KR102258272B1 - 자가치유 광경화 레진을 활용한 광경화 3d 프린팅 방법 - Google Patents
자가치유 광경화 레진을 활용한 광경화 3d 프린팅 방법 Download PDFInfo
- Publication number
- KR102258272B1 KR102258272B1 KR1020200056214A KR20200056214A KR102258272B1 KR 102258272 B1 KR102258272 B1 KR 102258272B1 KR 1020200056214 A KR1020200056214 A KR 1020200056214A KR 20200056214 A KR20200056214 A KR 20200056214A KR 102258272 B1 KR102258272 B1 KR 102258272B1
- Authority
- KR
- South Korea
- Prior art keywords
- dimensional structure
- healing
- photo
- self
- curing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/165—Processes of additive manufacturing using a combination of solid and fluid materials, e.g. a powder selectively bound by a liquid binder, catalyst, inhibitor or energy absorber
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/35—Cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2105/00—Condition, form or state of moulded material or of the material to be shaped
- B29K2105/0005—Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
- B29K2105/0032—Pigments, colouring agents or opacifiyng agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
Abstract
본 발명은 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법에 관한 것으로, 본 발명의 일 측면에 따르면 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법은 자가치유 광경화 레진 및 안료를 포함하는 광경화 3D 프린팅 슬러리를 준비하는 단계, 상기 광경화 3D 프린팅 슬러리에 광을 조사하여 입체 구조물을 성형하는 단계, 성형된 입체 구조물을 후처리하는 단계, 및 상기 입체 구조물에서 상기 후처리로 인해 발생된 결함을 치유하는 단계를 포함한다.
Description
본 발명은 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법에 관한 것으로, 보다 상세하게는, 공정과정에서 발생되는 결함(Defect)을 최소화할 수 있는 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법에 관한 것이다.
3D 프린팅 기술은 3차원의 입체 구조물을 프린팅하는 기술로서, 원재료를 조각하는 방식으로 입체 구조물을 형성하는 절삭형 3D 프린팅과 재료를 층별로 적층하여 구조물을 형성하는 적층형 3D 프린팅 기술이 존재한다. 적층형 3D 프린팅 기술은 재료를 적층하는 방식이므로, 절삭형 3D 프린팅 대비 소재 사용 효율이 높으며, 정교한 구조물의 형성이 가능한 이점이 있어 차세대 공정 기술로 크게 주목받고 있다.
적층형 3D 프린팅 기술은 재료의 적층 방식에 따라 재료 분사(Material jetting), 재료 압출(Material Extrusion), 접착제 분사(Binder jetting), 고에너지 직접 조사(Directed Energy Deposition), 분말 적층 용융(Powder Bed Fusion), 시트 적층(Sheet Lamination), 광경화 방식(예를 들어, 스테레오 리소그래피(Stereolithography)) 등 다양한 방식이 존재한다.
특히, 광경화 방식의 경우는 광을 사용하여 광경화성 소재들을 경화시키는 방식으로 입체 구조물을 프린팅하는 기술로서, 정교한 구조물을 높은 해상도로 출력이 가능한 장점이 있다.
광경화 3D 프린팅 공정의 경우, 입체 구조물을 출력한 후 성형된 입체 구조물을 스테이지로부터 분리하거나, 입체 구조물의 표면에 남겨있는 잔여 광경화 소재들을 제거 또는 세척하거나, 입체 구조물의 형상을 지지하는 서포터(supporter)를 제거하거나, 입체 구조물의 표면을 매끄럽게 하는 연마 공정 등과 같은 후처리 공정이 수행된다.
그러나, 후처리 공정 과정에서 입체 구조물에 충격 등이 가해지므로, 입체 구조물 내부에 미세한 결함(defect)이 발생되는 문제가 존재한다.
특히, 광경화 3D 프린팅 공정으로 세라믹 재질의 입체 구조물을 출력하는 경우, 후처리 공정에서 발생된 결함은 소결(sintering)과정에서 더욱 성장하게 되며, 최종 입체 구조물의 기계적 강도에 나쁜 영향을 끼치게 된다.
도 1은 광경화 3D 프린팅으로 성형된 입체 구조물에 후처리 공정에서 발생된 결함의 일 예를 보여주는 사진이다.
도 1에 도시된 바와 같이, 입체 구조물 내의 결함들이 존재하는 경우, 외부 충격에 의해 결함들이 쉽게 전파되고, 성장되므로, 입체 구조물의 정밀도 및 강도 저하를 야기할 수 있다.
이에 따라, 상술된 문제점을 해결하기 위한 기술이 필요하게 되었다.
한편, 전술한 배경기술은 반드시 본 발명의 출원 전에 일반 공중에게 공개된 공지기술이라 할 수는 없다.
본 발명의 일 실시예는 정교하고, 우수한 품질을 갖는 입체 구조물을 출력할 수 있는 광경화 3D 프린팅 방법을 제공하는데 목적이 있다.
또한, 본 발명의 일 실시예는 금속 또는 세라믹 재질의 구조물을 우수한 품질로 출력할 수 있는 광경화 3D 프린팅 방법을 제공하는 데에 목적이 있다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 일 측면에 따르면 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법은 자가치유 광경화 레진 및 안료를 포함하는 광경화 3D 프린팅 슬러리를 준비하는 단계, 상기 광경화 3D 프린팅 슬러리에 광을 조사하여 입체 구조물을 성형하는 단계, 성형된 입체 구조물을 후처리하는 단계, 및 상기 입체 구조물에서 상기 후처리로 인해 발생된 결함을 치유하는 단계를 포함한다.
본 발명의 다른 일 측면에 따르면, 상기 자가치유 광경화 레진은 티올기(thiol-group) 및 이황화기(disulfide group)를 가지며, 광경화시 형상기억 특성을 갖는 화합물을 포함할 수 있다.
본 발명의 또 다른 일 측면에 따르면, 상기 입체 구조물에서 상기 후처리로 인해 발생된 결함을 치유하는 단계는, 경화된 상기 자가치유 광경화 레진의 형상이 복원되는 형상복원 환경에 상기 성형된 입체 구조물을 노출시키는 단계를 포함할 수 있다.
본 발명의 또 다른 일 측면에 따르면, 상기 형상복원 환경은 온도, 습도, pH, 빛, 전류, 자기장 중 적어도 어느 하나와 관련될 수 있다.
본 발명의 또 다른 일 측면에 따르면, 상기 입체 구조물에서 상기 후처리로 인해 발생된 결함을 치유하는 단계 이후에, 상기 결함이 치유된 상기 입체 구조물에서 상기 자가치유 광경화 레진이 경화되어 생성된 고분자를 제거하는 단계를 더 포함할 수 있다.
본 발명의 또 다른 일 측면에 따르면, 상기 안료는 금속 입자를 포함하고, 상기 결함이 치유된 상기 입체 구조물에서 상기 자가치유 광경화 레진이 경화되어 생성된 고분자를 제거하는 단계는, 상기 고분자가 완전하게 제거되는 탈지 온도 이상의 온도에 상기 입체 구조물을 노출시키는 단계를 포함할 수 있다.
본 발명의 또 다른 일 측면에 따르면, 상기 안료는 세라믹 입자를 포함하고, 상기 결함이 치유된 상기 입체 구조물에서 상기 자가치유 광경화 레진이 경화되어 생성된 고분자를 제거하는 단계는, 상기 고분자가 완전하게 제거되는 탈지 온도 이상의 온도에 상기 입체 구조물을 노출시키는 단계, 및 상기 고분자가 제거된 상기 입체 구조물을 소결하는 단계를 포함할 수 있다.
본 발명의 또 다른 일측면에 따르면, 상기 성형된 입체 구조물을 후처리하는 단계는, 상기 성형된 입체 구조물이 배치된 스테이지로부터 상기 성형된 입체 구조물을 분리하는 단계를 포함할 수 있다.
본 발명의 또 다른 일측면에 따르면, 상기 성형된 입체 구조물을 후처리하는 단계는, 상기 성형된 입체 구조물의 표면을 연마하는 단계, 및 상기 성형된 입체 구조물의 표면을 세척하는 단계를 포함할 수 있다.
본 발명의 또 다른 일측면에 따르면, 상기 광경화 3D 프린팅 슬러리는 상기 자가치유 광경화 레진을 10 내지 30 wt%의 함량비로 포함하며, 상기 안료를 70 내지 90 wt%의 함량비로 포함할 수 있다.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 본 발명의 일 실시예는 자가치유 광경화 레진을 사용하여 후처리 공정에서 발생된 결함을 용이하게 치유할 수 있는 광경화 3D 프린팅 방법을 제공할 수 있다.
또한, 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 후처리 공정 후 결함을 치유하는 공정을 수행함으로써, 우수한 품질 및 내구성의 구조물 출력이 가능한 광경화 3D 프린팅 방법을 제공할 수 있다.
또한, 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 결함 치유 공정을 탈지 및 소결 공정 전에 수행함으로써, 후처리 공정에서 발생된 결함의 성장을 최소화할 수 있고, 이를 통해, 순수 금속 또는 세라믹 재질의 구조물을 우수한 품질로 출력할 수 있는 광경화 3D 프린팅 방법을 제공 할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 광경화 3D 프린팅으로 성형된 입체 구조물에 후처리 공정에서 발생된 결함의 일 예를 보여주는 사진이다.
도 2는 본 발명의 일 실시예에 따른 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법의 흐름도이다.
도 3a 내지 3e는 본 발명의 일 실시예에 따른 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법의 각 단계들을 설명하기 위한 도면들이다.
도 2는 본 발명의 일 실시예에 따른 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법의 흐름도이다.
도 3a 내지 3e는 본 발명의 일 실시예에 따른 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법의 각 단계들을 설명하기 위한 도면들이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
이하 첨부된 도면을 참고하여 본 발명을 상세히 설명하기로 한다.
도 2는 본 발명의 일 실시예에 따른 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법의 흐름도이다.
도 3a 내지 3e는 본 발명의 일 실시예에 따른 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법의 각 단계들을 설명하기 위한 도면들이다.
도 2를 참조하면, 본 발명의 일 실시예에 다른 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법은 입체 구조물을 출력하기 위해, 자가치유 광경화 레진 및 안료를 포함하는 광경화 3D 프린팅 슬러리를 준비(S110)한다.
도 3a를 참조하면, 광경화 3D 프린팅 슬러리(110)는 자가치유 광경화 레진(112) 및 안료(111)를 포함한다.
자가치유 광경화 레진(112)은 광 에너지에 의해 경화되는 조성물로서, 바인더(binder) 및 광개시제를 포함한다. 바인더는 광중합 반응에 의해 고분자 매트릭스를 형성하는 유기물이며, 경화시 형상기억(shape memory)특성을 갖는다.
예를 들어, 바인더는 티올기(thiol group)(R-S-H) 및 이황화기(disulfide group)(R-S-S-R')를 포함한다. 광이 조사되는 경우, 바인더의 티올기는 인접하는 다른 바인더의 알켄기(alkene group)(H2-C = C-HR')와 서로 반응하여 알킬 설파이드(RSCC-H2R')를 형성하는 티올렌 가교반응을 일으키며, 이를 통해 광중합이 이루어질 수 있다.
광중합이 완료되어 경화된 고분자는 형상기억 특성을 가지며, 형상이 변형되더라도, 특정한 복원 조건에 노출되는 경우, 고분자 매트릭스의 형상이 최초 형상으로 복원될 수 있다.
상술한 티올기 및 이황화기를 포함하는 바인더는 6,000 내지 20,000 g/mol의 분자량을 갖는 비닐 말단의 폴리디메틸실록산(Vinyl-terminated polydimethylsiloxanes (V-PDMS)), [4-6% (메르캅토프로필) 메틸실록산]-디메틸실록산([4-6% (mercaptopropyl) methylsiloxane]-dimethylsiloxane), 요오도벤젠 디아세테이트 (Iodobenzene diacetate (IBDA)), 톨루엔(toluene), 트리부틸포스핀(tributylphosphine (TBP)), 1,6-헥산디올 디아크릴레이트(1,6-hexanediol diacrylate (HDDA)) 로부터 합성될 수 있다.
한편, 광개시제는 상술한 광중합 반응을 개시하는 조성물로서, 페닐비스(2,4,6-트리메틸벤조일)포스핀 옥사이드 (phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide), 벤조페논(benzophenones), 알파-하이드록시 케톤(α-hydroxy ketones; α-HK), 벤질 디알킬케탈(benzil dialkylketal; BDK), 알파-아미노케톤(α-amino ketones), 페닐 글리옥실레이트(phenyl glyoxylates; PG), 티옥산톤(thioxanthones; ITX), 아실포스핀 옥사이드(acylphosphine oxides; APO) 중 적어도 하나를 포함할 수 있다.
그러나, 상술한 자가치유 광경화 레진(112)의 종류가 이에 한정되는 것은 아니며, 광중합 반응을 일으키며, 경화시 형상 기억의 특징을 갖는 조성물은 어느 것이나 사용될 수 있다.
예를 들어, 자가치유 광경화 레진(112)은 폴리노르보넨 (poly-norbornene), 폴리이소프렌(poly-isoprene), 스티렌-부타디엔 공중합체(Styrene-butadienecopolymer), 폴리우레탄(Poly-urethane), 폴리에틸렌(Poly-ethylene), 폴리에스터(polyester) 계열의 고분자를 포함할 수도 있다.
또한, 광경화 3D 프린팅 슬러리(110)는 안료(111)를 포함한다. 안료(111)는 출력될 입체 구조물의 주소재가되는 원료로서, 금속 또는 세라믹 입자를 포함할 수 있다.
안료(111)가 금속 입자를 포함하는 경우, 안료(111)는 알루미늄, 텅스텐 카바이드, 서스, 티타늄, 철, 구리, 니켈, 코발트를 포함할 수 있다. 그러나, 이에 한정되는 것은 아니며, 안료(111)는 상술한 금속 이외의 금속 및 이들의 합금을 포함할 수 있다.
안료(111)가 세라믹 입자를 포함하는 경우, 안료(111)는 알루미늄 옥사이드, 지르코니아, 타이타늄 옥사이드, 질화규소, 탄화규소, 질화 알루미늄, 실리카, 징크 옥사이드, 징크 설페이트 바륨 설페이트를 포함할 수 있다. 그러나, 이에 한정되는 것은 아니며, 안료(111)는 상술한 세라믹 이외에 다양한 세라믹 소재들을 포함할 수 있다.
광경화 3D 프린팅 슬러리(110)는 안료(111)를 70 내지 90wt%의 함량비로 포함하며, 자가치유 광경화 레진(112)을 10 내지 30wt%의 함량비로 포함한다. 안료(111)의 함량이 70wt% 이상으로 구비됨에 따라, 자가치유 광경화 레진(112)이 광경화된 경우, 고분자 매트릭스 상에서 안료(111)는 균일하고 조밀하게 위치될 수 있으며, 탈지 공정을 통해 자가치유 광경화 레진(112)이 소멸될 경우, 순수 안료(111)들로 구성된 구조물이 최종 형성될 수 있다.
다시 도 2를 참조하면, 광경화 3D 프린팅 슬러리에 광을 조사하여 입체 구조물을 성형(S120)한다.
도 3b를 참조하면, 광경화 3D 프린팅 슬러리(110)는 광이 조사되는 수조(130)에 위치되며, 광조사부(120)를 통해 수조(130)에 광이 조사된다. 이 경우, 수조(130)는 광조사부(120)의 광이 투과될 수 있도록 투광성이 우수한 재질로 구성될 수 있다.
한편, 도 3b에는 광조사부(120)가 수조(130)의 하부에 위치된 것으로 도시되어 있으나, 광조사부(120)는 수조(130)의 상부에 위치될 수 있다. 이 경우, 광조사부(120)의 광은 직접 광경화 3D 프린팅 슬러리(110)에 조사될 수 있다. 설명의 편의를 위해 이하에서는 광조사부(120)가 수조(130)의 하부에 위치되며, 광조사부(120)의 광이 수조(130)의 하부에서 조사되는 바텀-업(bottom-up) 방식의 광경화 3D 프린터를 기준으로 설명하기로 한다.
광조사부(120)는 광경화 3D 프린팅 슬러리(110)에 광을 조사하는 구성으로서, 레이저 또는 프로젝터로 구성될 수 있다. 광조사부(120)는 광경화 3D 프린팅 슬러리(110)의 자가치유 광경화 레진의 광중합 반응을 유도할 수 있는 광을 조사하며, UV, 가시광선, IR 중 적어도 어느 하나의 파장대의 광을 조사할 수 있다.
광조사부(120)를 통해 광경화 3D 프린팅 슬러리(110)에 광이 조사되면, 광이 조사된 부분의 자가치유 광경화 레진이 경화되면서, 입체 구조물(150)의 일 단면이 형성된다. 이 경우, 입체 구조물(150)의 최초 단면은 스테이지(140) 상에 형성될 수 있다. 이후, 스테이지(140)가 수직 방향으로 상승되며, 최초 단면 상에 광이 조사됨으로써, 순차적으로 입체 구조물(150)의 단면들이 형성될 수 있다.
몇몇 실시예에서, 입체 구조물(150)의 단면들이 성형되는 과정에서 서포터(155)가 함께 형성될 수 있다. 서포터(155)는 입체 구조물(150)의 형상을 유지시켜주기 위한 구성으로서, 입체 구조물(150)의 표면과 스테이지(140) 사이에 형성될 수 있다.
다시 도 2를 참조하면, 입체 구조물(150)의 성형이 완료되는 경우, 성형된 입체 구조물을 후처리(S130)한다.
도 3c를 참조하면, 후처리 공정은 입체 구조물(150)이 배치된 스테이지(140)로부터 입체 구조물(150)을 분리(PP1)하거나, 입체 구조물(150)의 표면을 연마(PP2)하거나, 입체 구조물(150)의 표면을 세척(PP3)하는 공정을 포함할 수 있다.
구체적으로, 입체 구조물(150)을 스테이지(140)로부터 분리(PP1)하는 공정은 입체 구조물(150)과 스테이지(140)의 접착부분을 나이프와 같은 절단 도구를 사용하여 분리하는 공정 및 입체 구조물(150)과 스테이지(140)를 연결하는 서포터(155)를 절단하는 공정 등을 포함할 수 있다.
또한, 입체 구조물(150)의 표면을 연마(PP2) 하는 공정은 입체 구조물(150)의 거친 표면을 연마 도구를 사용하여 부드럽게 연마하거나, 서포터(155)가 절단되고, 남은 표면 조각들을 연마하는 공정 등을 포함할 수 있다.
또한, 입체 구조물(150)의 표면을 세척(PP3) 하는 공정은 입체 구조물(150)의 표면의 이물질을 제거하는 공정으로서, 세척액을 사용하는 습식 방식과 세척 기체를 사용하는 건식 방식으로 수행될 수 있다.
입체 구조물(150)의 후처리 공정 과정에서 입체 구조물(150)에는 다양한 형태의 결함(D1, D2)이 형성된다. 예를 들어, 입체 구조물(150)의 표면을 연마(PP2) 하는 공정에서 입체 구조물(150)의 표면에 크랙(D1)이 발생될 수 있다. 또한, 입체 구조물(150)의 표면을 세척(PP3) 하는 공정에서 입체 구조물(150)의 표면에 깨지거나(D2) 균열이 발생될 수 있다. 한편, 입체 구조물(150)로부터 서포터(155)를 제거하는 과정에서 날카로운 제거 도구에 의해 입체 구조물(150)의 표면에 크랙 또는 균열이 발생될 수 있다.
한편, 후처리 공정 과정에서 입체 구조물(150)에 발생되는 결함의 종류가 이에 한정되는 것은 아니며, 입체 구조물(150)을 이동하는 과정 또는 스테이지(140)로부터 입체 구조물(150)을 떼어내는 과정에서 입체 구조물(150)에 응력이 작용하면서 입체 구조물(150)의 내측에 다양한 형태의 결함이 발생될 수 있다.
다시 도 2를 참조하면, 후처리가 완료된 후, 입체 구조물에서 후처리로 인해 발생된 결함을 치유(S140)한다.
도 3d를 참조하면, 입체 구조물(150)의 결함(D1)의 치유 공정은 입체 구조물(150)을 형상복원 환경에 노출시키는 방식으로 수행될 수 있다. 여기서, 형상복원 환경은 경화된 자가치유 광경화 레진의 형상이 복원되는 환경을 의미할 수 있다.
앞서 언급한 바와 같이, 자가치유 광경화 레진은 광 중합반응에 의해 경화되며, 경화된 자가치유 광경화 레진은 형상기억의 특성을 갖는다. 구체적으로, 자가치유 광경화 레진이 광중합 반응에 의해 경화되는 경우, 고분자 매트릭스 내에서 사슬들의 가교점의 위치가 기억된다. 후처리 공정에서 작용하는 외력에 의해 고분자 매트릭스 내의 가교점의 위치가 변경되는 경우, 결함이 생성되며, 결함 주변에 내부 응력이 발생된다. 이후, 입체 구조물(150)이 형상복원 환경에 노출되는 경우, 고분자 매트릭스 내의 사슬들이 기억된 가교점의 위치로 복원되면서 내부 응력을 완화시키는 방식으로 형상복원이 수행될 수 있다.
형상복원 환경은 고분자 매트릭스 내의 사슬들이 기억된 가교점의 위치로 유연하게 움직일 수 있는 환경으로서, 온도, 습도, pH, 빛, 전류, 자기장 중 적어도 어느 하나와 관련된 환경일 수 있다. 예를 들어, 형상복원 환경은 온도와 관련된 환경일 수 있으며, 경화된 자가치유 광경화 레진은 특정 온도 환경에서 형상복원이 이루어질 수 있다. 즉, 입체 구조물(150)이 출력되는 환경에서 자가치유 광경화 레진에 의해 형성된 고분자 매트릭스의 사슬들은 가교점의 특정 위치들을 기억할 수 있으며, 후공정을 통해 결함(D1)이 발생되어 가교점의 위치들이 틀어지더라도, 특정 온도 환경에 노출되는 경우, 고분자 매트릭스의 사슬들이 기억된 가교점의 특정 위치들로 복귀함으로써, 형상이 복원되며, 결함(D1)이 치유될 수 있다. 이 경우, 후처리가 완료된 입체 구조물(150)은 복원 챔버(160) 내부에 배치되며, 복원 챔버(160)에 의해 전달되는 열에 의해 형상이 복원되는 특정 온도 환경에 노출될 수 있다. 복원 챔버(160)는 히터 방식으로 직접 열을 전달하거나, 마이크로웨이브 방식으로 입체 구조물(150)을 가열할 수 있다.
한편, 형상복원 환경이 온도가 아닌 습도, pH, 빛, 전류, 자기장 중 어느 하나에 관련된 경우, 복원 챔버(160)는 입체 구조물(150)의 습도, pH, 빛, 전류 또는 자기장 환경을 변화시킬 수 있는 다양한 챔버(160)로 구성될 수 있다.
다시 도 2를 참조하면, 결함이 치유된 후, 입체 구조물에서 자가치유 광경화 레진이 경화되어 생성된 고분자를 제거(S150)할 수 있다.
앞서 언급한 바와 같이, 입체 구조물(150)은 고분자 재질이 아닌 금속 또는 세라믹 재질로 형성될 수 있다. 순수 금속 또는 순수 세라믹 재질의 입체 구조물(150)을 형성하기 위해, 입체 구조물(150) 내에서 자가치유 광경화 레진은 모두 제거될 수 있다.
고분자의 제거는 입체 구조물(150)을 탈지 환경에 노출시키는 방식으로 수행될 수 있다. 예를 들어, 입체 구조물(150) 내의 고분자가 제거될 수 있는 탈지 온도에 입체 구조물(150)을 노출시키는 방식으로 수행될 수 있다. 이 경우, 챔버(170)는 입체 구조물(150)을 탈지 온도로 가열하는 구성으로서, 히터방식 또는 마이크로웨이브 방식의 챔버(170)일 수 있으며, 형상복원 환경을 제공하는 복원 챔버(160)와 동일한 챔버일 수 있다. 한편, 탈지 온도는 100℃ 내지 1000℃의 범위에서 고분자가 가장 효율적으로 제거될 수 있는 온도로 선택될 수 있으며, 최적의 탈지 온도 및 시간은 입체 구조물(150)을 열 분석함으로써, 결정될 수 있다.
몇몇 실시예에서, 고분자 제거 공정은 입체 구조물(150)을 탈지액에 노출시키는 방식으로 수행될 수 있으며, 이 경우, 챔버(170)는 탈지액을 제공하는 장치일 수 있다.
몇몇 실시예에서, 고분자 제거 후 입체 구조물(150)은 소결될 수 있다. 앞서 언급한 바와 같이, 광경화 3D 프린팅 슬러리는 자가치유 광경화 레진 및 안료를 포함하며, 안료는 금속 또는 세라믹 입자들로 구성될 수 있다. 만약, 안료가 세라믹 입자들로 구성되는 경우, 최종 세라믹 구조물을 형성하기 위해, 입체 구조물(150)은 소결될 수 있다. 소결 공정을 통해 고분자가 제거된 입체 구조물(150) 내에서 세라믹 입자들을 서로 강하게 결합되며, 순수 세라믹 재질의 최종 구조물이 형성될 수 있다.
소결 공정은 탈지 공정과 동일한 챔버 또는 서로 상이한 챔버 내에서 수행될 수 있으며, 챔버 내의 온도를 일정한 온도로 유지하면서 수행되거나 챔버 내의 온도를 서서히 변화시키면서 수행될 수 있다. 이 경우, 소결 온도 및 시간은 세라믹 안료의 종류 및 원하는 최종 구조물의 물성에 따라 다양하게 결정될 수 있다.
본 발명의 일 실시예에 따른 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법은 후처리 공정 후 결함을 치유하는 공정 단계를 포함하므로, 후처리 공정 과정에서 발생되는 결함들을 치유할 수 있다. 즉, 광경화 3D 프린팅의 경우, 출력 후 구조물을 스테이지로 분리하고, 표면을 세척하고, 연마하는 등의 후처리 공정이 필수적으로 수반된다. 그러나, 이러한 후처리 공정에서 구조물 내에 많은 결함이 발생될 수 있다. 특히, 순수 세라믹 또는 순수 금속 재질의 구조물을 광경화 3D 프린팅으로 제조하는 경우, 후처리 공정 후 수반되는 탈지 공정을 거치면서 상기 결함들은 더욱 성장하게 되며, 구조물의 내구성 및 품질 저하를 유발한다. 본 발명의 일 실시예에 따른 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법은 자가치유 광경화 레진의 형상복원 특성을 활용하여 후처리 공정 후 후처리 공정에 의해 발생된 결함을 치유하는 단계를 포함하며, 후처리 공정에서 발생된 결함들은 본 단계를 통해 치유될 수 있다. 또한, 결함 치유 공정은 탈지 공정 이전에 수행되므로, 탈지 공정에서 결함이 성장하거나 전파되는 문제가 최소화될 수 있으며, 최종 구조물의 내구성 및 품질이 우수해질 수 있다.
특히, 본 발명의 일 실시예에 따른 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법의 경우, 탈지 공정에서 자가치유 광경화 레진이 모두 제거될 수 있으므로, 순수 금속 또는 세라믹 재질의 구조물을 우수한 품질로 출력할 수 있도록 하며, 종래 고분자 재질의 구조물만 출력 가능하였던 광경화3D 프린팅 기술을 금속 및 세라믹 재질의 구조물 제조 공정에도 용이하게 적용시킬 수 있는 이점을 제공한다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
110: 광경화 3D 프린팅 슬러리 111: 안료
112: 자가치유 광경화 레진 120: 광조사부
130: 수조 140: 스테이지
150: 입체 구조물 155: 서포터
160: 복원 챔버 170: 챔버
112: 자가치유 광경화 레진 120: 광조사부
130: 수조 140: 스테이지
150: 입체 구조물 155: 서포터
160: 복원 챔버 170: 챔버
Claims (10)
- 자가치유 광경화 레진 및 세라믹 또는 금속 입자를 포함한 안료를 포함하는 광경화 3D 프린팅 슬러리를 준비하는 단계;
상기 광경화 3D 프린팅 슬러리에 광을 조사하여 입체 구조물을 성형하는 단계;
성형된 입체 구조물을 후처리하는 단계;
상기 입체 구조물에서 상기 후처리로 인해 발생된 결함을 치유하는 단계;
상기 결함이 치유된 상기 입체 구조물에서 상기 자가치유 광경화 레진이 경화되어 생성된 고분자를 제거하는 단계; 및
상기 고분자가 제거된 상기 입체 구조물을 소결하는 단계
를 포함하고,
상기 생성된 고분자를 제거하는 단계는 상기 고분자가 완전하게 제거되는 탈지 온도 이상의 온도에 상기 입체 구조물을 노출시키는 단계인 것을 특징으로 하는, 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법. - 제1항에 있어서,
상기 자가치유 광경화 레진은 티올기(thiol-group) 및 이황화기(disulfide group)를 가지며, 광경화시 형상기억 특성을 갖는 화합물을 포함하는, 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법. - 제2항에 있어서,
상기 입체 구조물에서 상기 후처리로 인해 발생된 결함을 치유하는 단계는,
경화된 상기 자가치유 광경화 레진의 형상이 복원되는 형상복원 환경에 상기 성형된 입체 구조물을 노출시키는 단계를 포함하는, 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법. - 제3항에 있어서,
상기 형상복원 환경은 온도, 습도, pH, 빛, 전류, 자기장 중 적어도 어느 하나와 관련된, 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법. - 삭제
- 삭제
- 삭제
- 제1항에 있어서,
상기 성형된 입체 구조물을 후처리하는 단계는,
상기 성형된 입체 구조물이 배치된 스테이지로부터 상기 성형된 입체 구조물을 분리하는 단계를 포함하는, 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법. - 제1항에 있어서,
상기 성형된 입체 구조물을 후처리하는 단계는,
상기 성형된 입체 구조물의 표면을 연마하는 단계; 및
상기 성형된 입체 구조물의 표면을 세척하는 단계를 포함하는, 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법. - 제1항에 있어서,
상기 광경화 3D 프린팅 슬러리는 상기 자가치유 광경화 레진을 10 내지 30 wt%의 함량비로 포함하며, 상기 안료를 70 내지 90 wt%의 함량비로 포함하는, 자가치유 광경화 레진을 활용한 광경화 3D 프린팅 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200056214A KR102258272B1 (ko) | 2020-05-11 | 2020-05-11 | 자가치유 광경화 레진을 활용한 광경화 3d 프린팅 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020200056214A KR102258272B1 (ko) | 2020-05-11 | 2020-05-11 | 자가치유 광경화 레진을 활용한 광경화 3d 프린팅 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102258272B1 true KR102258272B1 (ko) | 2021-05-31 |
Family
ID=76150055
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020200056214A KR102258272B1 (ko) | 2020-05-11 | 2020-05-11 | 자가치유 광경화 레진을 활용한 광경화 3d 프린팅 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102258272B1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102400305B1 (ko) * | 2021-09-30 | 2022-05-23 | 주식회사 엠오피(M.O.P Co., Ltd.) | 세라믹 인공치아용 3d 프린팅 조성물 |
KR20230047269A (ko) * | 2021-09-30 | 2023-04-07 | 한국세라믹기술원 | 광중합 3d 프린터, 광중합 3d 프린팅 방법, 및 광중합 3d 프린팅용 조성물 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017039797A (ja) * | 2015-08-17 | 2017-02-23 | 日立化成株式会社 | 光学的立体造形用樹脂組成物、及び立体造形物を製造する方法 |
KR20170137020A (ko) * | 2017-11-30 | 2017-12-12 | 주식회사 캐리마 | 3d성형물의 표면처리장치 및 그 표면처리방법 |
WO2018117907A1 (en) | 2016-12-19 | 2018-06-28 | National University Of Science And Technology "Misis" | Shape memory polymer composite for 3d printing of medical items |
KR20180075774A (ko) * | 2016-12-26 | 2018-07-05 | 주식회사 세릭 | 3d 프린터용 자기치유 성능을 부여한 시멘트계 세라믹 제품 |
-
2020
- 2020-05-11 KR KR1020200056214A patent/KR102258272B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017039797A (ja) * | 2015-08-17 | 2017-02-23 | 日立化成株式会社 | 光学的立体造形用樹脂組成物、及び立体造形物を製造する方法 |
WO2018117907A1 (en) | 2016-12-19 | 2018-06-28 | National University Of Science And Technology "Misis" | Shape memory polymer composite for 3d printing of medical items |
KR20180075774A (ko) * | 2016-12-26 | 2018-07-05 | 주식회사 세릭 | 3d 프린터용 자기치유 성능을 부여한 시멘트계 세라믹 제품 |
KR20170137020A (ko) * | 2017-11-30 | 2017-12-12 | 주식회사 캐리마 | 3d성형물의 표면처리장치 및 그 표면처리방법 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102400305B1 (ko) * | 2021-09-30 | 2022-05-23 | 주식회사 엠오피(M.O.P Co., Ltd.) | 세라믹 인공치아용 3d 프린팅 조성물 |
WO2023055046A1 (ko) * | 2021-09-30 | 2023-04-06 | 주식회사 엠오피 | 세라믹 인공치아용 3d 프린팅 조성물 |
KR20230047269A (ko) * | 2021-09-30 | 2023-04-07 | 한국세라믹기술원 | 광중합 3d 프린터, 광중합 3d 프린팅 방법, 및 광중합 3d 프린팅용 조성물 |
KR102580627B1 (ko) * | 2021-09-30 | 2023-09-21 | 한국세라믹기술원 | 광중합 3d 프린터, 광중합 3d 프린팅 방법, 및 광중합 3d 프린팅용 조성물 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20210139720A1 (en) | 3d polymerizable ceramic inks | |
KR102258272B1 (ko) | 자가치유 광경화 레진을 활용한 광경화 3d 프린팅 방법 | |
CN107073812B (zh) | 用于生产硅酮弹性体部件的方法 | |
JP6646047B2 (ja) | 光硬化性シリコーン組成物を用いた3dプリンティングの方法 | |
US20240208148A1 (en) | Post-curing method of 3d printout, and transparent orthodontic appliance manufactured thereby | |
DE69717935T3 (de) | Photohärtbare flüssige Silikonkautschukzusammensetzung zur Herstellung einer Masterform | |
JP4795356B2 (ja) | 微細パターン形成方法 | |
KR101597880B1 (ko) | 광경화성 나노임프린트용 조성물, 상기 조성물을 이용한 패턴의 형성 방법 및 상기 조성물의 경화체를 갖는 나노임프린트용 복제 금형 | |
JP5762245B2 (ja) | 光硬化性ナノインプリント用組成物、該組成物を用いたパターンの形成方法、及び該組成物の硬化体を有するナノインプリント用レプリカ金型 | |
JP2006523728A (ja) | 微細パターンの形成に用いられるモールド用樹脂組成物およびそれからの有機モールドの製作方法 | |
KR101432133B1 (ko) | 유리질 탄소 몰드의 제조 방법 | |
CN114025930A (zh) | 含有可烧结材料的三维物体的增材制造配方 | |
Credi et al. | Combining stereolithography and replica molding: On the way to superhydrophobic polymeric devices for photovoltaics | |
KR102400305B1 (ko) | 세라믹 인공치아용 3d 프린팅 조성물 | |
JP2020097521A (ja) | 光学ガラス素子を製造するための方法 | |
JP2012204429A (ja) | インプリント用テンプレート、その製造方法及びパターン形成方法 | |
JP5349777B2 (ja) | 光学素子の製造方法 | |
KR102515414B1 (ko) | 친수성 미세 스탬프 및 이의 제조방법 | |
TW201127609A (en) | Resinous mold insert, molded article, and method of manufacturing molded article | |
KR102214666B1 (ko) | 세라믹 입자의 코팅을 이용한 3차원 프린팅 잉크 조성물 및 그 제조방법, 그리고 프린팅 방법. | |
Wang | Photoinduced thiol-ene click chemistry assisted additive manufacturing and freeze casting of polymer-derived ceramics | |
KR102277231B1 (ko) | 프리트(Frit)를 포함하는 3차원 프린팅 잉크 조성물 및 그 제조방법, 그리고 3차원 프린팅 방법. | |
KR20190059275A (ko) | 모놀리식 고굴절률 광자 디바이스들 | |
KR20240018738A (ko) | 고정밀 광경화 3d 프린팅 방법 및 이를 이용한 고정밀 조형물 제조방법 | |
Johnson | Step and flash imprint lithography: materials and process development |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |