JP2004507901A - 改善された重ね合わせアライメント測定マーク - Google Patents

改善された重ね合わせアライメント測定マーク Download PDF

Info

Publication number
JP2004507901A
JP2004507901A JP2002523551A JP2002523551A JP2004507901A JP 2004507901 A JP2004507901 A JP 2004507901A JP 2002523551 A JP2002523551 A JP 2002523551A JP 2002523551 A JP2002523551 A JP 2002523551A JP 2004507901 A JP2004507901 A JP 2004507901A
Authority
JP
Japan
Prior art keywords
test
layer
mark
structures
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002523551A
Other languages
English (en)
Other versions
JP2004507901A5 (ja
Inventor
ミーハー・ウォルター・ディーン
レビー・アディ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Corp
Original Assignee
KLA Tencor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KLA Tencor Corp filed Critical KLA Tencor Corp
Publication of JP2004507901A publication Critical patent/JP2004507901A/ja
Publication of JP2004507901A5 publication Critical patent/JP2004507901A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates

Abstract

【課題】半導体製造プロセスによって生じる測定の不正確さを最小化しつつ、アライメントマークおよび半導体ウェーハのレイヤ間の重ね合わせ誤差を決定する。
【解決手段】アライメントマーク20は、半導体デバイスの異なるレイヤ間の相対位置を測定するための第1テストゾーン(40bおよび50c)および第2テストゾーン(50bおよび40c)を含む。第1テストゾーン(40bおよび50c)は2つの部分を含み、一方の部分40bにはあるレイヤ上にテスト構造が形成され、第2の部分50cには第2レイヤ上にテスト構造が形成される。これらのテスト構造のそれぞれはより小さいサブ構造92からなる。第2テストゾーン(50bおよび40c)は2つの似た部分を含み、やはりより小さいサブ構造92からなる。あるレイヤ中に形成されたそれぞれのテストゾーンの部分が他のレイヤ上に形成された他のテストゾーンの部分と隣接するように、第1および第2テストゾーンは構成される。より小さいサブ構造を持つ周期的構造のそれぞれを形成することによって、アライメント誤差のより正確な測定が可能となる。本発明の他の局面は、重ね合わせ誤差の測定が可能なアライメントマークを利用する方法に関する。
【選択図】図1

Description

【0001】
【発明の分野】
本願は共通に譲受された「ウェーハの重ね合わせアライメント測定」と題され、1996年7月12日にNoah Bareketによって出願された米国特許第6,023,338号と、「重ね合わせアライメントマークデザイン」と題され、2000年6月22日にNoah Bareketによって出願された米国特許出願第09/603,120号(弁護士事件番号KLA1P026)とに関する。上述の米国特許および米国特許出願はその全体がここで参照によって援用される。
【0002】
本発明は広くは半導体製造プロセスのためのテストプロシージャ関する。より具体的には本発明は、半導体ウェーハスタックの同じレイヤ上の異なるレイヤまたは異なる露光マスク間のアライメント誤差を測定するアライメントマークに関する。
【0003】
【発明の背景】
集積回路の製造において用いられる最もクリチカルなプロセス制御技術として、ウェーハ上の連続するパターン形成されたレイヤ間の重ね合わせ精度の測定がある。重ね合わせ精度は、その上または下にあるレイヤに対してパターン形成されたレイヤが、または同じレイヤで複数の露光マスクがどのくらい正確にアラインするかという判断に関する。
【0004】
現在、重ね合わせ測定は、半導体ウェーハのレイヤ上に印刷されたテストパターンについて行われる。一般に知られるようにパターンは、半導体ウェーハレイヤ上にリソグラフィ方法で印刷されえる。そのような方法は一般に、フォトレジスト材料をウェーハレイヤに塗布し、フォトレジストの特定部分を露光するためにパターン形成されたマスクを通して光源で照らし、残りのレジストの所望のパターンを作るために露光されたレジストを現像し、それからフォトレジストを通して露光されたウェーハの表面をエッチングまたはイオン注入する。重ね合わせ測定用テストパターンのあるタイプは、互いに近接して位置する平行なパターンのセットからなる。異なるウェーハレイヤ上に形成された平行パターンのセットは、レイヤが適切にアラインしたときに一つのセットからのパターンが他のセットからの対応するパターンにアラインするように位置する。このテストパターンおよびこのパターンの変化形は、重ね合わせ誤差を決定するのに有効である。しかしリソグラフィプロセスおよび他の半導体製造プロセスの固有の局面のために、デバイス重ね合わせ誤差に関する情報を提供するテストパターンの精度には限界がある。リソグラフィパターニング装置の光学レンズ収差は、最小寸法サイズ、間隔、形状および位置に依存するパターン配置誤差と、軸からはずれた照明および部分可干渉性を含む照明条件とを生じる。他の半導体製造プロセスもやはり最小寸法サイズに依存する。テストパターン上で測定された重ね合わせ誤差と、回路要素の真の重ね合わせ誤差との相関を改善できる重ね合わせテストパターンを実現することが望ましい。
【0005】
【発明の概要】
本発明は、半導体製造プロセスによって生じる測定の不正確さを最小化しつつ、アライメントマークおよび半導体ウェーハのレイヤ間の重ね合わせ誤差を決定する方法に関する。本発明はさまざまな実施形態のそれぞれにおいて、半導体デバイスの2つのレイヤ間のアライメント情報を提供するために、半導体ウェーハの2つのレイヤのそれぞれの上に形成された周期的構造からなるアライメントマークを利用する。2つのレイヤが適切にアラインするときにあるレイヤ上のアライメントマークが他のレイヤ上のマークにアラインするように、アライメントマークは、それぞれのウェーハレイヤ上の特定の位置に形成される。よって2つのレイヤが適切にアラインすると、2つのレイヤ上の集積回路パターンがアラインすることになる。したがってそれぞれのウェーハレイヤ上の回路パターン間のアライメントの度合いは、それぞれのレイヤ上のマーク間のアライメントを測定することによって決定される。
【0006】
本発明のある局面は半導体デバイスの異なるレイヤ間の相対位置を測定するためのマークに関する。アライメントマークは、第1テストゾーンおよび第2テストゾーンを含む。第1テストゾーンは2つの部分を含み、一方の部分にはあるレイヤ上にテスト構造が形成され、第2の部分には第2レイヤ上にテスト構造が形成される。これらのテスト構造のそれぞれはより小さいサブ構造からなる。第2テストゾーンは2つの似た部分を含み、やはりより小さいサブ構造からなる。実際の回路のサイズに近いサイズのサブ構造を持つこれらのテスト構造のそれぞれを形成することによって、そのような回路中のアライメント誤差のより正確な測定が可能となる。あるレイヤ中に形成されたそれぞれのテストゾーンの部分が他のレイヤ上に形成された他のテストゾーンの部分と隣接するように、第1および第2テストゾーンは構成される。本発明の他の局面は、重ね合わせ誤差の測定が可能なアライメントマークを利用する方法に関する。
【0007】
本発明のこれらのおよび他の特徴および効果は、以下の本発明の明細書および本発明の原理を例示によって示す添付の図面においてより詳細に説明される。
【0008】
本発明は、そのさらなる効果とともに、添付の図面とともに以下の説明を参照することによって最もよく理解されるだろう。
【0009】
【発明の実施の形態】
ここで本発明は添付の図面に示されるいくつかの好ましい実施形態を参照しながら詳細に説明される。以下の説明において、本発明を完全に理解するために多くの具体的な詳細が説明される。しかし当業者にとっては、本発明はこれらの一部の、または全ての詳細なしで実施できることに注意されたい。あるいは、本発明を不必要にぼかさないようにするために、よく知られたプロセスステップは詳細に説明されていない。
【0010】
本発明はそのさまざまな実施形態のそれぞれにおいて、半導体デバイスの2つのレイヤ間のアライメント情報を提供するために、半導体ウェーハの2つのレイヤのそれぞれの上に形成された周期的構造からなるアライメントマークを利用する。アライメントマークは、それぞれのウェーハレイヤの特定の位置に形成されることによって、2つのレイヤが適切にアラインしたときには、あるレイヤ上のアライメントマークが他のレイヤ上のマークとアラインするようになっている。例として、第1レイヤ上のマークは、集積回路を形成するパターンに対してある位置に形成されえる。同時に、第2レイヤ上のマークは、集積回路パターンに対して、ある相対位置であり、しかし少し異なる位置において形成されえる。第2レイヤ上のマークの位置は、回路パターンが適切にアラインしたときに第1レイヤ上のマークと隣接し、かつアラインするように設定される。逆に2つのレイヤが適切にアラインしていないときは、それぞれのレイヤ上のマークは互いにオフセットする。これらの周期的構造のそれぞれは実際の集積回路の構造とほとんど同じサイズのサブ構造からなる。実際の回路のサイズに近い大きさのサブ構造とともに周期的構造のそれぞれを形成することによって、そのような回路におけるいかなる重ね合わせ誤差についてもより正確な測定が可能になる。周期的構造およびサブ構造は、この技術分野で一般に知られるリソグラフィプロセスを用いて形成される。例えば周期的構造およびサブ構造は、フォトレジスト材料の形成物、またはウェーハレイヤ内のリセスがあるキャビティ形成物でありうる。キャビティによって形成された構造およびサブ構造は、半導体製造プロセス中にいずれかのレイヤに形成されたキャビティでありえる。例えばキャビティは、フォトレジストレイヤ、誘電体材料レイヤ、または金属レイヤの全ての中に形成されえる。以下の説明において、半導体の2つのレイヤ間のミスアライメントは、レジストレーション誤差、ミスレジストレーション、または重ね合わせ誤差とよばれることもある。
【0011】
図1は、本発明のある実施形態によるアライメントマーク10の上から見た平面図である。アライメントマーク10は、ウェーハのテストされるレイヤが適切なアライメントであるときに生じる構成で示される。アライメントマーク10は2つの実質的に同じマーク20および30を含み、これらは互いに90度回転されている。図1の軸回転マーキングが与えられると、グレーティング20はx軸レジストレーション測定に用いられ、一方、グレーティング30はy軸レジストレーション測定に用いられるが、これは各々のグレーティングの線が有効であるためには、典型的には測定の軸について非平行でなければならないからである。テストされるレイヤ上の向きが同じである限り、ウェーハ上のダイの配置に対してマークの任意の便利な向きをユーザは選択できる。さらに異なる向きにおけるアライメントを測定するためにウェーハ上には互いにさまざまな向きで任意の数のマークが存在しえる。あるいはウェーハは、単一の向きのミスアライメントを測定するための単一のマークを含みえる。マーク20および30はxおよびy方向について互いに近接して示されるが、半導体ウェーハの異なる位置にあってもよい。
【0012】
図1に示すようにマーク20および30のそれぞれは、周期的構造の6つのセットからなる。周期的構造のそれぞれは多くのサブ構造によって形成される。例えば図1において上から見た平面図から、サブ構造は互いに平行である細い線のように見える。それぞれの周期的構造は本質的には、サブ構造のグループである。実際の使用においては、周期的構造のそれぞれの間の間隔は要求される精度に依存して変化する。アライメントマークの特定の実現例においては、周期的構造のそれぞれの間の距離はほぼ1ミクロンである。
【0013】
本明細書の図1、3、5、6および9について、異なるウェーハレイヤ上に形成される直線状の形をしたサブ構造の間で区別をするために、あるレイヤ上に形成されたサブ構造は実線で表され、一方、異なるレイヤ上に形成されたサブ構造は点線で表されることに注意されたい。サブ構造によっては点線で表されるが、それぞれの周期的構造内の直線状のサブ構造は実際には、一定の間隔でセグメント化されている不連続の直線状形成物になっているわけではない。実際には周期的構造のそれぞれの中で点線は、連続した直線状形成物を表している。しかし他の実施形態においては、それぞれの周期的構造内のサブ構造がさまざまな形状およびサイズを取りえて、その中には一定間隔でセグメント化された不連続な直線状形成物も含まれることに注意されたい。
【0014】
説明のためにマーク20に注目すると、周期的構造のセット40a、40bおよび40c(実線で表される)は、半導体ウェーハのあるレイヤ上に形成され、一方、周期的構造のセット50a、50bおよび50c(点線で表される)は、半導体ウェーハの異なるレイヤ上に形成される。直接に上側レイヤを通して、または下側マークによって影響を受けた上側レイヤのトポグラフィによって、下に存在するマークの形状および位置は上側レイヤを通して測定可能でなければならない。周期的構造のセット40aおよび50aは、半導体デバイスと測定するのに用いられる測定装置とのミスアライメントによって存在しえる誤差についてのアライメント測定を補正するために用いられるキャリブレーションゾーンを形成する。周期的構造のセット40aおよび50aはそれぞれ、細長く四角い形状の周期的構造80を含む。周期的構造80のそれぞれはサブ周期的構造によって形成され、この場合それらは個々の線82である。
【0015】
周期的構造40b、40c、50bおよび50cは、マーク20の内側領域を構成する。セット40bおよび50cは一つのテストゾーンを形成し、セット50bおよび40cは第2テストゾーンを形成する。これらのテストゾーンのそれぞれは、半導体ウェーハの2つのレイヤ間のアライメント誤差を決定するために測定されえる。2つのアライメント測定値はそれから平均されて、単一のより正確なアライメント測定値を決定する。セット40b、40c、50bおよび50cのそれぞれは、やはり細長く四角い形状の個々の周期的構造90を含む。しかし周期的構造90は、周期的構造80よりも長さが短い。周期的構造90のそれぞれはサブ構造によって形成され、この場合、それらは個々の線92である。よってこのマーク構成が与えられると、x方向の半導体ウェーハの2つのレイヤ間のレジストレーション誤差は、マーク20内のセット50bおよび40c内の周期的構造間、およびセット40bおよび50c間の並置の量を測定することによって決定される。同様にマーク30において、y方向のいかなるレジストレーション誤差も、マーク30内のセット60bおよび70c内の並置された周期的構造間、およびセット60cおよび70b間に存在する。それぞれの方向のレジストレーション誤差が周期的構造セットの他の組み合わせの間の並置関係を通しても測定できることが当業者にはわかるだろう。例えばレジストレーション誤差は、マーク20内のセット40bおよび50b間、および40cおよび50c間の並置関係を通して測定されえる(同様に、マーク30内のセット60cおよび70c間、および60bおよび70b間)。
【0016】
好ましくは、関係のあるレジストレーション誤差のデータは、それぞれのテストゾーン中の個々の周期的構造間の距離を測定することによって集められる。したがって周期的構造のそれぞれの中にある個々のサブ構造のそれぞれについて位置を解決することは必要ない。もちろんレジストレーション誤差は、それぞれのテストゾーン内のサブ構造のそれぞれの間の距離を測定することによっても決定できる。この場合、サブ構造のそれぞれの間の距離は、電子ビーム顕微鏡、またはサブ構造の位置を解決する他の装置を利用して決定してもよい。
【0017】
マーク30において、周期的構造60a、60bおよび60cは、マーク20中の周期的構造40a、40bおよび40cに対応し、これらと同じ半導体ウェーハのレイヤ上に位置する。同様にマーク30において、周期的構造70a、70bおよび70cは、マーク20中の周期的構造50a、50bおよび50cに対応し、これらと同じ半導体ウェーハのレイヤ上に位置する。これはここでは説明のためであって、実際の使用に際してはこの通りに一致しなくてもよい(すなわち周期的構造40a、40bおよび40c、および70a、70bおよび70cが同じレイヤ上に位置し、一方、周期的構造50a、50b、50c、60a、60bおよび60cが他方のレイヤ上に位置してもよい)。アライメントマークの他の実施形態においては、それぞれ周期的構造のセット40a、50a、60aおよび70aは、端と端とが接するように配置される2つの別々の周期的構造のセットによって形成されることによって、個々の周期的構造80の軸が一致してもよい。
【0018】
周期的構造のそれぞれのセット内の周期的構造の数は、必要とされる解像度と所望の信号対雑音比とに依存する。動作に必要な線のそれぞれの長さの最小数の観点からは、その数は2つの「a」、2つの「b」および2つの「c」線が、マーク20および30のそれぞれについての半導体ウェーハの2つのレイヤのそれぞれによって提供される(すなわち70a、70b、70c、60aなどのそれぞれの中の2つの周期的構造)。
【0019】
キャリブレーションゾーンおよびテストゾーン内の周期的構造のそれぞれを形成するのに用いられるサブ構造によって、アライメントマークは、ウェーハレイヤ間のアライメントの度合いをより正確に表す重ね合わせ測定を促進する。すなわちアライメント測定は、集積回路を形成するのに用いられるそれぞれのレイヤ上のパターンに関するアライメント情報を提供するようにはたらく。部分的にはいくつかの理由によってサブ構造はより情報の多い測定を可能にする。まず、集積回路のためのパターンが形成されるときのレンズパターン配置誤差により近いレンズパターン配置誤差とともに、よりサイズの小さいサブ構造が半導体レイヤ上に形成される。パターンはウェーハレイヤ上に、「ステッパ」のようなリソグラフィ装置で形成される。半導体ウェーハ上に形成されるパターンのレンズ配置誤差は、ステッパレンズにおける収差のためにパターンの大きさおよび間隔とともに変化し、またリソグラフィ用マスク上で規定される回路パターンを露光するのに用いられる照度条件(軸をずれた照明および部分可干渉性を含む)とともに変化する。集積回路要素の微小寸法のそれに匹敵する最小寸法サイズおよびピッチを持つマークを作ることは、回路の最小寸法と同じまたは類似のマスクパターン技術を用いること(例えば同じまたは類似の光学的近接補正またはフェーズシフトマスクパターンを用いること)と同様、より似た度合いのレンズパターン配置誤差とともに形成されたマークおよび集積回路パターンを生むことになる。このようにウェーハの異なるレイヤ群上のマーク間のアライメントは、回路パターン間のアライメントをより正確に表す。ステッパレンズ収差による歪みのより詳細な情報については、Harry J. LevinsonによるLithography Process Controlを参照されたい。
【0020】
ある実施形態においては、サブ構造の寸法は回路パターンの寸法に匹敵する。例えば、線の形状をもつサブ構造は、集積回路の配線の幅にほぼ等しい幅を持つ。現在、回路配線は0.25μmにほぼ等しいか、またはこれより小さい幅を持つ。本発明のサブ構造は0.1〜0.2μmの幅を持つように作れる。しかし理解されるように、半導体製造プロセスの進歩はさらにこれらの寸法を小さくする可能性が高い。
【0021】
より小さいアライメントマークがより正確な重ね合わせ測定を提供する他の理由は、重ね合わせ測定におけるウェーハ製造非対称性の効果が低減されるからである。ウェーハ製造非対称性は、ウェーハレイヤ上に形成された構造またはパターンの形状およびサイズの、さらなるプロセスによるズレである。形状およびサイズのこれらのズレは、重ね合わせマークに影響を与え、重ね合わせ測定の精度を低下させる。
【0022】
ウェーハ構造に非対称プロファイルを生じる例示的なウェーハ製造技術は、スパッタ成膜プロセスである。スパッタリングプロセスは一般に材料のレイヤ(つまり金属)を既存のウェーハレイヤの上に施すために用いられる。通常、スパッタされる材料源、ターゲットは、ウェーハの中心の上に位置する。スパッタされる材料はターゲットからウェーハの外周縁に向かって移動し、それにより凹状のチャネル内、またはリッジ状の凸部上で、材料の非対称堆積を生じる。具体的には、へこみのあるチャネルの側壁間の堆積された材料の不均一な累積は、凹状チャネルの見かけの位置をチャネルの一方の側へずらしえる。
【0023】
非対称寸法を生じえる他の例示的な製造技術は、ウェーハレイヤの機械化学平坦化(CMP)である。ある状況下で、ウェーハレイヤは、材料の次レイヤが堆積される前にCMPを経る。CMP装置は一般にウェーハレイヤにわたり特定の向きに移動する。したがってCMP装置は最初にアライメントマークの片面に遭遇し、それからマークの対向する側へと移る。これによりアライメントマークのズレと、見かけのサイズの変化とが生じる。なぜなら最初に遭遇されたアライメントマークの側が、マークの対向する側よりもより多く平坦化されるからである。
【0024】
どちらの状況においても、アライメントマークに製造プロセスの結果として生じる非対称性は、より小さいマークを形成することによって低減されえる。スパッタリングプロセスに関しては、凹状チャネルまたはリッジがより小さいほど、それぞれの側壁表面上により累積するスパッタ材料がより少なくなるので、それにより形状およびサイズの非対称性のズレもより小さくなる。CMPプロセスに関しては、より小さい寸法を持つマークはやはりより小さい度合いしかズレない。ウェーハ製造非対称性に関するより詳細な情報については、Harry J. LevinsonによるLithography Process Controlを参照されたい。
【0025】
より小さいサブ構造を持つ周期的構造のそれぞれを形成することによって、それぞれの周期的構造は、回路パターンが形成されるレンズパターン配置誤差とともにウェーハレイヤ上に配置される。サブ構造は、線、正方形、円など形状(上から平面的に見たとして)の多くの変化形でありえる。以下に説明されるように、本発明は多くの異なる周期的構造およびサブ構造の形状およびサイズとともに実施されえる。本発明の構造およびサブ構造は一般にリソグラフィプロセスによって形成されるので、これらの構造およびサブ構造は完全には対称な形状を持たないことに注意されたい。
【0026】
図2は、図1で説明したアライメントパターン10のようなアライメントパターンを利用するアライメントスキャナのある実施形態の概略図である。本発明のアライメントマークはウェーハ100上に形成されることによってウェーハ100のレイヤ間のいかなる重ね合わせ誤差も決定されえる。ウェーハ100はステージ200上にセットされ、測定プロセスが始まる。ステージ200は典型的には、スキャンヘッド230とともにコンピュータ190の制御のもとでモータ駆動される。スキャンヘッド230はコンピュータ190とともに実際の測定を実行するように設けられ、コンピュータ190はスキャンヘッド230から受け取られたデータから実際の計算を行う。ウェーハ100およびスキャンヘッド230の間でスキャンの動きを提供することに関して、2つの選択肢がある。一つはステージ200をコンピュータ190によってスキャンヘッド230に対して動かすことであり、もう一つは、スキャンヘッド230をスキャンアクチュエータ240(例えばピエゾ電気アクチュエータ)を介してコンピュータ190によってステージ200に対して動かすことである。どちらの手法も使えるが、スキャンヘッド230を動かし、ステージ200を静止状態に維持するほうが好ましい。これはスキャンヘッドはウェーハを位置づけるステージに対してサイズおよび重さの点でずっと小さく作ることが可能だからである。あるいはスキャニングは、ヘッド全体を動かすことによって、または光学要素のいくつかだけを動かすことによって実現できる。
【0027】
図2のアライメントスキャナの構築および動作の説明に進む前に、いくつかの定義について言及する必要がある。図2においては測定の幾何学的配置を規定する2つの座標系がある。一つはウェーハ100の座標軸であり、x、yおよびzとよばれる(図1参照)。もう一つはスキャンヘッド230の座標軸であり、x’、y’およびz’とよばれ、図2に示される。
【0028】
図2に示すように、x’軸は水平であり、図の平面内にあり、z’軸は垂直であり、図の平面内にあり、y’軸(測定の軸)は図の平面に垂直であり、図の中に入り込む向きである。よってこの特定の例においては、測定はグレーティング30(図1参照)上でなされる。まずウェーハ100はステージ200上に置かれ、ステージ200はそれからステージ200を回転することによって、ウェーハ100上のグレーティング20および30のxおよびy方向がスキャンヘッド230のx’およびy’軸に実質的に平行であるようにアラインされる。もし2つの軸の系が正確にアラインしないなら、2つの照らされた点の測定パス間に引かれた仮想的な線は、ウェーハ100上で測定されていない軸に平行にならない。これら点は、アライメントスキャニングビームがアライメントグレーティングに入射する点である。この仮想的な線が、測定されていない軸に平行でないとき、ある点は、アライメント測定に用いられるグレーティングパターン中の他の点に対して測定軸に沿ってわずかに進むことになる。2つの軸の系が正確にはアラインしていないとき、ミスアライメントはシステム−ウェーハオフセットとして扱われる。
【0029】
スキャンヘッド230内に内蔵された図2のシステムの光学要素としては、光のビーム300を回折格子135に導く光源140を含み、ここで光は2つの光ビーム210aおよび210bに分けられる。ある適当な光源140はダイオードレーザでありえる。回折格子135は、ガラス基板上にある不透明なコーティングの等間隔の線からなり、ロンキ・ルーリングとして知られるよく使われる光学要素を構成する。一般に知られるように入射光ビームを分けるために、ロンキ・ルーリングタイプのグレーティングを用いることによって複数の光ビームが得られる。それから光ビームのうち所望の数だけが、例えば必要のない光ビームを阻止することによって利用される。第1回折次数の光は、角度αによって分離されえる。ここでsinα=2λ/Sであり、λは照明波長、Sはグレーティング間隔である。2つの第1回折次数は、2つの照明ビーム210aおよび210bを提供するのに用いられる。アライメントスキャナの他の実施形態においては、2つ以上の光ビームが利用されてもよい。このようなグレーティングの特性に関する議論は、Warren J. Smithによる「Modern Optical Engineering」McGraw−Hill刊、1990年、154ページ に見られる。電子顕微鏡のいくつかの実施形態は米国特許第6,023,338号に記載されていて、ここで参照によって援用される。
【0030】
光ビーム210aおよび210bはこんどは第1ビームスプリッタ120を通して導かれる。このビームスプリッタはレンズ110(例えば単一の要素または複数の要素からなるレンズ)に向けられた2つの伝送された光ビームを等しい部分に分けて伝送し、反射するように設計されている。このレンズでは2つの伝送された光ビームがレンズ110によって、図3に示すようにウェーハ100上のグレーティング30上で点250aおよび250bに収束される。
【0031】
ウェーハ100上の点250aおよび250bのそれぞれからの反射された光はそれからレンズ110によって集められ、第1ビームスプリッタ120に当たる。ここで光は実質的に90度曲げられ検出器175へと向かう。2つのビームを分離するため、それらはレンズ165によって検出器175上に映される。この検出器は図2に示すように2つの検出要素175aおよび175bを備えている。非回折のゼロ次光は検出器要素間で収束され、測定には影響しない。それぞれの要素の信号は対応するA/Dコンバータ(180aおよび180b)によってディジタル化され、コンピュータ190によって取りこまれる。図3および4を参照して後述のように、2つの信号間の位相差がそれからコンピュータ190によって決定される。フィルムスタックの2つのレイヤ間のレジストレーション誤差は、測定がなされる方向においてウェーハ100の連続するレイヤのそれぞれの上でのグレーティングパターンの一部の間のミスアライメントに正比例する。
【0032】
まず光ビームを点250aおよび250bに収束させるために、スキャンヘッド230は、コンピュータ190の制御のもとでフォーカスアクチュエータ260によってz方向に動かされ、必要に応じてスキャンヘッド230を物理的に上げ下げする。またウェーハ100のx軸を測定するために、第2光学系が使用されえる。ウェーハ100は光ビーム250aおよび250bに対して90度回転され、またはスキャンヘッド230が90度回転されえる。y’軸について上述したのと同じように、グレーティング20を用いてx’軸に沿った2回目の測定がなされる。典型的には、ステージ200を動かさずにスキャンヘッド230がウェーハ100に対して動かされる。これは光学スキャンヘッドがステージ200よりもずっと小さく、軽く作られているからである。他のアライメントスキャナとともに光学スキャナのいくつかの実施形態は上述の米国特許第6,023,338号に記載されている。
【0033】
本発明のマークをスキャンするのに用いられるアライメントスキャナの他の実施形態においては、光の複数のビームがさまざまな技法で作られる。これらのさまざまな技法は回折格子を使う必要はない。一つの代わりの方法は、単一光源140に、光を伝送する別々の媒体を接続することである。例えば光ファイバを光源140に接続して、それぞれのファイバが光源140からの光を伝送し、それによって光のビームがアライメントマークに向かうように導く。複数の光ビームを作る他の代替技法は、単一の光源140を所望の光ビームのそれぞれについて使うことである。もちろん複数の光源を使うこと、および光源に接続された光ファイバを使うことをどのように組み合わせてもよい。
【0034】
上述の測定プロセスによって生成される波形が図4に示される。波形410aはディジタイザ180a(図2)の出力に対応し、波形410bはディジタイザ180b(図2)の出力に対応する。図4の縦軸は検出された光の大きさを表し、横軸は経過時間を表す。スキャン速度は実質的に一定なので、経過時間はスキャン距離に比例し、その結果、水平軸はスキャン方向における位置をも表す。
【0035】
ウェーハ100上の2つのレイヤ間のミスアライメントがどのように決定されるかを説明するために、図4の波形410aおよび410bは、ウェーハ100の軸(x、y、およびz)とスキャンヘッド230の軸(x’、y’およびz’)との間のオフセットとともに、そのようなミスアライメントのために描かれている。以下の説明は、図3および4を同時に参照することを必要とする。図4において波形410aおよび410bは、スキャンヘッド230がウェーハ100を横切って進む(ここではy軸に沿って)ときの互いの関係を示す。これらの波形は全て4つのセグメント430、440、450および460に分割して示されている。セグメント430はキャリブレーションゾーンをスキャンすることによって得られる信号を表し、このキャリブレーションゾーンは周期的構造セット70a(図3参照)を含む。セグメント440は第1テストゾーンをスキャンすることによって得られる信号を表し、このテストゾーンは周期的構造のセット70bおよび60cを含む。セグメント450は第2テストゾーンをスキャンすることによって得られる信号を表し、このテストゾーンは周期的構造のセット60bおよび70cを含む。セグメント460はもう一つのキャリブレーションゾーンをスキャンすることによって得られる信号を表し、このキャリブレーションゾーンは周期的構造セット60aを含む。波形中の山は、アライメントマーク中に周期的構造のそれぞれが検出されたことを示す。
【0036】
信号410aおよび410bの第1セグメントは、第1キャリブレーションセグメントである。なぜならスキャンヘッドがy軸正の方向に平行しているときであって、両方の信号は、両方の照明点250aおよび250bがマーク30の線70aに当たる時に対応するからである。セグメント430において、測定軸に対して点250aおよび250bの相対位置を決定することによってシステム−ウェーハオフセットが決定される。これは構造セット70a内ではアライメント誤差がないからである(すなわち半導体ウェーハ100の第1レイヤの軸とスキャンヘッド230とのオフセットは、半導体ウェーハの第1レイヤによって与えられるグレーティングの該当部分で決定される)。
【0037】
第2セグメント440は測定セグメントである。半導体ウェーハ100の2つのレイヤのそれぞれによって寄与されるマーク30の部分をスキャンすることによって、信号410aおよび410bのそれぞれが与えられるからである(例えば点250aは第2レイヤの線60c上に当たり、点250bは第1レイヤの線70b上に当たる)。
【0038】
第3セグメント450は第2測定セグメントである。半導体ウェーハ100の2つのレイヤのそれぞれによって寄与されるマーク30の部分をスキャンすることによって、信号410aおよび410bのそれぞれが与えられるからである(例えば点250aは第1レイヤの線70c上に当たり、点250bは第2レイヤの線60b上に当たる)。
【0039】
信号410aおよび410bの第4セグメントは、第2キャリブレーションセグメントである。なぜなら両方の信号がウェーハ100の第2レイヤ上の線60aから得られるからである(すなわちスキャンヘッド230がy軸正の方向に平行しているときであって、両方の信号は、両方の照明点250aおよび250bが線60aに当たる時に対応するからである)。セグメント460において、測定軸に対して点250aおよび250bの関係が決定される(すなわち半導体ウェーハ100の第2レイヤの軸とスキャンヘッド230とスキャンヘッド230とのオフセットは、半導体ウェーハの第2レイヤによって与えられるマークの部分で決定される)。
【0040】
コンピュータ190によって実行される計算は、4つのセグメント430、440、450および460中の位相差の決定からなる。セグメント430および460中の位相差は、前述のように、ウェーハ100上のパターンとスキャンヘッド230の軸との不完全な回転アライメントによる場合がある。照明点間の固定した位相差を作りえる測定誤差の原因は、電気的遅延および光学的収差である。
【0041】
ウェーハ100の2つのレイヤ間のy軸レジストレーション誤差を決定する第1ステップは、セグメント440および450中の波形410aおよび410b間の平均位相誤差を得ることである。第2ステップは、キャリブレーションセグメント430および460をスキャンすることから得られる同じ波形のオフセット誤差を引くことである。この補正され平均化されたレジストレーション誤差は、ウェーハ100の2つのレイヤ間の実際のレジストレーション誤差になる。
【0042】
レジストレーション誤差はD=P*φによって計算される。ここでPはグレーティング間隔、φは2つの信号間のキャリブレートされた位相差であり、
【0043】
φ=0.5(φc−φb)−0.5(φa+φd)
で与えられる。
【0044】
この方程式のパラメータは以下のように定義される。
φa=期間430中の信号410aおよび410b間の位相差、
φb=期間440中の同信号間の位相差、
φc=期間450中の同信号間の位相差、および
φd=期間460中の同信号間の位相差。
【0045】
これらの方程式において、位相は期間の分数部分として表現されるので、1つの位相は1つの期間に等しい。
【0046】
2つのテストセグメントは、それぞれの照明点250aおよび250bが、レジストレーション誤差が測定されるレイヤのそれぞれ上に形成された周期的構造のセットにわたってスキャンするように与えられる。例えば図3において、照明点250aは、あるレイヤ上に形成された線60cを通り、異なるレイヤ上に形成された線70cを通る。同様に、照明点250bは、ウェーハ100の2つのレイヤのそれぞれの上に形成された線70bおよび60bを通る。2つのテストゾーンにわたって照明点を誘導することによって、2つのレイヤ間のレジストレーション誤差が2度測定される。レジストレーション誤差は、1度目は第1テストゾーンで測定され、ここで照明点250aは第2レイヤ上に形成された線(60c)を通過し、照明点250bは第1レイヤ上に形成された線(70b)を通過する。レジストレーション誤差は、2度目は第2テストゾーンで測定され、ここで照明点250aは第1レイヤ上に形成された線(70c)を通過し、照明点250bは第2レイヤ上に形成された線(60b)を通過する。平均レジストレーション誤差は、これら2つのレジストレーション誤差値を平均化することによって得られる。
【0047】
2つの測定されたレジストレーション誤差値を平均化することによって、ウェーハの異なるレイヤ上に形成された線の間、および2つの測定ビームの間の非対称性によって発生する測定誤差を実質的に低減することができる。その結果、平均レジストレーション誤差値は、個々に測定されたレジストレーション誤差値のどちらかよりもより正確になる。2つの別々のミスレジストレーション値を平均化する方法によって説明される非対称性の原因についてのさらなる記述は米国特許出願、弁護士事件番号KLA1P026を参照されたい。
【0048】
図5は、本発明の他の実施形態によるアライメントマーク21の上から見た平面図を表す。アライメントマーク21は、2つのウェーハレイヤ間のレジストレーション誤差を決定する2つのテストゾーンを含む。第1テストゾーンは、周期的構造セット40bおよび50cを含み、一方、第2テストゾーンは、周期的構造セット50bおよび40cを含む。周期的構造セットのそれぞれは、個別の周期的構造80を含む。個別の周期的構造はさらに、複数のサブ構造82によって形成される。個別の周期的構造80は、細長く、四角の形状であり、互いに平行である。サブ構造は直線状の形をしており、やはり互いに平行である。第1テストゾーン(40bおよび50c)および第2テストゾーン(50bおよび40c)の中の周期的構造は、構造が、対向する構造セット中の対応する構造の近傍に位置し、対向する構造のそれぞれのペアが同じ軸を持つようにアラインされる。アライメントマークの他の実施形態においては、それぞれのテストゾーン内の構造セットは、ウェーハの異なる領域に置かれることによって、そのセットが互いに近傍にないこともありえることに注意されたい。しかし構造はやはり、個々の構造を対向する構造と軸を同じにするように形成されるべきである。
【0049】
図6は、本発明の他の実施形態であるアライメントマーク22の上から見た平面図を表す。アライメントマーク22は2つのキャリブレーションゾーンおよび一つのテストゾーンを含む。この実施形態においては、2つのキャリブレーションゾーンは、システム−ウェーハオフセット値が決定されることを可能にする。単一のテストゾーンは、図1のマーク10について必要なように2つの別個のミスレジストレーション値を平均化する必要なく、ミスレジストレーション値を提供する。第1キャリブレーションゾーンは、周期的構造セット40aを含み、第2キャリブレーションゾーンは周期的構造セット50aを含む。テストゾーンは周期的構造セット40bおよび50cを含む。個別の周期的構造の全ては細長く、四角形の形状である。サブ構造は直線状の形状である。
【0050】
図7は、本発明のさらに他の実施形態であるアライメントマーク23の上から見た平面図を表す。図1のマーク20と同様の構成において、アライメントマーク23は2つのキャリブレーションゾーンおよび2つのテストゾーンを含む。周期的構造のセット740aおよび750aは、2つのキャリブレーションゾーンのそれぞれを形成し、細長く、四角形の形状の周期的構造780をそれぞれ含む。周期的構造のセット740b、740c、750bおよび750cは、2つのテストゾーンを形成し、セットのそれぞれは、細長く、四角形の形状の周期的構造790を含む。周期的構造780および790は、それぞれ、個別のサブ構造782および792によって形成される。サブ構造782および792は正方形の形状をして、それぞれの周期的構造内でロウおよびカラムに配列される。回路パターンのサイズにより匹敵するサイズでサブ構造782および792のそれぞれを形成することによって、ミスレジストレーションを決定する精度が増す。理解されるように、サブ構造はさまざまな形状のどれであってもよい。例えばサブ構造は三角形でも円形でもよい。またサブ構造は、周期的構造内のさまざまな形成物でありえる。例えばそれぞれの周期的構造内で、対応するサブ構造がランダムのパターンまたは六角形のパターンで形成されてもよい。
【0051】
異なるウェーハレイヤ上に形成された正方形の形をしたサブ構造群の間で区別をするために、あるレイヤ上のサブ構造は中が詰まった正方形パターンで表してあり、一方、別のレイヤ上のサブ構造は正方形の輪郭で表されている。これらの正方形の輪郭による表現は、中が詰まった正方形のサブ構造の形成物を実際には表す。この表現法は図8にもあてはまる。
【0052】
図8は、本発明のさらに他の実施形態であるアライメントマーク24の上から見た平面図を表す。図5のマーク21と同様の構成において、アライメントマーク24は2つのテストゾーンを含む。一つのテストゾーンは、周期的構造のセット840bおよび850cを含む。もう一つのテストゾーンは、周期的構造のセット850bおよび840cを含む。個別の周期的構造880によって形成された構造のセットのそれぞれは正方形の形をしている。周期的構造880は、等しい間隔のロウおよびカラムで配置されている。周期的構造のそれぞれはさらに、サブ構造882によって形成され、これらもまた正方形の形をしている。サブ構造882は周期的構造880のそれぞれの中でロウおよびカラムで配置されている。理解されるように、個別の周期的構造およびサブ構造はさまざまな形状をとりえる。マーク24は、互いに直角である2つの異なる向きのミスレジストレーション値を測定するのに用いられえる。これはアライメントマーク24が同じ繰り返し構造パターンを直交する向きに持つからである。マーク24は、ミスレジストレーションが測定されるそれぞれの向きについて一つのマークを持つ必要性をなくす。マーク24のバリエーションとして、キャリブレーションゾーンがマーク24のそれぞれのエッジ上に形成されることによって、システムウェーハオフセットがそれぞれの測定方向について決定されてもよい。
【0053】
図9は、本発明のさらに他の実施形態であるアライメントマーク25の上から見た平面図を表す。図6のマーク22と同様の構成において、アライメントマーク25は2つのキャリブレーションゾーンおよび1つのテストゾーンを含む。周期的構造のセット940aは、キャリブレーションゾーンの一つを形成し、周期的構造のセット950aは、第2のキャリブレーションゾーンを形成する。周期的構造のセット940bおよび950cはテストゾーンを形成する。周期的構造のそれぞれは個別の周期的構造980によって形成される。周期的構造は、構造のセットのそれぞれの中でロウおよびカラムで配置されている。この周期的構造はさらに、個別のサブ構造982によって形成されている。周期的構造980は正方形の形をしている。サブ構造982は、互いに間隔を置いて配置され、それぞれの正方形の形をした周期的構造980の長さを持つ平行な線群である。より小さいサイズのサブ構造980は、正方形の形をした周期的構造980を形成することによってできあがり、これは図1の長方形の形をした周期的構造80と対比される。特に、直線状のサブ構造982は、図1の直線状のサブ構造82よりも長さが短い。比較的小さいサブ構造982は、回路パターンのサイズにより匹敵する。これはさらに、レジストレーション誤差の測定においてより高い精度を実現する利点を有する。
【0054】
本発明の他の実施形態においては、あるテストゾーン内の周期的構造は、サブテスト構造からなり、一方、異なるテストゾーン内の周期的構造のそれぞれはサブテスト構造からはなっておらず、それぞれが単一のパターン形成物である。同様に本発明の他の実施形態においては、あるキャリブレーションゾーン内のキャリブレーション構造は、サブキャリブレーション構造からなり、一方、異なるキャリブレーションゾーン内のキャリブレーション構造のそれぞれはサブキャリブレーション構造からはなっていない。本発明のさらなるバリエーションは、さまざまな形をしたサブテスト構造およびサブキャリブレーション構造が単一のアライメントマーク内に形成されたマークを含む。例えば、あるテストゾーン(またはキャリブレーションゾーン)は、直線状のサブテスト構造を含み、異なるテストゾーン(またはキャリブレーションゾーン)は、円形のサブテスト構造を含む。または例えば、あるテストゾーン(またはキャリブレーションゾーン)は、円形のサブテスト構造を含み、異なるテストゾーン(またはキャリブレーションゾーン)は、正方形のサブテスト構造を含む。また例えば、あるテストゾーン(またはキャリブレーションゾーン)は、直線状のサブテスト構造を含み、異なるテストゾーン(またはキャリブレーションゾーン)は、正方形のサブテスト構造を含む。
【0055】
本発明はいくつかの好ましい実施形態に基づいて説明されてきたが、本発明の範囲に入る変更、組み合わせ、および等価物が存在する。本発明の方法および装置を実施する多くの代替方法が存在することに注意されたい。したがってそのような全ての変更、組み合わせ、および等価物が本発明の真の精神および範囲に入るものとして、以下に添付の特許請求の範囲はそれらを含むように解釈されるべきであることに注意されたい。
【図面の簡単な説明】
【図1】半導体ウェーハスタック内の異なるレイヤ間のアライメント誤差を測定するための本発明のある実施形態によるアライメントマークの上から見た平面図である。
【図2】本発明によるアライメント測定システムのある実施形態を示す説明図である。
【図3】測定のために用いられる2つの光ビームの瞬間的な位置を表す、y方向における重ね合わせ誤差を測定するための本発明の実施形態によるアライメントマークの上から見た平面図である。
【図4】図3の光ビームのそれぞれによって得られた信号の関係の時間と位置を示す説明図である。
【図5】2つのテストゾーンを含むアライメントマークの他の実施形態の上から見た平面図である。
【図6】2つのキャリブレーションゾーンおよび1つのテストゾーンを含むアライメントマークの他の実施形態の上から見た平面図である。
【図7】長方形のサブテスト構造および正方形の形をしたサブ構造を含むアライメントマークの他の実施形態の上から見た平面図である。
【図8】正方形の形をしたサブ構造を含むアライメントマークの他の実施形態の上から見た平面図である。
【図9】正方形の形をした周期的構造および直線状のサブ構造を含むアライメントマークの他の実施形態の上から見た平面図である。

Claims (38)

  1. 半導体デバイスの第1レイヤおよび第2レイヤ間の相対位置を測定するのに用いられるマークであって、前記第2レイヤは前記第1レイヤとは異なり、前記マークは、
    第1部分および第2部分を含む第1テストゾーンであり、前記第1部分は前記第1レイヤ上に形成された複数のテスト構造を含み、前記第2部分は前記第2レイヤ上に形成された複数のテスト構造を含み、前記テスト構造のそれぞれはサブテスト構造からなる、第1テストゾーンと、
    第1部分および第2部分を含む第2テストゾーンであり、前記第1部分は前記第1レイヤ上に形成された複数のテスト構造を含み、前記第2部分は前記第2レイヤ上に形成された複数のテスト構造を含み、前記テスト構造のそれぞれはサブテスト構造からなり、前記第1テストゾーンの前記第1部分および前記第2部分は、それぞれ前記第2テストゾーンの前記第2部分および前記第1部分の近傍に位置する、第2テストゾーンと、
    を備えるマーク。
  2. 請求項1に記載のマークであり、前記第1レイヤの前記サブテスト構造は前記第2レイヤを通して検出可能であるマーク。
  3. 請求項1に記載のマークであり、前記テスト構造は、細長い長方形の輪郭を持ち、前記テスト構造のそれぞれは互いに平行であるマーク。
  4. 請求項3に記載のマークであり、前記サブテスト構造は直線であり、前記直線は互いに平行であり、それぞれの対応するテスト構造の長手方向に沿ってアラインされているマーク。
  5. 請求項3に記載のマークであり、前記サブテスト構造は正方形であり、前記正方形はロウおよびカラムの配置をとるマーク。
  6. 請求項3に記載のマークであり、前記サブテスト構造は円形であり、前記円形はロウおよびカラムの配置、または六角形の配置をとるマーク。
  7. 請求項1に記載のマークであり、前記テスト構造は正方形の輪郭を持ち、それぞれのテストゾーン内の前記テスト構造はロウおよびカラムの配置をとるマーク。
  8. 請求項7に記載のマークであり、前記サブテスト構造は正方形であり、前記正方形はロウおよびカラムの配置をとるマーク。
  9. 請求項7に記載のマークであり、前記サブテスト構造は円形であり、前記円形はロウおよびカラムの配置、または六角形の配置をとるマーク。
  10. 請求項1に記載のマークであり、前記テスト構造のそれぞれは、実質的に均一な幅mを持ち、それぞれのテストゾーン内の前記テスト構造のそれぞれは実質的に均一な距離nによって分離されているマーク。
  11. 請求項10に記載のマークであり、前記幅mおよび前記距離nは実質的に互いに等しいマーク。
  12. 請求項1に記載のマークであり、前記サブテスト構造は、前記半導体デバイス内に形成された集積回路要素の最小寸法の幅にほぼ等しいサイズのサブテスト構造の幅を持つマーク。
  13. 半導体デバイスの第1レイヤおよび第2レイヤ間の相対位置を測定するのに用いられるマークであって、前記第2レイヤは前記第1レイヤとは異なり、前記マークは、
    第1部分および第2部分を含む第1テストゾーンであり、前記第1部分は前記第1レイヤ上に形成された複数のテスト構造を含み、前記第2部分は前記第2レイヤ上に形成された複数のテスト構造を含み、前記テスト構造のそれぞれはサブテスト構造からなる、第1テストゾーンと、
    第1キャリブレーションゾーンおよび第2キャリブレーションゾーンであり、前記第1キャリブレーションゾーンは前記第1レイヤ上に形成された複数のキャリブレーション構造を含み、前記第2キャリブレーションゾーンは前記第2レイヤ上に形成された複数のキャリブレーション構造を含み、前記キャリブレーション構造のそれぞれはサブキャリブレーション構造を含み、前記第1テストゾーンは、前記第1および第2キャリブレーションゾーンの間で、かつ近傍に位置する、第1キャリブレーションゾーンおよび第2キャリブレーションゾーンマークと、
    を備えるマーク。
  14. 請求項13に記載のマークであり、さらに第1部分および第2部分を含む第2テストゾーンを備えるマークであり、
    前記第1部分は前記第1レイヤ上に形成された複数のテスト構造を含み、
    前記第2部分は前記第2レイヤ上に形成された複数のテスト構造を含み、
    前記テスト構造のそれぞれはサブテスト構造からなり、
    前記第1テストゾーンの前記第1部分および前記第2部分は、それぞれ前記第2テストゾーンの前記第2部分および前記第1部分の近傍に位置し、
    前記第1および第2テストゾーンは、前記第1および第2キャリブレーションゾーンの間に位置するマーク。
  15. 請求項14に記載のマークであり、前記テスト構造および前記キャリブレーション構造は、細長い長方形の輪郭を持ち、それぞれのテストゾーン内の前記テスト構造のそれぞれ、およびそれぞれのキャリブレーションゾーン内のそれぞれの前記キャリブレーション構造は互いに平行であるマーク。
  16. 請求項15に記載のマークであり、前記サブテスト構造および前記サブキャリブレーション構造は直線であり、前記直線は互いに平行であり、それぞれの対応するテスト構造およびキャリブレーション構造の長手方向に沿ってアラインされているマーク。
  17. 請求項14に記載のマークであり、前記サブテスト構造および前記キャリブレーション構造は正方形の輪郭を持ち、それぞれのテストゾーンおよびキャリブレーションゾーン内の前記テスト構造およびキャリブレーション構造はロウおよびカラムの配置をとるマーク。
  18. 請求項17に記載のマークであり、前記サブテスト構造および前記サブキャリブレーション構造は直線であり、前記直線は互いに平行であるマーク。
  19. 請求項17に記載のマークであり、前記サブテスト構造および前記サブキャリブレーション構造は円であり、前記円はロウおよびカラムの配置をとるマーク。
  20. 請求項14に記載のマークであり、前記テスト構造およびキャリブレーション構造のそれぞれは、実質的に均一な幅mを持ち、それぞれのテストゾーン内の前記テスト構造のそれぞれは実質的に均一な距離nによって分離され、それぞれのキャリブレーションゾーン内の前記キャリブレーション構造のそれぞれもまた実質的に均一な距離nによって分離されるマーク。
  21. 請求項20に記載のマークであり、前記幅mおよび前記距離nは実質的に互いに等しいマーク。
  22. 請求項20に記載のマークであり、前記サブテスト構造および前記サブキャリブレーション構造は、それぞれ、前記半導体デバイス内に形成された集積回路要素の最小寸法の幅にほぼ等しいサイズのサブテスト構造の幅およびサブキャリブレーション構造の幅を持つマーク。
  23. 半導体デバイスの第1レイヤおよび第2レイヤ間の相対位置を測定するのに用いられるマークであって、前記第2レイヤは前記第1レイヤとは異なり、前記マークは、
    第1部分および第2部分を含む第1テストゾーンであり、前記第1部分は前記第1レイヤ上に形成された複数のテスト構造を含み、前記第2部分は前記第2レイヤ上に形成された複数のテスト構造を含む、第1テストゾーンと、
    第1部分および第2部分を含む第2テストゾーンであり、前記第1部分は前記第1レイヤ上に形成された複数のテスト構造を含み、前記第2部分は前記第2レイヤ上に形成された複数のテスト構造を含み、前記テスト構造のそれぞれはサブテスト構造からなり、前記第1テストゾーンの前記第1部分および前記第2部分は、それぞれ前記第2テストゾーンの前記第2部分および前記第1部分の近傍に位置する、第2テストゾーンと、
    を備えるマーク。
  24. 請求項23に記載のマークであり、前記テスト構造は、細長い長方形の輪郭を持ち、前記テスト構造のそれぞれは互いに平行であるマーク。
  25. 請求項23に記載のマークであり、前記テスト構造は正方形の輪郭を持ち、それぞれのテストゾーン内の前記テスト構造はロウおよびカラムの配置をとるマーク。
  26. 請求項23に記載のマークであり、前記第2テストゾーン内の前記サブテスト構造は直線であり、前記直線は互いに平行であるマーク。
  27. 請求項23に記載のマークであり、前記第2テストゾーン内の前記サブテスト構造は円形であるマーク。
  28. 請求項23に記載のマークであり、前記第1テストゾーン内の前記テスト構造はサブテスト構造からなるマーク。
  29. 請求項28に記載のマークであり、前記第1テストゾーンの前記サブテスト構造は円形であり、前記第2テストゾーンの前記サブテスト構造は直線であるマーク。
  30. デバイスの第1レイヤおよび第2レイヤ間の相対位置を測定する方法であって、前記第2レイヤは前記第1レイヤとは異なり、前記方法は、
    前記2つのレイヤ間の前記相対位置の測定を促進するために第1テストゾーンおよび第2テストゾーンを設けることであって、それぞれのテストゾーンは第1部分および第2部分を含み、前記第1部分は前記第1レイヤ上に形成された複数のテスト構造を含み、前記第2部分は前記第2レイヤ上に形成された複数のテスト構造を含み、前記テスト構造のそれぞれはサブテスト構造からなり、前記第1テストゾーンの前記第1部分および前記第2部分は、それぞれ前記第2テストゾーンの前記第2部分および前記第1部分の近傍に位置する、第1テストゾーンおよび第2テストゾーンを設けることと、
    それぞれのテストゾーンの部分にわたり第1パスにおいてビームをスキャンすることであって、少なくとも前記ビームの一部は、前記ビームが前記デバイスに入射した後、前記デバイス表面において反射する、スキャンすることと、
    それぞれのテストゾーンの部分にわたり第2パスにおいてビームをスキャンすることであって、前記第1および第2パスは物理的に互いに分離され、また少なくとも前記ビームの一部は、前記ビームが前記デバイスに入射した後、前記デバイス表面において反射する、スキャンすることと、
    前記第1パスからの前記ビームの反射された部分の強度に比例する第1信号を発生することと、
    前記第2パスからの前記ビームの反射された部分の強度に比例する第2信号を発生することと、
    前記第1および第2レイヤの特性間の差によって生じる前記第1および第2信号間の差が最小になるように、前記第1信号および前記第2信号に基づいて前記2つのレイヤ間のレジストレーション誤差を計算すること、
    とを備える方法。
  31. 請求項30に記載の方法であり、前記テスト構造は、細長い長方形の輪郭を持ち、前記テスト構造のそれぞれは互いに平行であるマーク。
  32. 請求項31に記載のマークであり、前記サブテスト構造は直線であり、前記直線は互いに平行であり、それぞれの対応するテスト構造の長手方向に沿ってアラインされているマーク。
  33. 請求項31に記載のマークであり、前記サブテスト構造は円形であり、前記円形はロウおよびカラムの配置をとるマーク。
  34. 請求項30に記載のマークであり、前記テスト構造は正方形の輪郭を持ち、それぞれのテストゾーン内の前記テスト構造はロウおよびカラムの配置をとるマーク。
  35. 請求項34に記載のマークであり、前記サブテスト構造は円形であり、前記円形はロウおよびカラムの配置をとるマーク。
  36. 請求項30に記載の方法であり、前記2つのレイヤ間の前記レジストレーション誤差は、第1レジストレーション誤差および第2レジストレーション誤差を平均することによって計算され、前記第1レジストレーション誤差は前記第1信号に基づき、前記第2レジストレーション誤差は前記第2信号に基づく方法。
  37. 請求項3に記載のマークであって、前記サブテスト構造は円形であり、前記円形はランダムな配置をとるマーク。
  38. 請求項7に記載のマークであって、前記サブテスト構造は円形であり、前記円形はランダムな配置をとるマーク。
JP2002523551A 2000-09-01 2001-08-30 改善された重ね合わせアライメント測定マーク Pending JP2004507901A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/654,318 US6486954B1 (en) 2000-09-01 2000-09-01 Overlay alignment measurement mark
PCT/US2001/027365 WO2002018871A1 (en) 2000-09-01 2001-08-30 Improved overlay alignment measurement mark

Publications (2)

Publication Number Publication Date
JP2004507901A true JP2004507901A (ja) 2004-03-11
JP2004507901A5 JP2004507901A5 (ja) 2008-10-16

Family

ID=24624362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002523551A Pending JP2004507901A (ja) 2000-09-01 2001-08-30 改善された重ね合わせアライメント測定マーク

Country Status (4)

Country Link
US (1) US6486954B1 (ja)
EP (1) EP1328774A4 (ja)
JP (1) JP2004507901A (ja)
WO (1) WO2002018871A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043169A (ja) * 2005-08-02 2007-02-15 Asml Netherlands Bv 位置合わせ、および位置合わせマーク
JP2008021984A (ja) * 2006-06-20 2008-01-31 Asml Netherlands Bv 角度分解したスペクトロスコピーリソグラフィの特性解析方法および装置
US8497997B2 (en) 2009-06-23 2013-07-30 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JP2014225648A (ja) * 2013-04-23 2014-12-04 大日本印刷株式会社 インプリント用モールドおよびインプリント方法
JP2014225649A (ja) * 2013-04-23 2014-12-04 大日本印刷株式会社 インプリント用モールドおよびインプリント方法
WO2015151323A1 (ja) * 2014-04-01 2015-10-08 大日本印刷株式会社 インプリント用モールドおよびインプリント方法

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6732890B2 (en) * 2000-01-15 2004-05-11 Hazelett Strip-Casting Corporation Methods employing permanent magnets having reach-out magnetic fields for electromagnetically pumping, braking, and metering molten metals feeding into metal casting machines
US6689519B2 (en) 2000-05-04 2004-02-10 Kla-Tencor Technologies Corp. Methods and systems for lithography process control
US7541201B2 (en) 2000-08-30 2009-06-02 Kla-Tencor Technologies Corporation Apparatus and methods for determining overlay of structures having rotational or mirror symmetry
US7317531B2 (en) * 2002-12-05 2008-01-08 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
IL138552A (en) 2000-09-19 2006-08-01 Nova Measuring Instr Ltd Measurement of transverse displacement by optical method
US7130029B2 (en) * 2000-09-20 2006-10-31 Kla-Tencor Technologies Corp. Methods and systems for determining an adhesion characteristic and a thickness of a specimen
US6782337B2 (en) 2000-09-20 2004-08-24 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension an a presence of defects on a specimen
US6891627B1 (en) 2000-09-20 2005-05-10 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension and overlay of a specimen
US6919957B2 (en) * 2000-09-20 2005-07-19 Kla-Tencor Technologies Corp. Methods and systems for determining a critical dimension, a presence of defects, and a thin film characteristic of a specimen
US6694284B1 (en) 2000-09-20 2004-02-17 Kla-Tencor Technologies Corp. Methods and systems for determining at least four properties of a specimen
US6673637B2 (en) 2000-09-20 2004-01-06 Kla-Tencor Technologies Methods and systems for determining a presence of macro defects and overlay of a specimen
US6812045B1 (en) 2000-09-20 2004-11-02 Kla-Tencor, Inc. Methods and systems for determining a characteristic of a specimen prior to, during, or subsequent to ion implantation
EP1319244A1 (en) 2000-09-20 2003-06-18 Kla-Tencor Inc. Methods and systems for semiconductor fabrication processes
DE10058216C1 (de) * 2000-11-23 2002-06-06 Infineon Technologies Ag Verfahren zur Bestimmung eines Abstandes periodischer Strukturen
US20030002043A1 (en) 2001-04-10 2003-01-02 Kla-Tencor Corporation Periodic patterns and technique to control misalignment
ATE286284T1 (de) * 2001-05-14 2005-01-15 Infineon Technologies Ag Verfahren zu durchführung einer ausrichtungsmessung von zwei mustern in unterschiedlichen schichten eines halbleiterwafers
US6999212B2 (en) * 2001-07-10 2006-02-14 Che-Kuei Mai Back-light module for image scanning device and method for calibrating illumination with the back-light module
US6884552B2 (en) * 2001-11-09 2005-04-26 Kla-Tencor Technologies Corporation Focus masking structures, focus patterns and measurements thereof
US7171035B2 (en) * 2002-11-06 2007-01-30 Texas Instruments Incorporated Alignment mark for e-beam inspection of a semiconductor wafer
AU2003298003A1 (en) * 2002-12-05 2004-06-30 Kla-Tencor Technologies Corporation Apparatus and methods for detecting overlay errors using scatterometry
US7440105B2 (en) * 2002-12-05 2008-10-21 Kla-Tencor Technologies Corporation Continuously varying offset mark and methods of determining overlay
WO2004090979A2 (en) * 2003-04-08 2004-10-21 Aoti Operating Company, Inc Overlay metrology mark
WO2004090978A2 (en) * 2003-04-08 2004-10-21 Aoti Operating Company, Inc. Overlay metrology mark
US7075639B2 (en) 2003-04-25 2006-07-11 Kla-Tencor Technologies Corporation Method and mark for metrology of phase errors on phase shift masks
IL156589A0 (en) * 2003-06-23 2004-01-04 Nova Measuring Instr Ltd Method and system for automatic target finding
US7112890B2 (en) * 2003-10-30 2006-09-26 Asml Holding N.V. Tunable alignment geometry
JP4734261B2 (ja) * 2004-02-18 2011-07-27 ケーエルエー−テンカー コーポレイション 連続変化するオフセットマークと、オーバレイ決定方法
US7379184B2 (en) * 2004-10-18 2008-05-27 Nanometrics Incorporated Overlay measurement target
JP4187718B2 (ja) * 2004-12-20 2008-11-26 松下電器産業株式会社 プローブカード
US7557921B1 (en) 2005-01-14 2009-07-07 Kla-Tencor Technologies Corporation Apparatus and methods for optically monitoring the fidelity of patterns produced by photolitographic tools
US7808643B2 (en) * 2005-02-25 2010-10-05 Nanometrics Incorporated Determining overlay error using an in-chip overlay target
US7477396B2 (en) * 2005-02-25 2009-01-13 Nanometrics Incorporated Methods and systems for determining overlay error based on target image symmetry
DE102005016231B4 (de) * 2005-04-06 2010-09-16 Jenoptik Laser, Optik, Systeme Gmbh Optisches System und Verfahren zur Herstellung eines Verbundelementes aus transparenten, mit mikrooptischen Strukturen versehenen plattenförmigen Substraten
US7687925B2 (en) * 2005-09-07 2010-03-30 Infineon Technologies Ag Alignment marks for polarized light lithography and method for use thereof
DE102005046973B4 (de) * 2005-09-30 2014-01-30 Globalfoundries Inc. Struktur und Verfahren zum gleichzeitigen Bestimmen einer Überlagerungsgenauigkeit und eines Musteranordnungsfehlers
US20070099097A1 (en) * 2005-11-03 2007-05-03 Samsung Electronics Co., Ltd. Multi-purpose measurement marks for semiconductor devices, and methods, systems and computer program products for using same
US20070115452A1 (en) * 2005-11-23 2007-05-24 Asml Netherlands B.V. Method of measuring the magnification of a projection system, device manufacturing method and computer program product
US7408642B1 (en) 2006-02-17 2008-08-05 Kla-Tencor Technologies Corporation Registration target design for managing both reticle grid error and wafer overlay
US7837907B2 (en) * 2007-07-20 2010-11-23 Molecular Imprints, Inc. Alignment system and method for a substrate in a nano-imprint process
US7998826B2 (en) * 2007-09-07 2011-08-16 Macronix International Co., Ltd. Method of forming mark in IC-fabricating process
US8084872B2 (en) * 2008-07-01 2011-12-27 Macronix International Co., Ltd. Overlay mark, method of checking local aligmnent using the same and method of controlling overlay based on the same
US8681413B2 (en) 2011-06-27 2014-03-25 Kla-Tencor Corporation Illumination control
US8592287B2 (en) 2011-08-02 2013-11-26 Taiwan Semiconductor Manufacturing Co., Ltd. Overlay alignment mark and method of detecting overlay alignment error using the mark
CN103019052B (zh) 2011-09-23 2015-10-21 中芯国际集成电路制造(北京)有限公司 光刻对准标记以及包含其的掩模板和半导体晶片
US8448100B1 (en) 2012-04-11 2013-05-21 Taiwan Semiconductor Manufacturing Co., Ltd. Tool and method for eliminating multi-patterning conflicts
US8692393B2 (en) * 2012-06-12 2014-04-08 Macronix International Co., Ltd. Alignment mark design for semiconductor device
US9093458B2 (en) * 2012-09-06 2015-07-28 Kla-Tencor Corporation Device correlated metrology (DCM) for OVL with embedded SEM structure overlay targets
CN102944984B (zh) * 2012-11-29 2016-08-24 上海集成电路研发中心有限公司 一种监测和补偿大尺寸芯片产品光刻拼接精度的方法
US8976356B2 (en) * 2013-02-28 2015-03-10 Kabushiki Kaisha Toshiba Measurement mark, method for measurement, and measurement apparatus
WO2014146906A2 (en) * 2013-03-20 2014-09-25 Asml Netherlands B.V. Method and apparatus for measuring asymmetry of a microsutructure, position measuring method, position measuring apparatus, lithographic apparatus and device manufacturing method
JP2015079830A (ja) * 2013-10-16 2015-04-23 三菱電機株式会社 光半導体装置、光半導体装置の製造方法、及び光モジュールの製造方法
WO2015196168A1 (en) * 2014-06-21 2015-12-23 Kla-Tencor Corporation Compound imaging metrology targets
KR102454206B1 (ko) 2016-03-14 2022-10-12 삼성전자주식회사 웨이퍼 정렬 마크 및 웨이퍼 정렬 마크의 오차 측정 방법
US10451412B2 (en) 2016-04-22 2019-10-22 Kla-Tencor Corporation Apparatus and methods for detecting overlay errors using scatterometry
CN109643640B (zh) * 2016-08-04 2021-02-12 科磊股份有限公司 在工艺中控制衬底上图案定位的方法及计算机程序产品
WO2018033499A1 (en) * 2016-08-15 2018-02-22 Asml Netherlands B.V. Alignment method
TWI725235B (zh) * 2017-09-26 2021-04-21 美商克萊譚克公司 用於在製造過程中控制基板上圖案之定位的方法及電腦程式產品
US10474040B2 (en) 2017-12-07 2019-11-12 Kla-Tencor Corporation Systems and methods for device-correlated overlay metrology
US10942444B2 (en) 2019-05-01 2021-03-09 Nxp Usa, Inc. Optical control modules for integrated circuit device patterning and reticles and methods including the same
KR102652099B1 (ko) 2019-06-27 2024-03-27 양쯔 메모리 테크놀로지스 씨오., 엘티디. 3차원 메모리 디바이스의 계단 구조를 형성할 때의 마킹 패턴
JP7288144B2 (ja) * 2019-09-16 2023-06-06 ケーエルエー コーポレイション 周期的半導体デバイス位置ずれ計量システム及び方法
CN112542396A (zh) * 2020-06-30 2021-03-23 深圳中科飞测科技股份有限公司 一种套刻标记及对准误差的测量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122128A (en) * 1980-02-29 1981-09-25 Telmec Co Ltd Positioning system for printing device of semiconductor or the like
JPH088156A (ja) * 1994-06-16 1996-01-12 Nikon Corp 露光方法及び該露光方法に使用されるマスク
JPH1167631A (ja) * 1997-08-18 1999-03-09 Mitsubishi Electric Corp 重ね合わせマークおよびこの重ね合わせマークを使用した半導体装置の製造方法
US6023338A (en) * 1996-07-12 2000-02-08 Bareket; Noah Overlay alignment measurement of wafers
JP2000133576A (ja) * 1998-10-28 2000-05-12 Nec Corp 位置ずれ計測マーク及び位置ずれ計測方法

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4538105A (en) 1981-12-07 1985-08-27 The Perkin-Elmer Corporation Overlay test wafer
US4475811A (en) 1983-04-28 1984-10-09 The Perkin-Elmer Corporation Overlay test measurement systems
US4703434A (en) 1984-04-24 1987-10-27 The Perkin-Elmer Corporation Apparatus for measuring overlay error
DE3530439A1 (de) 1985-08-26 1987-02-26 Siemens Ag Vorrichtung zum justieren einer mit mindestens einer justiermarke versehenen maske bezueglich eines mit mindestens einer gitterstruktur versehenen halbleiterwafers
US4714874A (en) 1985-11-12 1987-12-22 Miles Inc. Test strip identification and instrument calibration
IT1186523B (it) 1985-12-31 1987-11-26 Sgs Microelettronica Spa Procedimento per la valutazione dei parametri di processo nella fabbricazione di dispositivi a semiconduttore
NL8600639A (nl) 1986-03-12 1987-10-01 Asm Lithography Bv Werkwijze voor het ten opzichte van elkaar uitrichten van een masker en een substraat en inrichting voor het uitvoeren van de werkwijze.
US5148214A (en) 1986-05-09 1992-09-15 Canon Kabushiki Kaisha Alignment and exposure apparatus
US4929083A (en) 1986-06-19 1990-05-29 Xerox Corporation Focus and overlay characterization and optimization for photolithographic exposure
US4757207A (en) 1987-03-03 1988-07-12 International Business Machines Corporation Measurement of registration of overlaid test patterns by the use of reflected light
US4855253A (en) 1988-01-29 1989-08-08 Hewlett-Packard Test method for random defects in electronic microstructures
JP2666859B2 (ja) 1988-11-25 1997-10-22 日本電気株式会社 目合せ用バーニヤパターンを備えた半導体装置
DE4000785A1 (de) 1990-01-12 1991-07-18 Suess Kg Karl Justiermarken fuer zwei aufeinander einzujustierende objekte
DE69123610T2 (de) 1990-02-02 1997-04-24 Canon Kk Belichtungsverfahren
US5112129A (en) 1990-03-02 1992-05-12 Kla Instruments Corporation Method of image enhancement for the coherence probe microscope with applications to integrated circuit metrology
JPH0444307A (ja) 1990-06-12 1992-02-14 Nec Corp 半導体装置の製造方法
US5216257A (en) 1990-07-09 1993-06-01 Brueck Steven R J Method and apparatus for alignment and overlay of submicron lithographic features
JPH04234930A (ja) 1991-01-10 1992-08-24 Shimano Inc 釣り用リール
DE69231715D1 (de) 1991-03-04 2001-04-12 At & T Corp Herstellungsverfahren von integrierten Halbleiterschaltungen unter Anwendung von latenten Bildern
US5296917A (en) 1992-01-21 1994-03-22 Mitsubishi Denki Kabushiki Kaisha Method of monitoring accuracy with which patterns are written
US5617340A (en) 1994-04-28 1997-04-01 The United States Of America As Represented By The Secretary Of Commerce Method and reference standards for measuring overlay in multilayer structures, and for calibrating imaging equipment as used in semiconductor manufacturing
US5857258A (en) 1992-03-13 1999-01-12 The United States Of America As Represented By The Secretary Of Commerce Electrical test structure and method for measuring the relative locations of conductive features on an insulating substrate
US5383136A (en) 1992-03-13 1995-01-17 The United States Of America As Represented By The Secretary Of Commerce Electrical test structure and method for measuring the relative locations of conducting features on an insulating substrate
JP2530080B2 (ja) 1992-03-14 1996-09-04 株式会社東芝 半導体製造装置の評価装置およびその評価方法
US5479270A (en) 1992-05-19 1995-12-26 Eastman Kodak Company Method and apparatus for aligning depth images
US5403754A (en) 1992-09-30 1995-04-04 Texas Instruments Incorporated Lithography method for direct alignment of integrated circuits multiple layers
US5438413A (en) 1993-03-03 1995-08-01 Kla Instruments Corporation Process for measuring overlay misregistration during semiconductor wafer fabrication
JPH06260390A (ja) 1993-03-05 1994-09-16 Toshiba Corp アライメント方法
US5414514A (en) 1993-06-01 1995-05-09 Massachusetts Institute Of Technology On-axis interferometric alignment of plates using the spatial phase of interference patterns
JP3039210B2 (ja) 1993-08-03 2000-05-08 日本電気株式会社 半導体装置の製造方法
KR0168772B1 (ko) 1994-03-10 1999-02-01 김주용 포토마스크 및 그를 이용한 반도체 장치 제조 방법
US5699282A (en) 1994-04-28 1997-12-16 The United States Of America As Represented By The Secretary Of Commerce Methods and test structures for measuring overlay in multilayer devices
US5477057A (en) 1994-08-17 1995-12-19 Svg Lithography Systems, Inc. Off axis alignment system for scanning photolithography
JPH08233555A (ja) 1994-12-28 1996-09-13 Matsushita Electric Ind Co Ltd レジストパターンの測定方法及びレジストパターンの測定装置
US5923041A (en) 1995-02-03 1999-07-13 Us Commerce Overlay target and measurement procedure to enable self-correction for wafer-induced tool-induced shift by imaging sensor means
US5702567A (en) 1995-06-01 1997-12-30 Kabushiki Kaisha Toshiba Plurality of photolithographic alignment marks with shape, size and spacing based on circuit pattern features
US5596413A (en) 1995-08-17 1997-01-21 Lucent Technologies Inc. Sub-micron through-the-lens positioning utilizing out of phase segmented gratings
KR0170909B1 (ko) 1995-09-27 1999-03-30 김주용 반도체 소자의 오버레이 검사방법
US5712707A (en) 1995-11-20 1998-01-27 International Business Machines Corporation Edge overlay measurement target for sub-0.5 micron ground rules
US5757507A (en) 1995-11-20 1998-05-26 International Business Machines Corporation Method of measuring bias and edge overlay error for sub-0.5 micron ground rules
JP2842360B2 (ja) 1996-02-28 1999-01-06 日本電気株式会社 半導体装置およびその製造方法
JP2842362B2 (ja) 1996-02-29 1999-01-06 日本電気株式会社 重ね合わせ測定方法
JPH09244222A (ja) 1996-03-08 1997-09-19 Mitsubishi Electric Corp 重ね合わせ誤差測定用レチクル、そのレチクルを用いた重ね合わせ誤差測定方法および重ね合わせ誤差測定マーク
US5805290A (en) 1996-05-02 1998-09-08 International Business Machines Corporation Method of optical metrology of unresolved pattern arrays
US5701013A (en) 1996-06-07 1997-12-23 Mosel Viltelic, Inc. Wafer metrology pattern integrating both overlay and critical dimension features for SEM or AFM measurements
US5872042A (en) 1996-08-22 1999-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. Method for alignment mark regeneration
US5912983A (en) 1997-01-24 1999-06-15 Oki Electric Industry Co., Ltd Overlay accuracy measuring method
US5902703A (en) 1997-03-27 1999-05-11 Vlsi Technology, Inc. Method for measuring dimensional anomalies in photolithographed integrated circuits using overlay metrology, and masks therefor
US5877861A (en) 1997-11-14 1999-03-02 International Business Machines Corporation Method for overlay control system
US6160622A (en) 1997-12-29 2000-12-12 Asm Lithography, B.V. Alignment device and lithographic apparatus comprising such a device
US6077756A (en) 1998-04-24 2000-06-20 Vanguard International Semiconductor Overlay target pattern and algorithm for layer-to-layer overlay metrology for semiconductor processing
US5919714A (en) 1998-05-06 1999-07-06 Taiwan Semiconductor Manufacturing Company, Ltd. Segmented box-in-box for improving back end overlay measurement
US6140217A (en) 1998-07-16 2000-10-31 International Business Machines Corporation Technique for extending the limits of photolithography
US6137578A (en) 1998-07-28 2000-10-24 International Business Machines Corporation Segmented bar-in-bar target
US6128089A (en) 1998-07-28 2000-10-03 International Business Machines Corporation Combined segmented and nonsegmented bar-in-bar targets
US6020966A (en) 1998-09-23 2000-02-01 International Business Machines Corporation Enhanced optical detection of minimum features using depolarization
US6146910A (en) 1999-02-02 2000-11-14 The United States Of America, As Represented By The Secretary Of Commerce Target configuration and method for extraction of overlay vectors from targets having concealed features

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56122128A (en) * 1980-02-29 1981-09-25 Telmec Co Ltd Positioning system for printing device of semiconductor or the like
JPH088156A (ja) * 1994-06-16 1996-01-12 Nikon Corp 露光方法及び該露光方法に使用されるマスク
US6023338A (en) * 1996-07-12 2000-02-08 Bareket; Noah Overlay alignment measurement of wafers
JPH1167631A (ja) * 1997-08-18 1999-03-09 Mitsubishi Electric Corp 重ね合わせマークおよびこの重ね合わせマークを使用した半導体装置の製造方法
JP2000133576A (ja) * 1998-10-28 2000-05-12 Nec Corp 位置ずれ計測マーク及び位置ずれ計測方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007043169A (ja) * 2005-08-02 2007-02-15 Asml Netherlands Bv 位置合わせ、および位置合わせマーク
JP4502984B2 (ja) * 2005-08-02 2010-07-14 エーエスエムエル ネザーランズ ビー.ブイ. 位置合わせ、および位置合わせマーク
JP2008021984A (ja) * 2006-06-20 2008-01-31 Asml Netherlands Bv 角度分解したスペクトロスコピーリソグラフィの特性解析方法および装置
JP4701209B2 (ja) * 2006-06-20 2011-06-15 エーエスエムエル ネザーランズ ビー.ブイ. 角度分解したスペクトロスコピーリソグラフィの特性解析方法および装置
US8497997B2 (en) 2009-06-23 2013-07-30 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JP2014225648A (ja) * 2013-04-23 2014-12-04 大日本印刷株式会社 インプリント用モールドおよびインプリント方法
JP2014225649A (ja) * 2013-04-23 2014-12-04 大日本印刷株式会社 インプリント用モールドおよびインプリント方法
WO2015151323A1 (ja) * 2014-04-01 2015-10-08 大日本印刷株式会社 インプリント用モールドおよびインプリント方法

Also Published As

Publication number Publication date
EP1328774A1 (en) 2003-07-23
WO2002018871A1 (en) 2002-03-07
EP1328774A4 (en) 2010-11-17
US6486954B1 (en) 2002-11-26

Similar Documents

Publication Publication Date Title
JP2004507901A (ja) 改善された重ね合わせアライメント測定マーク
US7102749B2 (en) Overlay alignment mark design
KR100255399B1 (ko) 겹침정밀도 측정기의 측정조건의 최적화방법 및 얼라인먼트마크 형상 또는 노광장치에 있어서의 얼라인먼트마크 측정방식의 최적화방법
KR100536632B1 (ko) 리소그래피 장치용 메트롤로지 시스템
US5508527A (en) Method of detecting positional displacement between mask and wafer, and exposure apparatus adopting the method
JPH0419545B2 (ja)
JP2530587B2 (ja) 位置決め装置
KR19980018477A (ko) 노광 조건 측정 방법
US5715063A (en) Projection exposure method
JPH01503100A (ja) 写真印刷における符合方法及びその方法を実施するための装置
US5160848A (en) Device for detecting the relative position between opposed first and second objects
KR19980081185A (ko) 포토리소그래피용 다중 검출기 정렬 시스템
US5475490A (en) Method of measuring a leveling plane
JP3077176B2 (ja) 露光方法、装置、及び素子製造方法
JPH0574684A (ja) 位置合わせ装置
JP2822229B2 (ja) 位置合わせ方法及び装置
JPH02283011A (ja) 投影露光装置及び投影露光方法
JPH0672766B2 (ja) 位置検出装置
JPH11183138A (ja) パターンの寸法測定方法および装置
JP2638528B2 (ja) 位置合わせ方法
JPH08339957A (ja) 露光方法
JP3719737B2 (ja) 重ね合わせ精度測定方法およびそれに用いる重ね合わせ精度測定用マーク
JP3085292B2 (ja) 走査露光装置
JPH05243136A (ja) 電子ビーム描画装置を用いたパターン重ね合わせ評価方法
JP2513301B2 (ja) 位置検出装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816