RU2631890C1 - Полимерный композит с эффектом памяти формы для 3D-печати медицинских изделий - Google Patents

Полимерный композит с эффектом памяти формы для 3D-печати медицинских изделий Download PDF

Info

Publication number
RU2631890C1
RU2631890C1 RU2016149740A RU2016149740A RU2631890C1 RU 2631890 C1 RU2631890 C1 RU 2631890C1 RU 2016149740 A RU2016149740 A RU 2016149740A RU 2016149740 A RU2016149740 A RU 2016149740A RU 2631890 C1 RU2631890 C1 RU 2631890C1
Authority
RU
Russia
Prior art keywords
shape memory
phase
polymer
polymer composite
memory effect
Prior art date
Application number
RU2016149740A
Other languages
English (en)
Inventor
Фёдор Святославович Сенатов
Кирилл Вячеславович Няза
Виктор Вячеславович Медведев
Виктор Викторович Чердынцев
Сергей Дмитриевич Калошкин
Юрий Захарович Эстрин
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" filed Critical Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС"
Priority to RU2016149740A priority Critical patent/RU2631890C1/ru
Application granted granted Critical
Publication of RU2631890C1 publication Critical patent/RU2631890C1/ru
Priority to PCT/RU2017/000929 priority patent/WO2018117907A1/en
Priority to EA201900311A priority patent/EA036376B1/ru
Priority to DE112017006358.2T priority patent/DE112017006358T5/de
Priority to CN201780078829.5A priority patent/CN110087702A/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/46Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/16Materials with shape-memory or superelastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/321Phosphates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к композиционным материалам медицинского назначения и может быть использовано при изготовлении костных имплантатов. Полимерный композит с памятью формы состоит из «жесткой» и «мягкой» фаз. При этом «жесткая» фаза представлена кристаллической фазой полимерной матрицы, химическими и физическими сшивками и биоактивным компонентом в виде гидроксиапатита с размером частиц от 100 до 1000 нм, а «мягкая» фаза представлена аморфной фазой полимерной матрицы и пластификатором в виде полиэтиленгликоля при следующем соотношении компонентов, мас.%: полилактид от 80 до 47, гидроксиапатит от 15 до 35, полиэтиленгликоль от 4,6 до 15, химический агент для сшивки от 0,4 до 3,0. Изобретение обеспечивает возможность использования метода послойной 3D-печати для изготовления изделий медицинского назначения. Полимерный композит по изобретению отличается сшитой структурой для сохранения механических свойств, температурой активации эффекта памяти формы от 35 до 45°С, наличием возвращающих напряжений 3 МПа при восстановлении формы на уровне 98% при активации эффекта памяти формы, высокими механическими свойствами на растяжение (модуль Юнга 4 ГПа, предел прочности 43 МПа), высокими механическими свойствами на сжатие (модуль Юнга 11 ГПа, предел прочности 96 МПа). 1 з.п. ф-лы, 4 ил., 1 табл., 2 пр.

Description

Полимеры с памятью формы имеют ряд преимуществ перед металлическими сплавами с памятью формы благодаря гораздо большим восстанавливаемым деформациям. Начальная форма изделия из полимера с памятью формы может быть преобразована во временную форму путем деформации при фиксированной температуре ниже температуры перехода (активации эффекта памяти формы), которой может являться температура стеклования Tg или температура плавления Тm, когда подвижность сегментов полимерной цепи ограничена.
Для наличия эффекта памяти формы в полимере должны существовать «жесткая» фиксированная фаза и «мягкая» деформируемая фаза. Движущей силой для восстановления формы является изменение подвижности полимерной цепи и трансформации из более упорядоченной временной конфигурации после деформации в более термодинамически выгодную конфигурацию с более высокой энтропией и более низкой внутренней энергией. Такое преобразование может быть активировано с помощью внешней стимуляции под воздействием тепла, электрического или магнитного поля, света, влажности и т.д. Наиболее распространенной и удобной температурой активации эффекта памяти формы с точки зрения практического применения является температура стеклования Tg, которая характеризуется увеличением подвижности сегментов цепи, в результате чего осуществляется восстановление формы.
Эффект памяти формы в медицинских изделиях может иметь потенциальное применение в самоустанавливающихся и самофиксирующихся костных имплантатах.
Полилактид (ПЛА) является термопластичным полимером, который представляет особый интерес с точки зрения применения в костных имплантатах из-за его высокого модуля упругости и относительно низкой температуры стеклования Tg и возможности использования его в 3D-печати. Физические зацепления длинных цепей ПЛА могут выступать в качестве «жесткой» фазы, в то время как полимерные цепи между зацеплениями могут быть растянуты в процессе деформации во временную форму. Свойства ПЛА, такие как возвращающее напряжение и восстанавливаемая деформации, могут быть улучшены за счет создания поперечных связей, добавления дисперсных высокомодульных неорганических частиц, которые могут выступать в качестве дополнительной «жесткой» фазы. С этой точки зрения, кальцийфосфатные частицы представляют особый интерес для реконструкции костной ткани.
Изобретение относится к композиционному материалу медицинского назначения на основе термопластичного полимера с добавлением биоактивного керамического компонента, обладающего эффектом памяти формы, который можно использовать для формирования изделий медицинского назначения в ходе 3D-печати методом послойного наплавления нитей (Fused Filament Fabrication, FFF).
Известно изобретение (US 2013/0030122 A1 «Elastomers crosslinked by polylactic acid»), представляющее собой метод создания полимерных композиций на основе сшитого L-полилактида или D-полилактида.
Недостатком упомянутого изобретения является то, что температура стеклования Tg=-26°С и температура плавления Тm=224°С полимерного композита, которые могли бы являться температурами активации эффекта памяти формы, не близки к температуре человеческого тела.
Известно изобретение (WO 2015110981 A1 «Use of polylactide and method of manufacturing a heat sealed paper or board container or package»), представляющее собой метод создания полимерных композитов на основе полилактида и полибутиленсукцината (PBS) с добавлением полифункционального сшивающего агента, такого как триалкилсилил изоцианурат (TAIC).
Недостатком упомянутого изобретения является то, что данный полимерный композит не проявляет эффекта памяти формы.
Известно изобретение (US 20150123314 A1 «Process for the manufacture of shape memory polymer material), представляющее собой метод получения полимерного материала с эффектом памяти формы. Материал производится из биорезорбируемого полимера (полилактид, полигликолид, поликапролактон, полидиоксанон, полиуретан, полиакрилат, полиметилметакрилат, полибутилметакрилат или полиэфирэфиракетон), биокерамики (фосфат кальция, трикальцийфосфат, гидроксиапатит, карбонат кальция, сульфат кальция, биостекло или гликолид), а также полиэтиленгликоля.
Недостатком упомянутого изобретения является неполное восстановление формы (90% в оптимальном режиме).
Известно изобретение (WO 2013050775 A1 «Medical devices containing shape memory polymer compositions), представляющее собой медицинское устройство из полимерного материала с эффектом памяти формы. Полимерный материал производится из биорезорбируемого полимера (полилактид, полигликолид, поликапролактон, полидиоксанон, полиуретан, полиакрилат, полиметилметакрилат, полибутилметакрилат или полиэфирэфиракетон), а также пластификтора (полиэтиленгликоля).
Недостатком упомянутого изобретения является отсутствие сшитой структуры и фиксированной жесткой фазы, которая обеспечивала бы возвращающие напряжения, большие, чем в чистом ненаполненном полилактиде.
Известны изобретения (US 2011/0144751 A1 «Multimodal shape memory polymers, US 9308293 B2 «Multimodal shape memory polymers), представляющие собой полимерный композит на основе двух полимеров с разной молекулярной массой и кальцийфосфатной керамикой.
Недостатком упомянутых изобретений является то, что температура стеклования Tg полимерного композита, которая могла бы являться температурой активации эффекта памяти формы, не близка к температуре человеческого тела. Также в композите отсутствует сшитая структура, обеспечивающая механическую жесткость.
Известно изобретение (US 2014/0236226 A1 «Tailored polymers», US 2015/0073476 A1), представляющее собой полимерный композит на основе полилактида и водорастворимого пластификатора.
Недостатком упомянутого изобретения является неполное (90% в оптимальном режиме) и медленное (в течение 24 ч) восстановление формы, а также отсутствие биоактивного компонента (кальцийфосфатной керамики).
Известно изобретение (US 2015/0073476 A1 «Shape memory polymer compositions), представляющее собой полимерный композит на основе полилактида.
Недостатком упомянутого изобретения является неполное (до 90%) и медленное (в течение >24 ч) восстановление формы.
У всех вышеперечисленных изобретений также отсутствует возможность использования их для послойной 3D-печати медицинских изделий.
Прототипом является изобретение (Патент RU №2215542 «Биоразлагающиеся полимеры, способные к восстановлению формы»), представляющее собой биоразлагаемые и биосовместимые полимерные композиции с памятью формы для применения в изделиях медицинского назначения и в качестве носителей терапевтических или диагностических агентов.
Недостатком упомянутого изобретения является отсутствие биоактивного компонента - кальцийфосфатной керамики, отсутствием возможности обеспечения послойного наплавления при формировании медицинских изделий методом 3D-печати. Еще одним недостатком являются невысокие механические свойства (модуль упругости менее 100 МПа, предел прочности менее 20 МПа).
Технический результат заявляемого изобретения заключается в создании полимерного композита, который можно использовать для формирования методом послойной 3D-печати изделий медицинского назначения с эффектом памяти формы, отличающегося:
- возможностью использования для послойной 3D-печати медицинских изделий,
- сшитой структурой для сохранения механических свойств,
- температурой активации эффекта памяти формы от 35 до 45°С,
- наличием биоактивного компонента с размером частиц от 100 до 1000 нм,
- наличием возвращающих напряжений 3 МПа при восстановлении формы на уровне 98% при активации эффекта памяти формы,
- высокими механическими свойствами на растяжение: модуль Юнга 4 ГПа, предел прочности 43 МПа,
- высокими механическими свойствами на сжатие: модуль Юнга 11 ГПа, предел прочности 96 МПа.
Технический результат достигается следующим образом: формируется композиционной материал на основе термопластичного полимера с добавлением биоактивного керамического компонента, обладающего эффектом памяти формы, в котором «жесткая» фаза представлена кристаллической фазой полимерной матрицы, химическими и физическими сшивками и биоактивным компонентом, а «мягкая фаза» представлена аморфной фазой полимерной матрицы и пластификатором.
В предлагаемом в данной заявке изобретении композиционный материал имеет в качестве полимерной матрицы биорезорбируемый полилактид, а в качестве биоактивного наполнителя - гидроксиапатит со средним размером частиц от 100 до 1000 нм. Степень наполнения гидроксиапатитом - от 15 до 35 мас.%. Для снижения температуры активации эффекта памяти формы композиционный материал содержит пластификатор - полиэтиленгликоль - от 5 до 15 мас.%. Для стабилизации механических свойств композиционный материал имеет сшитую структуру. Сшитая структура полимера и наличие жесткой фиксированной фазы - наночастиц гидроксиапатита - приводят к развитию возвращающих напряжений величиной в 3 МПа при 98-процентном восстановлении формы. При этом, за счет введения пластификатора - полиэтиленгликоля - снижается температура стеклования материала, играющая роль температуры активации эффекта памяти формы. Активация эффекта памяти формы происходит в диапазоне температур от 35 до 45°С. Модуль Юнга на растяжение и на сжатие полимерного композита составляет 4 ГПа и 11 ГПа, соответственно. Расплав полимерного композита имеет повышенную вязкость при температуре выше температуры плавления (170°С) для обеспечения повышения точности послойного наплавления при изготовлении медицинских изделий методом 3D-печати.
Содержание полилактида в композите полилактид от 80 до 47 мас.%, нужно для наличия одновременно «мягкой» и «жесткой» фазы с оптимальным содержанием дополнительных вводимых компонентов. При добавлении пластификатора (полиэтиленгликоль, ПЭГ) более 15 мас.% прочность и модуль упругости композиционного материала снижаются ниже 40 МПа и 4 ГПа, соответственно. При добавлении же менее 4,6 мас.% не достигается эффект пластификации, температура активации эффекта памяти формы становится выше 45-50°С. При добавлении частиц гидроксиапатита (ГАП) менее 15 мас.% не обеспечивается биоактивность материала, а также содержание «жесткой» фазы становится слишком малым, чтобы обеспечить развитие возвращающих напряжений более 1,5 МПа и восстановлении формы более 95%. Слишком же высокое содержание ГАП (более 35 мас.%) приводит к повышенной хрупкости композиционного материала. Введение химического агента для сшивки в количестве менее 0,4 мас.% приводит к незначительной сшивке структуры и не создает «жесткую» фазу для реализации эффекта памяти формы при нагреве выше температуры активации. Введение же более 3 мас.% химического агента для сшивки приводит к формированию излишне жесткой структуры с температурой стеклования выше 45°С. Такой композит с излишне сшитой структурой не может быть использован для послойной 3D-печати.
Возможность промышленной применимости предлагаемого полимерного композита и его использования в медицине подтверждается следующим примером реализации.
Изобретение поясняется чертежом, где на фиг. 1 показан пример кривой дифференциальной сканирующей калориметрии (ДСК) для полимерного композита с содержанием полиэтиленгликоля (ПЭГ) 8 мас.% Первое фазовое превращение происходит при температуре стеклования материала - 40.9°С, т.е. температура активации эффекта памяти формы снижена до температуры, близкой к температуре человеческого тела. На фиг. 2 показан пример роста возвращающих напряжений выше температуры активации эффекта памяти формы. Производилась деформация с фиксацией временной формы образца, полученного методом 3D-печати из полимерного композита, при комнатной температуре, с последующим нагревом выше температуры активации эффекта памяти формы и восстановления исходной формы. Максимальные возвращающие напряжения составляют 3 МПа. На фиг. 3 показан пример диаграммы деформации полимерного композита при сжатии с содержанием гидроксиапатита 30 мас.%. Предел прочности составил более 80 МПа, а модуль Юнга более 10,8 ГПа. На фиг. 4 показан пример диаграммы деформации полимерного композита при растяжении с содержанием гидроксиапатита 30 мас.%. Предел прочности составил более 60 МПа, а модуль Юнга более 4,0 ГПа.
Пример 1
В качестве исходных материалов использовался полилактид (ПЛА) марки Ingeo 4032D (производства Natureworks LLC, USA), порошок гидроксиапатита (ГАП) ГАП 85-Д (производства НПО «Полистом») со средним размером частиц 1000 нм, полиэтиленгликоль (ПЭГ) ООО «Изомер» с молекулярной массой 4000 г/моль. Сформирован полимерный композит с содержанием ПЛА - 47 мас.%, ГАП - 35 мас.%, ПЭГ - 15 мас.%. Структура ПЛА химически сшита с помощью триаллилизоцианурата ТАИК Evonik (3 мас.%). Температура стеклования - 35°С, возвращающие напряжения - 2.5 МПа, восстановление формы 98%, предел прочности напечатанных на 3D-принтере образцов из полимерного композита на сжатие - 70 МПа, модуль Юнга при сжатии - 9 ГПа.
Пример 2
В качестве исходных материалов использовался полилактид (ПЛА) марки Ingeo 4032D (производства Natureworks LLC, USA), порошок гидроксиапатита (ГАП) ГАП 8 5-УД (производства НПО «Полистом») со средним размером частиц 100 нм, полиэтиленгликоль (ПЭГ) ООО «Изомер» с молекулярной массой 4000 г/моль. Сформирован полимерный композит с содержанием ПЛА - 80 мас.%, ГАП - 15 мас.%, ПЭГ - 4,6 мас.% Структура ПЛА химически сшита с помощью декумилпероксида PERKADOX BC-FF (0,4 мас.%). Температура стеклования - 45°С, возвращающие напряжения - 1.7 МПа, восстановление формы 96%, предел прочности напечатанных на 3D-принтере образцов из полимерного композита на сжатие - 80 МПа, модуль Юнга при сжатии - 7 ГПа.
Figure 00000001

Claims (3)

1. Полимерный композит с памятью формы, состоящий из «жесткой» и «мягкой» фаз на основе биоразлагаемых и биосовместимых полимерных композиций, отличающийся тем, что в полимерном композите «жесткая» фаза представлена кристаллической фазой полимерной матрицы, химическими и физическими сшивками и биоактивным компонентом в виде гидроксиапатита с размером частиц от 100 до 1000 нм, а «мягкая» фаза представлена аморфной фазой полимерной матрицы и пластификатором в виде полиэтиленгликоля при следующем соотношении компонентов, мас.%:
полилактид от 80 до 47 гидроксиапатит от 15 до 35 полиэтиленгликоль от 4,6 до 15 химический агент для сшивки от 0,4 до 3,0
2. Полимерный композит по п. 1, отличающийся тем, что химическим агентом для сшивки является триаллилизоцианурат или дикумилпероксид.
RU2016149740A 2016-12-19 2016-12-19 Полимерный композит с эффектом памяти формы для 3D-печати медицинских изделий RU2631890C1 (ru)

Priority Applications (5)

Application Number Priority Date Filing Date Title
RU2016149740A RU2631890C1 (ru) 2016-12-19 2016-12-19 Полимерный композит с эффектом памяти формы для 3D-печати медицинских изделий
PCT/RU2017/000929 WO2018117907A1 (en) 2016-12-19 2017-12-11 Shape memory polymer composite for 3d printing of medical items
EA201900311A EA036376B1 (ru) 2016-12-19 2017-12-11 Полимерный композит с эффектом памяти формы для 3d-печати медицинских изделий
DE112017006358.2T DE112017006358T5 (de) 2016-12-19 2017-12-11 Formgedächtnis-Polymerverbundmaterial für den 3D-Druck von medizinischen Gegenständen
CN201780078829.5A CN110087702A (zh) 2016-12-19 2017-12-11 用于医疗用品3d打印的形状记忆聚合物复合材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016149740A RU2631890C1 (ru) 2016-12-19 2016-12-19 Полимерный композит с эффектом памяти формы для 3D-печати медицинских изделий

Publications (1)

Publication Number Publication Date
RU2631890C1 true RU2631890C1 (ru) 2017-09-28

Family

ID=60040580

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016149740A RU2631890C1 (ru) 2016-12-19 2016-12-19 Полимерный композит с эффектом памяти формы для 3D-печати медицинских изделий

Country Status (5)

Country Link
CN (1) CN110087702A (ru)
DE (1) DE112017006358T5 (ru)
EA (1) EA036376B1 (ru)
RU (1) RU2631890C1 (ru)
WO (1) WO2018117907A1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679127C1 (ru) * 2018-06-14 2019-02-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Композит для 3d-печати медицинских изделий
RU2679632C1 (ru) * 2018-06-14 2019-02-12 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Композит для 3d-печати медицинских изделий
CN113368311A (zh) * 2021-04-14 2021-09-10 成都理工大学 具有形状记忆的羟基磷灰石/聚氨酯多孔骨修复材料
CN113502038A (zh) * 2021-07-21 2021-10-15 珠海市三绿实业有限公司 具有木质感的记忆3d打印耗材线条

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3822006A1 (en) 2019-11-14 2021-05-19 Rolls-Royce Corporation Fused filament fabrication of shape memory alloys
KR102258272B1 (ko) 2020-05-11 2021-05-31 주식회사 엠오피(M.O.P Co., Ltd.) 자가치유 광경화 레진을 활용한 광경화 3d 프린팅 방법
CN115230143A (zh) * 2022-06-24 2022-10-25 南昌大学第二附属医院 一种可降解的高陶瓷颗粒浓度的柔性3d打印生物支架方法
CN115558248B (zh) * 2022-11-01 2023-07-21 桂林电子科技大学 一种光/热驱动形状记忆和自修复功能材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2215542C2 (ru) * 1998-02-23 2003-11-10 Массачусетс Инститьют Оф Текнолоджи Биоразлагающиеся полимеры, способные к восстановлению формы
US20150123314A1 (en) * 2011-10-05 2015-05-07 Smith & Nephew Plc Process for the manufacture of shape memory polymer material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2215542C2 (ru) * 1998-02-23 2003-11-10 Массачусетс Инститьют Оф Текнолоджи Биоразлагающиеся полимеры, способные к восстановлению формы
US20150123314A1 (en) * 2011-10-05 2015-05-07 Smith & Nephew Plc Process for the manufacture of shape memory polymer material

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAIFENG ZHANG et al. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model, Science and Technology of Advanced materials, 2016, vol.17, N1, pp.136-148. *
PEI YAN NI et al. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering, International Journal of Nanomedicine, 2011, vol.6, pp.3065-3075 *
PEI YAN NI et al. Preparation of poly(ethylene glycol)/polylactide hybrid fibrous scaffolds for bone tissue engineering, International Journal of Nanomedicine, 2011, vol.6, pp.3065-3075. HAIFENG ZHANG et al. Three dimensional printed macroporous polylactic acid/hydroxyapatite composite scaffolds for promoting bone formation in a critical-size rat calvarial defect model, Science and Technology of Advanced materials, 2016, vol.17, N1, pp.136-148. *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2679127C1 (ru) * 2018-06-14 2019-02-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Композит для 3d-печати медицинских изделий
RU2679632C1 (ru) * 2018-06-14 2019-02-12 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" Композит для 3d-печати медицинских изделий
CN113368311A (zh) * 2021-04-14 2021-09-10 成都理工大学 具有形状记忆的羟基磷灰石/聚氨酯多孔骨修复材料
CN113502038A (zh) * 2021-07-21 2021-10-15 珠海市三绿实业有限公司 具有木质感的记忆3d打印耗材线条

Also Published As

Publication number Publication date
WO2018117907A1 (en) 2018-06-28
EA036376B1 (ru) 2020-11-02
CN110087702A (zh) 2019-08-02
EA201900311A1 (ru) 2019-11-29
DE112017006358T5 (de) 2019-08-29

Similar Documents

Publication Publication Date Title
RU2631890C1 (ru) Полимерный композит с эффектом памяти формы для 3D-печати медицинских изделий
Senatov et al. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds
Lendlein et al. Shape‐memory polymers as stimuli‐sensitive implant materials
CN101594831B (zh) 纤维增强的复合材料
Wong et al. Biomedical applications of shape-memory polymers: how practically useful are they?
AU2018268713B2 (en) Biopolymer compositions, scaffolds and devices
Cui et al. Adjusting shape-memory properties of amorphous polyether urethanes and radio-opaque composites thereof by variation of physical parameters during programming
CN88100127A (zh) 新型外科材料和装置
JP2005533148A5 (ru)
Xu et al. Thermal responsive shape memory polymers for biomedical applications
JP2005325336A (ja) 生分解性形状記憶ポリマー
US20210122916A1 (en) Biodegradable polymer blends for manufacturing medical devices
JP2587664B2 (ja) 生体内分解吸収性の外科用材料
Samadi et al. Comparative review of piezoelectric biomaterials approach for bone tissue engineering
Xu et al. Chemically crosslinked amphiphilic degradable shape memory polymer nanocomposites with readily tuned physical, mechanical, and biological properties
Khan et al. A brief overview of shape memory effect in thermoplastic polymers
Marques et al. Subcutaneous tissue reaction and cytotoxicity of polyvinylidene fluoride and polyvinylidene fluoride‐trifluoroethylene blends associated with natural polymers
Imran Khan et al. A brief overview of shape memory effect in thermoplastic polymers
WO2007110611A1 (en) Composite material
WO2013098481A1 (en) Composite containing polymer and additive as well as its use
Rizzarelli et al. Analytical methods in resorbable polymer development and degradation tracking
Adamus et al. In vitro degradation of β-Tricalcium phosphate reinforced poly (L-Lactic Acid)
El Fray et al. Preparation and bioactivity of novel multiblock thermoplastic elastomer/tricalcium phosphate composites
du Toit et al. Customized shape memory biopolymers
Das et al. Shape memory polymers as sutures