JP2004311704A - 薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置 - Google Patents

薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置 Download PDF

Info

Publication number
JP2004311704A
JP2004311704A JP2003102977A JP2003102977A JP2004311704A JP 2004311704 A JP2004311704 A JP 2004311704A JP 2003102977 A JP2003102977 A JP 2003102977A JP 2003102977 A JP2003102977 A JP 2003102977A JP 2004311704 A JP2004311704 A JP 2004311704A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
film
substrate
thin
conversion device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003102977A
Other languages
English (en)
Other versions
JP4713819B2 (ja
Inventor
Hiroko Tawada
裕子 多和田
Kenji Yamamoto
憲治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2003102977A priority Critical patent/JP4713819B2/ja
Publication of JP2004311704A publication Critical patent/JP2004311704A/ja
Application granted granted Critical
Publication of JP4713819B2 publication Critical patent/JP4713819B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】本発明は、基体上に表面凹凸形状の制御された透明電極を形成することにより、安価に製造可能な薄膜光電変換装置用基板を得、性能の改善された薄膜光電変換装置を提供することを目的とする。
【解決手段】基体1上に少なくとも酸化亜鉛膜からなる電極2と、少なくとも一つの結晶質光電変換ユニット11ともう一つの電極3とを具備した薄膜光電変換装置において、酸化亜鉛膜の表面は粒径が50〜500nmで、かつ高さが20〜200nmの凹凸を有し、かつ酸化亜鉛膜は(001)の優先配向面を有し、そのX線回折パターンにおける(002)ピーク強度に対する(110)ピーク強度の比が0.5以下であることを特徴としている。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】本発明は、薄膜光電変換装置の性能改善に関し、特に薄膜光電変換装置の変換効率を改善可能な薄膜光電変換装置用基板およびそれを用いた薄膜光電変換装置に関する。
【0002】
【従来の技術】
近年、光電変換装置の低コスト化、高効率化を両立するために原材料が少なくてすむ薄膜光電変換装置が注目され、開発が精力的に行われている。こうした薄膜光電変換装置は、太陽電池、光センサなど、さまざまな用途への応用が期待されている。
【0003】
薄膜光電変換装置は、従来のバルクの単結晶や多結晶シリコンを使用した光電変換装置に比べて光電変換層を薄くすることが可能であるが、反面、薄膜全体の光吸収が膜厚によって制限されてしまうという問題がある。そこで、光電変換層を含む光電変換ユニットに入射した光をより有効に利用するために、光電変換ユニットに接する透明導電膜あるいは金属層の表面を凹凸化(テクスチャ化)し、その界面で光を散乱した後光電変換ユニット内へ入射させることで光路長を延長せしめ、光電変換層内での光吸収量を増加させる工夫がなされている。この技術は「光閉じ込め」と呼ばれており、高い光電変換効率を有する薄膜光電変換装置を実用化する上で、重要な要素技術となっている。
【0004】
薄膜光電変換装置の一例である非晶質シリコン太陽電池は、低温で大面積のガラス基体やステンレス基体上に形成できることから、大面積化および低コスト化に有利であり実用化されている。しかし、非晶質シリコン太陽電池は、単結晶や多結晶太陽電池に比べ、初期光電変換効率が低く、さらに光劣化現象により変換効率が低下するという問題がある。そこで、薄膜多結晶シリコンや微結晶シリコンのような結晶質シリコンを光電変換層として用いた結晶質シリコン薄膜光電変換装置が、低コスト化と高効率化とを両立可能なものとして期待され、検討されている。なぜなら、結晶質シリコン薄膜光電変換装置は、非晶質シリコンの形成時に用いられるプラズマ化学気相堆積法(プラズマCVD法)にて形成でき、さらに光劣化現象がほとんど生じないからである。
【0005】
なお、本願明細書における、「結晶質」、「微結晶」の用語は、部分的に非晶質を含んでいるものも含んでいるものとする。
【0006】
しかしながら、従来の結晶質シリコン薄膜光電変換装置の光電変換効率は、非晶質シリコン薄膜光電変換装置の光電変換効率と同程度に留まっている。
【0007】
この原因としては、表面を凹凸化した電極上に堆積される結晶質光電変換層に、凹凸形状に起因した結晶粒界が発生し、欠陥として作用することや、透明導電性酸化物からなる透明電極が結晶質光電変換層を堆積する際のプラズマによって還元されてしまうことが考えられる。
【0008】
ガラス等の透明基体上に形成される非晶質シリコン太陽電池は、透明電極として表面凹凸を有する酸化錫(SnO)膜をよく用いている。この透明電極の表面凹凸は、光電変換層内への光閉じ込めに有効に寄与している。しかし、SnO膜は耐プラズマ性が低く、より大きなプラズマ密度が必要な結晶質光電変換層の堆積環境下では、SnO膜が還元されてしまうという問題がある。SnO膜が還元されると黒化し、黒化した透明電極部分で入射光が吸収され、光電変換層への透過光量が減少してしまう。また、透明電極として熱CVD法によりSnO膜を形成したガラス基体は、その透明電極を形成するために400℃以上の高温プロセスを必要とするのでコストが高いという問題もある。
【0009】
一方、酸化亜鉛(ZnO)は、透明導電膜材料として広く用いられているSnOあるいは酸化インジウム錫(ITO)よりも安価であり、また耐プラズマ性が高いという利点を有しており、薄膜光電変換装置用透明導電膜材料として好適である。
【0010】
例えば、特許文献1に開示されているZnO膜の形成方法は、200℃以下の低温有機金属CVD法(低温MOCVD法)ゆえ、熱CVD法に比べて低温で凹凸を有する薄膜が形成でき、スパッタ法に比べて1桁以上速い製膜速度にて製膜が可能であり、原料の利用効率も高いことから、形成方法の面でも薄膜光電変換装置にとって好ましい。しかしながら、さらに薄膜結晶質光電変換装置の光電変換効率を高めるためには、特許文献1で開示されている方法で得られる凹凸形状による光閉じ込め効果では不十分で、改善の余地があることがわかってきた。
【0011】
【特許文献1】特開2000−252501号公報
【0012】
【発明が解決しようとする課題】
本発明は、上記の問題点に鑑みてなされたものであり、その上に結晶質光電変換層を形成した場合に薄膜結晶質光電変換装置の結晶質光電変換層内の欠陥密度を増大させることなく充分な光閉じ込め効果を発揮する凹凸形状を有し、かつ安価に製造できる薄膜光電変換装置用基板、および高い光電変換効率を有する薄膜光電変換装置を提供することを主要な目的としている。
【0013】
【課題を解決するための手段】
本発明の薄膜光電変換装置用基板は、上記課題を解決するために、基体とその上に製膜された少なくともZnO膜を有し、該ZnO膜の表面は粒径が50〜500nmで、かつ高さが20〜200nmの凹凸を有し、さらに該ZnO膜は(001)の優先配向面を有し、そのX線回折パターンにおいて(002)ピーク強度に対する(110)ピーク強度の比が0.5以下であることを特徴としている。
【0014】
また、上記基体がガラス等の透光性基体である薄膜光電変換装置用基板の場合は、入射光を酸化亜鉛膜の凹凸で光電変換ユニットへ散乱させられるため、光電変換ユニット内での光路長が長くなり、光閉じ込め効果を得易い。この際、透光性基体を用いた薄膜光電変換装置用基板は、20%以上50%以下のヘイズ率を有することが好ましい。
【0015】
本発明に係る薄膜光電変換装置は、上記の薄膜光電変換装置用基板上に少なくとも一つの結晶質光電変換ユニットをさらに備えていることを特徴としている。加えて、本発明に係る薄膜光電変換装置は、上記の薄膜光電変換装置用基板上に一つ以上の結晶質光電変換ユニットと一つ以上の非晶質光電変換ユニットをさらに備えているものであってもよい。
【0016】
光電変換層が結晶質の場合、薄膜光電変換装置用基板の異なる凹凸表面から成長した互いに結晶方位の異なる結晶粒同士の衝突によって、光電変換層中に多量の欠陥が発生しやすい。このような欠陥は、キャリアの再結合中心となり、光電変換効率を著しく低下させる。
【0017】
そこで、本発明によれば、光電変換層中の欠陥を低減でき、充分な光閉じ込め効果を有し、かつ高い光電変換効率を有する薄膜光電変換装置用基板を安価に提供できる。
【0018】
【発明の実施の形態】
図1において、本発明の一実施形態による薄膜光電変換装置が模式的な断面図で示されている。この光電変換装置は、透明基体1上に順じ堆積された透明電極2、結晶質光電変換ユニット11、裏面電極3を含んでいる。そして、結晶質光電変換ユニット11は、順に堆積された一導電型層111、実質的に真性半導体の結晶質光電変換層112、および逆導電型層113を含んでいる。この光電変換装置に対しては、光電変換されるべき太陽光(hν)は透明基体1側から入射される。
【0019】
図1の光電変換装置において使用される透明基体1にはガラス板やフィルム等が用いられるが、より多くの太陽光を透過させて光電変換層に吸収させるために、基体はできるだけ透明であることが好ましい。同様の意図から、太陽光(hν)の基体光入射面における光反射ロスを低減させるように、無反射コーティングを行うことによって、光電変換装置の高効率化が図れ得る。
【0020】
また、透明基体1としてフロートガラス板を用いた場合は、ガラスからのアルカリ成分が透明電極2や光電変換ユニット11へ侵入することを防ぐために、アルカリバリア膜としてSiO等の下地膜をガラス板と透明電極2との間に形成することが好ましい。加えて、透明電極2を形成した薄膜光電変換装置用基板は、透明薄膜の積層体であるため、光の干渉による色むらが発生しやすくなる。その色むらを防止するために、下地層は屈折率の異なる薄膜を複数層組合せたものでもよい。
【0021】
透明基体1上に配置される透明電極2の材料としては、光電変換ユニット11と接する面に少なくともZnOを含む透明導電性酸化膜を用いる。
【0022】
本発明の薄膜光電変換装置用基板のZnO透明電極2は、基体温度が200℃以下および製膜圧力としては10〜1000Paの減圧条件下でCVD法にて形成され、表面凹凸を有する。
【0023】
ZnO膜の形成には、主な原料として、ジエチルジンク(DEZ)と水を使用し得る。これらの原料は、常温常圧状態で液体であるが、製膜室内へ供給する前に加熱気化されている。なお、例えば、DEZの代わりにジメチルジンク(DMZ)を用い、水の代わりに酸素やオゾンなどを用いることも可能である。また、ZnO膜の導電性を改善するためには、ドーピングガスとしてジボランガスを同時に供給することが有効である。ジボランガス以外にも、三フッ化ホウ素、三塩化ホウ素、または三臭化ホウ素を用いたり、常温常圧で液体のトリメチルボロンやトリエチルボロンを気化させて供給することによっても、ZnO膜の導電性が改善され得る。
【0024】
製膜時の基体温度は、ZnO製膜表面での原料反応物の分解効率が高く、凹凸膜が得易い150〜190℃に設定することが好ましい。ここでいう基体温度とは、基体が製膜装置の加熱部と接している面の温度のことをいう。200℃以下の基体温度条件下において、原料ガスの比率や流量を制御したCVD法により形成されたZnO膜の表面は凹凸を有し、かつ(001)の優先配向面を有し、そのX線回折パターンにおいて(002)ピーク強度に対する(110)ピーク強度の比が0.5以下となる。このとき形成される凹凸は、粒径が概ね50〜500nmで、かつ凹凸の高さが概ね20〜200nmとなる。
【0025】
透明電極2がZnO膜のみで構成されている場合、ZnO膜の平均厚さは0.5〜5μmであることが好ましく、1〜3μmであることがより好ましい。なぜなら、ZnO膜が薄すぎれば、光閉じ込め効果に有効に寄与する凹凸を十分に付与すること自体が困難となり、また透明電極として必要な導電性が得にくく、厚すぎればZnO膜自体による光吸収により、ZnOを透過し光電変換ユニットへ到達する光量が減るため、効率が低下するからである。さらに、厚すぎる場合は、製膜時間の増大によりその製膜コストが増大する。
【0026】
透明基体1がガラス基体からなる本発明の薄膜光電変換装置用基板では、入射光に対して20%以上50%以下のヘイズ率を有することが好ましく、25%以上40%以下のヘイズ率を有することがより好ましい。ヘイズ率が小さすぎると、従来以上の光閉じ込め効果が得られにくく、ヘイズ率が大きすぎる場合、全光線透過率が減少する傾向になるため、好ましいヘイズ率の範囲が存在する。ここで、ヘイズ率とは、(拡散透過率/全光線透過率)×100で表されるものである(JIS K7136)。このような薄膜光電変換装置用基板のヘイズ率は、主として透明電極2の表面凹凸構造に依存することが容易に理解されよう。
【0027】
なお、透明基体を使用した薄膜光電変換装置用基板に関して、光電変換ユニット内へ光を散乱入射させる観点からは、拡散透過率が大きい方が好ましく、光電変換ユニット内へ入射させる光量の観点からは、全光線透過率が大きい方が好ましいことはいうまでもない。
【0028】
透明電極2の上には、結晶質光電変換ユニット11が形成される。結晶質光電変換ユニット11には一導電型層111、真性結晶質光電変換層112および逆導電型層113が含まれる。光電変換ユニットは図示したように単体としてもよいが、複数のユニットを積層してもよい。結晶質光電変換ユニット11としては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましく、例えば結晶質シリコン系薄膜を光電変換層としたユニットが挙げられる。また、「シリコン系」の材料には、シリコンに加え、シリコンカーバイドやシリコンゲルマニウムなど、シリコンを50%以上含む半導体材料も該当するものとする。
【0029】
結晶質シリコン系薄膜光電変換ユニットは、例えばpin型の順にプラズマCVD法により各半導体層を積層して形成される。具体的には、例えば導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型微結晶シリコン系層、光電変換層となる真性結晶質シリコン層、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型微結晶シリコン系層をこの順に堆積すればよい。しかし、これら各層は上記に限定されず、例えばp型層として非晶質シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。なお、導電型(p型、n型)微結晶シリコン系層の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。
【0030】
真性結晶質光電変換層112である真性結晶質シリコン層は、プラズマCVD法によって基体温度400℃以下で形成することが好ましい。低温で形成することにより、結晶粒界や粒内における欠陥を終端させて不活性化させる水素原子を多く含ませることが好ましい。具体的には、光電変換層の水素含有量は1〜30原子%の範囲内にあるのが好ましい。この層は、導電型決定不純物原子の密度が1×1018cm−3以下である実質的に真性半導体である薄膜として形成されることが好ましい。さらに、真性結晶質シリコン層に含まれる結晶粒の多くは、透明電極2側から柱状に延びて成長しており、その膜面に対して(110)の優先配向面を有することが好ましい。真性結晶質シリコン層の膜厚は0.1μm以上10μm以下が好ましい。ただし、薄膜結晶質光電変換ユニット11としては、太陽光の主波長域(400〜1200nm)に吸収を有するものが好ましいため、真性結晶質シリコン層に代えて、合金材料である結晶質シリコンカーバイド層(例えば10原子%以下の炭素を含有する結晶質シリコンからなる結晶質シリコンカーバイド層)や結晶質シリコンゲルマニウム層(例えば30原子%以下のゲルマニウムを含有する結晶質シリコンからなる結晶質シリコンゲルマニウム層)を形成してもよい。
【0031】
裏面電極3としては、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料からなる少なくとも一層の金属層32をスパッタ法または蒸着法により形成することが好ましい。また、光電変換ユニット11と金属層32との間に、ITO、SnO、ZnO等の導電性酸化物からなる層31を形成するほうが好ましい。この導電性酸化物層31は、光電変換ユニット11と金属層32との間の付着性を高め、金属層32の光反射率を高め、光電変換ユニット11の化学変化を防止する機能を有する。
【0032】
さらに、図示はしていないが、基体1の上に裏面電極3、結晶質光電変換ユニット11、透明電極2の順で薄膜光電変換装置が形成される場合は、裏面電極3を金属層32と本発明の表面凹凸を有するZnO膜を含む導電性酸化物層31との積層体で形成することにより、図1と同様に薄膜光電変換装置の変換効率を改善できる。この場合は、基体1として、SUS基体やセラミック基体を用いることもできる。
【0033】
本発明の光電変換装置のもう一つの形態は、図2に示されるような非晶質シリコン系光電変換ユニット21と結晶質シリコン系光電変換ユニット22を順に積層したタンデム型薄膜光電変換装置である。非晶質シリコン系光電変換層は約360〜800nmの光に感度を有し、結晶質シリコン系光電変換層はそれより長い約1200nmまでの光を光電変換することが可能であるため、光入射側から非晶質シリコン系光電変換ユニット21、結晶質シリコン系光電変換ユニット22の順で配置される光電変換装置は、入射光をより広い範囲で有効利用可能な薄膜光電変換装置となる。この場合、透明電極2上に直接結晶質シリコン系光電変換ユニット22を形成するわけではないが、非晶質シリコン系光電変換ユニット21の膜厚が薄いために、非晶質シリコン系光電変換ユニット21の表面に透明電極2に起因する凹凸形状が反映されるため、その上に形成される結晶質シリコン系光電変換ユニット22へ影響しやすい。従って、図2に示されるような結晶質光電変換ユニットを含むタンデム型薄膜光電変換装置にも、本発明の薄膜光電変換装置用基板は好ましい。
【0034】
【実施例】
以下、本発明を実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り以下の記載例に限定されるものではない。
【0035】
(実施例1)
実施例1として図1に示されるような薄膜光電変換装置を作製した。
【0036】
厚み0.7mm、127mm角のガラス基体1上にZnOからなる透明電極2を形成した。この透明電極2は、基体温度を180℃に設定し、原料ガスとしてDEZと水、ドーパントガスとしてジボランガスを供給し、反応室内圧力560Paにて15分間製膜することで形成している。この時、DEZは液体容器の温度を0℃に保ち、Arによるバブリングにて400sccm(Arの流量値)、水は0.04ccm(気化させる前の液体流量)、0.1%ジボランガス(水素希釈)は200sccm流した。この条件で製膜されたZnO膜からなる透明電極2の厚さは2.6μmであり、シート抵抗は7Ω/□程度、ヘイズ率は30%であった。また、この基板の全光線透過率を、ガラス側から光を入射し、分光光度計にて測定した。波長400nm〜1200nmの範囲で80%以上の透過率を示した。
【0037】
こうして得られたZnO膜からなる透明電極2のX線回折測定を行ったところ、図3に示す回折パターンを得た。得られた回折パターンにおける(002)ピーク強度に対する(110)ピーク強度の比は0.4であった。なお、今回用いたX線回折の測定は、電圧30kV、電流40mA、Cuターゲットを用い、4°/minのスキャンスピードで行った。
【0038】
図4は本実施例1で形成された透明電極2の上面における一辺1.45μmの正方形領域を観察した原子間力顕微鏡(AFM)像を示している。なお、このAFM測定には、Nano−Rシステム(Pacific Nanotechnology社製)のノンコンタクトモードが用いられた。図4より、低温にて形成されたにも関わらず、比較的大きな凹凸が形成されていることがわかる。
【0039】
この透明電極2の上に、厚さ15nmのp型微結晶シリコン層111、厚さ2.5μmの真性結晶質シリコン光電変換層112、及び厚さ15nmのn型微結晶シリコン層113からなる結晶質シリコン光電変換層ユニット11を順次プラズマCVD法で形成した。その後、裏面電極3として厚さ90nmのAlドープされたZnO31と厚さ200nmのAg32をスパッタ法にて順次形成した。
【0040】
以上のようにして得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、開放電圧(Voc)が0.522V、短絡電流密度(Jsc)が27.2mA/cm、曲線因子(F.F.)が69.1%、そして変換効率が9.8%であった。
【0041】
(実施例2)
実施例2においても、実施例1と同様に結晶質シリコン系薄膜光電変換装置を作製した。ただし、実施例1と異なるのは、ガラス基体1として厚み4mmのものを用い、ZnO製膜時の基体温度を190℃に設定した点である。製膜されたZnO透明電極2の厚さは2.2μmであり、シート抵抗は9Ω/□程度、ヘイズ率は26%であった。
【0042】
得られた透明電極2のX線回折パターンにおいて、(002)ピーク強度に対する(110)ピーク強度の比は0.5であった。
【0043】
得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、Vocが0.512V、Jscが26.9mA/cm、F.F.が68.8%、そして変換効率が9.6%であった。
【0044】
実施例2で作製された薄膜光電変換装置の特性は、実施例1よりも若干低いものであった。VocおよびF.F.の値が低いのは、ZnO膜の(001)優先配向度合が低いために、結晶質シリコン光電変換層の膜質が実施例1に比べて低下したものと思われる。Jscの値が実施例1よりも低下している原因は、実施例2のガラス基体が厚いために、基板の全光線透過率が実施例1に比べて少し低くなっていることと、実施例2の方が低いヘイズ率であるために光電変換層へ吸収される太陽光の量と拡散によって閉じ込められる光の量が減少したものと考えられる。
【0045】
(実施例3)
実施例3においては、実施例2とほぼ同様にシリコン系薄膜光電変換装置を作製した。ただし、MOCVD法により透明電極2を形成する際、原料ガスであるDEZおよび水、さらにジボランガスの各流量を実施例2に比べて半分にするとともに、反応室内圧力を20Paとし、製膜時間も25分間とした点が異なる。この条件で製膜されたZnO透明電極2の厚さは2.3μmであり、シート抵抗は8Ω/□程度、ヘイズ率は32%であった。
【0046】
こうして得られた透明電極2のX線回折パターンにおける(002)ピーク強度に対する(110)ピーク強度の比は0.3であった。
【0047】
得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、Vocが0.526V、Jscが27.0mA/cm、F.F.が70.1%、そして変換効率が9.9%であった。
【0048】
実施例3の薄膜光電変換装置は、実施例1および2よりも若干ではあるがVocおよびF.F.が改善されている。実施例1の基板と同程度のヘイズ率を有することから、この改善はZnO膜の結晶配向性による効果と考えられる。従って、ZnO膜は(001)の優先配向性の強いもののほうが薄膜結晶質光電変換装置に適している。
【0049】
(実施例4)
実施例4においては、実施例1とほぼ同様にシリコン系薄膜光電変換装置を作製した。ただし、MOCVD法により透明電極2を形成する際、製膜時間を12分間とした点が異なる。この条件で製膜されたZnO透明電極2の厚さは2.1μmであり、シート抵抗は10Ω/□程度、ヘイズ率は22%であった。
【0050】
こうして得られた透明電極2のX線回折パターンにおける(002)ピーク強度に対する(110)ピーク強度の比は0.4であった。
【0051】
得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、Vocが0.530V、Jscが26.2mA/cm、F.F.が70.0%、そして変換効率が9.7%であった。
【0052】
(実施例5)
実施例5においては、実施例1とほぼ同様にシリコン系薄膜光電変換装置を作製した。ただし、MOCVD法により透明電極2を形成する際、製膜時間を17分間とした点が異なる。この条件で製膜されたZnO透明電極2の厚さは2.9μmであり、シート抵抗は6Ω/□程度、ヘイズ率は39%であった。
【0053】
こうして得られた透明電極2のX線回折パターンにおける(002)ピーク強度に対する(110)ピーク強度の比は0.3であった。
【0054】
得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、Vocが0.518V、Jscが26.5mA/cm、F.F.が69.3%、そして変換効率が9.5%であった。
【0055】
(実施例6)
実施例6においては、実施例1と同様の薄膜光電変換装置用基板を用いて図2に示すタンデム型薄膜光電変換装置を作製した。薄膜光電変換装置用基板の透明電極2上に、プラズマCVD法により、厚さ15nmのp型非晶質シリコン層211、厚さ350nmの真性非晶質シリコン光電変換層212、及び厚さ15nmのn型微結晶シリコン層213からなる非晶質シリコン光電変換層ユニット21を形成し、続いて実施例1と同様に結晶質シリコン光電変換層ユニット22を形成した。その後、裏面電極3として厚さ90nmのAlドープされたZnO31と厚さ200nmのAg32をスパッタ法にて順次形成し、タンデム型シリコン系薄膜光電変換装置を得た。
【0056】
得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、Vocが1.37V、Jscが13.3mA/cm、F.F.が71.5%、そして変換効率が13.0%であった。
【0057】
(比較例1)
比較例1は、実施例1とほぼ同様に厚み0.7mm、127mm角のガラス基体1上にZnOからなる透明電極2を形成した。ただし、原料ガスであるDEZおよび水、さらにジボランガスの各流量を実施例1に比べて半分とし、反応室内圧力を520Paとし、20分の製膜時間にて形成した点が異なる。この条件で製膜されたZnO透明電極2の厚さは2.5μmであり、シート抵抗は6Ω/□程度、ヘイズ率は28%であった。
【0058】
得られた透明電極2のX線回折パターンにおいて、(002)ピーク強度に対する(110)ピーク強度の比は93であった。なお、得られた回折パターンを図5に示した。
【0059】
図6は本比較例1で形成された透明電極2の上面における一辺1.45μmの正方形領域を観察したAFM像を示している。図4に示した実施例1の透明電極2に比べ、核発生密度が高く、ピラミッド型や三角錐型の凹凸が多く見られる。そのため、その上に堆積する結晶質光電変換層の成長の際に生じる欠陥密度も高くなると予想される。加えて、ピラミッド型や三角錐型の凹凸は、凸部が高くかつ鋭利であるため、薄膜結晶質光電変換層に機械的な欠陥も発生し易くなり、セルの歩留まりが悪くなる。さらに、一般的にピラミッド型の凹凸は光閉じ込めに有効な形状ではあるが、800〜1200nmの領域で効果的な光閉じ込めをおこすためには、250nm以上の粒径を有するものを増加させる必要が有り、光電変換層の欠陥密度との両立が困難となると考えられる。
【0060】
この透明電極2の上に、実施例1と同様の厚さ15nmのp型微結晶シリコン層221、厚さ2.5μmの真性結晶質シリコン光電変換層222、及び厚さ15nmのn型微結晶シリコン層223からなる結晶質シリコン光電変換層ユニット22を順次プラズマCVD法で形成した。その後、裏面電極3として厚さ90nmのAlドープされたZnO31と厚さ200nmのAg32をスパッタ法にて順次形成した。
【0061】
以上のようにして得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、Vocが0.491V、Jscが26.0mA/cm、F.F.が67.1%、そして変換効率が8.6%であった。
【0062】
(比較例2)
比較例2においては、実施例1とほぼ同様に結晶質シリコン系薄膜光電変換装置を作製した。ただし、透明電極2を形成する際、反応室内圧力を120Paとし、製膜時間を18分間として形成した点が異なる。この条件で製膜されたZnO透明電極2の厚さは2.5μmであり、シート抵抗は5Ω/□程度、ヘイズ率は30%であった。
【0063】
得られた透明電極2のX線回折パターンにおいて、(002)ピークはほとんど観測されなかった。なお、(100)ピーク強度に対する(110)ピーク強度の比は、50であった。
【0064】
得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、Vocが0.495V、Jscが26.4mA/cm、F.F.が63.7%、そして変換効率が8.3%であった。
【0065】
(比較例3)
比較例3においては、実施例1とほぼ同様に結晶質シリコン系薄膜光電変換装置を作製した。ただし、透明電極2を形成する際、原料ガスであるDEZと水の各流量を2割増やし、反応室内圧力を80Paとし、製膜時間を20分間として形成した点が異なる。この条件で製膜されたZnO透明電極2の厚さは2.0μmであり、シート抵抗は11Ω/□程度、ヘイズ率は18%であった。
【0066】
得られた透明電極2のX線回折パターンにおいて、(002)ピークはほとんど観測されなかった。なお、(100)ピーク強度に対する(110)ピーク強度の比は、43であった。
【0067】
得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、Vocが0.499V、Jscが25.4mA/cm、F.F.が68.6%、そして変換効率が8.7%であった。
【0068】
(比較例4)
比較例4においては、実施例1とほぼ同様に結晶質シリコン系薄膜光電変換装置を作製した。ただし、透明電極2を形成する際、ZnO製膜時の基体温度を240℃に設定し、反応室内圧力を640Paとし、製膜時間を15分間として形成した点が異なる。この条件で製膜されたZnO透明電極2の厚さは3.0μmであり、シート抵抗は15Ω/□程度、ヘイズ率は51%であった。
【0069】
得られた透明電極2のX線回折パターンにおいて、(002)ピーク強度に対する(110)ピーク強度の比は、112であった。
【0070】
得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、Vocが0.480V、Jscが24.9mA/cm、曲線因子F.F.が60.1%、そして変換効率が7.2%であった。
【0071】
比較例2および4では、比較例1よりもF.F.が低下しており、さらに127mm角の基板内に形成されたセルの歩留まりが実施例1〜4に比べて悪かった。従って、ピラミッド型や三角錐型の凹凸が多いZnO膜で、かつヘイズ率が30%以上の基板を作製しようとすると、凹凸形状の粒径や高低差が大きくなる傾向にあり、それによって結晶質光電変換装置の機械的、電気的な欠陥を引き起こされ易くなることが判明した。
【0072】
(比較例5)
比較例5においては、比較例1と同様の透明電極2を用い、実施例6と同様の方法にてタンデム型薄膜光電変換装置を形成した。
【0073】
得られたシリコン系薄膜光電変換装置(受光面積1cm)にAM1.5の光を100mW/cmの光量で照射して出力特性を測定したところ、Vocが1.33V、Jscが12.9mA/cm、F.F.が69.8%、そして変換効率が12.0%であった。
【0074】
表1は上述の実施例1〜6および比較例1〜5による薄膜光電変換装置用基板の主要な特性とそれらを用いた薄膜光電変換装置における出力特性の測定結果を示している。
【0075】
【表1】
Figure 2004311704
表1の結果から分かるように、実施例1〜5のいずれにおいても、比較例1〜4に比べて、出力特性を示す全てのパラメーターが向上している。特に実施例のVocやF.F.の値が比較例と比較して高いことから、図4と図6に示したZnO膜凹凸の形状比較によって予想したように、実施例の方が結晶質を含む薄膜光電変換装置に適した透明電極2の凹凸であり、その上に形成される結晶質光電変換層の膜質が改善されたことが示されている。
【0076】
同様に、タンデム型薄膜光電変換装置である実施例6と比較例5の比較においても、実施例6の方が全てのパラメーターで向上している。この結果から、結晶質光電変換ユニット22と透明電極2の間に非晶質光電変換ユニット21が存在しても、非晶質光電変換ユニット21に透明電極2の凹凸形状が反映され、結晶質光電変換層の膜質に影響することが判明した。
【0077】
【発明の効果】以上詳細に説明したように本発明によれば、安価に製造可能な薄膜光電変換装置用基板を用いて、性能の改善された薄膜光電変換装置を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る薄膜光電変換装置の一例を示す断面図。
【図2】本発明に係るタンデム型薄膜光電変換装置の一例を示す断面図。
【図3】実施例1における透明電極2のX線回折パターンを示す図。
【図4】実施例1における透明電極2の表面凹凸形状の一例を示す原子間力顕微鏡(AFM)像図。
【図5】比較例1における透明電極2のX線回折パターンを示す図。
【図6】比較例1における透明電極2の表面凹凸形状の一例を示すAFM像図。
【符号の説明】
1 透明基体
2 透明電極
11 結晶質光電変換ユニット
111 一導電型層
112 真性結晶質光電変換層
113 逆導電型層
3 裏面電極
31 導電性酸化物膜
32 金属層
21 非晶質光電変換ユニット
211 一導電型層
212 真性非晶質シリコン系光電変換層
213 逆導電型層
22 結晶質光電変換ユニット
211 一導電型層
212 真性結晶質シリコン系光電変換層
213 逆導電型層

Claims (5)

  1. 基体とその上に製膜された少なくとも酸化亜鉛膜からなる薄膜光電変換装置用基板であって、該酸化亜鉛膜の表面は粒径が50〜500nmで、かつ高さが20〜200nmの凹凸を有し、さらに該酸化亜鉛膜は(001)の優先配向面を有し、そのX線回折パターンにおいて(002)ピーク強度に対する(110)ピーク強度の比が0.5以下であることを特徴とする薄膜光電変換装置用基板。
  2. 前記基体が透光性基体である請求項1に記載の薄膜光電変換装置用基板。
  3. 請求項2に記載の薄膜光電変換装置用基板であって、20%以上50%以下のヘイズ率を有することを特徴とする薄膜光電変換装置用基板。
  4. 請求項1ないし3に記載の薄膜光電変換装置用基板を備え、該薄膜光電変換装置用基板上に少なくとも一つの結晶質光電変換ユニットをさらに備えていることを特徴とする薄膜光電変換装置。
  5. 請求項1ないし3に記載の薄膜光電変換装置用基板を備え、該薄膜光電変換装置用基板上に一つ以上の結晶質光電変換ユニットと一つ以上の非晶質光電変換ユニットをさらに備えていることを特徴とする薄膜光電変換装置。
JP2003102977A 2003-04-07 2003-04-07 薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置 Expired - Lifetime JP4713819B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102977A JP4713819B2 (ja) 2003-04-07 2003-04-07 薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102977A JP4713819B2 (ja) 2003-04-07 2003-04-07 薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置

Publications (2)

Publication Number Publication Date
JP2004311704A true JP2004311704A (ja) 2004-11-04
JP4713819B2 JP4713819B2 (ja) 2011-06-29

Family

ID=33466262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102977A Expired - Lifetime JP4713819B2 (ja) 2003-04-07 2003-04-07 薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置

Country Status (1)

Country Link
JP (1) JP4713819B2 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006057160A1 (ja) * 2004-11-29 2006-06-01 Kaneka Corporation 薄膜光電変換装置
JP2007288043A (ja) * 2006-04-19 2007-11-01 Kaneka Corp 光電変換装置用透明導電膜とその製造方法
WO2008062685A1 (fr) * 2006-11-20 2008-05-29 Kaneka Corporation Substrat accompagné de film conducteur transparent pour dispositif de conversion photoélectrique, procédé de fabrication du substrat et dispositif de conversion photoélectrique l'utilisant
JP2008277387A (ja) * 2007-04-26 2008-11-13 Kaneka Corp 光電変換装置の製造方法
JP2009071034A (ja) * 2007-09-13 2009-04-02 Kaneka Corp 薄膜光電変換装置及びその製造方法
WO2009069544A1 (ja) * 2007-11-30 2009-06-04 Kaneka Corporation シリコン系薄膜光電変換装置
JP2009267222A (ja) * 2008-04-28 2009-11-12 Kaneka Corp 薄膜光電変換装置用透明導電膜付き基板の製造方法
WO2011002086A1 (ja) * 2009-07-03 2011-01-06 株式会社カネカ 結晶シリコン系太陽電池およびその製造方法
WO2011158724A1 (ja) * 2010-06-18 2011-12-22 株式会社カネカ 薄膜太陽電池
WO2012014572A1 (ja) * 2010-07-28 2012-02-02 株式会社カネカ 薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法
JP2013012593A (ja) * 2011-06-29 2013-01-17 Kaneka Corp 薄膜光電変換装置
JP2013102244A (ja) * 2013-03-06 2013-05-23 Tohoku Univ 光電変換部材
WO2013150708A1 (ja) * 2012-04-02 2013-10-10 パナソニック株式会社 太陽電池素子およびその製造方法
WO2013157204A1 (ja) * 2012-04-17 2013-10-24 パナソニック株式会社 太陽電池素子、及び、太陽電池素子を用いて電力を発生させる方法
WO2013183207A1 (ja) * 2012-06-06 2013-12-12 パナソニック株式会社 太陽電池素子、及び、太陽電池素子を用いて電力を発生させる方法
KR101559353B1 (ko) * 2014-09-29 2015-10-13 (주) 비제이파워 내구성이 향상된 옥외용 태양광 집광 렌즈

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282871A (ja) * 1991-03-12 1992-10-07 Fuji Electric Co Ltd 薄膜太陽電池
JPH0567797A (ja) * 1991-09-06 1993-03-19 Asahi Glass Co Ltd 太陽電池用透明導電性基体およびこれを用いた太陽電池
JPH0888380A (ja) * 1994-09-16 1996-04-02 Canon Inc 光起電力素子用基板及びその作製方法
JPH10283847A (ja) * 1997-04-01 1998-10-23 Sharp Corp 透明導電膜
JPH1179891A (ja) * 1997-07-09 1999-03-23 Canon Inc 酸化亜鉛薄膜、その製造方法、光電変換素子及びその製造方法
JPH11266027A (ja) * 1998-03-17 1999-09-28 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2000252501A (ja) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置の製造方法
JP2001015780A (ja) * 1999-06-29 2001-01-19 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置用裏面電極、およびそれを備えたシリコン系薄膜光電変換装置
JP2001320067A (ja) * 2000-03-02 2001-11-16 Nippon Sheet Glass Co Ltd 光電変換装置
JP2002114598A (ja) * 2000-10-03 2002-04-16 Toppan Printing Co Ltd 透明導電性材料およびその製造方法
JP2002141524A (ja) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology 多接合型薄膜太陽電池
JP2002141525A (ja) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology 太陽電池用基板および薄膜太陽電池
JP2002260448A (ja) * 2000-11-21 2002-09-13 Nippon Sheet Glass Co Ltd 導電膜、その製造方法、それを備えた基板および光電変換装置

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04282871A (ja) * 1991-03-12 1992-10-07 Fuji Electric Co Ltd 薄膜太陽電池
JPH0567797A (ja) * 1991-09-06 1993-03-19 Asahi Glass Co Ltd 太陽電池用透明導電性基体およびこれを用いた太陽電池
JPH0888380A (ja) * 1994-09-16 1996-04-02 Canon Inc 光起電力素子用基板及びその作製方法
JPH10283847A (ja) * 1997-04-01 1998-10-23 Sharp Corp 透明導電膜
JPH1179891A (ja) * 1997-07-09 1999-03-23 Canon Inc 酸化亜鉛薄膜、その製造方法、光電変換素子及びその製造方法
JPH11266027A (ja) * 1998-03-17 1999-09-28 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2000252501A (ja) * 1999-02-26 2000-09-14 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置の製造方法
JP2001015780A (ja) * 1999-06-29 2001-01-19 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置用裏面電極、およびそれを備えたシリコン系薄膜光電変換装置
JP2001320067A (ja) * 2000-03-02 2001-11-16 Nippon Sheet Glass Co Ltd 光電変換装置
JP2002114598A (ja) * 2000-10-03 2002-04-16 Toppan Printing Co Ltd 透明導電性材料およびその製造方法
JP2002141524A (ja) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology 多接合型薄膜太陽電池
JP2002141525A (ja) * 2000-10-31 2002-05-17 National Institute Of Advanced Industrial & Technology 太陽電池用基板および薄膜太陽電池
JP2002260448A (ja) * 2000-11-21 2002-09-13 Nippon Sheet Glass Co Ltd 導電膜、その製造方法、それを備えた基板および光電変換装置

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4811945B2 (ja) * 2004-11-29 2011-11-09 株式会社カネカ 薄膜光電変換装置
WO2006057161A1 (ja) * 2004-11-29 2006-06-01 Kaneka Corporation 薄膜光電変換装置用基板、及びそれを備えた薄膜光電変換装置
JPWO2006057161A1 (ja) * 2004-11-29 2008-06-05 株式会社カネカ 薄膜光電変換装置用基板、及びそれを備えた薄膜光電変換装置
JPWO2006057160A1 (ja) * 2004-11-29 2008-06-05 株式会社カネカ 薄膜光電変換装置
WO2006057160A1 (ja) * 2004-11-29 2006-06-01 Kaneka Corporation 薄膜光電変換装置
JP2007288043A (ja) * 2006-04-19 2007-11-01 Kaneka Corp 光電変換装置用透明導電膜とその製造方法
WO2008062685A1 (fr) * 2006-11-20 2008-05-29 Kaneka Corporation Substrat accompagné de film conducteur transparent pour dispositif de conversion photoélectrique, procédé de fabrication du substrat et dispositif de conversion photoélectrique l'utilisant
US8658887B2 (en) 2006-11-20 2014-02-25 Kaneka Corporation Substrate provided with transparent conductive film for photoelectric conversion device, method for manufacturing the substrate, and photoelectric conversion device using the substrate
JP5156641B2 (ja) * 2006-11-20 2013-03-06 株式会社カネカ 光電変換装置用透明導電膜付基板及び光電変換装置の製造方法
JP2008277387A (ja) * 2007-04-26 2008-11-13 Kaneka Corp 光電変換装置の製造方法
JP2009071034A (ja) * 2007-09-13 2009-04-02 Kaneka Corp 薄膜光電変換装置及びその製造方法
WO2009069544A1 (ja) * 2007-11-30 2009-06-04 Kaneka Corporation シリコン系薄膜光電変換装置
JP5291633B2 (ja) * 2007-11-30 2013-09-18 株式会社カネカ シリコン系薄膜光電変換装置およびその製造方法
EP2216826A4 (en) * 2007-11-30 2016-10-12 Kaneka Corp SILICON THIN FILM PHOTOELECTRIC CONVERSION DEVICE
JP2009267222A (ja) * 2008-04-28 2009-11-12 Kaneka Corp 薄膜光電変換装置用透明導電膜付き基板の製造方法
WO2011002086A1 (ja) * 2009-07-03 2011-01-06 株式会社カネカ 結晶シリコン系太陽電池およびその製造方法
JP5514207B2 (ja) * 2009-07-03 2014-06-04 株式会社カネカ 結晶シリコン系太陽電池およびその製造方法
US8546685B2 (en) 2009-07-03 2013-10-01 Kaneka Corporation Crystalline silicon based solar cell and method for manufacturing thereof
JP5818789B2 (ja) * 2010-06-18 2015-11-18 株式会社カネカ 薄膜太陽電池
WO2011158724A1 (ja) * 2010-06-18 2011-12-22 株式会社カネカ 薄膜太陽電池
EP2600410A4 (en) * 2010-07-28 2017-05-03 Kaneka Corporation Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell
EP2600410A1 (en) * 2010-07-28 2013-06-05 Kaneka Corporation Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell
US9166080B2 (en) 2010-07-28 2015-10-20 Kaneka Corporation Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell
WO2012014572A1 (ja) * 2010-07-28 2012-02-02 株式会社カネカ 薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法
JP2013012593A (ja) * 2011-06-29 2013-01-17 Kaneka Corp 薄膜光電変換装置
US9059342B2 (en) 2012-04-02 2015-06-16 Panasonic Intellectual Property Management Co., Ltd. Solar cell element and method for manufacturing same
JP5408397B1 (ja) * 2012-04-02 2014-02-05 パナソニック株式会社 太陽電池素子およびその製造方法
WO2013150708A1 (ja) * 2012-04-02 2013-10-10 パナソニック株式会社 太陽電池素子およびその製造方法
US9024178B2 (en) 2012-04-17 2015-05-05 Panasonic Intellectual Property Management Co., Ltd. Solar cell element
WO2013157204A1 (ja) * 2012-04-17 2013-10-24 パナソニック株式会社 太陽電池素子、及び、太陽電池素子を用いて電力を発生させる方法
WO2013183207A1 (ja) * 2012-06-06 2013-12-12 パナソニック株式会社 太陽電池素子、及び、太陽電池素子を用いて電力を発生させる方法
US9583647B2 (en) 2012-06-06 2017-02-28 Panasonic Intellectual Property Management Co., Ltd. Solar cell element
JP2013102244A (ja) * 2013-03-06 2013-05-23 Tohoku Univ 光電変換部材
KR101559353B1 (ko) * 2014-09-29 2015-10-13 (주) 비제이파워 내구성이 향상된 옥외용 태양광 집광 렌즈

Also Published As

Publication number Publication date
JP4713819B2 (ja) 2011-06-29

Similar Documents

Publication Publication Date Title
JP5243697B2 (ja) 光電変換装置用透明導電膜とその製造方法
JP5012793B2 (ja) 透明導電性酸化物膜付き基体および光電変換素子
JP5156641B2 (ja) 光電変換装置用透明導電膜付基板及び光電変換装置の製造方法
JP5069790B2 (ja) 薄膜光電変換装置用基板とそれを含む薄膜光電変換装置、並びに薄膜光電変換装置用基板の製造方法
JP2003347572A (ja) タンデム型薄膜光電変換装置とその製造方法
JP4713819B2 (ja) 薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置
WO2013061637A1 (ja) 光電変換装置とその製造方法、および光電変換モジュール
WO2006057160A1 (ja) 薄膜光電変換装置
EP1056136A1 (en) Conductive substrate for a photoelectric conversion device and its manufacturing method
US6498380B1 (en) Substrate for photoelectric conversion device, and photoelectric conversion device using the same
JP5291633B2 (ja) シリコン系薄膜光電変換装置およびその製造方法
JP4904311B2 (ja) 薄膜光電変換装置用透明導電膜付き基板の製造方法
JP2005347490A (ja) 透明導電性酸化物膜付き基体およびその製造方法ならびに光電変換素子
JP5270889B2 (ja) 薄膜光電変換装置の製造方法
WO2008059857A1 (fr) Dispositif de conversion photoélectrique en film mince
JP2016127179A (ja) 薄膜太陽電池およびその製造方法
JP5469298B2 (ja) 光電変換装置用透明導電膜、及びその製造方法
JP5144949B2 (ja) 薄膜光電変換装置用基板とそれを含む薄膜光電変換装置の製造方法
JP2002237610A (ja) 光電変換装置およびその製造方法
JP5827224B2 (ja) 薄膜太陽電池およびその製造方法
JP2012084843A (ja) 透明導電性酸化物膜付き基体、および光電変換素子
JP5613296B2 (ja) 光電変換装置用透明導電膜、光電変換装置、およびそれらの製造方法
JP5650057B2 (ja) 透明電極基板、及びその製造方法
JP5563850B2 (ja) 光電変換装置およびその製造方法
JP4971755B2 (ja) 薄膜光電変換装置とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060324

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100222

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110325

R150 Certificate of patent or registration of utility model

Ref document number: 4713819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250