CN103019052B - 光刻对准标记以及包含其的掩模板和半导体晶片 - Google Patents

光刻对准标记以及包含其的掩模板和半导体晶片 Download PDF

Info

Publication number
CN103019052B
CN103019052B CN201110285659.2A CN201110285659A CN103019052B CN 103019052 B CN103019052 B CN 103019052B CN 201110285659 A CN201110285659 A CN 201110285659A CN 103019052 B CN103019052 B CN 103019052B
Authority
CN
China
Prior art keywords
grizzly bar
layer
interval
alignment mark
aimed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201110285659.2A
Other languages
English (en)
Other versions
CN103019052A (zh
Inventor
杨晓松
严轶博
卢子轩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Manufacturing International Beijing Corp
Original Assignee
Semiconductor Manufacturing International Beijing Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Manufacturing International Beijing Corp filed Critical Semiconductor Manufacturing International Beijing Corp
Priority to CN201110285659.2A priority Critical patent/CN103019052B/zh
Priority to US13/329,152 priority patent/US9024456B2/en
Publication of CN103019052A publication Critical patent/CN103019052A/zh
Application granted granted Critical
Publication of CN103019052B publication Critical patent/CN103019052B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/544Marks applied to semiconductor devices or parts, e.g. registration marks, alignment structures, wafer maps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/5442Marks applied to semiconductor devices or parts comprising non digital, non alphanumeric information, e.g. symbols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54426Marks applied to semiconductor devices or parts for alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/544Marks applied to semiconductor devices or parts
    • H01L2223/54453Marks applied to semiconductor devices or parts for use prior to dicing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

本公开实施例提供了一种光刻对准标记以及包含其的掩模板和半导体晶片。所述光刻对准标记包括:沿第一方向相互平行设置的多个第一对准栅条;和沿与所述第一方向垂直的第二方向相互平行设置的多个第二对准栅条,其中,所述多个第一对准栅条中的每一个由预定个数的均匀间隔开的第一精细对准栅条构成,并且所述多个第二对准栅条中的每一个由所述预定个数的均匀间隔开的第二精细对准栅条构成。该光刻对准标记放置于掩模板的非电路图案区域中以及半导体晶片的多个层的标记区域中。该光刻对准标记能够应用于具有小尺寸划线槽的芯片中并实现精确的对准,且不会增加额外的掩模板成本。

Description

光刻对准标记以及包含其的掩模板和半导体晶片
技术领域
本公开涉及半导体器件制造领域,特别是涉及光刻工艺中采用的对准标记以及该对准标记在掩模板和半导体晶片上的定位。
背景技术
光刻技术是大规模集成电路制造技术的基础,其很大程度上决定了集成电路的集成度。所谓光刻是通过曝光将掩模板上的图案转印到涂有光刻胶的晶片上,显影后掩模板上的图案出现在晶片上。
光刻工艺中至为关键的步骤是将掩模板与晶片对准。在集成电路的制造过程中,通常需要在晶片上曝光几层乃至几十层的掩模图案来形成完整的电路结构。在多次光刻中,除了第一次光刻之外,其余次光刻在曝光前都需要将用于该次光刻的掩模板与晶片上已曝光的第一层图案或者前一层或几层的图案精确对准。光刻的套准精度控制决定了集成电路的复杂度和功能密度。
目前,光刻技术中的对准方式主要有两种,即零位对准方式和划线槽对准方式。在零位对准方式中,诸如XPA(扩展主标记,extendedprimary mark)的对准标记通常只设置在晶片的第一层图案中,所有后续的层都与该第一层对准。零位对准标记通常形成在图案的边缘位置处。
然而,在具有多层电路结构的器件中,金属层或者钝化层通常会大大削弱零位对准标记的信号强度,使得难以进行精确对准。为了克服这一问题,现有技术中采用额外的光刻和刻蚀处理来露出对准标记区域。然而,这种额外的处理会增加工艺成本和处理时间,降低生产率。
划线槽对准方式是目前光刻技术中广为采用的一种对准方式。其中,诸如条形的SPM(划线槽主标记,scribe lane primary mark)的对准标记形成在每一层或者多个层的划线槽中。后一层图案可以与前一层或前几层中的对准标记对准。
然而,受光刻设备和工艺的限制,诸如SPM的划线槽对准标记通常尺寸固定,例如80μm。随着对晶片上的管芯总数(gross die)要求的不断提高,可能希望划线槽的尺寸小于80μm,例如仅为72μm,甚至为60μm。在这种情况下,通常的SPM对准标记无法容纳在小尺寸的划线槽中。
因此,需要一种能够应用于具有小尺寸划线槽的芯片且套准精度高的光刻对准技术。
发明内容
为了消除或者至少部分地减轻现有技术中的一些或全部上述问题,提出了本发明。
在本发明中,提出了一种新颖的光刻对准标记,其形成在晶片的多层图案边缘的标记区域中,并且将对准标记的栅条进行了进一步的精细划分,由此能够应用于具有小尺寸划线槽的芯片并实现精确的对准。
在本公开的第一方面中,提供了一种光刻对准标记,包括:沿第一方向相互平行设置的多个第一对准栅条;和沿与所述第一方向垂直的第二方向相互平行设置的多个第二对准栅条,其中,所述多个第一对准栅条中的每一个由预定个数的均匀间隔开的第一精细对准栅条构成,并且所述多个第二对准栅条中的每一个由所述预定个数的均匀间隔开的第二精细对准栅条构成。
在一个实施例中,所述预定个数为3个。
在一个实施例中,所述预定个数为2个。
在一个实施例中,所述预定个数为4个。
在一个实施例中,所述第一精细对准栅条的宽度与第一精细对准栅条间的间隔的宽度相等,并且所述第二精细对准栅条的宽度与第二精细对准栅条间的间隔的宽度相等。
在一个实施例中,所述第一对准栅条的宽度为8μm,并且所述第二对准栅条的宽度为8μm。
在一个实施例中,所述多个第一对准栅条均匀地间隔开,并且所述多个第二对准栅条均匀地间隔开。
在一个实施例中,所述第一对准栅条间的间隔与所述第二对准栅条间的间隔的宽度相等。
在一个实施例中,所述第一对准栅条间的间隔和所述第二对准栅条间的间隔的宽度均为8μm或者均为9.6μm。
在一个实施例中,所述第一对准栅条间的间隔与所述第二对准栅条间的间隔的宽度不等。
在一个实施例中,所述第一对准栅条间的间隔和所述第二对准栅条间的间隔两者之一的宽度为8μm,而另一个的宽度为9.6μm。
在一个实施例中,所述多个第一对准栅条分为两组,其中每一组中的第一对准栅条都均匀地间隔开,并且第一组第一对准栅条间的间隔与第二组第一对准栅条间的间隔的宽度不等。
在一个实施例中,所述第一组第一对准栅条间的间隔与第二组第一对准栅条间的间隔两者之一的宽度为8μm,而另一个的宽度为9.6μm。
在一个实施例中,所述多个第二对准栅条分为两组,其中每一组中的第二对准栅条都均匀地间隔开,并且第一组第二对准栅条间的间隔与第二组第二对准栅条间的间隔的宽度不等。
在一个实施例中,所述第一组第二对准栅条间的间隔与第二组第二对准栅条间的间隔两者之一的宽度为8μm,而另一个的宽度为9.6μm。
在一个实施例中,所述第一精细对准栅条和所述第二精细对准栅条由金属形成,并且所述第一精细对准栅条间的间隔和所述第二精细对准栅条间的间隔由氧化物形成,所述第一对准栅条间的间隔和所述第二对准栅条间的间隔也由所述氧化物形成。
在一个实施例中,所述第一精细对准栅条和所述第二精细对准栅条由氧化物形成,并且所述第一精细对准栅条间的间隔和所述第二精细对准栅条间的间隔由金属形成,所述第一对准栅条间的间隔和所述第二对准栅条间的间隔也由所述金属形成。
在本公开的第二方面中,提供了一种掩模板,包括:中心区域,其具有与要形成的电路图案相对应的掩模图案;和边缘区域,其包括一个或多个如本公开第一方面所述的光刻对准标记。
在本公开的第三方面中,提供了一种半导体晶片,包括:多个晶片层,其中每个晶片层包括:主芯片区域,其用以形成所需的电路图案;和标记区域,其用于容纳一个或多个如本公开第一方面所述的光刻对准标记,其中,所述光刻对准标记位于所述多个晶片层中的一个或多个选定层中的标记区域内。
在一个实施例中,所述标记区域位于晶片层的角部。
在一个实施例中,所述标记区域包括多个标记子区域,所述多个标记子区域中的每一个用于容纳一个或多个所述光刻对准标记,并且晶片层的至少两个角部各自具有一个所述标记子区域。
在一个实施例中,所述标记区域包括第一标记子区域和第二标记子区域,并且所述第一标记子区域和第二标记子区域分别位于晶片层的左下角和右上角。
在一个实施例中,所述标记区域包括第一标记子区域和第二标记子区域,并且所述第一标记子区域和第二标记子区域分别位于晶片层的右下角和左上角。
在一个实施例中,所述多个晶片层包括一个或多个金属层,并且所述光刻对准标记形成在部分或全部所述一个或多个金属层的标记区域内。
在一个实施例中,所述多个晶片层还包括有源区层、多晶硅栅层、接触层和钝化层,并且所述光刻对准标记还形成在有源区层、接触层和钝化层的标记区域内。
在一个实施例中,所述光刻对准标记还形成在多晶硅栅层的标记区域内。
在一个实施例中,光刻对准标记在不同选定层的标记区域中的位置相互错开。
在一个实施例中,相邻的选定层中的光刻对准标记的位置相互隔开1mm。
在一个实施例中,在所述选定层为多个时,对准栅条由金属形成的光刻对准标记和对准栅条由氧化物形成的光刻对准标记逐层交替地形成在多个所述选定层的标记区域中,而且不同选定层的标记区域中的光刻对准标记的位置相互重叠。
在本公开的第四方面中,提供了一种半导体晶片,从下至上依次包括有源区层、多晶硅栅层、接触层、第一金属层、第一过孔层、第二金属层、第二过孔层、第三金属层、第三过孔层、第四金属层、第四过孔层、第五金属层、顶部过孔层、顶部金属层、钝化层以及铝焊盘层,其中,在有源区层、接触层、第一金属层、第四金属层和钝化层中形成有如本公开第一方面所述的光刻对准标记。
在一个实施例中,光刻对准标记还形成在多晶硅栅层、第二金属层、第三金属层、第五金属层和顶部金属层中的任一个或多个层中。
本公开实施例的光刻对准标记形成在晶片的每个或多个图案层边缘的标记区域中,并且将对准标记的栅条进行了进一步的精细划分,由此能够应用于具有小尺寸划线槽的芯片中并实现精确的对准。
此外,本公开实施例的光刻对准标记可以放置于掩模板的非电路图案区域中,只有在处理具有小尺寸划线槽的芯片时才使用,因而不会影响主流程,也不会增加额外的掩模板成本。
通过以下参照附图对本公开的示例性实施例的详细描述,本发明的其它特征及其优点将会变得清楚。
附图说明
附图作为说明书的一部分例示了本公开的实施例,并且连同说明书一起用于解释本发明的原理。各附图中相同的附图标记将指代相同的部件或步骤。
参照附图,根据下面的详细描述,可以更加清楚地理解本发明,其中:
图1A至1C是示出了现有技术的XPA-00对准标记的示意图。
图2A至2E是示出了根据本公开实施例的XPA-53对准标记的示意图。
图2F是示出了根据本公开实施例的XPA-32对准标记的放大示意图。
图2G是示出了根据本公开实施例的XPA-74对准标记的放大示意图。
图2H是示出了根据本公开实施例的反式的XPA-53对准标记的放大示意图。
图3是示出了根据本公开实施例的具有对准标记的掩模板的示意图。
图4是示出了根据本公开实施例的具有对准标记的半导体晶片层的示意图。
图5A是示出了根据本公开的一个示例的具有对准标记的半导体晶片的结构示意图。
图5B是例示了图5A所示的半导体晶片的光刻对准树。
具体实施方式
现在将参照附图来详细描述本发明的各种示例性实施例。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
为了能够在小尺寸划线槽的情形下实现高精度的光刻对准,本公开实施例提出了一种改进的零位光刻对准标记。该光刻对准标记被形成在晶片的每个或多个图案层边缘的标记区域中,并且对准标记中的每个对准栅条都由多个更细的栅条构成。
图1A至1C示出了现有技术的对准标记的一个示例,即标准的XPA对准标记,也称XPA-00型对准标记。如图1A所示,光刻对准标记100由四组对准栅条形成方形形状,即两个沿Y方向设置的第一对准栅条组102和两个沿X方向设置的第二对准栅条组104交错排列成方形,以分别实现Y方向和X方向的对准,其中X方向与Y方向相互垂直。
如图1B的放大图所示,第一对准栅条组102由多个沿Y方向彼此平行设置的第一对准栅条106和均匀地隔开第一对准栅条106的第一对准栅条间隔108构成。类似地,如图1C的放大图所示,第二对准栅条组104由多个沿X方向彼此平行设置的第二对准栅条110和均匀地隔开第二对准栅条的第二对准栅条间隔112构成。
基于图1A至1C所示的现有技术对准标记,本公开实施例提出了一种改进的对准标记,即XPA-MN型对准标记200,下面将参照图2A至2H对其进行详细描述。
与图1中所示的光刻对准标记100类似,图2所示的本公开实施例的光刻对准标记200由两个沿Y方向设置的第一对准栅条组202和两个沿X方向设置的第二对准栅条组204交错排列成方形,参见图2A。需要说明的是,尽管在本实施例中例示了沿X和Y方向各具有两组对准栅条且这四组对准栅条交错排列成方形的对准标记,但是在其他实施例中,对准标记在X和Y方向上可以仅各有一组对准栅条,或者各具有两组以上的对准栅条,且多组对准栅条的布置不限于图2A中所示的方形形状。
图2B和2C是分别示出了图2A中的光刻对准标记200的第一对准栅条组202的一部分和第二对准栅条组204的一部分的放大图。图2D和2E是分别示出了第一对准栅条组202的一部分和第二对准栅条组204的一部分的进一步放大图。
如图2B的放大图所示,第一对准栅条组202由多个沿Y方向彼此平行设置的第一对准栅条206和均匀地隔开第一对准栅条206的第一对准栅条间隔208构成。类似地,如图2C的放大图所示,第二对准栅条组204由多个沿X方向彼此平行设置的第二对准栅条210和均匀地隔开第二对准栅条的第二对准栅条间隔212构成。在一个实施例中,如图2D和2E的进一步放大图所示,第一对准栅条206的宽度W1和第二对准栅条210的宽度W3相等,例如均为8μm。
与图1A至1C所示的现有技术对准标记XPA-00不同的是,在图2A至2H所示的本公开实施例的对准标记XPA-MN中,第一对准栅条206被进一步细分为多条精细对准栅条,即每个第一对准栅条206由第一预定个数(“N”个)的第一精细对准栅条220以及第二预定个数(“M-N”个)的均匀地隔开第一精细对准栅条220的第一精细对准栅条间隔222构成,如图2B和2D的放大图所示。类似地,对每个第二对准栅条210也进行同样的精细划分,即每个第二对准栅条210由第一预定个数(“N”个)的第二精细对准栅条224以及第二预定个数(“M-N”个)的均匀地隔开第二精细对准栅条224的第二精细对准栅条间隔226构成,如图2C和2E的放大图所示。
在一个实施例中,第一精细对准栅条220的宽度W5与第一精细对准栅条间隔222的宽度W6相等,并且第二精细对准栅条224的宽度W7与第二精细对准栅条间隔226的宽度W8相等。在这种情况下,W5=W6=W1/M,并且W7=W8=W3/M。
图2B至2E示出了M为5且N为3的情况下的对准标记,即XPA-53。其中,每个第一对准栅条206由3个第一精细对准栅条220和2个第一精细对准栅条间隔222构成;而且每个第二对准栅条210由3个第二精细对准栅条224和2个第二精细对准栅条间隔226构成。在第一对准栅条206的宽度W1和第二对准栅条210的宽度W3均为8μm的实施例中,若第一精细对准栅条220的宽度W5与第一精细对准栅条间隔222的宽度W6,则W5=W6=8/5μm=1.6μm;若第二精细对准栅条224的宽度W7与第二精细对准栅条间隔226的宽度W8相等,则W7=W8=8/5μm=1.6μm。
然而,也可以采用其他精细划分的对准标记XPA-MN。在如图2F所示的对准标记XPA-32中,每个第一对准栅条206由2个第一精细对准栅条220和1个第一精细对准栅条间隔222构成。在第一对准栅条206的宽度为8μm的实施例中,第一精细对准栅条220和第一精细对准栅条间隔222的宽度均为8/3μm≈2.67μm。对第二对准栅条210也进行类似的精细划分,在此不再赘述,也未在图2F中示出。
此外,如图2G所示,对准标记XPA-74中的每个第一对准栅条206由4个第一精细对准栅条220和3个第一精细对准栅条间隔222构成。若第一对准栅条206的宽度为8μm,则第一精细对准栅条220和第一精细对准栅条间隔222的宽度均为8/7μm≈1.142μm。对第二对准栅条210也进行类似的精细划分,在此不再赘述,也未在图2G中示出。
相比于现有技术的XPA-00的光刻对准标记,如图2A至2G所示的本公开实施例的光刻对准标记XPA-MN具有更精细的对准栅条,由此可以在X方向和Y方向上实现更高的套准精度。此外,本申请的发明人实验发现,对于铜后段制程而言,与图2F所示的XPA-32和图2G所示的XPA-74相比,图2B至2E所示的XPA-53的光刻对准标记的套准精度最优。需要说明的是,尽管在本说明书中以XPA-53、XPA-32和XPA-74为例描述了本发明的XPA-MN对准标记,但是本领域技术人员应当理解,根据具体工艺流程完全可以采用其他精细划分式样的对准标记。
在一些实施例中,取决于工艺需要,第一对准栅条间隔208的宽度W2和第二对准栅条间隔212的宽度W4可以相等,例如均为8μm或9.6μm。在其他实施例中,第一对准栅条间隔208的宽度W2和第二对准栅条间隔212的宽度W4可以不等,例如W2=8μm,而W4=9.6μm,反之亦然。
在一些实施例中,根据工艺需要,如图2A所示的两个第一对准栅条组202中的第一对准栅条间隔208的宽度W2也可以不相等。例如,左上角处的第一对准栅条组202中的第一对准栅条间隔208的宽度W2为8μm,右下角处的第一对准栅条组202中的第一对准栅条间隔208的宽度W2可以为9.6μm,反之亦然。类似地,如图2A所示的两个第二对准栅条组204中的第二对准栅条间隔212的宽度W2也可以不相等,例如分别为8μm和9.6μm。
在一些实施例中,如图2B至2G中所示的第一精细对准栅条220和第二精细对准栅条224可以由金属形成,而第一精细对准栅条间隔222、第二精细对准栅条间隔226、第一对准栅条间隔208和第二对准栅条间隔212可以由氧化物形成。然而,在其他一些实施例中,第一精细对准栅条220和第二精细对准栅条224可以由氧化物形成,而第一精细对准栅条间隔222、第二精细对准栅条间隔226、第一对准栅条间隔208和第二对准栅条间隔212可以由金属形成,如图2H所示,这种类型的对准标记在本文中称为“反式”对准标记,与图2B至2G所示的“正式”对准标记相对。下面将结合图4来详细说明如何采用“反式”对准标记。
下面将参照图3来描述具有如图2A至2H所示的光刻对准标记的掩模板300。如图3的示意图所示,掩模板300包括中心区域302和边缘区域304。中心区域302具有与晶片上要形成的电路图案相对应的掩模图案。如图2A至2H所示的本公开实施例的光刻对准标记306放置于作为非电路图案区域的边缘区域304中。
需要说明的是,图3仅仅示意性示出了根据本公开实施例的掩模板,掩模板的中心区域和边缘区域以及光刻对准标记的尺寸比例未按实际应用绘制。实际上,光刻对准标记306与中心区域302的尺寸比例远远小于所示情形。
在掩模板的边缘区域304的空间允许的情况下,可以放置有多个如图2A至2H所示的本公开实施例的光刻对准标记306。在一些实施例中,这多个光刻对准标记可以具有不同的精细划分式样。例如,在一个掩模板300上可以同时制作XPA-53和XPA-74两种对准标记,然后根据工艺需要,来决定应采用哪种对准标记实施对准。
在应用中,可以仅在需要采用本公开实施例的光刻对准标记306时,例如在处理具有小尺寸划线槽的芯片时,在掩模板的边缘区域上制作该对准标记306,因而不会影响主流程,也不会增加额外的掩模板成本。
下面将参照图4来描述根据本公开实施例的具有如图2A至2H所示的光刻对准标记的半导体晶片400。如前所述,半导体晶片400通常包括多个晶片层402-1至402-i,其中i为大于1中的整数(下文中在不特定指代某一晶片层时,以402统指晶片层)。每个晶片层402包括主芯片区域404和标记区域406。主芯片区域404经过曝光和显影后形成所需的电路图案。标记区域406可以用于容纳一个或多个光刻对准标记410,如图2A至2H中所示的光刻对准标记200。
需要说明的是,图4仅仅示意性示出了根据本公开实施例的半导体晶片,晶片层的主芯片区域和标记区域以及光刻对准标记的尺寸比例未按实际应用绘制。实际上,光刻对准标记410与标记区域406的尺寸比例远远小于所示情形。
如图4所示,在一个实施例中,每个晶片层402的标记区域406都位于其角部。在一个实施例中,标记区域406可以由多个标记子区域406-1至406-j(其中j为大于1中的整数)构成,并且这些标记子区域分布在晶片层402的至少两个角部,优选地分布在至少两个相对的角部。如图4中的示例所示,标记区域406由第一标记子区域406-1和第二标记子区域406-2构成,并且第一标记子区域406-1和第二标记子区域406-2分别位于晶片层402的左下角和右上角。在其他示例中,第一标记子区域406-1和第二标记子区域406-2也可以分别位于晶片层402的右下角和左上角。
如前所述,为了获得良好的对准信号强度,在本公开实施例中,光刻对准标记可以设置于晶片层402-1至402-i中的部分或全部层中的标记区域406内。通常而言,晶片层402将包括一个或多个金属层,在这种情况下,光刻对准标记410可以形成在部分或全部金属层的标记区域内。
除了金属层之外,晶片层402通常还将包括有源区层、多晶硅栅层、接触层和钝化层。这些层也可能会在一定程度上削弱对准标记的信号强度,因此,为了获得进一步良好的对准信号强度,光刻对准标记410还可以形成在有源区层、接触层和钝化层的标记区域内。在一些实施例中,光刻对准标记410还形成在多晶硅栅层的标记区域内。
当在多个晶片层中形成有光刻对准标记时,为了避免相邻的标记放置层之间的对准信号干扰,光刻对准标记410在不同晶片层402的标记区域406中的位置需要相互错开。在一个实施例中,相邻的标记放置层中的光刻对准标记需要相互隔开1mm。然而,当需要在较大数量的晶片层402中放置光刻对准标记410时,为了满足以上所述的不同层的光刻对准标记相互隔开一定距离的要求,通常需要较大尺寸的标记区域,这会导致晶片的管芯总数减少。
为了减小标记区域的尺寸,可以采用如图2H所示的“反式”对准标记与如图2B至2G所示的“正式”对准标记逐层交替放置的堆叠式标记放置方式。例如,在前一标记放置层中,如果放置的是精细对准栅条由金属形成且所有对准栅条的间隔由氧化物形成的“正式”对准标记,那么在后一标记放置层中,可以采用精细对准栅条由氧化物形成且所有对准栅条的间隔由金属形成的“反式”对准标记,依此交替地形成这两种类型的对准标记。
在这种标记放置方式中,每个晶片层402中的对准标记在标记区域406中的位置可以相互重叠,由此能够减小标记区域406占用的晶片空间,从而能够进一步提高晶片中的管芯总数。堆叠式标记放置方式的细节请参照授予本申请申请人的申请日为2009年4月29日、专利号为ZL200710047360.7且题为“一种堆叠式光刻对准标记”的中国专利,该专利的全部内容通过引用并入于此。
下面将参照图5A和5B来描述具有本公开实施例的如图2A至2H所示的对准标记的半导体晶片的一个具体示例。图5A中所示的半导体晶片500从下至上依次包括有源区层AA 501、多晶硅栅层P1 502、接触层CT 503、第一金属层M1 504、第一过孔层V1 505、第二金属层M2 506、第二过孔层V2 507、第三金属层M3 508、第三过孔层V3509、第四金属层M4 510、第四过孔层V4 511、第五金属层M5 512、顶部过孔层TV 513、顶部金属层TM 514、钝化层PA 515以及铝焊盘层ALPAD 516。
如前所述,对准标记550可以形成在显著削弱对准标记信号的金属层和钝化层等中。如图5A所示,如图2A至2H所示的对准标记550可以形成在有源区层AA 501、接触层CT 503、第一金属层M1 504、第四金属层M4 510和钝化层PA 515中。在其他示例中,光刻对准标记550还可以形成在多晶硅栅层P1 502、第二金属层M2 506、第三金属层M3 508、第五金属层M5 512和顶部金属层TM 514中的任一个或多个层中。
图5B是例示了图5A所示的半导体晶片500的光刻对准树。如图5B所示,依据图5A所示的光刻对准标记放置,多晶硅栅层P1 502与有源区层AA 501中的对准标记对准;接触层CT 503与有源区层AA 501中的对准标记对准;第一金属层M1 504与接触层CT 503中的对准标记对准;第一过孔层V1 505至第三过孔层V3 509均与第一金属层M1 504中的对准标记对准;第四金属层M4 510与第一金属层M1 504中的对准标记对准;第四过孔层V4 511至顶部金属层TM 514与第四金属层M4 510中的对准标记对准;钝化层PA 515与第四金属层M4 510中的对准标记对准;以及铝焊盘层ALPAD 516与钝化层PA 515中的对准标记对准。
本公开实施例的光刻对准标记形成在晶片的图案层边缘的标记区域中,而不象传统的划线槽对准标记那样形成在晶片的划线槽中,由此不受划线槽尺寸的影响,故而可以应用于具有小尺寸划线槽的芯片中。此外,本公开实施例的光刻对准标记以更为精细划分的栅条形成在多个选定晶片层中,由此能够获得较强的对准信号并实现更精确的对准。
此外,本公开实施例的光刻对准标记可以放置于掩模板的非电路图案区域中,只有在处理具有小尺寸划线槽的芯片时才使用,因而不会影响主流程,也不会增加额外的掩模板成本。
至此,已经详细描述了根据本发明的制造半导体器件的光刻对准技术。为了避免遮蔽本发明的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本发明的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本发明的范围。本领域的技术人员应该理解,可在不脱离本发明的范围和精神的情况下,对以上实施例进行修改。本发明的范围由所附权利要求来限定。

Claims (24)

1.一种半导体晶片,包括:
多个晶片层,其中每个晶片层包括:
主芯片区域,其用以形成所需的电路图案;和
标记区域,其用于容纳一个或多个光刻对准标记,所述光刻对准标记包括:
沿第一方向相互平行设置的多个第一对准栅条;和
沿与所述第一方向垂直的第二方向相互平行设置的多个第二对准栅条,
其中,所述多个第一对准栅条中的每一个由预定个数的均匀间隔开的第一精细对准栅条构成,并且所述多个第二对准栅条中的每一个由所述预定个数的均匀间隔开的第二精细对准栅条构成,
其中,所述光刻对准标记位于所述多个晶片层中的多个选定层中的标记区域内;
其中,所述光刻对准标记包括逐层交替地形成在多个所述选定层的标记区域中的第一光刻对准标记和第二光刻对准标记,而且不同选定层的标记区域中的第一光刻对准标记和第二光刻对准标记的位置相互重叠;
其中,在所述第一光刻对准标记中,所述第一精细对准栅条和所述第二精细对准栅条由金属形成,并且所述第一精细对准栅条间的间隔、所述第二精细对准栅条间的间隔、所述第一对准栅条间的间隔以及所述第二对准栅条间的间隔均由氧化物形成;
其中,在所述第二光刻对准标记中,所述第一精细对准栅条和所述第二精细对准栅条由氧化物形成,并且所述第一精细对准栅条间的间隔、所述第二精细对准栅条间的间隔、所述第一对准栅条间的间隔以及所述第二对准栅条间的间隔均由金属形成。
2.根据权利要求1所述的半导体晶片,其中,所述预定个数为3个。
3.根据权利要求1所述的半导体晶片,其中,所述预定个数为2个。
4.根据权利要求1所述的半导体晶片,其中,所述预定个数为4个。
5.根据权利要求1至4中任一项所述的半导体晶片,其中,所述第一精细对准栅条的宽度与第一精细对准栅条间的间隔的宽度相等,并且所述第二精细对准栅条的宽度与第二精细对准栅条间的间隔的宽度相等。
6.根据权利要求5所述的半导体晶片,其中,所述第一对准栅条的宽度为8μm,并且所述第二对准栅条的宽度为8μm。
7.根据权利要求1所述的半导体晶片,其中,所述多个第一对准栅条均匀地间隔开,并且所述多个第二对准栅条均匀地间隔开。
8.根据权利要求7所述的半导体晶片,其中,所述第一对准栅条间的间隔与所述第二对准栅条间的间隔的宽度相等。
9.根据权利要求8所述的半导体晶片,其中,所述第一对准栅条间的间隔和所述第二对准栅条间的间隔的宽度均为8μm或者均为9.6μm。
10.根据权利要求7所述的半导体晶片,其中,所述第一对准栅条间的间隔与所述第二对准栅条间的间隔的宽度不等。
11.根据权利要求10所述的半导体晶片,其中,所述第一对准栅条间的间隔和所述第二对准栅条间的间隔两者之一的宽度为8μm,而另一个的宽度为9.6μm。
12.根据权利要求1所述的半导体晶片,其中,所述多个第一对准栅条分为两组,其中每一组中的第一对准栅条都均匀地间隔开,并且第一组第一对准栅条间的间隔与第二组第一对准栅条间的间隔的宽度不等。
13.根据权利要求12所述的半导体晶片,其中,所述第一组第一对准栅条间的间隔与第二组第一对准栅条间的间隔两者之一的宽度为8μm,而另一个的宽度为9.6μm。
14.根据权利要求1、12或13所述的半导体晶片,其中,所述多个第二对准栅条分为两组,其中每一组中的第二对准栅条都均匀地间隔开,并且第一组第二对准栅条间的间隔与第二组第二对准栅条间的间隔的宽度不等。
15.根据权利要求14所述的半导体晶片,其中,所述第一组第二对准栅条间的间隔与第二组第二对准栅条间的间隔两者之一的宽度为8μm,而另一个的宽度为9.6μm。
16.根据权利要求1所述的半导体晶片,其中,所述标记区域位于晶片层的角部。
17.根据权利要求16所述的半导体晶片,其中,所述标记区域包括多个标记子区域,所述多个标记子区域中的每一个用于容纳一个或多个所述光刻对准标记,并且晶片层的至少两个角部各自具有一个所述标记子区域。
18.根据权利要求17所述的半导体晶片,其中,所述标记区域包括第一标记子区域和第二标记子区域,并且所述第一标记子区域和第二标记子区域分别位于晶片层的左下角和右上角。
19.根据权利要求17所述的半导体晶片,其中,所述标记区域包括第一标记子区域和第二标记子区域,并且所述第一标记子区域和第二标记子区域分别位于晶片层的右下角和左上角。
20.根据权利要求1所述的半导体晶片,其中,所述多个晶片层包括一个或多个金属层,并且所述光刻对准标记形成在部分或全部所述一个或多个金属层的标记区域内。
21.根据权利要求20所述的半导体晶片,其中,所述多个晶片层还包括有源区层、多晶硅栅层、接触层和钝化层,并且所述光刻对准标记还形成在有源区层、接触层和钝化层的标记区域内。
22.根据权利要求21所述的半导体晶片,其中,所述光刻对准标记还形成在多晶硅栅层的标记区域内。
23.一种半导体晶片,从下至上依次包括有源区层、多晶硅栅层、接触层、第一金属层、第一过孔层、第二金属层、第二过孔层、第三金属层、第三过孔层、第四金属层、第四过孔层、第五金属层、顶部过孔层、顶部金属层、钝化层以及铝焊盘层,其中,
在有源区层、接触层、第一金属层、第四金属层和钝化层中形成有光刻对准标记,所述光刻对准标记包括:
沿第一方向相互平行设置的多个第一对准栅条;和
沿与所述第一方向垂直的第二方向相互平行设置的多个第
二对准栅条,
其中,所述多个第一对准栅条中的每一个由预定个数的均匀间隔开的第一精细对准栅条构成,并且所述多个第二对准栅条中的每一个由所述预定个数的均匀间隔开的第二精细对准栅条构成。
24.根据权利要求23所述的半导体晶片,其中,光刻对准标记还形成在多晶硅栅层、第二金属层、第三金属层、第五金属层和顶部金属层中的任一个或多个层中。
CN201110285659.2A 2011-09-23 2011-09-23 光刻对准标记以及包含其的掩模板和半导体晶片 Active CN103019052B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201110285659.2A CN103019052B (zh) 2011-09-23 2011-09-23 光刻对准标记以及包含其的掩模板和半导体晶片
US13/329,152 US9024456B2 (en) 2011-09-23 2011-12-16 Photolithography alignment mark, mask and semiconductor wafer containing the same mark

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201110285659.2A CN103019052B (zh) 2011-09-23 2011-09-23 光刻对准标记以及包含其的掩模板和半导体晶片

Publications (2)

Publication Number Publication Date
CN103019052A CN103019052A (zh) 2013-04-03
CN103019052B true CN103019052B (zh) 2015-10-21

Family

ID=47910400

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201110285659.2A Active CN103019052B (zh) 2011-09-23 2011-09-23 光刻对准标记以及包含其的掩模板和半导体晶片

Country Status (2)

Country Link
US (1) US9024456B2 (zh)
CN (1) CN103019052B (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9580792B2 (en) * 2010-06-04 2017-02-28 Advantech Global, Ltd Shadow mask alignment using variable pitch coded apertures
US8692393B2 (en) * 2012-06-12 2014-04-08 Macronix International Co., Ltd. Alignment mark design for semiconductor device
US9029855B2 (en) * 2013-03-15 2015-05-12 Globalfoundries Singapore Pte. Ltd. Layout for reticle and wafer scanning electron microscope registration or overlay measurements
US9355964B2 (en) 2014-03-10 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Method for forming alignment marks and structure of same
CN104952851B (zh) * 2014-03-28 2017-11-14 中芯国际集成电路制造(上海)有限公司 对准标记及其对准方法
CN103904060B (zh) * 2014-04-01 2016-08-03 深圳市华星光电技术有限公司 Tft lcd阵列对位标记设计及制造方法
CN105489522B (zh) * 2014-10-11 2018-10-23 中芯国际集成电路制造(上海)有限公司 光刻版及晶圆或晶圆承载台沾污的检测方法
WO2017019126A1 (en) * 2015-07-29 2017-02-02 Advantech Global, Ltd Shadow mask alignment using variable pitch coded apertures
US9823574B2 (en) 2015-09-29 2017-11-21 Taiwan Semiconductor Manufacturing Company, Ltd. Lithography alignment marks
CN106206545B (zh) * 2016-07-14 2018-11-23 深圳市华星光电技术有限公司 标记、显示装置及利用标记曝光和蚀刻制程稳定性的方法
US10192832B2 (en) 2016-08-16 2019-01-29 United Microelectronics Corp. Alignment mark structure with dummy pattern
JP2018185452A (ja) * 2017-04-27 2018-11-22 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
CN109901359A (zh) * 2017-12-11 2019-06-18 长鑫存储技术有限公司 用于掩膜的对准图形、掩膜及晶圆
CN109957503B (zh) * 2017-12-14 2022-05-31 长春长光华大智造测序设备有限公司 一种用于高通量基因测序设备的工艺芯片及其应用
CN110034098B (zh) * 2018-01-12 2020-11-27 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN108470691B (zh) * 2018-03-29 2020-06-16 上海华力集成电路制造有限公司 用于接触孔对准的多晶硅迭层测量图形的制造方法
CN111198478B (zh) * 2018-11-20 2024-02-06 长鑫存储技术有限公司 掩膜组件及套准量测方法
CN111627887A (zh) * 2019-02-28 2020-09-04 世界先进积体电路股份有限公司 对准记号图案及包含其的晶片结构
US11545474B2 (en) 2020-05-11 2023-01-03 Semileds Corporation Method and system for transferring alignment marks between substrate systems
CN112908917B (zh) * 2021-01-29 2023-11-17 福建省晋华集成电路有限公司 半导体结构及其加工方法
TWI817917B (zh) * 2023-04-17 2023-10-01 南亞科技股份有限公司 測量光刻對準的方法與半導體結構

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037671A (en) * 1998-11-03 2000-03-14 Advanced Micro Devices, Inc. Stepper alignment mark structure for maintaining alignment integrity
CN101165597A (zh) * 2007-10-11 2008-04-23 上海微电子装备有限公司 双向分束器、使用其的对准系统及使用该系统的光刻装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216257A (en) * 1990-07-09 1993-06-01 Brueck Steven R J Method and apparatus for alignment and overlay of submicron lithographic features
JP4504515B2 (ja) * 2000-06-13 2010-07-14 ルネサスエレクトロニクス株式会社 半導体装置及びその製造方法
US6486954B1 (en) * 2000-09-01 2002-11-26 Kla-Tencor Technologies Corporation Overlay alignment measurement mark
US7804994B2 (en) * 2002-02-15 2010-09-28 Kla-Tencor Technologies Corporation Overlay metrology and control method
CN1506768B (zh) * 2002-09-20 2011-01-26 Asml荷兰有限公司 用于光刻系统的对准系统和方法
US20050286052A1 (en) * 2004-06-23 2005-12-29 Kevin Huggins Elongated features for improved alignment process integration
US8004678B2 (en) * 2007-06-26 2011-08-23 Intel Corporation Wafer level alignment structures using subwavelength grating polarizers
TWI373694B (en) * 2007-08-09 2012-10-01 Nanya Technology Corp Exposure methiod
JP4897006B2 (ja) * 2008-03-04 2012-03-14 エーエスエムエル ネザーランズ ビー.ブイ. アラインメントマークを設ける方法、デバイス製造方法及びリソグラフィ装置
US8039366B2 (en) * 2009-02-19 2011-10-18 International Business Machines Corporation Method for providing rotationally symmetric alignment marks for an alignment system that requires asymmetric geometric layout
US8471335B2 (en) * 2010-06-21 2013-06-25 Stmicroelectronics S.R.L. Semiconductor structure with alignment control mask

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6037671A (en) * 1998-11-03 2000-03-14 Advanced Micro Devices, Inc. Stepper alignment mark structure for maintaining alignment integrity
CN101165597A (zh) * 2007-10-11 2008-04-23 上海微电子装备有限公司 双向分束器、使用其的对准系统及使用该系统的光刻装置

Also Published As

Publication number Publication date
US9024456B2 (en) 2015-05-05
US20130075938A1 (en) 2013-03-28
CN103019052A (zh) 2013-04-03

Similar Documents

Publication Publication Date Title
CN103019052B (zh) 光刻对准标记以及包含其的掩模板和半导体晶片
US8709684B2 (en) Automatic misalignment balancing scheme for multi-patterning technology
US9097989B2 (en) Target and method for mask-to-wafer CD, pattern placement and overlay measurement and control
KR102633183B1 (ko) 포토리소그래피 마스크의 정렬 방법 및 반도체 재료의 웨이퍼에서 집적 회로를 제조하기 위한 대응 공정 방법
CN103246155B (zh) 光刻版以及该光刻版的曝光方法
CN104952851B (zh) 对准标记及其对准方法
CN104281010B (zh) 形成方法和基板
CN101986427A (zh) 具有预对准图案的半导体晶片和预对准半导体晶片的方法
CN112034677B (zh) 一种套刻标记、套刻标记方法及套刻测量方法
CN102799062A (zh) 一种掩膜版、晶圆和测机方法
US8564143B2 (en) Overlay mark for multiple pre-layers and currently layer
KR20150145684A (ko) 최적화된 패턴 밀도 균일성을 위한 패턴 밀도-이상치-처리에 의한 집적 회로의 제조 방법
CN104849970A (zh) 用于背面光刻工艺的对准标记及其对准方法
JP2013080196A (ja) 露光用レチクル、露光方法および半導体ウエハの製造方法
CN104934413A (zh) 重叠对准标记和具有该重叠对准标记的基片
CN103389616B (zh) 能够改善发射极窗口尺寸均匀性的SiGe器件制造方法
CN105137726A (zh) 光刻工艺曝光焦距的监测方法
CN202093317U (zh) 基于机器视觉对准的高精度对准标记结构
JPH1069059A (ja) レチクルマスクの作成方法
CN103376645A (zh) 通用掩模版及其应用
US8739083B1 (en) Layout decomposition method and method for manufacturing semiconductor device applying the same
CN113219800A (zh) 晶圆半导体产品、其制作方法与光刻机
CN108461479A (zh) 一种对准标记的制备方法
JP2001102285A (ja) 位置合わせマーク
CN101504510A (zh) 进行光刻工艺的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant