CN110087702A - 用于医疗用品3d打印的形状记忆聚合物复合材料 - Google Patents
用于医疗用品3d打印的形状记忆聚合物复合材料 Download PDFInfo
- Publication number
- CN110087702A CN110087702A CN201780078829.5A CN201780078829A CN110087702A CN 110087702 A CN110087702 A CN 110087702A CN 201780078829 A CN201780078829 A CN 201780078829A CN 110087702 A CN110087702 A CN 110087702A
- Authority
- CN
- China
- Prior art keywords
- shape memory
- polymer
- composite material
- printing
- hydroxyapatite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/46—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with phosphorus-containing inorganic fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/04—Polyesters derived from hydroxycarboxylic acids, e.g. lactones
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2400/00—Materials characterised by their function or physical properties
- A61L2400/16—Materials with shape-memory or superelastic properties
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2430/00—Materials or treatment for tissue regeneration
- A61L2430/02—Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/32—Phosphorus-containing compounds
- C08K2003/321—Phosphates
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Dermatology (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明公开了基于具有生物活性形状记忆陶瓷的热塑性聚合物的医用复合材料,其中“硬质”相包括聚合物基体的结晶相、化学交联剂、物理交联剂和生物活性成分,“软质”相包括聚合物基体的非晶相和增塑剂。所述复合材料包括可生物吸收的聚交酯聚合物基体和粒径为100至1000纳米的羟基磷灰石生物活性填料。羟基磷灰石填充重量比为15%至35%。为降低形状记忆效应激活温度,所述复合材料包括增塑剂,即重量比为4.6%至15%的聚乙二醇。为稳定机械性能,所述复合材料具有交联结构。所述聚合物材料的交联结构和硬质相,即羟基磷灰石纳米颗粒,可在98%形状恢复率下产生3Mpa的恢复应力。此外,添加了聚乙二醇增塑剂,降低了材料的玻璃化转变温度,即形状记忆效应激活点。形状记忆效应在35℃至45℃的范围内激活。所述复合材料的杨氏模量和压缩弹性模量分别为4GPa和11GPa。所述复合材料的熔体在高于熔点(170℃)时表现出高粘度,从而在医疗用品的3D打印中实现更高的分层应用精度。本发明的技术效果是提供一种适用于形状记忆医疗用品的3D打印的聚合物复合材料。
Description
技术领域
形状记忆聚合物由于较高的可恢复变形而具有许多优于形状记忆金属合金的优点。形状记忆聚合物制品的初始形状可以通过在低于转变点(形状记忆效应激活温度)的特定温度下变形而转变为临时形状,该转变点可以是玻璃化转变温度Tg或是限制聚合物链段的移动性的熔解温度Tm。
为显示形状记忆效应,聚合物必须具有硬质固定相和软质可变形相。形状恢复的驱动力是聚合物形状移动性的变化以及从更有序的临时变形构型转化为更有利于热力学构型的转化,具有更高的熵和更低的内能。所述转化可以通过外部刺激激活,如热、电场或磁场、光和水分等。从实际应用的角度来看,使用最广泛且最适宜的形状记忆效应激活温度是玻璃化转变温度Tg,其表现为聚合物链段的移动性增加,从而引起形状恢复。
在医疗用品中,形状记忆效应可在自适应和自锚式骨植入物中具有潜在的应用。
聚交酯是一种热塑性聚合物,由于其高弹性模量、相对较低的玻璃化转变温度Tg并可适用于3D打印应用,因此对于骨植入物应用十分有利。长聚交酯链的物理缠结可以充当硬质相,而缠结之间的聚合物链可以在变形期间拉伸成临时形状。通过交联或添加具有高弹性模量的细无机颗粒作为额外的硬质相,可以改善聚交酯诸如恢复应力和恢复应变等性能。由此看来,磷酸钙颗粒对骨组织恢复十分有利。
本发明涉及一种基于热塑性聚合物的医用复合材料,其具有形状记忆生物活性陶瓷组分添加物,可用于通过3D打印实施的熔丝制造技术(FFF)制造医疗用品。
技术背景
已知一项发明(US2013/0030122A1聚乳酸交联弹性体)描述了基于交联的L-聚交酯或D-聚交酯制备聚合物组合物的方法。
上述发明的缺点在于聚合物复合材料的-26℃的玻璃化转变点Tg和-224℃的熔点Tm可能是形状记忆效应激活温度,其远低于人体温度。
已知一项发明(WO 2015110981A1聚交酯的使用和制造热封纸或板容器或包装的方法)描述了提供聚交酯和聚丁二酸丁二醇酯(PBS)基聚合物复合材料并添加多官能交联元素的方法,如三烯丙基异氰尿酸酯(TAIC)。
上述发明的缺点在于所述聚合物复合材料不具有形状记忆效应。
已知一项发明(US20150123314A1用于制造形状记忆聚合物材料的方法)描述了提供形状记忆聚合物材料的方法。所述材料由可生物吸收的聚合物(如聚交酯、聚乙交酯、聚己内酯、聚氨酯、聚丙烯酸酯、聚甲基丙烯酸酯、聚丁基甲基丙烯酸酯或聚醚醚酮)、生物陶瓷(如磷酸钙、磷酸三钙、羟基磷灰石、碳酸钙、硫酸钙、生物玻璃或乙交酯)和聚乙二醇制成。
上述发明的缺点在于形状恢复不完全(在最佳条件下为90%)。
已知一项发明(WO 2013050775A1含有形状记忆聚合物组合物的医疗器械)公开了一种基于形状记忆聚合物材料的医疗器械。所述聚合物材料由可生物吸收的聚合物(聚交酯、聚乙二醇、聚己内酯、聚二恶烷酮、聚氨酯、聚丙烯酸酯、聚甲基丙烯酸酯、聚丁基甲基丙烯酸酯或聚醚醚酮)和增塑剂(聚乙二醇)制成。
上述发明的缺点在于与未填充的聚交酯相比,不具有交联结构和稳定的硬质相以提供更高的回收应力。
已知发明(US2011/0144751A1多模形状记忆聚合物和US 9308293B2多模形状记忆聚合物)公开了基于两种具有不同分子量的聚合物和磷酸钙陶瓷的聚合物复合材料。
上述发明的缺点在于可能是形状记忆效应激活温度的聚合物复合材料的玻璃化转变点Tg=-26℃远低于人体温度。此外,该材料不具有交联结构以提供机械刚性。
已知发明(US2014/0236226A1特制聚合物和US 2015/0073476A1)公开了基于聚交酯和水溶性增塑剂的聚合物复合材料。
上述发明的缺点在于不完全(在最佳条件下为90%)和缓慢(在24小时内)的形状恢复以及不具有生物活性成分(磷酸钙陶瓷)。
已知一项发明(US 2015/0073476A1形状记忆聚合物组合物)描述了聚交酯基聚合物复合材料。
上述发明的缺点在于不完全(90%)和缓慢(24小时内)的形状恢复。
此外,上述发明不适用医疗物品3D打印应用。
本发明最接近的对应物是RU专利2215542可生物降解的形状记忆聚合物,其描述了适用于医学应用和作为治疗或诊断剂载体的可生物降解和生物相容的形状记忆聚合物组合物。
上述发明的缺点在于不具有生物相容试剂,即磷酸钙陶瓷,并且在医疗物品的3D打印中不能进行分层融合。上述发明的另一个缺点是机械性能较差(弹性模量低于100MPa,且极限强度低于20MPa)。
发明内容
本发明的技术效果是提供一种适用于形状记忆医疗用品3D打印的聚合物复合材料,具有以下特征:
医疗用品3D打印兼容性;
保持机械性能的交联结构;
35℃至45℃形状记忆效应激活温度;
粒径为100至1000纳米的生物活性成分;
形状记忆效应激活时,恢复应力为3MPa,形状恢复率为98%;
良好的拉伸力学性能:4GPa杨氏模量和43MPa极限强度;
良好的压缩力学性能:11GPa杨氏模量和96MPa极限强度。
本发明实现以下技术效果:基于热塑性聚合物提供复合材料,其添加有生物活性形状记忆陶瓷成分,其中“硬质”相包括聚合物基体的结晶相、化学和物理交联剂以及生物活性成分,而“软质”相包括聚合物基体的非晶相以及增塑剂。
根据本文所述的发明,所述复合材料包括可生物吸收的聚交酯聚合物基体和粒径为100至1000纳米的羟基磷灰石生物活性填料。羟基磷灰石填充重量比为15%至35%。为降低形状记忆效应激活温度,所述复合材料包含增塑剂,即重量比为4.6%至15%的聚乙二醇。
具体实施方式
为稳定机械性能,所述复合材料具有交联结构。所述聚合物材料的交联结构和硬质相,即羟基磷灰石纳米颗粒,可在98%形状恢复率下产生3Mpa的恢复应力。此外,添加了聚乙二醇增塑剂,降低了材料玻璃化转变温度,即形状记忆效应激活点。形状记忆效应在35至45℃范围内激活。所述复合材料的杨氏模量和压缩弹性模量分别为4GPa和11GPa。所述复合材料的熔体在高于熔点(170℃)时表现出高粘度,从而在医疗用品的3D打印中实现更高的分层应用精度。
所述复合材料中重量比为47%至80%的聚交酯含量是硬质相、软质相与最佳加聚物浓度共存所必需的。如果聚乙二醇增塑剂的添加量的重量比高于15%,则复合材料的强度和弹性模量分别降至40MPa和4GPa以下。但是如果增塑剂添加量的重量比低于4.6%,则不能达到塑化效果,形状记忆效应激活温度高于45℃至50℃。羟基磷灰石颗粒的添加量的重量比低于15%,则不能提供材料的生物活性,并且使硬质相的含量降低到足以产生1.5MPa以上的回复应力并且形状恢复率超过95%的水平。同时,过量的羟基磷灰石含量(重量比高于35%)增加了复合材料的脆性。引入重量比低于0.4%的交联剂使结构交联不明显,确保在高于形状记忆效应激活温度时有足够的硬质相来实现形状记忆效应。另一方面,引入重量比高于3%的交联剂会产生过硬结构,其玻璃化转变温度高于45℃。由于所述复合材料的过度交联结构,该复合材料不能用于分层3D打印。
本发明提供的聚合物复合材料的工业和医学适用性通过以下实施例确认。
参照附图说明本发明,其中图1显示了本发明的聚合物材料与重量比为8%的聚乙二醇的差示扫描量热法(DSC)曲线的实例。第一相变发生在材料的玻璃化转变点,即40.9℃,证明形状记忆效应激活温度降低到接近人体温度的点。图2举例说明了高于形状记忆效应激活温度时恢复应力的增长。使在室温下通过3D打印聚合物复合材料获得的样品的临时形状变形并稳定,然后加热到高于形状记忆效应激活温度和初始形状恢复。最高恢复应力为3MPa。图3显示含有重量比为30%的羟基磷灰石的聚合物复合材料的压缩图实例。极限强度高于80MPa,杨氏模量超过10.8GPa。图4示出了含有重量比为30%的羟基磷灰石的聚合物复合材料的拉伸图。拉伸强度高于60MPa,杨氏模量超过4.0GPa。
实施例1
Ingeo 4032D聚交酯(Natureworks LLC,美国)、平均粒度为1000nm的GAP 85-D羟基磷灰石粉末(NPO Polystom)以及分子量为4000g/mol的聚乙二醇(OOO聚合物)用作原料。最终的聚合物产物含有重量比为47%的聚交酯、重量比为35%的羟基磷灰石和重量比为15%的聚乙二醇。聚交酯结构与Evonik TAIC三烯丙基异氰尿酸酯(重量比为3%)交联。所述材料的玻璃化转变温度为35℃,恢复应力为2.5MPa,形状恢复率为98%,3D打印的聚合物复合材料试样的抗压强度为70MPa,压缩弹性模量为9GPa。
实施例2
Ingeo 4032D聚交酯(Natureworks LLC,美国)、平均粒径为100nm的GAP 85-D羟基磷灰石粉末(NPO Polystom)和分子量为4000g/mol的聚乙二醇(OOO聚合物)用作原料。最终的聚合物产物含有重量比为80%的聚交酯、重量比为15%的羟基磷灰石和重量比为4.6%的聚乙二醇。聚交酯结构与PERKADOX BC-FF过氧化二异丙苯(重量比为0.4%)交联。所述材料的玻璃化转变温度为45℃,恢复应力为1.7MPa,形状恢复率为96%,3D打印的聚合物复合材料试样的抗压强度为80MPa,压缩弹性模量为7GPa。
表1压缩机械测试结果
Claims (2)
1.一种能够形状记忆聚合物复合材料,其包括基于可生物降解和生物相容的聚合物复合材料的“硬质”相和“软质”相,其中所述聚合物复合材料的所述“硬质”相包括聚合物基体的结晶相、化学交联剂、物理交联剂和粒径为100-1000nm的作为生物活性成分的羟基磷灰石,所述“软质”相包括聚合物基体的非晶相和作为增塑剂的聚乙二醇,其组分比(wt.%)如下:
47-80聚交酯,
15-35羟基磷灰石,
4.6-15聚乙二醇,
0.4-3.0交联剂。
2.如权利要求1所述的聚合物复合材料,其中所述化学交联剂为三烯丙基异氰尿酸酯或过氧化二异丙苯。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2016149740A RU2631890C1 (ru) | 2016-12-19 | 2016-12-19 | Полимерный композит с эффектом памяти формы для 3D-печати медицинских изделий |
RU2016149740 | 2016-12-19 | ||
PCT/RU2017/000929 WO2018117907A1 (en) | 2016-12-19 | 2017-12-11 | Shape memory polymer composite for 3d printing of medical items |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110087702A true CN110087702A (zh) | 2019-08-02 |
Family
ID=60040580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201780078829.5A Pending CN110087702A (zh) | 2016-12-19 | 2017-12-11 | 用于医疗用品3d打印的形状记忆聚合物复合材料 |
Country Status (5)
Country | Link |
---|---|
CN (1) | CN110087702A (zh) |
DE (1) | DE112017006358T5 (zh) |
EA (1) | EA036376B1 (zh) |
RU (1) | RU2631890C1 (zh) |
WO (1) | WO2018117907A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2679127C1 (ru) * | 2018-06-14 | 2019-02-06 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Композит для 3d-печати медицинских изделий |
RU2679632C1 (ru) * | 2018-06-14 | 2019-02-12 | Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет" | Композит для 3d-печати медицинских изделий |
EP3822006A1 (en) | 2019-11-14 | 2021-05-19 | Rolls-Royce Corporation | Fused filament fabrication of shape memory alloys |
KR102258272B1 (ko) | 2020-05-11 | 2021-05-31 | 주식회사 엠오피(M.O.P Co., Ltd.) | 자가치유 광경화 레진을 활용한 광경화 3d 프린팅 방법 |
CN113368311A (zh) * | 2021-04-14 | 2021-09-10 | 成都理工大学 | 具有形状记忆的羟基磷灰石/聚氨酯多孔骨修复材料 |
CN113502038A (zh) * | 2021-07-21 | 2021-10-15 | 珠海市三绿实业有限公司 | 具有木质感的记忆3d打印耗材线条 |
CN115230143A (zh) * | 2022-06-24 | 2022-10-25 | 南昌大学第二附属医院 | 一种可降解的高陶瓷颗粒浓度的柔性3d打印生物支架方法 |
CN115558248B (zh) * | 2022-11-01 | 2023-07-21 | 桂林电子科技大学 | 一种光/热驱动形状记忆和自修复功能材料及其制备方法和应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6160084A (en) * | 1998-02-23 | 2000-12-12 | Massachusetts Institute Of Technology | Biodegradable shape memory polymers |
US20150123314A1 (en) * | 2011-10-05 | 2015-05-07 | Smith & Nephew Plc | Process for the manufacture of shape memory polymer material |
-
2016
- 2016-12-19 RU RU2016149740A patent/RU2631890C1/ru active
-
2017
- 2017-12-11 WO PCT/RU2017/000929 patent/WO2018117907A1/en active Application Filing
- 2017-12-11 CN CN201780078829.5A patent/CN110087702A/zh active Pending
- 2017-12-11 DE DE112017006358.2T patent/DE112017006358T5/de not_active Withdrawn
- 2017-12-11 EA EA201900311A patent/EA036376B1/ru not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6160084A (en) * | 1998-02-23 | 2000-12-12 | Massachusetts Institute Of Technology | Biodegradable shape memory polymers |
US20150123314A1 (en) * | 2011-10-05 | 2015-05-07 | Smith & Nephew Plc | Process for the manufacture of shape memory polymer material |
Also Published As
Publication number | Publication date |
---|---|
WO2018117907A1 (en) | 2018-06-28 |
EA036376B1 (ru) | 2020-11-02 |
EA201900311A1 (ru) | 2019-11-29 |
DE112017006358T5 (de) | 2019-08-29 |
RU2631890C1 (ru) | 2017-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110087702A (zh) | 用于医疗用品3d打印的形状记忆聚合物复合材料 | |
Senatov et al. | Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds | |
Zheng et al. | Mimicking the electrophysiological microenvironment of bone tissue using electroactive materials to promote its regeneration | |
Pramanik et al. | Progress of key strategies in development of electrospun scaffolds: bone tissue | |
Rezwan et al. | Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering | |
Aboudzadeh et al. | Fabrication and characterization of poly (D, L‐lactide‐co‐glycolide)/hydroxyapatite nanocomposite scaffolds for bone tissue regeneration | |
Pielichowska et al. | Bioactive polymer/hydroxyapatite (nano) composites for bone tissue regeneration | |
Lin et al. | Injectable and thermosensitive PLGA-g-PEG hydrogels containing hydroxyapatite: preparation, characterization and in vitro release behavior | |
DK2403547T3 (en) | MANUFACTURING FORMABLE BONE COMPENSATION | |
Zhang et al. | Biomimetic mechanically strong one-dimensional hydroxyapatite/poly (d, l-lactide) composite inducing formation of anisotropic collagen matrix | |
Yeo et al. | Dual-phase poly (lactic acid)/poly (hydroxybutyrate)-rubber copolymer as high-performance shape memory materials | |
Ebrahimian-Hosseinabadi et al. | Evaluating and modeling the mechanical properties of the prepared PLGA/nano-BCP composite scaffolds for bone tissue engineering | |
Rahim et al. | Comparison of mechanical properties for polyamide 12 composite-based biomaterials fabricated by fused filament fabrication and injection molding | |
Kutikov et al. | Shape‐Memory Performance of Thermoplastic Amphiphilic Triblock Copolymer Poly (d, l‐lactic acid‐co‐ethylene glycol‐co‐d, l‐lactic acid)(PELA)/Hydroxyapatite Composites | |
Girones Molera et al. | Bioresorbable and nonresorbable polymers for bone tissue engineering Jordi Girones | |
WO2018102796A1 (en) | Biodegradable amphiphilic shape memory polymers and compositions and methods thereof | |
Bayart et al. | Fused filament fabrication of scaffolds for tissue engineering; how realistic is shape-memory? A review | |
Samadi et al. | Comparative review of piezoelectric biomaterials approach for bone tissue engineering | |
WO2019185524A1 (en) | Thermoplastic materials incorporating bioactive inorganic additives | |
Zhang et al. | Research status of artificial bone materials | |
Oyedeji et al. | Fabrication and characterization of hydroxyapatite-strontium/polylactic acid composite for potential applications in bone regeneration | |
Bai et al. | Application of Bioactive Materials for Osteogenic Function in Bone Tissue Engineering | |
Lacambra-Andreu et al. | A review on manufacturing processes of biocomposites based on poly (α-Esters) and bioactive glass fillers for bone regeneration | |
Ge et al. | Sintering densification mechanism and mechanical properties of the 3D-printed high-melting-point-difference magnesium oxide/calcium phosphate composite bio-ceramic scaffold | |
Srivastava et al. | A review on polylactic acid‐based blends/composites and the role of compatibilizers in biomedical engineering applications |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20190802 |