WO2011072416A1 - 利用织品感测器的人体监控系统及监控方法 - Google Patents

利用织品感测器的人体监控系统及监控方法 Download PDF

Info

Publication number
WO2011072416A1
WO2011072416A1 PCT/CN2009/001451 CN2009001451W WO2011072416A1 WO 2011072416 A1 WO2011072416 A1 WO 2011072416A1 CN 2009001451 W CN2009001451 W CN 2009001451W WO 2011072416 A1 WO2011072416 A1 WO 2011072416A1
Authority
WO
WIPO (PCT)
Prior art keywords
human body
bed
fabric sensor
sensor
webbing
Prior art date
Application number
PCT/CN2009/001451
Other languages
English (en)
French (fr)
Inventor
杨章民
杨子琳
杨景雯
杨皓
Original Assignee
Yang Changming
Yang Tzulin
Yang Chingwen
Yang Hao
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yang Changming, Yang Tzulin, Yang Chingwen, Yang Hao filed Critical Yang Changming
Priority to PCT/CN2009/001451 priority Critical patent/WO2011072416A1/zh
Publication of WO2011072416A1 publication Critical patent/WO2011072416A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4815Sleep quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0247Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0261Strain gauges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/04Arrangements of multiple sensors of the same type
    • A61B2562/046Arrangements of multiple sensors of the same type in a matrix array
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6804Garments; Clothes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6892Mats
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2203/00Form of contacts
    • H01H2203/008Wires
    • H01H2203/0085Layered switches integrated into garment, clothes or textile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/02Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch
    • H01H3/14Operating parts, i.e. for operating driving mechanism by a mechanical force external to the switch adapted for operation by a part of the human body other than the hand, e.g. by foot
    • H01H3/141Cushion or mat switches

Definitions

  • the invention relates to a human body monitoring system and a monitoring method using a fabric sensor, which can be used for automatically detecting a user's bedtime, wake-up time, sleep time, sleep posture change, and sleep quality, and then estimating whether the user is one I feel that the day is bright or the night is not easy to sleep, and the physiological condition of the user can be further known.
  • the invention can also be applied to long-term care to track the patient's condition.
  • the invention relates to the use of a plurality of fabric sensors fixed on a bed surface, a webbing or a bed cover, and the tension of the webbing caused by the weight of the human body, pulling the sensor fixed to the bed or the bed cover or the webbing to change the signal, thereby knowing
  • the user's sleeping position and activities can also detect the user's breathing rate and the user's posture changes, such as: lying, squatting, sitting, lying or performing different sports on the ribbon sensor, such as: supine Sitting, leaning forward, in addition, this fabric sensor can also be used in electric beds or chairs. Background technique
  • the development of sleep monitoring devices for home environments is a trend at home and abroad.
  • the market advantages are as follows: 1.
  • the development of sleep monitoring technology used in the home environment allows patients to conduct early screening of relevant sleep diseases at home to save medical resources.
  • Third, the non-binding sleep physiological sensing technology simplifies the process of attaching the wire and the electrode patch, and can be set and operated by non-professional medical personnel, and perform sleep physiological monitoring without affecting the sleep quality of the test subject. .
  • remote monitoring The sleep monitoring system developed by the technology is easy to implement under the ability of information and communication technology, and the sleep monitoring and sleep evaluation system originally limited to medical institutions can be realized in the home environment.
  • At least one-third to one-quarter of the time in a person's life is sleeping, so a sensor is installed on the bed to detect the user's sleep quality and sleep posture, which can be time-consuming and labor-intensive.
  • the physiological state of the user is known.
  • the invention also does not need to be used under the supervision of professional medical personnel, and is very convenient and convenient for promotion, especially for patients suffering from long-term chronic diseases or elderly people with limited mobility, safe and effective monitoring. If there is abnormal signal, it can also promptly and effectively remind the remote monitoring personnel to avoid the danger of the patient. Therefore, the invention is of great help to the health and safety of the user.
  • U.S. Patent No. 4,175,263 is a pressure sensing system for use only in hospital beds, comprising two sensors that generate an analog signal and are mounted on a bed.
  • the first sensor senses the weight of the user lying in the center of the bed, and the second sensor senses the weight of the user at the edge of the bed. When the weight is transferred from the center to the edge, the patient is already in the bed.
  • the edge there is a danger of falling under the bed, and then a warning notice will be issued, but the invention can only know that the patient is in the center or edge position, the user is lying in bed to sit up and sit on the bed, then lie down
  • the change is not known, and the patent can only be used in a hospital bed, and can not be used in a variety of beds, such as a general bed, an air bed, a soft bed, an electric bed or even a chair, as in the present invention, and the present invention can It is a digital signal sensor, as long as it is a conductive material, it can be used as a sensor material, and it does not have to be installed on the bed surface, but on the side of the bed. In addition, the sensor is pressed by the human body by the webbing. The resulting pulling force activates the sensor.
  • US Patent No. 5, 844, 488 is a one-step pressure sensing mat that produces an analog signal. It can be placed on the bed or bed, in the middle or on the side. It is mainly used in hospital beds, with central and cushions on the mat.
  • the activation area of the edge when the user's body moves to the edge of the mat, the sensor of the activation area is activated, and a warning is sent to let the remote monitor know that the user has moved to the edge of the bed, but the user's
  • the quality of sleep, the user's subtle posture changes in the bed, such as lying down on the side or lying down on the side, or even breathing is not known, the present invention can be a multi-segment digital signal sensor, without It must be installed on the bed, because the invention can start the sensor by the pulling force generated by the webbing being pressed by the human body, and the posture changes from lying on the side, lying on the back, sleeping in the sleep, changing the speed between the movement changes, Further, it is known that the user's breathing and the
  • U.S. Patent No. 5,917,180 by means of fiber optic technology, senses the change in the weight of the user on the mattress to determine the position of the user on the bed, and the sensor that produces the analog signal is mounted on the mattress.
  • US Patent No. 5, 410, 297 is a pressure sensor that produces an analog signal.
  • the material consists of plastic foam and aluminum wire, but only knows the user's position on the bed, but the user's sleep quality, user. Changes in posture, turning over during sleep, changes in speed between movement changes, etc. are not known.
  • U.S. Patent No. 3, 961, 201 is a belt for analog signals on the bed edge and mattress.
  • PCT Patent No. WO9010281A1 is a pressure sensor for analog signals installed on a bed, but only when used in a hospital bed, when the weight is felt, the user is on the bed, and when the weight is not felt, the user has already got out of bed. At this time, a warning will be issued.
  • the invention is a digital signal sensor, which does not have to be installed on the bed, because the tension can be activated by the webbing by the pressing force of the human body, and the posture changes from lying down, lying down, lying down, sleeping. Turning over, the speed change between the movement changes and the acceleration angular velocity and angular acceleration can also be known. At the same time, the center of gravity and the rate of change of the center of gravity can be measured, the direction of the user going to bed and getting out of bed, the pressed position of the body on the bed and the time it takes, while It is also possible to measure the inertial mass of different postures, even the user's breathing can be measured, and then the physiological state of the user can be known.
  • U.S. Patent No. 5, 144, 284 is an analog signal pressure sensor mounted on a mattress. The interior contains two metal strips separated by a compressible material that does not conduct when unstressed, but the sense The detector is only located in a single-size mattress. When the user presses on the mattress, the user's pressure is sensed, but the user's position on the bed can only be sensed, but the patent cannot detect it.
  • U.S. Patent No. 6, 2028, 250 is a sensing system that includes two sensors that sense the position of the user on the bed.
  • U.S. Patent No. 4,320,766 is a one-stage pressure sensor mounted under a mattress. The active layer in the sensor contains two electrically conductive materials, but only detects the user's bed. position.
  • 5,448,996 is a pressure sensing system for generating an analog signal in one piece, comprising two sensors directly on the bed, which are directly contacted and pressed by the user when going to bed, the sensing system
  • the first sensor consisting of aluminum wire and a flexible polymer layer, can sense the user's breathing, heartbeat
  • the second sensor has a voltage-containing film layer and a second elastic polymer layer. It can sense the change of the user's position on the bed.
  • the disadvantage is that the sensor is on the bed, the user will directly press it, which may cause the user's discomfort, and the signal obtained by using the sensor is an analog signal, and the sensing is performed.
  • the device is relatively complicated and expensive, and the generated signal is susceptible to external interference.
  • Announcement 2005/0107722 A1 also has the following shortcomings in the design of sleep detection instruments. 1.
  • the detector of the patent is spread on the bed, and the generated signal is an analog signal, which requires a complicated interpretation process. 2.
  • the sensor of the patent also appears to be confusing when detecting the user's posture in the bed. , not easy to interpret.
  • the function of the above patent is only to detect the position of the user by the weight or pressure detector, but only know whether the user's position is at the center or the edge, if the user's weight is concentrated at the edge, It can be judged that the user is already at the edge of the bed, which may be dangerous. If the weight or pressure detector does not detect the weight, the user has already got out of bed and will release a signal to inform the monitoring personnel.
  • changes in sleep quality, sleep posture such as lying down, lying down, sleeping, turning, center of gravity, center of gravity change, body pressure area (A0P) and movement changes, can not be accurately known In terms of accuracy, the above patents are not perfect.
  • the invention may be a digital signal sensor, and may be a multi-segment digital sensor, which does not have to be installed on the bed or on the webbing or on the bed cover or a part of the webbing on the bed or the bed cover, because
  • the sensor can be activated by the tension generated by the compression of the webbing, and the posture changes from lying on the side to lying on the side, falling asleep to lying down, turning over during sleep, and the speed change between the movement changes can be measured, the user's breathing It can also be measured that the acceleration, angular velocity, angular acceleration, inertial mass, center of gravity, center of gravity velocity, acceleration of the center of gravity, area of pressure (A0P), position of the stressed body, and bearing time can be measured.
  • A0P area of pressure
  • the number of turns can also be seen, in addition to the speed, acceleration, angular velocity, angular acceleration, center of gravity, center of gravity, and the variability of the area under pressure (A0P), all of the above parameters can be plotted on the horizontal axis.
  • the time-varying picture on the bed like actigraphy, is used to assess the sleep quality of the sleeper. It is also known that a physiological sensor is provided on the bed to know the physiological state of the user.
  • the object of the present invention is to overcome the defects of the existing sleep monitoring system and the monitoring method using the sensor, and to provide a new sleep monitoring system and monitoring method using the fabric sensor, and the technical problem to be solved is It is equipped with a fabric sensor on the bed, the webbing or the bed sheet to monitor the sleep quality of the sleeper and the posture change of the sleep. If necessary, the physiological sensor can simultaneously measure the physiological state of the user, which is very suitable for practical.
  • a fabric sensor according to the present invention when a person lies on a bed, the tension generated by the webbing being subjected to weight or momentum causes the fabric sensor to react differently to exhibit sleep quality and posture changes.
  • the fabric sensor of the present invention is disposed on the webbing, on the bed or on the bed cover. When the person lies on the bed, it does not have to directly contact the fabric sensor but directly presses on the webbing, and the generated pulling force causes the fabric sensor to be produced.
  • Reaction wherein the fabric sensor can be a tension, pressure or gravity sensor, especially Digital sensors can also be multi-segmented to sense different changes in weight, pressure or impulse.
  • the tension generated by the webbing is pressed by the human body to activate the fabric sensor, and the posture changes from lying down to lying down, ⁇ eight sleeps to lie down, turns over during sleep, and changes in movement
  • the speed change between the two can be measured, the user's breathing can also be measured, continuous acceleration, angular velocity, angular acceleration, inertial mass, center of gravity, center of gravity, center of gravity acceleration, area of pressure (AOP), subject
  • AOP area of pressure
  • the position of the body and the time of the body can be measured.
  • the number of turns can also be known.
  • the speed, acceleration, angular velocity, angular acceleration, center of gravity, center of gravity, and variability of the area under pressure (A0P) can be known.
  • the above parameters can be used to plot the time change on the bed for the horizontal axis, just like the activity diagram (act igraphy), used to assess the sleep quality of the sleeper. Further, it is known that the physiological state of the user and the like are known.
  • the fabric sensor of the present invention can be provided with more than one webbing in the longitudinal or transverse direction of the bed and a fabric sensor on the webbing or on the bed or the bed cover, and if necessary, a physiological feeling on the bed or the webbing or the bed cover When the person is in bed, the fabric sensor can measure the physiological state of the person while reacting.
  • the overall architecture of the present invention utilizes one or more longitudinal or transverse webbings on the bed, and the end of the webbing is connected to one or more fabric sensors, each of which is electrically connected to the control box, and is mounted in the control box. There is a microprocessor.
  • the present invention mounts a webbing in the longitudinal or transverse direction of the bed.
  • the same webbing can be installed with one or more different threshold sensors as needed to measure the pressure on the webbing, which helps to determine its posture and movement.
  • the present invention can accommodate a different number of longitudinal or transverse webbings depending on the function desired by the user. For users of different weights, sensors with different critical values can be used.
  • the fabric sensor is installed in the webbing, the bed or the bed cover, and the webbing is mounted with at least one conductive wire, and the corresponding position on the bed or the bed cover
  • the fabric sensor can be installed in a webbing and a bed or a bed cover.
  • the webbing can be mounted with a semi-spherical conductive material, and a concentric two or more sets of conductive wires are mounted on the corresponding bed or the cover. Sensor. That is, a portion of the sensor is on the webbing, and the remaining portion of the sensor portion forms a complete sensor on the bed or bed cover.
  • the webbing When the user sits or lies on the webbing, the webbing is bent by the human body's gravity or impulse, and at the same time the tension of the entire webbing is increased, so that the tension (crack) sensor or the compression pressure (dome) sensor or The gravity sensor, therefore, the conductive state of the sensor changes due to the pulling force, and is output to the control box by a digital signal, and the microcontroller can control the number of signals and enter the personal computer or mobile phone. ), carry out detailed analysis. If necessary, these signals can be transmitted to the remote monitoring center and interpreted by professionals in the remote monitoring center to provide guidance when necessary. And educate, or send personnel to assist users.
  • sensors used in the present invention, such as: pressure, gravity or tension sensors (refer to PCT/CN2008/001570, PCT/CN2005/001520, PCT/CN2008/001571 patent application).
  • the first is a cl ip type sensor.
  • cl ip type sensor In the June 2009 issue of the International Conference on Consumer Electronics 2010, two articles were contributed, one of which is related to sleep bed technology, entitled “Mat wi th Digi tal Text i le Sensors to Detect Sleeping Act ivi t Ies. "The technique detects the user's posture changes and status on the bed.
  • the first crack sensor principle of the present invention is that when the crack sensor is not subjected to tensile force, the elasticity of the elastic band causes the conductive cloth or the conductive sheet to contact and is turned on, that is, "0"; when the tensile force exceeds the critical value thereof The value, the conductive cloth or the conductive sheet is no longer in contact, and it is not "1".
  • the critical value of each crack sensor can be determined by the material of the elastic band, the thickness of the elastic band, and the length of the crack. It can also be determined by the thickness, width or material properties of the conductive cloth or the conductive sheet.
  • the second type is a dome shape sensor placed on a webbing or bed sheet or bed and sandwiched between a webbing and a bed sheet or bed.
  • the dome sensor can also be sewn to the bed cover or bed, or part of the webbing, and the other part to the bed or bed sheet. When the user has the strength to press the webbing, the sensor is turned on.
  • the invention can be designed as a single-segment sensor (PCT/CN 2005/001520) or as a multi-segment sensor, such as: PCT/CN2008/00157.
  • the senor can also be directly Sewed on a pillow or clothing, the user lies on the pillow and presses directly onto the sensor to turn it on or when the sensor is sewn on the garment, the user directly has gravity/pressure when lying down. Press on the sensor to turn it on to increase the user's posture change and sleep analysis accuracy. In the summer, some people may directly play bare-chested, go to bed without clothes, and the sensors directly sewn on the pillow and bed will still be effective.
  • the greatest advantage of the present invention is its usability and convenience, except that the sensor can be placed outside the edge of the bed, which can also be synchronized on the garment or pillow.
  • the control box when the human body posture changes The sensor signal changes, the information is transmitted to the control box, and the microcontroller in the box can record the digital signal and perform preliminary analysis, and then transmit it to a nearby personal communication device via a wireless interface (such as Bluetooth) (for example Personal computer or mobile phone), for detailed analysis.
  • a wireless interface such as Bluetooth
  • the control box can also be replaced directly by a mobile phone or computer. If necessary, these signals can be transmitted to the remote monitoring center.
  • the monitoring center can determine the user's posture change in the bed by the interpretation of the timing chart, the speed and acceleration generated by the posture change, the center of gravity, the speed of change of the center of gravity, and the measured
  • the pressure of different pressure parts, the time of compression and the pressure change with time, the inertial mass, the angular velocity generated by turning over, the angular acceleration, etc. can be known.
  • the sleeper's situation at the bedside can also be known and analyzed the risk of falling out of bed. From the above information, the user's sleep state can be interpreted, whether there is epilepsy, whether drunkenness is serious, etc., is the best system and method for observing the state of the user in bed.
  • the human body monitoring system and the monitoring method using the fabric sensor of the present invention have at least the following advantages and beneficial effects:
  • the sensor is not spread on the bed, but at the end of the webbing, and the webbing is fixed on both sides of the bed or the cover, so the user does not have to lie directly on the sensor but press it on the webbing.
  • the pull force causes the fabric sensor to react, is ergonomic, and does not cause sensor wear.
  • This invention is caused by the user lying on the webbing causing the webbing to pull and thereby causing the sensor signal to change.
  • the path on the webbing can be rounded or multi-stage pressure sensor to further detect the pressure at different positions on the webbing, and replace the webbing in the other direction and its tension sensor.
  • the present invention utilizes a fabric sensor fixed on a bed and a bed cover, and the pulling force caused by the weight or momentum of the user lying, lying, or sitting on the webbing causes the sensor to receive a pulling force to generate different signals.
  • the user's bedtime, wake-up time, sleep time, sleep quality and sleep posture can be known.
  • the force point of the present invention is not equal to the sensing point, and the sensor is less, and the relative design is relatively cumbersome.
  • the microprocessor of the present invention processes digital signals instead of analog signals. Since the prior art is analog signals, the signals of the present invention are easier to interpret. But in order to reduce the number of outputs per sensor, we use an ohmmeter, that is, each fabric sensor in series or in parallel to generate an analog output signal. Therefore, the contacts at the output can be reduced to make the system more homelike - ⁇ ⁇ .
  • ⁇ button not a multi-terminal connector for electronics.
  • the analog output signal is then converted to a digital signal via an analog to digital converter and then processed into the microprocessor.
  • the time spent by the user on going to bed, lying down, lying on the side, and turning over can be detected. Especially when going to bed, the speed and acceleration of lying down can be detected, and it can detect whether the user has abnormal sleep conditions.
  • the sensor of the present invention can also be applied to different styles of beds, such as: hard bed, soft bed, air bed, electric bed or electric chair, which can meet the needs of users of different consumer groups or different sleep habits, so Conducive to the promotion and application of the present invention.
  • the sleeping bed can also read the user's breathing, plus an accelerometer, microphone or electrode on the system to measure heartbeat or breathing, and finally other different sensors can be used to measure body temperature or humidity, EMG, ECG, blood sugar, blood oxygen concentration, swallowing.
  • the present invention is a detection system that can be installed on a wide variety of beds, the structure of which has the following characteristics:
  • the detection system has the following features: washable, durable, reliable, tortuous, and inexpensive, so it can be easily applied to every level of daily life.
  • the sensor is fixed on the webbing, sheets or bedspread. And the webbing is a textile material, all the sensors are on the outside of the bed, and it is easy to replace if there is a fault.
  • the use of easy-to-read digital output interface such as: Bluetooth
  • the measured data can be directly transmitted to the daily common instruments for signal analysis, such as: PDA or laptop. Therefore, these easy-to-obtain electronic instruments can be used to test the user's sleep posture or sleep state.
  • the detection system can determine the user's posture by the signal analysis generated by the sensor, and can evaluate the user's posture change and state, so that the camera can be replaced. If the user is doing sit-ups or squatting on the bed, the user's posture change state can be known through the system.
  • FIG. 1 is a schematic view showing the structure of a human body monitoring system using a fabric sensor according to the present invention.
  • Fig. 2A is a view showing a state in which the bedside one-stage crack sensor is not pulled by the pulling force.
  • 2B is a plan view showing a state in which the one-stage crack sensor is not pressed by pressure, and the crack 2 ⁇
  • the conductive materials (Wl, W2) on the side are in contact.
  • Figure 2C is a plot of voltage versus time for a one-stage crack sensor without compression, at which time the voltage is zero.
  • Figure 1D is a state diagram of the bedside segmental crack sensor pulling the sensor due to the force of the webbing.
  • Fig. 2E is a plan view showing the state in which the one-stage crack sensor is pressed, and the conductive materials (Wl, W2) on both sides of the crack are opened.
  • Figure 2F is a plot of voltage vs. time for a one-stage crack sensor when squeezed. This voltage is 1.
  • Fig. 3A is a side view showing the state in which the two-stage crack sensor is not pulled by the pulling force.
  • Fig. 3B is a plan view showing a state in which the two-stage crack sensor is pulled by a pulling force.
  • Fig. 3C is a side view showing the state in which the one-stage dome sensor at the bedside is not subjected to the tension of the webbing.
  • Figure 3D is a plot of voltage versus time for a one-piece dome sensor when not squeezed, at which time the voltage is one.
  • Figure 3E is a side view of the one-piece dome sensor when squeezed by force.
  • Figure 3F is a plot of voltage versus time for a one-stage dome sensor when squeezed, at which time the voltage is zero.
  • Figure 3G is a side view of a one-piece dome sensor without being squeezed
  • Figure 3H is a state diagram of the three-stage dome sensor when it is not squeezed. If the clothes/webbing/pillows are under less stress, only the first segment, ie segment A, will be activated. The second paragraph, that is, the B segment, starts the third segment when the power is maximum, that is, the C segment.
  • Figure 31 is a plot of voltage versus time for a three-section dome sensor.
  • Figure 3J is a side view of the dome sensor, the sensor can be designed to be half on the bed and half on the webbing.
  • Figure 3K is a schematic illustration of a sensor directly sewn to the garment.
  • Figure 3L is a schematic illustration of a sensor sewn to a pillow.
  • Figure 3M is a schematic view of a portion of the sensor on the webbing or on the bed cover, wherein there is only a longitudinal webbing, except that there is a sensor at the end of the webbing, and a plurality of sensors are distributed at the middle end of the webbing to replace the lateral webbing. Sensor.
  • Fig. 3N is a schematic diagram of the electrocardiogram determining the sleeping position.
  • Fig. 4A is a timing chart showing a state change of the user going to and from the bed.
  • Figure 4B is a diagram of the position of the user not in bed and the state of the sensor.
  • Figure 5 is a diagram showing the position of the user sitting on the right side of the bed and the state of the sensor.
  • Figure 6 is a diagram showing the position of the user sitting further inside and the state of the sensor.
  • Figure 7A is a timing diagram of the user turning from the front to the left.
  • Fig. 7B is a view showing the position of the user while lying down and the state of the sensor.
  • Fig. 7C is a view showing the position of the left side of the user and the state of the sensor.
  • Figure 8 is a graph of sleep activity records.
  • Figure 9 is a graph of sleep activity records for different webbing.
  • Figure 10 is a plot of AOP versus time.
  • Figure 11 is a flow chart for anti-decubitus judgment.
  • Figure 12A is a schematic illustration of the gravity of the sensor on the longitudinal webbing.
  • Fig. 12B is a longitudinal pressure versus positional relationship diagram.
  • Figure 12C is a diagram showing the magnitude and position of the COM value of the webbing sensor of Figure 12A.
  • Figure 13A is a schematic illustration of the gravity of the sensor on a two-stage longitudinal webbing.
  • Figure 13B is a two-stage longitudinal pressure versus positional relationship diagram.
  • Figure 14 is a COM location map for the entire sleep cycle.
  • Figure 15 is a schematic illustration of the user lying down on the right side.
  • Fig. 16 is a timing chart in which the user is lying on his side.
  • Figure 17 is a COM (Quality Center Position) position time change diagram (lying on the side).
  • Figure 18 is a timing chart of the user lying down on the side.
  • Figure 19 is a COM position time change diagram ( ⁇ lying on the side).
  • Fig. 20 is a flow chart of posture estimation.
  • Figure 21 is a flow chart of the anti-drop warning.
  • Fig. 22 is a schematic view showing a situation in which the human body is turned into a side lying down.
  • Figure 23 is a timing diagram of the situation in which the user gets out of bed.
  • Fig. 24 is a timing chart showing the situation in which the human body is dropped by lying on the side of the bed.
  • Figure 25 is a timing diagram when the user translates to the edge.
  • Fig. 26A is a graph showing the change in the position of the COM position during translation.
  • Fig. 26B is a diagram showing the COM moving speed at the time of translation of Fig. 26A.
  • Figure 26C is a COM acceleration diagram of the translation of Figure 26A.
  • Fig. 27A is a timing diagram of the two-stage sensor 4 still turning sideways.
  • Figure 27B is a diagram of the COM position versus time of Figure 27A.
  • Fig. 28A is a timing chart of the two-segment sensor lying on the side.
  • Figure 28B is a diagram of the COM position versus time of Figure 28A.
  • Figure 29 is a graph of sleep time vs. speed.
  • Figure 30 is a graph of sleep time vs. acceleration.
  • Figure 31 is a breath diagram of the webbing 4 sensor.
  • Figure 32A is a schematic illustration of the human body lying on its side at a 90 degree angle.
  • Figure 32B is a schematic illustration of the side of the human body lying on the angled bed.
  • Figure 3 3 A is a schematic diagram of the human body sitting on the bed.
  • Figure 33B is a schematic view showing the angle at which the human body is sitting and lying on the bed.
  • Fig. 34A is a schematic view showing the inclination angle of the reclining of the human body.
  • Fig. 34B is a graph showing the relationship between the change in the lying voltage of the human body side and the time of the two-stage sensor.
  • Figure 34C is a graph showing the relationship between the change in the lying voltage of the human body and the time of the three-segment sensor.
  • Fig. 35A is a schematic view showing the angle of the person lying down from the side.
  • Figure 35B is a graph showing voltage changes versus time for a two-segment sensor lying on the side of the human body.
  • 36A-36C are schematic views of the user's body rotation and webbing changes.
  • Figure 37 is a flow chart of the monitoring method of the present invention.
  • Figure 38 is a parallel circuit diagram of a fabric sensor connected in series with a resistor.
  • Figure 39 is a series circuit diagram of a fabric sensor connected to a resistor. The best way to achieve your invention
  • the system architecture of the human body monitoring system using the fabric sensor of the present invention is as shown in FIG. 1.
  • the sensor can be a switch sensor and a pressure sensor.
  • gravity sensor or tension sensor (refer to PCT/CN 2 008/001 57 0, PCT/CN2005/001520, PCT/CN2008/001571 patent application), the sensor can be placed on the bed, on the bed sheet Or on the webbing, or part of the sensor on the bed or bed cover, and the other part on the webbing.
  • the webbing when the person is in bed, the webbing is subjected to a pulling force generated by gravity, so that the sensed state changes, that is, from the original 0 to 1 or from 1 to 0, that is, the system is subjected to external force.
  • the resulting pull sensor is digital and digital.
  • the gravity of a person does not have to be directly in contact with the sensor to reflect the effect of gravity, and if necessary, can be reflected in a multi-segment digital sensor on the same strip.
  • sensor A is a crack sensor and is at the end of the webbing, typically on the edge side of the bed or bed cover. When the crack sensor is not subjected to an external force, its enlarged view is as shown in Fig.
  • sensor A When the sensor A is pressed down by the gravity of the webbing (as shown in FIG. 2D), the tension applied to the sensor A causes the conductive cloth or the conductive sheet W1 to be separated from the conductive cloth or the conductive sheet W2 (as shown in FIG. 2E). Show), its output voltage is "1" (as shown in Figure 2F).
  • sensor B is shown as a two-stage crack sensor in Figure 3A, and is located at the trailing end of the webbing, typically on the edge side of the bed or bed cover.
  • the crack sensor When the crack sensor is not subjected to external force, the conductive cloth or the conductive sheets W1 and W2 are in contact, and the conductive cloth or the conductive sheet W3 is in contact with W4, but under external force, the tension generated by the webbing causes the first crack to be sensed.
  • the conductive cloth conductive sheets W1 and W2 in the device are separated from each other by W2 (as shown in Fig. 3B), so the output voltage is changed from "0" to "1", and the webbing and the bed are
  • the fixing between the two can be direct sewing, devil stain, 'button and thumb buckle.
  • a dome shape sensor may also be used on the sensor as shown in FIG.
  • the dome sensor is disposed on the webbing, and at the end of the webbing, usually located in the bed or On the edge side of the bed cover, when the webbing is not subjected to external force, the state of the sensor is as shown in Fig. 3C, and the output is "1" (as shown in Fig. 3D).
  • the dome sensor may also be partially on the webbing, and the other part on the bed or the cover, the conductive tape is sewn on the webbing, and the elastic silicone of the dome sensor and its conductive sheet are fixed on the bed.
  • the dome sensor can also be placed directly on the bed or on the sheets to produce the same effect.
  • the senor can also be a multi-stage pressure sensor, as shown in FIG. 3H, there are three segments, and the tension generated by the external force applied to the webbing can change the state of the multi-segment sensor, so the output signal is as shown in FIG. Shown.
  • the sensor can also be placed on the garment as shown in Figure 3K or on the pillow as shown in Figure 3L to increase the accuracy of the system.
  • the above sensor is composed of a flexible and conductive material, such as a metal material (such as stainless steel), a non-metal material (such as rubber, silicone, foam) and a conductive material (such as: graphite, conductive Silica gel).
  • a metal material such as stainless steel
  • a non-metal material such as rubber, silicone, foam
  • a conductive material such as: graphite, conductive Silica gel
  • other elastic materials can be added to the fabric during the manufacturing process (eg rubber, foam, silicone, sponge, spring, cotton, spandex, lycra, synthetic rubber (Styrene Butadience Rubber) , SBR), and foam-based materials) to increase its elasticity or all are elastic materials.
  • SBR Synthetic rubber
  • the microcontroller When the sensor senses the attitude change, the upcoming digital signal is input to the microcontroller, and the microcontroller includes a program processing module to encode the digital signals output by the respective sensors disposed at different positions and simultaneously perform Analysis, display, storage or warning, in one embodiment, the encoded digital signals output by the respective sensors can be further transmitted by wired or wireless communication modules to other personal digital devices, such as: a smartphone or a computer For analysis, display, storage or warning.
  • the fabric sensor can be connected to a physiological sensor, so that when the user moves, the fabric sensor is reacted by an external force, and the physiological sensor simultaneously senses the physiological signal of the user, especially when the sleeper
  • the physiological sensor is used to sense the physiological state of the user, such as heartbeat, body temperature, sweat, urine, blood. Oxygen, blood sugar, electromyogram, electrocardiogram, heart sound, lung sound, breathing, breathing times (impedance phe painting), swallowing and blood pressure.
  • the ECG signal when the waveform of the ECG signal generated by different postures of the human body is different, the difference of the ECG waveform can be used to determine the posture of the person in the bed. As shown in Fig. 3N, the physiological signal can be obtained at the same time.
  • the posture state of the bed is used to enhance the posture analysis of the fabric sensor. Electromyography, respiration, heart sounds, and body temperature can also achieve the same effect.
  • the bed is 180 cm long, 98 cm wide, and 20 cm high.
  • the bed has eight longitudinal webbings (numbers 1-8) and six horizontal webbings (numbers 9-14), as shown in the figure.
  • the weaving bandwidth is 5.5 cm
  • the longitudinal webbing is 6 cm.
  • each fabric sensor is connected in series or in parallel with a resistor or capacitor to generate more than one output point, which leads to multiple inputs of the controller, and only two wires are used to connect the modulus.
  • a converter for the microcontroller to read the logic state of each fabric sensor.
  • the invention has a program executed on a personal communication device such as a mobile phone, or a computer, or a control box, and the microprocessor in the control box also has a program, such as As shown in Figure 1, in order to display, store and analyze the sleeping position.
  • Figure 4A is used to illustrate, Figure 4A shows the timing diagram of the state of each ribbon, we use the drawing to show the position and state of each ribbon, and the body is pressed A simulated pose map of the area (A0P) to show the person's posture. When the webbing is uncompressed, the waveform on the timing diagram is displayed as a "low" bit (at the baseline), and on the position and status map. The background color (lightest color) is displayed.
  • the state diagram of the webbing is shown in Figure 5, because the sensor of the transverse webbing does not respond, indicating that the human body has a small width on the bed.
  • the lateral pressure of the area under pressure (A0P) is small.
  • A0P area under pressure
  • the user can go from the bed sensor to the user. At least one change state, lying down, sleeping, and then the time to get up can also be detected, because after the waking, all the webbing is not pressed, so they return to the baseline.
  • the time spent by lying down can also tell that the user is lying or sleeping or sleeping on the bed. For example, the same person, lying on the side and lying on the side, is not the same time. Lying on the side will take less time to lie on your side.
  • the time spent by the user on the lie is abnormal, it can be known from various parameters such as speed, acceleration, center of gravity, center of gravity speed, angular velocity, angular acceleration, and time series of the body pressure area (A0P).
  • Propose appropriate warnings for example: If the user spends more time lie than lying on the side, that is, the speed becomes very slow, it may be inferred that the user may be too tired or sick or There are other abnormal conditions.
  • Various methods for analyzing the sleeping position are detailed in the examples.
  • the invention can record the time of going to bed and bedtime: when all the webbings are not pressed, that is, when the user is out of bed, as shown in Fig. 4A (a), "the user does not go to bed", when any webbing starts to be subjected to Compression, the microcontroller can record the "users go to bed” moment as shown in Figure 4A (b).
  • the microcontroller can record the "users go to bed” moment as shown in Figure 4A (b).
  • the microcontroller can record the "users go to bed” moment as shown in Figure 4A (b).
  • the microcontroller can record the "users go to bed” moment as shown in Figure 4A (b).
  • the microcontroller can record the "users go to bed” moment as shown in Figure 4A (b).
  • the microcontroller can record the "users go to bed” moment as shown in Figure 4A (b).
  • the microcontroller can record the "users go to bed” moment as shown in Figure 4A (b).
  • the user
  • the present invention has the function of sleep activity "3 ⁇ 4 ⁇ 0 ⁇ ⁇ ⁇ 01" due to the "sleep-awake" cycle
  • the change in muscle tone is also relevant, and the researchers have developed a number of methods for measuring activity to indirectly measure the "sleep-awake" state.
  • One of the more widely used techniques is the recording of sleep activity.
  • the sleep activity record of the present invention is shown in Fig. 8. The horizontal axis indicates the bedtime, and the vertical axis indicates the sum of the number of times all fabric sensors change state per unit time. The more times you change the status, the more frequently the user is active, and may be unable to sleep. The longer the activity is, the more the user is asleep.
  • the motion variable can also be expressed in terms of speed, acceleration, angular velocity, angular acceleration, center of gravity, center of gravity, and area under pressure (A0P). It can express the variability of the above parameters, and can also display the sensor changes in different bed areas in units of each webbing, as shown in Figure 9, or in each unit of the sensor on the entire bed.
  • (A0P) the performance of the area under pressure in the body, the two-dimensional space is used to represent the bed and the other dimension to represent the time change, as shown in Figure 10 (1) for lying down, (2) for lying on the side, and (3) for The person is sitting, (4) standing, where (1) the area (A0P) is large but small, (2) the area of the body under pressure (A0P) is medium, but the sensor value rises, (3) sit On the bed, only the buttocks and feet are on the bed and the pressure on the buttocks becomes larger, but the pressure area changes little. If the person leans forward, the center of gravity goes forward to indicate that the person is leaving the bed and the A0P area begins to become smaller.
  • the body's posture change can be analyzed by the body pressure area (AOP) and the center of gravity (COM). If standing on the bed, the A0P area is the smallest, but the value is the largest, and the center of gravity is between the two feet. If the center of gravity (COM) is at both feet There are opportunities for falls outside.
  • AOP body pressure area
  • COM center of gravity
  • the present invention can observe the activity of the hand or P, and the Res t les s Limb Movement Di sorder is a common condition in sleep, which can be observed by the present invention, which is characterized by one or more ribbons changing the state multiple times. And the position indicates that the impulse generated by the movement of the hand or the foot causes the webbing to be affected by the impulse and the tension changes, which causes the sensor to change state, unlike the normal turning over, more sensor changes are indicated.
  • the body also has movements, such as turning over or getting up.
  • the invention can obtain the Area of Pressure (AOP) of the sleeper, and the area of the body under pressure is defined as:
  • AOP Area of Pressure
  • the sensor will change with the posture of the body.
  • the phenomenon of segmentation opening which means that the weaving belt is subjected to a force, and at a certain time, the value measured by the sensor is pushed back to the distribution pattern of the pressure on the entire bed surface, and then pushed back to the corresponding
  • the figure of the human body's area of pressure the normal person lying on the bed, the head, chest and buttocks are pressed, become the area of the A0P, and the person is left and right symmetrical, so the bed can be sensed
  • the device shows the part and time when the sleeper is pressed.
  • the webbing 10 When lying down on the side, as lying on the left side, as shown in Figure 7A, the webbing 10 is in the "high” position, indicating that the left shoulder is under pressure, and the left side is lying down. Turning back to the back, the webbing 10 is still in the "high” position, we can know the time of pressure on the left shoulder area of the sleeper. It is an important parameter for people who need to turn over regularly to avoid hemorrhoids such as stroke or vegetative, as long as "A0P" Relative pressure on the person's part And time can know.
  • an electric bed an electric chair or an air bed
  • the monitoring system can start the rise of the head of the electric bed, and reduce the pressure in the head and chest areas.
  • A0P is mainly in the buttocks area, and the head and chest areas of the electric bed are lowered in an hour or two.
  • the A0P is pressed. The area is mainly restored to the head and chest so that hemorrhoids can be avoided.
  • the invention has a turning-over reminder, anti-decubitus function, if the display shows that the patient with hemorrhoids has not turned over for a long time (for example, where all the webbing has no state change for more than 4 hours or the area of the body-pressed area (A0P) is unchanged Where, such as the buttocks, the present invention can best remind the medical staff to assist the patient to turn over.
  • the process of anti-decubitus is shown in Figure 11. First, it is judged whether the previous steady-state A0P is the same as the steady-state A0P, that is, the magnitude of the pressure and the length of time, because the study indicates that the human tissue may undergo irreversible tissue changes under the pressure of more than 70 hidden HG for more than 2 hours. This is the most important factor causing acne, so the key factor to prevent acne is the time and pressure of the stressed area;
  • the same time is accumulated for A0P. If they are the same, the same time is accumulated for A0P. If they are different, the anti-decubitus judgment is terminated; it is judged whether the accumulated time of A0P exceeds the set time;
  • an anti-decubitus warning is issued and the acne judgment is terminated after the warning. If it is not exceeded, the A0P is accumulated for the same time, for example, when the pressure exceeds 7 OmmHG and the time exceeds 2 hours.
  • the present invention can obtain the position and size data of the center (center of mas s) of the shield center.
  • the bed edge is arranged by a one-stage sensor to sense a one-stage pressure value.
  • 12A and 12B illustrate the calculation of the COM of the longitudinal sensor.
  • the webbing sensors 3, 4, and 5 of the bed have a switch to open, indicating that each of them is subjected to a pressure, and the force is equivalent. Therefore, in the pressure versus position map, there is a unit level of pressure (indicated by P) at positions 3, 4, 5 to activate the state of the sensor (as shown in Figure 12B).
  • the center of mas s (COM), which is the center of gravity on Earth, represents the concentrated effect of each pressure center.
  • the calculation method for the COM position is:
  • P 2 is equivalent to m 2 ⁇ .
  • P n is the magnitude of the pressure, because on the surface of the earth, the mass (m) is proportional to the weight (rag), and the weight is proportional to the pressure, that is, the greater the mass, the greater the pressure, resulting in greater tension, sensing on the webbing.
  • the total weight which is equivalent to the total mass, that is, the total pressure, can be expressed by the sum of the sensor output values, as shown in Fig. 12C, so the total weight is equal to the sum of the sensed values of the respective sensors.
  • FIG. 1 3A Another example is to illustrate the position calculation method of the COM when the two-stage sensor is opened in two stages. See Fig. 1 3A to sense the compression of the webbing, in which the first webbing opens the second section of the crack, so the force is relatively strong with respect to the webbing 3.
  • the weight is also equal to the total mass, and the size is 4 inches. Based on this, we can record the COM position throughout the sleep cycle and draw the results shown in Figure 14.
  • Figure 14 is a COM position map drawn by a longitudinal (X-axis) sensor.
  • the lateral (Y-axis) sensor can also draw a COM position map using the same principle.
  • Normal people have regular sleep, such as going to bed and The position of getting out of bed, from this picture, can be seen that the sleeper is going to bed from the side of the bed.
  • the COM position should not change much. Therefore, if the COM position map changes too much, it means that the sleep quality of the sleeper is not good.
  • the COM position changes too sharply in a short period of time, it is more likely that the sleeper has other problems, such as turning over and over to sleep. . . .
  • the invention can recognize the sleeping position of the user on the bed (lying on the left and right sides, lying on the left and right sides), and when the user lies down and simultaneously presses a plurality of webbings, the remote display will show which webbings are subjected to Compression: If the display shows that the webbing signal is concentrated on the right side of the user, that is, the inner side of the pressure value indicates the weight of the body, as shown in Figure 15, the pressure value is light on the outside, indicating the pressure of the hands and feet, which means that the user may Sleep to the left; if the sensed value of the ribbon sensor is concentrated in the middle, the light value on both sides means that the user may adopt a lying posture or posture; if the sensed value of the ribbon sensor is heavy On the left side, the light value on the right is used to indicate that the hands and feet are on the right side of the body, which means that the user may take to sleep on the right side.
  • the weight of the upper body is larger than that of the lower body. Because the lower body has only legs and feet, the number of responses of the transverse webbing is high and the value of the pressure section is high. The number of reactive webbing of the lower body is less and the sensor value of the webbing is relatively low, so it can be used.
  • the upper body and the lower body respectively, the person's sleep posture can be discerned. According to the time difference generated by the user turning over the body, it can be judged that the user is lying or sleeping in the bed, and the principle is: the user spends less time sleeping on the side of the bed, and the bed is turned to the bed.
  • a webbing sensor that uses the starting point of the force from the hand or foot reacts for a longer time and a larger sensing value.
  • the webbing under the point of application can be restored to its original state, while the adjacent unsynchronized webbing sensor on the other side begins to react to reflect the rotation of the body to achieve the posture of turning over to the side.
  • the user is lying or sleeping. If it is lying down on the side, if the force supported by the hand or the foot is small and short, the value displayed on the sensor is low relative to the sleepy side, and the reaction time is short.
  • Figure 16 is a timing diagram from lying down to lying on the side, the sensor is a one-piece type, when the user is lying on the bed and lying on the side, the time required is less, the intermediate webbing 4, 5, 6 Body rotation From the high position to the low position, then the right side of the ribbon 7, 8 timing chart from the low position to the high position.
  • Figure 16 calculates the position of the center of mass of the human body as shown in Figure 17.
  • the position of the center of mass is away from the center of mass position (COM) when it is lying down, and it is lying before tl. 5 ⁇
  • the width of the two webbing is 11. 5 cm.
  • the webbing 4 is turned from a high position to a low position, and at t3, the webbing 5 is turned from a high position to a low position, indicating a change in the posture of the human body, causing a change between the two webbings, and thus the speed of change of the body posture between the webbing 4 and the webbing 5 is calculated as follows:
  • the webbing 7 is changed from the low position to the high position
  • the webbing 8 is changed from the low position to the high position, indicating that the change in the posture of the human body causes a change between the two webbings, and thus the speed of change of the body posture between the webbing 7 and the webbing 8 is calculated as follows. :
  • the webbing 5 is changed from a high position to a 4 position, and at t5, the webbing 6 is rotated from a high position to a position, indicating a change in the posture of the human body, causing a change between the two webbings, thereby calculating the webbing 5 to the webbing 6
  • the body posture changes speed as follows:
  • VI is the speed of the human body posture at time t1.
  • the human body posture speed becomes V2
  • the acceleration A1 of the human body posture change can be calculated as
  • V2 is the speed of the human body posture at time t2.
  • the human body posture speed becomes V3
  • the acceleration A2 of the human body posture change can be calculated as
  • the body posture change speed and acceleration lying on the side are all in the same direction, and the values are changed the same.
  • Fig. 18 is a timing chart of the side lying down by the if eight, when the user is lying on the bed from the sleepy side, the time required is more, and the time of the middle webbing 5, 4, 3 going from the high position to the lower position is different. More, because the user needs to support the body by hand when he sleeps to lie on his side (the force applied to the other side of the center of gravity) is turned over very clearly by the timing diagram or AOP, as shown in Figure 19. At t2, the webbing 1 indicates the generation of the force distance from the low position to the high position, and the movement does not fall off when lying down on the side. Therefore, the difference in COM variation caused by the reversal of the side can be judged by the user.
  • the sleeping position is lying or sleeping.
  • the webbing 3 is turned from a high position to a low position, and when t3, the webbing 4 is turned from a high position to a low position, indicating a change in the posture of the human body, causing a change between the two webbings, and thus the speed of change of the body posture between the webbing 3 and the webbing 4 is calculated as follows :
  • the webbing 6 is turned from a low position to a high position
  • the webbing 7 is turned from a low position to a high position.
  • the webbing 5 is changed from a high position to a low position
  • the webbing 6 is turned from a high position to a low position, indicating a change in the posture of the human body, causing a change between the two webbings, thereby calculating a change in body posture between the webbing 5 and the webbing 6.
  • the speed is as follows:
  • VI is the speed of the human body posture at time t1.
  • the human body posture speed becomes V2
  • the acceleration A1 of the human body posture change can be calculated as
  • V2 is the speed of the human body posture at time t2
  • the body posture speed becomes V3 at t3
  • the acceleration A2 of the human body posture change can be calculated as
  • the change in acceleration is more irregular, regardless of the magnitude and direction of the values. This can also be used to distinguish a feature that lies or lies down. Therefore, it can be seen from Fig. 19 that the COM speed and acceleration are lying on the side. Therefore, we can measure the speed and acceleration of the pressed part, and use the time that the original lying or lying down is converted into the lying side as the denominator, and the angle of rotation is ⁇ /2 (ie 90.) as the numerator, the two phases In addition to the average angular velocity can be calculated. Lying on the side and lying on the side are different from the average angular velocity, which can also be used to analyze posture changes. In addition, the sleep product shield is bad, and the average angular velocity changes greatly. In the same way, when the sleep is not good, the speed and acceleration change greatly, so the angular quality, speed and acceleration can also be used to analyze the sleep quality.
  • the bed time is output, then the drop judgment and warning are performed, and the information recorded before leaving the bed is processed again, and the uncertain steady state information is estimated until all are determined or cannot be estimated, and finally the statistical information is output and the posture is ended. Presumption.
  • the invention has the function of warning of falling over the bed, and if the portion of the web that is pressed by the display is too concentrated on the right side or the left side, as shown in the flow chart of FIG. 21, it can be regarded as a user who may fall off the bed.
  • kinds of warnings such as changes in lying on the side of the bed, are a high risk of falling off the bed as shown in Figure 22.
  • the danger of falling can be judged jointly by the following two aspects:
  • the transverse webbing when the person lies on the edge of the bed from the side lying down, the transverse webbing will have a very high probability of being pressed to the side of the bed and the side of the bed. That is, the number of transversely woven belts is larger than the one's buttocks, so that the user is not sitting, and the longitudinal webbing is only the longitudinal webbing at the bedside, so that the longitudinal center of gravity (COM) is more Moving to the bedside, the chance of falling out of bed is greater.
  • COM longitudinal center of gravity
  • the human body leaves the bed by the condition of the lateral sensor, it is because it falls or gets up, because the sensor of the transverse webbing has a sensed distance greater than the distance of the butt.
  • the sensor of the transverse webbing has a sensed distance greater than the distance of the butt.
  • the person's weight is biased toward the bed and the lateral sensor is turned on more or the distance between the lateral sensors is greater than the buttocks, it means that the human body has the danger of falling, that is, warning.
  • we may be replaced by a dome shape sensor or a multi-segment pressure sensor on the path of the longitudinal webbing.
  • the bed has a larger area of force and the value obtained by each sensor is smaller when lying down; the force area on the side is centered, and the value of each sensor is also centered; when sitting at the bed, the bed The bed has a small force area and the value obtained by each sensor is larger; if the user is kneeling on the bed, there are two lower limbs pressed against the bed; if standing on the bed, the area of the two soles is On the bed, the bed has a smaller force area and greater pressure; of course, if the foot is on the bed, the output of the sensor will be larger, but the posture is unstable and easy to fall, and few users will use it.
  • FIG 23 is an embodiment in which the human body gets up directly to get out of bed.
  • the sensor in the webbing 1 is a 3-segment sensor.
  • 24 is a timing chart of the human body falling from the side lying down, and it can be seen that the human body is slowly lying down from the side lying down, so that the sensor of the bedside webbing 1 is opened in sections, when the human body is lying on the side When it falls, because there is no supporting force, the human body immediately leaves the bed, so the sensor of the webbing 1 is immediately closed. At the same time, the speed and acceleration of the centroid movement are very different from the normal departure from the bed.
  • the invention can be a monitoring system with a two-stage sensor.
  • the principle of the two-stage sensor is to set the monitoring system as a sensor with two stages.
  • the device will be inductive.
  • the pressed webbing will be light gray.
  • the second stage sensor will be guided.
  • the pressed webbing will be deep. gray.
  • the color and the area of the force displayed by the display can determine which sleeping position the user is taking, that is, the area under pressure (A0P) can also be displayed graphically. Because the bed is stressed and the weight of the body is dispersed, the strength of the webbing is relatively small, and it is mainly distributed in the chest and buttocks of the head.
  • the two sensors only open the first segment.
  • the pressed webbing will appear light gray.
  • the force area is small, relative The webbing is subjected to a large force, so that the pressure is concentrated, and the sensor opens the second section.
  • the web that is pressed is dark gray, indicating the body part, and the strength of the webbing in the hands and feet is lighter. Therefore, it can be divided into left or right side lying. Therefore, the size of the force applied by the sensor can assist in determining the lying or lying state. If there are more segments, it is better to analyze lying, lying or lying on the side, and lying on the side can be divided into left or right lying. Because the size of the pressed area is more separate from the pressure path, the time variation of the human pressure area (A0P) can also be obtained.
  • each of the sensing webbings is less stressed, so the sensor only opens the first segment.
  • the force area is small and the pressure is large, so the webbing is subjected to a large force, and the sensor opens the second section. Therefore, the number of stages in which the force is applied by the sensor can assist in determining the positive and lying states.
  • the position on the X-Y axis, speed, acceleration, Angular velocity, angular acceleration and COM center of gravity
  • center of gravity velocity acceleration of the center of gravity
  • AOP of the human body COM
  • A0P changes with time, which can simultaneously simulate the change of posture in the bed.
  • the center of gravity of the person in the chair, the speed of the center of gravity, the acceleration of the center of gravity, the area of the human body pressure (A0P) and the A0P change with time, so that the change of the center of gravity is used in the electric chair to advance or retreat the chair, that is, use Use the head or body to move forward, backward, left, and right to control the direction and speed of the electric chair.
  • the electrode can be measured on the chair and the seat belt at the same time.
  • the electrocardiogram in addition to the heartbeat lying on the chair, can be known by its ECG waveform change, so that the electric chair can be further controlled.
  • a microphone can be placed on the chair and the safety belt to measure the heartbeat or breathing, and the direction of the action electric chair can also be used when the amplitude of the heart sound or breathing sound of different parts, such as the front chest or the back chest, is large.
  • the two-stage sensor of the present invention can determine the number of times the user turns over, the speed, and the acceleration, which is a continuous situation when a person is lying down and lying down to the side. We can also use this to measure the centroid (COM) position, centroid velocity, centroid acceleration, and web speed and acceleration.
  • the center of mass (COM) can also be called the center of gravity (COM).
  • Fig. 27A The corresponding timing chart is shown in Fig. 27A, which can be calculated from the timing chart of Fig. 27A.
  • the two-stage sensor is the same as the one-segment sensor COM, and the lying side COM changes with time. Lying COM changes a lot, and lying with hands or feet as a support to force the turn.
  • V n is the speed of the nth webbing itself, that is, the speed at which the webbing itself is compressed
  • CV nm is the speed of the nth webbing to the mth webbing
  • each vertical dividing line (longitudinal grid line) is separated by 1 second.
  • the speed and force velocity of the sensor change between different webbings can be calculated as follows:
  • Figure 27B is a COM position versus time change diagram of Figure 27A, and the middle dotted line indicates the original COM position. It can be seen that after the tO time, the COM position is on the side of the dotted line and then returns to the original center of gravity and exceeds the original center of gravity. On the other side, the turning action of lying down on the side is the COM position moving back and forth to the original (COM) position. And the speed of the COM is also the opposite of the speed direction of the first 10 and the subsequent COM speed direction tl.
  • 28B is a COM position versus time change diagram of FIG. 28A, and the middle dotted line indicates the original COM position. It can be seen that after the U time, the COM position appears on both sides of the broken line (because the torque is applied to the other side of the turn direction), After the intersection of the second COM position and the dotted line, the COM position will continue to move in the direction of the turn. And the center of gravity can be seen in the same direction.
  • the webbing of the first strip and the second strip does not reflect the measurable speed, it can be expressed by the speed calculated by the first strip or the second strip itself, that is, the so-called speed and webbing of the webbing itself. The speed between them can be replaced by each other.
  • the acceleration can be calculated from the speeds of n and n+1, or n+1 and n+2 To take over, or the acceleration obtained by the nth, n+1 or n+2 strips themselves.
  • the movement of turning over has a certain regularity.
  • the speed and acceleration generated on the webbing should also have certain regularity.
  • Young people are more manpower, and when they turn, they will produce greater speed and acceleration.
  • the speed will be slower and the time will be longer.
  • the force and force point when he wants to turn over will have a fixed pattern. If the person is in an abnormal situation, such as drunkenness, too tired or poor sleep quality, his exertion and The force application method will change, so the speed and acceleration, angular velocity and angular acceleration will change.
  • the system records various variables during a person's normal sleep, such as changes in speed and acceleration, which can be used to estimate his possible abnormalities during sleep. Using the above changes in speed and acceleration versus time, you can plot the speed of the webbing during the night's sleep. 29 Speed Chart 30 histogram, which provides more information about the patient's condition.
  • other parameters such as angular velocity, angular acceleration, center of gravity, center of gravity, center of gravity acceleration, A0P, A0P change with time, etc., can be based on straight bar or 2D and 3D, 2D or 3D Only one dimension must be time, and the other or two dimensions are the location of the sensor of the longitudinal webbing or the transverse webbing.
  • M proportional to the weight (Mg)
  • M proportional to the weight (Mg)
  • the weight that can be used for each webbing is represented by the number of segments.
  • the angular momentum L can also be represented by IXW
  • I MR 2
  • R (rotation radius) M (mass) is also proportional to the weight (mg) is proportional to the number of segments measured by the ribbon sensor, so the relative I value can also be obtained
  • W the angular velocity
  • the kinetic energy MV 2 /2
  • M is the quality of each person, can be directly input by the weight of each person
  • the calculated speed (V) is the product of the centroid (COM) speed as the product of the mass movement speed of the sleeper and the total mass MV 2
  • MgH gravitational potential energy
  • IW 2 /2 rotational energy a gravitational potential energy
  • MVV2 kinetic energy a gravitational potential energy
  • Changes in energy can be used to analyze posture changes and sleep quality.
  • the gravitational potential energy means that when sitting down and lying down, when lying down and sitting down, when the lying height is "0", the standard value, sit up and have the mass on the waist to leave the bed, and the weight above the waist is about 1/2 to 2
  • 2 rotational kinetic energy indicates that the energy spent by the sleeper turning over is about IW 2 /2, where I is the moment of inertia, W is the angular velocity, and of course, various postures such as lying, lying, lying, sitting, etc.
  • I the moment of inertia
  • W the angular velocity
  • the inertia I values are different, and the corresponding W value (the angular velocity is also different), so the change of the rotational energy can be made overnight, on the one hand, the sleep posture can be analyzed, and on the other hand, the indicator of sleep quality, if its total The larger the value, the more the number of turning over, and the worse the quality of sleep.
  • the kinetic energy MVV2 which is expressed by the velocity of the centroid (COM) and its centroid (M), and the kinetic energy generated by the movement of the local parts of the body, is represented by pV 2 /2, where p is the local pressure.
  • V is the local velocity value, which means that people move kinetic energy in each body part of the bed, so the total MV 2 /2 (kinetic energy) of the whole night, the kinetic energy of the sleeper all night, the larger the whole night is moved and removed. Unstable, so the higher the value of the whole night, the worse the sleep quality.
  • the system can also synchronously measure the breathing signal lying on the bed by the sensor, as shown in Fig. 31, that is, when the breathing changes, the tension of the webbing also changes, so the sensor can also sense Changes in breathing.
  • the contact surface between the human body and the bed surface is dispersed by gravity to a plurality of webbings, so that the pressure on the plurality of webbings is small.
  • the number of segments opened so if the number of segments of the crack sensor is more, the proportional relationship of the force is more clearly, or the number of segments of the multi-segment sensor.
  • R is the distance to the fulcrum.
  • the degree of braininess of the person is also small, and the value of I lying is the largest, so the lie is changed to lying or lying on the side, the energy required is large and the time is the most, so the sleep quality is poor, the I value of lying is centered, and the side is lying. Both energy and angular velocity are in the middle. Therefore, the value of the moment of inertia can be used to analyze the posture and its changes. It can also be used to evaluate the quality of sleep. If the moment of inertia I is greatly curved overnight, the quality of sleep will be 4 ⁇ , and the frequency of change will be higher. not good.
  • the flow chart of the posture determination can refer to the flow chart of the one-step sensor posture determination, as shown in FIG.
  • the database of A0P and COM can know the tilt of the angle of different beds, for example, the head of the bed is raised, which causes the center of gravity (COM) to move toward the buttocks, and the pressure in the butt area rises.
  • the pressure value of the part decreases, so the A0P distribution changes with the angle of the bed head rising.
  • the bed end rises the pressure on the chest and head rises, and at the same time, the center of gravity moves toward the head.
  • the angle at which the bed is tilted to the left or right can also be compared to the angle of the tilt by the A0P and COM databases.
  • the set sensor can determine the different reactions, so we can get the corresponding value when the reaction is made, the value becomes a known parameter, so the angular velocity ⁇ of each person is known, so when the body When you are sitting on your back, you can get the time you need, 2
  • the weight on the webbing is from zero to mg sin 6i, that is, the body starts to press on the webbing, that is, when rotating 6i, the original two-stage sensor is The first segment changes from “0" to "1", which changes its state. Then when the body rotates to the ⁇ 2 angle, the second segment sensor changes from "0" to "1", indicating mg sin0 2 , during which The occurrence time is 1 ⁇ , as shown in Fig.
  • the multi-segment sensor can be set as a multi-stage head-up angle sensor.
  • the second stage sensor is from "1" ⁇ "0", so it can also be the sensor for the bed head drop angle.
  • the fabric sensor can also be raised at the end of the bed. Or a falling angle sensor that senses and determines the angle of rise or fall of the bed.
  • the webbing sensor when the webbing sensor is at the highest end, that is, the body weight (mg) is on it, that is, the webbing 1 is seated thereon, for example, when it starts to lie down, the sensor of the adjacent webbing 2 reacts by "0. "Change” ⁇ , we can be used as the starting rotation time of the ribbon 1 sensor, until the highest segment of the webbing 1 is changed from “1" to "0" to indicate that the body has turned (Fig. 34 ⁇ ), then the angular velocity ⁇ is the webbing 2 The reaction takes place until the webbing 1 reacts.
  • the start time of the rotation since the start time of the rotation is difficult to measure, it can be sensed by an accelerometer or a vibration sensor or a gyroscope or a camera.
  • the average angular velocity can be changed from 90° on the side to the time required to lie flat. ⁇ The average angular velocity
  • the system After the system is started, it is judged whether the mattress is touched. If the mattress is not touched, the system continues to determine whether the mattress is touched after entering the power saving mode;
  • a dome-shaped sensor can be provided on the webbing or the bed cover or the bed, as shown in Fig. 3M, or the multi-segment sensor is connected in the webbing or the bed cover or the bed.
  • the tension sensor effect of the crack sensor is activated, so that the power saving and the provincial start action can be simultaneously performed, and the user does not go to bed or get out of bed.
  • the fabric sensor can also detect the elasticity of the bed on the outside of the bed; if the elasticity of the bed is lowered, the measured center of gravity and other values will also change, indicating that the bed or chair is to be changed.
  • the conductive material on the fabric sensor can also be composed of a variable resistor, a piezoelectric material or a variable capacitor, so that the output signal is an analog signal, and the sensed parameter is a resistance value or a capacitance value.
  • a human body monitoring system using a fabric sensor characterized in that the program processing module preprocesses the digital output of each sensor to reduce noise interference by the following rules: for positive and negative pulses with a period less than K seconds Will be eliminated.
  • Each fabric sensor has a resistor or capacitor connected in series or in parallel to generate multiple output points, which results in multiple inputs of the controller, and the result is only two wires connected to the analog-to-digital converter.
  • the microcontroller reads the logic state of each fabric sensor. For example, FIG.
  • each fabric sensor is connected in series with a resistor and then connected in parallel.
  • FIG. 39 shows that each fabric is sensed and connected to a resistor and then connected in series. This allows the output to have only two points. With this resistive circuit system, the output can be reduced to achieve easy engagement with the input of the controller, as the joint between the two is reduced.
  • ultrasonic, infrared sensors, lasers, cameras, accelerometers, or gyroscopes can be added to increase system accuracy.
  • the sensor system can include a fabric sensor on the pillow, on the garment or on the floor to increase the accuracy of the system.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

利用织品感测器的人体监控系统及监控方法 技术领域
本发明涉及一种可用来自动侦测使用者的上床时间、 起床时间、 睡眠 时间、 睡眠姿势变化、 及睡眠品质的利用织品感测器的人体监控系统及监 控方法, 然后推估使用者是否一觉到天亮或彻夜辗转难眠, 并可进一步得 知使用者的生理状况。 本发明亦可应用在长期照护, 追踪病人病况。 本发 明关于利用多个固定在床面上、 织带或床罩的织品感测器, 当人体的重量 所造成织带的拉力, 拉动固定在床或床罩或织带的感测器改变信号, 藉此 可以知道使用者的睡姿及活动, 同时也可侦测使用者的呼吸频率、 使用者 的姿势变化, 如: 躺、 趴、 坐、 卧或在织带感测器上从事不同的运动, 如: 仰卧起坐、 伏地挺身, 另外, 此织品感测器亦可应用在电动床或椅子上。 背景技术
人三分之一到四分之一的时间都在床上睡觉, 故人在床上的姿势变化 及状态就显得特别重要。 另外, 由于独居老人是独自生活, 故对其睡眠状 态的监视也很重要, 例如: 独居老人是否有跌下床。 并且也可以应用于中 风的病患是否有褥疮, 因为褥疮的病患需要翻身才不会使其病情加重。 由 于现代人工作压力越来越大, 导致睡眠品质下降, 失眠者也越来越多。 另 外,.针对睡眠呼吸中止症的病患(Obstruct ive Sleep Apnea, 0SA)也有迫 切的需要。 上述现象更突显睡眠监测系统的重要性。 此外, 近年来全球高 龄化的情形也迅速攀升, 或者, 为了解决日益严重的独居老人的问题, 许 多国家开始重视居家远距监控, 其中考虑因素不仅在患者疾病预防, 患者 的健康管理也是发展的方向。
现有的长期照护用监控系统, 在使用上最大的瓶颈, 必须使用电极贴 片和电线, 这让使用者感到不舒适和受束缚。 针对此瓶颈, 穿戴式的心电 图衣、 呼吸带、 和可侦测睡眠中身体活动的睡眠床都已开发出。
再者, 考虑使用者需要正常的居家生活, 监控系统应兼具方便性与人 性化。 开发出适用于居家环境的睡眠监测装置是国内外发展趋势, 其市场 优势如下: 一、 发展居家环境下使用的睡眠监测技术, 可以让病患先行在 家中进行相关睡眠疾病的先期筛选, 以节省医疗资源。 二、 相较于睡眠实 验室中仅一晚的睡眠监测, 居家环境下的监测, 可以提供连续且长期的病 患睡眠生理资料, 作为诊断上的依据。 三、 非约束性的睡眠生理感测技术, 简化了粘贴导线与电极贴片的过程, 可由非专业医疗人员的设置与操作, 并在不影响受测者睡眠品质的前提下, 进行睡眠生理监测。 四、 远距监测 技术所发展的睡眠监测系统, 在资讯通讯技术能力下是 f艮容易实施的, 让 原本局限于医疗机构所进行的睡眠监测与睡眠评估系统, 得以在居家环境 下实现。
人曰常生活中至少有三分之一到四分之一的时间都在睡觉, 所以在床 上装设有感测器, 即可测知使用者的睡眠品质及睡眠姿势, 进而可以不费 时费力就得知使用者的生理状态。 本发明亦不需要在专业的医疗人员监控 下就可使用, 非常的方便且有利于推广, 尤其是对身患长期慢性疾病的病 患或者是行动不便的老人, 都可以做安全且有效的监控, 如果有不正常的 信号产生, 也可以及时、 有效提醒远端的监控人员, 以避免病患发生危险。 故此发明对使用者的健康及安全有很大的助益。
考虑先前技术, 美国专利 4, 175, 263号, 是只有用在医院病床的压力 感测系统, 包含两个产生模拟信号且安装在床上的感测器。 第一个感测器 是感测使用者躺在床中央的重量, 第二个感测器是感测使用者在床边缘的 重量, 当重量由中央转至边缘时, 代表病人已在床的边缘, 有摔落床下的 危险, 进而会发出警讯通知, 但此发明只能知道病人是在中央或边缘位置, 使用者由躺在床上到坐起来以及从坐在床上, 然后躺下的姿势变化并无法 得知, 且此专利只能运用在医院病床上, 并不如本发明可以运用在各式各 样的床, 如一般床、 气垫床、 软床、 电动床甚至椅子, 且本发明可以是数 字信号的感测器, 只要是可导电材料皆可是做为感测器的材料, 且不必一 定要安装在床上面, 而是在床侧边, 另外, 感测器是靠织带受到人体压迫 所产生的拉力来启动感测器。
美国专利号 5, 844, 488 , 是一种一段式产生模拟信号的压力感测垫子, 可以是装置在床头或床上, 中间或侧边的位置, 主要运用在医院病床, 垫 子上有中央和边缘的启动区域, 当使用者身体移动到垫子的边缘时, 启动 区域的感测器会被启动, 发出警讯, 让远端监视者知道使用者已移位到床 的边缘, 但是使用者的睡眠品质、 使用者在床上细微的的姿势变化, 如正 躺转侧躺或趴睡转侧躺等等甚至是呼吸并无法得知, 本发明可以是多段式 的数字信号的感测器, 不必一定要安装在床上, 因为本发明可以靠织带受 到人体压迫所产生的拉力来启动感测器, 姿势变化从正躺转侧躺、 睡转 正躺、 睡眠中翻身, 动作变化之间的速度变化, 进而得知使用者的呼吸等 等可得知。 美国专利号 5, 917, 180, 藉由光纤科技来感测使用者在床垫上体 重的变化, 来判断使用者在床上的位置, 产生模拟信号的感测器是装在床 垫上。 美国专利号 5, 410, 297 的是产生模拟信号的压力感测器, 材质包含 塑胶泡棉和铝线, 但只能知道使用者在床上的位置, 但详细的使用者的睡 眠品质、 使用者姿势变化、 睡眠中翻身, 动作变化之间的速度变化等等无 法得知。 美国专利号 3, 961, 201 是一种装置在床缘和床垫的模拟信号的带 子感应开关, 当使用者身体移动到床的边缘时, 感应开关会被启动, 发出 警讯, 让远端监视者知道使用者已移位到床的边缘, 但是, 更精确的使用 者在床上的位置, 使用者下床的方向并无法得知。 PCT 专利号公告 WO9010281A1是安装在床上的模拟信号的压力感测器,但只有运用在医院病 床, 当感受到重量时, 代表使用者在床上, 当重量感受不到时, 代表使用 者已下床, 这时会发出警讯。 本发明是数字信号的感测器, 不必一定要安 装在床上, 因为可以靠织带受到人体压迫所产生的拉力来启动感测器, 姿 势变化从正躺转侧躺、 趴睡转正躺, 睡眠中翻身, 动作变化之间的速度变 化及加速度角速度及角加速度也可知道, 同时可测重心及重心变化速度、 使用者上床及下床的方向, 身体在床上的受压位置及承受的时间, 同时也 可测不同姿势的惯性质量, 甚至是使用者的呼吸也可测得, 进而得知使用 者的生理状态等等皆可得知。 美国专利号 4, 633, 237是缝在床垫上的产生 模拟信号的数个压力感测器的感测系统, 包含数个散布在床上的感测器, 连接远端微电脑, 可知使用者在床上的位置, 若是在边缘, 会启动感测器, 发出警告。 美国专利号 5, 144, 284是一种装在床垫上的模拟信号的压力感 测器, 内部包含两条金属带, 由可压缩材质分离, 未受压力时不会导通, 但其感测器只有设在单一尺寸的床垫, 当使用者压在床垫上时, 会感测到 使用者的压力, 但也是只能感测到使用者在床上的位置, 但此专利无法侦 测到使用者呼吸, 使用者的睡眠品质、 使用者姿势变化, 如正躺转侧躺、 趴睡转正躺、 睡眠中翻身, 动作变化之间的速度变化。 美国专利号 6, 2028, 250是包括两个感测器的感测系统,可以感测使用者在床上的位置。 美国专利号 4, 320, 766是装置在床垫下的一段式压力感测器, 感测器中的 活性层含有两道具有导电性的材质, 但也是只能侦测到使用者在床上的位 置。 美国专利号 5, 448, 996 的专利发明是把一段式产生模拟信号的压力感 测系统, 包含两个直接装置在床上的感测器, 使用者上床时就直接接触并 压到, 感测系统的第一个感测器, 含有铝线和具有弹性的聚合层, 可以感 测使用者的呼吸, 心跳, 第二个感测器有含电压的薄膜层和第二个具有弹 性的聚合层, 可以感测使用者在床上的位置变化, 其缺点是感测器是在床 上, 使用者会直接压到, 可能会造成使用者的不适, 且使用感测器所得信 号是类比信号, 其感测器相对较复杂, 也比较昂贵, 产生的信号易受外界 干扰。 美国专利号公告 2005/0107722 A1 在睡眠侦测仪器的设计上亦有如 下的缺失。 一、 该专利的侦测器是散布在床上, 产生的信号是模拟信号, 需要复杂的判读程序; 二、 该专利的感测器在侦测使用者在床上的姿势时 的信号也显得比较混乱, 不易判读。
以上专利的功能只是通过重量或压力的侦测器来侦测使用者的位置, 但只能知道使用者的位置是否在中央或边缘, 若使用者的重量集中在边缘, 则可研判使用者已经在床缘, 可能有危险, 若重量或压力侦测器侦测不到 重量, 代表使用者已经下床, 会释放出信号告知监控人员。 然而, 睡眠品 质、 睡眠姿势变化, 如正躺转侧躺、 趴睡转正躺、 睡眠中翻身、 重心、 重 心变化、 身体受压地区(A0P)与动作变化之间的速度变化, 无法精确得知, 在准确性上, 上述专利皆不完善。
本发明可以是数字信号的感测器, 同时可为多段式数字感测器, 不必 一定要安装在床上也可在织带上或除床罩上或一部分在织带上另一部分在 床上或床罩上, 因为可以靠织带受到人体压迫所产生的拉力来启动感测器, 姿势变化从正躺转侧躺、 趴睡转正躺, 睡眠中翻身, 动作变化之间的速度 变化均可测得, 使用者的呼吸也可测得, 连加速度、 角速度、 角加速度、 惯性质量、重心、重心速度、重心加速度、身体受压地区(Area of pressure, A0P)、 受压身体的位置、 及承受时间均可测得, 翻身次数也可得知, 另外 速度、 加速度、 角速度、 角加速度、 重心、 重心速度、 身体受压地区(A0P) 的变异度, 均可得知, 以上的参数均可以时间为横轴画出在床上的时间变 化图, 就如同活动图(act igraphy)—样, 用来评估睡者的睡眠品质。 在床 上同时设有生理感测器进而得知使用者的生理状态等等皆可得知。
由此可见, 上述现有的利用感测器的人体监控系统及监控方法在产品 结构、 制造方法与使用上, 显然仍存在有不便与缺陷, 而亟待加以进一步 改进。 为了解决上述存在的问题, 相关厂商莫不费尽心思来谋求解决之道, 但长久以来一直未见适用的设计被发展完成, 而一般产品及方法又没有适 切的结构及方法能够解决上述问题, 此显然是相关业者急欲解决的问题。 因此如何能创设一种新的利用织品感测器的人体监控系统及监控方法,实 属当前重要研发课题之一, 亦成为当前业界极需改进的目标。 发明内容
本发明的目的在于, 克服现有的利用感测器的睡眠监控系统及监控方 法存在的缺陷, 而提供一种新的利用织品感测器的睡眠监控系统及监控方 法, 所要解决的技术问题是使其在床上、 织带上或床单上设有织品感测器 来监测睡眠者的睡眠品质与睡眠的姿势变化, 若有需要还可有生理感测器 同时测使用者的生理状态, 非常适于实用。
本发明的目的及解决其技术问题是采用以下技术方案来实现的。 依据 本发明提出的织品感测器当人躺在床上, 织带受到重量或冲量所产生的拉 力使织品感测器产生不同的反应来呈现睡眠品质与姿势变化。
本发明的织品感测器设置在织带上、 床上或床罩上, 当人躺在床上时, 不必直接接触到织品感测器而是直接压到织带上, 所产生的拉力使织品感 测器产生反应, 其中织品感测器可为拉力, 压力或重力感测器, 尤其可为 数字化感测器且亦可为多段式来感测不同的重量、 压力或冲量的变化。 本发明的织品感测器, 当人在床上时织带受人体压迫所产生的拉力会 启动织品感测器, 姿势变化从正躺转测躺, ^八睡转正躺, 睡眠中翻身, 动 作变化之间的速度变化均可测得, 使用者的呼吸也可测得, 连加速度, 角 速度, 角加速度, 惯性质量、 重心、 重心速度、 重心加速度、 身体受压地 区(Area of pressure, AOP)、 受压身体的位置、 及承受时间均可测得, 翻 身次数也可得知, 另外速度、 加速度、 角速度、 角加速度、 重心、 重心速 度、 身体受压地区(A0P)的变异度, 均可得知, 以上的参数均可以为横轴画 出在床上的时间变化图, 就如同活动图(act igraphy)—样, 用来评估睡者 的睡眠品质。 进而得知使用者的生理状态等等皆可得知。
本发明的织品感测器可在床的纵向或横向设有一条以上的织带且在织 带上或床上或床罩上设有织品感测器, 若有需要同时在床上或织带或床罩 设有生理感测器当人在床上时, 织品感测器有反应时同时可测人的生理状 态。
本发明的整体架构是利用床上有一个或一个以上的纵向或横向织带, 织带末端连接一个或多个织品感测器, 每个感测器都以导电线与控制盒相 连接, 控制盒中装有微处理器。 为了量测使用者在床上的睡姿及动作, 本 发明在床的纵或横两方向安装了织带。 同一条织带可以视需要安装一个或 更多不同临界值的感测器, 即可测得该织带上的压力, 此方式有助于判断 其姿势及动作。 对于不同尺寸的床, 依使用者需求的功能, 本发明可以安 装不同数目的纵向或横向织带。 对于不同体重的使用者, 可以使用不同临 界值的感测器。
本发明的利用织品感测器的人体监控系统, 其织品感测器安装于所述 织带、 床或床罩中, 另外, 所述织带上安装有至少一导电丝, 所述床或床 罩上相应位置安装有相同数量的导电材料来作感测器。 例如, 其织品感测 器可安装于织带与床或床罩中, 织带上可安装有一半球状的导电材料, 而 在相对应床或床罩上安装有一同心的两组或三组以上导电线材来当感测 器。 即有一部分感测器在织带上, 另一部分剩下的感测器部分在床或床罩 上组成一完整的感测器。
当使用者坐或躺在织带上, 织带受人体重力或冲量而弯曲, 同时会使 整个织带张力提高, 故同时会拉动拉力(裂缝)感测器或压迫压力(圓顶式) 感测器或重力感测器, 因此, 感测器的导电状态即因拉力而改变, 并以数 信号,式输出至控制盒, 控制: ^内的微控制器即可记录此数 信号并进 个人电脑或行动电话), 进行详细的分析。 若有必要, 可将这些信号传输给 远端监控中心, 由远端监控中心的专业人员判读, 以便在必要时提出指导 及卫教, 或派遣人员以协助使用者。 本发明使用的感测器有三种, 如: 压 力、 重力或拉力感测器(参考 PCT/CN2008/001570, PCT/CN2005/001520 , PCT/CN2008/001571 专利申请案)。 第一种是裂缝式感测器(cl ip type sensor)。 在今年 2009年 6月于 Internat ional Conference on Consumer Electronics 2010投稿有投稿两篇文章, 其中一篇是关于睡眠床的相关技 术, 题目为 "Mat wi th Digi tal Text i le Sensors to Detect Sleeping Act ivi t ies. " 其技术在床上侦测使用者的姿势变化及状态。 另一个投稿的 题目为 "Text i le- Based Breath- Sens ing Bel t" , 技术可以侦测使用 者的呼吸,很遗憾地,投稿的两篇论文只有" Tex t i 1 e- Ba s ed B r e a t h- S en s i ng Bel t"有通过审核, 并于明年一月获邀至 Las Vegas发表。 另一篇论文 Mat wi th Digi tal Text i le Sensors to Detect Sleeping Act ivi t ies没有通 过 ICCE 2010 的审核, 但在今年八、 九月引用该论文的相关技术去做失眠 者的临床实验, 今年也有投稿将于 2010年举办的 American Telemedicine Associat ion (ATA) , 并且通过该单位审核, 题目为 "Telemedicine wi th Remote Sleeping Act ivi ty Moni toring System for Insomnia" 目前此篇 文章已通过上述单位审核, 并且有受邀明年四月发表。 本发明的第一种裂 缝感测器原理是, 当裂缝式感测器未受拉力时, 松紧带的弹性会使导电布 或导电片相接触而导通即 "0"; 当受拉力超过其临界值, 导电布或导电片 就不再接触, 也就不导通即 "1"。 每个裂缝式感测器的临界值, 可由松紧 带的材质、 厚薄宽窄以及裂缝的长度决定, 另外亦可由导电布或导电片的 厚度、 宽度或材质特性来决定。 笫二种是圆顶式感测器(dome shape sensor) , 置于织带或床单或床上, 且夹在织带与床单或床体之间。 当织带 未受人体压迫时, 织带的张力不大, 感测器就不会导通, 即为 "1"; 当织 带受人体压迫时, 织带的张力增大, 感测器受到织带与床的夹挤效应就会 导通, 即为 "0"。 圆顶感测器也可以是缝在床罩或床上, 或者是一部分在 织带, 另一部分在床或床单上。 当使用者上床有力量压下织带时, 使感测 器导通。 本发明可设计为只有单一的一段式的感测器(PCT/CN 2005/001520) , 也可以有多段式设计的感测器, 如: PCT/CN2008/00157. 另外, 感测器也可以直接缝在枕头或衣服上, 使用者躺在枕头上, 就直接 压到感测器, 使其导通或当感测器是缝在衣服上时, 使用者躺下时, 就直 接有重力 /压力压在感测器, 使其导通, 用以增加使用者在床上姿势变化及 睡眠分析的准确度。 夏天时,有些人或许直接打赤膊, 不穿衣服直接上床, 直接缝在枕头与床上的感测器即依然可以发挥效果。 本发明最大优点是使 用性与方便性, 除了感测器是可以在床缘外, 其亦可同步装置在衣服或枕 头上。
不论是裂缝式感测器或圓顶式感测器或多段式感测器, 当人体姿势变 化导致感测器信号改变, 资讯会传导至控制盒, 盒内的微控制器即可记录 此数字信号并进行初步分析, 再以无线介面(例如蓝牙)传输给附近的个人 资通讯装置(例如个人电脑或行动电话), 进行详细的分析。 另外, 控制盒 也可直接由手机或电脑取代。 若有必要, 可将这些信号传输给远端监控中 心, 监控中心藉由时序图的判读可判别使用者在床上的姿势变化, 其姿势 变化产生的速度与加速度, 重心、 重心变化速度, 受测者的不同受压部位 的压力大小、 受压时间及压力随时间变化、 惯性质量、 翻身所产生的角速 度, 角加速度等转变情况, 均可得知。 同时睡者在床边的情形也可得知及 分析跌下床的风险度。 由上述的资料可判读使用者的睡眠状态, 是否有癫 痫, 是否严重酒醉等等, 是观察使用者在床上状态的最佳系统及方法
藉由上述技术方案, 本发明利用织品感测器的人体监控系统及监控方 法至少具有下列优点及有益效果:
一、 可以判断使用者是否会从床上摔落, 使用者在床上姿势转换的速 度变化、 加速度变化、 质心(重心)、 质心速度、 质心加速度、 翻身次数及 不同惯性质量下的动作图。
二、 感测器不是散布在床上, 而是在织带的尾端、 而织带是固定在床 或床罩的两侧 , 所以使用者不必直接就躺在感测器上面而是压在织带上所 产生的拉力来使织品感测器起反应, 符合人体工学, 也不会造成感测器的 磨损。 同时因为没有直接与织品感测器接触, 故不会有 "电到" 的风险。 此发明是因使用者躺在织带上, 造成织带拉扯因而导致感测器信号改变。 若有需要, 亦可将织带上的路径放圆型感测器或多段压力感测器来进一步 侦测织带上不同位置的压力大小, 同时取代另一方向挂列的织带及其拉力 感测器, 另外, 在裂缝感测器上因为没有外力下却导通, 故有电力, 当在 织带上有圆顶感测器或多段式感测器且与裂缝式感测器连接则没有人在床 上时, 电就不通, 使用者方便, 不必有开关去启动, 又可省电。 当然, 如 果拉力感测器用圆顶或多段式感测器, 就原本为 "1" , 不必启动, 因为没 有上床时就断路。
三、 本发明是利用固定在床上、 床罩的织品感测器, 因使用者躺、 趴, 或坐在织带上的重量或冲量所造成的拉力, 促使感测器接收到拉力而产生 不同的信号, 藉此可以知道使用者的上床时刻、 起床时刻、 睡眠时间、 睡 眠品质与睡眠姿势。 本发明的受力点不等于感应点, 而且感测器较少, 相 对在设计上比较不繁瑣。
四、 本发明的微处理器处理的是数字信号而非模拟信号, 由于先前技 术都是模拟信号, 故本发明的信号较容易判读。 但是为了要使每个感测器 的输出端数目減少, 我们利用电阻计的方式也就是说每个织品感测器串联 或并联电阻来产生模拟输出信号。 故可减少输出端的接点来使系统更像家 - ― ^ .
8
倶钮扣, 而非电子产品的多端接头。 而模拟输出信号再经由模数转换装置 转换为数字信号后进入微处理器进行处理。 ·
五、 使用者上床, 正躺, 侧躺, 翻身所花的时间皆可侦测出来。 尤其 上床, 躺翻的速度及加速度可侦测, 同时可侦测是否使用者睡眠状况有异 常。
六、 本发明的感测器亦可应用在不同款式的床, 如: 硬床、 软床、 气 垫床、 电动床或电动椅, 可满足不同消费族群或不同睡眠习惯的使用者的 需求, 故有利于本发明的推广与应用。
七、 可有线或无线传输至远端监控中心。
八、 此睡眠床也可以读到使用者的呼吸, 另外亦可加上加速规、 麦克 风或电极在系统上来测心跳或呼吸, 最后也可用其他不同感测器测体温或 湿度、 肌电图、 心电图、 血糖、 血氧浓度、 吞咽。
总之, 本发明是一种可以装置在各式各样床上的侦测系统, 其结构具 有以下特征:
一、 该侦测系统具有下列特性: 可洗、 耐用、 可靠、 可曲折、 价格低 廉, 故可以 4艮容易地应用到日常生活的每一个层面, 感测器固定在织带、 床单或床罩上, 且织带是纺织材料, 所有感测器均在床体的外表, 若有故 障很容易替换。
二、 使用易于判读的数码输出介面, 例如: 蓝牙、 使测得的资料可以 直接传送到日常生活常见的仪器做信号分析, 如: PDA或笔记本电脑。 故可 利用这些易于取得的电子仪器, 来测试使用者睡眠的姿势或睡眠的状态。 同时, 也可以判读使用者当下的动作或姿势, 以及使用者产生上述动作所 花费的时间, 进而得知使用者是否有生理或心理异常的状况, 是为使用者 在健康安全上值得依靠的生理及心理监测系统。
三、 该侦测系统可藉由感测器所产生的信号分析来判断使用者的姿势, 并且可以评估使用者的姿势变化和状态, 故可以取代摄影机。 如使用者在 床上做仰卧起坐或伏地挺身时, 即可通过系统得知使用者的姿势变化状态。
上述说明仅是本发明技术方案的概述, 为了能够更清楚了解本发明的 技术手段, 而可依照说明书的内容予以实施, 并且为了让本发明的上述和 其他目的、 特征和优点能够更明显易懂, 以下特举较佳实施例, 并配合附 图,详细说明如下。 附图的筒要说明
图 1本发明利用织品感测器的人体监控系统的架构示意图。
图 2A是床边一段式裂缝感测器未受到拉力拉动时的状态图。
图 2B是一段式裂缝感测器未受到压力挤压时的状态的平面图,裂缝二 ― 侧的导电材料(Wl、 W2)接触在一起。
图 2C是一段式裂缝感测器未受到挤压时, 电压与时间的关系图, 此时 电压为 0。
图 1 D是床边一段式裂缝感测器因织带受力而拉动感测器的状态图。 图 2E是一段式裂缝感测器受到挤压时的状态平面图, 裂缝二侧的导电 材料 (Wl、 W2)被撑开。
图 2F是一段式裂缝感测器受到挤压时, 电压与时间的关系图, 此电压 度为 1。
图 3A是两段式裂缝感测器未受到拉力拉动时的侧面状态图。
图 3B是两段式裂缝感测器受到拉力拉动时的状态的平面图。
图 3C是在床边的一段式圓顶感测器未受到织带拉力压迫时的侧面状态 图。
图 3D是一段式圆顶感测器未受到挤压时, 电压与时间的关系图, 此时 电压为 1。
图 3E是一段式圓顶式感测器在受到力挤压时的侧面状态图。
图 3F是一段式圆顶感测器受到挤压时, 电压与时间的关系图, 此时电 压为 0。
图 3G是一段式圓顶感测器在未受到挤压时的侧面状态图
图 3H三段式圆顶感测器在未受到挤压时的状态图, 若衣服 /织带 /枕头 在受压力较小时, 只会启动第一段, 即 A段, 力量稍大时会启动第二段, 即 B段, 力量最大时启动第三段, 即 C段。
图 31是三段式圓顶式感测器电压与时间的关系图。
图 3J是圆顶感测器的侧面状态图, 感测器可以设计为一半在床上, 一 半在织带上。
图 3K是直接缝在衣服上的感测器的示意图。
图 3L是缝在枕头上的感测器示意图。
图 3M是感测器一部分在织带上或床罩上示意图, 其中只有纵向织带, 其除了在织带尾端具有感测器外, 在织带中端也分布有若干感测器, 以取 代横向织带上的感测器。
图 3N是心电图判别睡姿示意图。
图 4A是使用者上下床的状态变化的时序图。
图 4B是使用者不在床上的位置及感测器的状态图。
图 5是使用者坐到床右边的位置及感测器的状态图。
图 6是使用者愈往内坐的位置及感测器的状态图。
图 7 A是使用者由正躺翻身向左侧的时序图。
7B是使用者正躺时的位置及感测器的状态图。 图 7C是使用者左侧躺的位置及感测器的状态图。
图 8是睡眠活动记录图。
图 9是不同织带睡眠活动记录图。
图 10是 A0P对时间关系图。
图 11是防褥疮判断流程图。
图 12A是纵向的织带上感测器受重力的示意图。
图 12B是纵向压力对位置关系图。
图 12C是相对图 12A织带感测器的 COM值大小及位置图。 图 13A是二段式纵向的织带上感测器受重力的示意图。
图 13B是二段式纵向压力对位置关系图。
图 14是整个睡眠周期的 COM位置图。
图 15是使用者正躺转右侧卧的示意图。
图 16是使用者正躺变成侧躺的时序图。
图 17是 COM (品质中心位置) 位置时间变化图(正躺转侧躺)。 图 18是使用者 ^躺变侧躺的时序图。
图 19是 COM位置时间变化图(趴躺转侧躺)。
图 20是姿势推定的流程图。
图 21是防跌落警示流程图。
图 22是人体转成侧躺可能跌落的情形的示意图。
图 23是使用者起身下床的情形的时序图。
图 24是人体由正躺转侧躺床缘跌落情形的时序图。
图 25是使用者平移至边缘时的时序图。
图 26A是平移时 COM位置时间变化图。
图 26B是图 26A平移时 COM移动速度图。
图 26C是图 26A平移时 COM加速度图。
图 27A是二段式感测器 4尚转侧躺时序图。
图 27B是图 27A 的 COM位置对时间变化图。
图 28A是二段式感测器正躺转侧躺时序图。
图 28B是图 28A 的 COM位置对时间变化图。
图 29是睡眠时间对速度关系图。
图 30是睡眠时间对加速度关系图。
图 31是织带 4感测器侦测到呼吸图。
图 32A是人体侧躺成 90度角示意图。
图 32B是人体侧躺 Θ角度床面的示意图。
图 33A是人体正坐在床上的示意图。
图 33B是人体正坐转正躺在床头升起 Θ角度示意图。 图 34A是人体侧躺转正躺倾斜角度示意图。
图 34B是两段式感测器人体侧躺转正躺电压变化与时间的关系图。 图 34C是三段式感测器人体侧躺转正躺电压变化与时间的关系图。 图 35A是人由正躺变侧躺的角度示意图。
图 35B是人体正躺转侧躺两段式感测器的电压变化与时间关系图。 图 36A-图 36C是使用者身体转动与织带变化示意图。
图 37是本发明的监控方法的流程图。
图 38 是织品感测器串接一电阻再多组并联电路图。
图 39 是织品感测器并接一电阻再多组串联电路图。 实现发明的最佳方式
为更进一步阐述本发明为达成预定发明目的所采取的技术手段及功 效,以下结合附图及较佳实施例, 对依据本发明提出的利用织品感测器的人 体监控系统及监控方法的具体实施方式、 结构、 方法、 步骤、 特征及其功 效, 详细说明: ¾口后。
本发明利用织品感测器的人体监控系统的系统架构如图 1 所示, 在床 上或床罩上视应用场合安装若干感测器, 所述感测器可以是开关感测器、 压力感测器、 重力感测器或拉力感测器 (参考 PCT/CN2008/001570、 PCT/CN2005/001520 , PCT/CN2008/ 001571专利申请案), 所述感测器可设在 床上, 床单上或织带上, 或是感测器一部分在床上或床罩上, 另一部分在 织带上。
在一实施例中, 当人在床上时, 织带受到重力所产生的拉力, 使得感 测的状态发生变化, 即由原来的 0改变为 1或者是从 1改成 0,即此系统是 受到外力所产生的拉力感测器(s t ra in gauge)且是数字化。 人的重力不必 直接与感测器接触就能反映重力的效果, 且若有需要可在同一条织带有多 段式的数字化感测器来反应。 例如图 2A所示的人体监测系统上, 感测器 A 为裂缝感测器, 且其在织带的尾端, 通常位于床或床罩的边缘侧面。 当裂 缝感测器在没受外力下,其放大图如图 2B所示,其中导电布或导电片 W1及 导电布或导电片 W2相接触故其输出如图 2C所示为 "0" 。 当感测器 A受到 织带的重力下压时(如图 2D所示)所受的拉力使感测器 A受拉力导致导电布 或导电片 W1与导电布或导电片 W2分开(如图 2E所示), 其输出电压为 "1" (如图 2F所示)。 另外, 在图 3A所示为感测器 B为二段式裂缝感测器, 且 其在织带的尾端, 通常位于床或床罩的边缘侧面。 当裂缝感测器在没受外 力下, 导电布或导电片 Wl , W2相接触, 导电布或导电片 W3与 W4相接触, 但在外力下, 织带所产生的拉力使第一段裂缝感测器中的导电布导电片 W1 与 W2分开(如图 3B所示), 故输出电压由 " 0" 变成 "1" , 此织带与床之 间的固定可为直接缝纫、 魔鬼沾、'钮扣及拇指扣。 另外, 在感测器上也可 为圆顶感测器(dome shape sensor)如图 3G所示, 即为圆顶感测器设置在 织带上, 且其在织带的尾端, 通常位于床或床罩的边缘侧面, 在织带没受 外力时, 感测器的状态如图 3C所示, 输出为 "1" (如图 3D所示)。 当有人 躺在织带上时(如图 3E所示), 织带拉力使圆顶感测器夹紧而导通, 其输出 为 "0" (如图 3F所示)。 另外, 圆顶感测器也可一部分在织带, 另一部分 在床或床罩上, 织带上缝有导电线, 而在床上固定圆顶感测器的弹性硅胶 及其导电片。 最后, 圆顶感测器也可直接设在床上或床单上亦可产生相同 的效果。
另外, 感测器也可为多段式压力感测器, 如图 3H所示有 3段, 在外力 施于织带上所产生的拉力可使多段式感测器状态改变, 故输出信号如图 31 所示。 同时我们可以把多段式感测器设置的方式为一部分在织带, 另一部 分在床或床罩上如图 3J所示。 最后, 感测器也可设在衣服如图 3K或枕头 上如图 3L, 来增加系统的准确度。
上述的感测器是一种具有弹性和导电材质所组成,例如:金属材质(如: 不锈钢)、 非金属材质(如: 橡胶、 硅胶、 泡棉)及导电材质所组成(如: 石 墨、 导电硅胶)。 另外, 在制造过程中布料上亦可加入其他弹性材质(如: 橡胶、 发泡材料、 硅胶、 海绵、 弹簧、 棉、 弹性纤维(Spandex)、 人造弹性 纤维(lycra)、 合成橡胶(Styrene Butadience Rubber , SBR) , 和泡沫基材 料), 以增加其弹性或全部都是弹性材质。 感测器以线连接至微控制器的输 入端, 微控制器置放于控制盒中。 当感测器感测到姿态变化时, 即将产生 的数字信号输入到微控制器, 微控制器内含程序处理模块, 把设置于不同 位置的各个感测器输出的数字信号进行编码并同时进行分析、 显示、 储存 或警告, 在一实施例中, 编码后的所述各个感测器输出的数字信号还能再 由有线或无线通讯模块传送到其他的个人数字装置, 例如: 智能手机或电 脑, 以进行分析、 显示、 储存或警告。
织品感测器, 同时可连接一生理感测器, 如此一来当使用者活动时, 织品感测器受到外力产生反应, 同时生理感测器也同时感测使用者生理信 号, 尤其当睡眠者运动停止时, 例如躺卧时, 测试使用者的姿势没有改变 时, 利用生理感测器感测使用者生理信号来侦测使用者的生理状态, 如心 跳、 体温、 汗湿、 尿湿、 血氧、 血糖、 肌电图、 心电图、 心音、 肺音, 呼 吸、 呼吸次数(impedance phe画 graphy)、 吞咽及血压等。 尤其是心电图 的信号, 当人体不同姿势所产生的心电图信号的波型不同, 故可利用心电 图波型的不同来判别人在床上的姿势如图 3N所示, 即可得到生理信号又同 时可得在床上者的姿势状态来加强织品感测器的姿势分析。 肌电图、 呼吸、 心音、 体温也可得相同的效果。 第一较佳实施例
首先, 在本发明的一实施例中, 所述床长 180 厘米, 宽 98 厘米, 高 20厘米, 床上有纵向织带八条 (编号 1-8) , 横向织带六条 (编号 9-14) , 如 图 4B所示, 织带宽为 5. 5厘米, 纵向织带间距为 6厘米。 需要说明的, 本 发明的床的资料仅为使本发明更易理解, 并非对本发明的进一步限制, 可 以根据使用者的身材而选用更大或更小的床, 从而编织不同数目的织带, 在此并不对本发明进行任何限制。 在此可见感测器不是散布在床上, 而只 是在织带的尾端, 织带则是固定在床或床罩的两侧, 所以使用者没有直接 接触到感测器, 故不会有 "电到,, 的风险, 同时每个织品感测器各自串联 或并联一电阻或电容来产生输出点不必有多个, 导致控制器的输入端也要 多个来对应, 而只用两条导线连接模数转换器, 供微控制器读取各织品感 测器的逻辑状态。 本发明有一程序在个人资通讯装置上如手机、 或电脑、 或控制盒执行, 控制盒内的微处理机也有程序, 如照图 1所示, 以便显示、 储存及分析睡姿。 以图 4A进行说明, 图 4A显示各织带状态变化的时序图, 我们用画图来显示各织带的位置及状态图, 同时有用身体受压地区(A0P)的 模拟姿势图来显示人的姿势。当织带未受压时,时序图上的波型显示为 "低" 位元(在基线), 位置及状态图上则以底色(最浅色)显示。 当织带受压时, 时序图上的波型显示为 "高" 位 (较基线高), 位置及状态图上则颜色变深; 对于有多个感测器的织带, 用来表示多段式受力情形时, 压力愈大, 时序 图上显示的的波型就愈高, 位置及状态图的颜色就变化更多或图型显示就 更不同。 在本实施例, 所有织带感测均为一段式裂缝感测器。 图 4A (a)是使 用者不在床上, 所有织带皆未受压, 如图 4B状态图显示; 当使用者开始先 坐到床右边 (如图 4A (b)所示), 先压到右边的第 1、 2号织带, 织带的状态 图如图 5显示, 因为横向织带的感测器均没有反应, 表示人体在床上的宽 度不大, 身体受压地区(A0P)横向距离小。 我们可知道使用者坐在床边, 故 可画出人坐在床边来模拟人的姿势。 使用者准备正躺, 愈往内坐, 压到的 织带越多, 即显示三条 1、 2、 3织带被压到, 如图 4A (c)时序, 及如图 6织 带状态图和人的模拟图所示。 其中人的图形也往床内移动, 但仍是坐的姿 势。 使用者正躺时, 第 3, 4, 5, 9, 10, 14 号织带受压, 织带的感应器状 态图及模拟人的姿势图, 时序图如图 7A (a) , 显示如图 7B状态图所示。 身 体虽有跨过 11, 12, 13织带, 但该处正巧为身体的凹处(腰、 膝), 故未受 压。 人的图形随后变成躺的姿势。 使用者由正躺翻身向左侧, 第 3, 4, 14 号织带不再受压, 使用者转而压迫第 5, 6, 7, 8, 9, 10, 12 号织带, 如 图 7A (b) , 故可画出人的姿势模拟图如图 7C。 当睡眠者下床后, 所在织带 上的受力变回原状即原先没有人在床上的状态, 故信号都为 " 0" 。
本发明除了可测知使用者的睡姿及姿势变化外, 使用者从上床感测器 至少有一个改变状态, 躺下、 睡眠, 然后起床的时间亦可测知, 因为起床 后, 所有织带都不受压, 故都回到基线。 另外, 由翻躺所花的时间亦可得 知使用者在床上是正躺或趴睡或侧睡, 例如, 同一个人, 由正躺转侧躺和 由 睡转侧躺的时间并不一样, 正躺转侧躺所花的时间会比 睡转侧躺的 时间少。 而若使用者在翻躺上所花的时间有异常的变化, 可由各个参数例 如速度、加速度、重心、重心速度、 角速度、 角加速度、 身体受压地区(A0P) 的时序图中得知, 进而提出适当的警讯, 例如: 若使用者由正躺转侧躺所 花的时间比平时多很多, 也就是在速度上变得很慢, 则可推知可能使用者 太累、 或是生病亦或是有其他异常状况。 分析睡姿的各种方法详列于实施 例中。
第二较佳实施例
本发明可记录上床下床时刻及卧床时间: 当所有织带皆未受到压迫, 即处于使用者离床状态, 如图 4A (a)即为 "使用者未上床" 时刻, 当任一织 带开始受到压迫, 微控制器即可记录 "使用者上床" 时刻如图 4A (b)。 睡眠 中使用者会翻身, 各织带的状态就因而改变, 但至少有一条受压。 当使用 者起身下床, 所有织带再度回到皆未受到压迫的状态, 如图 4A (d)即为 "使 用者下床,, 时刻, 两者相减, 即为卧床时间, 同理, 上床中有下床去, 如 上厕所, 之后再上床睡觉都可知道, 将在床上的时间相加, 整个晚上下来, 上、 下床次数, 上、 下床时间, 上床不动时间等均可知道。
第三较佳实施例
本发明具有睡眠活动" ¾录^0^§^01)的功能, 由于「睡眠 -清醒」周期
(s leep- wakefulnes s cycle)和 r休息-活动 J周期 (res t— act ivi ty cycle) 有近乎一对一的相关性, 且活动量变化和各睡眠分期(s leep s tage)中的肌 肉张力(muscle tone)变化也有相关, 研究者因而发展出一些测量活动量的 方法以间接测量「睡眠-清醒」状态, 其中之一较为广泛应用的技术为睡眠 活动记录。 本发明的睡眠活动记录如图 8所示, 横轴所标示的是上床时间, 纵轴所标示的是单位时间内所有织品感测器改变状态的次数总和。 改变状 态的次数愈多, 即表示使用者活动愈频繁, 可能是睡不着频翻身。 愈长时 间无活动, 即表示使用者熟睡。 除了活动次数是以每一个感测器的单位时 间反应的次数总和来表现, 动作变数亦可以速度、 加速度、 角速度、 角加 速度、 重心、 重心速度、 身体受压地区(A0P)来表现, 同时也可表现以上参 数的变异度, 另外尚可以每一条织带为单位, 如图 9 , 或以整个床上的感测 器各别一个为单位, 来显示不同的床上地区的感测器变化。 尤其是 (A0P)身 体受压地区的表现, 用二维空间来表示床及另一维来表示时间变化, 如图 10 中(1)表示正躺, (2)表示侧躺, (3)表示人正坐, (4)站着, 其中, (1) 的面积(A0P)大但值小, (2)身体受压地区(A0P)的面积中等, 但感测器值上 升, (3)坐在床上, 故只有屁股及脚在床上且屁股的压力变大, 但受压面积 变更小, 若是人向前倾, 则重心又往前表示人要离床且 A0P面积开始变小, 故可由身体受压地区(AOP)及重心(COM)来分析人的姿势变化, 若是站在床 上, 则 A0P面积最小, 但数值最大, 重心在两脚之间, 若是重心(COM)在两 脚之外则有跌倒机会。
第四较佳实施例
本发明可以观察手或 P的活动, 不宁肢体症候群(Res t les s Limb Movement Di sorder)是在睡眠中常见的病症, 可利用本发明观察到, 其特 色一或多条织带多次改变状态, 而且位置正表示手或脚的活动所产生的冲 量导致织带受到冲量的影响而产生拉力变化, 这会使感测器产生状态变化, 不像正常翻身是更多条感测器改变, 来表示身体也有动作, 如翻身或起身。
第五较佳实施例
本发明可取得睡者身体受压地区(Area of pres sure, AOP) , 身体受压 地区的定义为: 当感测器所对应的织带受到压力时, 感测器随着身体姿势 变化而会有分段打开的现象, 此即代表此织带有受到一力作用, 在某一时 间上由感测器所测的值回推到整个床面上压力的分布图型, 且再回推到相 对应人体的身体受压地区(Area of pres sure)的图形, 正常人躺在床上, 头部、 胸部及臀部地区受压, 成为 A0P的地区, 且人乃左、 右对称, 故可 由床的感测器显示睡者受压的部位及时间, 当由正躺变侧躺, 如左侧躺, 如图 7A, 所示, 织带 10都在 "高"位, 表示左肩都受压, 左侧躺又翻回正 躺, 织带 10也仍在 "高" 位, 我们就可知睡者左肩地区所受压的时间, 对 于中风或植物人等需要定时翻身以免褥疮者是一个很重要的参数, 只要 "A0P" 相对人的部位所受的压力值及时间均可知道。 例如, 在电动床、 电 动椅或气垫床上, 若有人躺的时间过长时, 例如, 在电动床上, 正常为头 部、 胸部、 臀部及脚跟地区受压的力道最大, 故当超过三或四小时, 监测 系统可启动电动床头部地区上升, 让头部及胸部地区压力降低, 此时 A0P 主要在臀部地区, 过一两小时将电动床头部及胸部地区下降, 此时, A0P受 压地区主要又回复到头及胸部, 这样就可以避免褥疮。 同理, 我们也可以 请照顾者来调整中风病患上下左右各部位受压情形, 即自动化改成人工处 理, 都可调整 A0P压力分布地区在人体上的受压力道及时间。 同时, 在正 常人的睡眠过程, 观看 A0P 随时间的变化及变化速度, 就可知其睡眠品质 及姿势变化情形。 例如在正躺变为侧躺的过程, 每一个人的压力分布地区 变化及变化速度, 都有其特点, 可用来分析判别。 另外, 在熟睡与睡不好 的波型(pat tern)变化又不同, 故 A0P可用来判别睡姿, 亦可用来分析睡眠 品质。
笫六较佳实施例
本发明有翻身提醒, 防褥疮的功能, 若显示器显示有褥疮的患者已经 太久未翻身(例如所有织带超过 4小时皆未有状态变化或身体受压地区(A0P) 位置不变的地区是在何处, 如臀部, 则本发明可最适时提醒医护人员可协 助病患翻身。 防褥疮的流程判断请参见图 11所示。 首先判断前次稳态 A0P与此次稳态 A0P是否相同, 即压力大小与时间 长短, 因为研究指出人体组织在超过 70隱 HG的压力下持续 2个小时以上就 有可能发生不可逆的组织变化, 这也就是造成褥疮最主要的因素故防止褥 疮的关键因素即为受压地区的时间及压力大小;
如果相同则累计 A0P相同的时间, 如果不同则结束防褥疮判断; 判断 A0P累计时间是否超过设定时间;
如果超过了设定时间则发出防褥疮警示并在警示之后结束褥疮判断, 如果没有超过则继续累计 A0P相同的时间, 例如在超过 7 OmmHG压力下且时 间超过 2小时即发出警示。
笫七较佳实施例
本发明可取得盾量中心 COM (center of mas s)位置及大小资料, 本实 施例是以一段式感测器安置床边以便感测一段式压力值。 以图 12A、 图 12B 为例说明纵向感测器的 COM的计算, 在图 12A中, 床的织带感测器 3、 4、 5 有打开一段开关, 表示各受有一压力作用, 受力相当, 因此在压力对位置 关系图中, 在位置 3、 4、 5的地方都有一个单位高度的压力量(以 P表示) 来启动感测器的状态(如图 12B所示)。
质量中心 (center of mas s , COM) , 在地球上相当于重心, 代表的是 各压力中心的集中效果之处。 COM位置的计算方法是:
COM位置 = ( ^!!!^ …+!!!^。) / ( Hln)
其中 mn是各织带所受重力来表示其上面的质量, 是所受力的位置。 由于织带面积相等则 pi+p2+ ρη相当于 +1¾+ mn, 即 P相当 n ,
P2相当 m2〜。 其中 Pn 为压力大小, 因为在地球表面上, 质量(m)正比于重 量(rag) , 重量又正比于压力, 即质量愈大所产生的压力愈大, 导致拉力愈 大, 织带上感测器所受的力就愈大, 感测器的输出值就愈大即感测器的更 高段被启动。以图 12B来具体计算纵向 COM位置 = (P X 3+P χ 4+Ρ χ 5) I (P+P+P) = 4 , 而 COM大小即各力总合为 3P表示, 人体表现在床上的总重量也就是 相当于总质量也就是总压力即可用感测器输出值的总和来表示, 如图 12C 所示, 故总重量等于各个感侧器的感测值总和 3P。
再举一例来说明 2段式感测器打开 2段时 COM的位置计算方式, 见图 1 3A感测织带受压图,其中第 1织带打开第 2段裂缝, 因此相对于织带 3受 力而言, 织带 2受有 2倍的压力, 所以结合图 13B可算出其 COM纵向位置 是 (2Ρ χ 2+Ρ χ 3+Ρ χ 4) / (2Ρ+Ρ+Ρ) =2. 75处, 总重量也等于总质量, 大小是 4Ρ。 据此, 我们可以记录整个睡眠周期中的 COM位置, 画出如图 14 所示 的结果。
图 14即是纵向(X轴)感测器所画出的 COM位置图, 同理横向(Y轴)感 测器也可用相同原理绘出 COM位置图。 正常人睡眠有规律性, 例如上床及 下床的位置, 由此图可看出睡者是由床的那边上床。 熟睡时, COM位置变 化应该不大, 因此若 COM位置图变化过大也就表示睡者的睡眠品质不好。 又若短时间内, COM位置变化太过剧烈, 更可能表示睡者出现了其他的问 题了, 例如翻来覆去睡不着. . .。 我们可以将 X轴及 Y轴的 COM结合, 表示 出在整个床上的 COM (X, Y)随时间的平面变化图,就如同图 14所示 A0P—样, 只是在任一时间点上只看到(COM)重心。 正常人在左、右侧躺的睡姿下, 其 质量中心(COM)应该是对称于人的脊推线上, 即头到脚为一直线上。 正躺与 趴睡也应一致, 但数值和侧躺不同, 故可用 COM的值分辨侧睡或正躺或入 躺, 同时, 左侧与右侧睡的 COM (质心)正好以人的脊推(头到脚)画一直线, 两者对称。 即左侧躺偏直线的左边, 右侧躺则偏直线的右边。 利用 A0P与 COM结合、 因为上身躯干在侧躺时的压力值大, 手脚的压力值小且在身体受 压织带的外围, 同时 COM在躯干织带与手、 脚所压的织带间且接近躯干所 压的织带。 如此, 可分左侧睡或右侧睡。 若睡眠时 COM (X, Y)左右侧的值不 同, 表示睡眠者的睡姿改变, 若是改变愈多, 表示睡眠品^愈不好。
第八较佳实施例
本发明可辨认使用者在床上的睡姿(正躺, 左右侧躺, ^睡), 当使用 者躺下, 并同时压到多条织带时, 远端的显示器会显示是哪几条织带受到 压迫: 如果显示器显示织带信号是集中在使用者的右侧, 即压力值大的内 侧表示身体的重量, 如图 15 , 压力值轻的在外侧, 表示手与脚的压力, 代 表使用者可能采向左侧睡; 若是织带感测器的感测值大的集中在中间, 两 侧则是轻的值, 代表使用者可能采正躺姿势或 姿; 若织带感测器感测值 重的集中在左侧, 轻的值在右边用来表示手脚在身体的右边, 则代表使用 者可能采向右侧睡。 上半身的重量大于下半身, 因为下半身只有腿及脚, 故可由横向织带反应的数目多且压力段数值高的为上身, 下半身的反应织 带数目少些且织带感测器值都相对低, 故可用来分别上身与下体, 故人的 睡眠姿势就可判别出。 本发明由使用者翻身所产生的时间差, 可判断使用 者在床上是在正躺或 睡, 其原理是: 使用者由正躺转侧睡所花的时间会 较少, 由侧睡转正躺所花的时间会较久, 因为由 睡转侧睡需要较多支撑 力, 所以花的时间会较久, 而且手或脚会需要去支撑床来帮助翻身, 因而 会压到织带, 显示器上会有所显示, 一个由手或脚起使用力的起始点的织 带感测器起反应, 反映的时间长些且感测值大。 当施力完后, 可在其施力 点下的织带恢复原状, 同时另一边相邻没有反应的织带感测器开始反应, 用来反应身体的转动, 以达到翻身到侧躺的姿势。 由此进而可判断使用者 是采正躺或 睡。 若是正躺转成侧躺, 若有用手或脚来支撑的力道小且短, 故在感测器所显示的值相对于 睡转侧睡低, 且反应时间短。
图 16是由正躺变成侧躺的时序图, 感测器为一段式, 当使用者在床上 由正躺转侧躺时, 所需的时间较少, 中间织带 4、 5、 6 随着身体转动陆续 由高位往低位走, 然后右边织带 7、 8时序图由低位元往高位走。
将图 16计算人体质心位置画成如图 17可见正躺转侧躺, 质心位置都 随时间远离原来正躺时的质心位置(COM) , 在 tl前是正躺, 在 t5以后都是 侧躺, 两织带间宽度为 11. 5厘米。
在 tl 时织带 4 由高位转成低位, 到 t3 时织带 5 由高位转低位, 表 示人体姿势的变化, 在二织带间造成了改变, 因而计算织带 4到织带 5间 的身体姿势变化速度如下:
V1-11. 5/ (t 3-tl) =ll. 5/0. 4=28. 75 厘米 /秒
而在 t2 时织带 7 由低位转成高位, 到 t4 时织带 8 由低位转高位, 表示人体姿势的变化, 在二织带间造成了改变, 因而计算织带 7 到织带 8 间的身体姿势变化速度如下:
V2=l l. 5/ (t4-t2) =ll. 5/0. 35=32. 86 厘米 /秒
同理在 t3 时织带 5由高位转成 4氐位, 到 t5 时织带 6由高位转 ^氐位, 表示人体姿势的变化, 在二织带间造成了改变, 因而计算织带 5 到织带 6 间的身体姿势变化速度如下:
V3=ll. 5/ (t5-t 3) =ll. 5/0. 3=38. 33 厘米 /秒
VI是时间 tl时的人体姿势的速度,到了 t2时人体姿势速度变成了 V2, 因此可以计算人体姿势变化的加速度 A1为
Al= (V2-Vl) / (t2-tl) =4. 11/0. 2=20. 55 厘米 /秒 2
同理 V2是时间 t2时的人体姿势的速度, 到了 t 3时人体姿势速度变成 了 V3, 因此可以计算人体姿势变化的加速度 A2为
A2= (V3-V2) / (t3-t2) =5. 47/0. 2=27. 35 厘米 /秒 2
故正躺转侧躺的身体姿势变化速度及加速度皆为同一方向 , 且值的变 化均相同。
图 18是由 if八躺变侧躺的时序图, 当使用者在床上由趴睡转侧躺时, 所 需的时间较多, 中间织带 5、 4、 3 由高位往低位走的时间相差较多, 因为 使用者趴睡要翻成侧躺时需要用手支撑身体(施力于重心的另一侧所产生 力距)来翻身非常明显地由时序图或 A0P来表示出, 如图 19中的 t2时, 织 带 1 由低位转高位表示力距的产生, 动作上不会如正躺转侧躺时俐落, 故 由翻转侧躺所造成的 COM对时间变化的差别可判断使用者原来采用的睡姿 是正躺还是 睡。 即重心(COM)会先往左(右)再往右(左)的情形即为 尚转 侧身躺的特征。 而正躺转侧躺过程重心(COM)的变化方向比较一致而不会有 明显在原重心(COM)来回的现象。 同理, 可算出各段的速度及加速度。
由 COM位置变化分析, 可发现在 t2 时有一力距的产生, 所以在计算 人体姿势的改变上, 将先移除力距产生点(即织带 2)的影响。
在 t l 时织带 3由高位转成低位, 到 t 3 时织带 4由高位转低位, 表 示人体姿势的变化, 在二织带间造成了改变, 因而计算织带 3到织带 4间 的身体姿势变化速度如下:
Vl=l l. 5/ (t 3-tl) =ll. 5/0. 7=16. 43 度米 /秒
而在 t2 时织带 6由低位转成高位, 到 t 3时织带 7由低位转高位, 表 示人体姿势的变化, 在二织带间造成了改变, 因而计算织带 6到织带 7 间 的身体姿势变化速度如下:
V2=ll. 5/ (t 3-t2) =ll. 5/0. 25=46 厘米 /秒
同理在 t 3 时织带 5由高位转成低位, 到 t5 时织带 6由高位转低位, 表示人体姿势的变化, 在二织带间造成了改变, 因而计算织带 5 到织带 6 间的身体姿势变化速度如下:
V3=ll. 5/ (t5-t 3) =ll. 5/0. 35=32. 86 厘米 /秒
VI是时间 tl时的人体姿势的速度,到了 t2时人体姿势速度变成了 V2 , 因此可以计算人体姿势变化的加速度 A1为
Al= (V2-Vl) / (t2-tl) =29. 57/0. 45=65. 71 厘米 /秒 2
同理 V2是时间 t2时的人体姿势的速度, 到了 t3时人体姿势速度变成 了 V3, 因此可以计算人体姿势变化的加速度 A2为
A2= (V3-V2) / (t3-t2) =-13. 14/0. 25=— 52· 56 厘米 /秒 2
可见加速度的变化更不规律, 无论是数值大小及方向都不规律。 这也 可以用来区别正躺或趴躺的一个特征。 故由图 19知趴躺到侧躺的 COM速 度及加速度正负皆有。 故我们可以测得受压部位的速度及加速度, 并且利 用原来是正躺或八躺转变成侧躺所花的时间为分母, 转动的角度为 π /2 (即 90。 )为分子, 两者相除即可算出平均角速度。 躺转侧躺与正躺转侧躺的 平均角速度不同, 也可用来分析姿势变化。 另外睡眠品盾坏, 其平均角速 度的变化就大。 同理, 在睡眠不佳时, 其速度及加速度的变化也大, 故亦 可用角速度、 速度、 加速度.来分析睡眠品质。
以下画出姿势推定的流程图: 如图 20所示。
首先判断是否有任何织带触动, 如果没有, 继续等待;
如果有织带触动, 则输出上床时间;
接下来, 判断是否有织带的状态改变;
如果有织带状态改变, 则记录各织带暂态资料, 并继续观察是否有织 带的状态改变;
如果没有织带状态改变,则计时 Tnc,并判断是否超过 n秒的设定时间; 如果 Tnc没有超过 n秒, 则仍然记录各织带暂态资料, 并继续观察是 否有织带的状态改变, 如果 Tnc超过 n秒, 则记录稳态资料及时间累计; 接下来判断是否有前一个稳态;
如果没有前一个稳态, 则重新开始判断织带状态的改变;
如果有前一个稳态, 则根据暂态资料判定二稳态间是否为平移; 如果是平移, 则重新开始判断织带状态的改变;
如果不是平移, 则根据各织带暂态资料计算二稳态间 COM位置、 织带 速度、 转身时间以及其他参数;
接下来, 判断目前稳态是否是侧躺;
如果是侧躺, 则记录稳态 A0P位置以及织带状态, 并依次进行防褥疮 判断、 防跌落警示, 以及根据暂态计算数据推定前态是正躺或趴躺, 最后 返回到织带状态改变的观察; 如果不是侧躺, 则判断目前稳态是否为下床;
如果不是下床, 则重新开始判断织带状态的改变;
如果是下床, 则输出下床时间, 然后进行跌落判断及警示, 并再次处 理离床前记录资讯, 推定不确定稳态资讯至全部确定或不能推定为止, 最 后输出各项统计资讯并结束姿势推定。
第九较佳实施例
本发明具有床沿翻身跌落地警告的功能, 若显示器显现的织带受到压 迫的部分已过于集中在右侧或左侧, 如图 21所示流程图, 可视为使用者可 能会跌下床的一种警讯, 例如侧躺时的变化在床边则是一个高危险的机率 会跌下床如图 22所示。 跌落的危险可由下列二方面共同判断:
1.利用横向的织带, 当人由正躺转侧躺在床的边缘时, 横向的织带在 床头及床尾的部分会有极高的可能性有压到 躺转侧躺亦同)。 即横向的 织带有反应的条数所占的距离比一个人的屁股大, 即可判读使用者并非坐 着 , 且纵向的织带愈只有在床边的纵向织带而使纵向的重心(COM)越往床边 移, 则跌下床的机会越大。 然而起身时, 人体坐起时会在床的屁股大小的 宽度, 此时横向的织带只有一个屁股的距离而已, 同时感测器所受的压力 也大于躺着时。 因此, 由横向感测器的状况即可分别人体离开床时, 是因 为跌落或者起身, 因为跌落的话, 横向织带的感测器有感测的距离大于屁 股的距离。 当人体重心愈偏向床边且横向感测器开启数量多或横向感测器 之间距离大于屁股时, 代表人体有跌落的危险, 即予以警告。 另外, 我们 也可不设置横向织带, 而是在纵向织带的路径上受有圆顶感测器(dome shape sensor)或多段式压力感测器来取代。 当然, 如果是用多段感测器, 我们也可用感测器的段数来区分侧躺、 正躺或坐在床边。 因为正躺时, 床 的受力面积较大而每个感测器所得的值较小; 侧躺的受力面积居中, 而每 个感测器的值也居中; 坐在床边时, 床的床的受力面积较小而每个感测器 所得的值较大; 若使用者以跪姿在床上, 就有两个下肢压在床上; 若是站 在床边就有两脚底的面积在床上, 床的受力面积更小、 压力更大; 当然, 若是单脚在床上, 感测器的输出会再大一些, 但此姿势很不稳定易跌倒, 很少使用者会采用。
2.利用安置在床缘的 3段式感测器来判断是跌落或起身下床。 图 23是 人体直接起身下床的实施例。 在织带 1 的感测器为 3段式感测器, 当人体 要起身下床时, 除了横向感测器数量的减少夕卜(理由如上述), 若是睡者刚 刚要坐在床上因为人体会瞬间坐在床缘, 重力一下子就到了床边的纵向织 带的感测器上, 因而感测器会瞬间打开三段。 但当人体由坐在床边而要站 起时, 因为是用脚部的力量支撑, 因此是緩慢起身, 所以织带 1 的感测器 是分段的闭合起来机率为多。 且织带 2、 织带 3、 织带 4、 织带 5会变化的 时序由 5-4-3-2-1 ,且其质心会由床中往床边移动且感测器的输出总和会减 少,表示由坐床边到站在床边,同时移动的速度与加速度和跌下的质心(COM) 变化, 速度、 加速度得变化不同。 另外, 利用质心(COM)的位置, 及质心随 时间的变化, 亦可区别是由坐再离床或跌下床。 图 24则是人体由正躺转侧 躺跌落的时序图 , 可看到人体由正躺变侧躺是缓慢滚动过去, 因而床边织 带 1 的感测器是分段打开, 当人体由侧躺跌落时, 因为没有支撑的力量, 人体是立即离开床面, 因而织带 1 的感测器立即闭合。 同时, 质心移动的 速度与加速度与正常的离床非常不同。
由以上一条床缘三段式感测器的时序分析可知道人体是起身下床或者 是跌落床下。 综合以上两点, 防跌落警示流程如图 21。 其中, 正躺转侧躺 在床边是一段危险警告, 若侧躺前态是 躺则更危险故是二级警告。
结合图 21 , 防跌落警示的判断过程如下:
首先判断目前稳态是否是边缘侧躺, 如果不是, 则结束防跌落警示判 断;
如果是边缘侧躺, 接下来判断前态是否为正躺;
如果是正躺, 则发出一级跌落危险警示后结束防跌落警示判断; 如果不是正躺, 则继续判断前态是否为 躺;
如果是 躺, 则发出二级跌落危险警示后结束防跌落警示判断; 如果不是 ^躺, 则直接结束防跌落警示判断。
第十较佳实施例
本发明可为是具有两阶段感测器的监测系统, 两阶段感测器的原理是 将监测系统设置为有两个阶段的感测器, 当压力较轻时, 只有第一阶段的 感测器会受到感应, 在显示器上, 被压到的织带会呈现浅灰色, 当压力较 大时, 第二阶段的感测器就会受导感应, 在显示器上, 被压到的织带会呈 现深灰色。 而由显示图显示的颜色和受力面积可判断使用者是采何种睡姿, 亦即人体受压地区(A0P)也可由图形显示出来。 因为正躺时, 床的受力面积 较大, 人体重量被分散, 织带所承受的力量就比较小, 且主要分布在头部 胸部及屁股部位。 两条感测器只打开第一段, 在显示器上, 被压到的织带 会呈现浅灰色; 当使用者采侧躺时, 因只有人的侧面接触床, 所以受力面 积较小, 相对的, 织带承受力量较大, 使得压力集中, 感测器打开第二段, 在显示器上, 被压到的织带会呈现深灰色, 表示身体躯干的部位, 手脚地 区则织带受压的力道轻些, 故可区分为左或右侧躺。 所以, 由感测器的受 力打开的大小, 可辅助判别正躺或侧躺状态。 若是段数更多, 更能分析正 躺、 躺或侧躺, 侧躺又可分为左或右侧躺。 因为受压的面积大小与受压 力道更能分別, 同时也可得到人体受压地区(A0P)的时间变化。
当人正躺在床上时, 因为整个人的体重分散在较大面积上, 每条感测 织带的承受力量较小, 因而感测器只打开第一段。 当同一个人侧躺在床上 时, 因为只有人的侧面接触床, 所以受力面积小, 压力较大, 因而织带承 受力量较大, 感测器打开第二段。 所以由感测器的受力打开的阶段数, 可 辅助判别正、 侧躺状态。
也就是说在床上移动, 一定要有手或脚当支点去撑高身体, 故至少有 一离重心距离大于身体躯干宽的织带会受压一段时间, 在此受压时间中, 原先人体受压地区(A0P)的图形会变的轻, 即受压点(A0P)由躯干转移到手 或脚上。 最后 A0P图型和先前 A0P图型相似只是平移了。 总之, 所有人的 动作是由平移与转动结合所产生, 故由横向与纵向感测器的时序及段数反 应大小来分析, 可得在床上, X- Y轴平面上的位置, 速度、加速度、 角速度、 角加速度及 COM (重心)、 重心速度、 重心加速度, 人体受压地区(AOP) , COM 随时间变化, A0P随时间变化, 就可同步模拟出人在床上的姿势变化。 同理 也可得知人在椅子上的重心、 重心速度、 重心加速度、 人体受压地区(A0P) 及 A0P随时间的变化, 故在电动椅上利用重心的变化来使椅子前进或后退, 即使用者利用坐时头或身体往前、 后、 左、 右来控制电动椅的行进方向与 速度大小, 若是在电动椅上设有安全带, 则可同时在椅子及安全带上织有 电极来测心电图, 除了可得到躺在椅子上的心跳外尚可由其心电图波型变 化来得知其坐姿, 故可更进一步控制电动椅的行进。 另外亦可在椅子与安 全带上放有麦克风来测心跳或呼吸, 同时当不同部位, 例如前胸或后胸, 的心音或呼吸声音的振幅大时也可用来指引行动电动椅方向。
由正躺到侧躺的过程中, 人是直接滚动成为侧躺, 因而受压织带信号 会有先后弹起的顺序出现, 而正躺时平移身体在床上时会有手或脚压在床 上一段时间当支点来支撑身体, 故织带感测器的时序图就有奇怪的变化如 图 25所示, 在手或脚的所在地区来表示手或脚施力 , 使身体上升及移动。 导致重心位置(COM)变化大而不平顺, 如图 26A, 重心(COM)移动速度的方向 不规律, 如图 26B所示, 导致重心加速度变化更大, 如图 26C。
第十一较佳实施例
本发明两段式感测器可判读使用者翻身的次数, 速度, 加速度, 是一 个人由正躺、 躺到侧身时的连续情形。 我们借此说明亦可测质心(COM)位 置、 质心速度、 质心加速度及织带速度、 加速度的计算。 其中质心(COM)又 可叫重心(COM)。
1.二段式 躺转侧躺织带速度、 加速度:
其相对应时序图如图 27A所示, 由图 27A时序图可算出, 二段式感测 器与一段式感测器 COM 变化情形相同, 趴躺变侧躺 COM 随时间变化比正 躺变侧躺 COM 变化来得大, 且 躺有手或脚当支撑来施力转身。
接着做第 1条织带感测器的速度计算:
计算前定义及资料: ―
23
A.若定义由左至右方向为正, 则由右至左方向为负;
B. Vn是第 n条织带本身的速度, 也就是织带上本身受压所产生的速度; C Vnm是第 η条织带到第 m条织带的速度;
D.织带本身宽度 5.2 cm, 织带与其相邻的织带间隔距离 11.67 cm;
E.时序图中, 每一垂直分割线(纵向方格线)间隔 1 秒。
各织带速度及加速度计算后, 可计算不同织带间感测器变化的速度及 力口速度, 如下:
由图 27A 中可得 -K.35s, 计算由织带 3 到织带 1 的速度 V23=- 11.67cm/0.35s=- 33.34cm/s;
由图 27A 中可得 t4-t2=0.35s, 计算由织带 2 到织带 1 的速度 V12=-ll.67cm/0.35s=-33.34cm/s;
同理可计算织带 3 到织带 1的加速度, 如下计算 V12及 V23 的加速度 A123= (V23-V12)/0.35s=0。
由图 27A 中可得 t3- 12=0.25s, 因此计算第 1 条感测器的速度得到 V2=-5.2cm/0.25s=-20.8cm/s (因为织带的变化是由人体姿势移动或转动所 致, 因而由前知 tl→t2时间中, 织带 3由低变高, 接着织带 2由低变高, 表示人体重心由右往左移动或转动, 故织带 2 的变化是由此而起, 所以方 向是由右至左, 速度是负值。 而在 t2→t3时, 因人体重心更往左移, 所以 织带 2才会由打开第一段变成打开第二段, 所以时间差才用 t3- 12)。
同理第 1条感测器的速度计算:
由图 27A 中可得 t5-t4=0.25s, 计算第 1 条感测器的速度 Vl=-5.2cm/0.25s=-20.8cm/s;
由图 27A 中可得 t5- 13=0.35s, 计算织带 2 到织带 1 的加速度 A12= (V-V2)/(t4-t2)=0/0.35s=0 cm/s2
'图 27B是图 27A的 COM位置对时间变化图, 中间虚线表示原始 COM位 置, 可以看出 tO时间之后, COM位置在虛线的一侧然后往回到原重心方向 且超过原趴躺重心往另一侧, 表示趴躺转侧躺的转身动作是 COM位置来回 往原来(COM)位置移动。且 COM的速度在一开始 10的速度方向和以后的 COM 速度方向 tl相反也是特点。
2.二段式正躺转左侧躺
由图 28A可知, trl^O. lSs, 因此可计算由织带 5 到织带 6 的速度 V56=ll.67cm/0.15s=77.8cm/s;
由图 28A 可知, t4-t3=0.65s, 因此可计算由织 6 到织带 7 的速度 V67=ll.67cm/(t -t3)=ll.67cm/0.65s=17.95cm/s;
以下计算 V56 及 V67 的加速度 A567=(V67-V56)/0.4s=-149.625 cm/s2。 由图 2δΑ可知, t2- ls, 为第 5条织带受力由感测器打开第一段瞬 间到打开第二段的瞬间 , 因此计算第 5 条感测器的速度 V5=5. 2cm/0. ls=52cm/s (第 5条织带变化方向是由左至右), t3-t2=0. I s , 为 第 6条织带受力由感测器打开笫一段瞬间到打开第二段的瞬间, 因此计算 第 6条感测器的速度 V6=5. 2cm/0. l s=52cm/s , t6-t5=0. 15s , 因此可计算 织 带 5 到织带 6 的加速度 A56= (V6—V5) / (t3- ^) =0/0. 15s=0 cm/s2
图 28B是图 28A的 COM位置对时间变化图, 中间虚线表示原始 COM位 置, 可以看出在 U 时间之后, COM位置会出现在虚线的二侧(因为在转身 方向的另一边施力矩), 在过了第二个 COM位置与虚线的交会点后, COM位 置将持续往转身方向移动。 且可见重心速度都在同一方向。
4.由上面各实施例中, 若是第 1条与第 2条的织带没有反应出可算速 度, 则可用第 1条或第 2条本身所算出的速度来表示, 即织带本身所谓的 速度与织带间的速度, 可互相取代。 相同地, 若笫 n条与 n+1条, n+2条之 间没办法得到加速度, 则可由 n条与 n+1条, 或 n+1条与 n+2条织带的速 度来算加速度来取化,或是第 n条, n+1条或 n+2条本身所得的加速度来取 代。
结论:
对同一受测者而言, 翻身的动作有一定规律性, 除表现在 COM位置变 化及织带压力上之外 , 作用在织带上所产生的速度及加速度应该也有一定 的规律性。 例如: 年轻人力气较大, 转身时会产生较大的速度及加速度, 年长者则相反, 例如速度会变慢、 时间会变长。 但同一个人在正常情形下, 他要翻身时的施力及施力点会有固定的样式, 如果这个人在反常的情形时, 例如酒醉、 太劳累或睡眠品质差时, 他的施力及施力方式都会有所改变, 因而速度及加速度, 角速度及角加速度随之有所改变。 本系统记录一个人 正常睡眠时的各种变数, 如速度及加速度改变, 即可用以推定他在睡眠时 可能的不正常情形。 使用上述速度及加速度对时间的改变, 可绘出整晚睡 眠时织带的速度图 29 速度图 30柱状图, 可提供医师对病人的情况有 更多的资讯。 当然, 其他的参数, 如角速度、 角加速度、 重心、 重心速度、 重心加速度、 A0P、 A0P随时间变化等, 均可依同理得直条图或二维图及三 维图, 二维或三维图只是有一维一定是时间, 另一或二维是纵向织带或是 横向织带的感测器所在的位置。
另外, 冲量 =MV (冲量 =质量 X速度)其中 M正比于重量 (Mg) , 故可用 每条织带所受的重量用段数来表示。每一段织带所测的速度为 V, 即可表示 冲量的大小 PV, 其中 P为织带感测器的反应段数来表示重力大小, 相同地 L=IW, 角动量 L也可由 I X W来表示, 其中 I=MR2, R (转动半径) M (质量) 也正比于重量(mg)也就正比于织带感测器所测得的段数, 故也可得到相对 的 I值, W为角速度, 最后动能 = MV2/2 , M为每个人的质量, 可由每个人的 重量直接输入, 算出速度(V)则为质心(COM)速度为睡者整个人的质心运动 速度与总质量的乘积 MV2/2 , 另一方面, M也可为在每一条织带上的重量变 化及速度变化,例如质心(COM)不变,但手脚左右动,也可测其局部的速度, 则其动能为 MV2/2用 pV2/2取代, p为局部织带所受的压力, 正比于织带上 质量, V为两织带间局部的速度, 则 pV2/2为睡者所有身体局部运动的 总和。 转动动能 = 1/2IW2, 其中 W为角速度, I=MR2, 每个人的质量知道, 则床上所发的总能量就由所有整个在床上的 MVV2+ IW72+∑ GgH 来求得, 即可表现出整晚睡者的体能消耗, 愈大者睡眠品质较差。
其中, MgH为重力势能, IW2/2转动能量, MVV2动能。 各能量的变化 可用来分析姿势变化及睡眠品质。
例如重力势能表示坐姿变躺, 躺又变坐时, 当躺平的高度为 "0" 当标 准值时, 坐起来有腰上的质量离开床, 且腰以上的重量约为 1/2到 2/ 3的 总重量, 高度 "H" 约为上半身的一半, 故大约为身高的 1 /4, 故当由躺变 坐时所要花的能量约为(1/8至 l/6) MgH, H为人的高度。 当每晚的重力势能 变化大, 表示睡眠品质差。
同理, 2 转动动能表示睡眠者翻身所花的能量约为 IW2/2, 其中 I 为转动惯量, W为角速度, 当然正躺、侧躺、 躺、 坐姿等各种不同的姿势, 其转动惯量 I值均不同, 且相对应的 W值(角速度也不一样), 故可由转动 能量整晚的变化情形, 一方面可分析睡眠姿势, 另一方面可当 ^睡眠品质 的指标, 若其总值愈大, 即表示翻身的次数愈多, 睡眠品质愈差。
最后, 动能 MVV2 , —用质心(COM)的速度及其质心(M)来表示, 另一 则用身体各部的局部地区移动所产生的动能, 用 pV2/2来表示, p为局部的 压力值, V为局部的速度值, 表示人在床上的各个身体部份移动动能, 故整 晚上的 MV2/2 (动能)总和, 睡眠者整晚的动能, 愈大表示整晚移来移去不安 定, 故整晚值愈高表示睡眠品质愈差。
另夕卜, 本系统也可同步由感测器来测得躺在床上的呼吸信号, 如图 31 , 即呼吸变化时, 织带所受的张力也随之变化, 故感测器也能感应出呼吸的 变化。
第十二较佳实施例
本发明两段式正躺及趴躺的姿式判断可由以下几点综合研判:
1.正躺及 躺时人体与床面接触面较大重力分散到多个织带上, 因而 多个织带上受压力较小。
此时人的转动惯量是 I= mnRn 2, 其中 mn是质量正比于重量 (mng) , 故 可看成是各织带上受力的大小, 正比于裂缝感测器(c l ip type s ensor) 打 开的段数, 因此若裂缝感测器的段数愈多, 则受力的比例关系就愈清楚, 或是多段式感测器的段数。 R是到支点的距离。 若向左侧转(支点在织带 3) 织带 3、 4、 5、 6都有 1段的感测器反庶 , I正比于 IP 02+1Ρ 12+1Ρ 22+1 Ρ χ 32=14Ρ , Ρ是各织带所感测到的压力。
2.侧躺时人体与床面接触较小, 重力集中在较少织带上, 织带上受压 力较大。
此时人的转动惯量是 I= mnRn 2。若向后倒(转左,支点正好在织带)织 带 3、 织带 4都有 2段的感测器反应, 其它感测器为 , I 正比于 2P χ Ο+2Ρ χ 12=2Ρ与前例^:比较可知, 正躺或趴躺时的转动惯量较大, 转动不 易, 而侧躺时转动惯量较小, 转动容易, 故侧躺变正躺或 ^入躺所需能量最 少, 角速度值最大, 人的动脑程度也少, 趴躺的 I值最大, 故趴躺改成正 躺或侧躺, 所需能量大且时间最多, 故睡眠品质差, 正躺的 I值居中, 转 成侧躺所需能量及角速度都在中间。 故用转动惯量值 "Γ 可用来分析姿势 及其变化, 同时也可用来评估睡眠品质, 若是转动惯量 I一个晚上下来弯 化很大, 则睡眠品质就 4艮差, 且变化频率愈大就愈不好。
3.正躺转侧躺时, COM变化平稳(速度方向一致), 时间较短, 其所产生 时序图如图 28A所示, 计算后得到 COM变化如图 28B所示。
4. 尚转侧躺时, COM变化较乱(速度方向前后不一致), 时间较长, 如 图 27A趴躺转侧躺的时序图可计算得到如图 27B所示的 COM变化图。 COM 变化方向不一致的原因是一般人在趴躺要起身时, 一定要用一个力量施加 在床上才能起身, 且这个力量是在转身方向的另一边, 因此这个力量施加 在织带上后, 就会有一质心往转动的另一边偏移的现象出现。 故质心变化 (COM)及其变化速率可用来分析判别睡眠姿势及睡眠品质。
5.如果一定时间内所有织带变化率(上下弹跳)太频繁, 则可判定是在 床上做平移的动作。 正常转身(参考前面说明)大约在 3秒内都会完成, 床 上平移, 其 A0P会由原先的面积比较大改成在小的手或脚的地区面积上且 感测器的输出变大 4艮多, 如图 25时序图中有多个织带上信号有短暂的变化 出现, 如后在床上另一地方产生相同的大小面积的 A0P 图形及数值同时重 心(COM)只是平移而已, 但平移过程中重心(COM)变化的速度、 加速度最明 显。 如图 25 , COM位置对时间关系图, 在时间 a之前使用者是正躺在床的 中间, 到了时间 j 的时候使用者已经平移到了床的右边。 我们可以发现整 个过程所花时间超过了 5秒。
6.姿势判定的流程图可参考一段式感测器姿势判定的流程图, 如图 20 所示。
第十三较佳实施例
由先前资料可知, A0P与 COM的资料库就可得知不同床的角度倾斜, 例 如床头抬高 Θ角, 这会使得重心(COM)往屁股方向移, 且屁股地区的压力值 上升而头部的压力值下降, 故 A0P分布情形随着床头上升的角度而改变, 同理, 床尾上升时, 反而使胸部及头部的压力上升, 同时, 重心往头部方 向移动, 同理, 可得床左或右倾斜的角度, 亦可由 A0P与 COM的资料库来 对比倾斜的角度。
另外, 亦可由先前得知的侧躺(与床成 π /2度角), 如图 32Α, 转正躺 需 Τ时, 则其所产生的角速度 W= TT /2T, 但如今, 床倾斜 Θ角(如图 32B) , 则由侧躺转正躺的时间 t , 由 可得床的倾斜角 θ = π /2- 。 相同 道理, 由正坐(与床呈 90度), 如图 33A, 到正躺所需的时间为 Τ , ϊ^=π /2T坐, 则当床头上升 Θ角时, 则由正坐转斜躺的时间为 t, 由 W坐 ΐ=θ ΐ 则 可得床的上升角 6 = 71/2-6 (如图 33Β)。 另外, 由正躺到正坐所需时间为 Τ 躺, 则 W = TT/2T 则当床头上升 Θ角时, 则由斜躺转正坐时间为 t, 由 W \-= ^ , 则可得床的上升角度 θ = π/2- Θ 也就是说, 本系统也可为调整 床头或床尾角度的控制系统。
一个人正坐在床上, 如图 34Α, 此时, 正坐的身体转动 时, 使原先二 段都开表示正坐在织带 1上的重量 mg 改变到 mgcos 时, 第二段由 "1" 变 "0", 接着当身体转到 ^时, mgcos 表示在织带的重量使另一段感测器 由 "1" 变 "0", 其间所花的时间为 I;, 如图 34B所示, 则 ϋ 为角速
Ά
度 。 因为由设定好的感测器可决定在不同的 、 反应, 故我们可得到 当有反应时, 相对应的 、 值就成为已知参数, 故每个人的角速度 ϋ 为已知, 故当身体由正坐转到正躺时 = , 可得到所需的时 Γ, 2
间 =」L。 实际上, 这可与正坐转到正躺所测到的时间做比较。 如果差异 2ω1
很大, 表示这个人睡眠品质差, 故不像刚体, 而有思想睡不着, 故两者差 距就变大。
但当床头上升 角时, 正坐转正躺时, 所需时间 , 则所转动的角度 ¾ = L, 则床上升的角度 = -^^xt坐。 同理可得床左右倾斜的角度或床尾下降或抬高的角度。
若是三段式感测器, 身体正坐在其上, 即与床有 π/2 角, 如图 34Α, 则当身体正躺过程中, mgcos S 导致第三段感测器由 "1" 变 "0"。 接着, 当身体转到 mgcos e2时, 第二段感测器由 "1" 变 "0", 这过程需 t2时, 接着身体转到 mgcos63时, 第一段感测器由 "1" 变 "0", 这过 程需 时, ϋ =Ψ2, 如图 34C, 且角加速度 α= 二 。 故当人由正坐变 斜躺在床上时, 所需时间为 t
Figure imgf000029_0001
为坐到斜躺所需角度 Θ坐, 则床上升的角度 θ = π/2- Θ坐, 同理, 我们也用 在床左右倾斜或床尾上下倾斜的情形。
另夕卜,如果人由躺变坐的过程,如图 35Α,在织带上的重量由零到 mg sin 6i即身体开始压在织带上, 即转动 6i时,使原先二段式感测器的第一段由 "0" 改变成 "1" 即改变了其状态, 接着当身体又转动到 θ2角使第二段感 测器由 "0" 变 "1", 表示 mg sin02, 其间所发生的时间为 1\, 如图 35Β, 则(θζ-Θ I ^为角速度 因为由设计好的感测器可决定在不同的 Θ 2, Θ,反应, 故我们可得到当有反应时的 θ!, θ2值, 故可得其角速度 Wl5 故 当身体由正躺转到正坐时, 可得正躺转到正坐所需时间
Figure imgf000030_0001
但当床头上升 Θ角时正躺转正坐所需时间 t ; 则所转动的角度
¾ = ½则床上升的角度 θ为 § - ½。
最后, 若身体开始转动时, 首先会使邻近的织带 2感测器先由 "1 "0", 如图 36Α变 36Β, 也就是说重心会偏移, 故我们可用来当织带 1 始受力时间, 故织带 2状态改变(1→0)开始到织带 1状态改变(0→1) 间, 如图 36Β变 36C的时间记为 Τ, 此过程为身体由 0度转成 Θ!度, 角速度 0 = , 故当床上升 度时, 织带 1就自动由 "0" 改成 "1",
Τ
织带的感测器改变的段数来说明床头上升的情形, 即利用床头上升到织带 感测器的第一段, 表示床头已上升61角度, 若织带感测器第 应, 表示床头已上升 θ 2角了。 多段式感测器就可设定成多段式床头上升角度的 感应器。相同道理, 当床头下降小于 Θ 2角时,第二段感测器就由 "1" → "0" 故也可为床头下降角度的感应器, 当然织品感测器也可为床尾上升或下降 角度的感应器, 用来感测及决定床尾的上升或下降角度。
相同道理, 当织带感测器在最高段时, 即身体重量 (mg)都在其上, 即 织带 1例如坐在其上, 当开始躺下会使邻近织带 2的感应器起反应由 "0" 变 "Γ, 我们可当作织带 1感测器的起始转动时间, 到织带 1的最高段由 "1" 变 "0" 表示身体已转 (图 34Α) , 则其角速度 Τ为织带 2 起反应到织带 1起反应的时间, 另外, 因为转动的起始时间很难测定, 故 可以用加速规或振动感测器或陀螺仪或摄影机来感测。
平均角速度则可由侧躺时 90·开始变化到平躺所需时间 Τ则平均角速度
= /2Τ, 且假设不用外力下, 角动量 L=IW=常数。 IW为常数, 故由 1(侧) W 平均值 =1(正) W正 =1(趴) 我们将 1(侧)及 W侧的平均值算出, 就可推算出 1(正)正故 "的可的躺 起其变时由 的平均角速度 Ww值为多少, 或是测出 I «的平均角速度 W正。 我们也可 由 i(«w平均值 = 1(正) W正 (平均值)而求得 1(正)的值为何。 相同道理, 当我们知道 1(正) 及 W (正)时也可由 1(正)^正) =1(侧)¥(铺, 若是半侧半趴的姿势下, 转成正躺或趴 躺的角速度可算出, 即可由 I(«W(« = I(半侧) W半侧中求出 1(半侧)来。 若是预测值 与实际测到值差转变时,即两者差别很大,即实际测到的 1(«值与由 H ) = 1(« 《所得到的 差异甚大时, 表示受测者正用脑, 故更不像理想刚 体, 当然睡眠品质差。
若是一段以上的织品感测器不是在 "旋转轴" 的定点上, 而是定点有 一段距离, 而此感测器不是身体转动时的正下面, 故由第一段与第二段的 时间差 t2与织带宽度 d, 即可由 d/ t2=V^ V1; ¥1为此时人的移动速度, 相 同道理三段式感测器都在人体下且为旋转轴的原点时, 可测的 Wl W2, W3, , θ,, θ2。 若不是在旋转轴的原点时, 我们把身体当作是移动而不是转 动, 则可得 V15 V2, 及力口速度 a!。
整个系统启动后即开始收集及判断备项资讯, 整个系统流程图如图 37 所示。
系统启动后, 判断是否床垫被触动, 如果床垫没有被触动, 则系统进 入省电模式后, 继续判断是否床垫被触动;
如果触动了床垫, 则依次进行下列计算:
记录上下床时间及姿势判定(含防褥疮判断、 跌落预防及警告);
* 根据下床后离线资料计算整个睡眠时间的 COM位置, 并绘制输出 COM 5?于时间关系图;
计算各织带速度及加速度, 并绘制输出速度及加速度对睡眠时间 关系图;
根据睡眠时转身记录, 计算转身时的转动惯量, 并绘制输出转动 惯量对睡眠时间关系图;
根据记录资料, 计算织带变动次数, 并绘制输出各织带变动与睡 眠时间关系图;
将各织带变动次数总合, 并绘制输出织带变动与睡眠时间关系图; 最后, 将资料及计算咨询存入硬盘档案中, 然后返回省电模式 以上所说均以裂缝(CLIP TYPE)感测器放在织带上, 若是改成圆顶型 (DOME SHAPE)感测器放在床上, 或织带上, 织带受到重力下压导致感测器 被织带与床夹挤与导通, 即由原先 T 变成 "0" ,这与先前的裂缝受重力 下由 "0" 变成 "1" 相反。 不过有个优点就是更省电,因为只有重力下才会 反应,否则永远有 "1" 即不通, 故没有电通过, 同时使用者也不必启动整 个系统, 因为没人上床时就自动关掉, 有人上床就自动启动, 非常简单方 便, 若是多段式结构又更可区分织带与床之间的重力大小, 若是织带缝在 床罩上, 即圆顶型(DOME SHAPE)感测器仍在织带或床罩上, 当床罩套上床 上时, 织带受到重力时仍使圆顶型感测器受到夹挤而反应, 效果相同。
若是二人床或三人床效果相同, 因为每一个人的床上动作不会同步, 尤其是睡觉时, 每个人只要动作不同步且不同的位置即可分辨出来, 尤其 是身体受压地区(A0P)会呈现一人以上的图形的变化。 在裂缝感测器(CLIP TYPE SENSOR)可在织带或床罩或床上同时设有圆顶型感测器, 如图 3M, 或 多段感测器在织带或床罩或床上两者串连则只有在圆顶型感测器或多段式 感测器直接受使用者压力下时才启动裂缝感测器的拉力感测器效果, 故可 同时有省电且省启动动作且使用者没上床或一下床, 只要没有压到圓顶型 感测器就没通电非常环保, 省电且自动化。 同时织品感测器在床的本体外 面,也可侦测床的弹性;倘若床的弹性降低时,所测的重心与其它数值也会 改变,表示要换床或椅子了。
最后, 织品感测器上的导电材料, 亦可为可变电阻、 压电材料或可变 电容所组成, 故输出的信号为模拟信号, 感测的参数为电阻值或电容值。 利用织品感测器的人体监控系统, 其特征在于所述的程序处理模块, 是以下列规则对各感测器数字输出进行前处理以降低杂讯干扰: 对于周期 小于 K秒的正负脉冲都一律消除。 每个织品感测器各自串联或并联一电阻 或电容来产生输出点不必有多个, 导致控制器的输入端原本也要多个来对 应而结果只用两条导线连接模数转换器, 供微控制器读取各织品感测器的 逻辑状态, 例如图 38为每个织品感测器串接一电阻而后并联, 图 39为每 个织品感测并接一个电阻后再串联起来, 此结果会让输出端只有二点, 利 用此电阻式电路系统可让输出端减少, 来达到与控制器的输入端容易接合, 因为二者间的接合点减少。 除了织品感测器外, 尚可外加超音波、 红外线 感测器、 激光、 摄影机、 加速规、 或陀螺仪以增加系统准确度。 最后, 感 测器系统可包括枕头、 衣服或地板上设有织品感测器, 来增加系统的准确 度。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明作任何形式 上的限制, 虽然本发明已以较佳实施例揭露如上, 然而并非用以限定本发 明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内, 当可利 用上述揭示的方法及技术内容作出些许的更动或修饰为等同变化的等效实 施例, 但凡是未脱离本发明技术方案的内容, 依据本发明的技术实质对以 上实施例所作的任何简单修改、 等同变化与修饰, 均仍属于本发明技术方 案的范围内。

Claims

权 利 要 求
1. 一种利用织品感测器的人体监控系统, 其特征在于其包含: 一床感测系统, 包含床本体、 织带及至少一感测人体的姿势或动作的 织品感测器, 所述织品感测器设在所述床本体的外表、 床罩或所述织带上, 用于感测使用者在床上的重力所导致织带拉力的变化;
一微处理器, 连接于所述织品感测器, 接收来自所述织品感测器的信 号。
2. 根据权利要求 1所述的利用织品感测器的人体监控系统, 其特征在 于所述织品感测器设定在床边, 人的重力不会直接承受在所述织品感测器 上面。
3. 根据权利要求 1所述的利用织品感测器的人体监控系统, 其特征在 于所述的床感测系统中, 设置在所述织带上的织品感测器为圆顶开关感测 器或裂缝式感测器。
4. 根据权利要求 1所述的利用织品感测器的人体监控系统, 其特征在 于所述织品感测器为拉力感测器、 压力感测器、 重力感测器或力感测器, 输出信号为数字信号。
5. 根据权利要求 1所述的利用织品感测器的人体监控系统, 其特征在 于所述织品感测器在所述织带上安装有感测器的一部分, 在所述床本体或 床罩上相应位置安装有相同数量的另一部分。
6. 根据权利要求 1所述的利用织品感测器的人体监控系统, 其特征在 于所述^^处理器接收来自所述织品感测器的信号, 经有线或无线通讯模块 传送到远端个人数字装置 , 并在远端个人数字装置内含的程序处理模块对 所述信号加以编码并进行分析。
7. 根据权利要求 6所述的利用织品感测器的人体监控系统, 其特征在 于所述的微处理器中还包含程序处理模块, 对于周期小于 K秒的正负脉冲 都一律消除。
8.根据权利要求 7 所述的利用织品感测器的人体监控系统, 其特征在 于所述的程序处理模块, 可得到人的动作图。
9. 根据权利要求 1所述的利用织品感测器的人体监控系统, 其特征在 于通过所述织品感测器的感测信号而计算产生身体受压地区、 质量中心、 质量中心速度、 姿势状态、 惯性质量、 重力势能及动能, 又能计算速度及 加速度, 还能产生身体转动的角速度、 角加速度。
10. 根据权利要求 1 所述的利用织品感测器的人体监控系统, 其特征 在于床本体包含床头或床尾升降控制系统。
11. 根据权利要求 1 所述的利用织品感测器的人体监控系统, 其特征 在于所述织品感测器还进一步装设在衣服或枕头上, 进而侦测人体在床上 的姿式变化。
12. 根据权利要求 1 所述的利用织品感测器的人体监控系统, 其特征 在于所述的织品感测器还连接一生理感测器, 当且仅当所述织品感测器有 反应时才启动所述生理感测器。
13. 根据权利要求 12所述的利用织品感测器的人体监控系统, 其特征 在于所述的生理感测器用以监测心电图、 心跳、 心音、 体温、 呼吸、 血压、 血糖、 血氧、 肌电图、 湿度。
14. 根据权利要求 13所述的利用织品感测器的人体监控系统, 其特征 在于所述的感测信号为心电图、 呼吸、 心音或体温时, 也能侦测人体的姿 势。
15. ^权利要求 1所述的利用织品感测器的人体监控系统, 其特征在 于其还包含一模数转换器, 至少有两个能感测身体的姿势或动作的织品感 测器各自串联或并联一电阻或电容, 以便用两条导线连接所述模数转换器, 再将数字信号提供给所述微控制器, 用来减少输出端的接点。
16. 根据权利要求 1 所述的利用织品感测器的人体监控系统, 其特征 在于所述的床感测系统为人体姿势状态分析系统或睡眠品质分析系统。
17. 根据权利要求 16所述的利用织品感测器的人体监控系统, 其特征 在于所述织品感测器能感测到身体的冲量。
18. 根据权利要求 1 所述的利用织品感测器的人体监控系统, 其特征 在于所述的感测器还包含摄影机、 加速规、 红外线、 超音波、 激光或陀螺 仪, 以增加准确度。
19. 一种利用织品感测器的人体监测方法, 其特征在于其中包含: 置于床上的织品感测器侦测身体姿势或动作变化并输出感测信号; 处理器接收该感测信号, 分析信号的大小及时间长度, 来产生分析参 数, 用来分析睡眠品质或睡眠姿势情形。
20. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于其中所述的处理器所处理的信号均为数字信号
21. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于其中所述的织品感测器设置在床上、 床头或衣服上。
22. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于其中所述的织品感测器进一步连接生理感测器,当且仅当所述织品感 测器有反应时才启动生理感测器来侦测生理讯号。
23. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于所述织品感测器设置于多条织带的上, 所产生的分析参数计算质量中 心 COM 的位置,且质量中心的位置等同于重心的位置, 质量中心的位置 = ( P1X1+P2X2+...P„Xn) / (P1+P2...+Pn) , 其中 Pn为第 n条织带上的织品感测器的 输出值, Xn为第 n条织带的位置。
24. 根据根据权利要求 23所述的利用织品感测器的人体监控方法, 其 特征在于所产生的质量中心的位置 COM分为 X轴的横向质量中心的位置以 及 Y轴的纵向质量中心的位置, 进而算出整个床上的质量中心 C0M (X,Y) , 以及由 X轴及 Y轴重心结合。
25.根据权利要求 24 所述的利用织品感测器的人体监控方法, 其特征 在于所产生的质量中心的位置 COM推算出质量中心速度:由前一段时间所得 C0M (Xl5 YJ与下一段时间所得 C0M (X2, Υ2) , 则其质量中心速度为两质量中心 的距离除以两者之间的时间差。
26. 根据权利要求 25所述的利用织品感测器的人体监控方法, 其特征 在于:使用者在床上的动能为 MVV2,其中 Μ为使用者的质量, V为质心速度。
27. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: 所述织品感测器设置于多条织带的上, 所述织带路径上的任一织品 感测器的状态开始受外力改变的时间即为上床时间。
28.根据权利要求 19 所述的利用织品感测器的人体监控方法, 其特征 在于: 所述织品感测器设置于多条织带的上, 所述织带路径上的任意感测 器均不再输出感测信号的时间即为下床时间。
29. 根据权利要求 28所述的利用织品感测器的人体监控方法, 其特征 在于整个床上的质量中心 C0M (X, Y)值的不同来分辨侧躺与正躺或 躺。
30.根据权利要求 29 所述的利用织品感测器的人体监控方法, 其特征 在于: 趴躺转侧躺且侧躺时整个床上的质量中心 COM (X, Y)的重心的值在床 边的第一织品感测器所在的织带上, 则判断下一动作为跌床。
31. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: 当床上的织品感测器随着身体姿势变化而有状态上的改变, 在某特 定时间上由所述织品感测器所测出的值回推到整个床面上的压力分布图 形, 再回推到相对应人体受压地区。
32. 根据权利要求 24或 31所述的利用织品感测器的人体监控方法, 其特征在于: 利用人体受压地区与质量中心的位置 COM值的不同,来区分侧 躺与正躺或趴艢。
33. 根据权利要求 24及 31所述的利用织品感测器的人体监控方法, 其特征在于: 利用人体受压地区与质量中心的位置 COM 的值在不同床的倾 斜角度的数值不一样来推算床的倾斜角度。
34. 根据权利要求 31所述的利用织品感测器的人体监控方法, 其特征 在于:随时间的变化, 当人体受压地区不变的时间大于一预设时间时, 则发 出防褥疮警告。
35. 根据权利要求 31所述利用织品感测器的人体监控方法, 其特征在 于: 由正躺人体受压地区转侧躺人体受压地区所花的时间, 小于八躺人体 受压地区转侧躺人体受压地区所花的时间。
36. 根据权利要求 24或 31所述的利用织品感测器的人体监控方法, 其特征在于:利用人体受压地区与质量中心的位置 COM的数值在左侧躺与右 侧躺的数值不同来区分左侧躺或右侧躺。
37. 根据权利要求 36所述的利用织品感测器的人体监控方法, 其特征 在于: 趴躺转侧躺会有手或脚所在位置的织带上的织品感测器有反应且反 应时间比正躺转侧躺长。
38. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: 由床上单位时间所产生的所述织品感测器改变状态的次数总和为纵 轴, 时间为横轴来作为睡眠活动记录。
39. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于:使用者总质量正比于其总重量, 又正比于各所述织品感测器的压力 值, 故总重量正比于织品感测器的侦测数值总和。
40. 根据权利要求 24所述的利用织品感测器的人体监控方法, 其特征 在于: 重心位置来回移动或重心速度的方向前后不同, 则判断使用者是由 躺转成侧躺。
41. 根据权利要求 24所述的利用织品感测器的人体监控方法, 其特征 在于: 利用重心的位置(COM)越接近床边同时横向织品感测器反应数目愈 多, 则判断使用者跌下床的机率就越高。
42. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: 正坐时使用者与床呈 π /2,正躺时使用者与床呈 0度, 故角速度为 π /2与正坐转变为正躺或正躺转正坐所需的时间的比值。
43. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: π /2与正躺转侧躺或入躺转侧躺所需时间的比值。
44. 根据权利要求 42所述的利用织品感测器的人体监控方法, 其特征 在于:利用正坐转正躺或正躺转正坐的时间以及所述角速度计算床上升或 下降的角度。
45.根据权利要求 19 所述的利用织品感测器的人体监控方法, 其特征 在于: 所述织品感测器设置于多条织带上, 所述织带上设置的织品感测器 的不同段数是由不同的转动角度产生的, 故利用织品感测器的段数来表示 床上升或下降的角度。
46. 根据权利要求 24所述的利用织品感测器的人体监控方法, 其特征 在于: 在侧躺转正躺或正躺转侧躺其质量中心位置 COM移动的方向与速度 都是同一方向。
47. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: 所述织品感测器设置于多条织带上, 所述邻近两织带间的距离与邻 近两织带间的织品感测器的先后反应的时间间距的比值即为织品感测器的 移动速度, 也称为人体的移动速度。
48. 根据权利要求 47所述的利用织品感测器的人体监控方法, 其特征 在于:所述织品感测器设置于多条织带上, 邻近织带上的织品感测器的移动 速度 V1与 V2, 则由(V- V2) /Δ t为加速度, 其中△ t为所述邻近织带上的织 品感测器的移动速度的时间差。
49. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: 所述织品感测器设置于多条织带上, 在同一织带上做转动时, 该织 带有两段感测器, 则可得角速度为 θ2- 其中 6i为织品感测器第一 段起反应的角度, θ2为织品感测器第二段起反应的角度,则角速度 w=(e2- ΘΟ/Δί, At为织品感测器笫一段起反应到织品感测器第二段起反应所需 的时间。
50. 根据权利要求 50所述的利用织品感测器的人体监控方法, 其特征 在于:在同一织带上 转动时, 该织带有三段感测器, 织品感测器的第一段 与第二段的角速度为 , 织品感测器的第二段与第三段的角速度为 W2, 则 角加速度 α = (W-Wj /At, △ t为角速度 与魚速度 W2之间的时间差。
51. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: 所述织品感测器设置于多条织带上, 由所述织品感测器本身所设定 的感测的角度 6i作为床上升或下降的角度感测器,当床上升或下降 Θ角时, 感测器的状态随之改变。
52. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: 所述织品感测器设置于多条织带上, 由人体在所述织带上转动所产 生的织品感测器的第一段与第二段反应, 第一段代表转动 Θ!角时才产生反 应, 第二段代表转 θ2角时才产生反应, 则 Θ厂 6i与所述两段的时间差的比 值即为角速度 W。
53. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: 所述织品感测器设置于多条织带上, 转动惯量 1=^1 + P2RA .. +P„Rn 2) / (P^+.-.+Pn), 其中 Pn为第 n条织带上的感测器输出值, Rn为第 n 条织带与转动支点间的距离。
54. 根据权利要求 50或 53所述的利用织品感测器的人体监控方法, 其特征在于: 所述织品感测器设置于多条织带上, 转动惯量 WP!R P2R2 2+...+PnRn 2)/ (P^+.-.+Pj, 其中 Pn为第 n条织带上的感测器输出值, R„ 为第 n条织带与转动支点间的距离。
55. 根据权利要求 55所述的利用织品感测器的人体监控方法, 其特征 在于:转动能量为 V /2 , 其中 I为转动惯量, W为角速度。
56. 根据权利要求 19所述的利用织品感测器的人体监控方法, 其特征 在于: 所述织品感测器设置于多条织带上, 当所述织带上的织品感测器, 第一段起反应到第二段起反应的时间为分母, 织带的宽度为分子, 其比值 为人在所述织带上的速度 V。
57. 才艮据权利要求 56所述的利用织品感测器的人体监控方法, 其特征 在于:所述织品感测器为三段式织品感测器, 其中第 1、 2段感测器测得的 速度为 Vl 第 2、 3段感测器测得的速度为 V2, 则(VrVJ / A t即为加速度, 其中 A t为 与 ^之间的时间差。
58. 才艮据权利要求 47或 57所述的利用织品感测器的人体监控方法, 其特征在于:使用者在床上的动作的动能为 P2V2 2/2+…… + P„Vn 2/2 , 其中 Pn为在第 n条织带上的织品感测器的输出值, Vn为第 n条织带所得的 人体的移动速度值。
PCT/CN2009/001451 2009-12-15 2009-12-15 利用织品感测器的人体监控系统及监控方法 WO2011072416A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/001451 WO2011072416A1 (zh) 2009-12-15 2009-12-15 利用织品感测器的人体监控系统及监控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/001451 WO2011072416A1 (zh) 2009-12-15 2009-12-15 利用织品感测器的人体监控系统及监控方法

Publications (1)

Publication Number Publication Date
WO2011072416A1 true WO2011072416A1 (zh) 2011-06-23

Family

ID=44166699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/001451 WO2011072416A1 (zh) 2009-12-15 2009-12-15 利用织品感测器的人体监控系统及监控方法

Country Status (1)

Country Link
WO (1) WO2011072416A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103932798A (zh) * 2014-05-16 2014-07-23 陈桂芳 一种基于大数据分析实现非接触式睡眠监控的系统和方法
CN105395189A (zh) * 2015-12-17 2016-03-16 深圳诺康医疗设备有限公司 心脏生理参数检测系统
WO2018214134A1 (zh) * 2017-05-26 2018-11-29 深圳市迈迪加科技发展有限公司 生理信号检测装置及睡眠装置
EP3206654B1 (en) * 2014-10-17 2020-11-25 Stryker Corporation Person support apparatuses with motion monitoring
CN114010169A (zh) * 2016-08-12 2022-02-08 苹果公司 生命体征监测系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483380A (zh) * 2003-08-15 2004-03-24 北京泰达新兴医学工程技术有限公司 人体自然状态下睡姿的动态检测传感装置
CN1586425A (zh) * 2004-10-21 2005-03-02 北京新兴阳升科技有限公司 数字化全病区医学信息监测与控制系统
WO2005024748A1 (en) * 2003-09-09 2005-03-17 Bed-Check Corporation Apparatus and method for reducing the risk of decubitus ulcers
CN1875880A (zh) * 2006-06-08 2006-12-13 北京新兴阳升科技有限公司 监测睡眠状态和呼吸障碍事件的传感装置
CN101053518A (zh) * 2006-04-12 2007-10-17 杨章民 姿态监控系统
CN101190123A (zh) * 2006-11-28 2008-06-04 周纯美 睡眠状态监控系统
WO2008104918A1 (en) * 2007-02-28 2008-09-04 Philips Intellectual Property & Standards Gmbh System and method for obtaining physiological data of a patient
WO2009033361A1 (en) * 2007-09-04 2009-03-19 Changming Yang Cloth comprising separable sensitive areas
WO2009033362A1 (fr) * 2007-09-04 2009-03-19 Changming Yang Tissu pouvant former un élément électronique

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1483380A (zh) * 2003-08-15 2004-03-24 北京泰达新兴医学工程技术有限公司 人体自然状态下睡姿的动态检测传感装置
WO2005024748A1 (en) * 2003-09-09 2005-03-17 Bed-Check Corporation Apparatus and method for reducing the risk of decubitus ulcers
CN1586425A (zh) * 2004-10-21 2005-03-02 北京新兴阳升科技有限公司 数字化全病区医学信息监测与控制系统
CN101053518A (zh) * 2006-04-12 2007-10-17 杨章民 姿态监控系统
CN1875880A (zh) * 2006-06-08 2006-12-13 北京新兴阳升科技有限公司 监测睡眠状态和呼吸障碍事件的传感装置
CN101190123A (zh) * 2006-11-28 2008-06-04 周纯美 睡眠状态监控系统
WO2008104918A1 (en) * 2007-02-28 2008-09-04 Philips Intellectual Property & Standards Gmbh System and method for obtaining physiological data of a patient
WO2009033361A1 (en) * 2007-09-04 2009-03-19 Changming Yang Cloth comprising separable sensitive areas
WO2009033362A1 (fr) * 2007-09-04 2009-03-19 Changming Yang Tissu pouvant former un élément électronique

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103932798A (zh) * 2014-05-16 2014-07-23 陈桂芳 一种基于大数据分析实现非接触式睡眠监控的系统和方法
EP3206654B1 (en) * 2014-10-17 2020-11-25 Stryker Corporation Person support apparatuses with motion monitoring
CN105395189A (zh) * 2015-12-17 2016-03-16 深圳诺康医疗设备有限公司 心脏生理参数检测系统
CN114010169A (zh) * 2016-08-12 2022-02-08 苹果公司 生命体征监测系统
WO2018214134A1 (zh) * 2017-05-26 2018-11-29 深圳市迈迪加科技发展有限公司 生理信号检测装置及睡眠装置

Similar Documents

Publication Publication Date Title
CN106842979B (zh) 一种辅助睡眠的床垫
US6832987B2 (en) Chair and ancillary apparatus with medical diagnostic features in a remote health monitoring system
KR101188655B1 (ko) 무구속 수면상태 판단장치가 내장된 베개
US8235895B2 (en) Medical sensor kit for combination with a chair to enable measurement of diagnostic information
JP3543392B2 (ja) 睡眠時呼吸情報測定装置
JP5951630B2 (ja) 臨床症状のモニター、予測、および治療
US8469884B2 (en) Medical sensor kit for combination with a chair to enable measurement of diagnostic information
WO2011020216A1 (zh) 侦测生理机能及姿势状态的物品、方法和系统
JP6799661B2 (ja) 睡眠時無呼吸モニタリングシステム
JP2007061439A (ja) 生体情報測定装置および生体情報計測方法
CN107041730A (zh) 一种非接触式睡眠监测装置及其监测方法
CN101081167A (zh) 用于检测生命机能的装置,控制单元和脉搏波传感器
JP2009525160A (ja) 睡眠呼吸障害及び/又は床ずれを防止できる衣類及びこれを用いた睡眠呼吸障害及び/又は床ずれ防止方法
WO2011072416A1 (zh) 利用织品感测器的人体监控系统及监控方法
CN111916211A (zh) 一种适用于失能老人的安全监护系统和方法
JP2022532849A (ja) 睡眠生理システム及び睡眠警告方法
JP3353460B2 (ja) 監視装置
TW201117139A (en) Monitoring sytem for posture changes in bed and method fhereof
JP6925920B2 (ja) めまい防止システム
Kimura et al. Development of an unobtrusive vital signs detection system using conductive fiber sensors
CN217723478U (zh) 非接触式睡眠监测装置
CN213465001U (zh) 一种睡眠心肺监测预警垫
CN110123327B (zh) 呼吸侦测装置、床垫及呼吸侦测方法
WO2018098798A1 (zh) 一种智能枕头
TWM604481U (zh) 醫護輪床感測器之結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09852154

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09852154

Country of ref document: EP

Kind code of ref document: A1