TW201316950A - 一種偵測心跳或電極接觸良好與否的物品、方法及系統 - Google Patents

一種偵測心跳或電極接觸良好與否的物品、方法及系統 Download PDF

Info

Publication number
TW201316950A
TW201316950A TW100138250A TW100138250A TW201316950A TW 201316950 A TW201316950 A TW 201316950A TW 100138250 A TW100138250 A TW 100138250A TW 100138250 A TW100138250 A TW 100138250A TW 201316950 A TW201316950 A TW 201316950A
Authority
TW
Taiwan
Prior art keywords
electrode
electrodes
processor
impedance
wave
Prior art date
Application number
TW100138250A
Other languages
English (en)
Inventor
Chang-Ming Yang
Tzu-Lin Yang
Ho Yang
Ching-Wen Yang
Original Assignee
Chang-Ming Yang
Tzu-Lin Yang
Ho Yang
Ching-Wen Yang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chang-Ming Yang, Tzu-Lin Yang, Ho Yang, Ching-Wen Yang filed Critical Chang-Ming Yang
Priority to TW100138250A priority Critical patent/TW201316950A/zh
Publication of TW201316950A publication Critical patent/TW201316950A/zh

Links

Abstract

本發明是在衣物上安置多個織品電極,以偵測心跳,並且可以由量測雜訊、體表阻抗、肌肉阻抗等方式,偵測電極與人體之接觸是否良好;此外,可由心電訊號波型及雜訊,推測人體姿勢與動作、監測睡眠品質。在衣物上一併安置電容耦合式電極,以便在乾冷時仍能取得心跳,在電路中設有切換開關,以取得最佳訊號,同時感測汗溼程度。由R波或Q波之振幅,可導出呼吸曲線並推測電極與人體之接觸是否良好。利用寬鬆衣物之延展性,本發明可以一雙電極取得多導程心電圖。本發明可讓穿戴者連續且長時間取得心電訊號,同時提供足夠的舒適性。

Description

一種偵測心跳或電極接觸良好與否的物品、方法及系統
本發明涉及一種偵測心跳或電極接觸良好與否的物品、方法及系統,特別是涉及一種穿著於身體上的衣物,能擷取心電訊號,同時偵測姿勢、行為模式、或精神狀態的物品、方法及系統。
不僅是躺在病床上的病患,還有日常活動中的健康人、職業或業餘的運動員、以及消防隊員這樣的高風險工作人員,都需要連續不間斷、不受電線束縛、且不妨礙正常活動的生理監視,以得知其生理狀況,以便在必要時採取適當措施,例如對於心肌梗塞患者施予急救。將生理監視功能實現在日常穿著的衣物上,是目前常見的解決方案之一,例如美國專利6,198,394,在衣物上設有感測器,透過導電線連接到電路。其缺點是有些導線是懸吊在衣物之外,既會妨礙穿戴者行動也不舒適。美國專利6080690修正的上述缺點,它是方式把外有絕緣層的導電線和一般布料的纖維編織(woven)在一起,來連接感測器和電路。美國專利6080690仍然有缺點,即是在布料上要佈局走線(routing)多條導線就會十分困難,因為要在織入布料的導線上設立連接點(junction),以連接感測器或其他電子零件,需要複雜的加工流程。美國專利6727197則是引用了電路上的匯流排(Bus)的觀念,把導電線像匯流排一樣排列整齊,若有需要就在兩端加上連接器或其他零件,然後和一般有彈性的布料纖維以編織(woven)、針織(knitted)或繡(braided)在一起,成為一整合性匯流排(integrated bus),類似連接兩個電路板之間的匯流排,視應用而縫在衣服上,以連接感測器和電子零件。然而,此方法仍然相當繁複、費工,難以大量實施。美國專利申請案(12/872174),提出一簡化之連接方法,其感測器是以軟性電路板(Flexible Printed Circuit Board)製成,其接點的相對位置是固定的,以便於和整合性匯流排相連接。上述整合性匯流排,仍有其不完美之處。它是外加于原來衣物之上,對於穿載者而言,既不美觀又不舒適。
本發明包含:一件衣物,衣物上有至少兩個電極,電極外有導體,內含彈性體使能舒適地貼附於人體,電極以外覆絕緣體的導電線(例如不銹鋼、銀纖維)連接至連接器(connector),連接器另一端是處理器,處理器內有類比電路(也可做在布料上)對電極取得的生理訊號進行前處理,有微控制器把生理訊號轉換成數碼,再經由藍芽無線模組把生理訊號傳送至其他的資通訊設備。經由訊號處理的方法,此衣物能產出數種資訊,進行分析,形成一系統。還可選擇性地加一電極於腰後或小腹,與處理器相接,作為輸入負回授電流的驅動電極,以降低電磁干擾造成的雜訊。
導電線是用雙針四線繃縫機縫在衣物之底布上,以便有寬裕的松份,不致因外力拉扯而斷裂,也可耐洗滌。能夠被車縫的導電線,必須符合三條件:夠細(足夠穿過針眼)、夠軔(能承受彎折不致斷)、夠滑。符合的導線有:外覆絕緣體材質(例如含氟高分子或尼龍)的導線、紗線繞漆包線、及佈線撚銅鍍錫線。車縫完成後,面線為導線,底線為普通縫紉線。縫線佈局是沿布片接縫處走線以保持美觀,線路安裝在服裝上的夾層被保護內以維持耐洗滌性。
心電訊號由電極經處理器內的儀錶放大器及帶通濾波器處理,以抑制身體運動和電磁干擾造成的干擾,再送至微控制器數位化,再經無線模組(藍芽、ZigBee或其他方式)傳送至外界的資通訊設備。處理器內可選擇性地多一負回授電流,連接衣物上的驅動電極,可降低電磁干擾造成的雜訊。
帶通濾波器依不同的應用而有不同的通帶,當要擷取完整的心電圖(P,Q,R,S,T各波),其通帶為0.1~40 Hz;當只要擷取R波求心率,其通帶為10~30 Hz。當要排除體動干擾只要擷取R波以求心率,其通帶就必須縮小。帶通濾波器處理後,微控制器或外界的資通訊設備用差分定位法找出R波位置,即得R-R interval,換算為每分鐘心跳次數,即得心率,並可進行HRV分析。將每個R波的振幅連續記錄,描繪為曲線,即得呼吸描記圖。同理以差分定位法亦可找到Q-Q interval、或S-S interval,亦可用來計算心率及呼吸率。
在身體運動時,心電訊號會受干擾而有相當多的雜訊,因此,體動雜訊可視為身體活動的指標。本發明將被誤判為R波加以判斷,再累計次數,可產生睡眠活動圖與日間活動圖。
本發明實施於連身衣褲,可安置三個或四個電極,形成Einthoven三導程心電圖。當電極與身體接觸不良時,該電極相關之導程會出現較大量之雜訊,故而藉由觀察各導程的雜訊,可推估某電極接觸是否良好,即是否被身體壓迫到,或因肢體拉扯衣物而使電極貼緊皮膚。而電極接觸是由身體的姿勢和行動決定的,由此可推知穿戴者之行為舉止。
本發明之電極,具有良好之彈性與導電性,以便良好接觸皮膚又又美觀。電極置於腋下,有三項好處:不易受手臂運動干擾、有較低阻抗、較美觀。大面積電極可得低接觸阻抗,有益於取得較佳品質之心電圖,但面積太大時,心電訊號之振幅反而降低。本發明的實驗結果,最佳的腋下電極面積約為36平方公分。心電訊號之振幅,即表現了電極阻抗,與上例同理,電極阻抗是受由身體的姿勢和行動決定的,由此可推知穿戴者之行為舉止。
對於穿戴式電極而言,常遇到的困擾是電極與身體接觸不良,就無法正確求得心率了。本發明採取四種方法來偵測電極是否接觸不良:由一電極輸入脈波由另一電極拾取此脈波,測量其振幅或頻率;由量測其雜訊推估其接觸情形;由一電極輸入弦波由另一電極拾取此弦波,測量其振幅;由阻抗式呼吸描計圖得之呼吸率來推估其接觸情形。
仿上例,本發明由電極與身體之接觸情形可推知穿戴者之姿勢和行動,以適時提醒穿戴者,並可偵測其活動及精神狀態。上述方法亦可應用於腦電圖、肌電圖、經皮電刺激治療、電擊治療的電極,測試其電極是否有良好接觸。
考慮實際應用情況,在溫濕度很低或使用者本身皮膚很乾燥的情況下,電極與皮膚之間的電導會變得太低,不利於擷取心電訊號,只剩下電容性。然而就生理監視衣而言,必須承受洗滌之力,而電容耦合式電極上的絕緣層可能會因為洗滌而破損,就不再是完美的電容而兼有電導特性。本發明之衣物最好是能兼有這兩種電極,處理器內的電路也能相容此兩者,以因應環境變化。為達此一目的,處理器內的電路有四個切換開關,切換不同的電極與電路組合,再以前述雜訊量化方法,選取雜訊最低者。仿上例,由選擇的結果可推知穿戴者的姿勢與動作。對於安置有穿戴式電極之衣物,肢體動作會使衣物與身體相對位移,電極碰觸身體的位置就會改變,得到之心電圖波型也就隨之而異。因此,本發明即可由心電圖波型反推穿戴者的姿勢與動作。
穿戴式電極在衣物寬鬆時與皮膚之阻抗較高,而受輕微壓迫時阻抗較低。利用此一特性,本發明可以在衣物上安置一個或多個電極,隨著穿戴者的身體動作,會有不同電極受壓而擷取不同位置的心電圖,即可用一組電極分時擷取多個導程的心電圖,也可由波型推推估其動作。
穿戴式電極在衣物寬鬆時很可能與皮膚接觸不良,為解決此一困擾,本發明在電極上面加氣囊,必要時加壓以壓迫電極緊貼人體。
第1實施例. 無袖日衣
如圖1,電阻式織品電極置於左右腋下,用兩個電阻式纖品電極與身體接觸,由於導線是縫進去的,可留任意長度之導線,剝去絕緣層,與電極相連接,此方法易於實施。底布為略有彈性之混紡布(95%棉)。同理,由於導線是縫進去的,導線易於和連接器相連。此處之連接器並非電路用之連接器,而是服裝上常用之按扣或類似配件,用於連接處理器。連接器底部有一防水層,以防汗水影響訊號。無袖日衣還可選擇性地加一電極於腰後,與處理器相接,以降低電磁干擾造成的雜訊。如圖2,但按扣增加為含三端子。
處理器經由底布上之連接器與感測器電性連接。心電訊號經處理器內儀錶放大器、帶通濾波器,以抑制身體運動和電磁干擾造成的干擾,再送至微控制器數位化,再經無線模組(藍芽、ZigBee或其他方式)傳送至外界的資通訊設備,如手機、電腦、或手錶,如圖3。處理器內可選擇性地多一負回授電流,連接日衣上的回授電極,可降低電磁干擾造成的雜訊。
帶通濾波器依不同的應用而有不同的通帶,當要擷取完整的心電圖(P,Q,R,S,T、P-R間期、P-R間期、QRS波振幅、S-T間期等,正常Lead I心電圖各段之定義與心臟活動如圖4a),其通帶為0.1~40 Hz;當要排除體動干擾只要擷取R波以求心率,其通帶就必須縮小,不可避免地會使波型失真,例如造成過大的Q波,如圖4b,此種失真的心電圖不宜用於心臟疾病診斷,但可用於計算心率。
微控制器或外界的資通訊設備用差分定位法找出R波位置,其原理是:QRS波是心電信號波形變化最劇烈的地方(見圖4c.正常與異常的QRS波,其中正常為qRs,意為R波大於Q波與S波,qR意為S波消失,Rs意為Q波消失,rS意為R波過小S波過大,mR’意為多重R波),其波形的上升斜率和下降斜率與其他波形的斜率相比顯著不同,通過檢測心電訊號對時間的導數(即斜率的變化)來定位QRS波的位置。通常在R波的上升沿和下降沿是心電波形斜率變化最大的區域,中間出現的一階導數過零點為R點所在的位置。得R波位置後,即得R-R interval,換算為每分鐘心跳次數,即得心率。資通訊設備含程式,可設定心率之上下限,超過範圍即警報。另可由R-R interval進行HRV分析,如圖4d。處理器可自衣物上拆卸,以便洗滌衣物或為處理器充電。此外,由R波的振幅,可以導出呼吸曲線,如圖5a所示,將每個R波的振幅連續記錄(如圖5a有圈處之縱坐標),描繪為曲線,即得呼吸描記圖(pneumogram)。同理,采心電圖的baseline或Q波振幅,也可得類似的呼吸描記圖,如圖5b,是由Q波的振幅繪出的呼吸描記圖。
得R波位置後,即可由R往前約0.12秒至0.2秒之區段,以差分定位法找一階導數過零之點,即得P波;Q波則是由R往前約0.04秒至0.06秒之區段,找法與R波類似,只是Q波是先下降後上升,與R波相反;S波則是在由R往後約0.04秒至0.06秒之區段,找法與R波類似;T波則是在由R往後約0.32秒至0.40秒之區段。仿R-R interval,也可得Q-Q interval、或S-S interval,亦可用來計算心率及呼吸率。
第2實施例. 長袖日衣由雜訊得行動圖
仿實施例1,但改為長袖,處理器固定於手腕,處理器內毋須安裝無線通訊模組,而是經由縫在衣物上的導電線直接與電極連接,如圖6。其中,40為電極,50為處理器,處理器上有LCD以顯示心率。電極可置於腋下,何以多個並聯,亦可置於上臂內側,以便取得標準Lead I的心電訊號。同理,短袖上衣之電極亦可置於上臂內側。
在身體運動時,電極與皮膚難免會產生相對位移。此時心電訊號會受干擾而有相當多的雜訊。比較靜止與受到身體運動干擾的心電圖,如圖7穿戴者靜止不動時心電圖,與圖8穿戴者運動干擾下之心電圖。
依習知技術,受體動干擾而產生的雜訊,是要以高階的帶通濾波軔體抑制R波以外的雜訊,然後辦認R波,再計算每個R波之間隔時間,取一段時間內(例如一分鐘)的R波之間隔時間,作統計圖,可求得心率。本發明也可由Q波求得心率,如圖9,結果相同,可知其一分鐘內次數最多的Q波間隔是0.833秒,心率即每鐘72次。
在本發明中,當要分析雜訊時,則是刻意不以濾波軔體抑制雜訊,就會有很多雜訊被誤判成R波(或Q波),作統計圖,如圖10。
由於雜訊之間隔時間遠小於正常心跳的間隔,而且一般人在正常情況下,不可能在一分鐘之內,心跳由一般活動下的72次(R波間隔0.833秒)跳到極端激烈運動下的200次(R波間隔0.3秒),故而微控制器可以輕易辨識出有無雜訊,由下列規則:取一分鐘之內次數最多的心率,設其將R波間隔為I,取R波間隔小於I的一部份者(例如二分之一或三分之二),即視為雜訊。把統計圖中雜訊區間的次數累計,即可視為雜訊大小之指針,即有無身體運動量之大小。人在熟睡時身體不會動,翻身或手腳不自主運動時即會形成雜訊,把一段時間(例如七小時的睡眠)的運動量作成統計圖,即成睡眠活動圖,可瞭解使用者的睡眠品質,如圖11,是利用雜訊次數累積為活動指標的睡眠活動圖,其橫軸為時間,縱軸為活動量。本實例亦可用短袖或無袖日衣實施,效果相同。
同理,對於日間活動,也可作成日間活動圖。若雜訊有規律性,例如每0.5秒有一次大量雜訊,為期三分鐘,可推斷使用者在進行規律運動,例如行走;若偶而出現大量雜訊,可能是焦慮引起的噪動;或是穿戴者情緒緊張,就會有大量肌電訊號干擾心電圖。此日間活動圖可用于居家照護的老人,照護者可以據此判別老人的行為,適時介入。
第3實施例. 連身衣褲
上衣以短袖或長袖日衣,如第一或第二實施例,但較寬鬆,電極置於衣袖上臂內側,如圖12,在衣角置兩個按扣,連接長褲。其中,40為電極,60為連接器,70為處理器,處理器有連接器與褲上的連接器相接。長褲的左右大腿後側或左右襪底各置一電極,與按扣相連接。與上身的兩個電極合成為四個,取右臂、左臂、左腿(或左腳)電極為標準之Einthoven三導程心電圖(帶通濾波器改為0.1~40 Hz),拾取心電訊號。視電磁干擾情況嚴重與否,可選擇在右腿或右腳裝置一驅動電極,作為負回授電流之注入口,以抑制電磁干擾雜訊,在腿上的好處是腳在行走時一是至少一腳壓地使電極導通。處理器內裝置三組如圖13的儀錶放大器,其輸入端分別與左臂與右臂、右臂與左腿(或左腳)、左臂與左腿(或左腳)之電極相連接,右腿驅動電極則與負回授電流電路相連接。對於手臂下的電極,當手臂平舉或上舉,電極不會貼緊身體,連接此電極的相關導程就不能取得良好的心電訊號,而是取得雜訊,若手臂下垂,就會將電極壓迫在身上,就能得到心電訊號;同理,對於左襪底的電極,若腳著地則可得心電訊號,否則是雜訊;同理,對於左大腿後側的電極,若是使用者坐下則可得心電訊號,否則是雜訊。對於右腿或右腳底的驅動電極,當使用者未坐下或腳未著地時,驅動電極未接觸身體,此時另三個導程可能是有較大的雜訊,但仍能在部份時間內讀到心率。藉由第二實施例所揭示的判斷雜訊的方法,本實施例可以判斷手臂、腿或腳姿勢。歸納如下表。
若不採用負電流回授,可將左右腳電極並聯,可以減少接觸不良的機會。
當左右臂及左腿(或左腳)電極與皮膚有良好接觸時,不僅可以獲得三個肢導(lead 1,2,3),也可以由肢導計算得向量心電圖(vector ECG)。若三個肢導不能同時獲得,可分別記錄,再由R波取得同步,加以組合,仍可得向量心電圖。
當單獨用上衣時,可在左、右小腹位置加一電極,以取代右腳或右腿電極。
綜整上述可知,本實施例是從心電圖推知行為舉止,例如手腳之活動。
第4實施例. 大面積電極在腋下
目前在醫院慣用的電極是氯化銀/銀結構,外面有含氯化鉀溶液的導電凝膠,其優點是可以形成穩定的化學電位,並以良好的導電性將體內的離子流轉換成電子流,其缺點是導電凝膠貼在皮膚上會令人發癢甚至過敏,很不舒服,故而不適用於穿戴式系統上。然而,若是不用導電凝膠,導電性就不夠好。再者,考慮穿戴式系統上的電極,最好能與皮膚緊密接觸,即使在運動時仍能碰觸皮膚,又能免用強力的束縛帶壓迫電極在身體上。本發明採用如圖14a之架構,電極表面是富有彈性的導電布或導電片(例如銀纖維、不銹鋼片),內部是富有彈性且吸水的海綿或類似的材料(或本身就是導電材料),可保有水份,幫助皮膚導電,也可增加導電性。本發明也可採用具彈性的導電材料,例如石墨包埋在矽膠或海綿,如圖14b之架構,就不必外層的導電布。內部彈性材料分兩片固定在衣物上,中間有約一公分之間隔,如圖15,其作用有:
一、銀纖維與海綿都有彈性,不必用力壓迫就可以良好接觸皮膚;
二、兩片電極中間有間隔,使得電極且於依身體曲線彎曲,不會翹起,可有良好的導電性又美觀。
電極置於腋下,可獲有三項好處,一是不易受手臂運動干擾;二是該處肌肉較少,又靠近大血管,可得較低阻抗,即可得較大振幅;三是從正面看不到電極,較美觀。比較由手腕處之電極(標準的Lead I,見圖16)與腋下電極所得之心電圖(見圖17),可知後者振幅較大。
目前心臟醫學已知,與體表採集到的心電訊號位元振幅有關的因素有:
1、與心肌細胞數量(心肌厚度)成正比關係;
2、與探查電極位置和心肌細胞之間的距離,成反比關係;
3、與探查電極的方位和心肌除極的方向所構成的角度有關,夾角愈大,心電位在導聯上的投影愈小,電位愈弱。
本發明比較三種不同面積的銀纖維電極(4*4 cm,6*6cm,8*8 cm)與貼片電極置於腋下,對於同一受測者取其心電訊號之振幅,分別為1.6 mV,2.1 mV,1.8 mV,如圖18至21,以6*6 cm電極所得之振幅最大,貼片電極最小。對於8*8 cm,雖然其阻抗較低,但此電極之邊緣已相當接近,依心電圖為「神經電脈衝于電極向量之投影量」原理,此時電極可能跨到較低電位差之區域了,電極向量顯著較6*6 cm為小,即使阻抗更低也無法取得更大的訊號。
以上述方法,本實施例可以從振幅大小推估人體活動行為。例如,對於圖18至21的使用者,當其心電訊號之振幅由1.6 mV提升至2.1 mV,可以推測其手臂靠緊身體,使得接觸面積增加。
第5實施例. 偵測電極接觸不良
當電極與皮膚接觸不良(即阻抗太高)或是導線折斷,就難以看到R波了。本發明有四方法電路偵測電極與皮膚阻抗是否太高:
第一,對於僅用兩個電極的場合,如圖22,是由微控制器或振盪器(例如LM555)產生一脈波,經一電阻連接至某一電極,然後將另一電極連接至微控制器的模擬輸入端,量測其振幅或頻率或出力週期,即知其阻抗。若小於某一臨界值,即判定為接觸不良。對於多於兩個電極的場合,若想偵測每一個電極是否接觸不良,可以在衣物上加一個環繞身體、手臂、或大腿的電極,確定此電極可不會因肢體動作而接觸不良,脈波即可由此電極送入,再由其他電極讀出,以偵測各電極是否接觸不良。此方法可參考PCT/CN2010/001931,是利用當人體與電極之間有壓力、拉力、扭力或張力,而使人體表面與電極之間的阻抗變化,由一電路發出信號,以頻率、電壓或電流變化來表現。此方法不止用於判別電極是否接觸不良,同時也可用來讀呼吸、或姿勢、或步態分析。圖22可以放在主動電極電路,以降低外界電磁干擾,有益於判定雜訊。
第二,參考實施例二,微控制器若在一段時間(例如一分鐘)內都無法得到正常的R波、Q波或S波之間隔時間(正常的間隔時間約為1.5秒至0.3秒),即判定為電極與皮膚接觸不良。
第三,如圖23,在任一電極輸入端連接一限流電阻(約10 K Ohms)、由被動元件組成之高通濾波器(截止頻率約50K Hz)、和一高頻訊號產生器(產生約70K Hz正弦波),其他電極的輸入端則連接一高通濾波器(截止頻率約50K Hz)、放大電路,再連接至微控制器的模擬輸入端。若該電極的放大電路可得足夠大的70K Hz正弦波,即代表該電極的阻抗夠低。儀錶放大器前端則是連接低通濾波器,讓低頻的心電訊號(低於40 Hz)傳導至儀錶放大器,並阻止70K Hz正弦波進入以免干擾心電訊號。圖23可以放在主動電極電路,以降低外界電磁干擾,有益於判定雜訊。
第四、以習知之阻抗式呼吸描計圖(impedance pneumogram)技術,若能由呼吸描計圖讀到呼吸率,則表示電極有貼在身上。在第2及3實施例中本發明揭露了由雜訊推估身體活動之方法,同理,本實施亦可由偵測電極阻抗來推估身體活動,例如某電極位於腋下,當其接觸不良時,即表示手臂未緊靠身體。本實施例亦可應用於腦電圖、肌電圖、經皮電刺激治療、電擊治療的電極,測試其電極是否有良好接觸。
第6實施例. 電容耦合式電極
在溫濕度很低或使用者本身皮膚很乾燥的情況下,電極與皮膚之間的電導會變得太低,不利於擷取心電訊號,只剩下電容性。在這種狀況下,或可使用電容耦合式電極及電路,即電極與皮膚之間沒有直流的電導,而是以電容耦合來傳遞心電訊號。然而就生理監視衣而言,必須承受洗滌之力,而電容耦合式電極上的絕緣層可能會因為洗滌而破損,就不再是完美的電容而兼有電導特性。綜言之,考慮實際應用情況,生理監視衣最好是能兼有這兩種電極,以因應環境變化。因此,本實施在衣物上裝有前述之織品電極和電容耦合式電極,兩種電極並用有下列數種型式:
一是以彈性材料為導體,嵌入導電布電極之彈性體內,如圖24b;
二是以彈性導體覆一絕緣層,安置在衣物與人體之間,電阻式織品電極之側,如圖24c;
三是以彈性導體,嵌入在衣物之內,電阻式織品電極之側,如圖24d;
四是以彈性導體,安置在衣物之外,電阻式織品電極之側,如圖24e;
五是以彈性導體覆一絕緣層,安置在衣物與人體之間,電阻式織品電極之上,如圖24f;
六是以彈性導體,嵌入在衣物之內,電阻式織品電極之上,如圖24g;
七是以彈性導體,安置在衣物之外,電阻式織品電極之上,如圖24h;
在處理器中也裝設電阻式電極用之前級放大電路,以及電容耦合式電極用之前級放大電路,如圖25。其中,微控制器可以切換S1及S2,選擇穿戴式電極或電容耦合式電極(有四種組合),以選擇是否要取負回授電流以抑制雜訊(有三種組合),再仿第二實施例,計算其雜訊,取12種組合中雜訊最低者,再加以輸出至微控制器。
在一實施場合中,當要選擇S1及S2時,微控制器先嘗試選電阻式電極,再試電容耦合式電極,可能較快找到理想的電極。如果是電阻式電極被切至電容式電極電路才能讀到,則表示皮膚很幹,但電極仍貼在身上。若是被切至電容式電極電路都不能讀到,則可能是衣服穿太松,電極離開身體太遠了。
在另一實施場合中,可一併採用第五實施例之方法,先測量各電極之阻抗,微控制器即可控制S1及S2,直接選取阻抗最低的電極。
由選擇的結果可推知人體的動作,例如選取結果為自腋下之電容耦合式電極可得最佳訊號,即可推論該處有手臂緊靠身體。
第7實施例. 由波型判斷身體姿勢
當使用者穿短袖或長袖衣,在左右兩側於腋下前後各置一電極,各側兩個電極皆並聯連接至處理器。當手臂向前舉時,衣袖會牽引腋下衣布往前,使得腋下後方電極貼近身體,而腋下前方電極遠離身體。同理,當手臂向後拉時,則是腋下後方電極遠離身體,而腋下前方電極貼近身體。不同手臂姿勢,造成擷取心電訊號電極的位置也不同,因而心電訊號的型態也不同,如圖26至圖29。其中,圖26為右臂在後左臂在前所得之心電圖,圖27為雙臂皆在前所得之心電圖,圖28為雙臂皆在後所得之心電圖,圖29為右臂在前左臂在後所得之心電圖比較圖26與圖29,可知相對於R波,圖26之Q波較大而圖32之Q波較小;圖26之T波較小而圖29之T波較大。
比較圖28與圖29,可知相對於R波,圖29之Q波較小而圖28之Q波較大。
比較圖27與圖28,可知圖27之T波較小而圖28之T波較大。
對於上述四種心電圖,本實施例以下列步驟來辨識:
1. 取連續10次心跳,先找到每個R波,再找每個Q與T波,計算Q/R與T/R平均值;
2. 若T/R>0.3,則可能為右臂在前左臂在後,或雙臂皆在後,即執行步驟3;否則執行步驟4;
3. 若Q/R>0.3,則為雙臂皆在後,否則為右臂在前左臂在後;
4. 若Q/R>0.9,則為右臂在後左臂在前,否則為雙臂皆在前;
以上僅為一個例子,由不同面積,更多位置電極,皆可由心電圖之比例、加袖口、胸前、後臂等位置,與第2實施例相較,本實施例是在心電訊號清晰可識之下,由波型分析得其姿勢,第2實施例則是由雜訊分析得其動作,兩者恰可相輔成。
第8實施例.加裝胸導電極
穿戴式電極在衣物寬鬆時與皮膚之阻抗較高,不易傳導心電訊號,而受壓迫時阻抗較低。利用此一特性,本實施例在左臂、右臂、左腿處各設一電極,形成標準的Einthoven三角,不只產生Lead I,Lead II,Lead III肢導,也可產生測量胸導的參考電位,並在胸前設一個面積為2*2 cm的電極,位置為標準胸導V4(V4在左銷骨中線第五肋間);或是二個2*2 cm電極,位置為標準胸導V2及V5;或是兩塊面積較大的電極,一個涵蓋V1,V2,V3,另一個涵蓋V4,V5,V6;或是一塊更大的電極,涵蓋V1至V6,如圖30a,30b。由於衣物有彈性,使用者可以用手持胸前電極,挪移至V1,V2,V3,V4,V5,V6位置,或是在V1至V6任一位置上稍加壓力,分別記錄,即可得六個胸導之心電圖。
由上述肢導與胸導,本實施例可產生平均心電軸,供診斷心臟健康之用。每一次心動週期的心電活動,可以概括地用一系列順序出現的暫態綜合心電向量來表達。左、右心室除極過程的總方向,正常時大多與其最大向量相一致,在心電圖學中採用“平均心電軸”,簡稱為“心電軸”。一般採用與額面心電向量圖相同的座標,並規定I導聯左(正)側端為0°,右(負)側端為±180°,循0°的順鐘向的角度為正,逆鐘向者為負。正常心電圖的額面平均心電軸對向左下。通常可根據肢體I、III導聯QRS波群的主波方向,以估測心電軸的大致方位。檢測方法有目測法(如圖31)、作圖法(如圖32),正常心電軸與其偏移在臨床上的判讀,如圖33。亦可由胸導產生心電軸,如圖34。本實施例也可是在下腹部安置一參考電極,連接至處理器之負端輸入,其正端連接上述之胸導電極。此外,也可在身體背面安裝如上所述之電極,當背靠椅或仰臥時即可自背後取得心電圖。
由於V1至V6心電訊號波型有顯著差異,本實施例可連續記錄心電訊號,而使用者在日常生活中會碰觸到不同部位,例如雙手抱胸,處理器即會收到不同的胸導心電訊號,仿第7實施例分析其波型,即可知其是那一個胸導產生的,即可推估其動作。同理,此法也可應用於肢導。
本實施例是只用一個感測電極和一個參考電極,就可以分時方式擷取六個胸導的心電圖,具多導程功能。
第9實施例. 在電極上面加氣囊
微控制器控制一泵可推動空氣、油或水,此泵經由一密閉管連接至一固定在電極與衣物之間的膠囊。當偵測到任一電極阻抗太高致訊號太小時,微控制器可開啟泵使膠囊膨脹,以壓迫膠囊緊貼皮膚。當使用油或水以膨脹膠囊時,處理器內另有一油或水的儲存槽。
40...電極
50...處理器
60...連接器
65...導電布
70...處理器
75...導體
80...導線
85...布料
90...彈性體
圖1.無袖日衣與處理器架構
圖2.無袖日衣之電極與導線
圖3.處理器架構
圖4a.正常Lead I心電圖各段之定義與心臟活動
圖4b.狹窄的帶通濾波器造成過大的Q波
圖4c.正常與異常的QRS波
圖4d.由R-R interval做HRV分析
圖5a.由R波的振幅導出呼吸曲線
圖5b.由Q波的振幅繪出的呼吸描記圖圖
圖6.長袖日衣
圖7.穿戴者靜止不動時心電圖
圖8.穿戴者運動干擾下之心電圖
圖9由一分鐘Q波間隔時間作統計圖求得心率
圖10雜訊被誤判成Q波之統計圖
圖11由心電圖雜訊累計而成之七小時睡眠活動圖
圖12連身衣褲
圖13儀錶放大器與負回授電流電路
圖14a導電布電極剖面圖
圖14b導電彈性體電極剖面圖
圖15電極固定在布料上與導電線連接
圖16由手腕之生理電極取得之心電圖
圖17由腋下之生理電極取得之心電圖
圖18由4*4 cm電極取得之心電圖(平均振幅約1.6 mV)
圖19由6*6 cm電極取得之心電圖(平均振幅約2.1 mV)
圖20由8*8 cm電極取得之心電圖(平均振幅約1.8 mV)
圖21由生理電極取得之心電圖(平均振幅約1.2 mV)
圖22由脈波偵測電極是否接觸不良
圖23由弦波測電極是否接觸不良
圖24a電容耦合式電極心電信號放大器
圖24b兩種電極並用第一種型式
圖24c兩種電極並用第二種型式
圖24d兩種電極並用第三種型式
圖24e兩種電極並用第四種型式
圖24f兩種電極並用第五種型式
圖24g兩種電極並用第六種型式
圖24h兩種電極並用第七種型式
圖25可連接電容耦合式電極與電阻式織品電極之電路
圖26右臂在後左臂在前所得之心電圖
圖27雙臂皆在前所得之心電圖
圖28雙臂皆在後所得之心電圖
圖29右臂在前左臂在後所得之心電圖
圖30a V1至V6胸導電極位置(自胸前平視)
圖30b V1至V6胸導電極位置(自頭上俯視)

Claims (20)

  1. 一種偵測心跳或電極接觸良好與否的物品,包含有一件衣物,及一處理器,其中:衣物有至少兩個電極;處理器與上述電極電性連接以擷取心電訊號,
  2. 根據權利要求1所述的物品,其特徵在於其中所述的電極之表層為導電材料,總面積至少為4平方公分。
  3. 根據權利要求1所述的物品,其特徵在於其中所述的兩個電極放置於胸腋下或袖腋下。
  4. 根據權利要求1所述的物品,其特徵在於其中所述的電極為電阻式電極,在其旁邊或同一位置上另含有至少兩個電容耦合式電極。
  5. 一種偵測心跳或電極接觸良好與否的方法,包含一處理器,和至少兩個電極,利用處理器所擷取的雜訊或阻抗,來偵測電極是否貼近人體。
  6. 根據權利要求5所述的方法,其特徵在於其中所述的電極,除了用於偵測心跳之外,尚可用於偵測肌電圖,腦電圖、經皮電刺激、或電擊治療。
  7. 根據權利要求5所述的方法,其特徵在於其中所述的阻抗,可為表皮阻抗、肌肉阻抗或呼吸阻抗(impedance pneumography)。
  8. 一種偵測心跳或電極接觸良好與否的方法,包含有一件衣物,及一處理器,其中:衣物有至少兩個電極;處理器與上述電極電性連接來產生心電訊號。
  9. 根據權利要求8所述的方法,其特徵在於其中所述的電極,僅以一組電極即可產生不同導程之心電訊號。
  10. 根據權利要求8所述的方法,其特徵在於其中所述的心電訊號,可用來偵測精神狀態、或步態、或姿勢。
  11. 根據權利要求8所述的方法,其特徵在於其中所述的心電訊號之振幅大小,可用來偵測電極與人體接觸面積之大小。
  12. 根據權利要求8所述的方法,其特徵在於其中所述的處理器由電極取得心電訊號,並由心電訊號之中伴隨的雜訊,用來偵測電極是否貼緊人體。
  13. 根據權利要求8述的方法,其特徵在於利用量測人體表皮組織之阻抗,用來偵測電極是貼緊身體。
  14. 根據權利要求8所述的方法,其特徵在於同時可以量測呼吸、或姿勢、或步態分析。
  15. 根據權利要求8所述的方法,其特徵在於利用量測人體之呼吸阻抗,用來偵測電極是貼緊人體。
  16. 根據權利要求8所述的方法,其特徵在於利用量測人體肌肉組織之阻抗,用來偵測電極是貼緊人體。
  17. 根據權利要求8所述的方法,其特徵在於其中所述的處理器由電極取得心電訊號,並由心電訊號之中伴隨的雜訊,用來偵測姿勢、精神狀態及心理狀態。
  18. 根據權利要求8所述的方法,其特徵在於其中所述的兩電極為為電阻式電極,在其旁邊或同一位置上另含有至少兩個電容耦合式電極,由處理器在此四個電極中選出心電訊號最佳的兩個電極。
  19. 根據權利要求8所述的方法,其特徵在於其中所述的兩電極為為電阻式電極,在其旁邊或同一位置上另含有至少兩個電容耦合式電極,由處理器在此四個電極中選出心電訊號最佳的兩個電極。
  20. 一種偵測心跳或電極接觸良好與否的系統,包含有一件衣物,及一處理器,其中:衣物有至少兩個電極;處理器包含一微控制器,用以對電極所得到的訊號進行處理,以產生心電訊號。
TW100138250A 2011-10-21 2011-10-21 一種偵測心跳或電極接觸良好與否的物品、方法及系統 TW201316950A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100138250A TW201316950A (zh) 2011-10-21 2011-10-21 一種偵測心跳或電極接觸良好與否的物品、方法及系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100138250A TW201316950A (zh) 2011-10-21 2011-10-21 一種偵測心跳或電極接觸良好與否的物品、方法及系統

Publications (1)

Publication Number Publication Date
TW201316950A true TW201316950A (zh) 2013-05-01

Family

ID=48871605

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100138250A TW201316950A (zh) 2011-10-21 2011-10-21 一種偵測心跳或電極接觸良好與否的物品、方法及系統

Country Status (1)

Country Link
TW (1) TW201316950A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI552723B (zh) * 2014-09-22 2016-10-11 財團法人工業技術研究院 心電圖量測裝置及其控制方法
TWI580397B (zh) * 2014-04-16 2017-05-01 Taiwan Textile Res Inst Array Network Sensing System for Sensing Body Surface Physiological Signals
US10383537B2 (en) 2016-12-15 2019-08-20 Industrial Technology Research Institute Physiological signal measuring method and physiological signal measuring device
TWI729904B (zh) * 2015-05-22 2021-06-01 荷蘭商耐克創新有限合夥公司 復原緊身褲
TWI770559B (zh) * 2020-05-21 2022-07-11 法商拜思公司 可擴展電極組、量測來自受檢者的信號之方法、及感測器組系統
US11540762B2 (en) 2014-10-30 2023-01-03 West Affum Holdings Dac Wearable cardioverter defibrtillator with improved ECG electrodes
US11745006B2 (en) 2014-10-30 2023-09-05 West Affum Holdings Dac Wearable cardiac defibrillation system with electrode assemblies having pillow structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI580397B (zh) * 2014-04-16 2017-05-01 Taiwan Textile Res Inst Array Network Sensing System for Sensing Body Surface Physiological Signals
TWI552723B (zh) * 2014-09-22 2016-10-11 財團法人工業技術研究院 心電圖量測裝置及其控制方法
US11540762B2 (en) 2014-10-30 2023-01-03 West Affum Holdings Dac Wearable cardioverter defibrtillator with improved ECG electrodes
US11745006B2 (en) 2014-10-30 2023-09-05 West Affum Holdings Dac Wearable cardiac defibrillation system with electrode assemblies having pillow structure
TWI729904B (zh) * 2015-05-22 2021-06-01 荷蘭商耐克創新有限合夥公司 復原緊身褲
US10383537B2 (en) 2016-12-15 2019-08-20 Industrial Technology Research Institute Physiological signal measuring method and physiological signal measuring device
TWI770559B (zh) * 2020-05-21 2022-07-11 法商拜思公司 可擴展電極組、量測來自受檢者的信號之方法、及感測器組系統

Similar Documents

Publication Publication Date Title
WO2013075270A1 (zh) 一种侦测心跳或电极接触良好与否的物品、方法及系统
US11311197B2 (en) Product, method and system for monitoring physiological function and posture
US9198617B2 (en) Harness with sensors
TW201316950A (zh) 一種偵測心跳或電極接觸良好與否的物品、方法及系統
CN104302351A (zh) 一种侦测心跳或电极接触良好与否的物品、方法及系统
CN104027107A (zh) 一种穿戴式心电测量装置
JP3231429U (ja) ルームウェア型ウェアラブル装置
CN104958071B (zh) 一种衣服
Suh Wearable sensors for athletes
Ramos-Garcia et al. Analysis of a coverstitched stretch sensor for monitoring of breathing
Bu et al. The embedding of flexible conductive silver-coated electrodes into ECG monitoring garment for minimizing motion artefacts
CN203914907U (zh) 穿戴式心电测量装置
Trindade et al. Novel textile systems for the continuous monitoring of vital signals: design and characterization
WO2022174568A1 (zh) 心电监测服
Silva et al. Study of vital sign monitoring with textile sensors in swimming pool environment
Zhong et al. Integrated design of physiological multi-parameter sensors on a smart garment by ultra-elastic e-textile
Bourdon et al. First results with the wealthy garment electrocardiogram monitoring system
CN102143709A (zh) 侦测生理机能及姿势状态的物品、方法及系统
CN209677387U (zh) 智能衣服
JP2017140213A (ja) ウェアラブル電極
CN205514585U (zh) 感应服装和用感应服装进行采集的人体指标采集系统
Liu et al. An Integrated Design of Multi-Channel ECG Sensor on Smart Garment
Li Wearable Electronic Devices for Electrocardiograph Measurement
CN211609763U (zh) 一种可测量多种生理参数的背心结构
CN212037514U (zh) 心电监测衣