあるいはエラストマー性またはばねのような応答性または形状記憶性材料を用いることによりセンサーの接触及び場所の配置の安定性を改善することができる。
特定の状況下において、臨床医またはユーザーの他の観察者は指示または他の処方を守る目的で使用の間中装置が定位置に保持され続けていたかを判定することが重要である。ある特定の接着剤または接着剤付きの包帯のようなプラスチックまたは布に結合されて接着剤を用いると装置を皮膚に固定することが可能であり、装置が取り外されるか取り外そうとした場合に接着が破壊されるため判明する。
着用者がシステムをその腕に正確にあるいは最も効果的に配置するには、例え電極の所望の配置場所が定位置に関して有意な許容誤差のある領域を含んでいるとしても装置が正しい方向及び場所に位置するのをチェックすることが少なくとも必要であろう。本発明の1つの特定の実施例において、上述したアームバンドモニター装置300のような電極105のアレイを有する装置は、各電極105が最初に接触位置にあるように着用者の身体の最初の位置に配置される。その後、装置は上述したように心拍数または他の心臓関連パラメータを測定しそして測定信号を、上述したように身長、年齢、体重及び性別のようなシステムに以前入力されている、着用者の身体的特性を有する予想される信号測定値と比較する。測定信号が予め設定したしきい値である予想される信号と比べて、信号対ノイズ比または心拍の高さとノイズの高さの比率から判定されるように有意に質が低下している場合、装置は着用者に触覚的、音響的、可視的または他の信号のような方法を与えることにより装置の新しい配置位置、従って、電極105の新しい接触位置を試すように促す。その後、新しい位置で第2の測定が行われ、測定信号が予想される信号と比較される。測定された信号が予想される信号より質が有意に低下している場合、新しい信号が再び着用者へ与えられる。このプロセスは測定された信号が装置によって受け入れ可能と判断されるまで繰り返される。測定された信号が受け入れ可能と判定されると、装置は着用者に現在の配置場所から装置を外すように指示する第2の合格信号を発生する。装置は自動的にまたは手動によりリクエストに応答してこの操作を始動することができる。
回路100は図4において便宜的に2つのボックスで示すバイアス/結合回路110と、第1のブロック115とを有する。当業者であればわかるように、電極105A及び105Bにより検知される約20μVの電位差信号は以下に述べるように第1段ブロック115の限界値近くにバイアスされる。従って、バイアス/結合回路110を設けてこの信号のバイアスを増加させることにより第1段増幅器115の許容入力範囲内に来るようにする。
図5A及び5Bは、以下に詳しく説明するように増幅器入力にバイアス電流を与える2つの方法を示す。バイアス/結合回路110は、好ましくは、信号のバイアスを第1段増幅器115の中間レンジにあげる。以下に述べる好ましい実施例において、第1段増幅器115はレールが0V及び3Vに等しいレール対レール増幅器である。従って、バイアス/結合回路110は好ましくは、電極105A、105Bの電位差信号のバイアスを約1.5Vに増加させる。
特に説明しないが、バイアス/結合回路は、装置が最初に係合状態にされるかあるいは変化するコンテキスト条件の下で発生される信号に基づき調整を行うことができるという点で動的でありうる。動的能力により、ユーザーのサイズまたは他の身体的特性に起因する同様な装置の異なる配置により振幅の個々の相違が補償される。実験によると、距離にに応じて信号強度にある程度の違いが生じることが判明している。さらに、腕に関する装置の運動量、電極の撓曲及び皮膚との接触、皮膚との接触点との下方またはその周辺の筋肉の収縮及び弛緩並びに身体の運動に応じて信号が変化することが予想される。
バイアス/結合回路110は、身体の上に配置されると第1段増幅器の出力をその有用な動作範囲外にする電極105A及び105Bの電位差(直流電圧)を除去するために容量性入力結合を利用するのが好ましい。さらに、第1段増幅器115の入力バイアス電流は0でないため、電流源/シンクにより入力が電源レールに浮動しないようにする必要がある。1つの実施例において、バイアス/結合回路110は図5Aに示す形態をとることができる。図5Aに示す実施例において、バイアス/結合回路110は、0.1μF乃至1.0μFである電極105A、105Bに接続されたキャパシタ120A、120Bと、2MΩ乃至20MΩの間の図示のような接続の抵抗125A、125Bとを有する。抵抗125A、125Bはオームの法則B=IRに従って第1段増幅器115のバイアス電流を与えることがわかるであろう。さらに、バイアス/結合回路110は、その目的が高インピーダンスラインを回路の増幅器の前に高インピーダンスラインに結合される周囲RF信号をフィルタリングにより除去することであるキャパシタ130A、130B、130Cを有する。これらのキャパシタ130A、130B、130Cは1000pFのオーダーであるのが好ましい。1.5Vの中間供給基準電圧122をさらに与えて信号を増幅器の有用な入力範囲の中心に維持する。
図5Bを参照して、該図は、抵抗125A、125Bがそれぞれ逆並列接続されたダイオード135A、140A及び135B、140Bと置き換えられているバイアス/結合回路110の別の実施例を示す。この構成では、電極105A及び105Bからの入力信号が存在しないと、ダイオード135A、135B、140A、140Bは第1段増幅器115に必要とされる電流を与え、各入力を1.5V基準122からわずかに離れた所にバイアスする。電極105A及び105Bに信号が加えられると、通常は20μVの非常に小さな電圧変化が生じる結果、ダイオードを流れる電流に非常に小さな変化が生じ、高い入力インピーダンスが維持される。この構成は、電極105A、105Bを最初に身体に適応する時のように大きな調整が必要な時に指数関数的に大きい電流が第1段増幅器115を迅速にバイアスできるようにする。かかる構成のさらに別の利点は、ダイオードを介して1.5V基準電圧122の実質的なキャパシタ(図示せず)へ大きな静電放電保護通路が提供されることである。実際、このキャパシタは4.7と10μFの間の値を有し有意な静電放電を吸収することができる。
再び、図4を参照して、第1段増幅器115の目的はバイアス/結合回路110からの信号をフィルタ150によりフィルタリングを施す前に増幅することである。フィルタ150の使用目的は、ユーザーの身体と接触状態にある時電極105A及び105Bによりピックアップされる50/60hzの周囲ノイズを除去することである。このノイズは主要電源のハムと呼ぶことがある。フィルタ150はフィルタリングされる信号に通常は1μVの幾分かのノイズを付加する。従って、第1段増幅器115の目的はフィルタリングプロセスにより付加される信号がバイアス/結合回路110からの信号を圧倒しないようにフィルタ150を用いてフィルタリングを施す前にその信号を増幅することである。バイアス/結合回路115からの信号出力は20μVのオーダーであるため、第1段増幅器115を用いて信号を最初に増幅することなしにフィルタ150によりフィルタリングを施すとフィルタ150によりノイズにより圧倒される信号を生じる。従って、第1段増幅器115は100と10,000の間が好ましい。最も好ましくは255の利得で信号を増幅するために使用される。
図5Cは第1段増幅器115の適当な例を示すものであり、この増幅器はマサチューセッツ州のノーウッドのアナログデバイシズインコーポレイテッドにより販売されるモデルAD627またはカリフォルニア州のミルキタスのリニアテクノロジーコーポレイションにより販売されるモデルLP118であるのが好ましいプログラム可能利得増幅器116を有する。これらの増幅器の利得はその適当な入力に結合される利得選択抵抗で決定される。従って、アナログデバイシズインコーポレイテッドにより販売されるモデルADG608マルチプレクサのような入力マルチプレクサ117を用いることにより、増幅器の適当な利得選択抵抗を決定するためにテスト期間の間その第1段増幅器115に用いるプログラム可能利得増幅器の多数(好ましくは8個)の利得選択抵抗のうちの1つを選択的に接続したり切り離したりすることができる。試験モードにおいて入力マルチプレクサにより利得が一旦決定されると、第1段増幅器115として使用されるプログラム利得増幅器と併用するために利得のための単一の固定抵抗を選択することができる。
第1段増幅器115の増幅器を選択する上で重要なパラメータは入力バイアス電流、入力オフ電流及び入力オフセット電圧である。バイアス/結合回路の入力インピーダンスにより増倍される入力バイアス電流は、第1段増幅器115に正及び負の入力の共通モード入力オフセット電圧を与える。第1段増幅器115の入力を電源レールから十分に離れた値に維持して所望の出力電流のクリッピングを防止するように注意を払う必要がある。バイアス/結合回路と同様に、別の設計には、電源投入、腕への最初の装着のような種類の活動またはある特定の高い運動量の活動に基づき入力電圧を動的に制限して通常状態の下での入力電圧が最適地になるようにすることのできる回路を含む。当業者であればわかるように、幾分からのクリッピングは受け入れ可能である。心拍数または他の心臓パラメータを検知するためのアルゴリズムは信号対ノイズ比が比較的高い状態を持続すると仮定してある量のクリッピングの存在下で動作可能である。
バイアスインピーダンスにより増幅される入力オフセット電流パラメータにより、第1段増幅器115に印加される差入力電圧が与えられる。この差電圧は増幅器に固有の入力オフセット電圧パラメータに加算されるものであり、全入力オフセットはこの2つの和であるにすぎない。利得により増幅される全差入力電圧は出力オフセットを決定する。再び、出力信号が電源レールから十分離れた値になるように保持して増幅器出力の飽和を防止するように注意を払う必要がある。一例として、上述したモデルAD627のようなバイポーラ増幅器は10nAへの入力バイアス電流と、1nAの入力オフセット電流最大値と、150μVの入力オフセット電圧を有する(全ての値は25℃における最悪のケースでの最大値である)。共通モード入力オフセットを0.5V未満に抑えるためにバイアスインピーダンスは0.5V/10nA=50MΩより大きなものであってはならない。しかしながら、この入力オフセット電流により0.5Vの最大出力オフセット電圧を維持するためには入力インピーダンスは0.5V/利得/1nAより大きなものであってはならない。利得は100の場合、これは5MΩになる。利得が500ではこれは1MΩになる。第1段増幅器115として使用するに適当な別の増幅器はSEP入力を有するテキストインストルメンツ社製のモデルIMA321プログラム可能利得増幅器である。この増幅器の入力バイアス電流は10pA、入力オフセット電流は10pA(最大)である。共通モード入力オフセットを0.5V未満に維持するために、インピーダンスは0.5V/10pA=50GΩより大きなものであってはならない。しかしながら、この入力オフセット電流により、0.5Vの出力オフセット電圧を維持するためには入力インピーダンスは0.5V/利得/10pAより大きなものであってはならない。利得は100であればこれは500MΩになる。利得が1000であればこれは50MΩになる。
別例として、当業者であればわかるように、第1段増幅器115は低コストの個別演算増幅器の回路により実現可能である。かかる方法によると第1段増幅器115のコスト及び電力消費が減少する可能性が高い。当業者であれば理解できるように、増幅器入力のバイアス電流、出力の飽和及び入力バイアス/結合の同じ分析をかかる別の方法に適応可能である。
図4を再び参照して、フィルタリング150は別個のローパス及びハイパスフィルタ部分を有するのが好ましいバンドパス回路である。ローパスフィルタ部分の目的は身体に接触関係にある時電極105A及び105Bによりピックアップされる50/60Hzの周囲ノイズを除去することである。コードの減衰を得るために多極フィルタを使用するのが好ましい。ハイパスフィルタ部分は電極105A及び105Bのガルバニック効果による信号ベースラインの直流変動をなくすことにより測定されたECG信号の一部を形成する心拍動スパイクがハードウェアまたはソフトウェア手段により容易に検知できるようにする。
一実施例においてフィルタ150は実験を可能にするためにカットオフ周波数が可変のスイッチトキャパシタ型ローパス及びハイパスフィルタを有する。かかるフィルタ150はリニアテクノロジーコーポレイションにより販売されるモデルLPC1164 6ローパスフィルタチップとそれに後続するリニアテクノロジーコーポレイションにより販売されるモデルLPC1164ハイパスフィルタチップにより構成可能であり、これらのチップは非常に鋭いカットオフ特性を有する8次楕円フィルタを提供する。この例の実験により、30Hzのローパスカットオフ周波数と0.1Hzの3Hzとの間のハイパスカットオフ周波数によりうまく動作したことが判明している。柔軟性が与えられるがこの例は比較的高コストであるかなりの量の電力を消費することが判明している。
図6はフィルタ150の実施例を示す。入力の回路は多段フィードバック構成の個別演算増幅器を用いて6次能動フィルタを実現している。図6の回路は上述したスイッチトキャパシタによる設計と比べて消費電流が少なくコストも有意に低い。図6に示す抵抗及びキャパシタの値はテキサスインストルメンツ社により与えられるフィルタプロパッケージのようなソフトウェアツリーパッケージを用いて選択することができる。当業者であればわかるように、バターワース、ベッセル及びエルプティックのような種々のフィルタ形式は成分の値を変化するだけで実現することが可能である。フィルタプロパッケージはまた、各段の必要な帯域幅を含み、図6に示す増幅器を選択するに重要に情報を与える。適当な増幅器には、テキサス州ダラスのテキサスインストルメンツ社により販売されるモデルPLV2764及びOPA5347カッド増幅器が含まれる。図6に示す回路の一部を形成する3段(最初の3つが演算増幅器)か6次センサーは適当な6次Hzのフィルタリングを行うことによる回路の4番目の演算増幅器を図4に示しまた後述する第2段増幅器155として使用するのを可能にする。さらに、ローパスフィルタの第3段演算増幅器を第4段演算増幅器(利得段)に結合する図6に示すRC回路は、上述したような直流ドリフトを除去するハイパス回路を提供する。
再び、図4を参照して、回路100は、フィルタ150からの信号出力をアナログ−デジタルコンバータ160により直接サンプリング可能なレベルに増幅する第2段増幅器155を有する。詳述すると、第1段増幅器115の利得が100と10,000の間の場合、フィルタ150からの信号出力からの振幅は2mV乃至200mVの範囲内になる。第1段増幅器115の利得は500であるのが好ましく、従って、フィルタ150からの信号出力からの振幅は10mVのオーダーである。アナログ−デジタルコンバータ160により高いサンプリング分解能を可能にするために、第2段増幅器155を用いてこの信号をさらに増幅する。第2段増幅器の利得は30のオーダーであるのが好ましく、従ってこの増幅器を好ましい実施例の10mV信号を300mV信号に増幅する。しかしながら、第2段増幅器155の利得は10乃至100のオーダーである。第1段増幅器115の場合と同様に、プログラム可能利得増幅器を第2段増幅器155として用いることができる。あるいは、上述したように、図6に示すフィルタ150の実施例中の使用していない(第4の)演算増幅器を第2弾演算増幅器155として用いることができる。
アナログ−デジタルコンバータ160は第2段増幅器155によるアナログ波形出力をデジタル表示に変換するが、このデジタル表示はその後さらに詳細に述べるように1またはそれ以上のアルゴリズムにより心拍数のような心臓関連パラメータを求めるように処理することができる。アナログ−デジタルコンバータ160は基準電圧が3V、毎秒32−256サンプルの12ビットアナログ−デジタルコンバータを用いて実現することができる。かかる装置はテキサスインストルメンツ社のMSP430S135プロセッサに一体化されている。アナログ−デジタルコンバータ160は中央処理ユニット165に接続されるが、このユニットは変換済みデジタル信号を読み取って以下の機能のうちの1つを実行する。これらの機能とは、(i)後で解析するためにフラッシュまたはSRAMのようなメモリへ生のデジタル信号を記憶させる、(ii)多数の生のデジタル信号をメモリに記憶させた後それらを有線または無線で遠隔のコンピュータへ送信し、上述したように分析してそして/またはリアルタイムで表示する。または(iii)中央処理ユニット165上の上述したアルゴリズムを用いて生のデジタル信号を処理することにより心拍動のタイミング及び種々のサイズ、心拍数及び/または心拍動間の変動性のような心臓関連パラメータを求める。この最後の機能に関して、中央処理ユニット165は、心拍動及び/または心拍数を一旦求めた後、心拍動毎にLEDを点滅させるか心拍数情報をメモリに記憶させるような種々のタスクを実行する。オプションとして、中央処理ユニットは動作制御または最小限音声プレイヤ装置166の選択を行うことができる。当業者にとって明らかなように音声プレイヤ166は音声メディアに記憶させ、それを再生しまたは別個に記憶させた音声メディアを再生するタイプである。この装置はさらに詳しく後述するように音声プレイヤ166の出力を制御するかまたは着用者が音声プレイヤ166を制御できるようなユーザーインターフェイスをただ提供することができる。
これらの機能は逐次的に独立して実行することも可能である。例えば、データをデータ記憶メディアにリアルタイムで記憶させると同時に解析し出力することができる。後続のプロセスによりシステムは前に記憶したデータを引き出し、別のアルゴリズムまたはフィルタを利用して異なる情報を引き出すことができる。さらに、上述したフィルタプロセスの種々の点からのデータを同時に記憶し且つ比較するかまたは個々に解析することによるそのプロセスのある特定の点で失われる信号情報を検知することができる。
図7を参照して、図示のECG信号を測定する別の回路200は多数の電極のアレイ105、例えば、4つの電極105A乃至105Dから使用されている。この実施例の電極105は図4の回路100と同様に対毎にグループ化されており、各対の一方の電極はECG信号の右側の電位に関連する位置に配置され、各対のもう一方の電極はECG信号の左側の電位に関連する位置に配置される。各対の電極は特定の一般的な場所から良好な信号を得ようとして互いに近い場所に配置されるかあるいはさらに詳しく後述する特定の実施例に示すように互いに離れた場所に配置されて種々の場所からの信号がピックアップできるようにされる。各対の第2の電極は同じように配置することができる。電極105の各対は上述したようにバイアス/結合回路110に接続され、その出力は上述したように第1段増幅器115に接続されている。図7、8A、8B及び8Fに示す実施例では、各第1段増幅器115の出力は例えば抵抗回路である加算回路170にへ送られる。加算回路170は第1段増幅器115の出力を一緒に加算する。加算された信号はフィルタ150、第2段増幅器155を経てアナログ−デジタルコンバータ160及び上述の中央処理ユニット165へ送られる。
この回路は最小のコストとコンポーネントの実施例において実現可能であるが、これは装置の使い捨て実施例に最も適用可能であろうことに注意されたい。この実施例において、装置にはプロセッサ、電圧差をピックアップするための電気的に分離された電極、QRS信号のような電圧スパイクに関連する異なる電流を通過させるためのゲート機構及び通過した電流の極性を表示する機構は設けられていない。この装置は運動、バッテリーまたは対応電池により給電可能である。別のオプションとして装置を測定中の電位で直接給電するものがある。ディスプレイ機構は化学的、LCDまたは他の低電力消費型装置でよい。電圧スパイクはキャパシタを給電するかその放電は非常に遅い速度で生じ、簡単なLEDディスプレイはキャパシタ内の電荷を表示する。別の実施例において、簡単なアナログディスプレイがバッテリーにより給電される。その簡単な装置はデジタル処理を利用するが明確なプロセッサを持たず、その代わり、当業者にとって明らかなようにゲートをしきい値回路及びアキュミレーター回路の簡単な組み合わせが上述した説明に応じて必要な予めプログラムされた論理回路を制御する。
電極のアレイ105を使用する図7及び8A−Fに示す例は、電極105により検知される信号が、電極105が腕の場所に配置される実施例における腕の筋肉活動のように時として飽和されるという事実により特に有用且つ有利である。電極105により検知される信号の心拍動関連部分はコヒーレントであり(高い相関性を意味する)一方、その信号の筋肉活動によるノイズ部分はコヒーレントではない(相関性が無いことを意味する)。従って、信号の種々の部分のコヒーレント/コヒーレントでない性質により、電極105により発生される信号を加算回路170により加算、減算、平均化、逓倍などを行うと、心拍動関連成分が互いに加算されることにより信号対ノイズ比が大きい良好な心拍動スパイクが発生すると共に、筋肉ノイズ関連成分がこれらの信号の山と谷が互いに位相がずれているため互いに打ち消し合う傾向となる。その結果、筋肉関連のノイズが少ない強い心拍動関連信号が得られる。
図8A乃至8Fは図7に示す多数の電極を使用するシステムの別の実施例である。図8Aは、電極の加算及び減算を種々の組み合わせで行えるようにスイッチ111により第1段差動増幅器115の任意の入力で互換的に接続される3つの電極105A−105Bを示す。この構成は1つの電極が常に正の符号で取り扱われることを仮定する。図8Bは図8Aと類似の構成を示すが、図8Aに示す個別スイッチでなくて3x3スイッチマトリックス112が使用される。図8Cは図8Cに示す4x4スイッチマトリックス113を電極対の加算/減算の制御が可能であるため概念としては最も簡単である。一部の実施例では、スイッチマトリックス113の機能を減少することによりある特定の対だけが形成できるようにしてよりクリーンな信号が得られるようにすることができる。図8Bに示す6x4スイッチマトリックス114は、電極対の加算/減算を完全に制御して電極の全部のセットから2つの対を選択することができるようにしたものである。図8Bはかかる電極の3つの完全対の選択性を示すためのさらに別の電極105E−Eを示す。図8Cに示す実施例と同様に、このスイッチの機能はある特定の対だけを可能にするように減少することが可能である。これは所望する数の電極に概念として拡張可能である。図8Eの電極遮蔽を与える実施例を示すが、電極の個々の対をサンプリングした後それに続く解析時に加算及び/または減算をすることが可能であり、最も強力な対を簡単に選択するかまたは信号アレイの平均値を取ることができる。この構成では50−60Hzのフィルタリング及び信号対ノイズ比を高い値に維持するため第1段増幅器の利得を高い値にすることが必要である。図8Fは、CPUがAGC回路167により第1段増幅器の利得を制御することによりシステムがあまり良好でない電極の配置または弱いECG信号に対して補償できるようにする実施例を示す。この実施例は、解析のために多数対の電極から最も強力な対または最良の信号の選択を可能にする。これは単なる信号の強度だけでなく幾つかの方法に従って行うことが可能である。これらは全ての対または組み合わせの信号の解析または全ての信号の平均値の計算または筋肉アーチファクトノイズなどを考慮しての歪みの最も多い信号の識別及び識別される信号から減算されるフィルタ信号としてのその使用を含む。
図4、7及び8A−Fに示すアナログ−デジタルコンバータ160に入力される増幅器済み信号に影響を与えるものとして幾つかのノイズ発生源が存在する。例えば、上述したように、主電源のハム及び直流遊走ノイズは信号に影響を与える。図4、7及び8A−Fに示す実施例では、このノイズはフィルタ150により除去される。別の実施例では、50/60Hzの主電源ハム及び/または直流遊走ノイズを電極105からの差電圧信号から除去するためにフィルタ150のようなハードウェアを用いる代わりに、このノイズの一部または全部をアナログ−デジタルコンバータ160によりデジタル化される前に、人体モニター装置の一部を形成するCPU165かまたはデジタル化された信号を受ける別のコンピュータ上のソフトウェアにより実現される公知のソフトウェア技術によりフィルタリングを施して除去することができる。この実施例では、フィルタ150をなくして、第1段増幅器115のような500乃至2500のオーダーの利得を有する単一の増幅器を回路100または200に用いる。第1の利得が50−500、第2段の利得が10−50の2段増幅器を使用しても良い。これらのステップ(ハードウェア方式であれソフトウェア方式であれ)は、心臓関連信号を構成するには高すぎるか低すぎると考えられる周波数の信号成分を事実上除去するが、典型的なECG信号の周波数は0.5−4Hzである。
このシステムは、処理時間による遅延及び主要な信号から処理され減算されあるいはフィルタリングにより除去されるノイズにより生じる中断を最小限に抑えるように特に設計される。ノイズが処理されるとプロセッサの資源を利用するため、データを蓄積して後で処理する必要がある。データの堆積が増えるのを回避するようにできるだけ迅速に同時性モニタリングに戻ることが重要である。このシステムは上述したような複数の測定技術を利用することにより主要な信号を迅速に識別し抽出してリアルタイムモニタリングへ迅速に戻る。詳述すると、この回路は心臓の3つの拍動内に直流遊走ノイズを最小限に抑えるように設計される。
さらに、アナログ−デジタルコンバータ160に入力される信号に影響を与えるノイズの別の発生源として筋肉の電気的活動により生じる筋肉ノイズがある。筋電図検査法またはEMGは筋肉繊維内の電気的活動を測定する技術であるが、これは上述した最も歪みの多い信号を減算またはフィルタリングする方法に従って一般的に能動的に測定するが、自動的に測定することも可能であり、その理由は、この電気的活動は筋肉アーチファクトにより最も影響を受けそして/または心臓関連の電気的活動に関連する信号がほとんどないか全くないからである。被験者が運動している間、ECGを測定するための電極105もまた同時にEMG信号をピックアップし測定することができる。かかる同時に測定されるEMG信号はECG信号にとってノイズとなる。かくして、本発明の1つの局面によると、ECG信号の測定は、好ましくは最小であるかまたはECG信号の検知が困難な人体の場所からEMG信号を特に測定するために別個の電極を使用することにより改善することができる。その後、この別個に測定したEMG信号を使用することにより種々の信号処理技術により別個にそして同時的に測定したECG信号に存在するEMGノイズを減少または除去することができる。多くの場合、EMG信号の振幅はECG信号を圧倒するため、フィルタリング法また上述した方法を用いても有用なECG信号は得られない。このような場合、電極に非電極式センサーを併用して比較的静かなECG信号を検知することができる。このセンサーは主要な電気的信号がクリッピングされ、過飽和状態になるかあるいはEMG信号により圧倒される時にECGピークを検知すれば心拍の検知にとって代わることができる。センサーの一例として、マイクロドップラーシステムがあるが、これは単一のピックアップまたはアレイとして使用され、ドップラー信号を超える血液などのようなものの機械的な急激な移動を検知して心拍動としてピークを認識しその時間を計ることのできるパルス波を発生させるように設計される。この実施例は、各ユーザーにとって最良の信号を最適化しそして最良の信号を得るようにするため特定の場所に特化するかあるいは種々の深さに特化された異なるセンサーのアレイを利用することができる。このアレイはまた種々の信号及び信号強度をモニターすることにより周知の可聴化または可視的フィードバック機構を用いて腕の上の最良の場所に装置を位置決めするために利用することができる。この装置はまた評価の初期にわたり検知されるある特定の個々の特性に合わせるかあるいはある期間にわたり動的に調整することができる。ある特定の大きいノイズ環境の下では機械的信号を計算の一部として電気的ECG信号の代わりに用いることができる。機械的な波と電気的な波を整列させるために、タイミングと位相差を計算してピークまたは心拍動認識アルゴリズムに取り込む必要がある。このシステムはまたさらに詳細に説明するように着用者のパルス走行時間またはPTTの検知または測定に用いて欠落の相対値及び/または絶対値を導出または算定できるようにすることができる。
パルス走行時間またはPTTは、心拍動により生じるパルス圧力波形が種々の長さの動脈系統を伝ぱんするに要する時間である。このパルス圧力波形は心臓の左心室からの血液の噴出により生じ、動脈系統を血液それ自体の前方運動より大きい速度で移動し、その波形は動脈に沿って血液に先行して進行する。PTTは、ECG信号のR波を用いて検知される心拍動のピークと、パルスオキシメータまたは他のタイプの圧力検知器のような装置により測定される指、腕または足指のような身体の上の場所への対応する圧力波の到達との間の時間遅延を測定することにより求めることができる。血圧が上昇すると、動脈壁により大きな圧力がかかり、パルス圧力波形の速度が増加する。パルス圧力波形の速度は動脈壁の張力に依存する。動脈壁の剛性が大きければ大きいほど即ち動脈壁が収縮すれば収縮するほど、波の速度は早くなる。その結果、動脈血管にとってPTTが増加してパルス圧力波形の速度が減少すると、血圧が低下し、また、PTTが減少してパルス圧力波形の速度が増加すると血圧が上昇する。PTTを測定してリアルタイムの血圧の突然の変化を指示するように用いることが可能である。
1つの実施例において、同じアームバンド装置は、ECG信号の検知能力を有し、身体に接触させるマイクロドップラーアレイと併用してPTT測定を行う。本発明の1つの局面はPTTの測定及びモニタリングにかかわる。特に、心拍動のピーク時間を上述した電極105によりECG信号を用いることにより求めることが可能である。人体上の所与の場所への対応する圧力波の到達時間を多数の圧力センサーのうちの任意の1つにより測定することができる。かかる圧力センサーはドップラーアレイ、単一の圧電気センサー、音響圧電気センサー、光ファイバー音響センサー、血液堆積圧力またはBVTセンサー、光学的血量センサー、マイクロパワーインパルスレーダー検知器及び感震器を含むがそれらに限定されない。本発明の好ましい実施例によると、PTTは上述した圧力センサーのうちの1つまたはそれ以上が設けられたアームバンド人体モニター装置300を用いることにより測定され且つモニターされて血圧の変化が指示される。かくして、この実施例では、PTTは上腕からECG信号を取得し、その上腕上の場所におけるパルス圧力波形の到達を測定する単一の装置において測定される。あるいは圧力センサーを指または手首のような異なる場所にアームバンド人体モニター装置300とは別個に配置することが可能であり、到達時間に関する情報は計算のためにアームバンド人体モニター装置300に送信される。各デバイスの間の通信は有線または無線により行われるか当該技術分野で周知のように着用者の皮膚を通して行うことができる。
別の実施例は、人体に必ずしも着用されない第三者の装置を組み込み、別のデータを収集して心臓パラメータのデータと共にまたはそれをサポートする形で利用される。これらの例には携帯用血液分析器、グルコースモニター、体重計、血圧カス、パルスオキシメータ、CPAP装置、携帯用酸素装置、家庭用サーモスタット、トレッドミル、携帯電話、GPS位置測定装置が含まれる。このシステムはトレッドミルまたはCPAPの場合はそれからデータを収集し、これらの装置を制御し、リアルタイムでまたは新しいパラメータを将来導出するためにデータをデータの流れに一体化する。この一例がユーザーの指の上のパルスオキシメータであり、このパルスオキシメータはPTTの測定を支援し、従って血圧の代わりの読みを提供する。さらに、ユーザーはこれらの装置のうちの1つを用いて装置を較正するためのベースラインの読みを確立することができる。
1つの特定実施例において、電極105は左腕の三頭筋及び三角筋の上に配置してECG信号を測定することができるが、これは筋肉関連のノイズを含む可能性が高い。また、三頭筋とまた、以下に詳述する装置の幾つかの実施例のうちの少なくとも1つによると別個の電極105を1つは三頭筋の上に、また1つを上腕筋の上に配置してECG成分をほとんどまたは全く含まないEMG信号を収集することができる。その後、このEMG信号を用いて測定したECG信号を上述したようにEMGノイズを除去するように処理することが可能である。かかる構成の一例は装置の特定の変形例に関連して以下に説明し特に図15に示すアームバンド人体モニター装置300であり、この装置では電極105A及び105Bが筋肉関連ノイズを含むECG信号を測定し、電極105C及び105DがECG成分をほとんどまたはEMG信号を測定する。
上述したように、別個のEMGセンサーを用いることにより筋肉ノイズを減少することが可能であるが、このノイズはかかるノイズを除去するか減少しようとする努力にかかわらずアナログ−デジタルコンバータ160の信号入力にある程度残ることが多い。ECG信号のQRS波部分を構成する実際の心拍動スパイクの振幅は収集した信号を通して変化し、残存する筋肉ノイズにより信号中の心拍動スパイクが不明瞭になるかそれ自体が1またはそれ以上の心拍動スパイクのように見えることがある。かくして、本発明の1つの局面は、アナログ−デジタルコンバータ160によりデジタル信号出力中に存在するノイズを識別して減少させその信号から心拍動及び心拍動パターンを同定するためのソフトウェアにより実現される種々のプロセス及び技術にかかわる。さらに、この信号には処理を行っても多量のノイズを含み従って識別可能な心臓関連信号が存在しない部分があるかもしれない。本発明のさらに別の局面はかかる部分を処理して継続的なそして正確な出力を与えるに必要なデータを補間する間のプロセス及び技術にかかわる。
本発明の一実施例によるとアナログ−デジタルコンバータ160により出力される信号が送られるCPU160かまたは別個のコンバータ上に常駐するソフトウェアによる1またはそれ以上のノイズ減少ステップを施される。例えば、1つのノイズ減少方式では、その信号の各ピークを識別するような処理を最初に受けるが、これは振幅が増加する部分の後に最大振幅部分が生じその後振幅の減少部分が続くことを意味する。かかるピークの一例を図9に示すが、この例は点A、B及びCを有し、X軸は時間、Y軸は信号強度または振幅を表す。識別される各ピークについて、ピークの高さ(振幅の単位において)及びピークの幅(時間のの単位において)が算定される。各ピークの高さは以下のように即ち最小値(By−AyBy−Cy)で求め、各ピークの幅は以下のように即ち(Cx−Ax)で求める。さらに、QRS波を較正する心拍動スパイクの標準的な高さ及び幅のプロフィールを確立して記憶させ、記憶させたプロフィールの外側の信号に存在する識別したピークを除去するが、これは信号のそれらの部分がノイズを較正するためさらに別の処理ステップにより図示するようにマークされることを意味する。好ましい実施例において、記憶させるプロフィールの標準的な高さは128Hzのアナログ−デジタルサンプリングレートを使用し、信号の符号化を12ビットで行う時約400ポイントであり、標準的な幅は約3乃至15ポイントである。1つの特定の実施例において、このプロフィールは前の測定値の移動平均の百分比に基づく高さ及び/または幅のような適応高さ及び/または幅を較正し、これは信号中の除去すべきスパイクを識別するために蓄積され使用される。さらに、アナログ−デジタルコンバータにより出力される最大値及び最小値に到達する信号のピークも同様に除去される。ピークは、周りの信号を前提としてありそうになり心拍数を示している場合、即ち、近接する他のピークによる計算した心拍数がありそうな最大値を超える場合、その信号から除去することができる。最後に、加速度計または運動または張力を検知する他の運動検知センサー、音声センサー含む(これらに限定されない)または筋肉ノイズの時間スペクトル紋を用いる、図4に示す回路100または図7に示す回路200を組み込んだ人体モニター装置を好ましくは備えた別のセンサーによりノイズを除去することができる。
図7A乃至7Bは、検知した信号からECGデータ及び心拍動を取得して抽出する逐次的ステップを示す。図7Aを参照して、検知した信号75を従来型ECGモニターにより同時に記録した同じ心拍動の基準信号76と共に示す。検知した信号75は本質的に目立った特徴はなく、心臓関連信号全体がノイズにより遮蔽されている。図7Aにおいてもっとも目立つのは60Hzの主電源ハム77であり、これは基準信号中にも存在する。図7Bは30Hzフィルタによりフィルタリングを施した後の同じ2つの信号を示す。基準信号76は本質的にそのままで不鮮明なECG信号を表す。検知された信号はある程度の周期性を有するが、振幅または信号強度は最小である。図7Cは検知された信号75の増幅後の変化を示す。図7Bは基準信号76は修正されていない。図7Dはさらに詳しく説明するようにピーク77にさらに信号処理を施し識別を行った後検知された信号75だけを示す。
ノイズを除去する別の方法として、その信号が送られるCPU165または別個のコンピュータ上に常駐するソフトウェアによる信号のフィルタリングがある。好ましい実施例では、このフィルタリングはノイズと心拍動の間の差を強調するように設計された非線形フィルタにより行われる。図7Eはこのフィルタを適用した結果を示す。検知された信号76をボックス80においてフィルタリング前の状態と、ボックス79においてフィルタリング後の状態で示す。
これらのノイズ減少ステップによりアナログ−デジタルコンバータ160からの信号から有意な量のノイズが除去される可能性が高いが、この処理にもかかわらず信号中には依然としてノイズが残存する可能性が高い。このノイズは、心拍数または他の心臓関連パラメータの算定のようなさらに別の処理の目的のために信号から実際の心拍動スパイクを識別するタスクを難しくする。従って、本発明のさらに別の局面は、残存するノイズにもかかわらずその信号から心拍動スパイクを識別するためのCPU165または別個のコンピュータ上に常駐するソフトウェアにより再び実現される種々のプロセスまたは技術にかかわる。これらのプロセス及び技術は好ましくは上述したノイズ減少ステップのうちの1つまたはそれ以上を行った後に実行されるが、任意のノイズの減少ステップを実行する前に行えばよいこともわかるであろう。
当該技術分野で周知のように、パン−トンプキンス法は、最初に心拍動により生じる可能性のある信号だけを通過させ、通過した信号を微分し二乗しそして移動窓積分を施す一組の信号処理周波数フィルタを使用する。パン−トプキンス法は、本願の一部として引用する以下の論文に記載されている。
本発明のこの局面によると、アナログ−デジタルコンバータ160により出力され、過大なノイズ、即ちその信号から受け入れ可能な心拍動スパイクを実際に検知できないほどのノイズを含んだ信号が最初に識別され処理において無視するものとして遮蔽される。これは、2またはそれ以上のデイルヒットのうち例えば4分の1秒のような所定の時間窓内の信号においてレールヒットまたは領域が所定の数より多い信号の領域を同定することにより行うことができる。次に、残りの領域、即ち、非ノイズ信号と呼ぶ存在するノイズが多すぎるため削除されない領域を処理することにより心拍数のような種々の心臓パラメータの算定に用いる受け入れ可能な心拍動スパイクを同定する。
本発明の一実施例によると、受け入れ可能な心拍動スパイクは、上述したように最初に非ノイズ信号の各ピークを識別した後その高さ及び幅を算定することによりその非ノイズ信号中において同定される。次に、各ピークの幅を所定の受け入れ可能な幅の範囲と比較し、その幅が受け入れ可能な範囲内にあるとわかればそのピークの高さを以前のピークの高さの移動平均の0.75に等しい高さの適応しきい値を比較する。128Hzアナログ−デジタルサンプリングレートを使用する時の受け入れ可能な幅の範囲は3乃至15ポイントであるのが好ましくこれはECG信号のQRS部分の幅範囲を表す。次に、現在のピークの幅が受け入れ可能な範囲内にあり、そしてピークの高さが適応しきい値よりも大きい場合、そのピークをさらなる処理のための受け入れ可能なピークのピーク候補と見なす。これらの条件を満たさないピークを無視する。次に、好ましくは、16分の3秒である所定の時間フィルム内の受け入れ可能なピーク候補については、これらのピークの高さを互いに比較し、その時間フィルム内の低い方のピークを無視する。その時間フレーム内にただ1つの受け入れ可能なピーク候補が存在する場合、そのピークを受け入れ可能なピーク候補と見なす。この時点において、受け入れ可能な多数のピーク候補が同定される。次に、同定された受け入れ可能なピーク候補につきそのピークとその直前のピーク候補との間の領域を、受け入れ可能な現在のピーク候補の高さの0.75よりも高い他の信号ピークがあるか否かチェックする。同定されたそのようなピークが所定の数もしくは2よりも多く存在すれば、現在の受け入れ可能なピーク候補を無効とし、無視してさらにさらに処理を行わない。さらに、受け入れ可能な最も最近のピーク候補と受け入れ可能な現在のピーク候補との間に上述したようなレールヒットがあれば、受け入れ可能な現在のピーク候補を無効とし無視してさらに処理を行わない。これらのステップが完了すると、信号において多数の受け入れ可能なピークが同定されるが、それらはそれぞれ心拍数を含む(これに限定されない)心臓関連パラメータの算定に使用できる受け入れ可能な心拍数スパイクであると見なされる。
受け入れ可能な心拍動スパイクを同定する別の実施例によると、QRSTシーケンスの可能性がある各増加−減少−増加シーケンスが最初に同定される。本願で使用する増加−減少−増加シーケンスは、振幅が増加した後最大振幅部分となり、その後振幅が減少した後最初の振幅部分となってまた振幅が増加する非ノイズ信号上のシーケンスのことである。かかる増加−減少−増加シーケンスの一例を図10に示すが、これは点A、B、C、Dを含み、X軸は時間、Y軸は信号強度または振幅を表す。各増加−減少−増加シーケンスが同定された後、各シーケンスの振幅としての高さと時間としての幅が算定される。各増加−減少−増加シーケンスの高さは以下の式:(B−A)+(B−C)+(D−C)で、また各ピークの幅は以下の式:(D−A)で求める。
次に、各増加−減少−増加シーケンスの高さを以前の高さの移動平均の所定のしきい値、好ましくは75%のような百分比である適用しきい値と比較し、各シーケンスの幅をECG信号のQRSTシーケンスの典型的な幅の範囲を表す128Hzアナログ−デジタルサンプリングレートを使用した時の、4乃至20ポイントに等しい所定のしきい値範囲と比較する。高さがしきい値よりも高く、幅がその所定のしきい値範囲内にあれば、その増加−減少−増加シーケンスを受け入れ可能なQRSTシーケンス候補と見なす。次に、同定した非ノイズ信号中の受け入れ可能な各QRSTシーケンス候補につき、好ましくは16分の3秒の所定の長さの周囲の期間をチェックして、その期間窓内の受け入れ可能な現在のQRSTシーケンス候補の高さをその窓内の全ての同定した受け入れ可能なQRSTシーケンス候補と比較する。受け入れ可能な現在のQRSTシーケンス候補であるかないかに関係なく、その時間窓内で最大の高さを有する受け入れ可能なQRSTシーケンス候補を有効とし、受け入れ可能な現在のQRSTシーケンス候補を含むかもしれないその期間窓内のそれ以外の受け入れ可能なQRSTシーケンス候補を無効として無視しさらに処理を行わない。このステップが完了すると、非ノイズ信号中において多数の受け入れ可能なQRSTシーケンスが同定される。次に同定した受け入れ可能な各QRSTシーケンスについて、時間値である直前の受け入れ可能なQRSTシーケンスまでの距離と直後の受け入れ可能なQRSTシーケンスまでの距離を測定する。各距離を1つのシーケンスのR点からもう1つのシーケンスのR点までの距離として測定するのが好ましい。受け入れ可能なQRSTシーケンスのR点は図10に示す点Bである最大振幅点に相当する。さらに、受け入れ可能な各QRSTシーケンスについて2つの標準偏差を算定する。第1の標準偏差は受け入れ可能な現在のQRSTシーケンスのT点(図10の点Dに相当する)と、直後の受け入れ可能なQRSTシーケンスのQ点(図10の点Aに相当する)との間の全てのサンプリング点の振幅の標準偏差である。もう1つの標準偏差は、受け入れ可能な現在のQRSTシーケンスのQ点(図10の点Aに相当する)と直前のQRSTシーケンスのT点(図10の点Dに相当する)との間の全てのサンプリング点の振幅の標準偏差である。次に、これら2つの測定距離、標準偏差及び受け入れ可能なQRSTシーケンスの高さ及び幅の算定値を簡単な心拍動分類器に入力すると、この分類器は受け入れ可能なQRSTシーケンス及びその周辺の領域が心拍動と見なすことができるものであるかまたはノイズが多すぎるか否かを判定する。心拍動判定分類器は以前取得し分類した心拍動データを用いて学習しているデシジョンツリーでよい。あるいは、この心拍動分類器はデシジョンツリー、人工神経ネットワーク、支援ベクトルマシーン、ベイズの確信ネットワーク、ナイーブベイズ及びデシジョンリストを含む(これらに限定されない)公知の任意の分類機構でよい。
ノイズが多すぎると判定されたシーケンスは無視される。かくして、このステップが完了すると一組の受け入れ可能なQRSTシーケンスが同定され、各シーケンスの図9の点A、B、Cに相当するQRS部分が心拍数を含む(これに限定されない)種々の心臓関連パラメータの算定に使用できる受け入れ可能な心拍動スパイクと見なされる。
受け入れ可能な心拍動スパイクを同定する別の実施例によると、フィルタリング済み信号中のQRSTシーケンスの可能性のある各増加−減少−増加シーケンスが最初に同定される。そのシーケンスの成分の高さが次に算定される。QRSTシーケンス群候補の許容可能な振幅は信号ノイズの予想される振幅の少なくとも2倍である必要がある。さらに、そのシーケンスの幅はQRSTシーケンス群と考えられる群の上限である200ミリ秒を超えてはならない。次に、QRS群候補が依然として有効であれば、現在の心拍数の予測値を前提としてその群の時間的な場所が尤もらしいか否かがチェックされる。心拍動の候補によると思われる心拍数の変化が50%以下であればそのシーケンスを心拍動と同定する。図7Fは検知される信号75を用いるこのプロセスを示すものであり、ボックス81内のQRST群を形成する一連のデータポイントを示す。信号境界ボックス83は検知された信号75内の2つのQRST群を同定するが、これらは上述した50%のテストをクリアしないため除去される。ボックス82に心拍動ピークポイント84を示すが、これはボックス81から心拍動として同定されるQRST群を表す。これらの対応場所には心拍動ピーク点が存在しないことを注意されたい。さらに呼吸率を含む呼吸データをECG波形から抽出することが可能である。呼吸により観察されるECGに規則的で検知可能な振幅変化が生じる。心臓の電気的活動の等価双極モデルにより、呼吸が心臓の平均軸の方向の明白な変調を誘起する。
心拍数データの解析及び表示のためのさらに別の方法が提示される。これらの各方法について、信号は同定されるQRSTシーケンスに基づき1組のオーバーラップする時間スライスに直列的にフェグメント化される。各時間スライスが1つのシーケンスのR点が正確に中心であるのが好ましく、そのシーケンスのR点の両側にあって例えば1.5秒の固定した時間窓を有する。各時間スライスは2個以上のQRSTシーケンスを含むことができるが時間スライスの中心では1つのシーケンスを含む。この分析は数学的に実行されるがグラフィックスにより説明すると当業者に最もわかりやすいであろう。次に、時間の所与の点について、所与の時間スライスの前後におけるある数の時間スライスを融合して同じグラフ上に重ね合わせる。1つの特定の実施例において、所与の点の前後の10個の時間スライスを同じグラフ上で重ね合わせた。このデータが出力の形でユーザーにいかなる形で提示されるかを示すグラフィックディスプレイでは、時間スライスのセグメントをオーバーラップさせることにより、ある数のQRSTシーケンスまたは時間スライスセグメントを同一グラフ上で重ねあわせる。好ましくは1.5秒の時間スライスセグメント内の検知された各主要QRSTシーケンス及びそれに隣接するシーケンスをその窓内において他のシーケンス上に重ね合わせる。例えば、図10Aにおいて、一連の信号50を互いにオーバーラップさせ、主要な心拍動55がオーバーラップした信号の間に整列するようにする。これをAND演算オーバーラップ心拍動グラフと呼ぶ。重畳した全ての心拍動の平均値を算定して表示する。主要な心拍動55が整列したグラフの中心では、それらの心拍動は非常に類似しているように見え、明確な信号を識別可能である。また、その近くの心拍動65は幾分からの偏差があるがぎっしりつまっており、これが心拍動間の変動性を示す。当業者は、この組の心拍動の心拍数は中央のQRS群と隣接する群の中心との間の距離を見ることによりこのグラフから容易に抽出できることがわかるであろう。この例のように信号が非常にはっきりしておれば、この算定法の効用は限られている。しかしながら、信号にノイズが多く多くの偽心拍動が検知される場合、この方法により、信号それ自体にノイズが多く単純なまたは観察法を利用できない時にこの方法によると心拍数を見つけることができる。
オーバーラップ心拍動グラフの別の実施例はオーバーラップに対して加算演算法を使用する。この例において、図10Bに示すように心拍動と隣接する信号とがオーバーラップしている場合、得られるグラフのピクセルの強度を多数のオーバーラップする点の数により増加させる。図10Bは、地の色が黒でオーバーラップする各信号がその色を明るくするECG信号の一例を示す。再び、主要な心拍動55を用いて時間スライスセグメントを整列させるが、隣接する心拍動65は図10Aに比べるとぼんやりした点の集合として示される。この点の集合の幅は対象と成る信号の心拍動間変動性と関連がある。個々の心拍動は高い信頼度で検知することができず、オーバーラップしたグラフでは明確なパターンが示されないが、図Aに示すような平均値60を用いて明確な隣接QRS群を同定することができる。これにより、時間スライスの中心から隣接QRS群を表すぼんやりした点の集合の中心点までの距離からレートを求めることができる。加算グラフを用いることにより、ノイズが目立つ場合に隣接QRS群の明確なスパイクを同定してシステムの能力を増強することが可能である。別の実施例において、特定のピクセルのオーバーラップする点の数がXであればその強度をX1.5として表して最もオーバーラップする点がより選択的に強調するように、ディスプレイをより多くのオーバーラップする点でそれらのピクセルの方へ偏位することができる。
ユーザーの心拍動信号の形態についてデータベースまたは他の基準を確立する方法は、必然的に心拍動パターンを分類してある特定の形態を同定する方法を能力を包含する。これらのパターン及び形態はその後ある特定の活動または状態に関連付けることが可能である。しかしながら、第1のステップは以下のように形態及びパターンを同定することである。
例えば、N個で1組のECG波形を選択する。心拍動間の平均距離を特定し、前方の心拍動間期間の2分の1の期間と後の心拍動期間の2分の1の期間を特定して各波形から切り取る。クリッピングする距離を他の区間をクリッピングしたりその距離を変化することも可能であることを注意されたい。上述した心拍動マッチングの説明と同様に、このプロセスのグラフィックスによる説明が最もわかりやすい。クリッピングモードにおいてN個の信号波形を検出し、上述した加算グラフと同様に、モデル化して、信号の特徴を強度または輝度により測定する。その信号に強度または数値を割り当てる。その周辺の領域には値はない。各波形の水平線である赤道線を特定し、この線の下と上の面積が等しくなるようにする。各波形ピークについて信号のピーク値においてQRSスパイクを2つの部分に分割する垂直線として経線を特定する。全部でN個の画像を全ての赤道線が一致し全ての経線が一致するようにオーバーラップする。N個の信号の各点について、全ての強度値または数値を、これらが例えば0と1000の間の2つの既知の境界地の間にくるように規準化する。その結果として、一致しない領域内において、波形が最も一致して最大値を有する傾向のある、そして一致が最も少なくて最小値を有する傾向のある信号セグメントを含む期間にわたりその人の平均的な心拍動の形態を補足する表示が得られる。さらにN個の画像はそれぞれオーバーラップする前にスケーリングすることができるが、各波形のR点の高さは一定である。さらに、連続するX個の波形のX個のセグメントを選択し、ただ1つだけでなくてX個の波形のシーケンスについて上述した解析を行うことにより精度を増加することができる。
当業者であればわかるように、アナログ−デジタルコンバータ160により出力される信号は、電極150の配置によりECG信号から予想されるものと比べてその極性が判定している(この場合、信号のピークと思えるものが信号の谷に見える)。かかる場合、上述した処理が最初にその極性が反転することにより、成功裏に行うことができる。本発明の一実施例において、アナログ−デジタルコンバータ160により発生される信号は上述したように2回、即ち最初にその極性を判定せずに行った後再びその極性を判定して行い、最良の出力を上述したようにさらなる処理に使用することができる。さらに、加速度計または別の対の電極のような多数の線を用いていることにより、利用する処理の種類または性質に最も適応するように信号処理時に利得及び動的信号しきい値条件を可変にすることができる。さらに、カリフォルニア州フレモントのサルトモント社により製造されるようなピーク検知回路を使用しても良い。
さらに、このシステムは既知のそして認識可能なコンテキストまたは信号パターンを検知することができるが、これらは心拍動または他の人体中の電位に関連する特徴を検知するためにアルゴリズムにより識別できる受け入れ可能な信号をただ提供するわけでない。これらの状況下において、システムはただこの状態を認識してデータの流れを記録するが、EMGまたは運動振幅がピークレベルにある時、システムはこの状態を検知し、ある特定の予め設定したあるいは動的に算定した状態またはしきい値に従って次の適当な信号を受信するまでその信号の処理を停止する。場合によっては、他のセンサーの出力を利用して過剰な身体の運動のような状態の存在を確認することにより、システムは適正に作動しているがコヒーレントな信号がないことを確認すると共に欠落した時間セグメントからのデータの補間のベースとすることができる。これらの状態の下では、心臓に関する信頼性のおける情報を収集できないというシステムからの情報それ自体は誤った心臓情報を送るよりも価値がある。
上述した方法の1つを用いて、アナログ−デジタルコンバータにより出力される信号から心拍動スパイクを一旦同定すると、受け入れ可能な心拍動スパイクを用いて幾つかの方法のうちの任意の方法により心拍数を算定することができる。例えば、1分間のような特定の期間における受け入れ可能な心拍動の数をただカウントするのは心拍数を算定する上で受け入れ可能な方法のように思えるが、多数の心拍動が上述したように無効にされるという事実のためかかる方法は実際には心拍数を過小評価することがわかる。かくして、心拍数及び心拍動間変動性及び呼吸率のような心臓関連パラメータを無効にした心拍動を考慮する態様で算定する必要がある。1つの実施例によると、同定した受け入れ可能な心拍動スパイクからの心拍数の算定は、その信号中に同定された2つの連続する受け入れ可能な心拍動スパイクの各群の間の時間距離を求め、60秒をこの時間で割り算して受け入れ可能な2つの連続する心拍動スパイクの各群の小域的心拍数を得ることによって行うことが可能である。その後、かかる小域的心拍数の全ての平均値、平均値中央値及び/またはピーク値を所与の期間において算定し心拍数の算定値として使用することが可能である。
心拍動の検知について最低レベルの品質の信号を得られない期間に遭遇した場合、この期間の事象を評価する方法を開発する必要がある。このシステムによると、この欠落した期間について心拍数を含む幾つかの心臓パラメータについての正確なステートメントを発生することができる。以前学習したデータ及び心拍数がいかに時間により変化するかについての確率を利用することにより、信頼性のある以前のデータに基づき心拍動の頻度に確立を割り当てることができる。これは欠落した時間セグメントの直前に期間に限られないが、もっともこれは欠落したセクションを最もよく示すものである。記憶したか分類した前の時間セグメントと比較するかまたはマッチングにより、ある特定の状態の下での心臓パラメータに関する情報のデータベースと比較することができる。このシステムはまたこれらの確率の計算においてこの装置と併用される他のセンサーを利用することができる。例えば、加速度計センサーの分散が高度であるとして心拍動チャンネル上の欠落した心拍動の確率を利用することができる。これにより、種々のレートのシーケンスを非常に正確に評価することが可能となり、可能性のある心拍数の計算ができる。この方法はある最小数の検知された心拍動が存在する場合に最も成功率が高い。
欠落した期間における活動評価の別の方法は、最初に上述した方法のうちの1つを用いて心拍動の候補を識別することである。強度値を与える任意の検知法も使用できる。好ましい実施例においてこの検知器は突き止めたリートが事実心拍動である確率に関連がある。二進真/偽検知器を真の場合強度値1として用いることができる。次に、心拍動の可能性のある全ての対を結合して1組の心拍動間のギャップを与える。各心拍動間ギャップは重み付け関数を定義するが、その関数の値はギャップのサイズ、ギャップが検知されて以来経過した時間量、識別強度及び重み関数のファミリーにより必要とされるメタパラメータの組み合わせに基づく。好ましい実施例において、この重み関数は逆ノッチ関数である。谷が秒である心拍動間ギャップはノッチのピークの場所を決定する。ノッチの高さは同定強度、ギャップが同定されて以来の時間の長さ及びライフタイムと呼ぶハイパーパラメータにより駆動される。ノッチの幅はハイパーパラメータの幅により定義される。図7Gはノッチピーク87及びノッチ幅89を有する逆ノッチ関数を示す。この関数自体は数式として下式のように表される。
w(X、ギャップ、強度、年齢、寿命、幅)max(0,(1−年齢/寿命)*強度*(1−abs)x−ギャップ)/幅))
第3ステップにおいて個々の重み関数を加算して全重み関数を得る。さらに、その結果得られた関数をプログラムにより分析して心拍数の概算値を得る。
好ましい実施例において、真の心拍動ギャップの概算値をその関数がその最初の小域的最大値に到達する値として考える。図7Hはその結果得られた関数を示し、最初の小域的最大値91を指示する。心拍動間ギャップが一旦選択されると、心拍数は公式心拍数=60/心拍動間ギャップから求められる。
全重み関数の評価に関連する処理負荷を最小限にするために、心拍動間ギャップが生理学的に可能な値よりも大きいかまたは小さい個々の重み関数を除去する。さらに、年齢がハイパーパラメータの寿命の値を超えている個々の関数も除去する。
別の実施例は上述して過酷な切り取りを行う代わりに許容される心拍間ギャップについて確率フィルタを利用する。これらの確率フィルタを入力として、ECG信号だけでなく1またはそれ以上の信号をとり、許容可能な心拍動の確率的範囲を決定する。この一例は、非ECG信号から着用者のコンテキストを求めた後、各コンテキストについてパラメータがコンテキスト、着用者の身体的パラメータだけでなくECG信号それ自体により決定される特定のガウス分布を適応することである。他の確率分布をこのバイアス付与について同様に容易に利用できる。その後、この確率に各心拍動ギャップの確率を乗算することにより最も可能性ある心拍動を容易に求めることができる後方分布を生ぜしめることができる。
本発明の別の局面として、ある特定の心臓パラメータがノイズにより算定不可能である時にこれらのパラメータを時間的にその近くの測定された値のセットと他のセンサー上で行われた他の測定値のシーケンスとから概算できることである。この方法の1つのかかる実施例は、エネルギー消費量に対して使用するものに類似であるが加速度計のデータ、ガルバニック皮膚応答データ、皮膚温度及びカバー温度データだけでなく実行ステップ及び他の導出した生理学的及びコンテキストパラメータから心拍数を予測するために使用されるコンテキスト予測器である。この方法は最初に着用者の活動を指定し、その後その活動について適当な導出を行う。この実施例において、全ての活動の全ての導出を行い、実行中の活動の確率に従ってそれらを組み合わせる。
本発明の別の局面は、他の導出した信号の品質に関するフィードバックを行う多数のノイズの多い信号を使用して特定のユーザーに対して経時的に適応させる方法である。これを見る別の方法は所与のユーザーに対して較正する方法である。まず第1に、導出した所与のパラメータを計算するが、これは着用者のある生理学的状態を表す。第2の導出したパラメータを計算するが、これは同じ生理学的状態を表す。これら2つの導出したパラメータを比較し、導出した各量に対して計算される信頼度に従って互いに調整する。これらの計算は、学習または調整ができるようにするためにフィードバック信号を受け付けるように設計される。1つの実施例において、これはただ単に勾配降下を利用してパラメータをノイズが多いと認められるフィードバック信号に応じて調整することになる。別の実施例において、これは確率推論のシステムに基づき計算に使用される定数を更新することを含む。
本発明の1つの局面によると、作成プロセスを用いて心拍数及びその多くがクラシックデータ出力及び診断だけからでは可視的に判別できない他の心臓関連パラメータの計算に用いる電極105を用いて発生されるECGを含む、アームバンド人体モニター装置300上の生理学的及びコンテキストセンサーからの表1に示すようなデータから種々の変数に関する継続的情報を発生する広い範囲のアルゴリズムを作成する。これらを心拍数変動性、心拍数偏差、平均心拍数、呼吸率、心房細動、不整脈、心拍動間インターバル、インターバル変動性などを含む。さらに、このタイプの継続的なモニタリングはリアルタイムでデータに事象または時間の表示をする能力と相まって、薬または他の治療法の適用を評価しその直後のまたは長期の効果を観察するのを可能にする。さらに、データ出力のパターン認識及び解析により以前の事象に基づき心臓の不整脈のようなある特定の状態を予測する能力が提供される。かかる変数は安静時、活動時及び全体の値を含むエネルギー消費量、毎日のカロリー摂取量、ベッドにおける睡眠状態、睡眠の開始、睡眠の中断、目覚め及びベッド以外での状態及び運動、着座、自動車での旅行及び横になることを含む活動状態を包含するが、これらに限定されない。かかる変数の値を発生するアルゴリズムは例えば、2軸加速度計の1つの軸または両方の軸、熱束センサー、GSRセンサー、皮膚温度センサー、身体近傍周囲温度センサー及び心拍数センサーからのデータに基づく。さらに、上述したパターン検知及び予測能力により、システムは失神、不整脈及びある特定の生理学的精神的健康状態のようなある特定の事象の開始を、かかる事象の発生場面で既知の状態のパラメータセットを確立することにより予測できる。以前の事象にマッチする特定のパラメータセットが再び発生するとアラームまたは他のフィードバックがユーザーに与えられる。
モニタリング装置は、上述した予測及びパラメータ識別機能の一部として有用な個人の種々の付加的な生理学的パラメータを示すデータを発生することができる。これは他の所で述べたパラメータに加えて、呼吸数、皮膚温度、中心部体温、体からの熱流、電気皮膚反応またはGSR、EMG、EEG、EOG、血圧、体脂肪、水分補給レベル、活動レベル、酸素消費量、グルコースまたは血糖値、体位、筋肉または骨にかかる圧力、紫外線露出及び吸収を含む。ある特定の場合、種々の生理学的パラメータを示すデータは、1またはそれ以上のセンサーが発生する信号それ自体であり、場合によっては、1またはそれ以上のセンサーが発生する信号に基づきマイクロプロセッサーが計算したデータである。種々の生理学的パラメータを示すデータを発生する方法及び使用センサーは公知である。表1は、かかる周知の方法のいくつかの例について、問題のパラメータ、使用方法、使用センサー装置及び発生される信号を示す。表1はまた、そのデータを発生するためにはセンサーが発生する信号にさらに処理を加える必要があるか否かを示す。
表 1
パラメータ 方法 センサー 信号 さらに処理 を要するか
心拍数 EKG 電極2個 直流電圧 Yes
脈搏数 BVP LED及び 抵抗変化 Yes
光センサー
拍動間変異 脈搏数 電極2個 直流電圧 Yes
EKG 皮膚表面電位 電極3−10個 直流電圧 No
呼吸数 胸部体積変化 ひずみ計 抵抗変化 Yes
皮膚温度 表面温度計 サーミスタ 抵抗変化 Yes
中心部体温 食道または サーミスタ 抵抗変化 Yes
直腸プローブ
熱流 熱流束 サーモパイル 直流電圧 Yes
電気皮膚反応 皮膚コンダクタンス 電極2個 抵抗変化 No
EMG 皮膚表面電位 電極3個 直流電圧 No
EEG 皮膚表面電位 電極多数 直流電圧 Yes
EOG 眼球の動き 薄膜圧電センサー 直流電圧 Yes
血圧 非侵襲性 電子血圧計 抵抗変化 Yes
コロトコフ音
体脂肪 体インピーダンス 動作電極2個 インピーダンス変化 Yes
毎分Gショック 体の動き 加速度計 直流電圧 Yes
の活動 容量変化
酸素消費量 酸素摂取 電気化学的センサー 直流電圧変化 Yes
グルコース 非侵襲性 電気化学的センサー 直流電圧変化 Yes
レベル
体位(例えば、 N/A 水銀スイッチアレイ 直流電圧変化 Yes
横臥、直立、座位)
筋圧 N/A 薄膜圧電センサー 直流電圧変化 Yes
紫外線吸収 N/A 紫外光セル 直流電圧変化 Yes
他の多数のタイプ及び分類のセンサーを単独でまたは上述したものと併用することが可能であるが、それらにはユーザーの場所を求める相対的及び地球規模の位置測定センサー、空間内の方向を求めるトルク及び回転加速度センサー、血液化学センサー、間質液化学センサー、生体インピーダンスセンサー、及び、花粉、湿度、オゾン、音響、身体及び周囲ノイズのような幾つかのコンテキストセンサー並びに生体認証方式で装置を利用するセンサーが含まれる(これらに限定されない)ことに特に注意されたい。
表1に掲げたデータの種類は、センサー装置10が発生可能なデータの種類を例示するものである。他の種類のデータも、本発明の範囲から逸脱することなくセンサー装置10により発生できることを理解されたい。さらに、上記データから、個人の生理学的状態に関する或る特定の情報を導出できる。表2は、導出可能な情報の種類の例と、そのために使用可能なデータの種類の一部を示す。
表 2
導出情報 使用データ
排卵 皮膚温度、中心部温度、酸素消費量
入眠/覚醒 拍動間変異、心拍数、脈搏数、呼吸数、皮膚温度、中心部体温
熱流、電気皮膚反応、EMG、EEG、EOG、血圧、酸素消費量
カロリー消費量 心拍数、脈搏数、呼吸数、熱流、活動、酸素消費量
基礎代謝率 心拍数、脈搏数、呼吸数、熱流、活動、酸素消費量
基礎体温 皮膚温度、中心部体温
活動レベル 心拍数、脈搏数、呼吸数、熱流、活動、酸素消費量
ストレスレベル 拍動間変異、心拍数、脈搏数、呼吸数、皮膚温度、
熱流、電気皮膚反応、EMG、EEG、血圧、活動、酸素消費量
弛緩レベル 拍動間変異、心拍数、脈搏数、呼吸数、皮膚温度、
熱流、電気皮膚反応、EMG、EEG、血圧、活動、酸素消費量
最大酸素消費率 EMG、心拍数、脈搏数、呼吸数、熱流、血圧、活動、酸素消費量
立ち上がり時間または 心拍数、脈搏数、呼吸数、熱流、酸素消費量
休止率から目標最大値
の85%まで上昇する
に要する時間
ゾーンにおける時間 心拍数、脈搏数、呼吸数、熱流、酸素消費量
または心拍数が目標
最大値の85%以上
であった時間
回復時間または心拍数 心拍数、脈搏数、呼吸数、熱流、酸素消費量
が目標最大値の85%
以上になった後休止率
に戻るに要する時間
さらに、この装置は、個人を取り巻く環境に関する種々のコンテキストパラメータを示すデータを発生できる。例えば、空気の質、音のレベル/品質、個人の近くの光の質または周囲温度、もしくは個人の地球的位置を示すデータがある。
ここに述べたセンサー及びデータから情報を導出するためにユーザー特性、連続的な測定値、継続的なコンテキスト、瞬時的事象及び累積的状態を予測するための一連のアルゴリズムが開発される。ユーザー特性は、体重、身長及び着用者のIDのような局面を含む着用者の永続的及び半永続的パラメータを含む。連続的測定値の一例はエネルギー消費量であり、これは着用者が消費するエネルギーのカロリー数を1分毎に測定するものである。継続的コンテキストは睡眠、自動車の運転またはジョギングのようなある期間継続する行動である。瞬時的事象は、心臓発作のような一定の期間または非常に短い期間にわたり起こるものである。蓄積的状態は、前のある期間にわたる挙動から人の状態を推論できる状態である。例えば、36時間睡眠をとっておらず、10時間何も食べていない場合、その人は疲労している可能性が高い。以下の表3は、特定の個人的特性、連続的測定値、継続的測定値、瞬時的事象及び蓄積的状態の多数の例を示す。
表 3
個人的特性 年齢、性別、体重、運動能力、状態、疾病、身長、病気のかかりやすさ、
活動レベル、個人の利き腕、代謝率、身体構造
連続測定値 気分、心拍の拍動間変動、呼吸、エネルギー消費、血液グルコースレベ
ル、ケトーシスレベル、心拍数、ストレスレベル、疲労レベル、警戒レベ
ル、血圧、準備性、耐久力、持久力、相互作用に対する寛容性、期間毎の
ステップ、静寂レベル、身体の姿勢及び方向、清潔度、気分または情緒、
親しみやすさ、カロリー摂取量、TEF、XEF、集中度、活性エネル
ギー消費、炭水化物摂取量、脂肪摂取量、蛋白質摂取量、水和レベル、正
直度、睡眠品質、睡眠状態、覚醒レベル、薬剤効果、投薬量予測、水摂取
量、アルコール摂取量、めまい感、痛み、快適度、新しい刺激に対する残
留処理能力、アームバンドの適当な使用、トピックに対する興味、相対的
努力、場所、血液アルコールレベル
継続的測定値 運動、睡眠、うたた寝、着座、立つこと、歩き回ること、ランニング、散
歩、自転車乗り、固定式自転車乗り、ロードバイキング、ウェイトリフ
ティング、エアロビック運動、無酸素運動、持久力形成運動、精神集中活
動、極端な情緒期間、リラックス動作、テレビ鑑賞、定住性、REM検知
器、飲食、集中度、中断、一般的活動の検知、睡眠段階、熱ストレス、熱
射病、学習に対する従順性、二極性代償障害、異常事象(ユーザーにより
測定される心臓信号、活動レベルなど)、驚きレベル、高速道路での運転
または座乗、飛行機による旅行、ヘリコプターによる旅行、倦怠事象、ス
ポーツ検知(フットボール、野球、サッカーなど)、研究、読書、中毒、
薬の効果
瞬時的事象 倒れること、心臓発作、発作、睡眠覚醒事象、PVC、血糖異常、急性ス
トレスまたは見当障害、突発事項、心臓不整脈、ショック、嘔吐、急速血
液喪失、薬剤飲用、えん下
蓄積的状態 アルツハイマー病、脱力感または倒れる可能性の増加、し眠状態、疲労、
ケトーシスの存在、排卵、妊娠、疾病、病気、熱、水腫、貧血、インフル
エンザ、高血圧、精神的疾患、急性脱水症、低体温症、集中状態
本発明は、着用者の生理学的及びコンテキスト状態を自動的に記録する方法に使用できることがわかるであろう。このシステムはユーザーが行った活動、何が起こったか、ユーザーの生理学的状態が経時的にいかに変化したか、またユーザーがある特定の状態をいつ経験したかまたは経験しそうであったかの記録を自動的に作成できる。例えば、システムは、ユーザーの水分補給レベル、エネルギー消費レベル、睡眠レベル、警戒レベルを1日を通して記録するだけでなく、ユーザーが運動を行い、自動車を運転し、睡眠をとり、熱ストレスの危険下にあり、あるいは食事をする時を記録することができる。これらの検知される状態を利用して、データ記録に時間または事象の表示を付し、分析または提示データの或る特定のパラメータを修正すると共にある特定の遅延したまたはリアルタイムのフィードバック事象をトリガーすることができる。
アルゴリズム作成プロセスによると、複数のセンサーからのデータを所望の変数にマッピングする線形または非線形数学モデルまたはアルゴリズムが作成される。このプロセスは幾つかのステップより成る。まず第1に、測定中のパラメータに関して現実世界の状況にできるだけ近い状況におかれアームバンド人体モニター装置300を着用する対象者から、データが収集されるが、対象者は危険な状態におかれず、アルゴリズムが予測する変数は同時に非常に正確な医療等級検査装置を用いて高い信頼度で測定することができる。この第1のステップにより以下の2つの組のデータが提供されるが、これらのデータはその後アルゴリズム作成プロセスの入力として作成される。これら2つの組のデータとは、(i)センサー装置1201からの生のデータ、及び(ii)より精度の高い検査装置で測定した金印標準ラベルより成るデータである。このアルゴリズムが予測する変数が自動車での旅行のようなコンテキストに関する場合、金印標準データはアームバンド人体モニター装置300、PCへ手動で入力されるか他の方法により手動で記録される情報を介してそれらの対象者自身に与えられる。収集されたデータ、即ち、生のデータと、検証可能な対応標準データは共にデータベースに編成され、トレーニングセットとテストセットに分割される。
次に、トレーニングセットのデータを用いて数学モデルが作成されるが、このモデルは生のデータを対応する検証可能な対応標準データに関係付けるものである。詳述すると、種々の機械学習技術により、2つのタイプのアルゴリズム、即ち、1)データポイントのある部分集合について検査室測定パラメータの予測を可能にする態様で変化する継続的な導出パラメータである特徴として知られるアルゴリズム(これらの特徴は、例えば、代謝的カート、ダグラスバッグまたは二重標識水からのV02レベル情報である検査室測定パラメータとは通常、条件付で独立していない)と、2)アルゴリズム全体にとって有用な種々のコンテキスト、例えば、ランニング、運動、うたた寝、睡眠、運転を予測するコンテキスト検出器として知られるアルゴリズムを発生させる。このステップでは、人工神経ネット、決定ツリー、記憶方法、ブースティング、交差確認による属性選択、シミュレーションされたアニーリング及び進化計算のような確率サーチ方法を含む多数の周知の機械学習技術を使用することができる。
適当なセットの特徴及びコンテキスト検出器が見つかった後、幾つかの周知の機械学習方法を用いてこれらの特徴及びコンテキスト検出器を組み合わせることにより全体モデルとする。このフェイスに用いる技術には、多重線形回帰、局部的重み付け回帰、決定ツリー、人工神経ネットワーク、確率サーチ方法、サポートベクトルマシン及びモデルツリーが含まれるが、これらに限定されない。これらのモデルは過剰適合を回避するために交差確認による評価を行う。この段階において、モデルは例えば1分毎に予測を行う。毎分の予測を統合する全体モデルを作成することにより次に毎分間の効果が考慮される。このステップでは、周知のあるいは特注のウィンドウ及びしきい値最適化ツールを使用することができる。最後に、モデルの性能をテストセットについて評価することができるが、これはアルゴリズムの作成についていまだ使用されていない。従って、テストセットのモデルの性能は他のまだ見ていないデータに対するアルゴリズムの予想される性能を評価するよい尺度になる。最後に、アルゴリズムはさらに確認を行うために新しいデータに対して作動状態でのテストを受けることができる。
本発明において使用可能なタイプの非線形機能及び/または機械学習方法のさらに別の例として、以下のもの、即ち、条件付、ケースステートメント、論理処理、確率または論理的推論、神経ネットワーク処理、カーネル利用方法、メモリ利用探索(kNN、SOM)、決定リスト、決定ツリーによる予測、サポートベクトルマシンによる予測、クラスタ分析、ブースト方法、カスケード相関、ボルツマンクラスファイア、回帰ツリー、ケースに基づく推論、ガウス、ベイズネット、動的ベイズネットワーク、HMM、カルマンフィルター、ガウスプロセス、アルゴリズム予測器、例えば、進化計算または他のプログラム合成ツールにより学習される)が含まれる。
アルゴリズムを、入力として生のセンサー値または信号をとり、計算を実行し、その後所望の出力を発生するものとみることができるが、アルゴリズムを1つの好ましい実施例において生のセンサー値に適用される一連の導き出されたものとみることは有用である。生のセンサー値または信号はチャンネル、特に、導出チャンネルでなくて生のチャンネルとも呼ばれる。関数とも呼ばれるこれらの導き出されたものは単体あるいは2つのものであるが、生の値及び、恐らくは既に存在する導出チャンネルに所定の順序で適用される。最初は、もちろんのこと、入力として生のセンサー信号をとる必要があるが、それ以後は入力として以前導き出されたチャンネルをとることができる。導出の順序から所与の導出チャンネルを導き出すために使用される特定のチャンネルを容易に突き止められることに注意されたい。また、ユーザーがI/O装置へまたは何らかの態様で提供する入力もアルゴリズムにより使用可能な生の信号として含められることに注意されたい。例えば、食事を記述するために選択されるカテゴリーはその食事のカロリー評価を計算する式により使用可能である。1つの実施例において、生の信号は最初に、後で導き出すために十分なチャンネルに要約され、効率的に記憶することができる。これらのチャンネルは加算、差の加算及び平均のような操作を含む。高レートのデータを要約して圧縮チャンネルにするのは有用な特徴の圧縮及び記憶の両方にとって有用であるが、そのアプリケーションの正確な詳細事項に応じて高レートのデータの一部または全部のセグメントを記憶するのは有用であろうことに注意されたい。1つの実施例において、これらの要約チャンネルは製造上の小さな測定可能な小さな差を考慮し、適当なスケール及び正しい単位の値を得るために較正される。例えば、製造プロセス時特定の温度センサーにわずかなオフセットがあることが判明した場合、このオフセットを適用して温度を摂氏で表現する導出チャンネルを得ることができる。
この説明のために、導出式または関数はそれが幾らかのオフセットと共にその入力を重み付けした組み合わせとして表現される場合は線形である。例えば、GとHが2つの生のまたは導出チャンネルである場合、A*G+B*H+C(A、B、Cは定数)の全ての導出式は線形関数である。導出式は、もしそれが一定のオフセットを有する入力の重み付けした和として表現できなければ、その入力に関して非線形である。非線形導出式の一例は、もし(G>7)であれば、H*9に戻り、そうでなければ(H*3.5+912)へ戻る。1つのチャンネルは、それを計算するための全ての導出式が線形であれば線形的に導出されたものであり、それを作成するために用いる任意の導出式が非線形であればチャンネルは非線形的に導出されたものである。チャンネルは、そのチャンネルの値の変化によりその導出式に従って行われる計算が変化し他の全ての入力が一定に保たれる場合は非線形的にその式を媒介する。
本発明の好ましい実施例によると、このプロセスを用いて作成されるアルゴリズムは概念的に図11に示すフォーマットを示す。詳述すると、アルゴリズムは、ボックス400で示す、心拍数及び電極105により発生されるECG信号から計算される他の心臓関連パラメータを含む、種々のセンサーからのアームバンド人体モニター装置300により収集されるセンサーデータから導出されるチャンネルと、個人の人口統計的情報とを、入力として、とる。そのアルゴリズムは、1分間にわたって収集されるような収集データの所与の部分が着用者が幾つかの可能なコンテキストのそれぞれにある間に収集される確率を表す、W1乃至Wnとして示す重みを発生する少なくとも1つのコンテキスト検知器405を有する。かかるコンテキストはその個人が休息状態または活動状態であるかを含む。さらに、各コンテキストにつき、入力として生のチャンネルまたは導出チャンネルをとって連続予測が計算される回帰アルゴリズム410が提供される。個々の回帰は、例えば多変量線形または多項回帰、メモリ系方法、サポートベクトルマシン回帰、ニューラルネットワーク、ガウスプロセス、任意手順関数などを含む多種多様な回帰方程式または方法のうちの任意のものでよい。各回帰は、例えばエネルギー消費量のようなアルゴリズムの興味あるパラメータの出力の予測である。最後に、A1乃至Anで示す各コンテキストの各回帰アルゴリズム410の出力と、重みW1乃至Wnとがホストプロセッサ415により結合され、このプロセッサはブロック420で示すようにアルゴリズムにより測定または予測される興味あるパラメータを出力する。一般的に、ホストプロセッサ415は、コミッティー法、ブースティング、ボーティング法、一貫性チェックまたはコンテキストに基づく再結合を含む別個のコンテキスト予測を組み合わせる多くの方法のうちの任意のもので構成することができる。
図12を参照して、該図は個人のエネルギー消費量を測定するためのアルゴリズムの一例を概念図である。この例のアルゴリズムは、少なくとも加速度計、熱束センサー及びGSRセンサーまたはかかる本願の一部として引用する米国特許出願第10/682,759号に記載されたようなアームバンド人体モニター装置からデータを受けるI/O装置1200を有するアームバンド人体モニター装置300の上で実行できる。この例のアルゴリズムでは、センサーからの生のデータが較正され、それに基づき多数の値、即ち、導出チャンネルが形成される。特に、図12の400で示す以下の導出チャンネルは生の信号及び人口統計的情報から計算される。即ち、(1)加速度計のデータに基づき縦方向加速度計平均(LAVE)が、(2)加速度計データに基づき横方向加速度計の平均差の和(TSAD)が、(3)熱束センサーデータに基づき熱束高利得平均分散量(HFvar)が、(4)加速度計データに基づき横方向及び縦方向加速度計の絶対差のベクトル和(VSAD)が、(5)GSRデータに基づき電気皮膚応答低利得(GSR)が、(6)人口統計的情報に基づき基礎代謝率(BMR)が計算される。コンテキスト検知器405は、LAVE、PSAD、HFvar導出チャンネルを用いて着用者が活動状態にあるかまたは休息しているかを予測する単純なベイズ分類器より成る。出力は確率的重み(2つのコンテキスト、即ち、休息と活動状態につきW1及びW2)である。休息コンテキストでは、回帰アルゴリズム410は加速度計、熱束センサー、ユーザーの人工統計的データ及び電気皮膚応答センサーから導出されるチャンネルを結合する線形回帰である。アルゴリズム設計プロセスを通して得られる式は、A*VSAD+B*HFvar+C*GSR+D*BMR+E(A、B、C、D、Eは定数)である。活動状態コンテキストの回帰アルゴリズム410は定数が異なる点を除き同一である。この例のポストプロセッサ415は各コンテキスト回帰の重み付けされた結果を加算する。A1が休息回帰の結果であり、A2が活動回帰の結果である場合、その組み合わせはW1*A1+W2*A2であり、これは420に示すエネルギー消費量である。別の例において、対象となる期間での着用者が自動車を運転しているか否かを計算する導出チャンネルはポストプロセッサ415に入力される。この導出自動車運転チャンネルが計算されるプロセスはアルゴリズム3である。この場合のポストプロセッサ415は、着用者がアルゴリズム3により運転中であると予測される場合、エネルギー消費量をその期間につき何らかの係数(例えば1.3)にそれらの分数に毎分の基礎代謝率を乗算したものに等しい値に制限されるという制約を課す。
別の例として、図11において概念的に示すフォーマットを有するアルゴリズムは、個人のエネルギー消費量を測定するために開発されるが、これは入力として、2軸加速度計及び電極105からアームバンド人体モニター装置300により収集されるセンサーデータから導出されるチャンネルを利用し、これから心拍数及び/または他の心臓関連パラメータが算定される。これらの運動及び心拍数センサータイプから導出されるパラメータはユーザーの活動を非常によく表す。図11に概念的に示すフォーマットを有するアルゴリズムにおいてこれら2つのセンサーを組み合わせると、単一のセンサーが混同するような異なる活動クラス、例えば、心拍数が高くなるが運動は小さいことにより識別可能なストレスのかかる事象と、一部で心拍数は低いが運動量が大きいことにより識別可能な車両の運動事象、及び心拍数が高く運動量も大きいものとして識別可能な運動事象を容易に判別することができる。図11に示すように、この実施例では、これら2つのセンサーデータから導出されるチャンネルは最初にユーザーのコンテキストを検知するために使用される。その後、適当な関数を用いて心拍数と運動データの両方に基づきエネルギー消費量を予測する。さらに別の実施例として、アームバンド身体モニター装置300の一部を形成する熱束センサーのような別のセンサーから導出されるチャンネルをアルゴリズムへの別の入力として用いることができる。エネルギー消費量を予測するためのアルゴリズムにおいて心拍数を使用すると多数の理由によりより良好でより正確な予測を行うことができる。自転車に乗ったりウエイトリフティングをしたりするような幾つかの動きの少ない運動は加速度計からの腕の運動を唯一の入力として用いるエネルギー消費量アルゴリズムにとって問題となる。また、衣服も熱束センサーにより行われる測定に悪影響を与え、これによりエネルギー消費量の予測に悪影響がでる。心拍数または他の心臓関連パラメータをアルゴリズムに取り込むとかかる問題の軽減に役立つ。かかるアルゴリズムに使用する以外に心拍数及び他の心臓関連パラメータだけをただ検知し分析しレポートするのがかなりの効用がある。さらに、心拍数は一般的に眠りに落ちると遅くなりレム睡眠期間の間上昇する。従って、人が睡眠中であるが睡眠のどの段階にあるかを予測するアルゴリズムは、それから心拍数及び/または他の心臓関連パラメータが他の検知されるデータと共に算定される、アームバンド人体モニター装置300により収集されるデータを他のセンサーと共に入力として利用する本発明に従って開発することができる。かかる心臓関連データもまた睡眠無呼吸症のような睡眠障害を検知するアルゴリズムに使用することができる。同様に、ストレス状態の下で人の心拍数がストレスにさらされると人の心拍数はしばしば上昇するがそれに伴って運動または身体の熱が増加しないことが多い。個人のかかるデータを1日毎にまたは期間毎に比較すると、さらにパターンを検知して予測するために使用できるある特定のパターンまたは状態を識別する手助けになる。ストレスを検知するためのアルゴリズムは、心拍数及び/または他の心臓関連パラメータがそれから計算される電極105から収集されるデータを加速度計からのデータのような他のセンサーデータから利用する本発明に従って開発することができる。ストレスを認識する過去の活動を検討して検知し導出したパラメータを生活活動または他の検知できない事象と相関しようとする文脈においてストレスを認識する可能性が最も高いが、ストレスを検知できることは外部の状態または単なる先入観により着用者から遮蔽されるかもしれない状態を識別するための同時的な測定として有効であろう。これは、心臓が物理的な圧迫または活動がないにもかかわらずストレスを受けている場合に特にそうである。
他の重要なフィードバック実施例は、心臓関連パラメータによりレム睡眠を検知し、着用者がかかる睡眠状態にある機会を最大にする能力を含む。予め指定した時間にユーザーを目覚めさせる従来型アラームでなくて、このアラームは予め設定した量のレム睡眠の後、そしてさらにかかる睡眠の適当な終了点においてまたはある特定の睡眠段階の間またはその直後に着用者を目覚めさせることができる。
このアルゴリズム作成プロセスは、以下のもの、即ち、(i)個人が物理的圧迫状態にある時、無意識、疲労、ショック、めまい、熱ストレス及び脱水状態、(ii)脱水状態、栄養不良状態及び睡眠不足状態を含む軍事的環境にあるような個人の準備状態、健康及び/または代謝状態を含む(これらに限定されない)種々のパラメータをアームバンド人体モニター装置300が検知し測定できるようにするためのアルゴリズムを作成するために使用できる。さらに、上述したようなセンサー装置により測定される信号のフィルタリング、信号クリーンナップ及びノイズキャンセレーションのような他の目的でアルゴリズムを作成することができる。このモデルを用いて作成される実際のアルゴリズムまたは関数は特定のセンサー及びその配置並びにセンサー装置の全体構造のような使用されるセンサー装置の特定事項に大きく依存することがわかるであろう。かくして、1つのセンサー装置により作成されるアルゴリズムは、そのアルゴリズムの作成に用いるセンサー装置と構造が実質的に同一でないセンサー装置では全くでないが機能しない。
上述したアルゴリズムの作成方法は入力としてその装置からの検知された信号を使用して心拍動の検知方法を提供するために適用可能であることを特に理解されたい。検知される信号は上述のようにチャンネルとして処理され、同じ方法が適用される。
本発明の別の局面は、作成されたアルゴリズムの種々のタイプの不確定性を取り扱う能力に関する。データの不確定性は、センサーノイズ及び考えられるセンサー故障のことである。データの不確定性はデータを完全に信頼できない場合に生じる。かかる状態下では、例えば、加速度計のようなセンサーが故障した場合、システムは着用者が睡眠中または休息中かもしくは全く運動していないと結論するかもしれない。かかる状態下では、データに問題があるか、または予測し結論を出すモデルに問題があるかを結論することは非常に困難である。アプリケーションがモデルとデータの両方の不確定性を孕んでいる場合、データとモデルに付随する不確定性の相対的な大きさを突き止めることは非常に重要である。インテリジェントシステムは、センサーが間違ったデータを発生中であるらしいことに気づき、また別のアルゴリズムにスイッチするか、もしくは、場合によっては、予測を行う前にギャップを埋めることができる。センサーが故障しているか、データチャンネルがもはや信頼できないかを突き止めるのは些細な仕事ではないが、その理由は故障状態のセンサーが時として残りのセンサーの一部と符合する読みを発生し、そのデータがセンサーの通常動作範囲内に収まることがあるからである。
医療上の不確定性は、異なるセンサーが矛盾すると思われる結論を示すという事実を指す。医療上の不確定性はそのデータから引き出す結論につき納得できない場合である。例えば、加速度計は着用者が運動中でない(「休息」という結論に到達する)ことを指示し、電気皮膚応答センサーは非常に大きい応答(「活動状態」の方につながる)を与え、熱流センサーは着用者が依然として実質的な熱を放散中である(「活動状態」につながる)ことを指示する。優れたシステムでないシステムは、ただセンサーの間で投票を行わせるか、あるいは同じように根拠のない方法を用いて種々の読みを統合しようとする。本発明は、重要な結合確率を重み付けし、着用者は現在静止自転車乗りのような低運動量の活動を行っている、または最近おこなった、という最も可能性のある適当な結論(この例ではそうである)を出す。
同じアルゴリズム作成プロセスを用いて心拍動を検知し、心拍数を求め、ノイズの存在下で心拍数の概算値を得るための上述したアルゴリズムが作成された。当業者にとって、この同じプロセスを用いて他のセンサーを組み込むことにより心臓関連パラメータの測定を改善するかまたは心臓関連パラメータをエネルギー消費量のような他の生理学的パラメータの測定に組み込めることが明らかであろう。
本発明のさらに別の局面によると、アームバンド人体モニター装置300を使用することにより、人間の状態、好ましくは、センサーにより直接測定できない人間の状態に関するパラメータYを自動的に測定し、記録し、保存し、そして/または報告することができる。状態パラメータYは、例えば(これらに限定されない)、消費カロリー、エネルギー消費、睡眠状態、水和レベル、ケトーシスレベル、ショック、インシュリンレベル、物理的疲労及び熱疲労などである。センサー装置は、かかるセンサー装置またはその一部である1またはそれ以上のセンサーのうちあるものの出力より成る生の信号のベクトルを観察することができる。上述したように、チャンネルと呼ぶある特定の信号は生のセンサー信号のベクトルから導出することができる。生及び導出チャンネルXと呼ぶこれらの生及び/または導出チャンネルのうちのある特定のベクトルXは、対象となる状態パラメータYまたはUと呼ぶYのあるインジケータ(YとUとの間にはYがUから得られるという関係がある)の状態、事象及び/またはレベルに応じて、またはそれに感応して、ある体系的な態様で変化する。本発明によると、入力として生のそして導出チャンネルXをとり、(i)状態パラメータYまたはインジケータU、及び(ii)個人の他の何らかの状態パラメータZを予測し、それに条件的に依存する(記号┬で表す)出力(記号)を与えるセンサー装置を用いて、第1のアルゴリズムまたは関数f1が作成される。このアルゴリズムまたはf1を下式に示す。
1(X)┬ U+Z 又は
1(X)┬ Y+Z
好ましい実施例によると、f1は本願の他所で述べたアルゴリズムの作成プロセスを用いて作成されるが、このプロセスはセンサー装置により収集される信号から導出される特に生のチャンネル及び導出チャンネルXのようなデータと、正しい答えとして考えられる方法、例えば、非常に精度の高い医療等級の検査装置及び収集データからアルゴリズムを作成するための種々の機械学習技術を用いて同時に測定されるUまたはY及びZに関するいわゆる検証可能な基準データを用いる。アルゴリズムまたは関数f1は、インジケータUまたは状態パラメータY(場合によりどちらでもよい)が存在する条件下で作成される。この方法を用いて作成される実際のアルゴリズムまたは関数は、特定のセンサー及びその配置並びにセンサー装置の全体構造及び構成のような使用するセンサー装置の特定事項に大きく依存することがわかるであろう。かくして、1つのセンサー装置により作成されるアルゴリズムはそのアルゴリズムの作成に用いるセンサー装置と構造が実質的に同一でないセンサー装置には全部ではないが機能しない。
次に、第2のアルゴリズムまたは関数f2は、YまたはUが場合によってはYまたはUと条件的に独立である点を除き、f1により全ての入力を予測しそれに条件的に依存する出力を与え、次に、第2のアルゴリズムまたは関数f2は、生及び導出チャンネルXを入力としてとり、YまたはUが場合によってはYまたはUと条件的に独立である(記号┴で表す)点を除きf1により全ての出力を予測しそれに条件的に依存する出力を与えるセンサー装置を用いて作成される。この考え方は、1またはそれ以上のセンサーからの生のそして導出チャンネルXのうちのある特定のものにより非Yまたは非U関連事象からの生の及び導出チャンネルXの変動を説明するか、またはフィルタリングにより除去することが可能であるということである。このアルゴリズムまたは関数f2を下式に示す。
2(X)┬ Z 及び (f2(X)┴ Y 又は f2(X)┴ U)
1のようにf2は上述したアルゴリズム作成プロセスを用いて作成するのが好ましい。しかしながら、f2はどちらであれUまたはYが存在しない条件下で作成され、その妥当性がチェックされる。かくして、f2の作成に用いる金印標準データは非常に精度の高い医療等級の検査装置を用いて作成されたZだけに関するデータである。
かくして、本発明のこの局面によると、一方、即ちf1はUまたはYに依存し、もう一方、即ちf2はUまたはYに依存しない2つの関数が作成される。f1とf2の間にはUまたはYを与える関係式が存在することがわかる。換言すれば、f3(f1, f2)=U 又は f3(f1, f2)=Y のような関数f3が存在する。例えば、UまたはYは2つの関数(U=f1 −f2 又は Y=f1 −f2)から得られるデータを減算することにより得られる。YでなくてUがf1とf2の間の関係から決定される場合、次のステップはYとUの間の関係に基づきUからYを得ることである。例えば、YがUを何らかの係数で割算することにより得られるようにYはUの何らかの固定パーセントであろう。
当業者は、本発明では、上述した態様で最後の関数fnにより3以上の関数(例えば、f1、f2、f3、…fn-1)を結合できることがわかるであろう。一般的に、本発明のこの局面は、出力が対象となるパラメータを示す態様で異なる1組の関数を結合することを必要とする。また、ここに用いたような条件付独立性(または依存性)を正確な独立性(または依存性)でなくておおよその独立性(または依存性)であると定義されることがわかるであろう。例えば、全代謝量が下式に従って総エネルギー消費量(TEE)として測定されることが知られている。
TEE=BMR+AE+TEF+AT
上式において、BMRは睡眠のような休息時に身体が消費するエネルギーである基礎代謝率であり、AEは物理的活動時に消費するエネルギーである活動エネルギー消費量であり、TEFは食物を消化し処理する間の消費エネルギーである食物の熱効果であり、ATは身体がその代謝を極限的な温度に対して変化させる機構である適応熱発生である。食物を処理するために、人間は食べた食物の値の約10%を消費すると予想される。従って、TEFは摂取総カロリーの10%と見積もられる。TEFを測定する信頼性のあるそして実用的な方法により、食物関連情報の手動での追跡または記録を必要とせずにカロリー摂取量を測定することができる。詳述すると、TEFを一旦測定すると、カロリー摂取量はTEFを0.1で割算することにより正確に見積もることができる(TEF=0.1*カロリー摂取量;カロリー摂取量=TEF/0.1)。
上述した状態パラメータYの自動測定に関する本発明の特定の実施例によると、上述したセンサー装置は個人が摂取するカロリーを自動的に測定し、そして/または記録するために使用できる。この実施例において、状態パラメータYは個人が摂取するカロリーであり、インジケータUはTEFである。最初に、センサー装置はTEEを予測するアルゴリズムであるf1を作成するために使用される。f1は食物を食べた対象者、換言すれば、活動を行っていてTEF効果を経験した対象者について作成され、その妥当性をチェックされる。このように、f1はEE(満腹)と呼ばれ、食物を食べる効果を含むエネルギー消費量を予測することを表す。f1の作成に用いる金印標準データはV02マシンである。TEEを予測する関数f1は、TEFである対象となる項目Uに条件的に依存してそれを予測する。さらに、f1は、この場合はBMR+AE+ATであるZに条件的に依存しそれを予測する。次に、センサー装置は、TEFを除いてTEEの全ての局面を予測するアルゴリズムであるf2を作成するために使用される。f2は、TEFが存在せずファクタとならないように、データを収集する前の、好ましくは4乃至6時間の期間絶食をしていた対象者について作成され、その妥当性をチェックされる。かかる対象者はTEF効果なしに物理的活動を行う。その結果、f2はBMR+AE+ATに条件的に依存してそれを予測するが、TEFには条件的に依存せず、それを予測しない。そのように、f2は食物を食べる効果を含まないエネルギー消費を予測することを表すEE(絶食)と呼ばれる。かくして、このようにして作成されたf1はTEFに依存するが、f2はTEFに依存しない。この実施例において、この場合はTEFであるインジケータUを与えるf1とf2の間の関係は減算関係である。換言すれば、EE(満腹)−EE(絶食)=TEFである。
最も好ましい実施例において、アームバンド人体モニター装置300は、運動を示すデータを発生する加速度計のような人体運動センサー、個人の皮膚の電流に対する抵抗に示すデータを発生するGSRセンサーのような皮膚導電性センサー、個人の心拍動のレートまたは他の特性を示すデータが得られるECG信号を発生する電極及び個人の皮膚の温度を示すデータを発生する温度センサーを含みそして/またはそれらと通信関係にある。この好ましい実施例において、これらの信号は、着用者についての人口動態的情報と共に、生のそして導出チャンネルXが取り出される信号のベクトルを構成する。最も好ましくは、この信号ベクトルは運動を示すデータ、運動、電源に対する個人の皮膚の抵抗、及び人体からの熱流及び心拍数を示すデータを含む。
本発明を利用できる別の特定例は、人が疲労した状態の検知に係る。かかる検知は少なくとも2つの方法で行うことができる。第1の方法は、疲労を予測するためにTEF及びカロリー摂取量の予測に関して上述した2つの関数(f1及びf2)法を用いてカロリー摂取、水和レベル、睡眠、ストレス及びエネルギー消費レベルのようなパラメータを正確に測定するものである。第2の方法は、図11及び12に関連して説明した直接導出法を用いて疲労を直接、モデリングしようとするものである。第1の方法は、着用者の生理学的状態を予測する複雑なアルゴリズムを他のより複雑なアルゴリズムの入力として使用できることを示す。本発明のかかる実施例の潜在的な用途には、着用者が極限的状況にあり、その任務の実行が非常に重要である第1の応答者(例えば、消防夫、警察、兵隊)のためのものがある。例えば、熱流が長い期間にしては少なすぎるが皮膚温度が継続的に上昇する場合、着用者は過酷な熱性ストレスを経験している可能性が高い。さらに、着用者の水分過剰レベル及びそのレベルの悪化のインパクトを検知する能力は非常に有用であり、多数のセンサーを用いて導出されパラメータはシステムにより検知される。人は脱水状態になると通常は最初に高い発汗レベルを示し、その後このレベルが低下する。身体がその冷却能力を失い、熱束の変化が検知される。さらに、体温が上昇する。この時点において、心臓血管系統は酸素の移送効率を低下させ、心拍数がこれを補償するために恐らく10−20%も上昇するため発汗の増加が必要となる。その後の段階において、ユーザーは抹消血管の機能停止を経験し、これにより血圧が低下して活動、意識及び動作が鈍くなる。水分過剰レベルを測定し追跡できるモニターシステムはECG検知システムと共に動作し、これは、消費されるエネルギーと共に振幅の相対的変化を測定することにより振幅の変化が予想されないものまたは現在までの事象により予想されるものであることを認識し確認する。
アルゴリズムは較正されたセンサー値と複雑な導出値の両方を使用できることが分かるであろう。これは、或る特定の生理学的状態への端点またはそれらのしきい値を予測し、着用者または他の観察者にその端点に到達するまでおおよその時間または他の活動の目安を知らせるのに効果的である。
本発明の別の用途は着用者の生体認証を行う装置のコンポーネントとしてのものがある。128Hz心拍数信号は豊富な情報を含む信号であり、完成時心拍数、心拍動間変動性、刺激への応答及びフィットネスのような個人的特性がこの信号に現れる。これらの個人的な特性を用いることにより、着用者がその装置の承認を受けた着用者であることを検証するかまたは承認を受けた着用者の何れの範囲の者がその装置を現在着用しているかを識別するかをできる。本発明のこの局面の一実施例において、128Hz信号及びその信号からの導出パラメータを用いて同定を行う。別の例では、モニター中の全てのセンサーを同定アルゴリズムの入力として一緒に使用する。
本発明のこの局面の別の例として、認証アームバンドを敵か否かを認証するシステムにおけるコンポーネントとして軍事的または第1応答者システムに使用することができる。
他の装置との相互作用も考えられている。このシステムは他の製品及びコンピュータシステムの間隔及び情報を増強することができる。これらにより関連の装置はユーザーについてのより多くの情報を収集することができ、睡眠時家のサーモスタットを上げるか下げるかまたは目覚めた時にライトをつけるかを自動的に行うように適当に反応できるようにする。娯楽の文脈では、ある特定のストレス及び心臓関連パラメータの検知結果を利用してゲーム、映画または他のタイプの対話式娯楽において音、光及び他の効果に影響を与えることができる。さらに、ユーザーの状態を利用して運動または瞑想時にユーザーの心拍数の変化と共に音楽のテンポを増加させるように音楽のプログラミングを変化させることができる。さらに別の例として、ある住所を探しているため運転中にストレス状態にある時自動車ラジオの音量を減少させること、疲れている時に電気器具により下線を含んだ飲み物を調整すること、社交環境において同じムードまたは同じ好みを有する人を引き合わせること、覚醒度及びストレス度指示器を用いてインテリジェントキュータまたはフライトシミュレータが学習システムを生徒の進歩を最大にするように調整すること、例えばトラック運転手に8時間の睡眠をとるまで再びトラックを始動させないように、身体の状態に応じて人の権限を取り上げたり権限を与えたりすること、生体認証に基づき着用者のパソコンのシステムへの自動的なログインを許可すること、及び自閉症の子どものような病気の人間のための相対的な身体の状態により一部がまたは全体が案内される新しいユーザーインターフェイスを作成することが含まれる。
さらに、生体の状態により人に対するコンピュータの反応を調整する新しい人間−コンピュータ相互作用を考えることができる。システムは人間が疲れているのを見て、疲労により予想される不安定な行動に対して調整するためにその運動のうちの一部を穏やかなものにすることができる。
心臓のリズムに不規則性があると疑われる個人はある種の家庭用または外来用のECGモニタリングを受けることが多い。個人の症状は時々そして1日に1回、1週間に1回、1月に1回またはそれよりも低い頻度のように不規則的に表れることが多い。このような場合、昔からのECG測定を受ける通院時にその症状が検知されることはまれである。従って、かかる時たま起こる事象を補足しようとして家庭または外来でECGモニタリングを行う。最も普通の家庭用または外来用ECGモニター方法は上述したようにホルターモニタリング、事象の記録及び継続的なループ記録法である。
本発明の別の局面によると、ECG信号を測定する上述した装置が、ホルターモニター、事象記録器または継続的ループ記録器の機能を実行するように構成される。かかる装置は図示説明したようにアームバンド人体モニター装置であるのが好ましい。かかる装置はホルターモニターまたは事象記録器とは異なり、アームバンド人体モニター装置300の場合の上腕のような身体の便利な場所に長期間着用しても長期間不便なしに着用することができる。さらに、記録されたECG信号を本発明の他の局面によるかかる装置により同時に測定される他のデータと組み合わせることができる。これらの他のデータには上述したアルゴリズムを用いて測定される種々の生理学的パラメータ及び/またはコンテキストが含まれるが、これによりコンテキスト及び/またはパラメータとしての心臓関連情報が自動的に提供される。例えば、図12Aに示すように、ある期間の間の測定されたECG信号70をエネルギー消費量75または生のセンサー値及び同じ期間の間検知された歩行、運転及び安静のようなコンテキスト80のような測定されたパラメータと共にマッピングまたは定義することができる。ECG信号のこの解説図はヘルスケアサービス提供者にとって有用であるが、その理由は、ある特定の心臓の兆候が現れている時にその個人が何をしていたかを特定し、診断及び治療を助けるある特定の他の生理学的パラメータを提供するからである。これは、例えば、測定したECG測定値信号、パラメータ測定値及び検知したコンテキストをパソコンのような計算機へダウンロードし、パソコンにより適当なディスプレイを表示させることにより行うことができる。
ある特定の不整脈または心臓関連のストレスにつながる状態には日周期パターンがあることがよく知られている。例えば、突然の心臓発作は早朝の起こることが多い。ある特定の期間の間検知能力を上げることができる。あるいは、モニター装置により他の装置に合図を送ってある特定の不適当な活動または相互作用を同時に行わないようにすることができると予想される。例えば、ペースメーカーは着用者が眠りから覚めるかまたはレム睡眠段階の終期においてユーザーを穏やかに起こす時に予め設定したプロトコルに従ってペースを上げることができる。
システムはさらに、薬物治療の修正、手術またはリハビリ後の環境または薬物送達モニタリングのような診断上の文脈で利用可能であり、これらの医学的利用及び処置の直ちの、そしてリアルタイムの効果を継続的にそして非侵襲的にモニターすることができる。
このタイプの例は大量の緊急な救済を必要とするまたは他の危機的状況において利用できる。即ち、犠牲者が1つの場所(例えば体育館)に集められ、看護婦、救急隊員、医師、ボランティアが彼らをみているが、この種の状況では基本的に人員が十分でない状況、また全ての犠牲者である患者(一部は傷害を受けた人そして他に物理的、触覚的、可視的兆候について負傷やショックが遅れている場合は観察下にある患者)を診断したり注意深くモニターしている状況である。心臓関連の診断及びオプションとして脱水、低温症またはショックの診断能力のあるシステムをモニターするために患者が入所する度に使用することができる。モニターするために大部分の衣服をとる必要性を軽減するシステム設計により、これらの装置を担当者が利用する能力がスピードアップするようになる。このシステムは通し番号が強調され、付き添い者が状況がトリガーされ状況の性質及び優先順位が決められた施設内の中央システムに警告を送ることができる。このアームバンドの協力的なシナリオの下では、状況の感知/トリガーを行うアームバンドが付き添い者がその指示に容易に注目できるように異なる信号または合図を送ることができる。さらに、以下に述べるある特定の技術によると全てのアームバンドは協働させてその周囲のアームバンドによりそれらの相対的な位置を継続的に確かめることにより中央モニターステーションがその施設の内部のどこに特定のアームバンドが位置するかそして特に最も緊急の介護を必要とする個人がどこにいるかを突き止めることができる。
さらに詳細には、この装置のネットワークとしてそのネットワークの各装置の正確なまたは相対的場所を突き止めるネットワークの一部として設計することができる。この実施例において、各装置はネットワーク内の別の装置に対するその相対的位置と求める1またはそれ以上の機構を備えるであろう。これをいかに行うかの例には、装置間でRF、IRまたは音響信号を送受信し、走行時間及び/または位相差のような技術を用いて装置間の距離を求めることを含む。このような方法は実際の世界環境の下では、エラーを生じる傾向があり、位相シフト方法のような場合、受信装置に相対的な距離に対する無限の数の周期的解答を与えるという公知の問題がある。また、かかる装置は電力の問題、周囲からの時としての干渉などにより、ネットワークの他の装置とのコンタクトを失いそしてその後再び回復することにより、任意の時間において各相値がネットワークの他の装置の部分集合と通信できるにすぎないのが普通である。
各瞬間において各対の装置間の相対的距離を測定するこの能力及びN個の装置より成るネットワークの他の全ての装置と情報を分け合うことのできる能力を与えられると測定すべき距離は合計で(N(N−1))/2となり、全ての装置がその瞬間において他の全ての装置へ情報を送ることにより、測定すべき(N(N−1))/2個の距離のうちのある部分集合である、測定可能な全ての相対的距離をネットワークの全ての装置が有し、そしてたびたび(例えば毎分数回)着用者が互いに変化する速度に関してこの数の番号を更新できるのが一般的である。
各装置は、これらの距離のリストを備えるようになると、事実上方程式と未知数のシステムを有することになる。例えば、AはBからXメートルの所にあり、BはCからほぼYメートルの所にあり、CはAからZメートルの所にあり、AはDからUメートルの所にあり、BはDからTメートルの所にあり、CはDからVメートルの所にある。あるいは、位相シフトだけのモデルではこれらの方程式を以下のようにすることができる。即ち、AはBから6インチの整数倍の所にあり、BはCから8インチの整数倍のところにあり、CはDから1フィートの整数倍の所にあり、DはAから6インチの整数倍の所にある。上述の例のようにネットワークに冗長的情報が存在する限り、また平らな領域、勾配が6%以下で昇ったり下ったりする丘などのような着用者が位置する地形についてのさらに別の過程により各装置はこの方程式、未知数及び不正確な値の系を解いて各対の装置間の距離の見積もり値を有意に改善することができる。これらの結果はその後装置間で共有されるため、全ての装置は最も正確で最も最近の情報を有し、各瞬間においてそれらの相対的位置が一致する。方程式をこのように解くのは動的プログラミングまたは単一の値の分解のような行列の解法により行うことができる。それ以外の装置への距離として各着用者の装置が有する以前の値をこれらの計算に以下のように含めることによりもしAが5秒前にBより10フィート離れておればそれが方程式と未知数の系の可能な解法のうちの1つであるとしてもAが現在はDから200フィート離れている可能性は非常に低いというようなことに利用できる。
別の実施例は、各着用者の相対的位置の確率的概算値をセンサーノイズ及び予想される運動を考慮して追跡するための確率的推論の利用を含む。カルマンフィルタは単一の運動体の追跡に適用されるこの種の推論の一例であり、多数の相互作用するものへの拡張が可能である。
これらの装置には時々埋め込んだGPSチップによるようにそれらの実際のまたは大まかな地球的場所を突き止める能力が備わっておれば、この情報をネットワークの他の全ての装置と共有してそれらの相対的距離を調整することにより各相値がその地球的場所を知るようにすることができる。
このプロセスを支援するために、ネットワーク全体について相対的位置が知られる少なくとも1つのインターバルを設けるのが好ましい。これは、頻繁な更新と共に、互いに移動する速度及び装置の相対的距離に関して、これらの方程式の系の解答を減少しプロセスの精度を高める。装置のこの同期は、例えば、各装置がそれ自身で動き出す前にある瞬間において同一の場所に置くことにより行うことが可能である。
図13を参照して、該図は、肩と肘の間の上腕に着用するアームバンドの形をしたセンサー装置の特定実施例を示し、これを便宜的にアームバンド人体モニター装置300と呼ぶ。アームバンドセンサー装置300は、ハウジング305、可撓性ウィング本体307と、弾性ストラップ309より成る。ハウジング305及び可撓性ウィング本体307は、柔軟なウレタン材またはゴム若しくは成型プロセスにより混合されたゴム−シリコンのようなエラストマー材で作るのが好ましい。可撓性ウィング本体307は第1及び第2のウィング311より成り、ウィングはそれぞれ端部425の近くに貫通孔312を有する。第1及び第2のウィング311は、着用者の上腕の一部を包むようになっている。
弾性ストラップ309は、アームバンド人体モニター装置300を個人の上腕に着脱自在に固定するために使用する。弾性ストラップの表面の一部に沿ってベルクロループが設けられている。弾性ストラップ309の各端部の底面上にはベルクロ係止パッチが、またプルタブが設けられている。各プルタブの一部は、各端部427の端縁部を超えて延びる。
作動ボタン314は適当なユーザーによる入力のために設けられており、一方、LED出力インジケータ316はコンテキストに感応する出力を与える。特に、回路200はアームバンド人体モニター装置のハウジング305の内部にあり、種々の電極及び上述したセンサーは当業者にとって明らかなように互いに電気的に接続されている。回路200のCPU165は、この実施例では本願の一部として引用する米国特許第6,605,038号及び米国特許出願第10/682,293号に記載されたアームバンド人体モニター装置の一部を形成する処理ユニットであるのが好ましい。
図14及び15を参照して、アームバンド人体モニター装置300には、電流に対する皮膚の抵抗を測定するGSRセンサー315、身体からの熱の流れを測定する熱束皮膚インターフェイスコンポーネント320と熱的通信関係にある熱束センサー、皮膚温度を測定するために皮膚温度インターフェイスコンポーネント325と熱的通信関係にある熱温度センサー、身体の動きに関するデータを測定するための加速度計(図示せず)のような身体運動センサー及び着用者の身体に近い温度を測定する周囲温度センサー(図示せず)を含む(これらに限定されない)、種々の生理学的及び/またはコンテキストパラメータを感知する別の生理学的及び/またはコンテキストセンサーが設けられている。図14を参照して、一連の電極支持モジュールのうちの1つを一時的に着脱できるようにするため、少なくとも1つの、好ましくは2つの電極支持コネクタ318が設けられている。図15を参照して、電極105A乃至105Bを含む回路200は、本出願人により所有される上述した米国特許第6,605,038号及び米国特許出願第10/682,293号に記載されたようなアームバンド人体モニター装置300の一部として設けられており(例えば、センサー装置400、800、及び1201は‘038特許及び‘293出願に記載されている)また絶縁被覆ワイヤ310を介してハウジング305及び回路200に接続されている。電極105´は、図14、15及び18に示すようにハウジングまたは支持部材上の種々の場所にある別の位置に設けられている。電極は、適当な強度の信号を検知するために身体の対応する場所に係合する目的でハウジング上の任意適当な場所に設けられそれと連携していることに特に注意されたい。図14を参照して、別の電極100´はGSRセンサー1315内に位置する。図15を参照して別の電極105´はハウジング305内に直接装着されている。
アームバンド人体モニター装置300は、上腕の後部上、特に、上腕、最も好ましくは左腕の三頭筋の上に着用するように設計されている。図15に示す特定の実施例を参照して、左の上腕に着用されると、電極105Aは三角筋と接触し、電極105Bは三頭筋と接触し、電極105C及び105Dは検知可能な心臓関連信号を発生させないがベースラインEMGノイズの検知を可能にする筋肉の領域と接触する。第1及び第2の仮想対角線は電極105Aを電極105Bへ、また電極105Cを電極105Dへそれぞれ垂直線から約31°の角度で接続する。この実施例において、電極105A及び105Bは第1の信号を検知するために互いに対を形成し、電極105Cと105Dは上述した第2の信号を検知するために互いに対を形成し、これらの信号は回路200の加算回路170により加算される。
図16を参照して、図15の装置の別の実施例を示す。電極支持コネクタ318はセンサーまたはセンサー支持ハウジングを物理的に支持すると共にそれらとの電気的通信関係を形成するために設けられている。電極支持コネクタ318は、良好な物理的支持を提供しながら身体に装着されている間センサーまたはセンサーハウジングのある程度の運動または回転を許容するプラグ挿入またはスナップ挿入式コネクタでよい。この装置及びセンサーまたはセンサー支持体は適宜もっともよく物理的及び電気的に接続できるように一体化するのが好ましい。通常は支持コネクタの多数のそれぞれ独立した絶縁セグメントを用いて従来型手段によりマルチチャンネル電気的接続が行われる。センサー支持ハウジング322は図16に示すように電極105を支持し位置決めするために設けられるかあるいは電極105もしくは他の電極は電極支持コネクタ318に直接または別個に取り付けることができる。この実施例において、支持ハウジング322を同一の物理的構成において電極105それ自体で全体的に置き換えてもよい。電極105は支持ハウジング322の表面上の任意の場所に配置可能であり、図16に示すように中心に置く必要はない。さらにセンサーは従来そうであるように情報のポイントソースである必要はない。センサーはさらにセンサーの表面領域内で信号を検知すべく適当な点の場所を最大にするためにハウジング表面のかなりの部分をカバーする感知材料の広いセグメントより成ることができる。支持ハウジング322を利用する場合、ハウジングはその上に装着される腕の表面の形状に従って皮膚及びその下の組織と良好な接触を得ることができるように柔軟性のある材料を用いる。これは図15に示す実施例にも等しく当てはまる。本願で図示説明したセンサー、電極及び支持ハウジングの実施例はそれぞれ互換性があり、ある特定の形状または他の物理的パラメータが特定の用途について選択されるのを特に注意されたい。さらに、センサー、電極及び支持ハウジングの数及び構成は図示の実施例に限定されず互換性があることを理解されたい。最後に、センサー、電極またはそれらのアレイの特定の幾何学的形状を確立するために装置のハウジング305を上述したように信号を改善する目的で細長くしたり任意特定の寸法を減らしたりすることができる。
図17を参照して、該図は図16に示すものと同様な電極の方向を有し、支持ハウジング322がより細長い形状であるさらに別の実施例を示す。通常、電極が細長いか外に出る部分が多くなればなるほど支持ハウジング322としてよりしっかりした材料を使って良好な皮膚接触を維持する必要がある。図示説明した任意のハウジング実施例は皮膚に圧力を加えるために湾曲した実施例において予めモールドした可撓性または一部が可撓性のハウジング部分を有することを特に注意されたい。
図18は、横方向を支持アーム323が上方及び下方電極105を人間の上腕の三頭筋のそれぞれ三角筋部分及び上腕部分に隣接して特に配置するように意図された支持ハウジング322の非対称的構成を示す。横方向支持アーム323は図の破線部分に沿って支持ハウジング322から分離され拘束部材324によりウィング部分311に固定することができる。ハウジング305またはウィング311は図示のほぼ卵形を超えて身体の適当な場所との係合に必要な特定の形状に拡張することができる。さらに、ハウジング305またはウィング部分311を不規則に拡張して別の電極105´を取り付けるようにしてもよい。
図19は特定の卵形の支持ハウジング322を示す。
図20は図15のものとよく似た別の実施例を示すが、しかしながら、絶縁ワイヤ310を介して電気的通信を行うただ1つの外部電極105が使用される。上述した電極の形状のうち任意のものを用いて第2の電極支持コネクタ318に固着することができる。時としてフライリードと呼ぶ絶縁ワイヤ310に接続された外部電極105はアームバンド人体モニター装置300の一体的ハウジング305を非実用的にする身体の遠隔場所上の特定の場所に用いるようになっている。図21は人間の上腕Aに装着した図20の実施例を示す。アームバンド人体モニター装置300は適当な場所の皮膚に隣接して配置され、弾性ストラップ309は腕に巻き付けられハウジングを血流を減少させることなくしっかりと固定するに十分に強く締め付けられる。センサー支持ハウジング322は電極105(図示せず)を支持し支持ハウジング322を皮膚に装着する接着性支持体323により定位置に保持される。支持ハウジングの場所は図21に支持される場所に限定されず、着用者の他の腕を含む身体の任意の部分に延長可能であることを特に注意されたい。最も好ましい実施例は絶縁ワイヤ310の使用及び長さを最小限にしようとする。
図22は、電極105、支持ハウジング322及びハウジング305の間のインターフェイスに対するモジューラ性の高い別の実施例を示す。ハウジング305には図14に示すような同様な皮膚係合表面(図示せず)が設けられている。使い捨ての一体的な着脱自在の支持ハウジング322は、支持ハウジング322の底面上の電極(図示せず)に皮膚に対して適当な力を加える支持材料、電極自体及び電極とハウジング305の間の電子的接続部材より成る。支持ハウジングにはハウジングと電子的に係合するための少なくとも1つの電極接点324が設けられており、このハウジングは電極支持コネクタ318または支持ハウジング324と共に電極105と通信するために特に構成されたGSRセンサー315と係合するのに適している。オプションとしての接着性支持部材323が支持ハウジング322の底面上に設けられている。別の実施例において接着性323はユーザーの腕の上にハウジング315を保持するための単一の手段となることができる。支持ハウジング322はまた弾性ストラップ309により腕の上に拘束されるハウジング305の力だけにより、あるいは本願の一部を形成する米国特許出願第10/227,575号記載された他のハウジングまたは被覆支持装置と併用して皮膚上に支持することができる。ハウジング305の上側表面にはある特定の動作または他の状態情報をユーザーに表示するための出力スクリーン327が示されている。この出力スクリーンは電気化学的またはLCDスクリーンを含む(これに限定されない)任意のタイプでよく、使い捨て可能で本願の任意の実施例に設けられることを特に注意されたい。
図23A−Cはスリムなハウジング305を組み込んだ装置のさらに別の実施例を示し、これには本願と関連性のない機能のための開口329が設けられている。選択性支持部材323は赤道に近い所に装着され、電極105を含んで、ハウジング305の底面に取り付けられている。使用時ハウジングは接着性支持部材323上の接着剤により身体に固着されるが、これによりハウジング305及び/または電極105及び/またはハウジング305内の他の任意の関連センサーと身体と間に一貫した接触関係が維持される。この接着性実施例は身体の任意の点に装着することが可能であり任意特定の付属品または場所に限定されないことを特に注意されたい。
上述した実施例のさらに別の局面は、特に図22に示すように各装置のある局面を選択してそれを装置の使い捨て可能なセグメントに配置する機会が与えられることである。これは装置の機能の残りの特徴部分を含み永続的な耐久性のあるハウジング305と併用して利用される。さらに、装置全体を使い捨て可能なものにすることが可能であるが、これは各システムにとって継続して着用する時間が限られることを想定している。この実施例において、上述したように、装置全体を、全てがばねのようで身体のどこにでも取り付けられるパッチのような柔軟性のあるハウジング、ポリマー、フィルム、織物または他の包囲体の形にしてもよい。これは、電極及び他の電子部品をその材料内に織り込んで、十分な力が身体に加わるようにして信号を受信するに適当な接触が維持されるようにする織物材料を含む。アラコンのような織物、ケブラーのような強度特性を有する金属を被覆した織物(両方デュポン社の製造になる)は電流または信号を運ぶことができる。エレクソンリミテッド社のエレクテックスは運動または圧力を検知できる電極及び/またはセンサーを収納する布または下地材料への使用に適当な柔らかな織物である。これらの織物を、適当な信号を感知できるだけでなく種々の便利な場所に配置可能な種々の電気コンポーネントを相互接続するネットワークを提供できる着用可能なシャツまたは他の被覆内で装置のコンポーネントと共に利用することが可能である。
任意の等価領域内から収集されるECG波形は必ずしも標準的なECG波形の形を有さない。この場合、単一の等価領域内からとったECG波形と領域間からとったECG波形との間でマッピングを行うことができる。これは上述したアルゴリズム作成プロセスを用いて行うことが可能であり、これは標準的なECG波形として表示されると等価領域内の歪みを明らかにする機能を形成する。
本願発明の特定の実施例を添付図面に示し上記部分において説明したが本発明は図示説明した実施例だけに限定されず、頭書の特許請求の範囲に記載されるように多数の構成、変形例及び設計変更が可能であることを理解されたい。
典型的なECG信号を示す。 人体の上部の概略図であり、等価四分区間を示す。 左腕の裏面図であり、本発明の1つの局面による電極配置場所を示す。 左腕の正面図であり、本発明の1つの局面による電極配置場所を示す。 左腕の裏面図であり、本発明の1つの局面による電極配置場所を示す。 右腕の裏面図であり、本発明の1つの局面による電極配置場所を示す。 右腕の正面図であり、本発明の1つの局面による電極配置場所を示す。 胴部の正面図であり、本発明の1つの局面による電極配置場所を示す。 胴部の裏面図であり、本発明の1つの局面による電極配置場所を示す。 胴部の正面図であり、本発明の1つの局面による電極配置場所を示す。 本発明の一実施例に従ってECG信号を検知する回路を示すブロック図である。 図4及び7に示すバイアス/結合回路の第1実施例の回路図である。 図4及び7に示すバイアス/結合回路の第2実施例の回路図である。 第1段増幅器の回路図である。 図4及び7に示すフィルタの一実施例の回路図である。 本発明の別の実施例に従ってECG信号を検知する回路のブロック図である。 1つの処理段において検知されたECG信号の概略図である。 1つの処理段において検知されたECG信号の概略図である。 1つの処理段において検知されたECG信号の概略図である。 1つの処理段において検知されたECG信号の概略図である。 1つの心拍動検知段において検知されたECG信号の概略図である。 1つの心拍動検知段において検知されたECG信号の概略図である。 1つの心拍動検知段において検知されたECG信号の概略図である。 1つの心拍動検知段において検知されたECG信号の概略図である。 本発明の別の実施例に従ってECG信号と検知する別の回路のブロック図である。 本発明の別の実施例に従ってECG信号と検知する別の回路のブロック図である。 本発明の別の実施例に従ってECG信号と検知する別の回路のブロック図である。 本発明の別の実施例に従ってECG信号と検知する別の回路のブロック図である。 本発明の別の実施例に従ってECG信号と検知する別の回路のブロック図である。 本発明の別の実施例に従ってECG信号と検知する別の回路のブロック図である。 本発明に従って発生される信号の一部を形成する典型的なピークの概略図である。 本発明に従って発生される信号の一部を形成する典型的な増加−減少−増加シーケンスを示す。 主要心拍動がオーバラップした信号の間に整列するようにオーバラップした一連の信号を示す。 ECG信号の一例を示す。 本発明の1つの局面に従って作成されたアルゴリズムのフォーマットを示すブロック図である。 本発明の1つの局面に従ってエネルギー消費量を予測するアルゴリズムの一例を示すブロック図である。 アームバンド人体モニター装置の等角透視図である。 アームバンド人体モニター装置の一実施例の底面図である。 アームバンド人体モニター装置の第2実施例の底面図である。 アームバンド人体モニター装置の第3実施例の底面図である。 アームバンド人体モニター装置の第4実施例の底面図である。 アームバンド人体モニター装置の第5実施例の底面図である。 アームバンド人体モニター装置の第6実施例の底面図である。 アームバンド人体モニター装置の第7実施例の底面図である。 腕に装着されたアームバンド人体モニター装置の第7実施例の等角透視図である。 アームバンド人体モニター装置の第8実施例の等角透視図である。 アームバンド人体モニター装置の第9実施例の平面図である。 アームバンド人体モニター装置の第9実施例の底面図である。 線A−Aに沿う図23Bの実施例の断面図である。

Claims (174)

  1. 人間の心臓関連状態パラメータのモニター装置であって、
    人体に着用する少なくとも2つの電極が心臓関連状態パラメータを示す心臓関連信号を検知するために人体上の等価領域内の不等電位心臓関連信号場所と係合するように互いに離隔して取り付けられたセンサーと、
    心臓関連信号の強度を増加するためにセンサーに電気接続された増幅器と、
    心臓関連信号からノイズを除去するためにセンサーに電気接続されたフィルタとより成るモニター装置。
  2. 電極は使い捨て式である請求項1の装置。
  3. 電極は再使用可能である請求項1の装置。
  4. 電極はステンレス鋼及び導電性炭化ゴムのうちの1つより成る請求項3の装置。
  5. 電極はさらに、皮膚との電気的接触を促進させる顕微針より成る請求項1の装置。
  6. 顕微針は間質液を抽出するために使用される請求項5の装置。
  7. 顕微針は金属、ケイ素及びプラスチック材料のうちの1つで形成されている請求項5の装置。
  8. センサーを支持するモニター装置をさらに備えた請求項1の装置。
  9. モニター装置はさらに少なくとも1つの別の電極を有する別のセンサーを備えている請求項8の装置。
  10. 前記別の電極は他の両方の電極に対して不等電位となるような場所に配置される請求項9の装置。
  11. 少なくとも1つの別のセンサーをさらに備えた請求項9の装置。
  12. 少なくとも1つの別のセンサーのうちの少なくとも1つはノイズセンサーである請求項11の装置。
  13. 着用者の少なくとも1つの生理学的パラメータを示すデータを検知する少なくとも1つのセンサーを有し、少なくとも1つの生理学的パラメータ及び心臓関連状態パラメータを示すデータを用いて何れのセンサーによっても直接測定できない第3のパラメータを導出する請求項1の装置。
  14. (i)着用者の少なくとも1つの生理学的パラメータを示すデータを検知する少なくとも1つのセンサーと、(ii)着用者の少なくとも1つのコンテキストパラメータを示すデータを検知する少なくとも1つのセンサーとを有し、少なくとも1つの生理学的パラメータを示す前記データ、少なくとも1つのコンテキストパラメータを示す前記データ及び心臓関連状態パラメータを用いて何れの前記センサーによっても直接測定できない第3のパラメータを導出する請求項1の装置。
  15. 別の運動検知センサーをさらに備えた請求項1の装置。
  16. 運動検知センサーは、加速度計、圧電気素子、歪み計及び全地球位置検出器より成る群から選択される請求項15の装置。
  17. モニター装置はさらに、人間の別の生理学的状態パラメータを検知する別のセンサーを有する請求項8の装置。
  18. モニター装置は、心臓関連状態パラメータ及び人間の前記別の生理学的状態パラメータの両方を検知する単一センサーを使用する請求項8の装置。
  19. モニター装置はさらに、ハウジング及びハウジングから延びる可撓性部材を有する請求項8の装置。
  20. 電極はハウジング及び可撓性部材のうちの一方により支持される請求項19の装置。
  21. 少なくとも1つの電極はモニター装置と電気的通信関係にありながらその装置から離隔して人体上に装着される請求項8の装置。
  22. 2組の電極をさらに有し、第1組の電極は人体の心臓関連パラメータを検知するために設けられており、第2組の電極は人体の非心臓関連パラメータを検知するために設けられている請求項1の装置。
  23. 第2組の電極はノイズ信号の検知のために設けられ、ノイズ信号は心臓関連信号にフィルタリングを施すために使用される請求項22の装置。
  24. 等価領域はさらに人体の単一の肢全体に含まれる請求項1の装置。
  25. 等価領域はさらに腕に含まれる請求項24の装置。
  26. 等価領域はさらに腕の上部に含まれる請求項25の装置。
  27. 人体は心臓を通る矢状面により等価領域に分割される請求項1の装置。
  28. 人体は心臓を通る横断面により等価領域に分割される請求項1の装置。
  29. 各等価領域はさらに心臓関連信号を検知する複数の不等電極場所を有する請求項1の装置。
  30. 人体の腋か部は心臓関連信号を検知する少なくとも1つの不等電位電極場所を有する請求項1の装置。
  31. 人体の頸部の後下部は心臓関連信号を検知する少なくとも1つの不等電位電極場所を有する請求項1の装置。
  32. 人体の前方骨盤大腿部は心臓関連信号を検知するための少なくとも1つの不等電位電極場所を有する請求項1の装置。
  33. 人体の下方脊椎領域は心臓関連信号を検知する少なくとも1つの不等電位電極場所を有する請求項1の装置。
  34. 人体の腕は心臓関連信号を検知する少なくとも1つの不等電位電極場所を有する請求項1の装置。
  35. 人体の上腕は心臓関連信号を検知する少なくとも1つの不等電位電極場所を有する請求項34の装置。
  36. 人体の左腕及び肩領域は、三頭筋、三角筋、上腕筋、大円筋、広背筋及び前腕より成る群から選択される複数の不等電位電極場所を有する請求項34の装置。
  37. 前腕はさらに手首を有する請求項36の装置。
  38. 前腕、三頭筋及び三角筋は心臓関連信号の第1の局面を与え、三角筋、上腕筋及び広背筋は心臓関連信号の第2の局面を与え、前記信号の第1及び第2の局面は不等電位である請求項37の装置。
  39. 第1の電極は心臓関連信号の第1の局面を取得するために左腕の三頭筋上に配置され、第2の電極は第1の局面に関連して心臓関連信号の第2の不等電位局面を取得するために左腕の三角筋上に配置される請求項29の装置。
  40. 電極は130mm未満の距離だけ離隔した関係にある請求項1の装置。
  41. 電極はほぼ70−80mmだけ離隔した関係にある請求項40の装置。
  42. 第1の電極は人体の上腕の第2の電極より高い位置に装着される請求項34の装置。
  43. 電極を分離する線は前記腕の正中線と平行である請求項34の装置。
  44. 電極を分離する線は前記腕の正中線に関し傾斜している請求項34の装置。
  45. 第1と第2の電極を分離する前記線の軸のベースは腕の正中線の後方に約30−45度の角度で傾斜している請求項44の装置。
  46. 前記傾斜は約30度である請求項45の装置。
  47. 人体の右腕及び肩領域は僧帽筋、三頭筋、胸筋、三角筋、二頭筋より成る群から選択される複数の不等電位電極場所を有する請求項29の装置。
  48. 三頭筋及び二頭筋は心臓関連信号の第1の局面を与え、三角筋、僧帽筋及び胸筋は心臓関連信号の第2の局面を与え、前記信号の第1及び第2の局面は不等電位である請求項47の装置。
  49. 第1の電極は心臓関連信号の第1の局面を取得するために右腕の三頭筋上に配置され、第2の電極は第1の局面に関連して心臓関連信号の第2の不等電位局面を取得するために右腕の三角筋上に配置される請求項48の装置。
  50. 人体の左胴部は、上及び下外斜筋、大殿筋、鼠径靭帯、下胸筋、大腿直筋及び大菱形筋より成る群から選択される不等電位電極場所を有する請求項29の装置。
  51. 人体は以下のような対を形成する複数の不等電位電極場所を有する請求項29の装置。
    三頭筋 三角筋
    三頭筋 三角筋(上部)
    右僧帽筋 左僧帽筋
    下外腹斜筋 上外腹斜筋
    上外腹斜筋 下胸筋
    広背筋 上外腹斜筋
    上外腹斜筋 上外腹斜筋
    大殿筋 下外腹斜筋
    鼠径靭帯 下外腹斜筋
    下外腹斜筋 大腿直筋
    鼠径靭帯 大腿直筋
    大菱形筋 広背筋
    広背筋 広背筋
    胸腰筋膜 広背筋
    左胸筋 三角筋
    広背筋 上外腹斜筋
    下右僧帽筋 下左僧帽筋
    左胸筋 左胸筋
    右大腿 左大腿
    右二頭筋 右胸筋
    右鼠径靭帯 左外腹斜筋
    上外腹斜筋 左腕
    右大殿筋 左大殿筋
  52. 電極と増幅器の間で電気通信関係にあるバイアス/結合回路をさらに有する請求項1の装置。
  53. バイアス/結合回路は増幅器の入力レンジをマッチさせるために心臓関連信号のバイアスを増加させる請求項52の装置。
  54. バイアスはほぼ1.5Vに増加される請求項53の装置。
  55. バイアス/結合回路は動的で、バイアスを変化するコンテキスト状態に合わせる請求項52の装置。
  56. 増幅器は単段増幅器である請求項1の装置。
  57. 増幅器は第1段と第2段との間にフィルタが配置された2段増幅器である請求項1の装置。
  58. フィルタは心臓関連信号から50−60Hzノイズを除去するように構成されている請求項57の装置。
  59. フィルタは心臓関連信号の直流分の遊走を除去するように構成されている請求項58の装置。
  60. 直流分の遊走は3つの心拍動内に除去される請求項59の装置。
  61. フィルタは6次能動フィルタである請求項57の装置。
  62. 第1の増幅器の利得は約500である請求項17の装置。
  63. 第2の増幅器の利得は約10乃至100である請求項57の装置。
  64. 検知したアナログ心臓関連信号をその信号のデジタル表示に変換するデジタル/アナログコンバータをさらに備えた請求項1の装置。
  65. 電極はさらに電極アレイより成る請求項1の装置。
  66. 心臓関連信号の不等電位対の局面を表す各対の電極には独立のバイアス/結合回路が設けられている請求項65の装置。
  67. 心臓関連信号の不等電位対の局面を表す各対の電極には独立の第一段増幅器が設けられている請求項65の装置。
  68. 心臓関連信号の不等電位対の局面を表す各対の電極から信号を受けて、受けた信号を加算する加算回路をさらに備えた請求項65の装置。
  69. 加算回路は抵抗回路である請求項58の装置。
  70. 増幅器への入力のために前記アレイの電極の少なくとも1つから受ける少なくとも1つの信号を選択する少なくとも1つのスイッチをさらに備えた請求項65の装置。
  71. 前記増幅器に入力するために前記アレイの前記増幅器の電極の少なくとも1つから受ける1つの信号を選択するマルチプレクサ回路をさらに備えた請求項65の装置。
  72. しきい値回路をさらに備えた請求項1の装置。
  73. アキュムレータ回路をさらに備えた請求項72の装置。
  74. 前記増幅器は心臓関連信号の強度に基づき該増幅器の利得を調整する自動利得制御フィードバックループをさらに備えている請求項1の装置。
  75. ノイズを検知してノイズ関連信号を発生するように構成された少なくとも1つの電極をさらに備えた請求項1の装置。
  76. 前記ノイズ関連信号は心臓関連信号にフィルタリングを施すために使用される請求項75の装置。
  77. ノイズは人体の筋肉により発生する請求項75の装置。
  78. コンテキスト情報を検知するための少なくとも1つのセンサーをさらに備えた請求項1の装置。
  79. 人間のさらに別の生理学的状態パラメータを検知する少なくとも1つのセンサーをさらに備えた請求項78の装置。
  80. 心臓関連状態パラメータ、人間の別の生理学的状態パラメータ及びコンテキスト情報を使用することにより着用者の活動の性質を示すデータを導出する請求項79の装置。
  81. 心臓関連状態パラメータと着用者の活動の性質を示すデータとが時間により相関される請求項80の装置。
  82. 着用者の時間相関される心臓関連状態パラメータと活動の性質を示す前記データとより成る出力データを与える請求項81の装置。
  83. 計算装置をさらに備えた請求項1の装置。
  84. ハウジング内に完全に収納されている請求項1の装置。
  85. 前記計算装置はさらにデータ入力、蓄積及びディスプレイ手段を有する請求項83の装置。
  86. 他の装置と電子通信関係にあり、それらとデータを交換する請求項1の装置。
  87. 外部計算装置と電子通信関係にある請求項1の装置。
  88. 前記外部計算装置はデータ情報ネットワークを介して電子通信関係にある請求項87の装置。
  89. 前記外部計算装置には前記装置からデータが提供される請求項87の装置。
  90. 前記外部通信装置には複数の他の装置と電子通信関係にある請求項87の装置。
  91. 前記装置と前記外部計算装置とは前記装置から出力されるデータからデータベースを作成する目的でデータを交換する請求項90の装置。
  92. 前記装置、前記外部計算装置及び同様な他の装置はこれら全ての装置からの出力されるデータベースを作成するためにデータを交換する請求項90の装置。
  93. 前記外部計算装置は前記装置の動作を修正する目的で前記装置とデータを交換する請求項87の装置。
  94. 人間のECG信号を検知する装置であって、
    人体に着用される少なくとも2つの電極を有するセンサーと、
    ECGの強度を増加するためにセンサーと電気接続関係にある電気増幅器と、
    ECG信号からのノイズを除去するためにセンサーと電気接続関係にあるフィルタとより成り、
    前記電極のうちの第1の電極は人体の等価領域内の第1の場所においてECG信号の第1の局面を検知するように装着され、
    前記電極のうちの第2の電極は等価領域内の第2の場所においてECG信号の第2の異なる局面を検知するために装着される人間のECG信号を検知する装置。
  95. ECG信号の前記第1及び第2の局面は矢状面及び横断面のうちの一方の両側の場所からの従来定義のECG信号に類似している請求項94の装置。
  96. 等価領域はさらに人体の単一の肢全体に含まれる請求項94の装置。
  97. 等価領域はさらに腕に含まれる請求項96の装置。
  98. 等価領域はさらに腕の上部に含まれる請求項97の装置。
  99. 人体は活動電位ベクトルにより等価領域に分割される請求項94の装置。
  100. 活動電位ベクトルは人体の胴体を等価領域に分割する請求項99の装置。
  101. 各等価領域はさらに心臓関連信号を検知する複数の不等電極場所を有する請求項94の装置。
  102. 人体の左腕及び肩領域は、三頭筋、三角筋、上腕筋、大円筋、広背筋及び手首より成る群から選択される複数の不等電位電極場所を有する請求項101の装置。
  103. 手首、三頭筋及び三角筋は心臓関連信号の第1の局面を与え、三角筋、上腕筋及び広背筋は心臓関連信号の第2の局面を与え、前記信号の第1及び第2の局面は不等電位である請求項102の装置。
  104. 第1の電極は心臓関連信号の第1の局面を取得するために左腕の三頭筋上に配置され、第2の電極は第1の局面に関連して心臓関連信号の第2の不等電位局面を取得するために左腕の三角筋上に配置される請求項101の装置。
  105. 電極はほぼ70−80mmだけ離隔した関係にある請求項104の装置。
  106. 第1と第2の電極を分離する前記線の軸のベースは腕の正中線の後方に約30−45度の角度で傾斜している請求項105の装置。
  107. 前記傾斜は約30度である請求項106の装置。
  108. 人体の右腕及び肩領域は僧帽筋、三頭筋、胸筋、三角筋、二頭筋より成る群から選択される複数の不等電位電極場所を有する請求項101の装置。
  109. 三頭筋及び二頭筋は心臓関連信号の第1の局面を与え、三角筋、僧帽筋及び胸筋は心臓関連信号の第2の局面を与え、前記信号の第1及び第2の局面は不等電位である請求項108の装置。
  110. 第1の電極は心臓関連信号の第1の局面を取得するために右腕の三頭筋上に配置され、第2の電極は第1の局面に関連して心臓関連信号の第2の不等電位局面を取得するために右腕の三角筋上に配置される請求項109の装置。
  111. 人体の左胴部は、上及び下外斜筋、大殿筋、鼠径靭帯、下胸筋、大腿直筋及び大菱形筋より成る群から選択される不等電位電極場所を有する請求項101の装置。
  112. 人体の左胴から左腕への不等電位信号の対は下記の通りである請求項111の装置。
    三頭筋 三角筋
    三頭筋 三角筋(上部)
    右僧帽筋 左僧帽筋
    下外腹斜筋 上外腹斜筋
    上外腹斜筋 下胸筋
    広背筋 上外腹斜筋
    上外腹斜筋 上外腹斜筋
    大殿筋 下外腹斜筋
    鼠径靭帯 下外腹斜筋
    下外腹斜筋 大腿直筋
    鼠径靭帯 大腿直筋
    大菱形筋 広背筋
    広背筋 広背筋
    胸腰筋膜 広背筋
    左胸筋 三角筋
    広背筋 上外腹斜筋
    下右僧帽筋 下左僧帽筋
    左胸筋 左胸筋
    右大腿 左大腿
    右二頭筋 右胸筋
    右鼠径靭帯 左外腹斜筋
    上外腹斜筋 左腕
    右大殿筋 左大殿筋
  113. パルス走行時間センサーをさらに備えた請求項1の装置。
  114. パルス走行時間センサーは血圧測定に使用される請求項113の装置。
  115. 人間の心臓関連状態パラメータをモニターする方法であって、
    人体の等価領域内の不等電位心臓関連信号場所を突き止め、
    電極が前記信号場所に係合するように人体上に少なくとも2つの電極を有するセンサーを配置し、
    前記電極から心臓関連状態パラメータを示す心臓関連信号を検知し、
    前記信号を処理して前記信号から信号関連パラメータを抽出するステップより成るモニター方法。
  116. 信号場所を突き止める前記ステップはさらに、信号を検知し、最大信号強度が得られるように信号の検知場所を調整するステップを含む請求項115の方法。
  117. 信号場所を突き止める前記ステップは等価領域内において不等電位信号場所のマッピングを行うステップをさらに含む請求項115の装置。
  118. 人体上にセンサーを配置するステップはさらに、人体に前記センサーを接着するステップを含む請求項115の装置。
  119. 人体上にセンサーを配置する前記ステップは、センサーと人体の間に導電性材料を配置するステップをさらに含む請求項115の方法。
  120. 人体上にセンサーを拘束するステップをさらに含む請求項115の方法。
  121. 前記拘束ステップはさらに、センサーと人体の間の接触関係を維持するようにセンサーに圧力を加えるステップを含む請求項120の方法。
  122. 前記センサーはモニター装置内に装着され、モニター装置はストラップにより人体上に拘束される請求項120の方法。
  123. センサーはモニター装置内に装着され、モニター装置は接着剤により人体上に拘束される請求項120の方法。
  124. 前記信号は電極のアレイにより検知される請求項115の方法。
  125. 前記電極アレイのうちの選択された対の電極から最良の信号を選択するステップをさらに含む請求項124の方法。
  126. 前記電極アレイから得られるノイズ信号を利用して心臓関連信号にフィルタリングを施すステップをさらに含む請求項124の方法。
  127. 前記処理ステップはさらに心臓関連信号の増幅ステップを含む請求項115の方法。
  128. 前記処理ステップはさらに心臓関連信号からのノイズをフィルタリングにより除去するステップを含む請求項115の方法。
  129. 前記処理ステップはさらに、信号の第1の増幅ステップ、信号のフィルタリングステップ及び信号の第2の増幅ステップを含む請求項115の方法。
  130. 前記処理ステップはさらに非線形フィルタリングステップを含む請求項115の方法。
  131. 人間のECG信号をモニターする方法であって、
    人体の等価領域内のECG信号の第1の局面の位置を特定し、
    人体の等価領域内のECG信号の第2の異なる局面の位置を特定し、
    電極が前記場所と係合するように人体上に少なくとも2つの電極を配置し、
    電極からECG信号の前記局面を検知し、
    前記信号を処理して前記信号の前記局面からECG信号を抽出するステップより成るモニター方法。
  132. 前記処理ステップはさらにECG信号のピークを識別するステップを含む請求項131の方法。
  133. 前記処理ステップはさらにフィルタリングを施したECG信号の各ピークの高さ及び幅を算定するステップを含む請求項132の方法。
  134. 前記処理ステップはさらに、各ピークの幅を所定の受け入れ可能な幅の範囲と比較し、ピークの高さを以前のピークの高さの移動平均の0.75に等しい高さの適応しきい値と比較するステップを含む請求項133の方法。
  135. 前記処理ステップはさらに互いの所定の時間フレーム内で選択を行うステップを含む請求項132の方法。
  136. 前記時間フレームは1秒の約3/16である請求項135の方法。
  137. 前記処理ステップはさらに識別したピークの間の領域に識別したピークの高さの0.75より高い他の任意の信号ピークの存否をチェックするステップを含む請求項134の方法。
  138. 前記処理ステップはさらに、振幅が増加する部分に続いて最大振幅部分がありその後振幅が減少した後最小振幅部分があってその後振幅が増加するQRFTシーケンスを識別するステップを含む請求項134の方法。
  139. 前記QRFTシーケンスの高さが所定のしきい値と比較される請求項138の方法。
  140. しきい値は75%である請求項139の方法。
  141. 前記QRFTシーケンスの幅が所定のしきい値範囲と比較される請求項138の方法。
  142. 前記しきい値は128Hzのアナログ−デジタルサンプリングレートを使用する時に4乃至20ポイントに等しい請求項141の方法。
  143. しきい値は信号ノイズの予測振幅の少なくとも2倍である請求項139の方法。
  144. しきい値は200ミリ秒未満である請求項141の方法。
  145. ECG信号を分析するステップをさらに解析するステップをさらに含む請求項131の方法。
  146. 前記解析ステップの入力が前記処理ステップの出力である請求項146の方法。
  147. 前記出力はECG波形信号である請求項146の方法。
  148. 前記波形信号は各々が少なくとも1つの波形ピークを有するセグメントに時間分割される請求項147の方法。
  149. 前記時間セグメントは約1.5秒である請求項148の方法。
  150. 一連の波形信号セグメントが同時に解析される請求項148の方法。
  151. 一連の波形信号セグメントが、各波形信号セグメントからの1つの波形ピークが一連のセグメントの他の波形信号セグメントの各々からの1つの波形ピークと整列するように重畳される請求項150の方法。
  152. 前記一連の波形信号セグメント内の全ての波形ピークの平均値が計算される請求項151の方法。
  153. 解析を行うために加算及びAND演算アプローチが使用される請求項150の方法。
  154. データ出力のデータベースを構築するステップを含む請求項131の方法。
  155. 前記データベースは生理学的データのパターンを含む請求項154の方法。
  156. 前記データベースはコンテキストデータのパターンを含む請求項154の方法。
  157. 前記データベースは生理学的データ及びコンテキストデータから導出される活動データのパターンを含む請求項154の方法。
  158. データベース出力を解析してデータパターンを確立するステップをさらに含む請求項154の方法。
  159. データパターンを蓄積するステップをさらに含む請求項158の方法。
  160. 蓄積されたデータパターンを検知されたデータと比較することにより検知されたデータを識別して別のデータパターンに分類するステップをさらに含む請求項159の方法。
  161. (i)蓄積されたデータパターンを検知されたデータを比較して検知されたデータが蓄積されたデータパターンの少なくとも1つに類似すると同定し、(ii)将来検知されるデータを予測するステップをさらに含む請求項159の方法。
  162. 将来検知されるデータの予測に基づく出力を発生するステップをさらに含む請求項161の方法。
  163. 前記出力はアラームである請求項162の方法。
  164. 前記出力はレポートである請求項162の方法。
  165. 前記出力は別の出力により入力として利用される請求項162の方法。
  166. コンテキスト情報をさらに含む請求項131の方法。
  167. 人間の別の生理学的状態パラメータを検知するステップをさらに含む請求項166の方法。
  168. 心臓関連状態パラメータ、別のパラメータ、人間の別の生理学的状態パラメータ及びコンテキスト情報から着用者の活動の性質を示すデータを導出するステップをさらに含む請求項167の方法。
  169. 心臓関連状態パラメータと、着用者の活動の性質を示す前記データとを時間相関するステップを含む請求項168の方法。
  170. 時間相関された心臓関連状態パラメータ及び着用者の活動の性質を示す前記データより成る出力データを与えるステップをさらに含む請求項169の方法。
  171. 心臓関連信号及び心臓関連パラメータのうちの一方から呼吸率を導出するステップをさらに含む請求項115の方法。
  172. 前記導出ステップは心臓関連信号の振幅変化を検知するステップを含む請求項171の方法。
  173. エネルギー消費量を計算するステップをさらに含む請求項115の方法。
  174. エネルギー消費量の導出にあたり心臓関連パラメータを利用するステップをさらに含む請求項173の方法。
JP2006526407A 2003-09-12 2004-09-13 心臓関連状態パラメータのモニター方法及び装置 Expired - Fee Related JP5174348B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US50276403P 2003-09-12 2003-09-12
US60/502,764 2003-09-12
US51001303P 2003-10-09 2003-10-09
US60/510,013 2003-10-09
US55528004P 2004-03-22 2004-03-22
US60/555,280 2004-03-22
PCT/US2004/030045 WO2005027720A2 (en) 2003-09-12 2004-09-13 Method and apparatus for measuring heart related parameters

Publications (3)

Publication Number Publication Date
JP2007504917A true JP2007504917A (ja) 2007-03-08
JP2007504917A5 JP2007504917A5 (ja) 2007-11-01
JP5174348B2 JP5174348B2 (ja) 2013-04-03

Family

ID=34381970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006526407A Expired - Fee Related JP5174348B2 (ja) 2003-09-12 2004-09-13 心臓関連状態パラメータのモニター方法及び装置

Country Status (8)

Country Link
US (10) US7502643B2 (ja)
EP (2) EP2319410A1 (ja)
JP (1) JP5174348B2 (ja)
KR (1) KR101084554B1 (ja)
BR (1) BRPI0414345A (ja)
CA (1) CA2538710A1 (ja)
IL (1) IL174267A (ja)
WO (1) WO2005027720A2 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272477A (ja) * 2007-04-30 2008-11-13 General Electric Co <Ge> 平均心拍数及びnibpを用いたspo2心房性細動検出の偽陽性アラーム低減
WO2009016886A1 (ja) * 2007-07-30 2009-02-05 Omron Healthcare Co., Ltd. 生体情報を効率的に表示する生体情報測定装置
JP2011104352A (ja) * 2009-09-01 2011-06-02 Adidas Ag 生理学的情報、パフォーマンス情報および状況情報を解釈および分析するための方法およびシステム
JP2011147582A (ja) * 2010-01-21 2011-08-04 Seiko Epson Corp 心電計測装置
JP2011524760A (ja) * 2008-06-19 2011-09-08 サイナヤカンガス,セッポ 心拍数測定方法および装置
JP2011200268A (ja) * 2010-03-24 2011-10-13 Seiko Epson Corp 生体情報取得装置
JP2014505533A (ja) * 2010-12-29 2014-03-06 ベイシス サイエンス インコーポレイテッド 統合した生体測定のセンシングおよび表示のデバイス
JP2014200270A (ja) * 2013-04-01 2014-10-27 株式会社東芝 心電計測装置、心電計測方法、及び心電計測プログラム
US9232902B2 (en) 2010-10-27 2016-01-12 Murata Manufacturing Co., Ltd. Detection circuit for generating biological information
WO2016039182A1 (ja) * 2014-09-09 2016-03-17 日本電信電話株式会社 心拍検出方法および心拍検出装置
JP2016508382A (ja) * 2013-01-16 2016-03-22 ヴァイタル コネクト, インコーポレイテッドVital Connect, Inc. 呼吸信号を用いた睡眠時無呼吸の検出
CN107205679A (zh) * 2014-10-31 2017-09-26 意锐瑟科技公司 无线生理监测装置和系统
JP2018087398A (ja) * 2016-02-12 2018-06-07 東洋紡株式会社 衣服型電子機器
WO2018131715A1 (ja) * 2017-01-16 2018-07-19 株式会社メルティンMmi 心電信号を少なくとも検出するためのシステム
JP2018114262A (ja) * 2017-01-16 2018-07-26 株式会社メルティンMmi 心電信号を少なくとも検出するためのシステム
WO2018168795A1 (ja) * 2017-03-15 2018-09-20 オムロン株式会社 生体情報記録装置、システム、方法及びプログラム
JP2018534042A (ja) * 2015-10-08 2018-11-22 ブレイン センティネル インコーポレイテッドBrain Sentinel,Inc. 発作活動の検出および分類のための方法および装置
JP2020048712A (ja) * 2018-09-25 2020-04-02 日本光電工業株式会社 パルス判別装置および心電図解析装置
US11051738B2 (en) 2013-01-24 2021-07-06 Irhythm Technologies, Inc. Physiological monitoring device
US11083371B1 (en) 2020-02-12 2021-08-10 Irhythm Technologies, Inc. Methods and systems for processing data via an executable file on a monitor to reduce the dimensionality of the data and encrypting the data being transmitted over the wireless network
US11141091B2 (en) 2010-05-12 2021-10-12 Irhythm Technologies, Inc. Device features and design elements for long-term adhesion
US11246523B1 (en) 2020-08-06 2022-02-15 Irhythm Technologies, Inc. Wearable device with conductive traces and insulator
US11350865B2 (en) 2020-08-06 2022-06-07 Irhythm Technologies, Inc. Wearable device with bridge portion

Families Citing this family (678)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL130818A (en) 1999-07-06 2005-07-25 Intercure Ltd Interventive-diagnostic device
US20100010333A1 (en) * 2005-07-29 2010-01-14 Jorge Hernando Ordonez-Smith Bipolar, Non-Vectorial Electrocardiography
US6811516B1 (en) 1999-10-29 2004-11-02 Brian M. Dugan Methods and apparatus for monitoring and encouraging health and fitness
US20060122474A1 (en) 2000-06-16 2006-06-08 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
EP2363061A1 (en) 2000-06-16 2011-09-07 BodyMedia, Inc. System for monitoring and managing body weight and other physiological conditions including iterative and personalized planning, intervention and reporting capability
US8939831B2 (en) 2001-03-08 2015-01-27 Brian M. Dugan Systems and methods for improving fitness equipment and exercise
US20020160883A1 (en) 2001-03-08 2002-10-31 Dugan Brian M. System and method for improving fitness equipment and exercise
US7702394B2 (en) 2001-05-01 2010-04-20 Intrapace, Inc. Responsive gastric stimulator
US20030107487A1 (en) * 2001-12-10 2003-06-12 Ronen Korman Method and device for measuring physiological parameters at the wrist
WO2004014226A1 (en) * 2002-08-09 2004-02-19 Intercure Ltd. Generalized metronome for modification of biorhythmic activity
US8663106B2 (en) * 2002-08-22 2014-03-04 Bodymedia, Inc. Non-invasive temperature monitoring device
US20070100666A1 (en) * 2002-08-22 2007-05-03 Stivoric John M Devices and systems for contextual and physiological-based detection, monitoring, reporting, entertainment, and control of other devices
EP1549165B8 (en) 2002-10-01 2010-10-06 Nellcor Puritan Bennett LLC Use of a headband to indicate tension and system comprising an oximetry sensor and a headband
DK1551282T3 (en) 2002-10-09 2016-02-22 Bodymedia Inc DEVICE FOR RECEIVING, RECEIVING, DETERMINING AND DISPLAYING PHYSIOLOGICAL AND CONTEXTUAL INFORMATION ON A HUMAN
US8672852B2 (en) 2002-12-13 2014-03-18 Intercure Ltd. Apparatus and method for beneficial modification of biorhythmic activity
US20050027317A1 (en) * 2003-01-27 2005-02-03 Langer Alois A. Defibrillation system for non-medical environments
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
US7047056B2 (en) 2003-06-25 2006-05-16 Nellcor Puritan Bennett Incorporated Hat-based oximeter sensor
KR101084554B1 (ko) 2003-09-12 2011-11-17 보디미디어 인코퍼레이티드 심장 관련 파라미터를 측정하기 위한 방법 및 장치
US8412297B2 (en) 2003-10-01 2013-04-02 Covidien Lp Forehead sensor placement
TWI245621B (en) * 2003-10-03 2005-12-21 Rossmax Int Ltd Hemadynamometer
US7194300B2 (en) * 2004-01-21 2007-03-20 Cardionet, Inc. Cardiac monitoring
EP1718196B1 (en) 2004-02-26 2009-04-08 Diabetes Tools Sweden AB Metabolic monitoring, a method and apparatus for indicating a health-related condition of a subject
US7917195B2 (en) 2004-03-05 2011-03-29 Lifesciences Solutions LLC Systems, methods and computer program products for heart monitoring
US10499828B2 (en) * 2004-03-05 2019-12-10 Lifescience Solutions, Llc System and method for heart monitoring
US7173437B2 (en) * 2004-06-10 2007-02-06 Quantum Applied Science And Research, Inc. Garment incorporating embedded physiological sensors
US20060004294A1 (en) * 2004-07-02 2006-01-05 Suunto Oy Method and heart-rate monitor
US20060015032A1 (en) * 2004-07-14 2006-01-19 Linda Gordon Non-invasive method for measuring changes in vascular reactivity
US7245956B2 (en) * 2004-07-15 2007-07-17 Quantum Applied Science & Research, Inc. Unobtrusive measurement system for bioelectric signals
US7850619B2 (en) * 2004-07-23 2010-12-14 Intercure Ltd. Apparatus and method for breathing pattern determination using a non-contact microphone
US20060041196A1 (en) * 2004-08-17 2006-02-23 Quasar, Inc. Unobtrusive measurement system for bioelectric signals
WO2006021962A2 (en) * 2004-08-27 2006-03-02 Medic4All A.G System of medical information through mobile device
US20180146879A9 (en) * 2004-08-30 2018-05-31 Kalford C. Fadem Biopotential Waveform Data Fusion Analysis and Classification Method
EP1637075A1 (fr) * 2004-09-20 2006-03-22 Centre Hospitalier Regional Universitaire de Lille Procédé et dispositif d'évaluation de la douleur chez un être vivant
US8934976B2 (en) 2004-09-23 2015-01-13 Intrapace, Inc. Feedback systems and methods to enhance obstructive and other obesity treatments, optionally using multiple sensors
US7346312B2 (en) * 2004-10-23 2008-03-18 Triangle Biosystems, Inc. Wireless neural data acquisition system
AU2005299678B2 (en) * 2004-10-25 2011-04-07 Eastern Virginia Medical School System, method and medium for simulating normal and abnormal medical conditions
US8643503B2 (en) 2005-01-28 2014-02-04 Kirill Mostov Transportation security system and associated methods
US7990270B2 (en) 2005-01-28 2011-08-02 Kirsen Technologies Corporation Inc. Transportation security system and associated methods
US8388545B2 (en) 2005-02-15 2013-03-05 Cheetah Medical, Inc. System, method and apparatus for measuring blood flow and blood volume
US8298078B2 (en) 2005-02-28 2012-10-30 Wms Gaming Inc. Wagering game machine with biofeedback-aware game presentation
EP1890589A2 (en) * 2005-04-14 2008-02-27 Hidalgo Limited Apparatus and system for monitoring
CN101287411B (zh) 2005-04-28 2013-03-06 普罗秋斯生物医学公司 药物信息系统及其用途
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
US7596397B2 (en) * 2005-05-16 2009-09-29 Hutchinson Technology Incorporated Patient interface for spectroscopy applications
US7460897B1 (en) 2005-05-16 2008-12-02 Hutchinson Technology Incorporated Patient interface for spectroscopy applications
WO2007002991A1 (en) * 2005-07-01 2007-01-11 Impedimed Limited Monitoring system
US7283870B2 (en) * 2005-07-21 2007-10-16 The General Electric Company Apparatus and method for obtaining cardiac data
EP2319444B1 (en) * 2005-08-02 2013-11-06 Neurotherm, Inc. Apparatus for diagnosing and treating neural dysfunction
EP1754512A3 (en) * 2005-08-18 2008-03-05 Neurotherm, Inc. Method and apparatus for diagnosing and treating neural dysfunction
JP5714210B2 (ja) * 2005-09-01 2015-05-07 プロテウス デジタル ヘルス, インコーポレイテッド 移植可能なワイヤ無し通信システム
JP2009507574A (ja) 2005-09-06 2009-02-26 ニューロメトリックス・インコーポレーテッド 使い捨ての多目的な心血管自律神経障害検査装置
US20080058614A1 (en) * 2005-09-20 2008-03-06 Triage Wireless, Inc. Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic
US20070073266A1 (en) * 2005-09-28 2007-03-29 Zin Technologies Compact wireless biometric monitoring and real time processing system
US8951190B2 (en) * 2005-09-28 2015-02-10 Zin Technologies, Inc. Transfer function control for biometric monitoring system
US8764654B2 (en) 2008-03-19 2014-07-01 Zin Technologies, Inc. Data acquisition for modular biometric monitoring system
KR100825888B1 (ko) * 2005-10-05 2008-04-28 삼성전자주식회사 전극 동잡음 보상 회로 및 전극 동잡음 보상 방법
WO2007053146A1 (en) * 2005-11-03 2007-05-10 Georgia State University Research Foundation Inc. Methods, systems and apparatus for measuring a pulse rate
US7708699B2 (en) * 2005-11-18 2010-05-04 Daag International, Inc. Reflexometry and hormone function
AU2006325153B2 (en) * 2005-11-29 2013-03-28 PhysIQ Inc. Residual-based monitoring of human health
AU2016200847A1 (en) * 2005-11-29 2016-02-25 PhysIQ Inc. Residual-based monitoring of human health
WO2007072239A2 (en) * 2005-12-19 2007-06-28 Koninklijke Philips Electronics N.V. Apparatus for monitoring a person's heart rate and/or heart rate variation; wristwatch comprising the same
US11826652B2 (en) 2006-01-04 2023-11-28 Dugan Health, Llc Systems and methods for improving fitness equipment and exercise
US8103065B2 (en) * 2006-01-05 2012-01-24 Lifescience Solutions Llc Assessment of medical conditions
JP2009528141A (ja) * 2006-02-28 2009-08-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ ネックカラー部に配される電子機器を有するバイオメトリックモニタ
US20070208232A1 (en) * 2006-03-03 2007-09-06 Physiowave Inc. Physiologic monitoring initialization systems and methods
US8200320B2 (en) * 2006-03-03 2012-06-12 PhysioWave, Inc. Integrated physiologic monitoring systems and methods
US7668588B2 (en) * 2006-03-03 2010-02-23 PhysioWave, Inc. Dual-mode physiologic monitoring systems and methods
WO2007103835A2 (en) * 2006-03-03 2007-09-13 Physiowave Inc. Physiologic monitoring systems and methods
US7861716B2 (en) * 2006-03-15 2011-01-04 Carefusion 207, Inc. Closed loop control system for a high frequency oscillation ventilator
US8920343B2 (en) 2006-03-23 2014-12-30 Michael Edward Sabatino Apparatus for acquiring and processing of physiological auditory signals
US9390229B1 (en) * 2006-04-26 2016-07-12 Dp Technologies, Inc. Method and apparatus for a health phone
KR20140018439A (ko) 2006-05-02 2014-02-12 프로테우스 디지털 헬스, 인코포레이티드 환자 주문형 치료법
US7558622B2 (en) * 2006-05-24 2009-07-07 Bao Tran Mesh network stroke monitoring appliance
US7522574B2 (en) * 2006-05-15 2009-04-21 Omni Medics Corporation Power efficient communication system
CA2653434A1 (en) * 2006-06-01 2008-03-27 Igeacare Systems, Inc. Remote health care system with stethoscope
US20070282778A1 (en) 2006-06-05 2007-12-06 International Business Machines Corporation Policy-based management system with automatic policy selection and creation capabilities by using singular value decomposition technique
US9101264B2 (en) 2006-06-15 2015-08-11 Peerbridge Health, Inc. Wireless electrode arrangement and method for patient monitoring via electrocardiography
US7979111B2 (en) * 2006-06-15 2011-07-12 Angelo Joseph Acquista Wireless electrode arrangement and method for patient monitoring via electrocardiography
US8437843B1 (en) 2006-06-16 2013-05-07 Cleveland Medical Devices Inc. EEG data acquisition system with novel features
US8781568B2 (en) 2006-06-23 2014-07-15 Brian M. Dugan Systems and methods for heart rate monitoring, data transmission, and use
US8902154B1 (en) 2006-07-11 2014-12-02 Dp Technologies, Inc. Method and apparatus for utilizing motion user interface
US7610085B2 (en) * 2006-09-12 2009-10-27 Allgeyer Dean O Simplified ECG monitoring system
US20100145170A1 (en) * 2006-09-21 2010-06-10 Starr Life Sciences Corp. Small Animal Pulse Oximeter User Interface
US20080077020A1 (en) 2006-09-22 2008-03-27 Bam Labs, Inc. Method and apparatus for monitoring vital signs remotely
US8160668B2 (en) * 2006-09-29 2012-04-17 Nellcor Puritan Bennett Llc Pathological condition detector using kernel methods and oximeters
US8337335B2 (en) 2006-10-07 2012-12-25 Dugan Brian M Systems and methods for measuring and/or analyzing swing information
US8430770B2 (en) 2006-10-07 2013-04-30 Brian M. Dugan Systems and methods for measuring and/or analyzing swing information
EP2083680B1 (en) * 2006-10-25 2016-08-10 Proteus Digital Health, Inc. Controlled activation ingestible identifier
JP4793650B2 (ja) * 2006-11-07 2011-10-12 アイシン精機株式会社 体調管理システム
GB2443885A (en) * 2006-11-18 2008-05-21 Yuk-Ki Wong A device for predicting a myocardial infarction or other co- morbid disease
US20080119697A1 (en) * 2006-11-20 2008-05-22 General Electric Company Bidirectional communication interface
WO2008063626A2 (en) 2006-11-20 2008-05-29 Proteus Biomedical, Inc. Active signal processing personal health signal receivers
EP2100255A4 (en) * 2006-12-06 2013-12-04 Kirsen Technologies Corp SYSTEM AND METHOD FOR DETECTING OBJECTS AND HAZARDOUS SUBSTANCES
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
US8652040B2 (en) 2006-12-19 2014-02-18 Valencell, Inc. Telemetric apparatus for health and environmental monitoring
SG178740A1 (en) 2007-02-01 2012-03-29 Proteus Biomedical Inc Ingestible event marker systems
US8949070B1 (en) 2007-02-08 2015-02-03 Dp Technologies, Inc. Human activity monitoring device with activity identification
WO2008101107A1 (en) 2007-02-14 2008-08-21 Proteus Biomedical, Inc. In-body power source having high surface area electrode
US20080319786A1 (en) * 2007-02-16 2008-12-25 Stivoric John M Publishing and insurance applications of lifeotypes
US9095271B2 (en) * 2007-08-13 2015-08-04 Cheetah Medical, Inc. Dynamically variable filter
US8932221B2 (en) 2007-03-09 2015-01-13 Proteus Digital Health, Inc. In-body device having a multi-directional transmitter
US20080228091A1 (en) * 2007-03-12 2008-09-18 General Electric Company Method and system for patient evaluation
US20080242955A1 (en) * 2007-03-30 2008-10-02 Kimmo Uutela Reliability in determination of clinical state of a subject
US7753861B1 (en) 2007-04-04 2010-07-13 Dp Technologies, Inc. Chest strap having human activity monitoring device
US20080269832A1 (en) * 2007-04-26 2008-10-30 The Hong Kong Polytechnic University Device and method for sleep apnea management using SpO2
US8540632B2 (en) 2007-05-24 2013-09-24 Proteus Digital Health, Inc. Low profile antenna for in body device
US8369944B2 (en) 2007-06-06 2013-02-05 Zoll Medical Corporation Wearable defibrillator with audio input/output
US9202008B1 (en) * 2007-06-08 2015-12-01 Cleveland Medical Devices Inc. Method and device for sleep analysis
US10426399B1 (en) * 2007-06-08 2019-10-01 Cleveland Medial Devices Inc. Method and device for in-home sleep and signal analysis
US11330988B2 (en) 2007-06-12 2022-05-17 Sotera Wireless, Inc. Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
US8554297B2 (en) 2009-06-17 2013-10-08 Sotera Wireless, Inc. Body-worn pulse oximeter
US11607152B2 (en) 2007-06-12 2023-03-21 Sotera Wireless, Inc. Optical sensors for use in vital sign monitoring
EP2162059B1 (en) 2007-06-12 2021-01-13 Sotera Wireless, Inc. Vital sign monitor and method for measuring blood pressure using optical, electrical, and pressure waveforms
US8602997B2 (en) 2007-06-12 2013-12-10 Sotera Wireless, Inc. Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
US20080319327A1 (en) * 2007-06-25 2008-12-25 Triage Wireless, Inc. Body-worn sensor featuring a low-power processor and multi-sensor array for measuring blood pressure
FR2917962B1 (fr) 2007-06-26 2010-11-26 Parsys Sante Electrocardiographe ambulatoire evenementiel.
FR2917960B1 (fr) * 2007-06-26 2009-10-30 Parsys Sante Soc Par Actions S Electrocardiographe ambulatoire evenementiel.
FR2917961B1 (fr) * 2007-06-26 2010-12-10 Parsys Sante Electrocardiographe ambulatoire evenementiel.
US8690768B2 (en) 2007-07-26 2014-04-08 David Amitai Patient operable data collection system
US8555282B1 (en) 2007-07-27 2013-10-08 Dp Technologies, Inc. Optimizing preemptive operating system with motion sensing
CN101108125B (zh) * 2007-08-02 2010-06-16 无锡微感科技有限公司 一种身体体征动态监测系统
US8702430B2 (en) * 2007-08-17 2014-04-22 Adidas International Marketing B.V. Sports electronic training system, and applications thereof
US20090076343A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Energy Management for Adherent Patient Monitor
EP2200512A1 (en) 2007-09-14 2010-06-30 Corventis, Inc. Adherent device for respiratory monitoring and sleep disordered breathing
WO2009036348A1 (en) 2007-09-14 2009-03-19 Corventis, Inc. Medical device automatic start-up upon contact to patient tissue
EP3922171A1 (en) 2007-09-14 2021-12-15 Medtronic Monitoring, Inc. Adherent cardiac monitor with advanced sensing capabilities
WO2009036313A1 (en) * 2007-09-14 2009-03-19 Corventis, Inc. Adherent device with multiple physiological sensors
US8374688B2 (en) 2007-09-14 2013-02-12 Corventis, Inc. System and methods for wireless body fluid monitoring
US8684925B2 (en) 2007-09-14 2014-04-01 Corventis, Inc. Injectable device for physiological monitoring
US8376943B2 (en) * 2007-09-24 2013-02-19 Medtronic, Inc. Patient event information
US9529972B2 (en) * 2007-09-24 2016-12-27 Medtronic, Inc. Patient event indication
US10561845B2 (en) 2007-09-24 2020-02-18 Medtronic, Inc. Therapy adjustment based on patient event indication
FI2192946T3 (fi) 2007-09-25 2022-11-30 Elimistön sisäinen laite, jossa on virtuaalinen dipolisignaalinvahvistus
US20090099812A1 (en) * 2007-10-11 2009-04-16 Philippe Kahn Method and Apparatus for Position-Context Based Actions
EP2210126A4 (en) 2007-10-24 2011-08-31 Kirsen Technologies Corp SYSTEM AND METHOD FOR ROOM CONTROL AND REMOTE MONITORING
US8251903B2 (en) 2007-10-25 2012-08-28 Valencell, Inc. Noninvasive physiological analysis using excitation-sensor modules and related devices and methods
US20090112114A1 (en) * 2007-10-26 2009-04-30 Ayyagari Deepak V Method and system for self-monitoring of environment-related respiratory ailments
US8334703B2 (en) 2007-11-20 2012-12-18 Roiksimt Apparatus for remote detection and monitoring of concealed objects
JP5794782B2 (ja) 2007-11-27 2015-10-14 プロテウス デジタル ヘルス, インコーポレイテッド 通信チャネルを採用するトランスボディ通信システム
US11389080B2 (en) 2007-11-28 2022-07-19 Intervet Inc. System and method for diagnosis of bovine diseases using auscultation analysis
JP5667448B2 (ja) * 2007-12-18 2015-02-12 コーニンクレッカ フィリップス エヌ ヴェ 人体構造的に方向づけられたecgデータ表示を使用した被疑冠状動脈の自動識別
US8571643B2 (en) 2010-09-16 2013-10-29 Flint Hills Scientific, Llc Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex
US8382667B2 (en) 2010-10-01 2013-02-26 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US8337404B2 (en) 2010-10-01 2012-12-25 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US11272874B2 (en) * 2008-01-25 2022-03-15 Flint Hills Scientific, Llc Contingent cardio-protection for epilepsy patients
US8055607B2 (en) * 2008-03-03 2011-11-08 International Business Machines Corporation Adaptive multi-levels dictionaries and singular value decomposition techniques for autonomic problem determination
DK3235491T3 (da) * 2008-03-05 2021-02-08 Otsuka Pharma Co Ltd Spiselige hændelsesmarkeringsenheder og systemer med multimodus-kommunikation
WO2009114548A1 (en) 2008-03-12 2009-09-17 Corventis, Inc. Heart failure decompensation prediction based on cardiac rhythm
CN101983090A (zh) * 2008-04-03 2011-03-02 韩国电子通信研究院 基于动作内容的训练装置和方法
US8976007B2 (en) 2008-08-09 2015-03-10 Brian M. Dugan Systems and methods for providing biofeedback information to a cellular telephone and for using such information
US8412317B2 (en) 2008-04-18 2013-04-02 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
KR20100139144A (ko) * 2008-04-21 2010-12-31 카를 프레데릭 에드만 대사 에너지 모니터링 시스템
US8265752B2 (en) * 2008-04-28 2012-09-11 The General Hospital Corporation System and method for assessing atrial electrical stability
US20090276229A1 (en) * 2008-04-30 2009-11-05 Martin Grigorov Methods of monitoring the effect of nutritional products
US9443141B2 (en) * 2008-06-02 2016-09-13 New York University Method, system, and computer-accessible medium for classification of at least one ICTAL state
US8149093B2 (en) * 2008-06-06 2012-04-03 Lyngsoe Systems System and method for wireless communications
US7822469B2 (en) * 2008-06-13 2010-10-26 Salutron, Inc. Electrostatic discharge protection for analog component of wrist-worn device
US8996332B2 (en) * 2008-06-24 2015-03-31 Dp Technologies, Inc. Program setting adjustments based on activity identification
KR100951448B1 (ko) * 2008-07-03 2010-04-07 송명근 입력신호의 보정이 가능한 다기능 휴대용 심전도 측정 장치및 신호의 보정방법
CA2730275C (en) 2008-07-08 2019-05-21 Proteus Biomedical, Inc. Ingestible event marker data framework
US8301219B2 (en) * 2008-07-16 2012-10-30 The General Hospital Corporation Patient monitoring systems and methods
US8679012B1 (en) * 2008-08-13 2014-03-25 Cleveland Medical Devices Inc. Medical device and method with improved biometric verification
US8082025B2 (en) * 2008-08-14 2011-12-20 David Amitai ECG data acquisition device
US11375938B2 (en) 2008-08-14 2022-07-05 Ticker Medical Ltd Miniature ECG data acquisition device
WO2010021690A2 (en) * 2008-08-18 2010-02-25 Board Of Trustees Of Michigan State University Non-invasive device for diagnosing gastroesophageal reflux
US20100056873A1 (en) * 2008-08-27 2010-03-04 Allen Paul G Health-related signaling via wearable items
US20100056881A1 (en) * 2008-08-29 2010-03-04 Corventis, Inc. Method and Apparatus For Acute Cardiac Monitoring
EP2348977B1 (en) * 2008-09-17 2018-03-28 Med-El Elektromedizinische Geräte GmbH Stimulus artifact removal for neuronal recordings
US8364220B2 (en) 2008-09-25 2013-01-29 Covidien Lp Medical sensor and technique for using the same
US8257274B2 (en) 2008-09-25 2012-09-04 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
US8872646B2 (en) 2008-10-08 2014-10-28 Dp Technologies, Inc. Method and system for waking up a device due to motion
US8868162B2 (en) * 2008-10-20 2014-10-21 Neurochip Corporation Method and attenuator for detection and iterative attenuation of spikes in complex signals
US8019407B2 (en) * 2008-10-24 2011-09-13 Biotronik Crm Patent Ag Heart monitoring device and method
US8597570B2 (en) 2008-11-04 2013-12-03 Panasonic Corporation Measurement device, insulin infusion device, measurement method, method for controlling insulin infusion device, and program
US10064580B2 (en) 2008-11-07 2018-09-04 Intervet Inc. System and method for determining antibiotic effectiveness in respiratory diseased animals using auscultation analysis
US9060714B2 (en) * 2008-12-04 2015-06-23 The Regents Of The University Of California System for detection of body motion
WO2010068818A2 (en) 2008-12-11 2010-06-17 Proteus Biomedical, Inc. Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
US9727139B2 (en) 2008-12-12 2017-08-08 Immersion Corporation Method and apparatus for providing a haptic monitoring system using multiple sensors
US20100152620A1 (en) * 2008-12-12 2010-06-17 Immersion Corporation Method and Apparatus for Providing A Haptic Monitoring System Using Multiple Sensors
TWI424832B (zh) 2008-12-15 2014-02-01 Proteus Digital Health Inc 與身體有關的接收器及其方法
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
EP2375968B1 (en) 2008-12-15 2018-11-14 Medtronic Monitoring, Inc. Patient monitoring systems and methods
BRPI0917755A2 (pt) * 2008-12-15 2016-02-23 Koninkl Philips Electronics Nv método para a calibração de um detector de queda, método para o ajuste de um detector de queda, aparelho para a calibração de um detector de queda e detector de queda
KR101016630B1 (ko) * 2008-12-26 2011-02-23 경북대학교 산학협력단 심전도 신호 압축 방법 및 장치
US9883819B2 (en) 2009-01-06 2018-02-06 Proteus Digital Health, Inc. Ingestion-related biofeedback and personalized medical therapy method and system
US20100211404A1 (en) * 2009-02-17 2010-08-19 Nonlinear Medicine, Inc. Methods and Systems for Real-Time RRi Values PD2i of Heartbeat Intervals
EP3357419A1 (en) 2009-02-25 2018-08-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US9750462B2 (en) 2009-02-25 2017-09-05 Valencell, Inc. Monitoring apparatus and methods for measuring physiological and/or environmental conditions
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
WO2010103390A1 (en) * 2009-03-12 2010-09-16 Stellenbosch University Vital signs monitoring system and components thereof
US8515515B2 (en) 2009-03-25 2013-08-20 Covidien Lp Medical sensor with compressible light barrier and technique for using the same
US9655518B2 (en) * 2009-03-27 2017-05-23 Braemar Manufacturing, Llc Ambulatory and centralized processing of a physiological signal
US8781548B2 (en) 2009-03-31 2014-07-15 Covidien Lp Medical sensor with flexible components and technique for using the same
WO2010113522A1 (ja) * 2009-04-03 2010-10-07 パナソニック株式会社 測定装置及び測定装置の制御方法
US8454437B2 (en) 2009-07-17 2013-06-04 Brian M. Dugan Systems and methods for portable exergaming
US9060722B2 (en) * 2009-04-22 2015-06-23 Rodrigo E. Teixeira Apparatus for processing physiological sensor data using a physiological model and method of operation therefor
US9451886B2 (en) 2009-04-22 2016-09-27 Rodrigo E. Teixeira Probabilistic parameter estimation using fused data apparatus and method of use thereof
US10460843B2 (en) 2009-04-22 2019-10-29 Rodrigo E. Teixeira Probabilistic parameter estimation using fused data apparatus and method of use thereof
US11363994B2 (en) * 2009-04-22 2022-06-21 Alton Reich Cardiovascular state determination apparatus and method of use thereof
US20100274102A1 (en) * 2009-04-22 2010-10-28 Streamline Automation, Llc Processing Physiological Sensor Data Using a Physiological Model Combined with a Probabilistic Processor
US9173574B2 (en) 2009-04-22 2015-11-03 Rodrigo E. Teixeira Mechanical health monitor apparatus and method of operation therefor
US10699206B2 (en) 2009-04-22 2020-06-30 Rodrigo E. Teixeira Iterative probabilistic parameter estimation apparatus and method of use therefor
US9375171B2 (en) 2009-04-22 2016-06-28 Rodrigo E. Teixeira Probabilistic biomedical parameter estimation apparatus and method of operation therefor
TWI439255B (zh) * 2009-04-28 2014-06-01 私立中原大學 Measurement of arrhythmia
US11589754B2 (en) 2009-05-20 2023-02-28 Sotera Wireless, Inc. Blood pressure-monitoring system with alarm/alert system that accounts for patient motion
US8180440B2 (en) 2009-05-20 2012-05-15 Sotera Wireless, Inc. Alarm system that processes both motion and vital signs using specific heuristic rules and thresholds
US11896350B2 (en) 2009-05-20 2024-02-13 Sotera Wireless, Inc. Cable system for generating signals for detecting motion and measuring vital signs
US9529437B2 (en) * 2009-05-26 2016-12-27 Dp Technologies, Inc. Method and apparatus for a motion state aware device
US10657493B2 (en) * 2009-06-17 2020-05-19 Clutch Hitter, Inc. Method and system for rating a baseball player's performance in pressure situations
US20110009758A1 (en) * 2009-07-10 2011-01-13 Lifescience Solutions Llc System and method for heart monitoring
GB2471903A (en) * 2009-07-17 2011-01-19 Sharp Kk Sleep management system for monitoring sleep quality and making recommendations for improvement
US10223632B2 (en) * 2009-07-27 2019-03-05 International Business Machines Corporation Modeling states of an entity
US9351659B2 (en) * 2009-07-28 2016-05-31 Altec, Inc. Biomedical electrode configuration for suppressing movement artifact
WO2011020216A1 (zh) 2009-08-18 2011-02-24 Yang Changming 侦测生理机能及姿势状态的物品、方法和系统
KR101103596B1 (ko) * 2009-08-27 2012-01-09 주식회사 자원메디칼 피 측정자의 신체 움직임을 감지하면서 동시에 혈압을 측정하는 혈압측정장치 및 혈압측정방법
EP2475296B1 (en) * 2009-09-10 2017-05-17 Intrapace, Inc. Improved diagnostic sensors for gastrointestinal stimulation or monitoring devices
US20110066043A1 (en) * 2009-09-14 2011-03-17 Matt Banet System for measuring vital signs during hemodialysis
US10595746B2 (en) 2009-09-14 2020-03-24 Sotera Wireless, Inc. Body-worn monitor for measuring respiration rate
US11253169B2 (en) 2009-09-14 2022-02-22 Sotera Wireless, Inc. Body-worn monitor for measuring respiration rate
US8527038B2 (en) 2009-09-15 2013-09-03 Sotera Wireless, Inc. Body-worn vital sign monitor
US8364250B2 (en) 2009-09-15 2013-01-29 Sotera Wireless, Inc. Body-worn vital sign monitor
US10806351B2 (en) 2009-09-15 2020-10-20 Sotera Wireless, Inc. Body-worn vital sign monitor
US8321004B2 (en) 2009-09-15 2012-11-27 Sotera Wireless, Inc. Body-worn vital sign monitor
US10278645B2 (en) 2010-03-10 2019-05-07 Sotera Wireless, Inc. Body-worn vital sign monitor
US20110066041A1 (en) * 2009-09-15 2011-03-17 Texas Instruments Incorporated Motion/activity, heart-rate and respiration from a single chest-worn sensor, circuits, devices, processes and systems
US10420476B2 (en) 2009-09-15 2019-09-24 Sotera Wireless, Inc. Body-worn vital sign monitor
US20110218756A1 (en) * 2009-10-01 2011-09-08 Mc10, Inc. Methods and apparatus for conformal sensing of force and/or acceleration at a person's head
TWI496558B (zh) * 2009-10-20 2015-08-21 Tatung Co 使用二極電極貼片量測心電圖與呼吸訊號之系統及方法
US8790259B2 (en) 2009-10-22 2014-07-29 Corventis, Inc. Method and apparatus for remote detection and monitoring of functional chronotropic incompetence
TWI517050B (zh) 2009-11-04 2016-01-11 普羅托斯數位健康公司 供應鏈管理之系統
US8854060B2 (en) * 2009-11-06 2014-10-07 BIOTRONIK CRIM Patent AG Physiological measurement instrument
US8838217B2 (en) 2009-11-10 2014-09-16 Makor Issues And Rights Ltd. System and apparatus for providing diagnosis and personalized abnormalities alerts and for providing adaptive responses in clinical trials
US9451897B2 (en) 2009-12-14 2016-09-27 Medtronic Monitoring, Inc. Body adherent patch with electronics for physiologic monitoring
US20110166937A1 (en) * 2010-01-05 2011-07-07 Searete Llc Media output with micro-impulse radar feedback of physiological response
US9024814B2 (en) 2010-01-05 2015-05-05 The Invention Science Fund I, Llc Tracking identities of persons using micro-impulse radar
US8884813B2 (en) 2010-01-05 2014-11-11 The Invention Science Fund I, Llc Surveillance of stress conditions of persons using micro-impulse radar
US20110166940A1 (en) * 2010-01-05 2011-07-07 Searete Llc Micro-impulse radar detection of a human demographic and delivery of targeted media content
US9019149B2 (en) 2010-01-05 2015-04-28 The Invention Science Fund I, Llc Method and apparatus for measuring the motion of a person
US9069067B2 (en) 2010-09-17 2015-06-30 The Invention Science Fund I, Llc Control of an electronic apparatus using micro-impulse radar
KR101161492B1 (ko) * 2010-01-12 2012-06-29 삼성전자주식회사 Idc 센서를 활용한 휴대용 칼로리 측정 장치 및 방법
BR112012019212A2 (pt) 2010-02-01 2017-06-13 Proteus Digital Health Inc sistema de coleta de dados
JP5692097B2 (ja) * 2010-02-05 2015-04-01 日本電気株式会社 生体情報計測器、携帯端末装置、生体情報計測方法およびプログラム
US20110201953A1 (en) * 2010-02-16 2011-08-18 General Electric Company Method and system for patient evaluation
US20110201954A1 (en) * 2010-02-17 2011-08-18 General Electric Company Method and system for patient evaluation
US8554517B2 (en) * 2010-02-25 2013-10-08 Sharp Laboratories Of America, Inc. Physiological signal quality classification for ambulatory monitoring
WO2011110491A1 (en) * 2010-03-09 2011-09-15 Sabirmedical, S.L. A non-invasive system and method for diagnosing and eliminating white coat hypertention and white coat effect in a patient
US8965498B2 (en) 2010-04-05 2015-02-24 Corventis, Inc. Method and apparatus for personalized physiologic parameters
US9339209B2 (en) 2010-04-19 2016-05-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8747330B2 (en) 2010-04-19 2014-06-10 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8888700B2 (en) 2010-04-19 2014-11-18 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9173594B2 (en) 2010-04-19 2015-11-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8979765B2 (en) 2010-04-19 2015-03-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9173593B2 (en) 2010-04-19 2015-11-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8649871B2 (en) 2010-04-29 2014-02-11 Cyberonics, Inc. Validity test adaptive constraint modification for cardiac data used for detection of state changes
US8562536B2 (en) 2010-04-29 2013-10-22 Flint Hills Scientific, Llc Algorithm for detecting a seizure from cardiac data
US8831732B2 (en) 2010-04-29 2014-09-09 Cyberonics, Inc. Method, apparatus and system for validating and quantifying cardiac beat data quality
TWI557672B (zh) 2010-05-19 2016-11-11 波提亞斯數位康健公司 用於從製造商跟蹤藥物直到患者之電腦系統及電腦實施之方法、用於確認將藥物給予患者的設備及方法、患者介面裝置
US8509882B2 (en) 2010-06-08 2013-08-13 Alivecor, Inc. Heart monitoring system usable with a smartphone or computer
US9351654B2 (en) 2010-06-08 2016-05-31 Alivecor, Inc. Two electrode apparatus and methods for twelve lead ECG
US8641646B2 (en) 2010-07-30 2014-02-04 Cyberonics, Inc. Seizure detection using coordinate data
US20120029363A1 (en) * 2010-07-30 2012-02-02 Nellcor Puritan Bennett Llc Systems and methods for improved computation of differential pulse transit time from photoplethysmograph signals
CA2714857A1 (en) * 2010-09-15 2012-03-15 Evan B. Friedman Electromyographic (emg) device for the diagnosis and treatment of muscle injuries
US8954290B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Motion-activated display of messages on an activity monitoring device
US8738323B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for metrics analysis and interactive rendering, including events having combined activity and location information
US8744803B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for activity tracking device data synchronization with computing devices
US8762102B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for generation and rendering interactive events having combined activity and location information
US9253168B2 (en) 2012-04-26 2016-02-02 Fitbit, Inc. Secure pairing of devices via pairing facilitator-intermediary device
US8762101B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for identification of event data having combined activity and location information of portable monitoring devices
US8694282B2 (en) 2010-09-30 2014-04-08 Fitbit, Inc. Methods and systems for geo-location optimized tracking and updating for events having combined activity and location information
US10983945B2 (en) 2010-09-30 2021-04-20 Fitbit, Inc. Method of data synthesis
US9241635B2 (en) 2010-09-30 2016-01-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US8615377B1 (en) 2010-09-30 2013-12-24 Fitbit, Inc. Methods and systems for processing social interactive data and sharing of tracked activity associated with locations
US9390427B2 (en) 2010-09-30 2016-07-12 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US10004406B2 (en) 2010-09-30 2018-06-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
KR101301304B1 (ko) * 2010-09-30 2013-08-28 주식회사 누가의료기 이산 웨이블릿 변환을 이용한 운동 중 실시간 특정 점 검출 및 리듬 분석
US8620617B2 (en) 2010-09-30 2013-12-31 Fitbit, Inc. Methods and systems for interactive goal setting and recommender using events having combined activity and location information
US8738321B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for classification of geographic locations for tracked activity
US9310909B2 (en) 2010-09-30 2016-04-12 Fitbit, Inc. Methods, systems and devices for physical contact activated display and navigation
US8712724B2 (en) 2010-09-30 2014-04-29 Fitbit, Inc. Calendar integration methods and systems for presentation of events having combined activity and location information
US9148483B1 (en) 2010-09-30 2015-09-29 Fitbit, Inc. Tracking user physical activity with multiple devices
US8954291B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US8805646B2 (en) 2010-09-30 2014-08-12 Fitbit, Inc. Methods, systems and devices for linking user devices to activity tracking devices
US11243093B2 (en) 2010-09-30 2022-02-08 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US8684921B2 (en) 2010-10-01 2014-04-01 Flint Hills Scientific Llc Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis
WO2012048168A2 (en) * 2010-10-07 2012-04-12 Abbott Diabetes Care Inc. Analyte monitoring devices and methods
JP5516428B2 (ja) 2010-10-14 2014-06-11 株式会社村田製作所 拍動周期算出装置およびこれを備えた生体センサ
US20120094600A1 (en) 2010-10-19 2012-04-19 Welch Allyn, Inc. Platform for patient monitoring
JP5707504B2 (ja) 2010-11-17 2015-04-30 スマート ソリュションズ テクノロジーズ, エス.エル. 生理学的信号を取得するためのセンサー
US9808196B2 (en) 2010-11-17 2017-11-07 Smart Solutions Technologies, S.L. Sensors
EP2463795A1 (en) * 2010-12-09 2012-06-13 Fresenius Medical Care Deutschland GmbH A method for calculating or approximating one or more values representing parameters of a patient and devices
US10244988B2 (en) 2010-12-16 2019-04-02 Nokia Technologies Oy Method, apparatus and computer program of using a bio-signal profile
FI20106337A0 (fi) * 2010-12-17 2010-12-17 Polar Electro Oy Häiriönvaimennuspiiri biometrisiä mittauksia varten
US20120158433A1 (en) * 2010-12-20 2012-06-21 Reinhold Schmieding Medical procedure outcome system
EP2658440B1 (en) 2010-12-28 2019-09-18 Sotera Wireless, Inc. Method for continuous non-invasive measurement of cardiac output and stroke volume of a subject
US9035776B2 (en) * 2011-01-20 2015-05-19 At&T Intellectual Property I, L.P. Wireless monitoring of safety helmets
CA2825405A1 (en) 2011-01-27 2012-08-02 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for monitoring the circulatory system
US20120197144A1 (en) * 2011-01-27 2012-08-02 Koninklijke Philips Electronics N.V. Exchangeable electrode and ecg cable snap connector
US8888701B2 (en) 2011-01-27 2014-11-18 Valencell, Inc. Apparatus and methods for monitoring physiological data during environmental interference
US9265477B2 (en) * 2011-02-17 2016-02-23 Sharp Laboratories Of America, Inc. Adaptive lightweight acoustic signal classification for physiological monitoring
CN103582449B (zh) * 2011-02-18 2017-06-09 索泰拉无线公司 用于患者监护的模块化手腕佩戴式处理器
US10357187B2 (en) 2011-02-18 2019-07-23 Sotera Wireless, Inc. Optical sensor for measuring physiological properties
US9504390B2 (en) 2011-03-04 2016-11-29 Globalfoundries Inc. Detecting, assessing and managing a risk of death in epilepsy
KR101800706B1 (ko) * 2011-03-08 2017-11-24 삼성전자 주식회사 잡음이 제거된 생체 신호를 측정하는 장치, 단위 측정기 및 방법
WO2012123828A1 (en) * 2011-03-11 2012-09-20 Koninklijke Philips Electronics N.V. Monitoring apparatus for monitoring a physiological signal.
JP2014514032A (ja) 2011-03-11 2014-06-19 プロテウス デジタル ヘルス, インコーポレイテッド 様々な物理的構成を備えた着用式個人身体関連装置
WO2012135028A1 (en) 2011-03-25 2012-10-04 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
WO2012135062A1 (en) 2011-03-25 2012-10-04 Zoll Medical Corporation Selection of optimal channel for rate determination
US20120253489A1 (en) 2011-03-28 2012-10-04 Dugan Brian M Systems and methods for fitness and video games
US9533228B2 (en) 2011-03-28 2017-01-03 Brian M. Dugan Systems and methods for fitness and video games
US9610506B2 (en) 2011-03-28 2017-04-04 Brian M. Dugan Systems and methods for fitness and video games
US8663124B2 (en) 2011-03-30 2014-03-04 Sharp Laboratories Of America, Inc. Multistage method and system for estimating respiration parameters from acoustic signal
US8725239B2 (en) 2011-04-25 2014-05-13 Cyberonics, Inc. Identifying seizures using heart rate decrease
US8884809B2 (en) 2011-04-29 2014-11-11 The Invention Science Fund I, Llc Personal electronic device providing enhanced user environmental awareness
US9151834B2 (en) 2011-04-29 2015-10-06 The Invention Science Fund I, Llc Network and personal electronic devices operatively coupled to micro-impulse radars
US9103899B2 (en) * 2011-04-29 2015-08-11 The Invention Science Fund I, Llc Adaptive control of a personal electronic device responsive to a micro-impulse radar
US9402550B2 (en) 2011-04-29 2016-08-02 Cybertronics, Inc. Dynamic heart rate threshold for neurological event detection
US9000973B2 (en) 2011-04-29 2015-04-07 The Invention Science Fund I, Llc Personal electronic device with a micro-impulse radar
US9504427B2 (en) 2011-05-04 2016-11-29 Cardioinsight Technologies, Inc. Signal averaging
US8947226B2 (en) 2011-06-03 2015-02-03 Brian M. Dugan Bands for measuring biometric information
US8738925B1 (en) 2013-01-07 2014-05-27 Fitbit, Inc. Wireless portable biometric device syncing
US20120313746A1 (en) * 2011-06-10 2012-12-13 Aliphcom Device control using sensory input
US9258670B2 (en) 2011-06-10 2016-02-09 Aliphcom Wireless enabled cap for a data-capable device
US8793522B2 (en) 2011-06-11 2014-07-29 Aliphcom Power management in a data-capable strapband
US20130133424A1 (en) * 2011-06-10 2013-05-30 Aliphcom System-based motion detection
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
US20120315382A1 (en) 2011-06-10 2012-12-13 Aliphcom Component protective overmolding using protective external coatings
US8446275B2 (en) 2011-06-10 2013-05-21 Aliphcom General health and wellness management method and apparatus for a wellness application using data from a data-capable band
KR20140058502A (ko) * 2011-06-20 2014-05-14 헬스와치 리미티드 독립 비간섭 웨어러블 건강 모니터링 및 경고 시스템
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
AU2012284267B2 (en) 2011-07-15 2017-06-29 Nusirt Sciences, Inc. Compositions and methods for modulating metabolic pathways
KR101898964B1 (ko) 2011-07-21 2018-09-14 프로테우스 디지털 헬스, 인코포레이티드 모바일 통신 장치, 시스템, 및 방법
US9201812B2 (en) 2011-07-25 2015-12-01 Aliphcom Multiple logical representations of audio functions in a wireless audio transmitter that transmits audio data at different data rates
US9427191B2 (en) 2011-07-25 2016-08-30 Valencell, Inc. Apparatus and methods for estimating time-state physiological parameters
WO2013019494A2 (en) 2011-08-02 2013-02-07 Valencell, Inc. Systems and methods for variable filter adjustment by heart rate metric feedback
US8954129B1 (en) * 2011-09-10 2015-02-10 Todd T. Schlegel Wearable for acquisition of resting multi-lead ECG
RU2616764C2 (ru) 2011-09-16 2017-04-18 Конинклейке Филипс Н.В. Устройство и способ для оценки частоты сердечных сокращений во время движения
CN102499678B (zh) * 2011-09-23 2013-11-06 中国人民解放军第四军医大学 一种便携式电阻抗成像系统的电阻抗测量装置及测量方法
CN103006199B (zh) * 2011-09-26 2016-09-28 三星电子株式会社 用于测量生物信号的设备和方法
KR101941171B1 (ko) * 2011-09-26 2019-01-23 삼성전자주식회사 생체신호를 측정하는 장치 및 방법
US9549677B2 (en) 2011-10-14 2017-01-24 Flint Hills Scientific, L.L.C. Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
US8700136B2 (en) 2011-11-11 2014-04-15 Biosense Webster (Israel), Ltd. Accurate time annotation of intracardiac ECG signals
FI124367B (fi) 2011-11-11 2014-07-31 Firstbeat Technologies Oy Menetelmä ja järjestelmä henkilön fysiologisen tilan kartoittamiseksi
US9311825B2 (en) 2011-12-22 2016-04-12 Senstream, Inc. Biometric sensing and processing apparatus for mobile gaming, education, and wellness applications
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
TW201328660A (zh) * 2012-01-06 2013-07-16 Advanced Mediwatch Co Ltd 即時運動指導系統
CA2862333A1 (en) * 2012-01-25 2013-08-01 The Regents Of The University Of California Systems and methods for automatic segment selection for multi-dimensional biomedical signals
CN104508343B (zh) * 2012-01-26 2016-11-16 Med-El电气医疗器械有限公司 用于治疗咽部障碍的神经监测方法和系统
DE112012005768T5 (de) * 2012-01-27 2014-12-04 Mitsubishi Electric Corporation Hochfrequenzstromreduzierungsvorrichtung
EP3610919A1 (en) 2012-03-02 2020-02-19 Zoll Medical Corporation A system comprising a wearable therapeutic device
US9198454B2 (en) 2012-03-08 2015-12-01 Nusirt Sciences, Inc. Compositions, methods, and kits for regulating energy metabolism
KR101426591B1 (ko) * 2012-03-13 2014-08-06 연세대학교 산학협력단 생체 신호의 노이즈 제거 장치 및 방법
MX350665B (es) * 2012-04-09 2017-09-13 Geissler Companies Llc Sistema y método para el diagnóstico de enfermedades en animales bovinos, empleando análisis de auscultación.
WO2013155503A1 (en) 2012-04-13 2013-10-17 Langer Alois A Outpatient health emergency warning system
US9907494B2 (en) 2012-04-18 2018-03-06 Hutchinson Technology Incorporated NIRS device with optical wavelength and path length correction
US9681836B2 (en) 2012-04-23 2017-06-20 Cyberonics, Inc. Methods, systems and apparatuses for detecting seizure and non-seizure states
US10448839B2 (en) 2012-04-23 2019-10-22 Livanova Usa, Inc. Methods, systems and apparatuses for detecting increased risk of sudden death
WO2013165474A1 (en) * 2012-04-30 2013-11-07 Yingchang Yang Continuously wearable non-invasive apparatus for detecting abnormal health conditions
US10405791B2 (en) * 2013-03-15 2019-09-10 Yingchang Yang Method and continuously wearable noninvasive apparatus for automatically detecting a stroke and other abnormal health conditions
US20150164404A1 (en) * 2012-05-23 2015-06-18 Convergent Engineering, Inc. System and method for detecting preeclampsia
IN2014DN09896A (ja) 2012-05-31 2015-08-07 Zoll Medical Corp
US10314492B2 (en) 2013-05-23 2019-06-11 Medibotics Llc Wearable spectroscopic sensor to measure food consumption based on interaction between light and the human body
US9042596B2 (en) 2012-06-14 2015-05-26 Medibotics Llc Willpower watch (TM)—a wearable food consumption monitor
US10130277B2 (en) 2014-01-28 2018-11-20 Medibotics Llc Willpower glasses (TM)—a wearable food consumption monitor
US9814426B2 (en) 2012-06-14 2017-11-14 Medibotics Llc Mobile wearable electromagnetic brain activity monitor
US9254099B2 (en) 2013-05-23 2016-02-09 Medibotics Llc Smart watch and food-imaging member for monitoring food consumption
US9536449B2 (en) 2013-05-23 2017-01-03 Medibotics Llc Smart watch and food utensil for monitoring food consumption
US9442100B2 (en) 2013-12-18 2016-09-13 Medibotics Llc Caloric intake measuring system using spectroscopic and 3D imaging analysis
CA2875638A1 (en) * 2012-06-19 2013-12-27 Hans Bernhard Apparatuses for detecting and/or diagnosing swallowing disorders
US9641239B2 (en) 2012-06-22 2017-05-02 Fitbit, Inc. Adaptive data transfer using bluetooth
ES2392083B1 (es) * 2012-07-16 2013-10-09 Universitat Politècnica De Catalunya Método con bio-retroalimentacion para entrenamiento de la musculatura del suelo pelvico
WO2014021886A1 (en) * 2012-08-01 2014-02-06 Draeger Medical Systems, Inc. Apparatus and method for measuring electrophysiological signals using dry electrodes
US9532747B2 (en) * 2012-08-03 2017-01-03 Arizona Board of Regents, a body of corporate of the State of Arizona System and method for stress sensing
US11185241B2 (en) 2014-03-05 2021-11-30 Whoop, Inc. Continuous heart rate monitoring and interpretation
CA2883852A1 (en) 2012-09-04 2014-03-13 Whoop, Inc. Systems, devices and methods for continuous heart rate monitoring and interpretation
EP2892429B1 (en) * 2012-09-10 2019-07-24 Koninklijke Philips N.V. Device and method to improve dependability of physiological parameter measurements
WO2014043723A1 (en) * 2012-09-17 2014-03-20 Accumed Systems, Inc. Non-invasive sensor apparatus and method for assessing cardiac performance
US20140085050A1 (en) * 2012-09-25 2014-03-27 Aliphcom Validation of biometric identification used to authenticate identity of a user of wearable sensors
US20150359491A1 (en) * 2012-09-29 2015-12-17 Aliphcom Physiological characteristic determination based on signal correlation
USD850626S1 (en) 2013-03-15 2019-06-04 Rhythm Diagnostic Systems, Inc. Health monitoring apparatuses
US10244949B2 (en) 2012-10-07 2019-04-02 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US10413251B2 (en) 2012-10-07 2019-09-17 Rhythm Diagnostic Systems, Inc. Wearable cardiac monitor
US10610159B2 (en) 2012-10-07 2020-04-07 Rhythm Diagnostic Systems, Inc. Health monitoring systems and methods
US9254095B2 (en) 2012-11-08 2016-02-09 Alivecor Electrocardiogram signal detection
US9943517B2 (en) 2012-11-13 2018-04-17 Nusirt Sciences, Inc. Compositions and methods for increasing energy metabolism
AU2013353691B2 (en) * 2012-12-06 2017-02-09 Gregory John Gallagher Motion monitor
US9053308B2 (en) * 2012-12-12 2015-06-09 Intel Corporation Multi electro-biometric user recognition
US20140180027A1 (en) * 2012-12-20 2014-06-26 U.S. Government, As Represented By The Secretary Of The Army Estimation of Human Core Temperature based on Heart Rate System and Method
US10702165B2 (en) 2012-12-20 2020-07-07 The Government Of The United States, As Represented By The Secretary Of The Army Estimation of human core temperature based on heart rate system and method
WO2014107700A1 (en) 2013-01-07 2014-07-10 Alivecor, Inc. Methods and systems for electrode placement
US9039614B2 (en) 2013-01-15 2015-05-26 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9728059B2 (en) 2013-01-15 2017-08-08 Fitbit, Inc. Sedentary period detection utilizing a wearable electronic device
US10220211B2 (en) 2013-01-22 2019-03-05 Livanova Usa, Inc. Methods and systems to diagnose depression
US10244986B2 (en) 2013-01-23 2019-04-02 Avery Dennison Corporation Wireless sensor patches and methods of manufacturing
CN110013239A (zh) 2013-01-28 2019-07-16 瓦伦赛尔公司 具有与身体运动脱开的感测元件的生理监测装置
MX362388B (es) 2013-02-06 2019-01-15 Geissler Companies Llc Sistema y metodo para determinar la efectividad antibiotica en animales con enfermedades del sistema respiratorio usando un analisis de auscultacion.
WO2014125673A1 (en) * 2013-02-15 2014-08-21 Olympus Corporation Biological signal detecting apparatus and implantable medical device
US9530089B2 (en) 2013-03-04 2016-12-27 Hello Inc. Wearable device with overlapping ends coupled by magnets of a selected width, length and depth
US9345404B2 (en) 2013-03-04 2016-05-24 Hello Inc. Mobile device that monitors an individuals activities, behaviors, habits or health parameters
US9432091B2 (en) 2013-03-04 2016-08-30 Hello Inc. Telemetry system with wireless power receiver and monitoring devices
US9634921B2 (en) 2013-03-04 2017-04-25 Hello Inc. Wearable device coupled by magnets positioned in a frame in an interior of the wearable device with at least one electronic circuit
US9357922B2 (en) 2013-03-04 2016-06-07 Hello Inc. User or patient monitoring systems with one or more analysis tools
US9436903B2 (en) 2013-03-04 2016-09-06 Hello Inc. Wearable device with magnets with a defined distance between adjacent magnets
US9149189B2 (en) 2013-03-04 2015-10-06 Hello, Inc. User or patient monitoring methods using one or more analysis tools
US9320434B2 (en) 2013-03-04 2016-04-26 Hello Inc. Patient monitoring systems and messages that send alerts to patients only when the patient is awake
US9406220B2 (en) 2013-03-04 2016-08-02 Hello Inc. Telemetry system with tracking receiver devices
US9159223B2 (en) 2013-03-04 2015-10-13 Hello, Inc. User monitoring device configured to be in communication with an emergency response system or team
US9339188B2 (en) 2013-03-04 2016-05-17 James Proud Methods from monitoring health, wellness and fitness with feedback
US9445651B2 (en) 2013-03-04 2016-09-20 Hello Inc. Wearable device with overlapping ends coupled by magnets
US9662015B2 (en) 2013-03-04 2017-05-30 Hello Inc. System or device with wearable devices having one or more sensors with assignment of a wearable device user identifier to a wearable device user
US9330561B2 (en) 2013-03-04 2016-05-03 Hello Inc. Remote communication systems and methods for communicating with a building gateway control to control building systems and elements
US9367793B2 (en) 2013-03-04 2016-06-14 Hello Inc. Wearable device with magnets distanced from exterior surfaces of the wearable device
US9204798B2 (en) 2013-03-04 2015-12-08 Hello, Inc. System for monitoring health, wellness and fitness with feedback
US9532716B2 (en) 2013-03-04 2017-01-03 Hello Inc. Systems using lifestyle database analysis to provide feedback
US9420857B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with interior frame
US9361572B2 (en) 2013-03-04 2016-06-07 Hello Inc. Wearable device with magnets positioned at opposing ends and overlapped from one side to another
US9345403B2 (en) 2013-03-04 2016-05-24 Hello Inc. Wireless monitoring system with activity manager for monitoring user activity
US9526422B2 (en) 2013-03-04 2016-12-27 Hello Inc. System for monitoring individuals with a monitoring device, telemetry system, activity manager and a feedback system
US9737214B2 (en) 2013-03-04 2017-08-22 Hello Inc. Wireless monitoring of patient exercise and lifestyle
US9392939B2 (en) 2013-03-04 2016-07-19 Hello Inc. Methods using a monitoring device to monitor individual activities, behaviors or habit information and communicate with a database with corresponding individual base information for comparison
US9420856B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with adjacent magnets magnetized in different directions
US9298882B2 (en) 2013-03-04 2016-03-29 Hello Inc. Methods using patient monitoring devices with unique patient IDs and a telemetry system
US20140246502A1 (en) 2013-03-04 2014-09-04 Hello Inc. Wearable devices with magnets encased by a material that redistributes their magnetic fields
US9430938B2 (en) 2013-03-04 2016-08-30 Hello Inc. Monitoring device with selectable wireless communication
US8810430B2 (en) 2013-03-04 2014-08-19 Hello Inc. System using wearable device with unique user ID and telemetry system
US9424508B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with magnets having first and second polarities
US9427053B2 (en) 2013-03-04 2016-08-30 Hello Inc. Wearable device with magnets magnetized through their widths or thickness
US9553486B2 (en) 2013-03-04 2017-01-24 Hello Inc. Monitoring system and device with sensors that is remotely powered
US9427160B2 (en) 2013-03-04 2016-08-30 Hello Inc. Wearable device with overlapping ends coupled by magnets positioned in the wearable device by an undercut
US9398854B2 (en) 2013-03-04 2016-07-26 Hello Inc. System with a monitoring device that monitors individual activities, behaviors or habit information and communicates with a database with corresponding individual base information for comparison
US9704209B2 (en) 2013-03-04 2017-07-11 Hello Inc. Monitoring system and device with sensors and user profiles based on biometric user information
US9848776B2 (en) 2013-03-04 2017-12-26 Hello Inc. Methods using activity manager for monitoring user activity
US9427189B2 (en) 2013-03-04 2016-08-30 Hello Inc. Monitoring system and device with sensors that are responsive to skin pigmentation
KR102059346B1 (ko) * 2013-03-05 2020-02-11 삼성전자주식회사 근전도 센서 시스템 및 근전도 센서 시스템의 동작 방법
RU2546103C9 (ru) * 2013-03-06 2016-01-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Калининградский государственный технический университет" Способ определения параметров вариабельности сердечного ритма
KR101446183B1 (ko) * 2013-03-07 2014-10-01 인하대학교 산학협력단 상관 특징 분석 기반 실시간 emg 패턴 인식 방법
WO2014159793A1 (en) 2013-03-13 2014-10-02 Aptima, Inc. User state estimation systems and methods
US9254409B2 (en) 2013-03-14 2016-02-09 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
AU2014228116B2 (en) 2013-03-15 2019-01-03 Adam J. Simon System and signatures for the multi-modal physiological stimulation and assessment of brain health
US9254092B2 (en) 2013-03-15 2016-02-09 Alivecor, Inc. Systems and methods for processing and analyzing medical data
USD921204S1 (en) 2013-03-15 2021-06-01 Rds Health monitoring apparatus
AU2014236687A1 (en) 2013-03-15 2015-09-10 Nusirt Sciences, Inc. Leucine and nicotinic acid reduces lipid levels
JP6498177B2 (ja) 2013-03-15 2019-04-10 プロテウス デジタル ヘルス, インコーポレイテッド 本人認証装置システムおよび方法
GB2512304A (en) * 2013-03-25 2014-10-01 Toumaz Healthcare Ltd Apparatus and method for estimating energy expenditure
GB2512305B (en) * 2013-03-25 2018-05-02 Toumaz Healthcare Ltd Apparatus and Method for Estimating Energy Expenditure
WO2014168841A1 (en) 2013-04-08 2014-10-16 Irhythm Technologies, Inc Skin abrader
US9717440B2 (en) * 2013-05-03 2017-08-01 The Florida International University Board Of Trustees Systems and methods for decoding intended motor commands from recorded neural signals for the control of external devices or to interact in virtual environments
US9529385B2 (en) 2013-05-23 2016-12-27 Medibotics Llc Smart watch and human-to-computer interface for monitoring food consumption
US10022088B2 (en) 2013-05-28 2018-07-17 Globe Holding Company, Llc Wearable sensor retaining device
US9750433B2 (en) 2013-05-28 2017-09-05 Lark Technologies, Inc. Using health monitor data to detect macro and micro habits with a behavioral model
CA2913945A1 (en) * 2013-05-28 2014-12-04 Laszlo Osvath Systems and methods for diagnosis of depression and other medical conditions
EP3005281A4 (en) 2013-06-04 2017-06-28 Proteus Digital Health, Inc. System, apparatus and methods for data collection and assessing outcomes
US20140364702A1 (en) * 2013-06-06 2014-12-11 Valeriy Nasedkin Apparatus and method for functional state and/or performance assessment and training program adjustment
US10058290B1 (en) 2013-06-21 2018-08-28 Fitbit, Inc. Monitoring device with voice interaction
US10009581B2 (en) 2015-01-02 2018-06-26 Fitbit, Inc. Room monitoring device
US9993166B1 (en) 2013-06-21 2018-06-12 Fitbit, Inc. Monitoring device using radar and measuring motion with a non-contact device
US10004451B1 (en) 2013-06-21 2018-06-26 Fitbit, Inc. User monitoring system
US9610030B2 (en) 2015-01-23 2017-04-04 Hello Inc. Room monitoring device and sleep analysis methods
US9993197B2 (en) 2013-06-21 2018-06-12 Fitbit, Inc. Patient monitoring systems and messages that send alerts to patients only when the patient is awake
EP2818103B1 (en) * 2013-06-27 2016-08-03 Imec Biopotential signal acquisition system and method
EP3932478A1 (en) 2013-06-28 2022-01-05 Zoll Medical Corporation Ambulatory medical device capable of delivering therapy to a patient
WO2015002940A2 (en) 2013-07-01 2015-01-08 Mayo Foundation For Medical Education And Research Advanced health monitoring system
WO2015002945A2 (en) 2013-07-01 2015-01-08 Mayo Foundation For Medical Education And Research Algorithms for managing artifact and detecting cardiac events using a patient monitoring system
EP3016578B1 (en) * 2013-07-01 2020-01-01 Mayo Foundation for Medical Education and Research Algorithms for personalization of monitoring signals in remote patient monitoring systems
US9247911B2 (en) 2013-07-10 2016-02-02 Alivecor, Inc. Devices and methods for real-time denoising of electrocardiograms
CN205549235U (zh) 2013-08-01 2016-09-07 卓尔医疗公司 可穿戴医学设备和系统
US20170245773A1 (en) * 2013-08-30 2017-08-31 Joseph Wiesel Method and Apparatus for Detecting Atrial Fibrilation
US11147499B2 (en) 2013-08-30 2021-10-19 Joseph Wiesel Method and apparatus for detecting atrial fibrillation
AU2014321320B2 (en) 2013-09-20 2019-03-14 Otsuka Pharmaceutical Co., Ltd. Methods, devices and systems for receiving and decoding a signal in the presence of noise using slices and warping
US9577864B2 (en) 2013-09-24 2017-02-21 Proteus Digital Health, Inc. Method and apparatus for use with received electromagnetic signal at a frequency not known exactly in advance
GB2536163B (en) * 2013-10-17 2017-11-15 Monica Healthcare Ltd Apparatus and method for detecting an abdominal electrophysiological signal
CA2928197A1 (en) 2013-10-23 2015-04-30 Quanttus, Inc. Consumer biometric devices
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
CN103637511B (zh) * 2013-11-14 2015-03-11 成都博约创信科技有限责任公司 可智能监控人体健康状况的手环及方法
CN106028923B (zh) 2013-11-25 2019-06-25 皇家飞利浦有限公司 心电图监测系统和方法
US9545221B2 (en) 2013-11-27 2017-01-17 Samsung Electronics Co., Ltd. Electronic system with dynamic localization mechanism and method of operation thereof
EP3080922A4 (en) * 2013-12-11 2017-09-06 Antisep - Tech Ltd. Method and system for monitoring activity of an individual
EP3079571A4 (en) 2013-12-12 2017-08-02 Alivecor, Inc. Methods and systems for arrhythmia tracking and scoring
US9403047B2 (en) 2013-12-26 2016-08-02 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
US20150182130A1 (en) * 2013-12-31 2015-07-02 Aliphcom True resting heart rate
US9655559B2 (en) 2014-01-03 2017-05-23 Vital Connect, Inc. Automated sleep staging using wearable sensors
CN103654733B (zh) * 2014-01-08 2015-08-05 南京鱼跃软件技术有限公司 一种全科测量系统
US10028661B2 (en) * 2014-02-14 2018-07-24 Massachusetts Institute Of Technology Buffered body return receiver
US9031812B2 (en) 2014-02-27 2015-05-12 Fitbit, Inc. Notifications on a user device based on activity detected by an activity monitoring device
CN106456997B (zh) 2014-02-27 2018-12-28 纽斯尔特科学公司 用于减少或预防肝性脂肪变性的组合物和方法
WO2015138339A1 (en) 2014-03-10 2015-09-17 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US9782104B2 (en) 2014-03-26 2017-10-10 GestureLogic Inc. Systems, methods and devices for acquiring and processing physiological signals
US10327670B2 (en) 2014-03-26 2019-06-25 GestureLogic Inc. Systems, methods and devices for exercise and activity metric computation
US9770179B2 (en) * 2014-03-26 2017-09-26 GestureLogic Inc. System, method and device for detecting heart rate
US10318123B2 (en) 2014-03-31 2019-06-11 Elwha Llc Quantified-self machines, circuits and interfaces reflexively related to food fabricator machines and circuits
US10127361B2 (en) 2014-03-31 2018-11-13 Elwha Llc Quantified-self machines and circuits reflexively related to kiosk systems and associated food-and-nutrition machines and circuits
US9922307B2 (en) 2014-03-31 2018-03-20 Elwha Llc Quantified-self machines, circuits and interfaces reflexively related to food
US20150279178A1 (en) * 2014-03-31 2015-10-01 Elwha Llc Quantified-self machines and circuits reflexively related to fabricator, big-data analytics and user interfaces, and supply machines and circuits
TWI559901B (en) * 2014-04-14 2016-12-01 Quanta Comp Inc Method and device of sleep detection
JP2017513626A (ja) * 2014-04-21 2017-06-01 アライヴコア・インコーポレーテッド モバイルデバイスおよびアクセサリを用いた心臓監視のための方法およびシステム
CN103941873B (zh) * 2014-04-30 2017-05-10 北京智谷睿拓技术服务有限公司 识别方法和设备
US9288298B2 (en) 2014-05-06 2016-03-15 Fitbit, Inc. Notifications regarding interesting or unusual activity detected from an activity monitoring device
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
US10130273B2 (en) 2014-06-12 2018-11-20 PhysioWave, Inc. Device and method having automatic user-responsive and user-specific physiological-meter platform
US9568354B2 (en) 2014-06-12 2017-02-14 PhysioWave, Inc. Multifunction scale with large-area display
US9949662B2 (en) 2014-06-12 2018-04-24 PhysioWave, Inc. Device and method having automatic user recognition and obtaining impedance-measurement signals
US9943241B2 (en) 2014-06-12 2018-04-17 PhysioWave, Inc. Impedance measurement devices, systems, and methods
US9546898B2 (en) 2014-06-12 2017-01-17 PhysioWave, Inc. Fitness testing scale
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US20170127961A1 (en) * 2014-07-30 2017-05-11 Hewlett Packard Enterprise Development Lp Detecting vascular conditions in animal bodies
US9538921B2 (en) 2014-07-30 2017-01-10 Valencell, Inc. Physiological monitoring devices with adjustable signal analysis and interrogation power and monitoring methods using same
EP3199100A1 (en) 2014-08-06 2017-08-02 Valencell, Inc. Earbud with a physiological information sensor module
US9498137B2 (en) 2014-08-07 2016-11-22 PhysioWave, Inc. Multi-function fitness scale with display
US9693696B2 (en) 2014-08-07 2017-07-04 PhysioWave, Inc. System with user-physiological data updates
US20160051158A1 (en) * 2014-08-22 2016-02-25 Apple Inc. Harmonic template classifier
US10201286B2 (en) * 2014-08-22 2019-02-12 Apple Inc. Frequency domain projection algorithm
KR102290277B1 (ko) * 2014-08-27 2021-08-17 삼성전자주식회사 생체 정보 처리 방법 및 그 장치
CN111210891B (zh) 2014-09-02 2023-08-25 苹果公司 身体活动和健身监视器
US9526433B2 (en) 2014-09-12 2016-12-27 Verily Life Sciences Llc Wrist-mounted electrocardiography device
KR102386182B1 (ko) * 2014-09-15 2022-04-14 쓰리엠 이노베이티브 프로퍼티즈 캄파니 생물학적 고려사항을 이용한 손상 검출
WO2016044197A1 (en) * 2014-09-15 2016-03-24 3M Innovative Properties Company Impairment detection
KR102451630B1 (ko) * 2014-09-15 2022-10-07 쓰리엠 이노베이티브 프로퍼티즈 캄파니 환경 고려사항을 이용한 손상 검출
EP3038523B1 (en) * 2014-09-23 2020-11-25 RR Sequences Inc. Contactless electrocardiography
US9794653B2 (en) 2014-09-27 2017-10-17 Valencell, Inc. Methods and apparatus for improving signal quality in wearable biometric monitoring devices
US9662030B2 (en) 2014-10-01 2017-05-30 Verily Life Sciences Llc Electrocardiography device for garments
US10524734B2 (en) 2014-10-08 2020-01-07 MAD Apparel, Inc. Method and system for measuring beat parameters
US10311292B2 (en) * 2014-10-24 2019-06-04 Guy Jonathan James Rackham Multiple-media performance mechanism
US9833607B2 (en) 2014-10-30 2017-12-05 West Affum Holdings Corp. Wearable cardiac defibrillation system with flexible electrodes
US11540762B2 (en) 2014-10-30 2023-01-03 West Affum Holdings Dac Wearable cardioverter defibrtillator with improved ECG electrodes
WO2016073641A1 (en) * 2014-11-04 2016-05-12 Aliphcom Device-based activity classification using predictive feature analysis
CN113571187A (zh) 2014-11-14 2021-10-29 Zoll医疗公司 医疗先兆事件估计系统和外部穿戴的除颤器
KR102400106B1 (ko) 2014-11-17 2022-05-19 삼성전자주식회사 심전도 센서 칩, 시스템 온 칩과, 웨어러블 기기
EP3025639A1 (de) * 2014-11-26 2016-06-01 BIOTRONIK SE & Co. KG Elektrokardiographiesystem
CN104510463B (zh) * 2014-12-08 2016-10-05 华南理工大学 基于可穿戴装置的心电检测装置
US9681818B2 (en) * 2014-12-16 2017-06-20 Biosense Webster (Israel) Ltd. Detection and display of irregular periodic waveforms
US11219373B2 (en) * 2014-12-22 2022-01-11 Eggers & Associates, Inc. Wearable apparatus, system and method for detection of cardiac arrest and alerting emergency response
WO2016118974A2 (en) * 2015-01-25 2016-07-28 Aliphcom Physiological characteristics determinator
WO2016121337A1 (ja) * 2015-01-26 2016-08-04 パナソニックIpマネジメント株式会社 電極装置
AU2016225134A1 (en) 2015-02-24 2017-10-12 Koninklijke Philips N.V. Device for detecting heart rate and heart rate variability
US10372093B2 (en) 2015-02-26 2019-08-06 Ademco Inc. Comfort mapping using wearables
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
EP3073400B1 (en) * 2015-03-25 2022-05-04 Tata Consultancy Services Limited System and method for determining psychological stress of a person
US10849519B2 (en) * 2015-03-31 2020-12-01 University of Pittsburgh—of the Commonwealth System of Higher Education Wearable cardiac electrophysiology measurement devices, software, systems and methods
US20160287207A1 (en) * 2015-04-02 2016-10-06 Yan Xue Smart medical examination and communication apparatus
WO2016162519A1 (en) * 2015-04-09 2016-10-13 Koninklijke Philips N.V. Vital signs monitoring system
US11071490B1 (en) 2015-04-09 2021-07-27 Heartbeam, Inc. Electrocardiogram patch devices and methods
US10433744B2 (en) 2015-04-09 2019-10-08 Heartbeam, Inc. Mobile three-lead cardiac monitoring device and method for automated diagnostics
US10896756B2 (en) * 2015-04-21 2021-01-19 Washington State University Environmental sensor-based cognitive assessment
EP3282933B1 (en) 2015-05-13 2020-07-08 Alivecor, Inc. Discordance monitoring
US20160331249A1 (en) * 2015-05-15 2016-11-17 Cheng Uei Precision Industry Co., Ltd. Vital sign measurement system and vital sign measurement method thereof
US9687208B2 (en) * 2015-06-03 2017-06-27 iMEDI PLUS Inc. Method and system for recognizing physiological sound
US11766182B2 (en) * 2015-06-05 2023-09-26 The Arizona Board Of Regents On Behalf Of The University Of Arizona Systems and methods for real-time signal processing and fitting
CN107743423B (zh) 2015-06-12 2021-09-07 3M创新有限公司 使用可变形金属辊进行液体涂覆的方法和设备
CA2988419A1 (en) 2015-06-15 2016-12-22 Medibio Limited Method and system for monitoring stress conditions
CA2988416A1 (en) 2015-06-15 2016-12-22 Medibio Limited Method and system for assessing mental state
US10945671B2 (en) 2015-06-23 2021-03-16 PhysioWave, Inc. Determining physiological parameters using movement detection
US9913591B2 (en) 2015-07-02 2018-03-13 Verily Life Sciences Llc Wrist-mounted device with integrated electronics
US11564617B2 (en) * 2015-07-06 2023-01-31 Children's Medical Center Corporation Seizure prediction based on comparison of biological information across wake and sleep periods
US11678812B1 (en) * 2015-08-17 2023-06-20 Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville Systems and methods for monitoring hydration
CN113521710A (zh) 2015-08-20 2021-10-22 苹果公司 基于运动的表盘和复杂功能块
US10092203B2 (en) 2015-08-21 2018-10-09 Verily Life Sciences Llc Using skin resistance measurements to determine timing of bio-telemetry measurements
US10194809B2 (en) 2015-08-24 2019-02-05 Verily Life Sciences Llc Integrated electronics for photoplethysmography and electrocardiography
WO2017040340A1 (en) * 2015-08-28 2017-03-09 Oslermd, Inc. Methods and apparatuses for measuring multiple vital signs based on arterial pressure waveforms
US11272864B2 (en) * 2015-09-14 2022-03-15 Health Care Originals, Inc. Respiratory disease monitoring wearable apparatus
US20180263539A1 (en) * 2015-09-28 2018-09-20 The Regents Of The University Of California Wearable sensor arrays for in-situ body fluid analysis
EP3355770A4 (en) 2015-09-30 2019-10-02 Zoll Medical Corporation MODES OF OPERATION OF MEDICAL DEVICE
EP3361944A4 (en) * 2015-10-12 2019-05-29 Northwestern University DEVICE, SYSTEM AND METHOD FOR AMBULANT BLOOD PRESSURE MEASUREMENT AND MONITORING OF VITAL LABELS
US10945618B2 (en) 2015-10-23 2021-03-16 Valencell, Inc. Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type
WO2017070463A1 (en) 2015-10-23 2017-04-27 Valencell, Inc. Physiological monitoring devices and methods that identify subject activity type
US11109790B2 (en) 2015-11-18 2021-09-07 Samsung Electronics Co., Ltd. Patch including an external floating high-pass filter and an electrocardiograph (ECG) patch including the same
KR102519709B1 (ko) * 2015-11-18 2023-04-06 삼성전자주식회사 외부 플로팅 하이 패스 필터를 포함하는 패치와 이를 포함하는 ecg 패치
US10923217B2 (en) 2015-11-20 2021-02-16 PhysioWave, Inc. Condition or treatment assessment methods and platform apparatuses
US11561126B2 (en) 2015-11-20 2023-01-24 PhysioWave, Inc. Scale-based user-physiological heuristic systems
US10395055B2 (en) 2015-11-20 2019-08-27 PhysioWave, Inc. Scale-based data access control methods and apparatuses
US10553306B2 (en) 2015-11-20 2020-02-04 PhysioWave, Inc. Scaled-based methods and apparatuses for automatically updating patient profiles
US10980483B2 (en) 2015-11-20 2021-04-20 PhysioWave, Inc. Remote physiologic parameter determination methods and platform apparatuses
US10436630B2 (en) 2015-11-20 2019-10-08 PhysioWave, Inc. Scale-based user-physiological data hierarchy service apparatuses and methods
EP3178390B1 (en) * 2015-12-09 2022-03-16 Dreem Autonomous bioelectric physiological signal acquisition device
US10722177B2 (en) 2015-12-18 2020-07-28 Verily Life Sciences Llc Cardiovascular monitoring using combined measurements
JP6553818B2 (ja) * 2015-12-22 2019-07-31 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Eeg信号における心臓活動情報および脳活動情報に基づく睡眠段階判別のためのシステムおよび方法
CN105512503A (zh) * 2016-01-12 2016-04-20 南京邮电大学 基于Shimmer平台的ECG信号在线处理系统和方法
WO2017127530A1 (en) * 2016-01-19 2017-07-27 Zansors Llc Wireless monitoring system
TWI590806B (zh) * 2016-01-22 2017-07-11 Far Eastern New Century Corp Wearable motion sensing device
US10441180B2 (en) * 2016-08-10 2019-10-15 Huami Inc. Episodical and continuous ECG monitoring
JP6642055B2 (ja) * 2016-02-02 2020-02-05 富士通株式会社 センサ情報処理装置、センサユニット、及び、センサ情報処理プログラム
US10080530B2 (en) 2016-02-19 2018-09-25 Fitbit, Inc. Periodic inactivity alerts and achievement messages
CA3015179A1 (en) 2016-03-08 2016-12-08 Antisep - Tech Ltd. Method and system for monitoring activity of an individual
US11617538B2 (en) 2016-03-14 2023-04-04 Zoll Medical Corporation Proximity based processing systems and methods
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
JP6785446B2 (ja) * 2016-04-14 2020-11-18 パナソニックIpマネジメント株式会社 生体信号計測システム
WO2017181195A1 (en) 2016-04-15 2017-10-19 U.S. Government As Represented By The Secretary Of The Army System and method for determining an adaptive physiological strain index
US11571134B2 (en) 2016-04-15 2023-02-07 U.S. Government, As Represented By The Secretary Of The Army Pacing templates for performance optimization
US10390772B1 (en) 2016-05-04 2019-08-27 PhysioWave, Inc. Scale-based on-demand care system
US10955269B2 (en) 2016-05-20 2021-03-23 Health Care Originals, Inc. Wearable apparatus
DK201770423A1 (en) 2016-06-11 2018-01-15 Apple Inc Activity and workout updates
US11216119B2 (en) 2016-06-12 2022-01-04 Apple Inc. Displaying a predetermined view of an application
WO2017222245A1 (ko) * 2016-06-21 2017-12-28 씨아이에스포유 주식회사 도플러 레이더를 이용한 인체 감지 센서
US10966662B2 (en) 2016-07-08 2021-04-06 Valencell, Inc. Motion-dependent averaging for physiological metric estimating systems and methods
WO2018013580A1 (en) * 2016-07-11 2018-01-18 Strive Tech Inc. Analytics system for detecting athletic fatigue, and associated methods
TWI655928B (zh) * 2016-07-20 2019-04-11 宏達國際電子股份有限公司 生理監控裝置、生理監控方法及實現該生理控制方法之電腦可讀取記錄媒體
EP3487393A4 (en) 2016-07-22 2020-01-15 Proteus Digital Health, Inc. ELECTROMAGNETIC CAPTURE AND DETECTION OF INGERABLE EVENT MARKERS
WO2018039058A1 (en) 2016-08-25 2018-03-01 U.S. Government As Represented By The Secretary Of The Army Real-time estimation of human core body temperature based on non-invasive physiological measurements
US10289970B2 (en) 2016-08-26 2019-05-14 Fmr Llc Efficient resource management using mobile devices and wearable devices
US11207021B2 (en) 2016-09-06 2021-12-28 Fitbit, Inc Methods and systems for labeling sleep states
US10215619B1 (en) 2016-09-06 2019-02-26 PhysioWave, Inc. Scale-based time synchrony
US10736543B2 (en) 2016-09-22 2020-08-11 Apple Inc. Workout monitor interface
CN106360893A (zh) * 2016-09-27 2017-02-01 北海益生源农贸有限责任公司 一种智能手环系统
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
EP3525671A4 (en) * 2016-10-11 2020-03-18 ResMed Pty Ltd APPARATUS AND METHODS FOR SCREENING, DIAGNOSING AND MONITORING RESPIRATORY DISORDERS
JP6980011B2 (ja) * 2016-10-13 2021-12-15 キャスビジョン アーペーエス 心臓信号をフィルタリングするためのシステム
IT201600104297A1 (it) * 2016-10-18 2017-01-18 Torino Politecnico Dispositivo indossabile per l'acquisizione di segnali elettrocardiografici (ECG)
EP3533062A4 (en) 2016-10-26 2020-05-13 Virginia Flavin Pribanic SYSTEM AND METHOD FOR SYNTHETIC INTERACTION WITH A USER AND DEVICES
CN108078555A (zh) * 2016-11-23 2018-05-29 南京理工大学 一种基于卡尔曼滤波和目标跟踪的生命体征远程监测装置
US10595826B2 (en) * 2016-12-01 2020-03-24 Siemens Medical Solutions Usa, Inc. Heart rate assistance for phase determination in echocardiography
US11622716B2 (en) 2017-02-13 2023-04-11 Health Care Originals, Inc. Wearable physiological monitoring systems and methods
KR20180095358A (ko) 2017-02-17 2018-08-27 삼성전자주식회사 전자 장치 및 전자 장치의 체성분 측정 방법
WO2018191725A1 (en) * 2017-04-14 2018-10-18 Paradromics, Inc. Low-area, low-power neural recording circuit, and method of training the same
AU2018257774A1 (en) * 2017-04-24 2019-11-21 Whoop, Inc. Activity recognition
US10845955B2 (en) 2017-05-15 2020-11-24 Apple Inc. Displaying a scrollable list of affordances associated with physical activities
US11009870B2 (en) 2017-06-06 2021-05-18 Zoll Medical Corporation Vehicle compatible ambulatory defibrillator
CN107500598A (zh) * 2017-06-28 2017-12-22 无锡市京锡冶金液压机电有限公司 一种应用于防火板材的填充物及其检测装置
US20190000384A1 (en) * 2017-06-30 2019-01-03 Myant Inc. Method for sensing of biometric data and use thereof for determining emotional state of a user
CN107280658A (zh) * 2017-07-25 2017-10-24 南京恒拓精测科技有限公司 一种臂膀式心率测试设备
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
US10048724B1 (en) * 2017-08-14 2018-08-14 Tsai-Hsien YANG Discrete type wearable computer
US10492704B2 (en) 2017-08-29 2019-12-03 Biosense Webster (Israel) Ltd. Medical patch for simultaneously sensing ECG signals and impedance-indicative electrical signals
GB2566101A (en) * 2017-09-05 2019-03-06 B Secur Ltd Wearable authentication device
CN108334736B (zh) * 2017-09-18 2021-12-17 山东正心医疗科技有限公司 一种数据交互方法
US10499827B2 (en) * 2017-09-19 2019-12-10 Honeywell International Inc. System and method for interpretation of signal-to-noise ratios detected in an array of electrodes sensors in terms of physical and cognitive state
WO2019056068A1 (en) * 2017-09-22 2019-03-28 Gwip Pty Ltd SHARING ASSET DATA FOLLOWED
US10616165B2 (en) 2017-10-19 2020-04-07 International Business Machines Corporation Enabling wearables to cognitively alter notifications and improve sleep cycles
GB2567855B (en) 2017-10-27 2020-06-17 Jaguar Land Rover Ltd Wearable monitor for personal thermal control in a vehicle
US11154232B2 (en) 2017-11-14 2021-10-26 The Board Of Trustees Of The University Of Illinois Mechano-acoustic sensing devices and methods
US11389063B2 (en) * 2017-11-20 2022-07-19 Welch Allyn, Inc. Modular vital signs monitor
US10646707B2 (en) 2017-11-30 2020-05-12 Zoll Medical Corporation Medical devices with rapid sensor recovery
WO2019133491A1 (en) * 2017-12-29 2019-07-04 Valencell, Inc. Methods of determining physiological information based on bayesian peak selection and monitoring devices incorporating the same
CN111937047A (zh) * 2018-01-05 2020-11-13 米酷有限公司 用于监视人的生命体征的系统和方法
US10874305B2 (en) * 2018-01-15 2020-12-29 Microsoft Technology Licensing, Llc Sensor device
KR102079439B1 (ko) * 2018-02-22 2020-02-19 주식회사 에이티센스 패치형 심전도 측정기기를 구비한 심전도 측정 시스템
DK180241B1 (en) 2018-03-12 2020-09-08 Apple Inc User interfaces for health monitoring
US10960213B2 (en) 2018-03-12 2021-03-30 Zoll Medical Corporation Verification of cardiac arrhythmia prior to therapeutic stimulation
US11154249B2 (en) 2018-05-02 2021-10-26 Medtronic, Inc. Sensing for health status management
DK201870380A1 (en) 2018-05-07 2020-01-29 Apple Inc. DISPLAYING USER INTERFACES ASSOCIATED WITH PHYSICAL ACTIVITIES
US11317833B2 (en) 2018-05-07 2022-05-03 Apple Inc. Displaying user interfaces associated with physical activities
US11382364B2 (en) 2018-06-08 2022-07-12 Hemodynamiq Wearables Private Limited Wearable health monitoring fabric
CN110710965B (zh) * 2018-07-13 2023-06-09 烟台淼盾物联技术有限公司 一种心率监测方法及设备
US20200113505A1 (en) * 2018-10-11 2020-04-16 Seno Medical Instruments, Inc. Optoacoustic image analysis method and system for automatically estimating lesion traits
US11523765B2 (en) * 2018-09-05 2022-12-13 The University Of Chicago Neurophysiological biomarkers for neurodegenerative disorders
US10953307B2 (en) 2018-09-28 2021-03-23 Apple Inc. Swim tracking and notifications for wearable devices
US11568984B2 (en) 2018-09-28 2023-01-31 Zoll Medical Corporation Systems and methods for device inventory management and tracking
KR102199085B1 (ko) * 2018-12-10 2021-01-07 순천향대학교 산학협력단 심층 신경망을 이용한 부정맥 분류 시스템 및 방법
WO2020123102A1 (en) 2018-12-14 2020-06-18 Heartbeam, Inc. Hand held device for automatic cardiac risk and diagnostic assessment
KR102149089B1 (ko) * 2018-12-27 2020-08-27 원광대학교산학협력단 움직임센서를 이용한 생체파 기반 심박수 측정 장치
DK201970532A1 (en) 2019-05-06 2021-05-03 Apple Inc Activity trends and workouts
US20230119253A1 (en) 2019-06-01 2023-04-20 Apple Inc. Multi-modal activity tracking user interface
CN110413128A (zh) * 2019-08-12 2019-11-05 浙江强脑科技有限公司 基于脑电数据的汽车控制方法、装置和存储介质
JP2022546991A (ja) 2019-08-28 2022-11-10 アールディーエス バイタルサイン又は健康モニタリングシステム及び方法
KR20210047041A (ko) * 2019-10-21 2021-04-29 삼성전자주식회사 다중 디바이스 간의 생리적 데이터 통합 및 도시화 장치 및 그 방법
CN111093491B (zh) * 2019-11-29 2021-02-02 深圳市汇顶科技股份有限公司 一种检测电路、心电检测装置和可穿戴设备
US20210275110A1 (en) 2019-12-30 2021-09-09 RubyElf, LLC Systems For Synchronizing Different Devices To A Cardiac Cycle And For Generating Pulse Waveforms From Synchronized ECG and PPG Systems
US11944459B2 (en) 2019-12-31 2024-04-02 Biosense Webster (Israel) Ltd. Methods and systems for estimation of residual ECG noise level and adaptive noise threshold
EP4088383A1 (en) * 2020-01-06 2022-11-16 Cubic Corporation Chirp signal filtering for digital gateway
DK202070613A1 (en) 2020-02-14 2021-10-15 Apple Inc User interfaces for workout content
US11744501B2 (en) 2020-05-07 2023-09-05 GE Precision Healthcare LLC Multi-sensor patch
US20220039723A1 (en) * 2020-08-07 2022-02-10 Verily Life Sciences Llc Multi-lead measurement of biopotentials with wearable device
US11666271B2 (en) 2020-12-09 2023-06-06 Medtronic, Inc. Detection and monitoring of sleep apnea conditions
US11918377B2 (en) * 2021-01-19 2024-03-05 Medtronic, Inc. Dry electrodes in a wearable garment
EP4323992A1 (en) 2021-05-15 2024-02-21 Apple Inc. User interfaces for group workouts
US11445963B1 (en) 2021-10-05 2022-09-20 Heartbeam, Inc. Method and apparatus for reconstructing electrocardiogram (ECG) data
WO2023070220A1 (en) * 2021-10-28 2023-05-04 Vitascope Inc. Method and system for pediatric heartbeat monitoring
KR102467211B1 (ko) * 2021-12-02 2022-11-16 (주)씨어스테크놀로지 머신 러닝을 이용하여 심전도 파형 분류 방법 및 장치
US11529085B1 (en) 2022-04-21 2022-12-20 Heartbeam, Inc. Apparatus for generating an electrocardiogram
US11896871B2 (en) 2022-06-05 2024-02-13 Apple Inc. User interfaces for physical activity information
KR102617057B1 (ko) * 2022-12-28 2023-12-28 럭스나인 주식회사 접촉식 전압 심전도 측정용 상의 및 이를 이용하는 심전도 데이터 중계 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194563A (ja) * 1993-12-28 1995-08-01 Casio Comput Co Ltd 心電波測定装置
JPH0871047A (ja) * 1994-09-06 1996-03-19 Omron Corp 生体情報計測装置
JPH09299343A (ja) * 1996-05-17 1997-11-25 Fukuda Denshi Co Ltd 心電図情報収集装置及び心電図情報処理方法
US5862803A (en) * 1993-09-04 1999-01-26 Besson; Marcus Wireless medical diagnosis and monitoring equipment
US20030083586A1 (en) * 2001-10-31 2003-05-01 Bozidar Ferek-Petric Method and apparatus for discriminating between tachyarrhythmias

Family Cites Families (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1041291B (it) 1975-08-21 1980-01-10 Raggiotti G Dispositivo di controllo e indicazione della temperatura corporea
US4052979A (en) 1975-12-04 1977-10-11 Mary Ann Scherr Jewelry and bracelet heartbeat monitor
US4151831A (en) 1976-11-15 1979-05-01 Safetime Monitors, Inc. Fertility indicator
US4148304A (en) 1976-11-29 1979-04-10 Bmd Development Trust Device for measuring ovulation
US4129125A (en) 1976-12-27 1978-12-12 Camin Research Corp. Patient monitoring system
US4192000A (en) 1977-07-14 1980-03-04 Calorie Counter Limited Partnership Electronic calorie counter
IT1162556B (it) * 1979-07-06 1987-04-01 Pirelli Misuratore individuale di indice di microclima
JPS56118630A (en) 1980-02-23 1981-09-17 Sharp Corp Electronic clinical thermometer
USRE32758E (en) 1980-05-12 1988-10-04 New Mexico State University Foundation, Inc. Method for remotely monitoring the long term deep body temperature in female mammals
US4387724A (en) 1980-05-12 1983-06-14 New Mexico State University Foundation, Inc. Method for remotely monitoring the long term deep body temperature in female mammals
US4407295A (en) 1980-10-16 1983-10-04 Dna Medical, Inc. Miniature physiological monitor with interchangeable sensors
US4425920A (en) * 1980-10-24 1984-01-17 Purdue Research Foundation Apparatus and method for measurement and control of blood pressure
AT371326B (de) * 1981-06-16 1983-06-27 Wiener Innovationsges Messonde zur ueberwachung eines kindes waehrend der geburt
US4539994A (en) * 1981-10-13 1985-09-10 Radiometer A/S Method for transcutaneous measurement of a blood parameter and an electrochemical measuring electrode device for carrying out the method
EP0108052A4 (en) 1982-04-23 1985-09-26 Survival Technology PORTABLE CONTROL UNIT WITH REAL-TIME ANALYSIS AND TRANSMISSION VIA TELEPHONE.
US4509531A (en) 1982-07-28 1985-04-09 Teledyne Industries, Inc. Personal physiological monitor
US4608987A (en) 1982-12-03 1986-09-02 Physioventures, Inc. Apparatus for transmitting ECG data
US4557273A (en) 1982-12-27 1985-12-10 Stoller Kenneth P Method and apparatus for detecting ovulation
US4576179A (en) * 1983-05-06 1986-03-18 Manus Eugene A Respiration and heart rate monitoring apparatus
US4981139A (en) 1983-08-11 1991-01-01 Pfohl Robert L Vital signs monitoring and communication system
US4622979A (en) 1984-03-02 1986-11-18 Cardiac Monitoring, Inc. User-worn apparatus for monitoring and recording electrocardiographic data and method of operation
DE3509503A1 (de) 1985-03-16 1986-09-25 Hermann-Josef Dr. 5300 Bonn Frohn Vorrichtung zur empfaengnisregulierung
US5040541A (en) * 1985-04-01 1991-08-20 Thermonetics Corporation Whole body calorimeter
US5012411A (en) 1985-07-23 1991-04-30 Charles J. Policastro Apparatus for monitoring, storing and transmitting detected physiological information
US5111818A (en) 1985-10-08 1992-05-12 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
US5007427A (en) 1987-05-07 1991-04-16 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
US4819860A (en) 1986-01-09 1989-04-11 Lloyd D. Lillie Wrist-mounted vital functions monitor and emergency locator
US4757453A (en) 1986-03-25 1988-07-12 Nasiff Roger E Body activity monitor using piezoelectric transducers on arms and legs
US4828257A (en) 1986-05-20 1989-05-09 Powercise International Corporation Electronically controlled exercise system
US4672977A (en) * 1986-06-10 1987-06-16 Cherne Industries, Inc. Lung sound cancellation method and apparatus
US4803625A (en) 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
US4784162A (en) 1986-09-23 1988-11-15 Advanced Medical Technologies Portable, multi-channel, physiological data monitoring system
US4827943A (en) 1986-09-23 1989-05-09 Advanced Medical Technologies, Inc. Portable, multi-channel, physiological data monitoring system
US5072458A (en) 1987-05-07 1991-12-17 Capintec, Inc. Vest for use in an ambulatory physiological evaluation system including cardiac monitoring
US4883063A (en) * 1987-05-29 1989-11-28 Electric Power Research Institute, Inc. Personal monitor and process for heat and work stress
GB8726933D0 (en) 1987-11-18 1987-12-23 Cadell T E Telemetry system
DE3802479A1 (de) 1988-01-28 1989-08-10 Uebe Thermometer Gmbh Verfahren und einrichtung zur bestimmung des ovulationstermins von mensch oder tier durch elektrische erfassung der koerpertemperaturabweichung
US4966154A (en) 1988-02-04 1990-10-30 Jonni Cooper Multiple parameter monitoring system for hospital patients
US5038792A (en) 1988-06-29 1991-08-13 Mault James R Oxygen consumption meter
US5179958A (en) 1988-06-29 1993-01-19 Mault James R Respiratory calorimeter with bidirectional flow monitor
US5178155A (en) 1988-06-29 1993-01-12 Mault James R Respiratory calorimeter with bidirectional flow monitors for calculating of oxygen consumption and carbon dioxide production
US4917108A (en) 1988-06-29 1990-04-17 Mault James R Oxygen consumption meter
US6247647B1 (en) * 1988-09-19 2001-06-19 Symbol Technologies, Inc. Scan pattern generator convertible between multiple and single line patterns
US4891756A (en) 1988-09-26 1990-01-02 Williams Iii William B Nutritional microcomputer and method
AU633871B2 (en) 1989-01-13 1993-02-11 Scott Fetzer Company, The Apparatus and method for controlling and monitoring the exercise session for remotely located patients
US5511553A (en) 1989-02-15 1996-04-30 Segalowitz; Jacob Device-system and method for monitoring multiple physiological parameters (MMPP) continuously and simultaneously
US5025795A (en) * 1989-06-28 1991-06-25 Kunig Horst E Non-invasive cardiac performance monitoring device and method
US5050612A (en) 1989-09-12 1991-09-24 Matsumura Kenneth N Device for computer-assisted monitoring of the body
US5027824A (en) 1989-12-01 1991-07-02 Edmond Dougherty Method and apparatus for detecting, analyzing and recording cardiac rhythm disturbances
US5823975A (en) 1990-02-21 1998-10-20 Stark; John G. Local monitoring system for an instrumented orthopedic restraining device and method therefor
US5929782A (en) 1990-02-21 1999-07-27 Stark; John G. Communication system for an instrumented orthopedic restraining device and method therefor
US5052375A (en) 1990-02-21 1991-10-01 John G. Stark Instrumented orthopedic restraining device and method of use
AU1257392A (en) * 1991-01-11 1992-08-17 Health Innovations Inc. Method and apparatus to control diet and weight using human behavior modification techniques
US5148002A (en) 1991-03-14 1992-09-15 Kuo David D Multi-functional garment system
US5224479A (en) 1991-06-21 1993-07-06 Topy Enterprises Limited ECG diagnostic pad
US5135311A (en) * 1991-07-03 1992-08-04 University Of New Mexico Convective calorimeter apparatus and method
GB9117015D0 (en) 1991-08-07 1991-09-18 Software Solutions Ltd Operation of computer systems
US5191891A (en) * 1991-09-10 1993-03-09 Ralin, Inc. Portable ECG monitor/recorder
US5335664A (en) 1991-09-17 1994-08-09 Casio Computer Co., Ltd. Monitor system and biological signal transmitter therefor
US5476103A (en) * 1991-10-10 1995-12-19 Neurocom International, Inc. Apparatus and method for assessment and biofeedback training of leg coordination and strength skills
US5353793A (en) 1991-11-25 1994-10-11 Oishi-Kogyo Company Sensor apparatus
FI95535C (fi) 1991-12-09 1996-02-26 Polar Electro Oy Laite sydänsykkeen mittaukseen
JP3144030B2 (ja) 1992-02-24 2001-03-07 東陶機器株式会社 健康管理ネットワークシステム
FI92139C (fi) 1992-02-28 1994-10-10 Matti Myllymaeki Ranteeseen kiinnitettävä terveydentilan seurantalaite
US5305244B2 (en) 1992-04-06 1997-09-23 Computer Products & Services I Hands-free user-supported portable computer
US5469861A (en) * 1992-04-17 1995-11-28 Mark F. Piscopo Posture monitor
US5263491A (en) 1992-05-12 1993-11-23 William Thornton Ambulatory metabolic monitor
US5285398A (en) 1992-05-15 1994-02-08 Mobila Technology Inc. Flexible wearable computer
US5491651A (en) 1992-05-15 1996-02-13 Key, Idea Development Flexible wearable computer
IT1255065B (it) 1992-05-22 1995-10-17 Rotolo Giuseppe Dispositivo di posizionamento di elettrodi per elettrocardiografia
NZ254452A (en) * 1992-06-22 1996-04-26 Health Risk Management Inc Expert system to derive individual health care treatment options
DK170548B1 (da) 1992-11-02 1995-10-23 Verner Rasmussen Beklædningsgenstand til brug ved registrering af elektrokardiografiske målinger ved hjælp af en monitoreringsenhed
US5960403A (en) 1992-11-17 1999-09-28 Health Hero Network Health management process control system
US5913310A (en) 1994-05-23 1999-06-22 Health Hero Network, Inc. Method for diagnosis and treatment of psychological and emotional disorders using a microprocessor-based video game
US5307263A (en) 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
US6968375B1 (en) * 1997-03-28 2005-11-22 Health Hero Network, Inc. Networked system for interactive communication and remote monitoring of individuals
US5899855A (en) 1992-11-17 1999-05-04 Health Hero Network, Inc. Modular microprocessor-based health monitoring system
US5951300A (en) 1997-03-10 1999-09-14 Health Hero Network Online system and method for providing composite entertainment and health information
US5897493A (en) 1997-03-28 1999-04-27 Health Hero Network, Inc. Monitoring system for remotely querying individuals
US5879163A (en) 1996-06-24 1999-03-09 Health Hero Network, Inc. On-line health education and feedback system using motivational driver profile coding and automated content fulfillment
US6101478A (en) 1997-04-30 2000-08-08 Health Hero Network Multi-user remote health monitoring system
US5956501A (en) 1997-01-10 1999-09-21 Health Hero Network, Inc. Disease simulation system and method
US5832448A (en) 1996-10-16 1998-11-03 Health Hero Network Multiple patient monitoring system for proactive health management
US5933136A (en) 1996-12-23 1999-08-03 Health Hero Network, Inc. Network media access control system for encouraging patient compliance with a treatment plan
US6168563B1 (en) 1992-11-17 2001-01-02 Health Hero Network, Inc. Remote health monitoring and maintenance system
EP0602459B1 (en) 1992-12-16 1999-11-03 Siemens Medical Systems, Inc. System for monitoring patient location and data
EP0617914B1 (en) 1993-03-31 1998-09-30 Siemens Medical Systems, Inc. Apparatus and method for providing dual output signals in a telemetry transmitter
US5888172A (en) 1993-04-26 1999-03-30 Brunswick Corporation Physical exercise video system
US5524618A (en) 1993-06-02 1996-06-11 Pottgen; Paul A. Method and apparatus for measuring heat flow
FI100941B (fi) 1993-09-14 1998-03-31 Internat Business Innovations Kehoon kiinnitettävä terveydentilan seurantalaite
US5724025A (en) 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US5523742A (en) 1993-11-18 1996-06-04 The United States Of America As Represented By The Secretary Of The Army Motion sensor
US5555490A (en) 1993-12-13 1996-09-10 Key Idea Development, L.L.C. Wearable personal computer system
US5660176A (en) 1993-12-29 1997-08-26 First Opinion Corporation Computerized medical diagnostic and treatment advice system
US5435315A (en) 1994-01-28 1995-07-25 Mcphee; Ron J. Physical fitness evalution system
US5704350A (en) 1994-03-25 1998-01-06 Nutritec Corporation Nutritional microcomputer and method
US5515865A (en) 1994-04-22 1996-05-14 The United States Of America As Represented By The Secretary Of The Army Sudden Infant Death Syndrome (SIDS) monitor and stimulator
AU2365695A (en) 1994-04-26 1995-11-16 Raya Systems, Inc. Modular microprocessor-based diagnostic measurement system for psychological conditions
US5652570A (en) 1994-05-19 1997-07-29 Lepkofker; Robert Individual location system
US5729203A (en) * 1994-06-28 1998-03-17 Colin Corporation Emergency call system
IL110419A (en) 1994-07-24 1997-04-15 Slp Scient Lab Prod Ltd Compositions for disposable bio-medical electrodes
US5908027A (en) * 1994-08-22 1999-06-01 Alaris Medical Systems, Inc. Tonometry system for monitoring blood pressure
US5566679A (en) 1994-08-31 1996-10-22 Omniglow Corporation Methods for managing the Reproductive status of an animal using color heat mount detectors
US5687734A (en) 1994-10-20 1997-11-18 Hewlett-Packard Company Flexible patient monitoring system featuring a multiport transmitter
US5827180A (en) 1994-11-07 1998-10-27 Lifemasters Supported Selfcare Method and apparatus for a personal health network
US5919141A (en) 1994-11-15 1999-07-06 Life Sensing Instrument Company, Inc. Vital sign remote monitoring device
US5559497A (en) 1994-11-28 1996-09-24 Hong; Chia-Ping Body temperature sensing and alarming device
US5697791A (en) * 1994-11-29 1997-12-16 Nashner; Lewis M. Apparatus and method for assessment and biofeedback training of body coordination skills critical and ball-strike power and accuracy during athletic activitites
US5548123A (en) * 1994-12-06 1996-08-20 Regents Of The University Of California High resolution, multiple-energy linear sweep detector for x-ray imaging
US5673692A (en) 1995-02-03 1997-10-07 Biosignals Ltd. Co. Single site, multi-variable patient monitor
US5778882A (en) 1995-02-24 1998-07-14 Brigham And Women's Hospital Health monitoring system
US5959611A (en) 1995-03-06 1999-09-28 Carnegie Mellon University Portable computer system with ergonomic input device
US5617477A (en) 1995-03-08 1997-04-01 Interval Research Corporation Personal wearable communication system with enhanced low frequency response
US5645068A (en) 1995-03-20 1997-07-08 Bioscan, Inc. Methods and apparatus for ambulatory and non-ambulatory monitoring of physiological data using digital flash storage
AUPN236595A0 (en) 1995-04-11 1995-05-11 Rescare Limited Monitoring of apneic arousals
US5832296A (en) 1995-04-26 1998-11-03 Interval Research Corp. Wearable context sensitive user interface for interacting with plurality of electronic devices of interest to the user
US5730140A (en) * 1995-04-28 1998-03-24 Fitch; William Tecumseh S. Sonification system using synthesized realistic body sounds modified by other medically-important variables for physiological monitoring
US5581238A (en) 1995-05-12 1996-12-03 Chang; Mei-Hui Pacifier with fever heat alarm device
US5666096A (en) 1995-06-02 1997-09-09 Van Zeeland; Anthony J. Switch with magnetically-coupled armature
US5752976A (en) 1995-06-23 1998-05-19 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US5663703A (en) * 1995-07-12 1997-09-02 Sony Corporation Silent wrist pager with tactile alarm
US6001065A (en) 1995-08-02 1999-12-14 Ibva Technologies, Inc. Method and apparatus for measuring and analyzing physiological signals for active or passive control of physical and virtual spaces and the contents therein
JPH09114955A (ja) 1995-10-18 1997-05-02 Seiko Epson Corp ピッチ計
US5738104A (en) 1995-11-08 1998-04-14 Salutron, Inc. EKG based heart rate monitor
US5701894A (en) 1995-11-09 1997-12-30 Del Mar Avionics Modular physiological computer-recorder
US5615687A (en) * 1995-12-06 1997-04-01 Hewlett-Packard Company Heart monitoring system and method with reduced signal acquisition range
US5803915A (en) * 1995-12-07 1998-09-08 Ohmeda Inc. System for detection of probe dislodgement
US6059692A (en) 1996-12-13 2000-05-09 Hickman; Paul L. Apparatus for remote interactive exercise and health equipment
WO1997022295A1 (fr) * 1995-12-18 1997-06-26 Seiko Epson Corporation Dispositif de controle de l'etat de sante et dispositif d'assistance d'exercise
US5778345A (en) 1996-01-16 1998-07-07 Mccartney; Michael J. Health data processing system
US6790178B1 (en) 1999-09-24 2004-09-14 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US20010044588A1 (en) 1996-02-22 2001-11-22 Mault James R. Monitoring system
US6135107A (en) 1996-03-11 2000-10-24 Mault; James R. Metabolic gas exchange and noninvasive cardiac output monitor
US5836300A (en) 1996-03-11 1998-11-17 Mault; James R. Metabolic gas exchange and noninvasive cardiac output monitor
US6208900B1 (en) * 1996-03-28 2001-03-27 Medtronic, Inc. Method and apparatus for rate-responsive cardiac pacing using header mounted pressure wave transducer
US5853005A (en) 1996-05-02 1998-12-29 The United States Of America As Represented By The Secretary Of The Army Acoustic monitoring system
ATE267034T1 (de) * 1996-07-02 2004-06-15 Graber Products Inc Elektronisches übungssystem
US6265978B1 (en) * 1996-07-14 2001-07-24 Atlas Researches, Ltd. Method and apparatus for monitoring states of consciousness, drowsiness, distress, and performance
US5741217A (en) 1996-07-30 1998-04-21 Gero; Jeffrey Biofeedback apparatus
US5719743A (en) 1996-08-15 1998-02-17 Xybernaut Corporation Torso worn computer which can stand alone
US5884198A (en) 1996-08-16 1999-03-16 Ericsson, Inc. Body conformal portable radio and method of constructing the same
US6364834B1 (en) 1996-11-13 2002-04-02 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system
US5855550A (en) 1996-11-13 1999-01-05 Lai; Joseph Method and system for remotely monitoring multiple medical parameters
US5771001A (en) 1996-11-18 1998-06-23 Cobb; Marlon J. Personal alarm system
US5726631A (en) 1996-11-26 1998-03-10 Lin; Wen-Juei Structure kick-activated wearable alarm for infants
US6198394B1 (en) 1996-12-05 2001-03-06 Stephen C. Jacobsen System for remote monitoring of personnel
US6298218B1 (en) 1996-12-18 2001-10-02 Clubcom, Inc. Combined advertising and entertainment system network
US6050950A (en) * 1996-12-18 2000-04-18 Aurora Holdings, Llc Passive/non-invasive systemic and pulmonary blood pressure measurement
US6032119A (en) 1997-01-16 2000-02-29 Health Hero Network, Inc. Personalized display of health information
US5868671A (en) 1997-01-28 1999-02-09 Hewlett-Packard Company Multiple ECG electrode strip
GB2322952A (en) 1997-02-05 1998-09-09 Gakken Combined baby monitor and audio-visual device
US5865733A (en) 1997-02-28 1999-02-02 Spacelabs Medical, Inc. Wireless optical patient monitoring apparatus
US5959529A (en) 1997-03-07 1999-09-28 Kail, Iv; Karl A. Reprogrammable remote sensor monitoring system
US6148233A (en) * 1997-03-07 2000-11-14 Cardiac Science, Inc. Defibrillation system having segmented electrodes
US6551252B2 (en) 2000-04-17 2003-04-22 Vivometrics, Inc. Systems and methods for ambulatory monitoring of physiological signs
DE69841846D1 (de) 1997-03-17 2010-09-30 Adidas Ag Informationsrückkopplungs system für physiologische signale
US5902250A (en) 1997-03-31 1999-05-11 President And Fellows Of Harvard College Home-based system and method for monitoring sleep state and assessing cardiorespiratory risk
US6248065B1 (en) 1997-04-30 2001-06-19 Health Hero Network, Inc. Monitoring system for remotely querying individuals
FI972067A0 (fi) * 1997-05-14 1997-05-14 Tiit Koeoebi Apparaturer och foerfaranden foer utvaendig maetning av fysiologiska parametrar
TW357517B (en) 1997-05-29 1999-05-01 Koji Akai Monitoring system
US6251048B1 (en) * 1997-06-05 2001-06-26 Epm Develoment Systems Corporation Electronic exercise monitor
US5857939A (en) * 1997-06-05 1999-01-12 Talking Counter, Inc. Exercise device with audible electronic monitor
JPH114820A (ja) 1997-06-18 1999-01-12 Ee D K:Kk 健康管理装置
US5857967A (en) 1997-07-09 1999-01-12 Hewlett-Packard Company Universally accessible healthcare devices with on the fly generation of HTML files
US5976083A (en) * 1997-07-30 1999-11-02 Living Systems, Inc. Portable aerobic fitness monitor for walking and running
US5813766A (en) 1997-08-12 1998-09-29 Chen; Mei-Yen Finger temperature indicating ring
US6138079A (en) 1997-08-18 2000-10-24 Putnam; John M. Device for calculating fluid loss from a body during exercise
US5839901A (en) 1997-10-01 1998-11-24 Karkanen; Kip M. Integrated weight loss control method
US5931791A (en) * 1997-11-05 1999-08-03 Instromedix, Inc. Medical patient vital signs-monitoring apparatus
IL122875A0 (en) 1998-01-08 1998-08-16 S L P Ltd An integrated sleep apnea screening system
US6225980B1 (en) 1998-02-06 2001-05-01 Carnegie Mellon University Multi-functional, rotary dial input device for portable computers
US6101407A (en) 1998-02-13 2000-08-08 Eastman Kodak Company Method and system for remotely viewing and configuring output from a medical imaging device
US7222054B2 (en) 1998-03-03 2007-05-22 Card Guard Scientific Survival Ltd. Personal ambulatory wireless health monitor
US6366871B1 (en) 1999-03-03 2002-04-02 Card Guard Scientific Survival Ltd. Personal ambulatory cellular health monitor for mobile patient
IL124900A0 (en) 1998-06-14 1999-01-26 Tapuz Med Tech Ltd Apron for performing ecg tests and additional examinations
US7854684B1 (en) * 1998-06-24 2010-12-21 Samsung Electronics Co., Ltd. Wearable device
US6190314B1 (en) 1998-07-15 2001-02-20 International Business Machines Corporation Computer input device with biosensors for sensing user emotions
DE19832361A1 (de) 1998-07-20 2000-02-03 Noehte Steffen Körperfunktionsmonitor
US6154668A (en) 1998-08-06 2000-11-28 Medtronics Inc. Ambulatory recorder having a real time and non-real time processors
US6240323B1 (en) 1998-08-11 2001-05-29 Conmed Corporation Perforated size adjustable biomedical electrode
US6306088B1 (en) 1998-10-03 2001-10-23 Individual Monitoring Systems, Inc. Ambulatory distributed recorders system for diagnosing medical disorders
US5912865A (en) * 1998-10-19 1999-06-15 U.S.A. Technologies Inc. Watch case with positioning means
US6377162B1 (en) 1998-11-25 2002-04-23 Ge Medical Systems Global Technology Company, Llc Medical diagnostic field service method and apparatus
US6842877B2 (en) * 1998-12-18 2005-01-11 Tangis Corporation Contextual responses based on automated learning techniques
US6466232B1 (en) * 1998-12-18 2002-10-15 Tangis Corporation Method and system for controlling presentation of information to a user based on the user's condition
JP4046883B2 (ja) 1999-02-09 2008-02-13 株式会社タニタ 体脂肪計及び健康管理システム
IL128815A0 (en) * 1999-03-03 2000-01-31 S L P Ltd A nocturnal muscle activity monitoring system
US6821249B2 (en) 1999-03-08 2004-11-23 Board Of Regents, The University Of Texas Temperature monitoring of congestive heart failure patients as an indicator of worsening condition
JP2002538872A (ja) * 1999-03-15 2002-11-19 ザ ジョンズ ホプキンズ ユニバーシティ 非観血的、受動的に胎児心臓を監視する装置及び方法
DE19911766A1 (de) 1999-03-16 2000-09-28 Fidelak Michael Verfahren und Vorrichtung zur Verbesserung des Trainings von Sportlern
US6302844B1 (en) 1999-03-31 2001-10-16 Walker Digital, Llc Patient care delivery system
US6285897B1 (en) 1999-04-07 2001-09-04 Endonetics, Inc. Remote physiological monitoring system
US6336900B1 (en) 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US6450953B1 (en) 1999-04-15 2002-09-17 Nexan Limited Portable signal transfer unit
US6454708B1 (en) 1999-04-15 2002-09-24 Nexan Limited Portable remote patient telemonitoring system using a memory card or smart card
US6385473B1 (en) 1999-04-15 2002-05-07 Nexan Limited Physiological sensor device
US6494829B1 (en) 1999-04-15 2002-12-17 Nexan Limited Physiological sensor array
US6416471B1 (en) 1999-04-15 2002-07-09 Nexan Limited Portable remote patient telemonitoring system
US6755783B2 (en) 1999-04-16 2004-06-29 Cardiocom Apparatus and method for two-way communication in a device for monitoring and communicating wellness parameters of ambulatory patients
US6290646B1 (en) 1999-04-16 2001-09-18 Cardiocom Apparatus and method for monitoring and communicating wellness parameters of ambulatory patients
US6371123B1 (en) 1999-06-11 2002-04-16 Izex Technology, Inc. System for orthopedic treatment protocol and method of use thereof
WO2001001093A1 (en) * 1999-06-23 2001-01-04 Eliahu Rubinstein Fever alarm system
DE19929328A1 (de) 1999-06-26 2001-01-04 Daimlerchrysler Aerospace Ag Vorrichtung zur medizinischen Langzeitüberwachung von Personen
US6287252B1 (en) 1999-06-30 2001-09-11 Monitrak Patient monitor
US6312363B1 (en) 1999-07-08 2001-11-06 Icon Health & Fitness, Inc. Systems and methods for providing an improved exercise device with motivational programming
EP1204367B1 (en) * 1999-07-21 2007-04-18 Daniel David Physiological measuring system comprising a garment in the form of a sleeve or glove and sensing apparatus incorporated in the garment
US6221011B1 (en) 1999-07-26 2001-04-24 Cardiac Intelligence Corporation System and method for determining a reference baseline of individual patient status for use in an automated collection and analysis patient care system
US6468222B1 (en) * 1999-08-02 2002-10-22 Healthetech, Inc. Metabolic calorimeter employing respiratory gas analysis
US6147618A (en) * 1999-09-15 2000-11-14 Ilife Systems, Inc. Apparatus and method for reducing power consumption in physiological condition monitors
US6339720B1 (en) * 1999-09-20 2002-01-15 Fernando Anzellini Early warning apparatus for acute Myocardial Infarction in the first six hours of pain
AU8007600A (en) 1999-10-08 2001-04-23 Healthetech, Inc. Monitoring caloric expenditure rate and caloric diet
EP1265524A2 (en) 1999-10-08 2002-12-18 Healthetech, Inc. Integrated calorie management system
US6527711B1 (en) * 1999-10-18 2003-03-04 Bodymedia, Inc. Wearable human physiological data sensors and reporting system therefor
FI114282B (fi) 1999-11-05 2004-09-30 Polar Electro Oy Menetelmä, järjestely ja sykemittari sydämen lyönnin tunnistamiseksi
US6611783B2 (en) * 2000-01-07 2003-08-26 Nocwatch, Inc. Attitude indicator and activity monitoring device
US7676384B2 (en) 2000-01-18 2010-03-09 Medigenesis, Inc. System and method for the automated presentation of system data to, and interaction with, a computer maintained database
US6513532B2 (en) 2000-01-19 2003-02-04 Healthetech, Inc. Diet and activity-monitoring device
US6629934B2 (en) 2000-02-02 2003-10-07 Healthetech, Inc. Indirect calorimeter for medical applications
US6551251B2 (en) * 2000-02-14 2003-04-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Passive fetal heart monitoring system
US6610012B2 (en) * 2000-04-10 2003-08-26 Healthetech, Inc. System and method for remote pregnancy monitoring
US6616613B1 (en) 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
US6514200B1 (en) 2000-05-17 2003-02-04 Brava, Llc Patient compliance monitor
US6482158B2 (en) 2000-05-19 2002-11-19 Healthetech, Inc. System and method of ultrasonic mammography
US6712615B2 (en) * 2000-05-22 2004-03-30 Rolf John Martin High-precision cognitive performance test battery suitable for internet and non-internet use
FI113404B (fi) * 2000-06-08 2004-04-15 Polar Electro Oy Ranteessa pidettävä elektroninen laite ja sen ohjausmenetelmä
US6605038B1 (en) * 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US7261690B2 (en) * 2000-06-16 2007-08-28 Bodymedia, Inc. Apparatus for monitoring health, wellness and fitness
US6690959B2 (en) * 2000-09-01 2004-02-10 Medtronic, Inc. Skin-mounted electrodes with nano spikes
JP2002095637A (ja) 2000-09-26 2002-04-02 Kireicom:Kk 携帯端末および電子機器
US6665559B2 (en) * 2000-10-06 2003-12-16 Ge Medical Systems Information Technologies, Inc. Method and apparatus for perioperative assessment of cardiovascular risk
US20020133378A1 (en) 2000-10-13 2002-09-19 Mault James R. System and method of integrated calorie management
US6904408B1 (en) 2000-10-19 2005-06-07 Mccarthy John Bionet method, system and personalized web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators
US20020055857A1 (en) 2000-10-31 2002-05-09 Mault James R. Method of assisting individuals in lifestyle control programs conducive to good health
US7330818B1 (en) 2000-11-09 2008-02-12 Lifespan Interactive: Medical Information Management. Llc. Health and life expectancy management system
US6532381B2 (en) * 2001-01-11 2003-03-11 Ge Medical Systems Information Technologies, Inc. Patient monitor for determining a probability that a patient has acute cardiac ischemia
JP2002224065A (ja) * 2001-02-07 2002-08-13 Nippon Colin Co Ltd 心音検出装置および心音検出方法
AU2002255568B8 (en) 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
US6584344B2 (en) 2001-02-22 2003-06-24 Polar Electro Oy Method and apparatus for measuring heart rate
US6611206B2 (en) 2001-03-15 2003-08-26 Koninklijke Philips Electronics N.V. Automatic system for monitoring independent person requiring occasional assistance
US6595929B2 (en) * 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
US6808473B2 (en) * 2001-04-19 2004-10-26 Omron Corporation Exercise promotion device, and exercise promotion method employing the same
US6533731B2 (en) * 2001-05-15 2003-03-18 Lifecheck, Llc Method and apparatus for measuring heat flow
US20060235280A1 (en) 2001-05-29 2006-10-19 Glenn Vonk Health care management system and method
US6656125B2 (en) * 2001-06-01 2003-12-02 Dale Julian Misczynski System and process for analyzing a medical condition of a user
US6886978B2 (en) 2001-06-18 2005-05-03 Omron Corporation Electronic clinical thermometer
US20030208113A1 (en) 2001-07-18 2003-11-06 Mault James R Closed loop glycemic index system
AU2002330933A1 (en) * 2001-08-03 2003-02-24 Vega Research Lab, Llc Method and apparatus for determining metabolic factors from an electrocardiogram
US20030040002A1 (en) 2001-08-08 2003-02-27 Ledley Fred David Method for providing current assessments of genetic risk
US20030069510A1 (en) * 2001-10-04 2003-04-10 Semler Herbert J. Disposable vital signs monitor
US6755795B2 (en) * 2001-10-26 2004-06-29 Koninklijke Philips Electronics N.V. Selectively applied wearable medical sensors
US20030083559A1 (en) * 2001-10-31 2003-05-01 Thompson David L. Non-contact monitor
US20030199945A1 (en) * 2002-02-11 2003-10-23 James Ciulla Device and method for treating disordered breathing
US20030176797A1 (en) * 2002-03-12 2003-09-18 Fernando Anzellini Thrombust; implantable delivery system sensible to self diagnosis of acute myocardial infarction for thrombolysis in the first minutes of chest pain
US20050226310A1 (en) * 2002-03-20 2005-10-13 Sanyo Electric Co., Ltd. Adhesive clinical thermometer pad and temperature measuring pad
JP4341243B2 (ja) 2002-12-27 2009-10-07 カシオ計算機株式会社 テープ印字装置及びそれに使用するスケール
WO2005017683A2 (en) 2003-08-05 2005-02-24 Saf-Wav International, Llc System for managing conditions
EP2382920A1 (en) * 2003-08-20 2011-11-02 Philometron, Inc. Hydration monitoring
KR101084554B1 (ko) 2003-09-12 2011-11-17 보디미디어 인코퍼레이티드 심장 관련 파라미터를 측정하기 위한 방법 및 장치
WO2005046433A2 (en) 2003-11-04 2005-05-26 General Hospital Corporation Life sign detection and health state assessment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5862803A (en) * 1993-09-04 1999-01-26 Besson; Marcus Wireless medical diagnosis and monitoring equipment
JPH07194563A (ja) * 1993-12-28 1995-08-01 Casio Comput Co Ltd 心電波測定装置
JPH0871047A (ja) * 1994-09-06 1996-03-19 Omron Corp 生体情報計測装置
JPH09299343A (ja) * 1996-05-17 1997-11-25 Fukuda Denshi Co Ltd 心電図情報収集装置及び心電図情報処理方法
US20030083586A1 (en) * 2001-10-31 2003-05-01 Bozidar Ferek-Petric Method and apparatus for discriminating between tachyarrhythmias

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008272477A (ja) * 2007-04-30 2008-11-13 General Electric Co <Ge> 平均心拍数及びnibpを用いたspo2心房性細動検出の偽陽性アラーム低減
WO2009016886A1 (ja) * 2007-07-30 2009-02-05 Omron Healthcare Co., Ltd. 生体情報を効率的に表示する生体情報測定装置
JP2009028441A (ja) * 2007-07-30 2009-02-12 Omron Healthcare Co Ltd 生体情報測定装置、生体情報表示方法、および表示プログラム
JP2011524760A (ja) * 2008-06-19 2011-09-08 サイナヤカンガス,セッポ 心拍数測定方法および装置
JP2011104352A (ja) * 2009-09-01 2011-06-02 Adidas Ag 生理学的情報、パフォーマンス情報および状況情報を解釈および分析するための方法およびシステム
JP2011147582A (ja) * 2010-01-21 2011-08-04 Seiko Epson Corp 心電計測装置
JP2011200268A (ja) * 2010-03-24 2011-10-13 Seiko Epson Corp 生体情報取得装置
US11141091B2 (en) 2010-05-12 2021-10-12 Irhythm Technologies, Inc. Device features and design elements for long-term adhesion
US9232902B2 (en) 2010-10-27 2016-01-12 Murata Manufacturing Co., Ltd. Detection circuit for generating biological information
JP2014505533A (ja) * 2010-12-29 2014-03-06 ベイシス サイエンス インコーポレイテッド 統合した生体測定のセンシングおよび表示のデバイス
US10194834B2 (en) 2013-01-16 2019-02-05 Vital Connect, Inc. Detection of sleep apnea using respiratory signals
JP2016508382A (ja) * 2013-01-16 2016-03-22 ヴァイタル コネクト, インコーポレイテッドVital Connect, Inc. 呼吸信号を用いた睡眠時無呼吸の検出
US11324420B2 (en) 2013-01-16 2022-05-10 Vital Connect, Inc. Detection of sleep apnea using respiratory signals
US11627902B2 (en) 2013-01-24 2023-04-18 Irhythm Technologies, Inc. Physiological monitoring device
US11051738B2 (en) 2013-01-24 2021-07-06 Irhythm Technologies, Inc. Physiological monitoring device
JP2014200270A (ja) * 2013-04-01 2014-10-27 株式会社東芝 心電計測装置、心電計測方法、及び心電計測プログラム
JPWO2016039182A1 (ja) * 2014-09-09 2017-04-27 日本電信電話株式会社 心拍検出方法および心拍検出装置
WO2016039182A1 (ja) * 2014-09-09 2016-03-17 日本電信電話株式会社 心拍検出方法および心拍検出装置
US10750969B2 (en) 2014-09-09 2020-08-25 Nippon Telegraph And Telephone Corporation Heartbeat detection method and heartbeat detection device
US11756684B2 (en) 2014-10-31 2023-09-12 Irhythm Technologies, Inc. Wearable monitor
US10813565B2 (en) 2014-10-31 2020-10-27 Irhythm Technologies, Inc. Wearable monitor
KR20220138418A (ko) * 2014-10-31 2022-10-12 아이리듬 테크놀로지스, 아이엔씨 무선 생리학적 모니터링 기기 및 시스템
KR20200003284A (ko) * 2014-10-31 2020-01-08 아이리듬 테크놀로지스, 아이엔씨 무선 생리학적 모니터링 기기 및 시스템
KR102450536B1 (ko) * 2014-10-31 2022-10-04 아이리듬 테크놀로지스, 아이엔씨 무선 생리학적 모니터링 기기 및 시스템
US10667712B2 (en) 2014-10-31 2020-06-02 Irhythm Technologies, Inc. Wearable monitor
US11605458B2 (en) 2014-10-31 2023-03-14 Irhythm Technologies, Inc Wearable monitor
KR20210148439A (ko) * 2014-10-31 2021-12-07 아이리듬 테크놀로지스, 아이엔씨 무선 생리학적 모니터링 기기 및 시스템
CN107205679B (zh) * 2014-10-31 2021-03-09 意锐瑟科技公司 无线生理监测装置和系统
US11289197B1 (en) 2014-10-31 2022-03-29 Irhythm Technologies, Inc. Wearable monitor
KR102608250B1 (ko) * 2014-10-31 2023-12-01 아이리듬 테크놀로지스, 아이엔씨 무선 생리학적 모니터링 기기 및 시스템
CN107205679A (zh) * 2014-10-31 2017-09-26 意锐瑟科技公司 无线生理监测装置和系统
KR102335784B1 (ko) * 2014-10-31 2021-12-06 아이리듬 테크놀로지스, 아이엔씨 무선 생리학적 모니터링 기기 및 시스템
JP2018534042A (ja) * 2015-10-08 2018-11-22 ブレイン センティネル インコーポレイテッドBrain Sentinel,Inc. 発作活動の検出および分類のための方法および装置
JP2018087398A (ja) * 2016-02-12 2018-06-07 東洋紡株式会社 衣服型電子機器
JP2018087399A (ja) * 2016-02-12 2018-06-07 東洋紡株式会社 衣服型電子機器
WO2018131715A1 (ja) * 2017-01-16 2018-07-19 株式会社メルティンMmi 心電信号を少なくとも検出するためのシステム
JP2018114262A (ja) * 2017-01-16 2018-07-26 株式会社メルティンMmi 心電信号を少なくとも検出するためのシステム
JP7058853B2 (ja) 2017-01-16 2022-04-25 株式会社メルティンMmi 心電信号を少なくとも検出するためのシステム
JP2018153257A (ja) * 2017-03-15 2018-10-04 オムロン株式会社 生体情報記録装置、システム、方法及びプログラム
WO2018168795A1 (ja) * 2017-03-15 2018-09-20 オムロン株式会社 生体情報記録装置、システム、方法及びプログラム
US11433242B2 (en) 2018-09-25 2022-09-06 Nihon Kohden Corporation Pulse discrimination device and electrocardiogram analyzer
JP2020048712A (ja) * 2018-09-25 2020-04-02 日本光電工業株式会社 パルス判別装置および心電図解析装置
JP7164375B2 (ja) 2018-09-25 2022-11-01 日本光電工業株式会社 パルス判別装置および心電図解析装置
US11083371B1 (en) 2020-02-12 2021-08-10 Irhythm Technologies, Inc. Methods and systems for processing data via an executable file on a monitor to reduce the dimensionality of the data and encrypting the data being transmitted over the wireless network
US11925469B2 (en) 2020-02-12 2024-03-12 Irhythm Technologies, Inc. Non-invasive cardiac monitor and methods of using recorded cardiac data to infer a physiological characteristic of a patient
US11375941B2 (en) 2020-02-12 2022-07-05 Irhythm Technologies, Inc. Methods and systems for processing data via an executable file on a monitor to reduce the dimensionality of the data and encrypting the data being transmitted over the wireless network
US11382555B2 (en) 2020-02-12 2022-07-12 Irhythm Technologies, Inc. Non-invasive cardiac monitor and methods of using recorded cardiac data to infer a physiological characteristic of a patient
US11253185B2 (en) 2020-02-12 2022-02-22 Irhythm Technologies, Inc. Methods and systems for processing data via an executable file on a monitor to reduce the dimensionality of the data and encrypting the data being transmitted over the wireless network
US11246524B2 (en) 2020-02-12 2022-02-15 Irhythm Technologies, Inc. Non-invasive cardiac monitor and methods of using recorded cardiac data to infer a physiological characteristic of a patient
US11253186B2 (en) 2020-02-12 2022-02-22 Irhythm Technologies, Inc. Methods and systems for processing data via an executable file on a monitor to reduce the dimensionality of the data and encrypting the data being transmitted over the wireless network
US11497432B2 (en) 2020-02-12 2022-11-15 Irhythm Technologies, Inc. Methods and systems for processing data via an executable file on a monitor to reduce the dimensionality of the data and encrypting the data being transmitted over the wireless
US11399760B2 (en) 2020-08-06 2022-08-02 Irhythm Technologies, Inc. Wearable device with conductive traces and insulator
US11504041B2 (en) 2020-08-06 2022-11-22 Irhythm Technologies, Inc. Electrical components for physiological monitoring device
US11246523B1 (en) 2020-08-06 2022-02-15 Irhythm Technologies, Inc. Wearable device with conductive traces and insulator
US11751789B2 (en) 2020-08-06 2023-09-12 Irhythm Technologies, Inc. Wearable device with conductive traces and insulator
US11337632B2 (en) 2020-08-06 2022-05-24 Irhythm Technologies, Inc. Electrical components for physiological monitoring device
US11806150B2 (en) 2020-08-06 2023-11-07 Irhythm Technologies, Inc. Wearable device with bridge portion
US11350865B2 (en) 2020-08-06 2022-06-07 Irhythm Technologies, Inc. Wearable device with bridge portion
US11350864B2 (en) 2020-08-06 2022-06-07 Irhythm Technologies, Inc. Adhesive physiological monitoring device

Also Published As

Publication number Publication date
US20100286532A1 (en) 2010-11-11
BRPI0414345A (pt) 2006-11-07
WO2005027720A3 (en) 2005-08-18
US20050113703A1 (en) 2005-05-26
KR101084554B1 (ko) 2011-11-17
WO2005027720A2 (en) 2005-03-31
US20080171943A1 (en) 2008-07-17
US20080183090A1 (en) 2008-07-31
US20080177193A1 (en) 2008-07-24
EP1667579A2 (en) 2006-06-14
EP2319410A1 (en) 2011-05-11
IL174267A (en) 2010-12-30
IL174267A0 (en) 2006-08-01
US7502643B2 (en) 2009-03-10
US20140094707A1 (en) 2014-04-03
CA2538710A1 (en) 2005-03-31
EP1667579A4 (en) 2008-06-11
US20080161707A1 (en) 2008-07-03
US20080183082A1 (en) 2008-07-31
US8369936B2 (en) 2013-02-05
US20140221850A1 (en) 2014-08-07
KR20060129178A (ko) 2006-12-15
JP5174348B2 (ja) 2013-04-03
US20140221849A1 (en) 2014-08-07

Similar Documents

Publication Publication Date Title
JP5174348B2 (ja) 心臓関連状態パラメータのモニター方法及び装置
US9107586B2 (en) Fitness monitoring
US20180358119A1 (en) Method and system for continuous monitoring of health parameters during exercise
US10335080B2 (en) Biomechanical activity monitoring
US20170347894A1 (en) System and method for continuous monitoring of blood pressure
US20120123232A1 (en) Method and apparatus for determining heart rate variability using wavelet transformation
US20120245439A1 (en) Method and apparatus for determining critical care parameters
CA2747057A1 (en) Method and apparatus for determining heart rate variability using wavelet transformation
KR101674997B1 (ko) 웨어러블 생체신호측정 기기, 서버, 시스템 및 방법
CA2744215A1 (en) Method and apparatus for determining critical care parameters
Nikolic-Popovic et al. Measuring heart rate, breathing rate and skin conductance during exercise
KR102556663B1 (ko) 생체신호 모니터링 시스템 및 방법
Choi et al. Ambulatory stress monitoring with minimally-invasive wearable sensors
Rahman et al. Heart Rate Measurement on Smartphone using Cardiography: A Scoping Review
MXPA06002838A (es) Metodo y aparato para medir los parametros relacionados con el corazon

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100917

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20101215

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20101222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110113

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110216

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120228

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120323

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120330

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120418

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121228

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees