WO2011020216A1 - 侦测生理机能及姿势状态的物品、方法和系统 - Google Patents

侦测生理机能及姿势状态的物品、方法和系统 Download PDF

Info

Publication number
WO2011020216A1
WO2011020216A1 PCT/CN2009/000947 CN2009000947W WO2011020216A1 WO 2011020216 A1 WO2011020216 A1 WO 2011020216A1 CN 2009000947 W CN2009000947 W CN 2009000947W WO 2011020216 A1 WO2011020216 A1 WO 2011020216A1
Authority
WO
WIPO (PCT)
Prior art keywords
posture
physiological
sensor
detecting
signal
Prior art date
Application number
PCT/CN2009/000947
Other languages
English (en)
French (fr)
Inventor
杨章民
杨子琳
杨皓
Original Assignee
Yang Changming
Yang Tzulin
Yang Hao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Changming, Yang Tzulin, Yang Hao filed Critical Yang Changming
Priority to PCT/CN2009/000947 priority Critical patent/WO2011020216A1/zh
Priority to PCT/CN2010/001252 priority patent/WO2011020299A1/zh
Priority to CN2010800025117A priority patent/CN102143709A/zh
Publication of WO2011020216A1 publication Critical patent/WO2011020216A1/zh
Priority to US13/401,711 priority patent/US11311197B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/282Holders for multiple electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • A61B5/6805Vests
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6885Monitoring or controlling sensor contact pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0271Thermal or temperature sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/029Humidity sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6891Furniture

Definitions

  • the invention can be applied to physical training, medical, fitness, health care, entertainment and industrial safety.
  • the present invention relates to sensing a non-postural physiological signal to obtain a user's posture state, and can be used to detect a user's work safety, health condition, fitness effect, and posture state change situation. Background technique
  • An electrocardiogram is the most convenient and commonly used tool for observing the heart. It is measured not only in the physician's office for a few minutes, but also in many cases for long periods of time, such as the 24-hour Hol ter electrocardiogram.
  • the ideal electrocardiogram is a comfortable electrode that can be continuously recorded for a long time without disturbing daily life.
  • the conventional patch-type physiological electrodes are uncomfortable if they are applied to the skin for a long time, and are only suitable for professional medical applications. Therefore, it has been an important research topic to continuously obtain an electrocardiographic signal for a long time by using a non-patch type electrode.
  • One of the existing solutions is to make electrodes and signal transmission lines made of textiles, which are fixed on clothes or chairs and beds.
  • the ECG is not static, but it is very sensitive to the posture of the body. It is known that when a person is changed from supine to standing, the heart rate is temporarily increased (refer to U.S. Patent No. 5, 354, 317), and the electrocardiogram pattern changes immediately when the body posture changes (refer to U.S. Patent 5, 865, 760). . It is known that the waveform of an electrocardiogram obtained from electrodes of different parts of the human body is different because the electrocardiogram is a periodic change of polarization and depolarization of the myocardial cell membrane, projected on a "vector" formed by any two electrodes. Therefore, it is theoretically feasible to judge the posture of the human body from the ECG waveform. In US Pat. No.
  • a plurality of electrodes are used to measure the heartbeat, but the ECG waveform is not simultaneously measured by the user.
  • Potential state The change of posture is also a very important information. For example, if someone changes his posture too much during sleep, it may represent that the person's sleep quality is not good. If someone changes his posture suddenly during sleep, it may represent this person. There are blood clots blocking the limbs or cerebral blood vessels. US patent
  • U.S. Patent No. 4,988,981 uses an inductor to measure the posture of a hand or body.
  • U.S. Patent 5,914,701 also utilizes a change in capacitance between two electrodes to measure a posture.
  • two sensors are used to sense the same physiological state, but it is also incapable of sensing another posture state unrelated to the original sensor.
  • the two sets of non-posture physiological sensors alternate or simultaneously sense the physiological signals of the original sensors, and simultaneously undergo digital signal processing and After the analysis, the posture of the user can also be judged, so that in addition to the physiological function of the user, the state of the user's posture can be known.
  • a physiological sensor in one or more articles in contact with the body, is installed to detect a physiological signal of the human body, and a physiological signal is used to judge the posture.
  • Physiological signals come from sensors on the item, such as: clothing, underwear, coats, sheets, pillows, socks, shoes, scarves, headscarves, gloves, aprons, belts, anti, carpet, toilet, diapers, safety One or more of a belt, hat or seat to come into direct or indirect contact with a person.
  • the present invention includes a method of recording and analyzing a physiological signal to determine a human body posture from a physiological signal waveform.
  • the detection of the clothes can be stopped to save power, especially when the sensor has pressure or tension sensing.
  • the sensor that is in contact with the human body can be automatically turned on or off, so that the user's behavior pattern can be detected for a long time.
  • the general architecture of the present invention is shown in Figure 1. Items that place the sensor, such as clothing, socks, sheets, pillows, or seats, are in direct or indirect contact with the person (eg, between the sensor and the skin, across the undergarment).
  • the sensor is configured at a specific location depending on the application, and is taken as needed With pressure or tension sensor, such as: push button switch or crack switch.
  • each switch can set a critical value of external force, when the external force is greater than the critical value, the physiological signal will enter the signal processor, especially the tension sensor, because the skin of the human body is about 30% when the joint is bent.
  • the elongation is so that the change of the body can be sensed by the pulling force, so that the posture of the human body can be judged by the physiological signal waveform.
  • the sensor can be more than one of the same physiological sensors, and in addition to sensing physiological functions, the posture state of the user can be obtained.
  • the senor can be one or more different physiological sensors, and in addition to sensing different physiological functions of the user, the posture state of the user can also be obtained.
  • Another object of the present invention is that more than one physiological sensor can sense physiological functions and posture states on the same or different items.
  • Another object of the present invention is to connect a physiological sensor to a pressure or tension sensor for filtering noise, preventing false positives, automatically turning on or off another sensor or processor to save power, and effectively long-term. monitor.
  • the resulting physiological signal can be weighted by the results of the tension or pressure sensor to measure the physiological signal.
  • Another object of the present invention is to add a specific resistance or capacitance material between the physiological sensor and the processor to enhance or attenuate physiological signals, so that physiological signals at different positions generate different signal characteristics, and are more likely to be physiological signals. Distinguish the user's posture state and changes.
  • Another object of the present invention is to provide a material of different thickness or different characteristics at different or the same position of the object between the physiological sensor and the human contact to produce different results for the sensing response rate of the physiological sensor. This feature can be used to identify the user's posture state.
  • the barrel of the drawing is to be explained
  • 1 is a schematic diagram of the architecture of the present invention.
  • FIG. 2 is a schematic view showing the structure of a first preferred embodiment of the present invention applied to a pajamas.
  • FIG 3 is a schematic structural view of an electrode and a key switch according to a first preferred embodiment of the present invention.
  • Figure 4 is an equivalent circuit diagram of a body resistor, an electrode, an external resistor, a button switch, and a signal processor in accordance with a first preferred embodiment of the present invention.
  • Fig. 5 is a view showing the definition of each point of the electrocardiogram of the first preferred embodiment of the present invention.
  • FIG. 6a to 6m are electrocardiograms obtained in various sleeping positions of the first preferred embodiment of the present invention.
  • Figure 7 is a flow chart for determining a gesture using an electrocardiographic signal in accordance with a first preferred embodiment of the present invention.
  • Figure 8 is a view showing the electrode position and connection of the bicycle rider's clothes and pants according to the second preferred embodiment of the present invention.
  • Figures 9a - 9d are electrocardiograms obtained in various postures of a second preferred embodiment of the present invention.
  • Figure 10 is a schematic view showing the position and connection of electrodes applied to a bed in accordance with a third preferred embodiment of the present invention.
  • 11a to 11c are electrocardiograms obtained in various postures according to a third preferred embodiment of the present invention.
  • Figure 12 is a schematic view showing the position, connection and structure of an electrode applied to a driver's seat of a vehicle according to a fourth preferred embodiment of the present invention.
  • Fig. 1 3a to Fig. 13e show the electrocardiogram waveforms obtained in various sitting postures according to the fourth preferred embodiment of the present invention.
  • Figure 14 is a schematic view showing the position of an electrode applied to a general seat in accordance with a fifth preferred embodiment of the present invention.
  • 15a to 15d are electrocardiograms obtained in various postures of the fifth preferred embodiment of the present invention.
  • Figure 16 is a block diagram showing the structure of a temperature sensor according to a sixth preferred embodiment of the present invention.
  • Figure 17 is an equivalent circuit diagram of a temperature sensor of a sixth preferred embodiment of the present invention.
  • FIG. 18 is a schematic view showing the structure of a sweat sensor according to a seventh preferred embodiment of the present invention.
  • Electrode with push button switch 1 0 Push button switch
  • Figure 1 shows the architecture. Items that place the sensor, such as clothing, socks, sheets, pillows, or seats, are in direct or indirect contact with the person (eg, between the sensor and the skin, across the undergarment).
  • the sensor is placed at a specific location depending on the application and can be used with pressure or tension sensors as needed, such as: push button switches or crack switches.
  • This technology is known as the PCT/CN20G5/0G1520 electronic switch; PCT/CN2008/ 001571 fabrics that can form electronic components or PCT PCT/CN2008/ 001570 fabrics with separate sensing zones, all of which are digital tension or pressure sensors and can be designed Set a certain threshold to start the connected physiological sensor or turn off the previous one.
  • the measured items are placed in the body of the touch object as a switch, and combined with a non-posture sensor, such as an electrocardiogram electrode, a thermistor, a sweat electrode, a brain wave electrode, etc., can assist in determining the posture more accurately.
  • a non-posture sensor such as an electrocardiogram electrode, a thermistor, a sweat electrode, a brain wave electrode, etc.
  • each switch can set a critical value of external force, when the external force is greater than the critical value, the physiological signal will enter the signal processor.
  • the purpose of using the switch is to select the appropriate part according to the posture of the human body to extract the physiological signal, effectively isolate the noise introduced by the false touch, and turn off the power of the previous item, and save energy and energy.
  • the physiological signals are coupled to circuitry within signal processor 22 by first, second, etc. sensors and their connected pressure or tension sensors.
  • the physiological signal is first amplified by an amplifier, and then the analog bandpass filter is used to remove high frequency and low frequency noise and analog to digital conversion, and then the signal is analyzed by a program stored in the microcontroller.
  • the microcontroller calculates the characteristics of the signal, and based on the pre-stored feature information of the location in the database, the two can be compared to determine the user's posture.
  • the signal processor 22 itself may also have a display function and a function of alerting by sounding or illuminating, and a signal communication processor 22 may also have a communication means for wireless or wired phase transmission.
  • the physiological and posture signals can also be sent to the personal information device (PDA or personal computer) by the communication device in the signal processor 22 to receive, record and display the physiological and posture signals.
  • PDA personal information device
  • signal pre-processing i.e., amplification of the signal, filtering and denoising analog-to-digital conversion
  • analysis i.e., extraction of signal characteristics
  • database storage can also be processed and stored in the personal information device.
  • the personal information device can receive signals from one or more signal processors 22, such as a set of sensors and signal processors 22 on the user's bed and chair, and then integrate A long and continuous personal physiology and posture information, and the user does not have to be limited by the traditional method of patch sensors and wires, and can issue warnings in a timely manner according to preset criteria (eg, car driving without a seat belt) Or doze off).
  • preset criteria eg, car driving without a seat belt
  • a material can be added between the sensor and the cloth or leather to increase the thickness, such as: elastic, such as sponge, rubber, silicone, spring, etc.
  • sensors such as temperature sensors, humidity sensors, can have different heat conduction or moisture permeability rates depending on materials or thicknesses.
  • a switch can be added between the sensor and the cloth or leather, which can control the activation of signal detection according to pressure or tension. The sensor that opens the switch does not need to consume power, which can save power.
  • the physiological signal is related to the pressure or tension between the person and the sensor.
  • the invention utilizes a button switch or a crack switch to be connected in series or in parallel with the sensor. Only when the pressure is sufficient, the physiological signal is transmitted to the circuit, so that multiple sensors share a transmission line, thereby avoiding unnecessary physiological signals to interfere with the actual. Recording the desired signal, which can reduce the number and length of the transmission line, and make the user more comfortable, and when the user changes posture, the sensor is still pressed to obtain physiological signals.
  • a button switch is arranged in series with the sensor on the back.
  • a crack switch is arranged in parallel with the sensor at the knee bone.
  • the crack switch is pulled apart by the pulling force, and the pulling force brings the pants close to the knee joint, and the sensor at the place is Physiological signals are available.
  • the trousers lose their tension and will not be close to the knee joint, and the sensor will not be able to obtain physiological signals.
  • FIG. 2 is a schematic view showing the structure of the first preferred embodiment of the present invention applied to the pajamas and the structure of the electrode and the key switch of the first preferred embodiment.
  • the structure of the switch electrode is as shown in Fig. 3.
  • the electrode 15 in contact with the body is mounted at a specific position of the garment 1, and a push switch 10 is disposed above each electrode 15, and the electrode 15 is connected in series with the push switch 10.
  • the button switch 10 When the button switch 10 is depressed, the button switch 10 is turned on, the electrocardiographic signal is connected to the signal processor 22, and the analog ECG signal is amplified, filtered to remove noise, and analog to digital conversion (analog-to-digital convert) After ion, the ECG waveform is analyzed by the program.
  • the push button switch 10 is in an open state, and the electrocardiographic signal cannot be connected to the signal processor 22.
  • the electrocardiogram obtained by various sleeping postures of the first preferred embodiment of the present invention As shown in Figs. 6a to 6m, the electrocardiogram obtained by various sleeping postures of the first preferred embodiment of the present invention.
  • the average sleeping position is not lying on the back, the right side, the left side, and the prone.
  • the present invention has two electrodes installed around the pajamas. .
  • the electrodes 101-108 contain foam 14, and the push button switch 10 also has a three-dimensional structure, which increases the chance and reliability of contact between the person and the electrodes 101-108.
  • the purpose of selecting the position of the electrode distribution is to obtain different solid angles (relative to the heart), so the result of the electrical activity of the heart projected on the electrodes 101-108 is also different, thereby determining the sleeping position.
  • the hand of the person may press on the chest or hold the toy or bedding, and activate the electrodes 101, 102 on the chest, so the first three sleeping positions are subdivided into four cases, for more detailed posture changes, Then, by adding an electrode to the front and back of the user, a more detailed posture change result is generated, that is, the more the sensor distribution, the higher the posture resolution is.
  • the prone sleeping position it is almost impossible for the user's hand to turn back to the back to activate the electrodes 105, 106, so only the electrodes 101 and 102 are activated.
  • Various sleeping positions and open electrodes 101-108
  • the algorithm for analyzing the ECG waveform in the program stored in the microcontroller or remote control device is as follows.
  • the conventionally known digital signal processing technique is first used (refer to B i omed i ca 1 Digital Signal Process, by Willis J. Tompkins, 1993), for processing.
  • the first embodiment of the present invention processes the ECG signal as follows: First, the ECG signal is quantized and stored by an analog-to-digital converter in the signal processor 22, and then filtered by a band pass filter.
  • the program finds the R point (maximum amplitude) and polarity in the ECG signal, and then finds P, Q, S, T points. Since the electrode position is not a conventional 12-lead standard position, the mode is different from the standard mode, as shown in FIG. 5, but those skilled in the art can still use the R, P, Q, S, and T points in the prior art. The characteristics of the above points are found. Then, find the amplitude of each point of R, S, and ( (defined as VR, VS, VT).
  • ECGs in sleeping position will have no P, S, or T waves (but the R peak must have), or the direction is opposite to the standard lead I, which is the feature used to determine the sleeping position.
  • the invention adopts the analysis of various sleeping postures, and draws eight characteristics, which are counted as 1 according to the judgment criterion, and the discrepancy is 0, as follows:
  • the amplitude of the T wave is greater than the kl times of the amplitude of the R wave: the abnormally large T wave appears only in the prone position, and the symbol is VT>kl*VR, where kl is between (0.6 and 1.0), preferably 0.8;
  • R wave polarity positive direction 1, i self number is +R;
  • the R wave amplitude is greater than the S wave 2 times: the significant R wave is counted as 1, and the mark is VR>k2*VS, where k2 is between (1.8 and 2.2), preferably 2;
  • Negative S wave The negative direction is counted as 1, the mark is - S;
  • the amplitude of the T wave is greater than k2 times the amplitude of the R wave: the symbol is VT>k3*VR, where k3 is between (0.35 and 0.65), preferably 0.5;
  • the present invention encodes eight features into a one-byte number in sequential order and is represented by two hexadecimal digits.
  • the present invention further includes a three-axis accelerometer on the circuit board within the signal processor 22, and the angle of inclination of the accelerometer or other position sensor to the ground can be known by gravity when stationary.
  • the system will ask the user to fix the signal processor 22 on the shoulder to determine the user's sleeping position, and then change various sleeping positions for system analysis.
  • the present invention can also use other types of sensors to detect gestures, such as gyroscopes, video cameras, and the like.
  • the parameter setting of the system has a self-learning function.
  • the system extracts the features of the R, P, Q, S, and T points of the waveform of the electrocardiogram signal in each posture and calculates it multiple times. Kl-k3, finally taking the mean value of the calculation result or the weighting value as the parameter setting value when the actual user uses, to adjust the optimal judgment criterion of the user.
  • the user can change various sleeping positions without an accelerometer or other posture sensors, so that the system can analyze the ECG signals of each sleeping position. In the future, when the pajamas themselves are loose, the accelerometer cannot be placed close to the body to provide a sleeping position to the system.
  • the system of the present invention provides another way to prompt the user to perform self-learning in the system.
  • the user needs to provide the sleeping position, so that the system can determine the value of the parameter kl-k3.
  • the posture is judged more.
  • FIG. 8 is a second preferred embodiment of the present invention applied to a bicyclist's clothes and pants.
  • the electrode position and connection diagram, the circuit part is the same as that of Embodiment 1, wherein the No. 1 to No. 5 electrodes are connected in series with the ⁇ 4 built-in switch. See Figure 9a - Figure 9d, the No. 1 electrode on the chest may not touch the body, but the back electrode (the No. 2, No. 3 in parallel, and the No. 4 are connected to the positive and negative terminals of the ECG amplifier respectively) can measure the ECG.
  • Figure 9 a When suspended and standing on the road, the Cavaliers do not bend over, the No. 1 electrode on the chest touches the body. At this time, the No. 1 and No.
  • the electrode can also be installed on the pants and the socks, wherein the electrodes No. 6 and No. 7 are arranged near the knee joint of the pants, and each of them is connected with a crack switch; the electrodes No. 8 and No. 9 are arranged on the socks, and each of them is connected in series with a push button switch; The No. 9 electrode is connected in series with the No. 7 electrode, and the No. 6 and No. 8 electrodes are connected in series. When the knee joint is straight and the foot touches the ground, the electrodes No. 8 and No. 9 are pressed, and the No. 6 or No. 7 electrode is not pressed, so the ECG signal can be measured by the No. 8 and No. 9 electrodes (Fig.
  • the No. 6 nickname electrode can be turned on and the other sock electrode can be used to obtain a different electrocardiogram. From the above, we can judge whether the user is walking, standing still or kneeling.
  • the signal processor After the signal processor captures the ECG signal and determines the posture, the information is transmitted to the personal information device, and the personal information device can give the user a suggestion or a warning according to the preset range of the user. For example, when the measured heart rate is too high, it may be that the physical load of the bicycle is too heavy. At this time, a suggestion can be given to remind the user to slow down the riding speed. When the measured long-term posture and acceleration are unchanged, it may be that you fall into a coma. At this time, the personal information device can automatically send a warning to the remote through various wireless communication channels (mobile phones or wireless networks). Individual or agency, request assistance.
  • various wireless communication channels mobile phones or wireless networks
  • FIG. 10 is a schematic view showing the electrode placed on the bedding according to the third preferred embodiment of the present invention.
  • the electrodes 12a-12e in contact with the body are mounted at a specific position of the bed, and no button switch is provided.
  • the circuit portion is similar to that of Fig. 1.
  • the electrodes 12a, 12b are connected to 12d, and the electrodes 12c and 12e are connected, respectively.
  • the input of the amplifying circuit adopts capacitive coupling (capacitive coupling) to obtain the electrocardiographic signal of the human body through the thin clothing.
  • capacitive coupling capacitive coupling
  • k4 is between 0.5 and 0.7, preferably 0. 6; k5 is between 0.2 to 0.4, preferably 0.3.
  • FIG. 12 there is shown a fourth embodiment of the present invention for electrode position, connection and architecture of a driver's seat.
  • Electrodes there are two electrodes (211 and 212) on the chest, wherein the electrode 212 is pressed by the seat belt when sitting and leaning forward, but not when the left is tilted, and the electrode 211 is As long as the seat belt is attached, it is switched on. Electrodes started under various sitting positions (sitting, leaning forward, right leaning, left leaning, no seat belt), and whether two ECG amplifiers have ECG signals (with or without R peak) As shown in Table 5, the obtained electrocardiogram waveform is as shown in FIG. The electrodes Nos. 1 to 6 listed in Table 5 sequentially represent the electrodes 211 to 216 of Table 5. The criteria for determining the posture are listed in Table 5.
  • the sitting posture of the driving can be easily judged.
  • the former has a huge T wave almost as high as the R peak, while the latter T wave is small, which can be known by judging VT>k6*VR.
  • the former has a huge T wave and the latter has a T wave.
  • VT>k6*VR can be known. 5 ⁇ The k6 is between 0.7 and 0.9, preferably 0.8. Since driving a car inevitably encounters an emergency brake, a pothole, etc., at this time, since the human body is shaken violently, the electrocardiographic signal is severely distorted to be difficult to interpret, and the present invention can utilize an acceleration gauge to eliminate these abnormal conditions. After many actual tests, it is concluded that when the instantaneous acceleration is greater than 9. 8 m / s 2 (a gravitational acceleration of the earth's surface, g), the ECG signal will be severely distorted until it is difficult to interpret. Therefore, the method of the present invention simultaneously captures the acceleration gauge signal, and when the acceleration is greater than 9.8 m/s 2 , the analysis of the electrocardiogram is stopped to avoid misjudgment.
  • 9. 8 m / s 2 a gravitational acceleration of the earth's surface, g
  • FIG. 14 it is a schematic diagram of the structure of the present invention implemented in a general seat.
  • the electrode 17a is connected to the electrode 17d
  • the electrode 17b is connected to the electrode 17c, and is respectively connected to the positive and negative input terminals of the signal processor to obtain an electrocardiogram as shown in FIG. 15a to FIG. 15d.
  • the electrocardiogram obtained in various sitting positions is: 15a is the seated back chair, 15b is the seat on the back, 15c is sitting on the left side, 15d is sitting on the right side. Comparing Fig. 15a with Fig. 15b, it can be seen that the R and S amplitudes of Fig. 15a are larger than those of Fig. 15b.
  • the non-posture sensor is a temperature sensor (for example, a thermistor)
  • the touch object oppresses a temperature sensor somewhere, the temperature sensor becomes in direct contact with the human body, causing the temperature to rise directly from the temperature to near body temperature.
  • the present invention can be installed in different parts of the thermistor with significantly different resistance values, and the two are connected in parallel, and the signal processor can still judge whether the position is pressed or not, and the posture can be measured.
  • the schematic diagram of the architecture is shown in Figure 16.
  • the equivalent circuit is shown in Figure 17.
  • a thermistor at room temperature of about 1 OK Ohms is installed on the back.
  • a thermistor (approximately 12K Ohms at body temperature and approximately 20KOhms at room temperature) is mounted on the chest.
  • the analog-to-digital conversion resolution of the signal processing processor is high (eg 12 bits)
  • the two thermistors can be resolved.
  • the advantage of connecting the sensors in parallel is that the input to the processor contacts can be reduced, the contact between the contact object and the processor is reduced, and the presence of the sensor is not felt to increase the comfort and reduce the sense of being detected. .
  • Another embodiment is a humidity sensor, which works by measuring the DC resistance between two metal wires, because the sweat will conduct electricity, so the lower the resistance, the more wet, as shown in FIG. Where the external objects are in contact with the human body, the humidity will be larger than that of the non-contact areas.
  • d is the distance between two metal wires. Three sets of wires with d, 1, 2, and 3 cm, respectively, are sewed on the fabric (a total of six wires).
  • the humidity sensor When the distance sensor is 1 cm, the humidity sensor has reached When it is completely wet and cannot be resolved, the humidity sensor of 2 cm or 3 cm distance is read. In addition, different moisture wicking materials and material thickness can be used as the humidity sensor to increase its variability. If the humidity sensor and the electrocardiogram electrode are placed in the same place, the degree of sweat can be known while measuring the ECG signal. It is known that the degree of perspiration is too low, and when the skin is too dry, the ECG noise is very difficult. Interpretation, but when the skin is sweating and the humidity sensor is very wet, the ECG signal should be very clear. This arrangement will eliminate the ECG signal whose signal-to-noise ratio (S/N rat io) is too low, and increase the accuracy of judging the posture.
  • S/N rat io signal-to-noise ratio
  • the ECG has different signal-to-noise ratio (S/N rat io) under different pressures, that is, the higher the pressure, the clearer the ECG, so there is humidity, pressure or
  • S/N rat io signal-to-noise ratio
  • the electrode can be used to measure the muscle electrical signal to detect muscle contraction, especially in the compression site.
  • the myoelectric signal obtained from the compression of the lower limbs and the buttocks is very obvious.
  • a vascular plethysmography can be used to measure the pulse
  • a resistive body fat meter can be used to measure the subcutaneous fat content
  • a photosensor can be used to measure the blood oxygen concentration and pulse.
  • Different materials or thicknesses can be used between the sensor and the human body to produce different signal characteristics.
  • the present invention can measure the physiological signals of the human body using two different non-posture sensors, and can also measure the posture. For example, when the ECG electrode is placed on the front and back chest during sleep, and the temperature sensor is placed on the left and right armpits, an obvious electrocardiogram can be obtained when lying or lying on the back; and when lying on the left or right side, The ECG signal cannot be measured unless the user's chest and hands touch the electrodes on the clothing.
  • the temperature that can be measured to the left or right underarm will rise to near the body temperature, and the material of the temperature sensor on the left or right side is separated from the person and the sensor by a material having different characteristics of thermal conductivity material or different thickness, so that not only Measured body temperature and ECG signals can also measure posture without having to do complex signal processing.
  • the present invention can be operated simultaneously by a plurality of sensors, or the accuracy of the judgment gesture can be improved by the rate of change of the signal itself.
  • the acceleration gauge measures that the human body is experiencing a large acceleration, it represents that the electrocardiogram or other signal may be disturbed and severely distorted.
  • the present invention can set the threshold of the acceleration gauge for various different applications (for example, in the fourth preferred embodiment)
  • the median threshold is 9. 8 m / s 2 ).
  • this threshold is exceeded, the analysis is suspended to avoid false positives.
  • the present invention can set the threshold of the rate of change for various applications as a criterion for screening for abnormal signals. If an abnormal signal is frequently received, a warning can be sent to the user.
  • the present invention can provide a warning at an appropriate time to maintain the health and safety of the user. For example, for a bicyclist, when the body temperature is too high for a long time and the heart rate is too fast, it may represent the department or the physical load is too heavy.
  • the user can wirelessly transmit to the personal digital assistant or personal computer 12 for processing on the signal processor without signal analysis, signal storage, database comparison, display, warning or wired transmission, for example: setting the individual at the event The normal physiological range, once exceeded, alerts the user, or alerts the other person or institution at the remote location via the personal digital assistant or the communication device on the personal computer 12. Or sending the physiological signal to the remote end, by using the remote end to establish the physiological signal database of the user, to determine whether the physiological condition has exceeded the normal range, a warning is required, and can be immediately used by the personal digital assistant or the personal computer 12 The most appropriate guidance.
  • the working mode of the present invention in addition to the user itself, it can also be performed by other automatic methods, such as connecting the conductive wires to the signal processing at the pressure or tension sensor on the clothes, chairs or bed to the signal processing.
  • On the device when the user puts on the clothes, sits on the chair or the bed, can start or close another contact item; or via the wireless device on the signal processor, when receiving a certain signal, such as RFID, label ( Tag) is started.
  • This automatic operation has the following advantages: It does not prevent the user from working normally, ensures that the invention operates in the correct mode of operation, and saves power to extend working hours.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Pulmonology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

侦测生理机能及姿势状态的物品、 方法和系统 技术领域
本发明可应用于体能训练、 医疗、 健身、 保健、 娱乐及工业安全等领 域。 本发明是关于由感测非姿势的生理信号来取得使用者的姿势状态, 可 用于侦测使用者工作安全、 健康状况、 健身效果及姿势状态改变情形。 背景技术
随着生活水准与医疗卫生长足的进步, 人类平均寿命逐渐的延长, 老 年人口比例持续增加。 面对高龄化的社会, 各种社会福利、 医疗医药技术 与社会安全制度的问题随着显现, 越来越多的高龄者无法藉由家人与家庭 获得妥善充分的照顾。 此外,由于饮食及生活习惯的改变, 患有高血压、 糖 尿病、 痛风、 高血脂以及心脏病等慢性疾病的人口比例亦急速上升。 这些 人口多需要即时的生理机能监控系统,以随时随地侦测相关的生理机能, 以 防止意外发生。
例如: 心电图是观察心脏最方便且常用的工具, 不仅在医师的诊疗室 测量数分钟, 也有许多场合是要长时间记录, 例如 24小时的 Hol ter心电 图。 理想的心电图, 是有舒适的电极, 能在不干扰日常生活的前提下, 作 长时间连续记录。 但是目前惯用的贴片式生理电极, 若长时间贴在皮肤上 是很不舒服的, 只适用在专业医疗场合。 因此, 利用非贴片式的电极以长 时间连续取得心电信号,一直是重要的研究课题。 现有的解决方案之一, 是 用纺织品制成电极及信号传输线, 固定在衣物或椅子、 床上, 如此可让使 用者在较舒服情况下, 获得心电图, 又不会像传统心电图机一样牵许多电 线, 让使用者行动而受到限制。 然而,若要将信号传输线固定在衣物上, 又 要让使用者舒适, 信号传输线不宜太多太长太复杂; 但是要让使用者在日 常生活作息中各种姿势都能取得心电图, 就得在衣物上多设电极与信号传 输线。 要解决此一两难困境, 有一方法是让多个电极共用信号传输线相同 的道理其他生理感测器也是如此情况。
另一方面,心电图并非一成不变,反之它对身体的姿势是很敏感的。 已 知当人由仰卧换为站立时,心率会暂时增加(参考美国专利 5, 354, 317) ,当 身体姿势改变时,心电图波型会立即随之改变 (参考美国专利 5, 865, 760)。 已 知由人体不同部位的电极获得的心电图的波型是不同的, 因为心电图是由 心肌细胞膜的极化与去极化的周期变化, 投影在任两个电极形成的 "向量" 上。 因此, 由心电图波型, 来判断人体姿势, 理论上是可行的。 在美国专 利 7502643有用多个电极测心跳, 但没有同时由此 ECG波形来测使用者姿 势状态。 姿势的变化, 也是一项很重要的资讯, 例如某人在睡眠时若变化 姿势太频繁, 可能代表此人睡眠品质不佳, 若是某人在睡眠时若变化姿势 突然大幅降低, 可能代表此人有血栓阻塞了四肢或脑血管。 美国专利
6384729 及 5508540, 均是利用感应器来测腹肌的收缩情形。 美国专利 4988981则是用感应器来测量手或身体的姿势,美国专利 5914701也是利用 两电极之间电容变化来测姿势。 在 US6930608 美国专利中有用两个感测器 来感测相同的生理状态, 但无法同时也感测到另一个与原先感测器无关的 姿势状态。
如今, 我们发明在与身体接触的物品中, 设置至少有两组非姿势的生 理感应器, 这两组非姿势的生理感应器交替或同时感应原感应器的生理信 号, 同时经过数字信号处理及分析之后, 也可判断使用者的姿势, 故除了 本身之生理机能外, 还可以得知使用者当时的姿势状态。
人日常生活中绝大部分时间要穿上衣物、 坐在椅子上或躺在床上, 故 在帽子、 头巾、 鞋子、 衣物、 座椅、 床单或枕头上设置感测器, 本发明同 时将压力或拉力感测器与生理感测器结合, 不但可降低噪声同时还可自动 启动下一个接触的物品, 而前一个接触的物品可自动关闭来省电, 即可作 长时间连续记录, 使用者不必受感测器及电线限制。 更进一步, 由不同位 置上的感测器所得的生理信号, 或相同位置所得的不同生理信号, 而且这 些信号可由相同或不同的物品中取得, 即可整合成长时间且连续的生理机 能及姿势变化图, 对于使用者的健康及安全有很大助益。 目前此技术已通 过 IEEE, EMBC 2009年会的审核, 即将在 9月发表, 题目为 "Sleeping ECG and body pos i t ion moni tor ing sys tem" 。 发明内容
本发明是在一个或多个与身体接触的物品中, 安装有生理感测器来侦 测人体的生理信号, 并且利用生理信号来判断姿势。 生理信号来自物品上 的感测器, 物品包括例如: 衣物、 内衣裤、 外套、 床单、 枕头、 袜子、 鞋 子、 围巾、 头巾、 手套、 围裙、 皮带、 ; 反、 地毯、 马桶、 尿裤、 安全带、 帽 子或座椅中的一个或多个,来与人直接或间接接触。 另外本发明包含记录及 分析生理信号的方法,以便由生理信号波型判断人体姿势。 同时, 当椅、枕、 床、 或桌上的物品如滑鼠、 桌垫, 读到生理信号时, 衣物的侦测就可以停 止来省电源, 尤其是当感测器有压力或拉力感测器连结时, 可自动开或关 与人体接触的感测器, 故可以长时间侦测使用者的行为模式。
例如:本发明一般架构请参阅如图 1所示。 将安放感测器的物品, 例如 衣物、 袜、 床单、 枕头、 或座椅等, 与人直接或间接接触(例如感测器与皮 肤之间, 隔着内衣)。 感测器视应用场合配置在特定位置上, 并且视需要搭 配压力或拉力感测器, 例如: 按键开关或裂缝开关。
因为每一个开关都可设定一个外力的临界值, 当外力大于临界值时,生 理信号才会进入信号处理器,尤其是拉力感测器, 因为人体关节弯曲时, 外 表的皮肤约有 30%的拉长, 故可由拉力感测身体的变化, 以便由生理信号波 型判断人体姿势。
本发明的目的之一在于, 感测器可为一个以上相同的生理感测器, 除 了感测生理机能外, 尚可得到使用者的姿势状态。
本发明的另一目的在于, 感测器可为一个以上不同的生理感测器, 除 了感测本身不同的生理机能外, 也可得到使用者的姿势状态。
本发明的另一目的在于, 一个以上的生理感测器, 可在相同或不同的 物品上来感测生理机能及姿势状态。
本发明的另一目的在于, 生理感测器上连接有压力或拉力感测器,用以 过滤噪声,防止误判,自动开启或关闭另一个感测器或处理器以达省电,有 效长期监测。 同时所得的生理信号可由拉力或压力感测器的结果来加权所 测得的生理信号。
本发明的另一目的在于, 生理感测器与处理器间可加一特定电阻或电 容材质来使生理信号增强或减弱, 让不同位置的生理信号产生不同的信号 特性, 更容易由生理信号来区别使用者的姿势状态及变化。
本发明的另一目的在于, 生理感测器与人接触之间, 可在物品的不同 或相同位置设置不同厚度或不同特性的材质来使生理感测器的感测反应速 率产生不同的结果, 故可利用此特性来辨别使用者的姿势状态。 附图的筒要说明
图 1是本发明的架构示意图。
图 2是本发明第一较佳实施例应用于睡衣的架构示意图。
图 3是本发明第一较佳实施例的电极及按键开关结构示意图。
图 4是本发明第一较佳实施例的体内电阻、 电极、 外加电阻、 按键开 关及信号处理器的等效电路图。
图 5是本发明第一较佳实施例的心电图各点的定义图。
图 6a至图 6m是本发明第一较佳实施例的各种睡姿所得的心电图。 图 7是本发明第一较佳实施例的利用心电信号判断姿势的流程图。 图 8是本发明第二较佳实施例应用于自行车骑士衣及裤的电极位置及 连接示意图。
图 9a -图 9d是本发明第二较佳实施例的各种姿势所得的心电图。
图 10是本发明第三较佳实施例应用于床的电极位置及连接示意图。 图 11a至图 11c是本发明第三较佳实施例的各种姿势所得的心电图。 图 12是本发明第四较佳实施例应用于汽车驾驶座的电极位置、 连接及 架构示意图。
图 1 3a至图 13e是本发明第四较佳实施例的各种坐姿获得的心电图波 型。
图 14是本发明第五较佳实施例应用于一般座椅的电极位置示意图。 图 15a至图 15d是本发明第五较佳实施例的各种姿势所得的心电图。 图 16是本发明第六较佳实施例的温度感测器架构示意图。
图 17是本发明第六较佳实施例的温度感测器等效电路图。
图 18是本发明第七较佳实施例的汗湿感测器架构示意图。
. 1 01、 102、 103、 104、 105、 106、 107、 108 : 附有按键开关的电极 1 0: 按键开关
12: 个人数字助理或个人电脑
15: 电极
211、 212、 213、 214、 215、 216: 开关
12a、 12b、 12c、 12d、 12e: 电极
22: 信号处理器
23 : 个人数字助理或个人电脑
17a、 17b、 17c、 17d: 电极 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的的所采取的技术手段及功 效, 以下结合附图及较佳实施例, 对依据本发明提出的心电图监视及人体 姿势判断方法、 装置与系统其具体实施方式、 结构、 特征及其功效, 详细 说明如后。
有关本发明的前述及其它技术内容、 特点及功效, 在以下配合参考图 示的较佳实施例的详细说明中将可清楚呈现。 通过具体实施方式的说明,当
^了解, '然而所附图式仅是提:参考与说明之用, 并 用来对本发明力;以 限制。
本发明一^:架构请参阅如图 1所示。 将安放感测器的物品, 例如衣物、 袜、 床单、 枕头、 或座椅等,与人直接或间接接触(例如感测器与皮肤之间, 隔着内衣)。 感测器视应用场合配置在特定位置上, 并且视需要搭配压力或 拉力感测器, 例如: 按键开关或裂缝开关。 此技术如 PCT/CN20G5/ 0G1520 电子开关; PCT/CN2008/ 001571 可形成电子元件的布料或 PCT PCT/CN2008/ 001570具有分离感应区的布料,这些全是数字拉力或压力感测 器, 且可设定一定的临界值才启动相连的生理感测器或关闭前一个正在侦 测的物品, 故当做开关使用而放置于触身物品中, 同时和非姿势感测器结 合, 例如心电图电极、 热敏电阻、 汗湿电极、 脑波电极等, 可协助判断姿 势更准确。 因为每一个开关都可设定一个外力的临界值, 当外力大于临界 值时, 生理信号才会进入信号处理器。 使用开关的目的, 在于依人体姿势 来选取适当部位来撷取生理信号, 有效隔绝误触所引入的噪声又可关闭前 一个物品的电源, 并且能够省电节能。
生理信号由第一、 第二等感测器以及其连接的压力或拉力感测器连接 至信号处理器 22内的电路。 生理信号先经由放大器, 将模拟信号放大, 再 经模拟带通滤波器去除高频及低频噪声及模拟数字转换, 再由微控制器中 存储的程序对信号进行分析。 微控制器计算出信号的特征, 并依据预存的 数据库中该位置的特征资讯, 两者比对, 即可判断使用者的姿势。 信号处 理器 22本身也可具有显示功能、 及通过发声或发光的来警示的功能, 另外 信号处理器 22内亦可有无线或有线 相传输的功能的通信装置。 故生理及 姿势信号也可由信号处理器 22内的通信装置送至个人资讯装置(PDA或个人 电脑), 以接收、 记录及显示生理及姿势信号。 此外, 信号处理器 22 内的 信号前处理(即对信号进行放大、 滤波去噪模数转换), 分析(即提取信号的 特征)或数据库存储, 也可在个人资讯装置来处理及存储。 对于同一使用者 而言, 个人资讯装置可以接收一个或多个信号处理器 22传出的信号, 例如 在使用者的床和椅上各装上一组感测器和信号处理器 22 , 再整合成长时间 且连续的个人生理及姿势资讯, 而使用者不必受到传统方法的贴片式感测 器和电线所限制, 并可以依预设的判断准则适时发出警讯(例如汽车驾驶未 系安全带或打瞌睡)。
为了要增加感测器与人的接触之间贴合, 可在感测器与布料或皮革间 加一材料来增加厚度, 例如: 弹性物, 如海绵、 橡胶、 硅胶、 弹簧等。 且 感测器, 如温度感测器、 湿度感测器, 又可因材料不同或厚度不同而有不 同的热传导或透湿速率。 同时, 为了防止误触或同时传输太多信号, 亦可 在感测器与布料或皮革间加一开关, 此开关能根据压力或者拉力来控制信 号侦测的启动。 而断开开关的感测器无需耗用电力, 可达到省电的功效。
生理信号与人及感测器之间的压力或拉力有关, 当人与感测器之间没 有接触时没有信号; 当感测器与人之间的接触压力不良、 信号也不佳。 本 发明利用按键开关或裂缝开关与感测器串联或并联, 唯当压力足够, 生理 信号才会传导至电路, 如此可以让多个感测器共用一条传输线, 避免不必 要的生理信号来干扰实际记录的所需信号, 这样既可以降低传输线的数量 及长度, 又能让使用者更舒适, 且当使用者变化姿势时, 也仍有感测器受 压以获得生理信号。 举例说明, 在背部设一按键开关与感测器串联, 当使 用者仰卧在床时, 背部压到床垫, 感测器所获得的生理信号才会传导至电 路; 又举例说明, 在膝盖骨处设一裂缝开关与感测器并联, 当使用者屈膝 时该处裂缝开关受拉力而拉开, 此拉力会使裤贴近膝关节, 该处的感测器 即可获得生理信号。 当使用者伸直腿, 裤失去拉力就不会贴近膝关节, 感 测器即无法获得生理信号。 第一较佳实施例
请参阅图 2及图 3所示, 是本发明的第一较佳实施例应用于睡衣的架 构示意图以及第一较佳实施例的电极及按键开关结构示意图。 本发明第一 较佳实施例的应用于睡衣的架构示意图, 其用来记录心电图并判断人体姿 势,包含有随附¾*开关的电极 101、 102、 103、 104、 105、 106、 107、 108,信 号处理器 22,及个人数字助理或个人电脑 12。 开关电极的结构如图 3所 示,与身体接触的电极 15安装在衣物 1的特定位置上,每个电极 15上方有 一按键开关 10, 电极 15与按键开关 10串联。 当按键开关 10被压下时, 按 键开关 10成导通状态, 心电信号连接至信号处理器 22, 将模拟的心电信号 放大、 滤波去除噪声、 模数转换(analog- to-digi tal convert ion)后, 再 以程序对心电波型进行分析。 当 ¾ ^开关 10未被压下时, 按键开关 10成 开路状态, 心电信号无法连接至信号处理器 22内。 由此, 当使用者更换睡 姿, 就有不同的 开关 10被压下, 即有不同部位的电极获得的心电信号 被传导至仪表放大器, 心电波型也就随之而异, 如此即可由心电波型判断 人体姿势。
由于衣物有电极,当使用者睡眠时,不同的睡姿,例如正睡、 左侧睡、 趴 睡所压到的电极不同,导致心电图的波形不同,其原理如背景技术所述。 若 正睡且双手抱胸则胸部的电极也导通,但其与单单正睡或趴睡所得的心电 图波形又不同,故可利用心电图的波形变化,来侦测睡眠的姿势及其变化,同 时产生活动图(act igraph)。 据此, 可以得知使用者睡眠的深浅状态; 亦可 由心电图信号计算出心率变异(Heart Rate Var iabi l i ty, HRV)或呼吸, 从 而推估其睡眠的深浅状态。 一般而言, 胸腔肌肉的伸缩会造成心电图的漂 移, 而对于睡着的便用者, 此漂移即来自呼吸。 因而, 撷取心电图信号的 低频部分 (低于 0. 3 Ηζ) , 即可得呼吸信号。
如图 6a至图 6m所示, 是本发明第一较佳实施例的各种睡姿所得的心 电图。 一般人睡姿不外背仰卧、 右侧卧、 左侧卧、 俯卧四种, 为了在四种 睡姿都能获得心电图, 如图 2所示,本发明在睡衣的四周都各安装了两个电 极。 电极 101- 108内含泡绵 14 , 且按键开关 10也有立体结构, 如此可增加 人与电极 101-108之间接触的机会与可靠度。 选取电极分布位置的目的,在 于有取得不同的立体角 (相对于心脏), 因此心脏的电活动投影在电极 101-108向量的结果也不同,由此即可判断睡姿。有鉴于在前三种睡姿,使用 者的手有可能压到胸前或抱持玩具或寝具,而启动胸前的电极 101、 102 , 故 前三种睡姿又各自再细分为四种情形, 若要更详细的姿势变化, 则在使用 者前后中间再加一个电极, 就会有更详细的姿势变化结果产生, 即越多感 测器分布, 所得到的姿势解析度就更高。 就俯卧睡姿, 使用者的手几乎不 可能往后翻到背后来启动电极 105、 106 , 故仅考虑电极 101与 102启动的 情况。 各种睡姿及开启的电极 101-108 ,
请参阅表 1 所示, 陈列了本发明第一较佳实施例的各种睡姿所启动的 电极。
Figure imgf000009_0001
请参阅表 4,可以看出有许多情况是两个电极并联再接到心电放大器输 入端,其等效电路也与传统的心电图机不同(如图 4所示)。 由于人体表面不 同部位的体内电阻可能有很大差异, 例如胸前的皮肤很薄距离心脏又近,其 体内电阻因而很小,反之后背的体内电阻就大很多,而把此两处的电极 101、 102、 105、 106并联在一起, 很可能没有足够效果。 因此, 本发明的一具体 实施例中, 在信号处理器 22前端和某一电极之间,串联一外加电阻 111,以 取得较佳并联电极效果。 同理, 可视人体的阻抗特性以及信号的频率(例如 肌电图、 血管容积、 体脂等有不同的频率), 选择性地串联或并联电阻或电 容。
请参阅图 5所示, 是典型的 Lead I心电图各点定义, 以微控制器中或 者远程控制装置存储的程序分析心电波型的演算法如下。 对于进入信号处 理器 22的的心电信号,先以现有公知的数字信号处理技术(参考 B i omed i ca 1 Digital Signal Process, by Willis J. Tompkins, 1993) , 进行处理。 如 图 7 所示, 本发明的第一实施例对心电信号的处理方法如下: 首先利用信 号处理器 22中的模数转换器将心电信号量化并存储, 后以带通滤波器滤除 噪声(四阶贝塞尔带通滤波器, 0.06-40 Hz), 然后由程序找出心电信号中 的 R点(取振幅最大点)及极性, 然后再找出 P, Q, S, T各点。 由于电极位 置并非惯用的 12导程标准位置,因此波型与标准波型不同,如图 5所示, 但 是本领域技术人员仍可以现有公知技术中的 R、 P、 Q、 S、 T点的特征找出 前述各点。 然后, 再找出 R, S, Τ各点的振幅(定义为 VR, VS, VT)。 有些 睡姿下的心电图, 会没有 P、 S、 或 T波 (但 R峰一定有), 或其方向与标准 lead I相反, 此皆为判读睡姿所用到的特征。 本发明通过对各种睡姿的分 析, 撷取八项特征, 符合其判断准则即计为 1, 不符即为 0, 如下:
1. T波振幅大于 R波振幅的 kl倍: 此异常大的 T波,仅出现在俯卧,记 号为 VT>kl*VR, 其中, kl介于(0.6至 1.0)之间, 优选为 0.8;
2.出现 P波: 不论方向为正或负, 记号为 P;
3. R波极性: 正向为 1, i己号为 +R;
4. R波振幅大于 S波 2倍: 有显著 R波则计为 1, 记号为 VR>k2*VS, 其 中, k2介于(1.8至 2.2)之间, 优选为 2;
5.正向 S波: 出现正向则计为 1, 记号为 +S;
6.负向 S波: 出现负向则计为 1, 记号为 - S;
7.正向 T波: 出现正向则计为 1, 记号为 +T;
8. T波振幅大于 R波振幅的 k2倍:记号为 VT>k3*VR,其中, k3介于 (0.35 至 0.65)之间, 优选为 0.5;
典型的各种睡姿下的心电信号请参阅图 6所示。
请参阅表 2所示,各种睡姿的特征归纳。 若出现该特征,则记号为 1。本 发明依先后次序把八项特征编为一个字节的数码 , 并以两个 16进制数字表 示。
表 2
Figure imgf000011_0001
在实际应用上, 每个使用者的心电信号多少有些差异, 适用于某曱的 判断准则, 例如对于不同使用者, k卜 k3需要选择不同的数值才能得到更好 的效果。 因此, 本发明进一步在信号处理器 22内的电路板上装有一三轴加 速规, 在静止时可藉由重力得知加速规或其他姿势感测器与地面的倾斜角。 当使用者第一次开启本系统时, 系统会要求使用者以手把信号处理器 22固 定在肩上, 以便确定使用者的睡姿, 然后变换各种睡姿让系统分析。 同理, 本发明也可运用其他种类的感测器来侦测姿势, 例如、 陀螺仪、 视讯仪 (video camera)等。 本系统的参数设置具有自学习功能, 使用者做出各种 睡姿时, 系统会对各姿态下的心电信号的波形进行 R、 P、 Q、 S、 T点的特 征提取并多次计算 kl- k3,最后取计算结果的均值或者是加权值作为实际使 用者使用时的参数设定值, 以调整该使用者最佳的判断准则。 另外也可让 使用者在没有加速规或其他姿势感测器的情形下, 自行变换各种睡姿, 以 便系统分析各睡姿的心电图信号。 日后在真正使用时, 由于睡衣本身是宽 松的, 因而加速规不可能紧靠在身上以提供睡姿给系统, 因此本发明的系 统还提供另一种方式, 即提示使用者在系统自学习进行参数设定时, 需要 使用者提供何种睡姿, 以便系统确定参数 kl-k3 的数值, 另外, 在不同地 方多加一些电极感测器, 则姿势的判别更多样。
第二较佳实施例
请参阅图 8 所示, 是本发明第二较佳实施例应用于自行车骑士衣及裤 的电极位置及连接示意图, 电路部分与实施例 1相同, 其中 1号至 5号电 极皆与 ^4建开关串联。 获得请参阅图 9a-图 9d所示, 胸前的 1号电极可能 碰不到身体, 但背部电极(2号 3号并联, 与 4号分别接心电放大器正负端) 可测得心电图, 请参阅图 9 a。 当暂停且站立于路上时, 騎士不弯腰, 胸前 的 1号电极碰到身体, 此时 1号 3号电极并联, 1与 4号电极并联, 分别接 心电放大器正负端, 得心电图(图 9 b) , 与图 9 a相比, R峰显著增大, 但 无 P波, 由此即可分辨弯腰或直立。 同理, 当^"士坐在座垫上且上身垂直, 由胸前的 1号及臀部的 5号电极, 可量得心电图, 请参阅图 9 c; 当骑士站 立时, 臀部没有压到 5 号电极, 臀的心电图即消失不见, 表示已经没有坐 在自行车上。 判断姿势的准则列于表 3。
电极还可安装于裤及袜上, 其中 6号与 7号电极设于裤子的膝关节附 近, 且各自并联一裂缝开关; 8号与 9号电极设于袜子上, 且各自串联一按 键开关; 9号电极与 7号电极串联, 6号与 8号电极串联。 当膝关节打直且 脚接触到地上, 压迫 8号及 9号电极, 而 6号或 7号电极未受压迫故可由 8 号及 9号电极测得的心电信号(图 9 d所示), 当行走时左膝或右膝关节弯 曲时可使 6号 Ί号电极导通且与另一脚的袜子电极来得到不同的心电图。 由上述, 我们可以判断使用者是在走路、 站立不动或屈膝。
表 3
Figure imgf000012_0001
信号处理器撷取心电信号并且判断出姿势后, 即将此资讯传送至个人 资讯装置, 个人资讯装置可依据使用者预设的范围, 给予使用者建议、 或 警讯。 例如当测得心跳速率过大时, 可能是骑车的体力负荷过重, 此时可 发出建议, 提醒使用者放慢骑速。 当测得长时间姿势与加速度皆无变化, 可能是摔倒在地昏迷不醒, 此时个人资讯装置可自动通过各种无线通讯管 道 (行动电话或无线网路), 发出警讯给远端的个人或机构, 请求援助。
第三较佳实施例
请参阅图 10所示, 是本发明第三较佳实施例的电极安放于寝具的示意 图。 本发明实施例三与身体接触的电极 12a- 12e安装在床的特定位置上, 不设按键开关, 电路部分与图 1类似, 电极 12a、 12b,与 12d相连, 电 12c 与 12e相连, 分别作为放大电路的正负输入。 放大电路输入端采用电容式 耦合(capac i t ive coup l ing) , 以便透过薄衣取得人体的心电信号。 当使用 者更换坐姿或卧姿时, 身体接触电极部位随之而异, 心电波型也就随之而 异, 如此即可由心电波型判断人体姿势。
例如: 枕头与床单上有电极, 则睡者不同睡姿压在枕头与床单上的电 极位置也随之改变, 同时心电图也不同。 请参阅图 11a-图 11c所示。 (图 11 a 为正卧颈部未靠床两腿撑起; 图 11 b 为正卧颈部靠床两腿撑起; 图 11 c 为正卧颈部靠床两腿平放)。 判断姿势的准则列于表 4。
表 4
Figure imgf000013_0001
其中, k4介于 0. 5至 0. 7之间, 优选为 0. 6 ; k5介于 0. 2至 0. 4之间, 优选为 0. 3。
第四较佳实施例
请参阅图 12所示, 是本发明第四较佳实施例应用于汽车驾驶座的电极 位置、 连接及架构图。
本发明较佳实施例四, 胸前有两个电极(211与 212), 其中电极 212在 正坐及前倾时都会受安全带压迫而接通, 但在左倾时则否, 电极 211 则是 只要有系安全带即接通。 各种坐姿(正坐、 前倾、 右侧倾、 左侧倾、 无安全 带)下启动的电极, 以及两个心电信号放大器有无获得心电信号(以有无 R 峰判定)的情况如表 5所示, 获得的心电图波型如图 13所示。表 5所列的 1 至 6号电极依序代表表 5的电极 211至 216。 判断姿势的准则列于表 5。
Figure imgf000013_0002
如表 5及图 12所示, 可轻易判断驾驶的坐姿。 除了个别有安全带左倾 与无安全带正坐两种坐姿, 需要用波型来判断, 对于其他坐姿只要看心电 放大器 A、 B是否有输出心电图再配合 R峰再查表即可判定。 要分辨左倾有 安全带与正坐无安全带两种坐姿十分容易, 前者有巨大的 T波几乎和 R峰 —般高, 而后者 T波 ί艮小, 由判断 VT〉k6*VR即可知。 同理, 要分辨有带前 倾与有带右倾, 亦可由 T波, 前者有巨大的 T波而后者 T波 ί艮小, 由判断 VT>k6*VR即可知。 其中, k6介于 0. 7至 0. 9之间, 优选为 0. 8。 由于驾驶汽车难免会碰到紧急刹车、 坑洞等状况,此时由于人体受剧烈 摇晃,心电信号会严重失真至难以判读,本发明可利用加速规来排除这些异 常状况。 在经多次实际测试后,归纳得结论: 当瞬间加速度大于 9. 8米 /秒 2 (一个地球表面的重力加速度, g)时, 心电信号会严重失真至难以判读。 因 此本发明的方法, 会同时撷取加速规信号, 当加速度大于 9. 8 米 /秒 2时会 停止分析心电图以免误判。
第五较佳实施例
如图 14所示, 是本发明实施于一般座椅的架构示意图, 电极 17a连接 电极 17d, 电极 17b连接电极 17c,分别连接至信号处理器的正负输入端,获 得心电图如图 15a-图 15d所示。 各种坐姿所得的心电图为: 15a为正坐背 靠椅, 15b为正坐背不靠椅, 15c为左侧坐, 15d为右侧坐。 比较图 15 a 与图 15 b , 可知图 15 a的 R与 S振幅较图 15 b大。 而两侧坐姿所得的心 电信号(图 15 c, 图 15d)皆有明显的 T波, 而正坐几乎无 T波。 比较右侧 坐与左侧坐,可见两者 R峰方向相反 4艮容易分辨。判断姿势的准则列于表 6。
表 6
Figure imgf000014_0001
笫六较佳实施
当非姿势感测器为温度感测器 (例如:热敏电阻)时, 不仅可测得温度, 也可判断得姿势。 当触身物品压迫某处的温度感测器, 该温度感测器变成 直接与人体接触, 导致该处温度由直接上升至接近体温。 另外, 本发明可 在不同部位安装的电阻值显著差异的热敏电阻, 两者并联, 信号处理器仍 可以判读该处是否被压迫, 即可测得姿势。 架构示意图如图 16所示, 等效 电路如图 17所示, 例如取一 β约为 3500、 在体温下约为 6Κ Ohms , 在室温 约为 l OK Ohms的热敏电阻安装在背部, 另取一热敏电阻(在体温下约为 12K Ohms , 在室温约为 20KOhms)安装在胸部, 只要信号处理处理器的模数转换 解析度高(例如 12 b i t s) , 即可分辨两个热敏电阻受压与否的四种姿势。 将 感测器并联的好处, 是输入到处理器接点可减少, 让随身接触物品与处理 器间的接点减少, 让人感觉不到感测器的存在以增加舒适感与减少被侦测 的感觉。
此外, 我们利用温度感测器放置于不同厚度或不同导热系数的材料内, 则其热传导的速率即不相同, 亦可增加判读姿势的多样性及正确率。 第七较佳实施例
另一实施例为湿度感测器, 其工作原理是量测两个金属导线之间的直 流电阻, 因汗水会导电, 故电阻愈低则愈湿, 如图 18所示。 在外界物品与 人体接触之处, 其湿度会比没有接触的地方大, 我们利用湿度感测器放置 于不同厚度与吸湿材料, 即可在人体不同部位得到不同的电阻, 从而测得 姿势。 例如, 图 18中 d为两金属导线的距离, 在布料上分别缝上三组 d分 别为 1、 2、 及 3厘米的导线(合计六条导线), 当距离 1厘米的湿度感测器 已达全湿时而无法分辨时, 则读取 2厘米或 3厘米距离的湿度感测器, 另 外也可采用不同吸湿排汗的材料及材料厚度来当湿度感测器以增加其多变 性。 若将湿度感测器与心电图电极放置在相同部位, 则可在量测心电信号 同时得知汗湿程度, 已知汗湿程度过低, 及皮肤太干时, 则心电图噪声会 很大难以判读, 但当皮肤流汗时而湿度感测器测得很湿时, 心电图信号应 要很清晰。 如此安排将可排除信噪比(S/N rat io)太低的心电信号, 又能增 加判断姿势的准确度。 若再加上压力或拉力感测器则可降低噪声干扰, 同 时, 心电图在不同压力下信噪比(S/N rat io)不同, 即压力愈大心电图愈清 晰, 故同时有湿度、 压力或拉力感测器, 则不但姿势状态更能分析, 心电 图信号也更能被了解。
第八较佳实施例
另外也可用电极测肌电信号来侦测肌肉的收缩, 尤其是受压部位, 例 如人体成蹲姿时, 下肢及臀部受压处所得的肌电信号就非常明显。 同理可 用电阻式血管容积变化计(plethysmography)来测量脉搏, 或用电阻式体脂 计来测量皮下脂肪含量, 或用光感测器测量血氧浓度及脉搏。 在感测器与 人体间可用不同材质或厚度, 来产生不同信号特征。
第九较佳实施例
本发明可用两个不同的非姿势感测器来测人体的生理信号, 同时也可 测得姿势。 例如在睡眠时心电图电极放在前、 后胸的部位, 而左、 右腋下 则放温度感测器, 则当正躺或背躺时可得明显心电图; 而当左或右侧躺时, 无法测得心电信号, 除非使用者前胸双手有碰到衣物上的电极。 但可以量 到左或右腋下的温度会上升到接近体温, 左边或右边的温度感测器的衣物 上用不同特性的导热系数材料或厚度不同的材料隔离人与感测器, 如此不 仅可测得体温及心电信号, 也可测得姿势, 同时又不必做复杂的信号处理。
第十较佳实施例
本发明可藉由多种感应器同时工作, 或由信号本身的变化速率来提高 判断姿势的准确度。 举例来说, 在前述实施例中, 当加速规测得人体正承 受较大的加速度时, 代表心电或其他信号可能受到干扰而严重失真。 本发 明可针对各种不同的应用来设定加速规的临界值(例如在第四较佳实施例 中临界值为 9. 8 米 /秒 2) , 当超过此临界值即暂停分析以避免误判。 再者, 像体温或姿势是不可能在很短时间内急剧变化的, 若信号处理器取得超乎 常理的剧变信号, 即可推测是外界干扰或不正常操作。 同理, 本发明可针 对各种不同的应用来设定变化速率的临界值, 作为筛选不正常信号的准则, 若是经常收到不正常信号, 即可发出警讯给使用者。 最后, 我们可利用压 力或拉力感测器的数值, 或是不同的受压或受拉的值来加权 (weight)所连 接的生理感测器, 例如: ECG信号在不同压力或拉力感测器其波形被放大的 比例不同。
第十一较佳实施例
本发明可以在适当时机提出警讯, 以维护使用者的健康与安全。 例如 对于自行车骑士, 当长时间体温过高、 心率太快, 可能代表中署或体力负 荷过重。 使用者可以在信号处理器上无法信号分析、 信号储存、 数据库比 对, 显示、 警示或有线传输时, 可无线传输到个人数字助理或个人电脑 12 上做处理, 例如: 设定个人在该活动的正常生理范围, 一旦超过即可对使 用者发出警讯, 或藉由个人数字助理或个人电脑 12上的通讯装置, 对远端 的其他人或机构发出警讯。 或将生理信号发送至远端, 由利用远端建立该 使用者个人的生理信号数据库, 判断其生理状况是否已超出正常范围需发 出警讯, 并且可由个人数字助理或个人电脑 12上即时给使用者最适当的指 导。
第十二较佳实施例
要开启、 关闭或改变本发明的工作模式, 除了由使用者本身以外, 亦 可经由其他自动方法来进行, 例如在衣物、 椅子或床上的压力或拉力感测 器两端连接导电线到信号处理器上, 当使用者穿上衣物、 坐在椅子或床上 即可启动或关闭另一接触的物品; 或是经由信号处理器上的无线装置, 当 收到某个信号时如经 RFID, 标签(Tag)即启动。 如此自动运作有下列好处: 不妨碍使用者正常作息、 可确保本发明在正确的工作模式下运作、 节省电 力以延长工作时间。

Claims

权 利 要 求
1.一种侦测生理机能及姿势状态的物品, 上述物品与身体接触, 其特 征在于其中: 至少有两组非姿势的生理感测器设置在上述物品中, 该非姿 势的生理感测器同时或交替感测使用者的生理机能及姿势状态。
2.根据权利要求 1 所述的侦测生理机能及姿势状态的物品, 其特征在 于所述与身体接触的物品为: 衣物、 内衣裤、 外套、 床单、 枕头、 袜子、 鞋子、 围巾、 头巾、 手套、 围裙、 皮带、 厕所马桶、 地毯、 地板、 帽子和 座椅中的至少一个。
3.根据权利要求 1 所述的侦测生理机能及姿势状态的物品, 其特征在 于所述的感测器为: 心电图、 温度、 湿度、 心跳、 血管容积计、 体脂计、 血氧饱和度、 呼吸、 脑波、 肌电图、 脉博。
4.根据权利要求 3所述的侦测生理机能及姿势状态的物品, 其特征在 于其中所述的感测器之间为并联。
5. 根据权利要求 3所述的侦测生理机能及姿势状态的物品, 其特征在 于其中温度感测器放置于不同厚度或不同导热系数的材料内, 藉由热传导 的速率的差别来增加判读姿势的正确率。 '
6. 根据权利要求 3所述的侦测生理机能及姿势状态的物品, 其特征在 于其中湿度感测器采用不同吸湿排汗的材料或材料厚度。
7.根据权利要求 1 所述的侦测生理机能及姿势状态的物品, 其特征在 于所述的生理感测器, 选择性地串联或并联一电阻或电容。
8. 根据权利要求 1所述的侦测生理机能及姿势状态的物品, 其特征在 于所述两组非姿势的生理感测器为相同类型或不同类型的感测器。
9. 才 I"权利要求 1所述的侦测生理机能及姿势状态的物品, 其特征在 于其中生理感测器与压力或拉力感测器连接。
10. 根据权利要求 9 所述的侦测生理机能及姿势状态的物品, 其特征 在于其中压力感测器为按键开关, 拉力感测器为裂缝开关。
11. 根据权利要求 9 所述的侦测生理机能及姿势状态的物品, 其特征 在于其中每一个压力或拉力感测器都设定一个外力的临界值。
12.一种侦测生理机能及姿势状态的方法, 其特征在于其包括: 在与身体接触的物品中设置至少两组非姿势的生理感测器,
利用所述生理感测器感测非姿势的生理信号,
分析上述非姿势的生理信号以判断使用者姿势。
13. 根据权利要求 12所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的非姿势的生理感测器连接一拉力或压力感测器。
14. 4艮据权利要求 12 所述的侦测生理机能及姿势状态的方法, 其特征 在于所述生理感测器用来感测人体的生理机能, 所述的生理感测器包含: 心电图、 温度、 湿度、 '心跳、 血管容积计、 体脂计、 血氧饱和度、 脑波、 呼吸、 肌电图、 脉博。
15.根据权利要求 12 所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的分析上述非姿势的生理信号进一步包含: 根据非姿势的生理感 测器所获取的生理信号, 来产生该生理信号的特征, 与姿势数据库进行比 对, 以判断使用者的姿势。
16 . 居权利要求 15 所述的侦测生理机能及姿势状态的方法, 其特 征在于其中所述的数据库预存姿势的特征以及判断准则的参数。
17.根据权利要求 16 所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的姿势的特征以及判断准则的参数, 是依据每个使用者的生理信 号进行学习, 而调整为一优化值。
18.才 据权利要求 16 所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的生理信号的特征的产生方法, 包含找到心电图上的 P, R, S, T 各点位置及方向, 以及 R, S, T各点的振幅。
19. 根据权利要求 16所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的生理信号的特征的产生方法, 在判断睡姿时, 会依下列判断准 则将特征编码: T点振幅大于 R点振幅的 kl倍、 是否有 P波、 R波是否为 正向、 R点振幅是否大于 S点振幅的 k2倍、 是否有正向 S波、 是否有负向 S波、 是否有正向 T波、 T点振幅是否大于 R点振幅的 k3倍, 具体如下:
Figure imgf000018_0001
20. 根据权利要求 19所述的侦测生理机能及姿势状态的方法, 其特征 在于其中所述的 kl介于 0. 6至 1. 0之间, k2介于 1. 8至 2. 2之间, k3介 于 0. 35至 0. 65之间。
21. 根据权利要求 16所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的生理信号的特征产生方法, 在判断自行车骑士的姿势时, 会依 下列判断准则将特征编码: 是否有 P波, R波方向为正, 是否有 T波, 具体 如下:
Figure imgf000019_0001
22. 根据权利要求 16所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的生理信号的特征产生方法, 在电极安放于寝具以判断睡姿势时, 会依下列判断准则将特征编码: S点振幅大于 R点振幅的 k4倍、 T点振幅 是否大于 R点振幅的 k5倍, 具体如下:
Figure imgf000019_0002
23. 根据权利要求 22所述的侦测生理机能及姿势状态的方法, 其特征 在于其中所述的 k4介于 0., 5至 0. 7之间, k5介于 0. 2至 0. 4之间。
24. 根据权利要求 16所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的生理信号特征演算法, 在判断汽车驾驶姿势时, 会依下列判断 准则将特征编码: T点振幅是否大于 R点振幅的 k6倍。
25. 才良据权利要求 24所述的侦测生理机能及姿势状态的方法, 其特征 在于其中 k6介于 0. 7至 0. 9之间。
26.根据权利要求 16 所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的预存了姿势的特征与判断准则的参数的数据库, 还利用姿势感 测器, 以确认使用者有是否依照互动的指引形成特定姿势, 作为判断准则 的参数, 其中, 所述的姿势感测器为加速规、 陀螺仪或视讯仪。
27.根据权利要求 16所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的生理信号的特征产生方法, 会同时撷取姿势感测器的信号, 当 所述姿势感测器的信号大于特定的临界值的时候, 会停止分析生理信号以 免误判, 其中所述的姿势感测器为加速规、 陀螺仪或视讯仪。
28. 根据权利要求 12所述的侦测生理机能及姿势状态的方法, 其特征 在于所述的两组非姿势生理感应器为相同类型或不同类型的感测器。
29. 根据权利要求 12所述的侦测生理机能及姿势状态的方法, 其特征 在于所得的姿势资讯构成一活动图。
30.—种侦测生理机能及姿势状态的系统, 其特征在于其包括: 多个非姿势的生理感测器, 设置在与身体接触的物品中, 所述非姿势 的生理感测器交替或同时感测非姿势的生理信号;
信号处理器, 其包含:
滤波电路, 去除所述非姿势的生理信号的高频或低频噪声; 模数转换器, 连接于该滤波电路; 及
微控制器, 连接于该模数转换器, 用以对由多个非姿势的生理感 测器所得的信号进行数字信号处理, 以判断使用者的姿势。
31. 根据权利要求 30所述的侦测生理机能及姿势状态的系统, 其特征 在于其还包含一无线通讯装置, 将姿势资讯或未经微控制器处理的数字生 理信号资讯传送至个人资讯装置, 或再由该个人资讯装置处理传送至远端 的个人或机构。
32.根据权利要求 30 所述的侦测生理机能及姿势状态的系统, 其特征 在于所述的非姿势的生理感应器还连接一拉力或压力感测器, 藉以降低干 扰信号进入所述系统。
33.根据权利要求 30所述的侦测生理机能及姿势状态的系统, 其特征 在于其还包含一报警装置, 当任一生理信号的特征超过使用者在所述个人 资讯装置上设定各生理信号特征的范围时, 发出警讯。
34.根据权利要求 30 所述的侦测生理机能及姿势状态的系统, 其特征 在于所述的系统接收、 记录及显示一个或多个信号处理器传送出的生理信 号, 以整合成长时间且连续的个人生理及姿势资讯。
35. 根据权利要求 30所述的侦测生理机能及姿势状态的系统, 其特征 在于所得的姿势資讯构成一活动图。
PCT/CN2009/000947 2009-08-18 2009-08-18 侦测生理机能及姿势状态的物品、方法和系统 WO2011020216A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2009/000947 WO2011020216A1 (zh) 2009-08-18 2009-08-18 侦测生理机能及姿势状态的物品、方法和系统
PCT/CN2010/001252 WO2011020299A1 (zh) 2009-08-18 2010-08-18 侦测生理机能及姿势状态的物品、方法及系统
CN2010800025117A CN102143709A (zh) 2009-08-18 2010-08-18 侦测生理机能及姿势状态的物品、方法及系统
US13/401,711 US11311197B2 (en) 2009-08-18 2012-02-21 Product, method and system for monitoring physiological function and posture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/000947 WO2011020216A1 (zh) 2009-08-18 2009-08-18 侦测生理机能及姿势状态的物品、方法和系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001252 Continuation-In-Part WO2011020299A1 (zh) 2009-08-18 2010-08-18 侦测生理机能及姿势状态的物品、方法及系统

Publications (1)

Publication Number Publication Date
WO2011020216A1 true WO2011020216A1 (zh) 2011-02-24

Family

ID=43606521

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2009/000947 WO2011020216A1 (zh) 2009-08-18 2009-08-18 侦测生理机能及姿势状态的物品、方法和系统
PCT/CN2010/001252 WO2011020299A1 (zh) 2009-08-18 2010-08-18 侦测生理机能及姿势状态的物品、方法及系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/001252 WO2011020299A1 (zh) 2009-08-18 2010-08-18 侦测生理机能及姿势状态的物品、方法及系统

Country Status (2)

Country Link
US (1) US11311197B2 (zh)
WO (2) WO2011020216A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130131483A1 (en) * 2011-11-21 2013-05-23 Jen-Ran Chen Heart rate alarm system
JP2014524799A (ja) * 2011-07-05 2014-09-25 サウジ アラビアン オイル カンパニー 従業員の健康および生産性の監視および改善のための椅子パッドシステムおよび関連するコンピュータ媒体、ならびにコンピュータにより実行される方法

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011137566A1 (zh) * 2010-05-07 2011-11-10 Yang Changming 利用布料电容传感器来产生生理信号的方法及系统
US8672842B2 (en) * 2010-08-24 2014-03-18 Evacusled Inc. Smart mattress
WO2012145865A1 (zh) * 2011-04-29 2012-11-01 Yang Chang-Ming 布料电子化的产品及方法
CN103717123B (zh) * 2011-04-29 2017-11-07 杨章民 布料电子化的产品及方法
JP2014525086A (ja) * 2011-07-05 2014-09-25 サウジ アラビアン オイル カンパニー 従業員の健康および生産性の監視および改善のためのフロアマットシステムおよび関連するコンピュータ媒体、ならびにコンピュータにより実行される方法
US9256711B2 (en) 2011-07-05 2016-02-09 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for providing health information to employees via augmented reality display
US10307104B2 (en) 2011-07-05 2019-06-04 Saudi Arabian Oil Company Chair pad system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9844344B2 (en) 2011-07-05 2017-12-19 Saudi Arabian Oil Company Systems and method to monitor health of employee when positioned in association with a workstation
US9526455B2 (en) 2011-07-05 2016-12-27 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
US9962083B2 (en) * 2011-07-05 2018-05-08 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving biomechanical health of employees
US8872640B2 (en) 2011-07-05 2014-10-28 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring health and ergonomic status of drivers of vehicles
US10108783B2 (en) 2011-07-05 2018-10-23 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring health of employees using mobile devices
US20130012802A1 (en) * 2011-07-05 2013-01-10 Saudi Arabian Oil Company Systems, Computer Medium and Computer-Implemented Methods For Monitoring and Improving Cognitive and Emotive Health of Employees
US9710788B2 (en) 2011-07-05 2017-07-18 Saudi Arabian Oil Company Computer mouse system and associated, computer medium and computer-implemented methods for monitoring and improving health and productivity of employees
CA2840975C (en) * 2011-07-05 2019-02-19 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for monitoring and improving biomechanical health of employees
US9817440B2 (en) 2012-09-11 2017-11-14 L.I.F.E. Corporation S.A. Garments having stretchable and conductive ink
US11246213B2 (en) 2012-09-11 2022-02-08 L.I.F.E. Corporation S.A. Physiological monitoring garments
US10159440B2 (en) 2014-03-10 2018-12-25 L.I.F.E. Corporation S.A. Physiological monitoring garments
US10201310B2 (en) 2012-09-11 2019-02-12 L.I.F.E. Corporation S.A. Calibration packaging apparatuses for physiological monitoring garments
US8945328B2 (en) 2012-09-11 2015-02-03 L.I.F.E. Corporation S.A. Methods of making garments having stretchable and conductive ink
US8948839B1 (en) 2013-08-06 2015-02-03 L.I.F.E. Corporation S.A. Compression garments having stretchable and conductive ink
EP2895050B8 (en) 2012-09-11 2018-12-19 L.I.F.E. Corporation S.A. Wearable communication platform
US10462898B2 (en) 2012-09-11 2019-10-29 L.I.F.E. Corporation S.A. Physiological monitoring garments
US10292647B1 (en) * 2012-12-19 2019-05-21 Alert Core, Inc. System and method for developing core muscle usage in athletics and therapy
US10765908B1 (en) * 2012-12-19 2020-09-08 Alert Core, Inc. System and method for muscle engagement identification
JP5811360B2 (ja) * 2012-12-27 2015-11-11 カシオ計算機株式会社 運動情報表示システムおよび運動情報表示方法、運動情報表示プログラム
WO2014186619A1 (en) * 2013-05-15 2014-11-20 Amiigo, Inc. Correlating sensor data obtained from a wearable sensor device with sensor data obtained from a smart phone
DE102013219513A1 (de) * 2013-09-27 2015-04-02 Ford Global Technologies, Llc Sensor zur berührungslosen elektrokardiographischen Messung, Sensorarray und Sitz oder Liege
DE102013219514A1 (de) * 2013-09-27 2015-04-02 Ford Global Technologies, Llc Sensor zur berührungslosen elektrokardiographischen Messung, Sensorarray und Sitz oder Liege
US9722472B2 (en) 2013-12-11 2017-08-01 Saudi Arabian Oil Company Systems, computer medium and computer-implemented methods for harvesting human energy in the workplace
EP2886049B1 (en) * 2013-12-20 2018-08-22 CSEM Centre Suisse d'Electronique et de Microtechnique SA - Recherche et Développement Measurement device for measuring bio-impedance and/or a bio-potential of a human or animal body
WO2015103620A1 (en) 2014-01-06 2015-07-09 Andrea Aliverti Systems and methods to automatically determine garment fit
JP6215721B2 (ja) * 2014-01-28 2017-10-18 日本電信電話株式会社 ウェアラブル電極および生体電気信号測定システム
EP3711665B1 (en) * 2014-02-28 2023-09-27 School Juridical Person The Kitasato Institute Input device, fiber sheet, clothing, biometric information detection device
US9799177B2 (en) * 2014-09-23 2017-10-24 Intel Corporation Apparatus and methods for haptic covert communication
US10542934B2 (en) * 2014-11-03 2020-01-28 Cipher Skin Garment system providing biometric monitoring
US9627804B2 (en) 2014-12-19 2017-04-18 Intel Corporation Snap button fastener providing electrical connection
CN107205650A (zh) 2015-01-27 2017-09-26 苹果公司 用于确定睡眠质量的系统
US10098544B2 (en) * 2015-03-11 2018-10-16 Medicomp, Inc. Wireless ECG sensor system and method
JP6937299B2 (ja) 2015-07-20 2021-09-22 エル.アイ.エフ.イー. コーポレーション エス.エー.L.I.F.E. Corporation S.A. センサ及び電子機器を有する衣類用の可撓性織物リボンコネクタ
US9889311B2 (en) 2015-12-04 2018-02-13 Saudi Arabian Oil Company Systems, protective casings for smartphones, and associated methods to enhance use of an automated external defibrillator (AED) device
US10642955B2 (en) 2015-12-04 2020-05-05 Saudi Arabian Oil Company Devices, methods, and computer medium to provide real time 3D visualization bio-feedback
US10475351B2 (en) 2015-12-04 2019-11-12 Saudi Arabian Oil Company Systems, computer medium and methods for management training systems
US10628770B2 (en) 2015-12-14 2020-04-21 Saudi Arabian Oil Company Systems and methods for acquiring and employing resiliency data for leadership development
ES1149359Y (es) * 2015-12-31 2016-04-13 Trueba Enrique Garcia Dispositivo para el control, supervision y buena praxis de la actividad fisica del ser humano
JP6771154B2 (ja) * 2016-01-07 2020-10-21 パナソニックIpマネジメント株式会社 転倒リスク判定装置、転倒リスク判定装置の作動方法、およびコンピュータプログラム
CN105726011B (zh) * 2016-01-26 2018-10-30 天津工业大学 一种健康监控服装
US10154791B2 (en) 2016-07-01 2018-12-18 L.I.F.E. Corporation S.A. Biometric identification by garments having a plurality of sensors
CN109561840B (zh) * 2016-08-12 2021-11-19 苹果公司 生命体征监测系统
WO2018053604A1 (en) * 2016-09-26 2018-03-29 The University Of Queensland A method and apparatus for automatic disease state diagnosis
US20190021667A1 (en) * 2016-10-19 2019-01-24 Tai Hing Plastic Metal Ltd. Method and device for monitoring body data based on underwear
DE102016220660B4 (de) * 2016-10-21 2019-03-07 Robert Bosch Gmbh Vorrichtung, Steuereinheit, elektrisches Zweirad und Verfahren zur Erfassung eines Bewegungsablaufs eines Zweiradfahrers, sowie zur Steuerung eines Motors
FR3061853A1 (fr) * 2017-01-19 2018-07-20 Patrick Mamou Systeme amovible ou a installer sur un vetement ou analogue specialement concu pour stimuler le dos a se redresser
CN110612060B (zh) 2017-05-22 2022-09-02 苹果公司 用于生理测量的多元件压电传感器
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
JP6996214B2 (ja) * 2017-10-13 2022-01-17 東洋紡株式会社 着用型生体情報計測装置および生体情報計測方法
TWI669681B (zh) 2017-11-30 2019-08-21 財團法人資訊工業策進會 提供人體姿勢保健資訊的電子計算裝置、系統與方法
US10824132B2 (en) 2017-12-07 2020-11-03 Saudi Arabian Oil Company Intelligent personal protective equipment
US11534615B2 (en) * 2018-04-26 2022-12-27 West Affum Holdings Dac Wearable Cardioverter Defibrillator (WCD) system logging events and broadcasting state changes and system status information to external clients
US20200107779A1 (en) * 2018-10-05 2020-04-09 Chang Ming Yang Sensing system utilizing multifunctional fabric, method, and object
US10909820B2 (en) 2018-10-30 2021-02-02 Baskaran Pillai Haptic and biosensing hand mat
CN109770878B (zh) * 2019-01-31 2024-04-02 浙江圣奥家具制造有限公司 一种智能座椅、智能座椅交互系统及方法
US10568570B1 (en) 2019-02-14 2020-02-25 Trungram Gyaltrul Sherpa Methods and systems for providing a preferred fitness state of a user
CN109984749A (zh) * 2019-03-22 2019-07-09 杨松 姿态识别床品及姿态识别方法
CN113229821A (zh) * 2020-01-22 2021-08-10 民扬生医科技股份有限公司 检测心电图信号及姿势变化的衣服、方法及系统
US11806115B2 (en) * 2020-05-21 2023-11-07 GE Precision Healthcare LLC Systems and methods for dynamic selection of sensors for obtaining physiological data from a patient
CN114595435A (zh) * 2020-12-07 2022-06-07 开利公司 基于健康的访问控制
TWI830992B (zh) * 2021-03-18 2024-02-01 洪順天 受力分析系統
WO2022236169A1 (en) * 2021-05-07 2022-11-10 Cornell University Wearable interface devices with tactile functionality
JP7127905B1 (ja) 2021-07-14 2022-08-30 株式会社フューチャーインク 機械学習を用いて対象者の体位を判定する装置、方法及びプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469861A (en) * 1992-04-17 1995-11-28 Mark F. Piscopo Posture monitor
WO2001001855A1 (en) * 1999-07-06 2001-01-11 Georgia Tech Research Corporation Fabric or garment for monitoring vital signs of infants
WO2003105682A1 (fr) * 2002-05-17 2003-12-24 Chang-Ming Yang Procede et dispositif de surveillance de signes physiologiques et de mise en place en cas d'urgence
CN1618395A (zh) * 2003-11-17 2005-05-25 杨章民 一种用于生理机能监测与信息处理的方法及其装置
CN1985762A (zh) * 2005-12-22 2007-06-27 国际商业机器公司 用于监控用户姿势的设备
CN101053518A (zh) * 2006-04-12 2007-10-17 杨章民 姿态监控系统
JP2009018158A (ja) * 2007-06-14 2009-01-29 Hideo Hirose 姿勢モニタシステムおよび身体モニタシステム

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4988981B1 (en) 1987-03-17 1999-05-18 Vpl Newco Inc Computer data entry and manipulation apparatus and method
US5354317A (en) 1992-04-03 1994-10-11 Intermedics, Inc. Apparatus and method for cardiac pacing responsive to patient position
US5508540A (en) 1993-02-19 1996-04-16 Hitachi, Ltd. Semiconductor integrated circuit device and process of manufacturing the same
BR9608465A (pt) 1995-05-08 1998-12-29 Massachusetts Inst Technology Sistema de comunicação sem fio e sistema de computador
US5873137A (en) * 1996-06-17 1999-02-23 Medogar Technologies Pnuematic mattress systems
SE9604319D0 (sv) * 1996-11-25 1996-11-25 Pacesetter Ab Medical detecting system
US6210771B1 (en) * 1997-09-24 2001-04-03 Massachusetts Institute Of Technology Electrically active textiles and articles made therefrom
DE19927686A1 (de) * 1999-06-17 2001-03-22 Deotexis Inc Vorrichtung zur Messung mindestens eines physikalischen und/oder chemischen und/oder biologischen und/oder medizinischen Parameters
US6384729B1 (en) 1999-11-01 2002-05-07 Irwin Plotkin Biofeedback exercise stimulation apparatus
US8388530B2 (en) * 2000-05-30 2013-03-05 Vladimir Shusterman Personalized monitoring and healthcare information management using physiological basis functions
US7485095B2 (en) * 2000-05-30 2009-02-03 Vladimir Shusterman Measurement and analysis of trends in physiological and/or health data
US6930608B2 (en) 2002-05-14 2005-08-16 Motorola, Inc Apparel having multiple alternative sensors and corresponding method
EP2286723A1 (en) * 2002-09-19 2011-02-23 Ramot at Tel Aviv University Ltd. Method and apparatus for determining sleep apnea
GB2394294A (en) * 2002-10-18 2004-04-21 Cambridge Neurotechnology Ltd Cardiac sensor with accelerometer
CN1507833A (zh) * 2002-12-16 2004-06-30 中国人民解放军空军航空医学研究所 一体化动态生理参数检测记录方法及装置
CN1250159C (zh) * 2003-08-15 2006-04-12 北京泰达新兴医学工程技术有限公司 人体自然状态下睡姿的动态检测传感装置
JP5174348B2 (ja) 2003-09-12 2013-04-03 ボディーメディア インコーポレイテッド 心臓関連状態パラメータのモニター方法及び装置
EP1731094B1 (en) * 2004-03-24 2014-02-26 Nihon Kohden Corporation Garment with a respiratory information analysis device
EP3539463A1 (en) * 2005-04-14 2019-09-18 Hidalgo Limited Apparatus and system for monitoring
US9629572B2 (en) * 2005-08-26 2017-04-25 Resmed Limited Sleep disorder diagnostic system and method
EP1946696B1 (en) * 2005-09-21 2012-08-15 Chang-Ming Yang An electronic device
US9591995B2 (en) * 2006-09-06 2017-03-14 J. Seth Blumberg Digital bed system
US20090281394A1 (en) * 2006-09-25 2009-11-12 Brian Keith Russell Bio-mechanical sensor system
CN1961829A (zh) * 2006-11-17 2007-05-16 东华大学 一种婴儿睡眠姿势监测绑带
US7846104B2 (en) * 2007-02-08 2010-12-07 Heart Force Medical Inc. Monitoring physiological condition and detecting abnormalities
US8840573B2 (en) * 2007-08-28 2014-09-23 Stryker Corporation Apparatuses for and method of preventing decubitus ulcers
WO2009030068A1 (en) 2007-09-04 2009-03-12 Yang, Tzu-Lin Fabric with separate inductive area
WO2009030067A1 (fr) 2007-09-04 2009-03-12 Chang-Ming Yang Toile pouvant former des composants électroniques
WO2009036329A1 (en) * 2007-09-14 2009-03-19 Corventis, Inc. Multi-sensor patient monitor to detect impending cardiac decompensation
US8116841B2 (en) * 2007-09-14 2012-02-14 Corventis, Inc. Adherent device with multiple physiological sensors
US8897868B2 (en) * 2007-09-14 2014-11-25 Medtronic, Inc. Medical device automatic start-up upon contact to patient tissue
US8694084B2 (en) * 2007-11-28 2014-04-08 The Regents Of The University Of California Non-contact biopotential sensor
WO2009074955A1 (en) * 2007-12-12 2009-06-18 Koninklijke Philips Electronics N.V. Sleep position detection
US20090156904A1 (en) * 2007-12-12 2009-06-18 Ein-Yiao Shen Human Physiological Symptom Detecting and Processing Device Incorporated Into Transportation or Moving Facility
WO2009108228A1 (en) * 2008-02-25 2009-09-03 Kingsdown, Inc. Systems and methods for controlling a bedroom environment and for providing sleep data
US8412317B2 (en) * 2008-04-18 2013-04-02 Corventis, Inc. Method and apparatus to measure bioelectric impedance of patient tissue
US8262582B2 (en) * 2008-08-22 2012-09-11 Valtion Teknillinen Tutkimuskeskus Extraction of heart inter beat interval from multichannel measurements
EP2441385B1 (en) 2009-01-24 2018-05-30 Changming Yang Sensing device
WO2011137566A1 (zh) * 2010-05-07 2011-11-10 Yang Changming 利用布料电容传感器来产生生理信号的方法及系统
BR112016030185A2 (pt) * 2014-09-23 2021-09-08 Rr Sequences Inc Módulo de processamento digital (dpm), sistema e método para prover sinais de eletrocardiograma (ecg) para um corpo humano

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469861A (en) * 1992-04-17 1995-11-28 Mark F. Piscopo Posture monitor
WO2001001855A1 (en) * 1999-07-06 2001-01-11 Georgia Tech Research Corporation Fabric or garment for monitoring vital signs of infants
WO2003105682A1 (fr) * 2002-05-17 2003-12-24 Chang-Ming Yang Procede et dispositif de surveillance de signes physiologiques et de mise en place en cas d'urgence
CN1618395A (zh) * 2003-11-17 2005-05-25 杨章民 一种用于生理机能监测与信息处理的方法及其装置
CN1985762A (zh) * 2005-12-22 2007-06-27 国际商业机器公司 用于监控用户姿势的设备
CN101053518A (zh) * 2006-04-12 2007-10-17 杨章民 姿态监控系统
JP2009018158A (ja) * 2007-06-14 2009-01-29 Hideo Hirose 姿勢モニタシステムおよび身体モニタシステム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014524799A (ja) * 2011-07-05 2014-09-25 サウジ アラビアン オイル カンパニー 従業員の健康および生産性の監視および改善のための椅子パッドシステムおよび関連するコンピュータ媒体、ならびにコンピュータにより実行される方法
US20130131483A1 (en) * 2011-11-21 2013-05-23 Jen-Ran Chen Heart rate alarm system

Also Published As

Publication number Publication date
US11311197B2 (en) 2022-04-26
WO2011020299A1 (zh) 2011-02-24
US20120215076A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
WO2011020216A1 (zh) 侦测生理机能及姿势状态的物品、方法和系统
JP6358768B2 (ja) 睡眠状態測定装置、δ波推定方法、位相コヒーレンス算出装置及びストレス状態測定装置
JP6767059B2 (ja) 生体情報取得装置及び信号処理方法
KR100734986B1 (ko) 생체신호 측정의복
JP3661686B2 (ja) 監視装置
US9295412B2 (en) Wearable health monitoring device and methods for step detection
US20190069840A1 (en) Method and apparatus for monitoring vital signs remotely
US5964720A (en) Method and system for monitoring the physiological condition of a patient
JP3543392B2 (ja) 睡眠時呼吸情報測定装置
WO2013075270A1 (zh) 一种侦测心跳或电极接触良好与否的物品、方法及系统
KR101410989B1 (ko) 장시간 심전도획득 및 스트레스 분석방법
JPH0880285A (ja) 監視装置
WO2008039082A2 (en) Bio-mechanical sensor system
WO2009072034A1 (en) Apparatus and method for detection of syncopes
KR20140082308A (ko) 침대에서의 수면상태에 따른 무구속 심박변이도 획득 및 숙면판단 장치 및 방법
TW201112179A (en) Object for detecting physiology and posture status
JP3231429U (ja) ルームウェア型ウェアラブル装置
KR102319476B1 (ko) 와상환자 돌봄을 위한 bcg 기반 스마트 매트 시스템
TW201110932A (en) Belt type bio-signal detecting device
JP2004130012A (ja) 生体信号強度測定方法、並びに就寝状態判定方法及び就寝状態監視装置
TW201316950A (zh) 一種偵測心跳或電極接觸良好與否的物品、方法及系統
CN109758281B (zh) 一种基于身体位置调节的安全系统
WO2011072416A1 (zh) 利用织品感测器的人体监控系统及监控方法
JPH07327939A (ja) 監視装置
CN102143709A (zh) 侦测生理机能及姿势状态的物品、方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09848357

Country of ref document: EP

Kind code of ref document: A1