JP2007314797A - 生分解性形状記憶ポリマー - Google Patents

生分解性形状記憶ポリマー Download PDF

Info

Publication number
JP2007314797A
JP2007314797A JP2007190922A JP2007190922A JP2007314797A JP 2007314797 A JP2007314797 A JP 2007314797A JP 2007190922 A JP2007190922 A JP 2007190922A JP 2007190922 A JP2007190922 A JP 2007190922A JP 2007314797 A JP2007314797 A JP 2007314797A
Authority
JP
Japan
Prior art keywords
polymer
segment
composition
trans
shape memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007190922A
Other languages
English (en)
Inventor
Robert S Langer
ロバート・エス・ランガー
Andreas Lendlein
アンドレアス・レンドライン
Annette Schmidt
アネッテ・シュミット
Hans Grablowitz
ハンス・グラブロービッツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of JP2007314797A publication Critical patent/JP2007314797A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • A61B2017/00871Material properties shape memory effect polymeric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties

Abstract

【課題】生体内で再吸収可能な生分解性を有する形状記憶ポリマー組成物、および医用装置への使用法の提供。
【解決手段】組成物は、ハードなセグメントおよびソフトなセグメントを含む。ハードなセグメントのガラス転移点(Ttrans)は、好ましくは、−30℃と270℃との間である。少なくとも1つのハードまたはソフトなセグメントは、架橋可能な基を含み、このセグメントは、相互貫入網目構造または半相互貫入網目構造の形成によって、または、セグメントの物理的な相互作用によって結合され得る。物体は、ハードなセグメントのTtransよりも上の温度で所定の形状に形成され、ソフトなセグメントのTtransよりも下の温度に冷却され得る。この物体が引き続いて第2の形状に形成される場合、この物体は、ソフトなセグメントのTtransよりも上、かつハードなセグメントのTtransよりも下にこの物体を加熱することによって、その原形を回復し得る。
【選択図】なし

Description

(発明の背景)
本願は、一般的に、形状記憶ポリマーの分野であり、そしてより詳細には、生分解性形状記憶ポリマーに関する。
形状記憶は、機械的変形(図1)(一方向性の効果)の後にまたは冷却および加熱(図2)(二方向性の効果)によって、のいずれか一方で、その原形を記憶するための材料の能力である。この現象は、構造的な相転移に基づく。
これらの性質を有することが公知の第1の材料は、形状記憶合金(SMA)(TiNi(Nitinol)、CuZnAl、およびFeNiAl合金を含む)であった。これらの材料の構造的な相転移は、マルテンサイト転移として公知である。これらの材料は、種々の使用(血管ステント、医療用ガイドワイヤ、歯科矯正ワイヤ、振動ダンパー、パイプ継手、電気的コネクタ、サーモスタット、アクチュエータ、眼鏡フレーム、およびブラジャーのアンダーワイヤ(underwire)を含む)が提案されている。これらの材料は、これらが比較的高価であるということが幾分かあるので、まだ幅広い使用はなされていない。
SMAの使用と置き換えるかまたは増強させるために、形状記憶ポリマー(SMP)は開発されており、これは、これらのポリマーが、SMAと比較して軽く、高い形状回復能を有し、操作が容易であり、そして経済的であるということが幾分かあるためである。文献において、SMPは、一般的に、ハードなセグメントおよびソフトなセグメントを有する相セグメント化直線状ブロックコポリマーとして特徴付けられる。ハードなセグメントは、典型的には、結晶性(規定された融点を有する)であり、ソフトなセグメントは、典型的には、アモルファス(規定されたガラス転移温度を有する)である。しかし、いくつかの実施態様では、ハードなセグメントは、アモルファスであり、融点というよりもむしろガラス転移温度を有する。他の実施態様では、ソフトなセグメントは、結晶性であり、ガラス転移温度というよりもむしろ融点を有する。ソフトなセグメントの融点またはガラス転移温度は、実質的にハードなセグメントの融点またはガラス転移温度よりも低い。
SMPが、ハードなセグメントの融点またはガラス転移温度よりも上に加熱される場合、この材料は形付けられ得る。この(原形の)形状は、ハードなセグメントの融点またはガラス転移温度よりも下にSMPを冷却することによって記憶され得る。形状が変形されながら、形付けられたSMPがソフトなセグメントの融点またはガラス転移温度よりも下に冷却される場合、新しい(一時的な)形状が固定される。原形は、ソフトなセグメントの融点またはガラス転移温度よりも上で、しかしハードなセグメントの融点またはガラス転移温度よりも下に加熱することによって、回復される。一時的な形状を設定する別の方法では、この材料は、ソフトなセグメントの融点またはガラス転移温度よりも低い温度で変形され、応力およびひずみはソフトなセグメントによって吸収されるようになる。この材料がソフトなセグメントの融点またはガラス転移温度よりも上で、しかし、ハードなセグメントの融点(またはガラス転移温度)よりも下に加熱される場合、この応力およびひずみは解放され、この材料はその原形に戻る。原形の回復(これは、温度の上昇によって誘発される)は、熱形状記憶効果と呼ばれる。材料の形状記憶能力を示す性質は、原形の形状回復および一時的な形状の形状固定である。
形状を記憶するための能力以外のSMPのいくつかの物理的な性質は、特にソフトなセグメントの融点またはガラス転移温度で、温度および応力の外部変化に応じて有意に変更される。これらの性質には、弾性率、硬度、可撓性、気体透過性、減衰(damping)、屈折率、および誘電率が挙げられる。SMPの弾性率(物体の応力とそれに対応するひずみの比)は、ソフトなセグメントの融点またはガラス転移温度よりも上に加熱される場合、200までの因子によって変化し得る。また、材料の硬度は、ソフトなセグメントがその融点またはガラス転移温度以上にある場合、劇的に変化する。材料がソフトなセグメントの融点またはガラス転移温度よりも上の温度に加熱される場合、減衰能は、従来のゴム製品よりも5倍まで高くなり得る。この材料は、多くの熱サイクルの後に元の成型された形状に容易に回復され得、ハードなセグメントの融点よりも上に加熱されて、再形成され、冷却されて新しい原形に固定され得る。
従来の形状記憶ポリマーは、一般的に、セグメント化ポリウレタンであり、そして芳香族部分を含むハードなセグメントを有する。例えば、Hayashiらの米国特許第5,145,935号は、ポリウレタンエラストマー(二官能性ジイソシアネート(diiisocyanate)、二官能性ポリオール、および二官能性鎖エキステンダー(chain extender)から重合される)から形成される形状記憶ポリウレタンエラストマー成形品を開示する。
公知のSMPのハードおよびソフトなセグメントの調製のために使用されるポリマーの例には、種々のポリエーテル、ポリアクリレート、ポリアミド、ポリシロキサン、ポリウレタン、ポリエーテルアミド、ポリウレタン/ウレア、ポリエーテルエステル、およびウレタン/ブタジエンコポリマーが挙げられる。例えば、Wardらの米国特許第5,506,300号;Hayashiらの同第5,145,935号;Bitlerらの同第5,665,822号;およびGorden、「Applications of Shape Memory Polyurethanes」、Proceedings of the First International Conference on Shape Memory and Superelastic Technologies、SMST International Committee、115−19頁(1994)を参照のこと。
これらのポリマーは、多数の使用が提案されてきたが、これらの医療用途は、体内に移植されないまたは残されないデバイスに制限されてきた。生分解性である形状記憶ポリマーを有することは望ましい。生分解性形状記憶ポリマーについての多くの他の適用は、明らかであり、例えば、オムツまたは医用ドレープライニング(medical drape lining)の作製における使用、あるいは食品包装または処理問題がある他の材料における使用である。生分解性材料を形状記憶ポリマーに組み込み、そしてこの構造ならびに形状記憶ポリマーおよびそれらの適用に必須である他の物理的および化学的性質を維持し得ることは、市販のポリウレタン材料からは、明らかでない。その上、公知のポリウレタン形状記憶ポリマーの成分は、生体適合性でないと予想される芳香族基を含む。
従って、生分解性形状記憶ポリマーを提供することが、本発明の目的である。
従来の形状記憶ポリマーのものとは異なる、物理的および化学的性質ならびに化学的構造を有する形状記憶ポリマーを提供することが、本発明のさらなる目的である。
(発明の要旨)
生分解性形状記憶ポリマー組成物、それらの製品、ならびにそれらの調製法および使用法を、記載する。このポリマー組成物は、1個以上のハードなセグメントおよび1個以上のソフトなセグメントを含み、ここで、この組成物は生体適合性であり、少なくとも1個のセグメントが生分解性であるか、または少なくとも1個のセグメントが生分解性結合を介して別のセグメントに結合する。
ハードなセグメントの融点またはガラス転移温度(本明細書中以下で、Ttrans)は、少なくとも10℃、そして好ましくは20℃ソフトなセグメントのTtransよりも高い。ハードなセグメントのTtransは、好ましくは−30℃と270℃との間、そしてより好ましくは30℃と150℃との間である。ハードなセグメント:ソフトなセグメントの重量比は、約5:95と95:5との間であり、好ましくは20:80と80:20との間である。これらの形状記憶ポリマーは、少なくとも1個の物理的な架橋(ハードなセグメントの物理的相互作用)を含むか、またはハードなセグメントの代わりに共有結合性の架橋を含む。これらの形状記憶ポリマーはまた、相互貫入網目構造または半相互貫入網目構造であり得る。
固体から液体状態への状態変化(融点またはガラス転移温度)に加えて、ハードおよびソフトなセグメントは、固体から固体状態転移(solid to solid state transition)を受け得、そしては高分子電解質セグメントまたは高次に組織化された水素結合に基づく超分子効果を含むイオン相互作用を受け得る。
結晶性またはアモルファスであり、本明細書中に規定される範囲内のTtransを有する任意のポリマーは、ハードおよびソフトなセグメントを形成するために使用され得る。代表的な生分解性ポリマーには、ポリヒドロキシ酸、ポリアルカノエート、ポリ無水物、ポリホスファゼン、ポリエーテルエステル、ポリエステルアミド、ポリエステル、およびポリオルトエステルが挙げられる。生分解性結合の例には、エステル、アミド、無水物、カーボネート、およびオルトエステル結合が挙げられる。
製品は、形状記憶ポリマー組成物から、例えば、射出成形、ブロー成形、押し出し成形、およびレーザーアブレーションによって調製され得る。形状を記憶する物体を調製するために、この物体は、ハードなセグメントのTtransよりも上の温度で成形され、ソフトなセグメントのTtransよりも下の温度に冷却され得る。この物体が実質的に第2の形状に形成される場合、この物体は、ソフトなセグメントのTtransよりも上で、かつハードなセグメントのTtransよりも下にこの物体を加熱することによって、原形に戻され得る。
熱硬化性ポリマーは、マクロモノマーを、例えば押し出しにより予め成形し、そして熱硬化性ポリマーのTtransよりも上の温度で、例えばマクロモノマーの反応性基を光硬化することによって原形に固定することによって調製され得る。
(発明の詳細な説明)
生分解性形状記憶ポリマー組成物、それらの製品、ならびにそれらの調製方法および使用法を記載する。
(定義)
本明細書中に使用される場合、用語「生分解性」は、生再吸収可能(bioresorbable)であり、および/または分解し、および/または機械的な分解によって崩壊する材料を言い、これらは、必要な構造的一体性を維持しながら、数分〜3年の期間に渡って(好ましくは1年未満で)、生理学的な環境と相互作用して、代謝可能または排出可能な成分に分解する。本明細書中でポリマーに関連して使用される場合、用語「分解」は、分子量をオリゴマーレベルでほぼ一定のままにし、そしてポリマー粒子が次の分解を維持するような、ポリマー鎖の切断をいう。用語「完全な分解」は、本質的に完全に塊を無くすような分子レベルでのポリマーの切断を言う。本明細書中で使用される用語「分解」は、そのほかに示されない場合、「完全な分解」を含む。
たとえポリマーの原形の成形された形状が形状回復温度より低い温度で機械的に破壊されるとしても、ポリマーの原形が形状回復温度(ソフトなセグメントのTtransとして規定される)よりも上に加熱することによって回復される場合、または記憶された形状が別の刺激の適用によって回復される場合、ポリマーは、形状記憶ポリマーである。
本明細書に使用される場合、用語「セグメント」は、形状記憶ポリマーの部分を形成するポリマーのブロックまたは配列をいう。
本明細書中に使用される場合、用語ハードなセグメントおよびソフトなセグメントは、セグメントのTtransに関する相対的な用語である。ハードなセグメント(単数または複数)は、ソフトなセグメント(単数または複数)よりも高いTtransを有する。
形状記憶ポリマーは、少なくとも1つのハードなセグメントおよび少なくとも1つのソフトなセグメントを含み得るか、またはハードなセグメントの存在無しで少なくとも1種類のソフトなセグメントが架橋される、少なくとも1種類のソフトなセグメントを含み得る。
ハードなセグメントは、直鎖状オリゴマーまたはポリマーであり得、そして環状化合物(例えばクラウンエーテル、環状ジ−、トリ−、またはオリゴペプチドおよび環状オリゴ(エステルアミド))であり得る。
ハードなセグメント間の物理的な相互作用は、電荷移動錯体(charge transfer complex)、水素結合、または他の相互作用に基づき得、これはいくつかのセグメントは分解温度よりも高い融点を有するからである。この場合、セグメントについての融点またはガラス転移温度は存在しない。非熱的機構(non−thermal mechanism)(例えば溶媒)は、セグメント結合を変化させるために必要とされる。
ハードなセグメント:ソフトなセグメントの重量比は、約5:95と95:5との間であり、好ましくは20:80と80:20との間である。
(形状記憶ポリマー組成物)
熱可塑性形状記憶材料は、ハードなセグメント(単数または複数)のTtransよりも上で所望の形状に形付けられ/成形され、形状回復温度より下の温度に冷却され、ここでポリマーは機械的変形を受け得、ひずみをポリマー中に生じる。変形したポリマーの原形は、それらの形状回復温度よりも高い温度にそれらを加熱することによって回復され得る。この温度よりも上で、ポリマー中のひずみは、解放され、ポリマーがその原形に戻り得る。対照的に、熱硬化性形状記憶材料は、所望の形状に形付けられ/成形され、その後熱硬化性ポリマーを形成するために使用されるマクロモノマーが重合される。形状が固定された後、マクロモノマーが重合される。
このポリマー組成物は、好ましくは、形状回復温度より下の温度で元の厚さの少なくとも1%まで圧縮され得るか、または少なくとも5%まで伸び得、熱、光、超音波、磁場または電場のような刺激の適用によって変形が固定される。いくつかの実施態様では、この材料は、98%の回復率を示す(実験的実施例と比較して)。
有意な応力が適用される場合、形状回復温度よりも低い温度で実施された機械的変形が生じ、ひずみがソフトなセグメントまたはアモルファスな領域に保持され、バルクの形状変化が、ポリマーの弾性によるひずみの部分的な解放の後でさえ保持される。分子鎖の立体配置が、ガラス転移温度よりも低い温度で分子鎖の調節された配置に影響を与えることによって妨げられる場合、分子鎖の再配置は、ボリュームサイズの増加およびフリーボリューム含有量の減少によって生じると仮定される。原形は、鎖の立体配座の強固な制御に従って、温度の上昇によるハードなセグメントの集合体の収縮によって回復され、ポリマーの形状が記憶された形状に回復する。
固体から液体状態への状態変化(融点またはガラス転移温度)に加えて、ハードまたはソフトなセグメントは、高分子電解質セグメントを含むイオン相互作用または高度に組織化された水素結合に基づく超分子効果を受け得る。SMポリマーはまた、固体状態から固体状態への転移を受け得る(例えば、モルフォロジーの変化)。固体状態から固体状態への転移は、例えば、ポリ(スチレン−ブロック−ブタジエン)において、当業者に周知である。
種々の変化が、形状記憶ポリマーを使用して形成される物体の構造に生じ得る。物体が三次元的物体である場合、形状における変化は、二次元であり得る。物体が本質的に2次元的物体(例えば繊維)である場合、形状における変化は一次元(例えば長さに沿って)であり得る。これらの材料の熱伝導率および導電率はまた、温度における変化に応答して変化し得る。
組成物の水分透過性は、特にポリマーが薄いフィルム(すなわち、約10μm未満)に形成される場合、変わり得る。いくつかのポリマー組成物は、その原形において、水蒸気分子はポリマーフィルムを透過し得るように十分な透過性を有するが、水分子はポリマーフィルムを透過するのに十分大きくはない。得られた材料は、室温未満の温度では低い水分透過性を、および室温より上の温度では高い水分透過性を有する。
温度以外の刺激は、形状変化を誘発するために使用され得る。以下の特定の実施態様を参照して説明される場合、形状変化は、光活性化または試薬(例えばポリマー間の結合を変化させるイオン)に曝露することによって、誘発され得る。
(I.ポリマーセグメント)
セグメントは好ましくはオリゴマーである。本明細書中で使用される場合、用語「オリゴマー」は、15,000ダルトンまでの分子量を有する直鎖分子をいう。
ポリマーは、所望のガラス転移温度(単数または複数)(少なくとも1つのセグメントがアモルファスである場合)または融点(単数または複数)(少なくとも1つのセグメントが結晶性である場合)に基づいて選択され、これはまた所望の適用に基づき、使用される環境を考慮する。好ましくは、このポリマーブロックの数平均分子量は、400よりも大きく、好ましくは500と15,000との間の範囲である。
ポリマーが急激にソフトになり変形する転移温度は、モノマー組成物およびモノマーの種類を変化することによって制御され得、これにより所望の温度で形状記憶効果を調整することが可能になる。
ポリマーの熱特性は、例えば、動機械的熱分析または示差走査熱量測定(DSC)研究によって検出され得る。加えて、融点が標準的な融点装置を使用して測定され得る。
(1.熱硬化性または熱可塑性ポリマー)
ポリマーは、熱硬化性または熱可塑性ポリマーであり得るが、熱可塑性ポリマーが、成形が容易であるため好まれ得る。
好ましくは、ポリマーまたはポリマー性ブロック(単数または複数)の結晶化度は、3%と80%との間、より好ましくは3%と60%との間である。結晶化度が80%よりも高いが、全てのソフトなセグメントがアモルファスである場合、得られるポリマー組成物は、乏しい形状記憶特性を有する。
transより下のポリマーの引張り係数は、典型的には、50MPaと2GPa(ギガパスカル)との間であるのに対して、Ttransより上のポリマーの引張り係数は、典型的には、1MPaと500MPaとの間である。好ましくは、Ttransより上と下の弾性率の比は、20以上である。この比が高くなるほど、得られるポリマー組成物の形状記憶はより良くなる。
ポリマーセグメントは、天然または合成であり得るが、合成ポリマーが好ましい。ポリマーセグメントは、生分解性または非生分解性であり得、得られるSMP組成物は生分解性、生体適合性ポリマーが医療用に特に好ましい。一般的に、これらの材料は、加水分解によって、生理学的な条件下で水または酵素に曝すことによって、表面侵食、バルク侵食(bulk erosion)、またはそれらの組み合わせによって分解する。医療用途に使用される非生分解性ポリマーは、好ましくは、天然に存在するアミノ酸中に存在するもの以外で、芳香族基を含まない。
代表的な天然のポリマーセグメントまたはポリマーには、タンパク質(例えば、ゼイン、改変ゼイン、カゼイン、ゼラチン、グルテン、血清アルブミン、およびコラーゲン)、ならびに多糖類(例えばアルギネート、セルロース、デキストラン、プルラン(pullulane)、およびポリヒアルロン酸)、ならびにキチン、ポリ(3−ヒドロキシアルカノエート)(特に、ポリ(β−ヒドロキブチレート)、ポリ(3−ヒドロキシオクタノエート))およびポリ(3−ヒドロキシ脂肪酸)が挙げられる。
代表的な天然の生分解性ポリマーセグメントまたはポリマーは、多糖類(例えば、アルギネート、デキストラン、セルロース、コラーゲン、ならびにそれらの化学的誘導体(化学基(例えばアルキル、アルキレン)の置換、付加、ヒドロキシル化、酸化、および当業者によって慣用的になされる他の修飾))、ならびにアルブミン、ゼインのようなタンパク質およびコポリマーおよびこれらのブレンドを、単一で、または合成ポリマーとの組み合わせで含む。
代表的な合成ポリマーのブロックは、ポリホスファゼン、ポリ(ビニルアルコール)、ポリアミド、ポリエステルアミド、ポリ(アミノ酸)、合成ポリ(アミノ酸)、ポリ無水物、ポリカーボネート、ポリアクリレート、ポリアルキレン、ポリアクリルアミド、ポリアルキレングリコール、ポリアルキレンオキシド、ポリアルキレンテレフタレート、ポリオルトエステル、ポリビニルエーテル、ポリビニルエステル、ポリビニルハライド、ポリビニルピロリドン、ポリエステル、ポリラクチド、ポリグリコリド、ポリシロキサン、ポリウレタンおよびこれらのコポリマーを含む。
適切なポリアクリレートの例には、ポリ(メタクリル酸メチル)、ポリ(メタクリル酸エチル)、ポリ(メタクリル酸ブチル)、ポリ(メタクリル酸イソブチル)、ポリ(メタクリル酸ヘキシル)、ポリ(メタクリル酸イソデシル)、ポリ(メタクリル酸ラウリル)、ポリ(メタクリル酸フェニル)、ポリ(アクリル酸メチル)、ポリ(アクリル酸イソプロピル)、ポリ(アクリル酸イソブチル)およびポリ(アクリル酸オクタデシル)が挙げられる。
合成的に改質された天然のポリマーは、セルロース誘導体(例えば、アルキルセルロース、ヒドロキシアルキルセルロース、セルロースエーテル、セルロースエステル、ニトロセルロース、およびキトサン)を含む。適切なセルロース誘導体の例には、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシブチルメチルセルロース、セルロースアセテート、セルロースプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、カルボキシメチルセルロース、セルローストリアセテートおよびセルローススルフェートナトリウム塩が挙げられる。これらは本明細書中では集合的に「セルロース」という。
代表的な合成分解性ポリマーセグメントまたはポリマーは、ポリヒドロキシ酸(例えば、ポリラクチド、ポリグリコリドおよびこれらのコポリマー;ポリ(エチレンテレフタレート);ポリ(ヒドロキシ酪酸);ポリ(ヒドロキシ吉草酸);ポリ[ラクチド−co−(ε−カプロラクトン)];ポリ[グリコリド−co−(ε−カプロラクトン)]);ポリカーボネート、ポリ(擬アミノ酸);ポリ(アミノ酸);ポリ(ヒドロキシアルカノエート);ポリ無水物;ポリオルトエステル;ならびにこれらのブレンドおよびコポリマーを含む。
非生分解性ポリマーセグメントまたはポリマーの例には、エチレンビニルアセテート、ポリ(メタ)アクリル酸、ポリアミド、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリビニルフェノール、ならびにこれらのコポリマーおよび混合物が挙げられる。
迅速な生腐食性(bioerodible)ポリマー(例えば、ポリ(ラクチド−co−グリコリド)、ポリ無水物、およびポリオルトエステル)(これらは、ポリマーの滑らかな表面が侵食されるような、外部面上に曝されるカルボキシル基を有する)はまた使用され得る。さらに、不安定な結合を含むポリマー(例えば、ポリ無水物およびポリエステル)は、加水分解反応性が周知である。これらの加水分解速度は、一般的に、ポリマー骨格およびその配列構造の簡単な変化で、変更され得る。
種々のポリマー(例えば、ポリアセチレンおよびポリピロール)は、導電性高分子である。これらの材料は、電気的伝導性が重要である使用について、特に好ましい。これらの使用の例には、細胞増殖が刺激される、組織工学および任意の医用適用が挙げられる。これらの材料は、コンピュータサイエンスの分野において特定の有用性を見出し得、なぜならこれらは、温度上昇なしでSMAよりも良好に熱を吸収し得るからである。導電性形状記憶ポリマーは、細胞増殖(例えば、神経組織)を刺激するための組織工学の分野において有用である。
(2.ヒドロゲル)
このポリマーは、ヒドロゲル(典型的には、約90重量%までの水を吸収する)の形態であり得、必要に応じて、多価のイオンまたはポリマーとイオン的に架橋され得る。ソフトなセグメント間のイオン架橋は構造を保持するために使用され得、この構造は、変形した場合、ソフトなセグメント間のイオン架橋を切断することによって再形成され得る。このポリマーはまた、水または水溶液以外の溶媒中のゲルの形態であり得る。これらのポリマーでは、一時的な形状は、ソフトなセグメント間の親水性相互作用によって固定され得る。
ヒドロゲルは、ポリエチレングリコール、ポリエチレンオキシド、ポリビニルアルコール、ポリビニルピロリドン、ポリアクリレート、ポリ(エチレンテレフタレート)、ポリ(酢酸ビニル)、ならびにこれらのコポリマーおよびブレンドから形成され得る。数種のポリマー性セグメント(例えば、アクリル酸)は、ポリマーが水和され、ヒドロゲルが形成される場合だけ、エラストマー性である。他のポリマー性セグメント(例えば、メタクリル酸)は、ポリマーが水和されない場合でさえ、結晶であり、融解可能である。所望される適用および使用する条件に依存して、いずれかの種のポリマー性ブロックが使用され得る。
例えば、形状記憶は、アクリル酸コポリマーについてヒドロゲルの状態でのみ観察される。なぜならば、アクリル酸単位は実質的に水和され、非常に低いガラス転移温度を有するソフトなエラストマーのように振る舞うためである。乾燥ポリマーは、形状記憶ポリマーではない。乾燥される場合、アクリル酸単位は、ガラス転移温度よりも上でさえハードなプラスチックとして振る舞い、加熱で力学的性質に急激な変化を示さない。反対に、ソフトなセグメントとしてアクリル酸メチルポリマーセグメントを含むコポリマーは、乾燥時でさえ形状記憶特性を示す。
(3.高温でゲルを形成し得るポリマー)
特定のポリマー(例えば、ポリ(エチレンオキシド−co−プロピレンオキシド)(PLURONICSTM))は、体温より低い温度では水に可溶性であり、体温より高い温度ではヒドロゲルになる。形状記憶ポリマー中のこれらのポリマーのセグメントとしての組み入れは、典型的な形状記憶ポリマーの様式と全く反対の様式で温度の変化に応答し得る形状記憶ポリマーを提供する。これらの材料は、形状回復温度を超えて加熱された場合よりもむしろ形状回復温度未満に冷却された場合にその形状を回復する。この効果は、逆熱形状記憶(inversed thermal shape memory)効果と呼ばれる。これらのポリマーセグメントを含む形状記憶ポリマー組成物は、インサイチュでポリマーが液体として挿入され、そして冷却され、意図される形状に回復し得る、種々の生物医学適用に有用である。逆熱形状記憶効果は、Tmiscより低温で混和性であるが、Tmiscより高温では非混和性であるポリマーに、2つの異なるセグメントを組み込むことによって得られ得る。高温での相分離は一時的な形状を安定化する。
このポリマーは、Sigma Chemical Co.,St.Louis,MO.;Polysciences,Warrenton,PA;Aldrich Chemical Co.,Milwaukee,WI;Fluka,Ronkonkoma,NY;およびBioRad,Richmond,CAのような市販の供給源から得られ得る。あるいは、これらのポリマーは、市販の供給源から得られるモノマーから、標準的な技術を使用して合成され得る。
(II.ポリマーセグメントのアセンブリ)
形状記憶ポリマーは、1つ以上のハードなセグメントおよび1つ以上のソフトなセグメントを含み、ここで、これらのセグメントのうちの少なくとも1つが、生分解性であるか、またはこれらのセグメントのうちの少なくとも1つが生分解性結合を介して別のセグメントと結合される。代表的な生分解性結合には、エステル−、アミド−、無水(anhydride)−、カルボネート−、またはオルトエステル結合があげられる。
(1.ポリマー構造)
形状記憶効果はポリマーのモルフォロジーに依存する。熱可塑性エラストマーに関して、物体の初期形状はハードなセグメントにより生じる物理的架橋によって固定される。熱硬化性ポリマーに関して、ソフトなセグメントは、ハードなセグメントを有する代わりに、共有結合的に架橋される。初期形状は架橋プロセスによって決められる。
先行技術であるセグメント化されたポリウレタンSMPとは反対に、本明細書中に記載される組成物のセグメントは、直鎖状である必要はない。これらのセグメントは部分的にグラフト化され得るか、または樹状の側鎖に結合し得る。
(A.熱可塑性および熱弾性ポリマー)
これらのポリマーは、直鎖状のジブロック、トリブロック、テトラブロックまたはマルチブロックコポリマー、分枝またはグラフトポリマー、熱可塑性エラストマー(これは、樹状構造を含有する)、およびそれらのブレンドの形態であり得る。図3は、ハードなおよびソフトなセグメントを形成する、適切なクラスの熱可塑性材料のいくつかの組み合わせを例示する。この熱可塑性形状記憶ポリマー組成物はまた、1つ以上のジブロック、トリブロック、テトラブロックまたはマルチブロックコポリマー、分枝またはグラフトポリマーを有する1つ以上のホモポリマーまたはコポリマーのブレンドであり得る。これらのタイプのポリマーは当業者に周知である。
本明細書中で使用される場合、用語「分解性熱硬化性樹脂」は、(i)切断可能な結合を含むただ1つのソフトなセグメントを含む熱硬化性樹脂SMP、および(ii)少なくとも1つのソフトなセグメントが分解性であるか、または異なるソフトなセグメントが切断可能な結合によって連結される、1つより多くのソフトなセグメントを含む熱硬化性樹脂をいう。形状記憶性能を有する4つの異なるタイプの熱硬化性ポリマーがある。これらは、高分子網目構造、半相互貫入網目構造、相互貫入網目構造、および混合型相互貫入網目構造を含む。
(i.高分子網目構造)
高分子網目構造は、マクロモノマー(macromonomer)(すなわち、炭素−炭素二重結合のような重合可能な末端基を有するポリマー)を共有結合的に架橋することによって調製される。重合化プロセスは、光または熱感応性開始剤を使用することによって、あるいは、開始剤なしで、紫外光(「UV光」)を用いて硬化することによって誘導され得る。形状記憶高分子網目構造は、1つ以上の熱転移に相当する、1つ以上のソフトなセグメントを架橋することによって調製される。
生物医学適用に好ましい実施態様において、架橋は光架橋剤を使用して実施され、化学的開始剤は必要ではない。この光架橋剤は、有利なことに、毒性であり得る開始剤分子の必要性を排除する。図4は、好ましい光架橋剤の合成(これは、全体にわたる収率が約65%で生成する)の反応順序の図である。
(ii.相互貫入網目構造)
相互貫入網目構造(「IPN」)は、2つの成分は架橋されているが、お互いに架橋されていない網目構造として定義される。初期形状は、最も大きい架橋密度および最も大きい力学的強度を有する網目構造によって決定される。この物質は、両方の網目構造の異なるソフトなセグメントに対応する少なくとも2つのTtransを有する。
(iii.混合型相互貫入網目構造)
混合型IPNは少なくとも1つの物理的に架橋した高分子網目構造(熱可塑性ポリマー)、および少なくとも1つの共有結合的に架橋した高分子網目構造(熱硬化性ポリマー)を含み、これらはいかなる物理的方法によっても分離され得ない。初期形状は共有結合的に架橋した網目構造によって決定される。一時的な形状は、ソフトなセグメントのTtransおよび熱可塑性エラストマー成分のハードなセグメントのTtransに対応する。
特に好ましい混合型相互貫入網目構造は、熱可塑性ポリマーの存在下で、反応性マクロモノマーを重合化することによって、例えば、炭素−炭素二重結合の光重合化によって調製される。この実施態様において、熱硬化性ポリマー対熱可塑性ポリマーの重量比は、好ましくは、5:95と95:5との間であり、より好ましくは、20:80と80:20との間である。
(iv.半相互貫入網目構造)
半相互貫入網目構造(「セミ−IPN」)は、一方の成分は架橋ポリマー(高分子網目構造)であり、そして他方の成分は、非架橋ポリマー(ホモポリマーまたはコポリマー)である2つの独立した成分として定義され、ここでこれらの成分は物理的方法によって分離され得ない。セミ−IPNは、ソフトなセグメント(単数または複数)およびホモポリマーまたはコポリマー成分に対応する少なくとも1つの熱転移を有する。好ましくは、架橋ポリマーは、半相互貫入網目構造組成物の約10〜90重量%を構成する。
(v.ポリマーブレンド)
好ましい実施態様では、本明細書中で記載される形状記憶ポリマー組成物は、生分解性ポリマーのブレンドから形成される。本明細書中で使用される場合、「生分解性ポリマーのブレンド」は、少なくとも1つの生分解性ポリマーを有するブレンドである。
形状記憶ポリマーは熱可塑性ポリマーの物理的混合物として存在し得る。1つの実施態様において、形状記憶ポリマー組成物は、2つの熱可塑性ポリマーを相互作用させるか、またはブレンドすることによって調製され得る。これらのポリマーは、半結晶性ホモポリマー、半結晶性コポリマー、直鎖を有する熱可塑性エラストマー、側鎖または任意の種類の樹状構造要素を有する熱可塑性エラストマー、および分枝したコポリマーであり得、そして、これらは、これらの任意の組み合わせでブレンドされ得る。
例えば、比較的高いTtransを有するハードなセグメント、および比較的低いTtransを有するソフトなセグメントを含むマルチブロックコポリマーは、比較的低いTtransを有するハードなセグメントおよび第1のマルチブロックコポリマーと同じソフトなセグメントを含む第2のマルチブロックコポリマーと、混合またはブレンドされ得る。ソフトなセグメントが融解された場合、これらのポリマーが互いに混和性であるように、両方のマルチブロックコポリマー中のソフトなセグメントは同一である。得られるブレンドには、第1のハードなセグメントの転移温度、第2のハードなセグメントの転移温度、およびソフトなセグメントの転移温度である3つの転移温度が存在する。従って、これらの物質は2つの異なる形状を記憶し得る。これらのポリマーの力学的性質は、2つのポリマーの重量比を変えることによって調整され得る。
他の種類の少なくとも2つのマルチブロックコポリマーのブレンド(ここで少なくとも1つのセグメントは、他のマルチブロックコポリマーの少なくとも1つのセグメントと混和性である)が調製され得る。2つの異なるセグメントが混和性であり、そして一緒に1つのドメインを形成する場合、このドメインの熱転移は、2つのセグメントの含有重量に依存する。記憶される形状の最大数は、ブレンドの熱転移の数に由来する。
形状記憶ブレンドは、ブレンド成分単独よりも優れた形状記憶特性を有し得る。形状記憶ブレンドは少なくとも1つのマルチブロックコポリマー、および少なくとも1つのホモポリマーまたはコポリマーで構成される。原則的には、ジ−、トリ−またはテトラ−ブロックコポリマーは、マルチブロックコポリマーの代わりに使用され得る。
広範な力学的、熱的および形状記憶性能は、単に2つまたは3つの基本のポリマーからそれらを異なる重量比でブレンドすることによって得られ得るため、形状記憶ブレンドは工業用の適用に非常に有用である。ツインスクリュー押し出し機は、成分を混合し、そしてそのブレンドを処理するのに使用され得る標準的なプロセス設備の例である。
(III.SMPを作製する方法)
上記のポリマーは、市販であるかまたは慣用的な化学を使用して合成され得るかのいずれかである。当業者は、公知の化学を使用してこのポリマーを容易に調製し得る。以下の実施例1および2は、SMPを調製するために使用される実験手順を記載する。
(IV.SMP組成物の成形方法)
この組成物は、適切な条件下(例えば、ハードなセグメントのTtransを超える温度)で、第1の形状に形成され、そしてソフトなセグメント(単数または複数)のTtrans未満に冷却され得る。標準的な技術は押し出し成形および射出成形である。必要に応じて、物体は第2の形状に再形成され得る。熱の適用または他の適切な条件の設定を行うと、物体は初期形状に戻る。
熱硬化性ポリマーは、あらかじめ重合化した物質(マクロモノマー)を押し出し、そして、例えば、モノマーの反応性基を光硬化することによりこの熱硬化性ポリマーのTtransより上の温度で初期形状を固定することによって調製され得る。一時的な形状は、物質を変形した後、物質をTtransより低く冷却することによって固定される。図5は、光誘起形状記憶効果を例示する。
架橋はまた、マクロモノマーの溶液中で実施され得る。この溶媒は、その後の工程で、形成したゲルから除去される。
熱可塑性ポリマーから形成されたこれらの組成物は、ブローするか、押し出してシートにするか、または射出成形によって成形され、例えば、繊維を形成し得る。この組成物はまた、固体物を成形するための当業者に公知の他の方法(例えば、レーザー切断、ミクロ機械加工、熱線の使用、およびCAD/CAM(コンピュータ支援設計/コンピュータ支援製造)プロセスによって成形され得る。これらのプロセスは、熱硬化性ポリマーを成形するのに好ましい。
(V.治療的、予防的、および診断的適用)
任意の種々の治療用、予防用および/または診断用薬剤が、ポリマー組成物中に組み込まれ得、これは、患者への投与に続いて、取り込まれた薬剤を局所的または全身的に送達し得る。
(1.治療的、診断的および予防的適用)
任意の種々の治療用薬剤が、患者への投与に続いて、取り込まれた薬剤を局所的または全身的に送達するために、粒子中に組み込まれ得る。例には、治療、予防または診断活性を有する合成無機および有機化合物または分子、タンパク質およびペプチド、多糖類および他の糖類、脂質、および核酸分子が挙げられる。核酸分子には、遺伝子、プラスミドDNA、裸のDNA、アンチセンス分子(これは、相補的DNAと結合して転写を阻害する)、リボザイムおよびリボザイム誘導配列が挙げられる。組み込まれるべき薬剤は、種々の生物学的活性、例えば、血管作用剤、神経作用剤、ホルモン、増殖因子、サイトカイン、麻酔剤(anaesthetic)、ステロイド、抗凝固剤、抗炎症剤、免疫調節剤、細胞毒性剤、予防薬剤、抗生物質、抗ウイルス剤、アンチセンス、抗原および抗体を有し得る。いくつかの例において、タンパク質は、抗体または抗原であり得、そうでなければ、適切な応答を誘発するために注射により投与されねばならない。タンパク質は100個以上のアミノ酸残基からなると定義され;ペプチドは100個より少ないアミノ酸残基である。他に記載がない場合、用語、タンパク質とはタンパク質およびペプチドの両方のことをいう。ヘパリンのような多糖類もまた投与され得る。広範囲の分子量(例えば、10〜500,000g/モル)を有する化合物は、カプセル化され得る。
利用され得る造影剤には、陽子放射断層撮影法(PET)、コンピューター連動断層撮影法(CAT)、単光子射出断層撮影法、X−線、X線透視法、磁気共鳴画像診断法(MRI)および超音波剤に使用される市販の薬剤が挙げられる。
(VI.物品、デバイスおよびコーティング)
SMP組成物は、生物医学および他の適用での使用のために、多数の製品を調製するために使用され得る。
(1.生物医学適用のための物品およびデバイス)
ポリマー組成物は、生物医学適用に使用するための製品を調製するために使用され得る。例えば、縫合糸、歯科矯正材料、骨用のネジ、爪、プレート、カテーテル、チューブ、フィルム、ステント、整形用装具、副子、ギプス包帯を調製するためのテープ、組織工学用の足場、コンタクトレンズ、薬物送達デバイス、移植片、および熱指示薬が調製され得る。
好ましくは、SMP組成物は、生体適合性ポリマーから調製され、ほとんどの適用のためには、これは生分解性ポリマーから調製される。生分解性ポリマーは、ポリマーの組成および架橋に依存して制御された速度で分解する。分解性ポリマー性移植片は、移植片を回収する必要性を排除し、同時に治療剤を送達するために使用され得る。
これらの材料は、負荷許容支持荷重および制御された分解が必要とされる多くの適用に使用され得る。
ポリマー組成物は、機械的機能を提供するために体内に移植され得る移植片の形状に形成され得る。このような移植片の例には、ロッド、ピン、ネジ、プレートおよび解剖学的形状が挙げられる。
この組成物の特に好ましい使用は、縫合糸を調製することであり、この縫合糸は容易な挿入を提供するのに十分硬い組成を有するが、体温に達すると柔らかくなりそしてなお治癒を可能にしつつ、患者にとってより快適な第2の形状を形成する。
別の好ましい使用はカテーテルの分野における使用である。カテーテルは、挿入を容易にするために体温では硬く、しかし体温まで温まった後、柔らかくなり患者に快適さを提供する。
特定の移植適用のために必要な場合、ポリマー組成物は、充填剤、強化材料、放射線造影剤、賦形剤または他の材料と組み合わされ得る。充填剤の例には、米国特許第5,108,755号に記載されるカルシウム−ナトリウムメタホスフェートが挙げられる。当業者は、組成物中に含有するのに適切なこれらの材料の量を容易に決定し得る。
上記のように、これらの物品は種々の治療および/または診断薬剤を組み込み得る。
(2.非医学的適用)
生物医学的適用以外の形状記憶ポリマー組成物の多数の適用がある。
生分解性ポリマーの非医学的種類の適用の例には、処分が問題である品目(例えば、使い捨ておむつおよび包装材料)が挙げられる。
(3.制御された分解を有するコーティング)
形状記憶ポリマーは、分解速度が様々であるように設計され得る。例えば、1つの実施態様では、加水分解的分解性ポリマーは、水がバルクポリマー(bulk polymer)の加水分解的に切断可能な結合に達することを一時的に妨げる疎水性のSMPコーティングを塗布することによって、選択的に保護され得る。従って、コーティングの保護の特徴は、所望である場合、コーティングの拡散特性を変化させ、水または他の水溶液がコーティングを透過し、そして分解プロセスを開始し得るように外部刺激を適用することによって、変更され得る。加水分解速度が水の拡散速度に比べて比較的速い場合、コーティングを通る水の拡散速度が、分解速度を決定する。別の実施態様では、高密度に架橋されたソフトなセグメントからなる疎水性コーティングが、水または水溶液の拡散バリアとして使用され得る。ソフトなセグメントは、少なくとも部分的に、刺激の適用によって切断され得る結合によって架橋されるべきである。水の拡散速度は、架橋密度が低下することによって増加し得る。
(VII.使用方法)
特定の製品は、それらの標準的な使用と矛盾する様式で作用されない限り、その意図された形状を保持することが設計される。例えば、車のバンパーは、衝撃を与えられるまでその意図された形状を保持する。これらの製品は、意図された形状で使用され得るが、一旦、損傷された場合、例えば熱の適用によって修復され得る。
他の製品は、第1の形状が初期の使用を意図し、第2の形状は引き続いての使用を意図するように、設計されて使用される。これらの例には、生物医学デバイスが挙げられ、これは体温に達した際にか、または外部からの刺激の適用(これは体温より上にデバイスを加熱する)の際に第2の形状を形成し得る。
なお他の製品は、温度変化に反応または適合して、形状が変化するように設計されて使用される(例えば、医療用デバイスの温度感知器)。
本発明は、以下の非制限的な実施例を参照してさらに理解される。
(実施例1:コポリエステルウレタン形状記憶ポリマー)
熱形状記憶効果を示す生体適合性および生分解性マルチブロックコポリマーのグループを合成した。これらのポリマーは、結晶化可能なハードなセグメント(Tm)および室温と体温との間の熱転移温度Ttransを有するソフトなセグメントから構成した。セグメント化ポリウレタンである先行技術とは対照的に、ハードなセグメントはオリゴエステルまたはオリゴエーテルエステルであり、芳香族成分を全く含まなかった。
マルチブロックコポリマーの一時的な形状をプログラミングするため、およびマルチブロックコポリマーの永久型形状を回復するためのメカニズムを図6に示す。この材料の永久的な形状はポリマーを溶融し、Ttransより上で冷却することによって決定した(図6−上)。次いで、ポリマーは一時的な形状に形成し(図6−右)、これはTtransより下で冷却することによって固定した(図6−下)。負荷を除去した後、Ttransより上に再加熱することによって永久的な形状が回復した。
テレキリックス(Telechelics)(両端に官能基を有するオリゴマー)の合成。
テレキリックマクロジオールを、N2雰囲気下でエステル交換触媒としてジ(n−ブチル)酸化スズを用いて、環状モノマーの開環重合によって合成した。
(ハードなセグメント)
α,ω−ジヒドロキシ[オリゴ(エチレングリコールグリコレート)エチレンオリゴ(エチレングリコールグリコレート)]−(PDS1200およびPDS1300)を以下のように調製した。使用前に、オリゴマーを蒸留(熱脱重合化)することによってモノマーのp−ジオキサン−2−オンを得た。このモノマー(57g、0.63mol)、エチレングリコール(0.673g、10.9mmol)およびジ(n−ブチル)酸化スズ(0.192g、0.773mmol)を24時間80℃まで加熱した。反応の終結(平衡)はGPCによって決定した。生成物を加熱した1,2−ジクロロエタンに可溶化し、シリカゲルを充填した温めたBuechner漏斗を通して濾過した。ヘキサン中で沈殿させ、そして真空下で6時間乾燥することによって生成物を得た。
(ソフトなセグメント)
(i.結晶)
異なるMnを有するポリ(ε−カプロラクトン)−ジオールは、例えば、AldrichおよびPolysciencesから市販されている。PCL−2000をここで使用された。
(ii.アモルファス)
α,ω−ジヒドロキシ[オリゴ(L−ラクテート−co−グリコレート)エチレンオリゴ(L−ラクテート−co−グリコレート)]−(PLGA2000−15と省略する)を以下のようにして調製した。1000mlの二口丸底フラスコ中の、L,L−ジラクチド(300g、2.08mol)、ジグリコリド(45g、0.34mol)およびエチレングリコール(4.94g、0.80mol)を溶融するように40℃で加熱し、撹拌した。ジ(n−ブチル)酸化スズ(0.614g、2.5mmol)を添加した。7時間後、GPCによって反応が平衡に達したことを決定した。反応混合物を1,2−ジクロロエタンに溶解し、シリカゲルカラムで精製した。ヘキサン中に沈殿させ、そして真空下で6時間乾燥することによって生成物を得た。
(テレキリックスの特性)
以下で表1に示したように、マクロジオールの分子量Mnおよび熱特性を測定した。
Figure 2007314797
(熱可塑性エラストマー(マルチブロックコポリマー)の合成)
モレキュラーシーブ0.4nmを充填したソックスレー抽出器に接続された100ml二口丸底フラスコ中にて、下記の表2に記載されるような2つの異なるマクロジオール(1つのハードなセグメントおよび1つのソフトなセグメント)を1,2−ジクロロエタン(80ml)に溶解した。この混合物を、溶媒の共沸抽出によって還流し乾燥した。新たに蒸留したトリメチルヘキサン−1,6−ジイソシアネートをシリンジで添加し、そして反応混合物を少なくとも10日間80℃まで加熱した。一定の間隔で混合物のサンプルを取り、GPCによってポリマーの分子量を測定した。反応の終結時に、ヘキサン中にポリマーを沈殿させて生成物を得、そして1,2−ジクロロエタンに繰り返し溶解し、ヘキサン中で析出させることによって精製した。
マルチブロックコポリマーは、以下の2つのタイプのポリマーから調製した。
(i)ポリ(ε−カプロラクトン)を含有するPDCポリマー。ソフトなセグメントのTtransが融解温度である。
(ii)α,ω−ジヒドロキシ[オリゴ(L−ラクテート−co−グリコレート)エチレンオリゴ(L−ラクテート−co−グリコレート)]を含有するPDLポリマー。ソフトなセグメントのTtransはガラス転移点である。
Figure 2007314797
(熱可塑性エラストマーの特性)
この組成物について決定した物理的、力学的および分解特性を、以下の表3〜9に提供する。
新規の材料の加水分解挙動を37℃でpH7の緩衝液中で試験した。ポリマーは完全に分解性であり、その分解速度は容易に加水分解性エステル結合の濃度により調整され得るということが示された。37℃における相対質量の損失値mr=m(t0)/m(t)(%)、37℃における相対分子量の損失値Mr=Mw(t)/Mw(t0)(%)。
2つの異なるマルチブロックコポリマーの毒性は鶏卵試験(chicken egg test)を使用して調査した。血管が規則正しく発達し、その状態はポリマーサンプルに影響されないということが示された。
Figure 2007314797
Figure 2007314797
Figure 2007314797
Figure 2007314797
Figure 2007314797
Figure 2007314797
Figure 2007314797
(形状記憶特性)
図7は、マルチブロックコポリマーについて実施した引張り試験の結果を、熱分解サイクルの回数の関数として示す。熱サイクル(thermocyclicly)処理されたポリマーの平均形状固定速度、およびサイクルの回数の関数としてのひずみ回復速度の依存性を、それぞれ以下の表10および11に示す。ポリマーは高い形状固定性を有し、そしてわずか2サイクル後で平衡状態に達した。
Figure 2007314797
Figure 2007314797
(実施例2:結晶化可能なソフトなセグメントを含有する分解性形状記憶熱硬化性樹脂)
一定範囲のポリ(ε−カプロラクトン)ジメタクリレートおよび熱硬化性樹脂を、それらの力学的特性および形状記憶特性について評価した。
(マクロモノマーの合成)
ポリ(ε−カプロラクトン)ジメタクリレート(PCLDMA)を以下のように調製した。乾燥THF(200mL)中のポリ(ε−カプロラクトン)ジオール(Mn=2,000gmol-1、20.0g、10mmol)およびトリエチルアミン(5.3mL、38mmol)の溶液に、メタクリロイルクロリド(3.7mL、38mmol)を0℃で滴下した。この溶液を0℃で3日間撹拌し、そして沈殿した塩を濾別した。室温、減圧下で混合物を濃縮した後、200mLの酢酸エチルを添加し、そしてこの溶液を再び濾過し、そして10倍過剰なヘキサン、エチルエーテルおよびメタノール(18:1:1)の混合物中に沈殿させた。無色の沈殿物を回収し、200mLのジクロロエタンに溶解し、再び沈殿させ、そして室温で注意深く減圧乾燥した。
(熱硬化性樹脂の合成)
マクロモノマー(またはモノマー混合物)を、その融解温度(Tm)より10℃上まで加熱し、そして2つのガラスプレート(25mm×75mm)および0.60mm厚のテフロン(登録商標)のスペーサーで形成された鋳型に充填した。優れた均一性を達成するために、この鋳型をさらに1時間Tmで保存した。Tmで加熱したプレート上で15分間、光硬化を行った。加熱ランプヘッドとサンプルとの間の距離は5.0cmであった。室温まで冷却した後、このサンプルを取り出し、そして100倍過剰のジクロロメタンで一晩膨潤させ、そして注意深く洗浄した。最後に、このサンプルを室温で減圧下で乾燥した。
(マクロモノマーおよび熱硬化性樹脂の特性)
以下の表12は、調製されたポリ(ε−カプロラクトン)ジメタクリレートを、それぞれのアクリル化の程度(Da)(%)に沿って列挙している。500単位の、PCLDMAに続く数字は、合成に使用されたポリ(ε−カプロラクトン)ジオールの分子量Mnであり、これは1H−NMRおよびGPCを使用して決定した。
Figure 2007314797
図8は、ジオール、ジメタクリレートおよびポリ(ε−カプロラクトン)の熱硬化性樹脂の融解温度(Tm)をマクロモノマーのモル質量重量Mnの関数として示す。このグラフにおいて、マクロジオールは−−(黒四角)−−、マクロモノマーは・・・(黒丸)・・・、および熱硬化性樹脂は−(黒三角)−で表される。
室温におけるポリ(ε−カプロラクトン)熱硬化性樹脂C1〜C7の引張り特性は以下の表13に示され、ここで、Eは弾性率(ヤング率)であり、εsは伸びであり、σsは降伏点における応力であり、σmaxは最大の応力であり、εmaxはσmaxにおける伸びであり、εRは破断したときの伸びであり、σRは破断したときの応力である。以下に提供する表14は、70℃における同一のポリ(ε−カプロラクトン)熱硬化性樹脂の引張り特性を示す。
Figure 2007314797
Figure 2007314797
(形状記憶特性)
熱硬化性樹脂は、表15に記載された熱力学特性を有することを測定した。数平均分子量(Mn)はマクロモノマーのものである。下限温度Tlは0℃であり、上限温度Thは70℃である。一時的な形状の伸長は50%である。Rr(2)は第2サイクルのひずみ回復率であり、Rr,totは5サイクル後の全体のひずみ回復率であり、Rfは平均ひずみ固定率である。
Figure 2007314797
図1は、1方向の形状記憶効果の例示である。 図2は、2方向(熱)形状記憶効果の例示である。 図3は、熱可塑性材料の適切なクラスの組み合わせの例示である。 図4は、好ましい光架橋剤の合成のための反応順序の図である。 図5は、光誘起形状記憶効果の例示である。 図6は、マルチブロックコポリマーについての熱形状記憶効果のメカニズムの例示である。 図7は、マルチブロックコポリマーの形状記憶ポリマーについての応力対伸長を示すグラフである。 図8は、マクロモノマーのモル質量重量(molar mass weight)Mnの関数として、ジオール、ジメタクリレート、および熱硬化性のポリ(ε−カプロラクトン)の融点を示すグラフである。

Claims (26)

  1. 生分解性形状記憶ポリマー組成物であって、以下:
    (1)ハードなセグメントおよびソフトなセグメント、あるいは
    (2)共有結合的にまたはイオン的に架橋される、少なくとも1つのソフトなセグメント、あるいは
    (3)ポリマーブレンド、
    を含み、
    ここで、該ポリマーの原形が、温度変化または別の刺激(例えば光)の適用によって回復される、生分解性形状記憶ポリマー組成物。
  2. 請求項1に記載の組成物であって、以下:
    a)−40℃と270℃との間のTtransを有する少なくとも1つのハードなセグメント、
    b)前記ハードなセグメント(単数または複数)のTtransよりも少なくとも10℃低いTtransを有し、少なくとも1つのハードなセグメントに結合する、少なくとも1つのソフトなセグメント、
    を含み、
    ここで、少なくとも1つのハードなセグメントまたはソフトなセグメントが、分解性領域を含むか、あるいは少なくとも1つのハードなセグメント(単数または複数)が、分解性結合を介して少なくとも1つのソフトなセグメント(単数または複数)に結合している、組成物。
  3. 請求項2に記載の組成物であって、ここで前記ハードなセグメントのTtransが30℃と150℃との間の範囲である、組成物。
  4. 請求項3に記載の組成物であって、ここで前記ハードなセグメントのTtransが30℃と100℃との間の範囲である、組成物。
  5. 請求項2に記載の組成物であって、前記ソフトなセグメント(単数または複数)のTtransが、前記ハードなセグメント(単数または複数)のTtransの少なくとも20℃下である、組成物。
  6. 前記ハードなセグメントおよび前記ソフトなセグメントの少なくとも1つが、熱可塑性ポリマーである、請求項2に記載の組成物。
  7. 前記ハードなセグメントが環式部分を含む、請求項2に記載の組成物。
  8. 前記ハードなセグメントと前記ソフトなセグメントの重量比が約5:95と95:5との間である、請求項2に記載の組成物。
  9. 前記形状記憶ポリマーが、グラフトポリマー、直鎖状ポリマー、および樹枝状ポリマーからなる群から選択される、請求項1に記載の組成物。
  10. 請求項1に記載の組成物であって、ここで前記ポリマーが、ポリヒドロキシ酸、ポリ(エーテルエステル)、ポリオルトエステル、ポリ(アミノ酸)、合成ポリ(アミノ酸)、ポリ無水物、ポリカーボネート、ポリ(ヒドロキシアルカノエート)、およびポリ(ε−カプロラクトン)からなる群から選択される分解性領域を含む、組成物。
  11. 請求項1に記載の組成物であって、ここで前記ポリマーが、エステル基、カーボネート基、アミド基、無水物基、およびオルトエステル基からなる群より選択される生分解性結合を含む、組成物。
  12. 前記ポリマーが完全に生分解性である、請求項1に記載の組成物。
  13. 請求項1に記載の組成物であって、以下:
    共有結合的に架橋された結晶可能なソフトなセグメント(250℃と−40℃との間のTmを有する)または共有結合的に架橋されたソフトなセグメント(250℃と−60℃との間のTtransを有する)を含む分解性熱硬化性ポリマー、を含む、組成物。
  14. 請求項13に記載の組成物であって、ここで、前記分解性熱硬化性ポリマーが、共有結合的に架橋された結晶可能なソフトなセグメント(200℃と0℃との間のTmを有する)または共有結合的に架橋されたソフトなセグメント(200℃と0℃との間のTtransを有する)を含む、組成物。
  15. 請求項1に記載の組成物であって、以下:
    a)−40℃と270℃との間のTtransを有する少なくとも1つの第1セグメント、
    b)少なくとも1つの第2セグメントであって、少なくとも1つの第1セグメントに結合し、そして前記第2セグメントが融点またはガラス転移以外の物理的架橋を形成し得るのに十分な強度のイオン相互作用を含む、第2セグメント、を含み、
    ここで、前記第1または第2セグメントの少なくとも1つが、分解性領域を含むか、あるいは少なくとも1つの前記第1セグメントが、生分解性結合を介して少なくとも1つの前記第2セグメントに結合している、組成物。
  16. 請求項15に記載の組成物であって、ここで、前記イオン相互作用が、高分子電解質セグメントまたは高分子電解質セグメントおよびイオンまたはポリアニオンセグメントおよびポリカチオンセグメントまたは高次に組織化された水素結合に基づく超分子効果を含む、請求項15に記載の組成物。
  17. 請求項1に記載の組成物であって、ここで前記ポリマーが逆の温度効果を有し、前記組成物がその形状回復温度より下で冷却されるときにその形状を回復する、組成物。
  18. 前記ポリマーが光に反応して形状を変化させる、請求項1に記載の組成物。
  19. 前記ポリマーがポリマーブレンドである、請求項1に記載の組成物。
  20. 請求項19に記載の組成物であって、ここで前記ポリマーブレンドが、ポリマーの物理的混合物、異なるTtransを有するハードなセグメントおよび同一のTtransを有するソフトなセグメントを含むポリマーのブレンド、マルチブロックコポリマーのブレンド(ここで第1コポリマーのセグメントの少なくとも1つが、第2コポリマーのセグメントの少なくとも1つと混和性である)、ならびに少なくとも1つのマルチブロックコポリマーおよび少なくとも1つのホモまたはコポリマーのブレンド、からなる群から選択される、組成物。
  21. 前記形状記憶ポリマーの分解を変化するコーティングを含む、請求項1に記載の組成物。
  22. 請求項1〜21のいずれか1つに記載の分解性形状記憶ポリマー組成物を含む、物品。
  23. 治療、診断および予防薬からなる群から選択される薬剤を組み込む、請求項22に記載の物品。
  24. 前記物品が移植可能であり、かつ前記生分解性形状記憶ポリマーが生体適合性である、請求項22に記載の物品。
  25. 前記形状記憶ポリマーが芳香族基を含まない、請求項24に記載の物品。
  26. 前記物品がステント、カテーテル、人工器官、移植片、ネジ、ピン、ポンプ、およびメッシュからなる群から選択される医用装置である、請求項22に記載の物品。
JP2007190922A 1998-02-23 2007-07-23 生分解性形状記憶ポリマー Pending JP2007314797A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7552398P 1998-02-23 1998-02-23

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000532159A Division JP4034036B2 (ja) 1998-02-23 1999-02-23 生分解性形状記憶ポリマー

Publications (1)

Publication Number Publication Date
JP2007314797A true JP2007314797A (ja) 2007-12-06

Family

ID=22126331

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2000532159A Expired - Fee Related JP4034036B2 (ja) 1998-02-23 1999-02-23 生分解性形状記憶ポリマー
JP2005110406A Pending JP2005325336A (ja) 1998-02-23 2005-04-06 生分解性形状記憶ポリマー
JP2007190922A Pending JP2007314797A (ja) 1998-02-23 2007-07-23 生分解性形状記憶ポリマー

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2000532159A Expired - Fee Related JP4034036B2 (ja) 1998-02-23 1999-02-23 生分解性形状記憶ポリマー
JP2005110406A Pending JP2005325336A (ja) 1998-02-23 2005-04-06 生分解性形状記憶ポリマー

Country Status (16)

Country Link
US (1) US6160084A (ja)
EP (1) EP1056487B1 (ja)
JP (3) JP4034036B2 (ja)
KR (1) KR100382568B1 (ja)
AT (1) ATE266434T1 (ja)
AU (1) AU751861B2 (ja)
BR (1) BR9907968B1 (ja)
CA (1) CA2316190C (ja)
CZ (1) CZ303404B6 (ja)
DE (1) DE69917224T2 (ja)
ES (1) ES2221363T3 (ja)
HU (1) HU222543B1 (ja)
IL (2) IL137299A0 (ja)
RU (1) RU2215542C2 (ja)
TR (1) TR200002450T2 (ja)
WO (1) WO1999042147A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506517A (ja) * 2009-10-06 2013-02-28 アルテリアル・ルモンドラン・テクノロジー・エス・アー 半径方向荷重下で均一に分布した応力を有する生体吸収性血管インプラント
WO2015045940A1 (ja) * 2013-09-30 2015-04-02 日立造船株式会社 形状記憶性樹脂組成物
JP2018515476A (ja) * 2015-05-01 2018-06-14 マサチューセッツ インスティテュート オブ テクノロジー 誘発性形状記憶誘導デバイス

Families Citing this family (461)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8795332B2 (en) 2002-09-30 2014-08-05 Ethicon, Inc. Barbed sutures
US7351421B2 (en) * 1996-11-05 2008-04-01 Hsing-Wen Sung Drug-eluting stent having collagen drug carrier chemically treated with genipin
US6240616B1 (en) 1997-04-15 2001-06-05 Advanced Cardiovascular Systems, Inc. Method of manufacturing a medicated porous metal prosthesis
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US6623521B2 (en) 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US6641576B1 (en) 1998-05-28 2003-11-04 Georgia Tech Research Corporation Devices for creating vascular grafts by vessel distension using rotatable elements
US6663617B1 (en) 1998-05-28 2003-12-16 Georgia Tech Research Corporation Devices for creating vascular grafts by vessel distension using fixed post and moveable driver elements
US6280822B1 (en) * 1999-01-11 2001-08-28 3M Innovative Properties Company Cube corner cavity based retroeflectors with transparent fill material
KR20010081686A (ko) 2000-02-18 2001-08-29 윤여생 생분해성 일회용 주사기
ATE350077T1 (de) 2000-04-11 2007-01-15 Polyzenix Gmbh Verwendung von folien aus poly-tri-fluor- ethoxypolyphosphazenen zur umhüllung von medizinischen vorrichtungen
US7867186B2 (en) * 2002-04-08 2011-01-11 Glaukos Corporation Devices and methods for treatment of ocular disorders
ATE275986T1 (de) * 2000-05-31 2004-10-15 Mnemoscience Gmbh Memory-thermoplaste und polymernetzwerke zum gewebeaufbau
IL137090A (en) 2000-06-29 2010-04-15 Pentech Medical Devices Ltd Polymeric stent
US8158143B2 (en) * 2000-07-14 2012-04-17 Helmholtz-Zentrum Geesthacht Zentrum Fuer Material- Und Kuestenforschung Gmbh Systems for releasing active ingredients, based on biodegradable or biocompatible polymers with a shape memory effect
DE60015614T2 (de) * 2000-08-04 2005-11-10 Medennium, Inc., Irvine Okularpfropf für tränenpunkt und intrakanalikuläres implantat
US6827325B2 (en) * 2000-08-28 2004-12-07 Johnson & Johnson Vision Care, Inc. Shape memory polymer or alloy ophthalmic lens mold and methods of forming ophthalmic products
EP1339312B1 (en) * 2000-10-10 2006-01-04 Microchips, Inc. Microchip reservoir devices using wireless transmission of power and data
US6613089B1 (en) * 2000-10-25 2003-09-02 Sdgi Holdings, Inc. Laterally expanding intervertebral fusion device
AU2002243270B2 (en) 2000-10-25 2006-03-09 Warsaw Orthopedic, Inc. Vertically expanding intervertebral body fusion device
US6583194B2 (en) 2000-11-20 2003-06-24 Vahid Sendijarevic Foams having shape memory
US6664335B2 (en) 2000-11-30 2003-12-16 Cardiac Pacemakers, Inc. Polyurethane elastomer article with “shape memory” and medical devices therefrom
US9080146B2 (en) 2001-01-11 2015-07-14 Celonova Biosciences, Inc. Substrates containing polyphosphazene as matrices and substrates containing polyphosphazene with a micro-structured surface
CN1275991C (zh) 2001-01-24 2006-09-20 庄臣及庄臣视力保护公司 形状记忆苯乙烯共聚物
JP2004524909A (ja) * 2001-03-09 2004-08-19 ジョージア テック リサーチ コーポレイション 血管の軸方向への伸張のための脈管内デバイスおよび方法
US6730772B2 (en) 2001-06-22 2004-05-04 Venkatram P. Shastri Degradable polymers from derivatized ring-opened epoxides
US7056331B2 (en) 2001-06-29 2006-06-06 Quill Medical, Inc. Suture method
WO2003003935A1 (en) * 2001-07-02 2003-01-16 Young-Kyu Choi Orthodontic appliance by using a shape memory polymer
WO2003004254A1 (en) * 2001-07-03 2003-01-16 The Regents Of The University Of California Microfabricated biopolymer scaffolds and method of making same
GB0116341D0 (en) 2001-07-04 2001-08-29 Smith & Nephew Biodegradable polymer systems
US20040253467A1 (en) 2001-08-17 2004-12-16 Schuessler Andreas Device based on nitinol with a polyphosphazene coating
US20030060878A1 (en) * 2001-08-31 2003-03-27 Shadduck John H. Intraocular lens system and method for power adjustment
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7285304B1 (en) 2003-06-25 2007-10-23 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US6863683B2 (en) 2001-09-19 2005-03-08 Abbott Laboratoris Vascular Entities Limited Cold-molding process for loading a stent onto a stent delivery system
US7722894B2 (en) * 2001-10-22 2010-05-25 Massachusetts Institute Of Technology Biodegradable polymer
DE60218061T2 (de) * 2001-10-22 2007-11-15 Massachusetts Institute Of Technology, Cambridge Biologisch abbaubares polymer
US6652508B2 (en) 2001-11-09 2003-11-25 Scimed Life Systems, Inc. Intravascular microcatheter having hypotube proximal shaft with transition
US7670302B2 (en) * 2001-12-18 2010-03-02 Boston Scientific Scimed, Inc. Super elastic guidewire with shape retention tip
US7488338B2 (en) 2001-12-27 2009-02-10 Boston Scientific Scimed, Inc. Catheter having an improved torque transmitting shaft
US20030135195A1 (en) * 2002-01-16 2003-07-17 Oscar Jimenez Highly lubricious hydrophilic coating utilizing dendrimers
WO2003062298A1 (en) * 2002-01-17 2003-07-31 Polyrava Llc Co-poly(ester amide) and co-poly(ester urethane) compositions which exhibit biodegradability, methods for making same and uses for same
GB0202233D0 (en) 2002-01-31 2002-03-20 Smith & Nephew Bioresorbable polymers
US8048155B2 (en) 2002-02-02 2011-11-01 Powervision, Inc. Intraocular implant devices
US20030153971A1 (en) * 2002-02-14 2003-08-14 Chandru Chandrasekaran Metal reinforced biodegradable intraluminal stents
US20030153972A1 (en) * 2002-02-14 2003-08-14 Michael Helmus Biodegradable implantable or insertable medical devices with controlled change of physical properties leading to biomechanical compatibility
DE10208211A1 (de) 2002-02-26 2003-09-11 Mnemoscience Gmbh Polymere Netzwerke
US7462366B2 (en) 2002-03-29 2008-12-09 Boston Scientific Scimed, Inc. Drug delivery particle
DE10215858A1 (de) * 2002-04-10 2004-03-18 Mnemoscience Gmbh Verfahren zur Haarbehandlung mit Formgedächtnispolymeren
DE10228120B4 (de) * 2002-06-24 2004-07-08 Mnemoscience Gmbh Mittel und Verfahren zur Haarbehandlung mit Formgedächtnispolymeren
WO2003084489A1 (de) * 2002-04-10 2003-10-16 Mnemoscience Gmbh Verfahren zur erzeugung von formgedächtniseffekten auf haaren durch kombination von formgedächtnispolymeren mit kationaktiven wirkstoffen
DE10217350C1 (de) 2002-04-18 2003-12-18 Mnemoscience Gmbh Polyesterurethane
DE10217351B3 (de) * 2002-04-18 2004-02-12 Mnemoscience Gmbh Interpenetrierende Netzwerke
WO2003088818A2 (en) 2002-04-18 2003-10-30 Mnemoscience Gmbh Biodegradable shape memory polymeric sutures
US20040030062A1 (en) * 2002-05-02 2004-02-12 Mather Patrick T. Castable shape memory polymers
US20030216804A1 (en) * 2002-05-14 2003-11-20 Debeer Nicholas C. Shape memory polymer stent
DE10224352A1 (de) * 2002-06-01 2003-12-11 Mueller Schulte Detlef Thermosensitive Polymerträger mit veränderbarer physikalischer Struktur für die biochemische Analytik, Diagnostik und Therapie
EP1519713B1 (de) * 2002-07-10 2010-09-15 GKSS-Forschungszentrum Geesthacht GmbH Wirkstofffreisetzungssysteme auf basis von bioabbaubaren oder biokompatiblen polymeren mit formgedaechtniseffekt
WO2004006840A2 (en) * 2002-07-12 2004-01-22 The Regents Of The University Of California Three dimensional cell patterned bioploymer scaffolds and method of making the same
EP1382628A1 (en) * 2002-07-16 2004-01-21 Polyganics B.V. Biodegradable phase separated segmented/block co-polyesters
US20040034405A1 (en) * 2002-07-26 2004-02-19 Dickson Andrew M. Axially expanding polymer stent
US7303575B2 (en) * 2002-08-01 2007-12-04 Lumen Biomedical, Inc. Embolism protection devices
US20050163821A1 (en) * 2002-08-02 2005-07-28 Hsing-Wen Sung Drug-eluting Biodegradable Stent and Delivery Means
US20050019404A1 (en) * 2003-06-30 2005-01-27 Hsing-Wen Sung Drug-eluting biodegradable stent
US7842377B2 (en) * 2003-08-08 2010-11-30 Boston Scientific Scimed, Inc. Porous polymeric particle comprising polyvinyl alcohol and having interior to surface porosity-gradient
US6773450B2 (en) * 2002-08-09 2004-08-10 Quill Medical, Inc. Suture anchor and method
US8012454B2 (en) 2002-08-30 2011-09-06 Boston Scientific Scimed, Inc. Embolization
EP1539035B1 (en) * 2002-09-19 2011-08-17 Exstent Limited Improvements relating to stents
US8100940B2 (en) 2002-09-30 2012-01-24 Quill Medical, Inc. Barb configurations for barbed sutures
US7976936B2 (en) 2002-10-11 2011-07-12 University Of Connecticut Endoprostheses
US7524914B2 (en) 2002-10-11 2009-04-28 The University Of Connecticut Shape memory polymers based on semicrystalline thermoplastic polyurethanes bearing nanostructured hard segments
EP2260882B1 (en) * 2002-10-11 2020-03-04 Boston Scientific Limited Implantable medical devices
JP4530990B2 (ja) * 2002-10-11 2010-08-25 ユニバーシティ オブ コネチカット 形状記憶特性を有するアモルファス及び半結晶質ポリマーのブレンド
US7794494B2 (en) 2002-10-11 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices
ATE534704T1 (de) * 2002-10-11 2011-12-15 Univ Connecticut Vernetztes polycycloocten
US6800663B2 (en) * 2002-10-18 2004-10-05 Alkermes Controlled Therapeutics Inc. Ii, Crosslinked hydrogel copolymers
US7883490B2 (en) 2002-10-23 2011-02-08 Boston Scientific Scimed, Inc. Mixing and delivery of therapeutic compositions
DE10253391A1 (de) * 2002-11-15 2004-06-03 Mnemoscience Gmbh Amorphe polymere Netzwerke
US20040111111A1 (en) * 2002-12-10 2004-06-10 Scimed Life Systems, Inc. Intravascular filter membrane with shape memory
US7217288B2 (en) 2002-12-12 2007-05-15 Powervision, Inc. Accommodating intraocular lens having peripherally actuated deflectable surface and method
US7637947B2 (en) 2002-12-12 2009-12-29 Powervision, Inc. Accommodating intraocular lens system having spherical aberration compensation and method
US8328869B2 (en) 2002-12-12 2012-12-11 Powervision, Inc. Accommodating intraocular lenses and methods of use
US8361145B2 (en) 2002-12-12 2013-01-29 Powervision, Inc. Accommodating intraocular lens system having circumferential haptic support and method
US10835373B2 (en) 2002-12-12 2020-11-17 Alcon Inc. Accommodating intraocular lenses and methods of use
US7758881B2 (en) 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
DE10300271A1 (de) * 2003-01-08 2004-07-22 Mnemoscience Gmbh Photosensitive polymere Netzwerke
CA2516285A1 (en) * 2003-02-19 2004-09-02 Mnemoscience Gmbh Self-expanding device for the gastrointestinal or urogenital area
EP1599748A4 (en) 2003-03-06 2007-10-24 John H Shadduck ADAPTIVE OPTICAL LENS AND METHOD OF MANUFACTURE
DE10316573A1 (de) * 2003-04-10 2004-11-04 Mnemoscience Gmbh Blends mit Form-Gedächtnis-Eigenschaften
EP1633281A1 (de) * 2003-06-13 2006-03-15 Mnemoscience GmbH Stents
CA2527975C (en) * 2003-06-13 2011-08-09 Mnemoscience Gmbh Biodegradable stents comprising a shape memory polymeric material
DE10357742A1 (de) * 2003-06-13 2005-03-10 Mnemoscience Gmbh Temporäre Stents zur nicht-vaskulären Verwendung
CA2529494A1 (en) * 2003-06-16 2004-12-23 Nanyang Technological University Polymeric stent and method of manufacture
US7879062B2 (en) * 2003-07-22 2011-02-01 Lumen Biomedical, Inc. Fiber based embolism protection device
US8048042B2 (en) * 2003-07-22 2011-11-01 Medtronic Vascular, Inc. Medical articles incorporating surface capillary fiber
DE10334788A1 (de) * 2003-07-30 2005-02-24 Mnemoscience Gmbh Verfahren zur Erzeugung von Formgedächtniseffekten auf Haaren in Verbindung mit hydrophoben Wirkstoffen
DE10334784A1 (de) * 2003-07-30 2005-03-03 Mnemoscience Gmbh Kosmetische Zusammensetzung mit Polyol/Polyester Blockpolymeren
DE10335648A1 (de) 2003-07-30 2005-03-03 Eberhard-Karls-Universität Tübingen Verschlussstopfen für eine Öffnung in einer Wand eines Gefäßes oder Hohlorgans
DE10334823A1 (de) * 2003-07-30 2005-02-24 Mnemoscience Gmbh Verfahren zur Haarbehandlung mit Formgedächtnispolymeren
US20050055014A1 (en) * 2003-08-04 2005-03-10 Coppeta Jonathan R. Methods for accelerated release of material from a reservoir device
US7976823B2 (en) 2003-08-29 2011-07-12 Boston Scientific Scimed, Inc. Ferromagnetic particles and methods
DE10340392A1 (de) * 2003-09-02 2005-04-07 Mnemoscience Gmbh Amorphe Polyesterurethan-Netzwerke mit Form-Gedächtnis-Eigenschaften
US20070259598A1 (en) 2003-09-17 2007-11-08 Ribi Hans O Plural Element Composite Materials, Methods for Making and Using the Same
GB0322286D0 (en) * 2003-09-23 2003-10-22 Angiomed Gmbh & Co Implant with shape memory
US7198675B2 (en) 2003-09-30 2007-04-03 Advanced Cardiovascular Systems Stent mandrel fixture and method for selectively coating surfaces of a stent
US20050085814A1 (en) * 2003-10-21 2005-04-21 Sherman Michael C. Dynamizable orthopedic implants and their use in treating bone defects
US7699879B2 (en) * 2003-10-21 2010-04-20 Warsaw Orthopedic, Inc. Apparatus and method for providing dynamizable translations to orthopedic implants
AU2004285480B2 (en) * 2003-10-22 2010-12-16 Encelle, Inc. Bioactive hydrogel compositions for regenerating connective tissue
DE10350248A1 (de) * 2003-10-28 2005-06-16 Magnamedics Gmbh Thermosensitive, biokompatible Polymerträger mit veränderbarer physikalischer Struktur für die Therapie, Diagnostik und Analytik
US7901770B2 (en) 2003-11-04 2011-03-08 Boston Scientific Scimed, Inc. Embolic compositions
CA2544301A1 (en) * 2003-11-05 2005-05-26 Pavad Medical, Inc. Altering the stiffness, size, and/or shape of tissues for breathing disorders and other conditions
US7740656B2 (en) * 2003-11-17 2010-06-22 Medtronic, Inc. Implantable heart valve prosthetic devices having intrinsically conductive polymers
US7723460B2 (en) 2003-12-12 2010-05-25 Nec Corporation Shape-memory resin performing remoldability and excellent in shape recovering property, and molded product composed of the cross-linked resin
US20050136764A1 (en) * 2003-12-18 2005-06-23 Sherman Michael C. Designed composite degradation for spinal implants
GB0329654D0 (en) 2003-12-23 2004-01-28 Smith & Nephew Tunable segmented polyacetal
EP1555278A1 (en) * 2004-01-15 2005-07-20 Innocore Technologies B.V. Biodegradable multi-block co-polymers
US8882786B2 (en) * 2004-02-17 2014-11-11 Lawrence Livermore National Security, Llc. System for closure of a physical anomaly
US7931693B2 (en) * 2004-02-26 2011-04-26 Endosphere, Inc. Method and apparatus for reducing obesity
US8585771B2 (en) 2004-02-26 2013-11-19 Endosphere, Inc. Methods and devices to curb appetite and/or to reduce food intake
US8147561B2 (en) * 2004-02-26 2012-04-03 Endosphere, Inc. Methods and devices to curb appetite and/or reduce food intake
US7736671B2 (en) 2004-03-02 2010-06-15 Boston Scientific Scimed, Inc. Embolization
US8173176B2 (en) 2004-03-30 2012-05-08 Boston Scientific Scimed, Inc. Embolization
DE102004016317B4 (de) * 2004-03-30 2007-09-06 Bernhard Förster Gmbh Kieferorthopädische Vorrichtung
US7601274B2 (en) * 2004-03-31 2009-10-13 The University Of Connecticut Shape memory main-chain smectic-C elastomers
AU2004318159B8 (en) * 2004-04-02 2011-05-26 Sahajanand Medical Technologies Private Limited Polymer-based stent assembly
SG164370A1 (en) 2004-05-14 2010-09-29 Quill Medical Inc Suture methods and devices
US7311861B2 (en) 2004-06-01 2007-12-25 Boston Scientific Scimed, Inc. Embolization
EP1755871B1 (en) * 2004-06-04 2012-01-04 Cornerstone Research Group, Inc. Method of using shape memory polymer composite patches
GB0412979D0 (en) 2004-06-10 2004-07-14 Rue De Int Ltd Improvements in security devices
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US20080183285A1 (en) * 2004-06-29 2008-07-31 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US7377941B2 (en) * 2004-06-29 2008-05-27 Micardia Corporation Adjustable cardiac valve implant with selective dimensional adjustment
US7285087B2 (en) * 2004-07-15 2007-10-23 Micardia Corporation Shape memory devices and methods for reshaping heart anatomy
WO2006019943A1 (en) * 2004-07-15 2006-02-23 Micardia Corporation Implants and methods for reshaping heart valves
US7402134B2 (en) * 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
US7763065B2 (en) 2004-07-21 2010-07-27 Reva Medical, Inc. Balloon expandable crush-recoverable stent device
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US11820852B2 (en) 2004-08-16 2023-11-21 Lawrence Livermore National Security, Llc Shape memory polymers
US9051411B2 (en) 2004-08-16 2015-06-09 Lawrence Livermore National Security, Llc Shape memory polymers
US9283099B2 (en) 2004-08-25 2016-03-15 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
WO2006086011A2 (en) * 2004-08-27 2006-08-17 University Of Connecticut Crosslinked liquid crystalline polymer, method for the preparation thereof, and articles derived therefrom
US7229471B2 (en) 2004-09-10 2007-06-12 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US7927346B2 (en) * 2004-09-10 2011-04-19 Stryker Corporation Diversion device to increase cerebral blood flow
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US20090088846A1 (en) 2007-04-17 2009-04-02 David Myung Hydrogel arthroplasty device
US7909867B2 (en) * 2004-10-05 2011-03-22 The Board Of Trustees Of The Leland Stanford Junior University Interpenetrating polymer network hydrogel corneal prosthesis
US7857447B2 (en) * 2004-10-05 2010-12-28 The Board Of Trustees Of The Leland Stanford Junior University Interpenetrating polymer network hydrogel contact lenses
EP1799771A2 (en) * 2004-10-06 2007-06-27 Cornerstone Research Group, Inc. Light activated shape memory co-polymers
US9872763B2 (en) 2004-10-22 2018-01-23 Powervision, Inc. Accommodating intraocular lenses
US20210299056A9 (en) 2004-10-25 2021-09-30 Varian Medical Systems, Inc. Color-Coded Polymeric Particles of Predetermined Size for Therapeutic and/or Diagnostic Applications and Related Methods
US9107850B2 (en) 2004-10-25 2015-08-18 Celonova Biosciences, Inc. Color-coded and sized loadable polymeric particles for therapeutic and/or diagnostic applications and methods of preparing and using the same
US9114162B2 (en) 2004-10-25 2015-08-25 Celonova Biosciences, Inc. Loadable polymeric particles for enhanced imaging in clinical applications and methods of preparing and using the same
US8425550B2 (en) 2004-12-01 2013-04-23 Boston Scientific Scimed, Inc. Embolic coils
US7399291B2 (en) * 2004-12-02 2008-07-15 Syntheon, Llc. Catheter for treatment of total occlusions and methods for manufacture and use of the catheter
US20060275230A1 (en) 2004-12-10 2006-12-07 Frank Kochinke Compositions and methods for treating conditions of the nail unit
CA2593471A1 (en) * 2004-12-10 2006-07-06 University Of Connecticut Shape memory polymer orthodontic appliances, and methods of making and using the same
US8043361B2 (en) 2004-12-10 2011-10-25 Boston Scientific Scimed, Inc. Implantable medical devices, and methods of delivering the same
KR20070095921A (ko) 2004-12-10 2007-10-01 탈리마 테라퓨틱스 인코포레이티드 조갑 단위의 상태를 치료하기 위한 조성물 및 방법
US8292944B2 (en) 2004-12-17 2012-10-23 Reva Medical, Inc. Slide-and-lock stent
WO2006074163A2 (en) 2005-01-03 2006-07-13 Crux Biomedical, Inc. Retrievable endoluminal filter
CA2595457A1 (en) 2005-01-25 2006-08-03 Microchips, Inc. Control of drug release by transient modification of local microenvironments
CN101146484B (zh) * 2005-01-25 2015-04-08 泰科医疗集团有限合伙公司 用于永久性闭塞中空解剖结构的结构
WO2006085174A1 (en) * 2005-02-08 2006-08-17 Nokia Corporation Harq failure indication over iub-interface
US7524329B2 (en) 2005-02-08 2009-04-28 Wilson-Cook Medical Inc. Self contracting stent
US7858183B2 (en) 2005-03-02 2010-12-28 Boston Scientific Scimed, Inc. Particles
US7727555B2 (en) 2005-03-02 2010-06-01 Boston Scientific Scimed, Inc. Particles
US7931671B2 (en) * 2005-03-11 2011-04-26 Radi Medical Systems Ab Medical sealing device
CA2603652A1 (en) 2005-04-01 2006-10-12 The Regents Of The University Of Colorado A graft fixation device and method
US7381048B2 (en) 2005-04-12 2008-06-03 Advanced Cardiovascular Systems, Inc. Stents with profiles for gripping a balloon catheter and molds for fabricating stents
US7674296B2 (en) 2005-04-21 2010-03-09 Globus Medical, Inc. Expandable vertebral prosthesis
US7963287B2 (en) 2005-04-28 2011-06-21 Boston Scientific Scimed, Inc. Tissue-treatment methods
WO2007002161A2 (en) * 2005-06-21 2007-01-04 Cornerstone Research Group, Inc. Environmental condition cumulative tracking integration sensor using shape memory polymer
US9463426B2 (en) 2005-06-24 2016-10-11 Boston Scientific Scimed, Inc. Methods and systems for coating particles
TWI308180B (en) * 2005-07-04 2009-04-01 Lg Chemical Ltd The method of utilizing poly(3-hydroxyalkanoate) block copolymer having shape memory effect
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US7914574B2 (en) 2005-08-02 2011-03-29 Reva Medical, Inc. Axially nested slide and lock expandable device
US9149378B2 (en) 2005-08-02 2015-10-06 Reva Medical, Inc. Axially nested slide and lock expandable device
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US20070055368A1 (en) * 2005-09-07 2007-03-08 Richard Rhee Slotted annuloplasty ring
WO2007038336A2 (en) * 2005-09-23 2007-04-05 Ellipse Technologies, Inc. Method and apparatus for adjusting body lumens
US8007509B2 (en) 2005-10-12 2011-08-30 Boston Scientific Scimed, Inc. Coil assemblies, components and methods
US8876772B2 (en) 2005-11-16 2014-11-04 Boston Scientific Scimed, Inc. Variable stiffness shaft
EP1790694A1 (en) * 2005-11-28 2007-05-30 Mnemoscience GmbH Blends of shape memory polymers with thermoplastic polymers
PL2347775T3 (pl) 2005-12-13 2020-11-16 President And Fellows Of Harvard College Rusztowania do przeszczepiania komórek
US20070142907A1 (en) * 2005-12-16 2007-06-21 Micardia Corporation Adjustable prosthetic valve implant
US8101197B2 (en) 2005-12-19 2012-01-24 Stryker Corporation Forming coils
US8152839B2 (en) 2005-12-19 2012-04-10 Boston Scientific Scimed, Inc. Embolic coils
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US7947368B2 (en) 2005-12-21 2011-05-24 Boston Scientific Scimed, Inc. Block copolymer particles
EP1801140A1 (en) * 2005-12-22 2007-06-27 Mnemoscience GmbH Macro-diacrylate
US20070156230A1 (en) 2006-01-04 2007-07-05 Dugan Stephen R Stents with radiopaque markers
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
WO2007082304A2 (en) 2006-01-12 2007-07-19 Massachusetts Institute Of Technology Biodegradable elastomers
US20090011486A1 (en) * 2006-01-12 2009-01-08 Massachusetts Institute Of Technology Biodegradable Elastomers
US20070265646A1 (en) * 2006-01-17 2007-11-15 Ellipse Technologies, Inc. Dynamically adjustable gastric implants
US8440214B2 (en) * 2006-01-31 2013-05-14 Boston Scientific Scimed, Inc. Medical devices for therapeutic agent delivery with polymeric regions that contain copolymers having both soft segments and uniform length hard segments
EP1818161A1 (en) * 2006-02-10 2007-08-15 Mnemoscience GmbH Shape memory polymers and shape memory polymer compositions responsive towards two different stimuli
EP1818346A1 (en) 2006-02-10 2007-08-15 Mnemoscience GmbH Shape memory materials comprising polyelectrolyte segments
DE102006008315B4 (de) * 2006-02-18 2007-12-06 Hahn-Meitner-Institut Berlin Gmbh Miniaturisierte Transportsysteme aus einem Formgedächtnis-Polymer und Verfahren zur Herstellung
DE102006012169B4 (de) * 2006-03-14 2007-12-13 Gkss-Forschungszentrum Geesthacht Gmbh Formgedächtnispolymer mit Polyester- und Polyethersegmenten, Verfahren zu seiner Herstellung und Formprogrammierung und Verwendung
US7536228B2 (en) 2006-03-24 2009-05-19 Micardia Corporation Activation device for dynamic ring manipulation
EP2007288A4 (en) * 2006-03-30 2011-03-16 Univ Colorado Regents MEDICAL DEVICE OF FORMED MEMORY SYNTHESIS
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
AU2006341439A1 (en) * 2006-04-06 2007-10-11 Reva Medical, Inc. Embolic prosthesis for treatment of vascular aneurysm
DE102006017759A1 (de) * 2006-04-12 2007-10-18 Gkss-Forschungszentrum Geesthacht Gmbh Formgedächtnispolymer mit Polyester- und Polyacrylsegmenten und Verfahren zu seiner Herstellung und Programmierung
US20090095865A1 (en) * 2006-05-01 2009-04-16 Cornerstone Research Group, Inc. Device for Securely Holding Objects in Place
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
DE102006023365B4 (de) * 2006-05-15 2008-07-24 Gkss-Forschungszentrum Geesthacht Gmbh Multiblockcopolymere mit Formgedächtniseigenschaften
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US8752268B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US9060835B2 (en) 2006-05-26 2015-06-23 Endosphere, Inc. Conformationally-stabilized intraluminal device for medical applications
US20080097620A1 (en) 2006-05-26 2008-04-24 Nanyang Technological University Implantable article, method of forming same and method for reducing thrombogenicity
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US20070282434A1 (en) * 2006-05-30 2007-12-06 Yunbing Wang Copolymer-bioceramic composite implantable medical devices
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7877142B2 (en) * 2006-07-05 2011-01-25 Micardia Corporation Methods and systems for cardiac remodeling via resynchronization
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US20080027199A1 (en) * 2006-07-28 2008-01-31 3M Innovative Properties Company Shape memory polymer articles with a microstructured surface
US7951319B2 (en) 2006-07-28 2011-05-31 3M Innovative Properties Company Methods for changing the shape of a surface of a shape memory polymer article
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US20080085946A1 (en) * 2006-08-14 2008-04-10 Mather Patrick T Photo-tailored shape memory article, method, and composition
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US8444682B2 (en) * 2006-09-13 2013-05-21 The University Of Hong Kong Shape memory locking device for orthopedic implants
US9585989B2 (en) * 2006-09-19 2017-03-07 Boston Scientific Scimed, Inc. Ureteral stent having variable hardness
US7713308B2 (en) * 2006-09-22 2010-05-11 Boston Scientific Scimed, Inc. Stent with soluble bladder retention member
US7557167B2 (en) * 2006-09-28 2009-07-07 Gore Enterprise Holdings, Inc. Polyester compositions, methods of manufacturing said compositions, and articles made therefrom
JP2010505597A (ja) 2006-10-10 2010-02-25 セロノバ バイオサイエンシーズ, インコーポレイテッド ポリホスファゼンを用いたバイオ人工心臓弁
EP2083764B1 (en) * 2006-10-17 2015-08-26 Rutgers, The State University N-substituted monomers and polymers
WO2008051254A1 (en) * 2006-10-27 2008-05-02 The Regents Of The University Of Colorado A polymer formulation a method of determining a polymer formulation and a method of determining a polymer fabrication
US8414927B2 (en) 2006-11-03 2013-04-09 Boston Scientific Scimed, Inc. Cross-linked polymer particles
CN101594831B (zh) 2006-11-30 2011-09-14 史密夫和内修有限公司 纤维增强的复合材料
US20080228272A1 (en) * 2006-12-04 2008-09-18 Micardia Corporation Dynamically adjustable suture and chordae tendinae
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US20100192959A1 (en) * 2006-12-19 2010-08-05 The Regents Of The University Of Colorado, A Body Corporate Shape memory polymer-based transcervical device for permanent or temporary sterilization
US7704275B2 (en) 2007-01-26 2010-04-27 Reva Medical, Inc. Circumferentially nested expandable device
US8158712B2 (en) 2007-02-21 2012-04-17 Powervision, Inc. Polymeric materials suitable for ophthalmic devices and methods of manufacture
DE102007010564A1 (de) 2007-02-22 2008-08-28 Gkss-Forschungszentrum Geesthacht Gmbh Verfahren zur Einschritt-Programmierung von Dreiformenkunststoffen
EP2126623B1 (en) * 2007-03-08 2014-05-14 OKIA Optical Co. Ltd. Eyeglasses and eyeglass frames comprising glycol modified copolyesters
US7604398B1 (en) 2007-03-26 2009-10-20 Akers Jeffrey W Remote indicating cumulative thermal exposure monitor and system for reading same
US20080236601A1 (en) * 2007-03-28 2008-10-02 Medshape Solutions, Inc. Manufacturing shape memory polymers based on deformability peak of polymer network
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US20080255612A1 (en) 2007-04-13 2008-10-16 Angiotech Pharmaceuticals, Inc. Self-retaining systems for surgical procedures
GB0707418D0 (en) * 2007-04-17 2007-05-23 Smith & Nephew Dental implants
JP5416090B2 (ja) 2007-04-18 2014-02-12 スミス アンド ネフュー ピーエルシー 形状記憶ポリマーの膨張成形
EP2148709A2 (en) * 2007-04-19 2010-02-03 Smith & Nephew, Inc. Prosthetic implants
EP2142227B1 (en) 2007-04-19 2012-02-29 Smith & Nephew, Inc. Multi-modal shape memory polymers
DE602008006181D1 (de) 2007-04-19 2011-05-26 Smith & Nephew Inc Graft-fixierung
JP5871464B2 (ja) * 2007-04-19 2016-03-01 スミス アンド ネフュー インコーポレーテッドSmith & Nephew,Inc. 配向高分子デバイス
JP5443335B2 (ja) * 2007-04-19 2014-03-19 スミス アンド ネフュー インコーポレーテッド 人工関節
DE102007022362A1 (de) 2007-05-04 2008-11-06 Gkss-Forschungszentrum Geesthacht Gmbh Biologisch abbaubarer Polymerblend sowie aus dem Polymerblend hergestellter Artikel
US8912304B2 (en) * 2007-05-17 2014-12-16 Massachusetts Institute Of Technology Polyol-based polymers
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
WO2008147166A1 (es) * 2007-06-01 2008-12-04 Universidad Autónoma Metropolitana Uso de polímeros derivados del pirrol sintetizados por plasma para la neuroprotección y la reconexión del sistema nervioso central
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US20110137227A1 (en) 2007-07-16 2011-06-09 Mckinley James T Methods and devices for delivering or delaying lipids within a duodenum
US20090024086A1 (en) * 2007-07-20 2009-01-22 Qiming Zhang Micro-steerable catheter
EP2178463B1 (en) 2007-07-23 2013-09-04 PowerVision, Inc. Accommodating intraocular lenses
US8968396B2 (en) 2007-07-23 2015-03-03 Powervision, Inc. Intraocular lens delivery systems and methods of use
CA2693906C (en) 2007-07-23 2015-10-06 Powervision, Inc. Post-implant lens power modification
US8956408B2 (en) 2007-07-23 2015-02-17 Powervision, Inc. Lens delivery system
US8314927B2 (en) 2007-07-23 2012-11-20 Powervision, Inc. Systems and methods for testing intraocular lenses
US8173765B2 (en) * 2007-07-30 2012-05-08 Valorisation-Recherche, Limited Partnership Polymers, uses and methods of manufacture thereof
US20090035350A1 (en) 2007-08-03 2009-02-05 John Stankus Polymers for implantable devices exhibiting shape-memory effects
DE102007037063B4 (de) 2007-08-03 2012-12-06 Helmholtz-Zentrum Geesthacht Zentrum für Material- und Küstenforschung GmbH Verfahren zur Herstellung eines Multiblockcopolymers
US8221196B2 (en) 2007-08-15 2012-07-17 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad and methods of making and using same
US7458885B1 (en) 2007-08-15 2008-12-02 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Chemical mechanical polishing pad and methods of making and using same
US9370640B2 (en) 2007-09-12 2016-06-21 Novasentis, Inc. Steerable medical guide wire device
WO2009042841A2 (en) 2007-09-27 2009-04-02 Angiotech Pharmaceuticals, Inc. Self-retaining sutures including tissue retainers having improved strength
PL2214646T3 (pl) 2007-10-05 2021-12-20 Wayne State University Dendrymery do przedłużonego uwalniania związków
US20090118747A1 (en) * 2007-11-05 2009-05-07 Tyco Healthcare Group Lp Novel surgical fastener
JP5216098B2 (ja) 2007-11-30 2013-06-19 レヴァ メディカル、 インコーポレイテッド 軸方向かつ放射状に入れ子構造の拡張可能な装置
JP5560200B2 (ja) * 2007-12-11 2014-07-23 マサチューセッツ インスチテュート オブ テクノロジー 膀胱および他の身体の小嚢又は管腔を治療するための埋め込み型薬物供給デバイス
US20090157048A1 (en) * 2007-12-18 2009-06-18 Boston Scientific Scimed, Inc. Spiral cut hypotube
US8916077B1 (en) 2007-12-19 2014-12-23 Ethicon, Inc. Self-retaining sutures with retainers formed from molten material
CA2709328C (en) 2007-12-19 2017-01-03 Angiotech Pharmaceuticals, Inc. Self-retaining sutures with heat-contact mediated retainers
US8118834B1 (en) 2007-12-20 2012-02-21 Angiotech Pharmaceuticals, Inc. Composite self-retaining sutures and method
EP2231212A2 (en) * 2007-12-20 2010-09-29 7L, Llc Swallowable self-expanding gastric space occupying device
EP2075279A1 (en) 2007-12-28 2009-07-01 Mnemoscience GmbH Production of shape memory polymer articles by molding processes
EP2075272A1 (en) 2007-12-28 2009-07-01 Mnemoscience GmbH Shape memory polymer networks from crosslinkable thermoplasts
EP2075273A1 (en) 2007-12-28 2009-07-01 Mnemoscience GmbH Multiple shape memory polymer networks
DE102008004574A1 (de) * 2008-01-09 2009-07-16 Aesculap Ag Chirurgisches Nahtmaterial mit Verankerungselementen
US8501290B2 (en) 2008-01-15 2013-08-06 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polyurethanes with biodegradable hard and soft blocks and blends thereof
US8875607B2 (en) 2008-01-30 2014-11-04 Ethicon, Inc. Apparatus and method for forming self-retaining sutures
US9125647B2 (en) 2008-02-21 2015-09-08 Ethicon, Inc. Method and apparatus for elevating retainers on self-retaining sutures
US8641732B1 (en) 2008-02-26 2014-02-04 Ethicon, Inc. Self-retaining suture with variable dimension filament and method
US9259515B2 (en) * 2008-04-10 2016-02-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polyurethanes with grafted radiopaque groups
EP2113369A1 (en) 2008-04-21 2009-11-04 I.N.R.A. Institut National de la Recherche Agronomique Shape memory composition comprising starch
US8846777B2 (en) * 2008-04-22 2014-09-30 The Regents Of The University Of Colorado, A Body Corporate Thiol-vinyl and thiol-yne systems for shape memory polymers
US8961560B2 (en) 2008-05-16 2015-02-24 Ethicon, Inc. Bidirectional self-retaining sutures with laser-marked and/or non-laser marked indicia and methods
US8206636B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US8206635B2 (en) 2008-06-20 2012-06-26 Amaranth Medical Pte. Stent fabrication via tubular casting processes
US10898620B2 (en) 2008-06-20 2021-01-26 Razmodics Llc Composite stent having multi-axial flexibility and method of manufacture thereof
US20120209396A1 (en) 2008-07-07 2012-08-16 David Myung Orthopedic implants having gradient polymer alloys
US8430933B2 (en) * 2008-07-24 2013-04-30 MedShape Inc. Method and apparatus for deploying a shape memory polymer
US8069858B2 (en) * 2008-07-24 2011-12-06 Medshape Solutions, Inc. Method and apparatus for deploying a shape memory polymer
US20100170521A1 (en) * 2008-07-24 2010-07-08 Medshape Solutions, Inc. Method and apparatus for deploying a shape memory polymer
AU2009279716A1 (en) 2008-08-05 2010-02-11 Biomimedica, Inc Polyurethane-grafted hydrogels
US8198369B2 (en) 2008-08-05 2012-06-12 GM Global Technology Operations LLC Shape memory polymers with surface having dangling adhesive polymeric chains and methods of making and using the same
US20100041778A1 (en) * 2008-08-14 2010-02-18 Composite Technology Development, Inc. Reconfigurable polymeric foam structure
DE102008048227A1 (de) 2008-09-18 2010-04-01 Friedrich-Schiller-Universität Jena Verfahren zur Generierung von formstabilen Polyelektrolythydrogel-Körpern mit definierter dreidimensionaler Gestalt sowie deren Verwendung
US8323316B2 (en) * 2008-10-09 2012-12-04 Covidien Lp Knotted suture end effector
US7947071B2 (en) 2008-10-10 2011-05-24 Reva Medical, Inc. Expandable slide and lock stent
US8277594B2 (en) * 2008-10-21 2012-10-02 GM Global Technology Operations LLC Self-cleaning dry adhesives
US9119714B2 (en) * 2008-10-29 2015-09-01 The Regents Of The University Of Colorado, A Body Corporate Shape memory polymer prosthetic medical device
MX339174B (es) 2008-11-03 2016-05-12 Ethicon Llc Longitud de sutura autorretenible y metodo y dispositivo para su uso.
US10299913B2 (en) 2009-01-09 2019-05-28 Powervision, Inc. Accommodating intraocular lenses and methods of use
US8721723B2 (en) 2009-01-12 2014-05-13 Globus Medical, Inc. Expandable vertebral prosthesis
US20100233112A1 (en) * 2009-01-16 2010-09-16 Jinlian Hu Shape memory polymer network using heterocyclic groups
WO2010115076A2 (en) 2009-04-02 2010-10-07 Endoshape, Inc. Vascular occlusion devices
US9422964B2 (en) 2009-04-10 2016-08-23 3M Innovative Properties Company Blind fasteners
EP2876309B1 (en) 2009-04-10 2016-09-28 3M Innovative Properties Company Blind fasteners
CN101554488B (zh) * 2009-05-22 2012-10-03 西南交通大学 生物降解的形状记忆管状支撑支架的制备方法和使用方法
US20100301512A1 (en) * 2009-05-26 2010-12-02 Gm Global Technology Operations, Inc. Packaging and de-packaging methods using shape memory polymers
WO2010144548A2 (en) 2009-06-09 2010-12-16 Regear Life Sciences, Inc. Shielded diathermy applicator with automatic tuning and low incidental radiation
EP2442962B1 (en) * 2009-06-16 2014-08-27 3M Innovative Properties Company Debondable adhesive article
SG177360A1 (en) 2009-06-26 2012-02-28 Taris Biomedical Inc Implantable drug delivery devices and methods of making the same
IN2012DN00368A (ja) * 2009-07-06 2015-08-21 Coloplast As
US8404484B2 (en) * 2009-07-15 2013-03-26 Syracuse University Active cell culture via shape memory
JP5894076B2 (ja) 2009-08-31 2016-03-23 パワーヴィジョン・インコーポレーテッド 水晶体嚢サイズ推定方法
CA2773094C (en) * 2009-09-03 2015-06-30 Donald A. Gonzales Methods and systems for tissue fastening
WO2011042537A1 (en) * 2009-10-08 2011-04-14 Sanofi-Aventis Deutschland Gmbh Drug delivery device with biodegradable plastic components
EP2501976B1 (en) 2009-11-16 2017-10-04 3M Innovative Properties Company Pipe section joining
KR101800906B1 (ko) 2009-11-24 2017-11-23 쓰리엠 이노베이티브 프로퍼티즈 컴파니 형상 기억 중합체를 이용한 물품 및 방법
EP3884988A1 (en) 2009-12-17 2021-09-29 TARIS Biomedical LLC Implantable device with intravesical tolerability and methods of treatment
US8568471B2 (en) 2010-01-30 2013-10-29 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8808353B2 (en) 2010-01-30 2014-08-19 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds having a low crossing profile
EP3263574B1 (en) 2010-02-23 2019-04-03 PowerVision, Inc. Accomodating intraocular lens
SG184102A1 (en) 2010-03-18 2012-10-30 Agency Science Tech & Res Biodegradable and biocompatible shape memory polymers
JP5809237B2 (ja) 2010-04-10 2015-11-10 レヴァ メディカル、 インコーポレイテッドReva Medical, Inc. 拡張可能なスライドロックステント
US9301850B2 (en) 2010-04-12 2016-04-05 Globus Medical, Inc. Expandable vertebral implant
US8591585B2 (en) 2010-04-12 2013-11-26 Globus Medical, Inc. Expandable vertebral implant
US8282683B2 (en) 2010-04-12 2012-10-09 Globus Medical, Inc. Expandable vertebral implant
US8870880B2 (en) 2010-04-12 2014-10-28 Globus Medical, Inc. Angling inserter tool for expandable vertebral implant
EP4039203A1 (en) 2010-04-13 2022-08-10 Mivi Neuroscience, Inc. Embolectomy devices for treatment of acute ischemic stroke condition
CA2798373C (en) 2010-05-04 2018-10-23 Ethicon, Llc Self-retaining systems having laser-cut retainers
US9777148B2 (en) 2010-05-11 2017-10-03 Bioretec Oy Biocompatible material and device
CN104873237B (zh) 2010-06-11 2017-08-08 伊西康有限责任公司 用于内窥镜式和机器人辅助式外科手术的缝合线递送工具
FR2961396B1 (fr) * 2010-06-16 2013-03-15 Oreal Procede de maquillage ou de soin des fibres keratiniques mettant en oeuvre des fibres retractables et utilisation
WO2011159912A2 (en) * 2010-06-16 2011-12-22 Piekny Mark G Self-coiling apparatus
WO2012006616A2 (en) 2010-07-09 2012-01-12 Powervision, Inc. Intraocular lens delivery devices and methods of use
AU2011285554C1 (en) 2010-08-06 2016-05-12 Endoshape, Inc. Radiopaque shape memory polymers for medical devices
WO2012027573A2 (en) 2010-08-25 2012-03-01 University Of Massachusetts Biodegradable shape memory polymer
US20130217829A1 (en) 2010-08-27 2013-08-22 David Myung "hydrophobic and hydrophilic interpenetrating polymer networks derived from hydrophobic polymers and methods of preparing the same"
US9173978B2 (en) * 2010-09-22 2015-11-03 Ethicon, Inc. Bioabsorbable polymeric compositions, processing methods, and medical devices therefrom
WO2012050691A2 (en) 2010-09-30 2012-04-19 3M Innovative Properties Company Writing device with deformable grip and method of making same
JP5945544B2 (ja) 2010-10-06 2016-07-05 タリス バイオメディカル エルエルシー 時間選択的に生体吸収可能または崩壊可能な薬剤送達システムおよび方法
US9457176B2 (en) 2010-10-06 2016-10-04 Taris Biomedical Llc Implantable drug delivery device with bladder retention feature
CA2813751C (en) 2010-10-06 2019-11-12 President And Fellows Of Harvard College Injectable, pore-forming hydrogels for materials-based cell therapies
US9962275B2 (en) 2010-10-07 2018-05-08 Randy Louis Werneth Temporary gastric device (TGD) and method of use
CA2816326C (en) 2010-11-03 2020-12-15 Ethicon, Llc Drug-eluting self-retaining sutures and methods relating thereto
CN103200882A (zh) 2010-11-09 2013-07-10 伊西康有限责任公司 紧急自固位缝合线和包装
US8951375B2 (en) 2010-11-11 2015-02-10 Spirit Aerosystems, Inc. Methods and systems for co-bonding or co-curing composite parts using a rigid/malleable SMP apparatus
US8974217B2 (en) 2010-11-11 2015-03-10 Spirit Aerosystems, Inc. Reconfigurable shape memory polymer tooling supports
US8734703B2 (en) 2010-11-11 2014-05-27 Spirit Aerosystems, Inc. Methods and systems for fabricating composite parts using a SMP apparatus as a rigid lay-up tool and bladder
US8815145B2 (en) 2010-11-11 2014-08-26 Spirit Aerosystems, Inc. Methods and systems for fabricating composite stiffeners with a rigid/malleable SMP apparatus
RU2620032C2 (ru) 2011-01-10 2017-05-22 Аллерган, Инк. Схема приема лидокаина для применения в продолжительном лечении боли в мочевом пузыре и раздражения при мочеиспускании
US20130041454A1 (en) * 2011-02-09 2013-02-14 Business Expectations Llc Sensor Actuated Stent
US9427493B2 (en) 2011-03-07 2016-08-30 The Regents Of The University Of Colorado Shape memory polymer intraocular lenses
RU2746457C2 (ru) 2011-03-23 2021-04-14 ЭТИКОН ЭлЭлСи Самоудерживающиеся нити с регулируемой петлей
WO2012129407A2 (en) 2011-03-24 2012-09-27 Powervision, Inc. Intraocular lens loading systems and methods of use
US20130172931A1 (en) 2011-06-06 2013-07-04 Jeffrey M. Gross Methods and devices for soft palate tissue elevation procedures
EP2734595A2 (en) 2011-07-19 2014-05-28 3M Innovative Properties Company Heat-debondable adhesive article and methods of making and using the same
RU2662818C2 (ru) 2011-07-22 2018-07-31 Иннокор Текнолоджис Б.В. Биоразлагаемые полукристаллические термопластичные мультиблочные сополимеры с разделенными фазами для контролируемого высвобождения биологически активных соединений
US8726483B2 (en) 2011-07-29 2014-05-20 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US9746380B2 (en) 2011-09-30 2017-08-29 Segan Industries, Inc. Advanced multi-element consumable-disposable products
US20130103157A1 (en) 2011-10-03 2013-04-25 Lampros Kourtis Polymeric adhesive for anchoring compliant materials to another surface
US10433949B2 (en) 2011-11-08 2019-10-08 Powervision, Inc. Accommodating intraocular lenses
AU2012340699A1 (en) 2011-11-21 2014-06-19 Biomimedica, Inc. Systems, devices, and methods for anchoring orthopaedic implants to bone
JP6181071B2 (ja) * 2011-12-08 2017-08-16 ノバルティス アーゲー 酵素的に分解可能なコーティングをその上に有するコンタクトレンズ
WO2013090311A1 (en) * 2011-12-13 2013-06-20 Avon Products, Inc. Methods and compositions to impart memory effects onto biosurfaces
CA2864352A1 (en) 2012-01-13 2013-07-18 Volcano Corporation Endoluminal filter with fixation
CN104379070B (zh) 2012-01-17 2017-08-08 内形有限公司 用于脉管或生物管腔的封堵装置
CA2870309C (en) 2012-04-16 2024-02-20 President And Fellows Of Harvard College Mesoporous silica compositions for modulating immune responses
AU2013256500B2 (en) 2012-04-30 2018-02-08 Allergan, Inc. Methods for treatment of pelvic pain and / or comorbid conditions
WO2014018231A1 (en) 2012-07-26 2014-01-30 3M Innovative Properties Company Heat de-bondable optical articles
KR20150038203A (ko) 2012-07-26 2015-04-08 쓰리엠 이노베이티브 프로퍼티즈 컴파니 열 접합해제성 접착제 물품
US9527947B2 (en) 2012-10-11 2016-12-27 The Hong Kong Polytechnic University Semi-crystalline shape memory polymer and production method thereof
CN104884509B (zh) * 2012-12-21 2018-01-23 亥姆霍兹中心盖斯特哈赫特材料及海岸研究中心有限公司 双向形状记忆聚合物,其生产方法和应用
US9066853B2 (en) * 2013-01-15 2015-06-30 Warsaw Orthopedic, Inc. Clonidine compounds in a biodegradable fiber
JP2016508536A (ja) 2013-02-08 2016-03-22 エンドゥーシェイプ インコーポレイテッド 医療機器のための放射線不透過性ポリマー
EP2948070B1 (en) 2013-03-13 2020-09-02 Endoshape, Inc. Continuous embolic coil and devices for delivery of the same
WO2014152455A1 (en) * 2013-03-14 2014-09-25 Syracuse University Amphiphilic graft copolymer for waterborne shape memory coatings
RU2015143995A (ru) 2013-03-14 2017-04-20 Халлюкс, Инк. Способ лечения инфекций, заболеваний или расстройств ногтевого ложа
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
WO2014152365A2 (en) 2013-03-14 2014-09-25 Volcano Corporation Filters with echogenic characteristics
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10161390B2 (en) 2013-03-14 2018-12-25 Lawrence Livermore National Security, Llc Bidirectional shape memory device
US9476412B2 (en) 2013-03-14 2016-10-25 Lawrence Livermore National Security, Llc Resistively heated shape memory polymer device
WO2014159337A1 (en) 2013-03-14 2014-10-02 Reva Medical, Inc. Reduced - profile slide and lock stent
US10590218B2 (en) 2013-03-15 2020-03-17 Endoshape, Inc. Polymer compositions with enhanced radiopacity
US9528004B2 (en) 2013-03-15 2016-12-27 Segan Industries, Inc. Compounds for reducing background color in color change compositions
JP6717740B2 (ja) 2013-03-15 2020-07-01 パワーヴィジョン・インコーポレーテッド 眼内レンズの収容および載置装置ならびにその使用方法
US9833596B2 (en) 2013-08-30 2017-12-05 Novasentis, Inc. Catheter having a steerable tip
WO2015048152A1 (en) * 2013-09-24 2015-04-02 Conde Frances Shape support system for garments
GB201318681D0 (en) * 2013-10-22 2013-12-04 Bp Exploration Operating Compositions and methods for recovering hydrocarbon fluids from a subterranean formation
US9646599B2 (en) * 2013-10-24 2017-05-09 Spirit Aerosystems, Inc. Remoldable contour sensor holder
US9623813B2 (en) * 2013-11-14 2017-04-18 GM Global Technology Operations LLC Fit and finish methods
KR20160097251A (ko) 2013-12-16 2016-08-17 쓰리엠 이노베이티브 프로퍼티즈 컴파니 중합체 체결구를 분배하기 위한 시스템 및 방법
US9259514B2 (en) * 2013-12-18 2016-02-16 Ethicon, Inc. Absorbable polymeric blend compositions based on copolymers prepared from mono- and di-functional polymerization initiators, processing methods, and medical devices therefrom
EP3197368B1 (en) 2014-09-24 2018-11-28 Koninklijke Philips N.V. Endoluminal filter having enhanced echogenic properties
CN107530156A (zh) 2014-12-11 2018-01-02 皇家飞利浦有限公司 腔内过滤器设计变量
US20160175084A1 (en) 2014-12-19 2016-06-23 Volcano Corporation Biodegradable filter and support frame
KR102465303B1 (ko) * 2014-12-22 2022-11-10 쓰리엠 이노베이티브 프로퍼티즈 캄파니 폴리락트산 중합체, 폴리비닐 아세테이트 중합체 및 가소제를 포함하는 조성물 및 필름
US11786457B2 (en) 2015-01-30 2023-10-17 President And Fellows Of Harvard College Peritumoral and intratumoral materials for cancer therapy
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
EP3061777B1 (en) 2015-02-24 2021-11-24 Albert-Ludwigs-Universität Freiburg Phase-segregated block copolymers with tunable properties
CN107708756A (zh) 2015-04-10 2018-02-16 哈佛学院院长等 免疫细胞捕获装置及其制备和使用方法
US9700443B2 (en) 2015-06-12 2017-07-11 Abbott Cardiovascular Systems Inc. Methods for attaching a radiopaque marker to a scaffold
CN105037702B (zh) * 2015-07-23 2017-01-04 浙江大学 基于酯交换的可塑性形状记忆聚合物的应用方法
US11077228B2 (en) 2015-08-10 2021-08-03 Hyalex Orthopaedics, Inc. Interpenetrating polymer networks
WO2017040681A1 (en) 2015-09-01 2017-03-09 Mivi Neuroscience, Inc. Thrombectomy devices and treatment of acute ischemic stroke with thrombus engagement
AU2016349532B2 (en) 2015-11-06 2021-08-26 Alcon Inc. Accommodating intraocular lenses and methods of manufacturing
EP3411475A4 (en) 2016-02-06 2019-09-11 President and Fellows of Harvard College REGENERATION OF THE HEMATOPOIETIC NICHE TO RECONSTITUTE IMMUNITY
EP3458505B1 (en) 2016-05-20 2021-04-28 3M Innovative Properties Company Oriented polylactic acid polymer based film
WO2017222824A1 (en) 2016-06-21 2017-12-28 3M Innovative Properties Company Graphic articles comprising semicrystalline polylactic acid based film
CN115305229A (zh) 2016-07-13 2022-11-08 哈佛学院院长等 抗原呈递细胞模拟支架及其制备和使用方法
US11707611B2 (en) * 2016-11-08 2023-07-25 W. L. Gore & Associates, Inc. Implantable apparatus for retention of biological moieties
RU2631890C1 (ru) * 2016-12-19 2017-09-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Полимерный композит с эффектом памяти формы для 3D-печати медицинских изделий
US11857387B2 (en) * 2018-01-29 2024-01-02 Wafa Abdalla Sabeal Mohamed Al Bloushi Dental dam and method of use
US20210128292A1 (en) * 2018-05-23 2021-05-06 Universita' Degli Studi Di Padova A fenestrated endoprosthesis for the correction of aortic aneurysms
JP2021528127A (ja) * 2018-06-11 2021-10-21 ウニベルシダージ デ コインブラUniversidade De Coimbra 生物医学的用途のための光重合生分解性コポリマー配合物
EP3594257A1 (en) 2018-07-13 2020-01-15 Albert-Ludwigs-Universität Freiburg Use of phase segregated block copolymers with tiunable properties for the coating or surfces and coated substrates
US10869950B2 (en) 2018-07-17 2020-12-22 Hyalex Orthopaedics, Inc. Ionic polymer compositions
US20210017329A1 (en) * 2019-07-19 2021-01-21 Evonik Operations Gmbh Multi-block shape memory bioresorbable polymers
JP7393750B2 (ja) * 2019-08-02 2023-12-07 国立研究開発法人物質・材料研究機構 熱可塑性形状記憶樹脂シート及び熱可塑性形状記憶樹脂シートを含む物品
BR112022005512A2 (pt) 2019-10-04 2022-06-14 Alcon Inc Lentes intraoculares ajustáveis e métodos de ajuste pós-operatório das lentes intraoculares
US11951226B2 (en) 2019-11-25 2024-04-09 3M Innovative Properties Company Ethylene oxide sterilization sensor including acid-functional sorbent and method of use
WO2021200532A1 (ja) * 2020-04-01 2021-10-07 国立研究開発法人物質・材料研究機構 部材、部材の製造方法、パーマネント形状変更済み部材の製造方法、パーマネント形状変更済み部材、細胞培養基材、結紮デバイス、及び、積層体
CN113754856A (zh) * 2021-09-18 2021-12-07 天津中杰超润医药科技有限公司 自组装胶束、弥散增强耐磨耐疲劳仿生半月板及制备方法
WO2023144826A2 (en) 2022-01-31 2023-08-03 Polygene Ltd. Biodegradable polymer-oil blends and uses thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003130A1 (fr) * 1995-07-10 1997-01-30 Daicel Chemical Industries, Ltd. Composition a base de polylactone reticulable ou durcissable, moulage reticule ou durci obtenu a partir de cette composition et son procede de fabrication

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4816094A (en) * 1984-05-01 1989-03-28 Kimberly-Clark Corporation Method of producing a heat shrinkable elastomer and articles utilizing the elastomer
US4575373A (en) * 1984-11-02 1986-03-11 Johnson Don R Laser adjustable intraocular lens and method of altering lens power
US5506300A (en) * 1985-01-04 1996-04-09 Thoratec Laboratories Corporation Compositions that soften at predetermined temperatures and the method of making same
US4596728A (en) * 1985-02-01 1986-06-24 The Johns Hopkins University Low temperature heat shrinkable polymer material
FR2601285B1 (fr) * 1986-07-10 1988-11-04 Pirelli Treficable Manchon thermoretractable comportant des moyens pour controler son chauffage uniforme, et procede de fabrication de ce manchon.
JP2561853B2 (ja) * 1988-01-28 1996-12-11 株式会社ジェイ・エム・エス 形状記憶性を有する成形体及びその使用方法
JPH0739506B2 (ja) * 1988-09-30 1995-05-01 三菱重工業株式会社 形状記憶ポリマー発泡体
JP2502132B2 (ja) * 1988-09-30 1996-05-29 三菱重工業株式会社 形状記憶ポリウレタンエラストマ―成形体
JPH066342B2 (ja) * 1988-10-14 1994-01-26 三菱重工業株式会社 形状記憶性フィルム及びその使用法
JPH0723572B2 (ja) * 1988-10-17 1995-03-15 三菱重工業株式会社 形状記憶性ポリマーによる織布
US5189110A (en) * 1988-12-23 1993-02-23 Asahi Kasei Kogyo Kabushiki Kaisha Shape memory polymer resin, composition and the shape memorizing molded product thereof
US5108755A (en) * 1989-04-27 1992-04-28 Sri International Biodegradable composites for internal medical use
ES2060075T3 (es) * 1990-02-23 1994-11-16 Minnesota Mining & Mfg Composicion semi-termoplastica para moldeo que tiene memoria de forma "a la medida", termicamente estable.
US5665822A (en) * 1991-10-07 1997-09-09 Landec Corporation Thermoplastic Elastomers
DE4226465C2 (de) * 1991-08-10 2003-12-04 Gunze Kk Kieferknochen-reproduzierendes Material
US5418261A (en) * 1993-01-25 1995-05-23 Imperial Chemical Industries Plc Polyurethane foams
WO1995034331A1 (en) * 1994-06-10 1995-12-21 Ao-Forschungsinstitut Davos Self-expanding, adaptable cavity plug for use in implantation of endo-joint prosthesis
ATE196486T1 (de) * 1994-08-10 2000-10-15 Peter Neuenschwander Biokompatibles blockcopolymer
US5765682A (en) * 1994-10-13 1998-06-16 Menlo Care, Inc. Restrictive package for expandable or shape memory medical devices and method of preventing premature change of same
US5800516A (en) * 1996-08-08 1998-09-01 Cordis Corporation Deployable and retrievable shape memory stent/tube and method
JPH10111660A (ja) * 1996-10-01 1998-04-28 Minnesota Mining & Mfg Co <3M> 再帰性反射シートおよびその製造方法
US5776162A (en) * 1997-01-03 1998-07-07 Nitinol Medical Technologies, Inc. Vessel implantable shape memory appliance with superelastic hinged joint

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997003130A1 (fr) * 1995-07-10 1997-01-30 Daicel Chemical Industries, Ltd. Composition a base de polylactone reticulable ou durcissable, moulage reticule ou durci obtenu a partir de cette composition et son procede de fabrication

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013506517A (ja) * 2009-10-06 2013-02-28 アルテリアル・ルモンドラン・テクノロジー・エス・アー 半径方向荷重下で均一に分布した応力を有する生体吸収性血管インプラント
US9566177B2 (en) 2009-10-06 2017-02-14 Artertial Remodeling Technologies, S.A. Bioresorbable vascular implant having homogenously distributed stresses under a radial load
WO2015045940A1 (ja) * 2013-09-30 2015-04-02 日立造船株式会社 形状記憶性樹脂組成物
JP2018515476A (ja) * 2015-05-01 2018-06-14 マサチューセッツ インスティテュート オブ テクノロジー 誘発性形状記憶誘導デバイス
US10953208B2 (en) 2015-05-01 2021-03-23 Massachusetts Institute Of Technology Triggerable shape memory induction devices

Also Published As

Publication number Publication date
HUP0100466A2 (hu) 2001-06-28
KR100382568B1 (ko) 2003-05-09
ATE266434T1 (de) 2004-05-15
RU2215542C2 (ru) 2003-11-10
AU751861B2 (en) 2002-08-29
DE69917224T2 (de) 2004-09-09
IL137299A0 (en) 2001-07-24
EP1056487A1 (en) 2000-12-06
HU222543B1 (hu) 2003-08-28
WO1999042147A1 (en) 1999-08-26
US6160084A (en) 2000-12-12
HUP0100466A3 (en) 2002-03-28
CA2316190C (en) 2005-09-13
IL137299A (en) 2007-06-03
TR200002450T2 (tr) 2001-01-22
JP2002503524A (ja) 2002-02-05
KR20010034275A (ko) 2001-04-25
DE69917224D1 (de) 2004-06-17
ES2221363T3 (es) 2004-12-16
AU2784599A (en) 1999-09-06
BR9907968A (pt) 2000-10-17
CA2316190A1 (en) 1999-08-26
BR9907968B1 (pt) 2009-12-01
JP2005325336A (ja) 2005-11-24
EP1056487B1 (en) 2004-05-12
CZ20003072A3 (en) 2001-06-13
CZ303404B6 (cs) 2012-08-29
JP4034036B2 (ja) 2008-01-16

Similar Documents

Publication Publication Date Title
JP4034036B2 (ja) 生分解性形状記憶ポリマー
JP3732404B2 (ja) 形状記憶ポリマー組成物、形状記憶製品を形成する方法、および形状を記憶する組成物を形成する方法
Kirillova et al. Shape-changing polymers for biomedical applications
CA2410637C (en) Shape memory polymers seeded with dissociated cells for tissue engineering
US8834522B2 (en) Biodegradable shape memory polymeric sutures
AU2003204827B2 (en) Shape memory polymers
PL193700B1 (pl) Ulegająca degradacji kompozycja polimerowa z pamięcią kształtu oraz zastosowanie ulegającej degradacji kompozycji polimerowej z pamięcią kształtu
du Toit et al. Customized shape memory biopolymers
CZ20003071A3 (cs) Polymery s tvarovou pamětí

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110926

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120228