WO2008059857A1 - Dispositif de conversion photoélectrique en film mince - Google Patents

Dispositif de conversion photoélectrique en film mince Download PDF

Info

Publication number
WO2008059857A1
WO2008059857A1 PCT/JP2007/072070 JP2007072070W WO2008059857A1 WO 2008059857 A1 WO2008059857 A1 WO 2008059857A1 JP 2007072070 W JP2007072070 W JP 2007072070W WO 2008059857 A1 WO2008059857 A1 WO 2008059857A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
photoelectric conversion
layer
conversion unit
film
Prior art date
Application number
PCT/JP2007/072070
Other languages
English (en)
Japanese (ja)
Inventor
Susumu Fukuda
Yuko Tawada
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Publication of WO2008059857A1 publication Critical patent/WO2008059857A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention provides a means capable of improving the conversion efficiency of a thin film photoelectric conversion device, and particularly relates to an improvement of a transparent electrode layer of a thin film photoelectric conversion device.
  • thin film solar cells which are typical examples of thin film photoelectric conversion devices
  • crystalline thin film solar cells have been developed in addition to conventional amorphous thin film solar cells. Batteries are also being put into practical use.
  • a thin-film solar cell generally includes a transparent conductive film, at least one photoelectric conversion unit, a transparent electrode layer, and a highly reflective layer, which are sequentially laminated from a light incident side on a light-transmitting insulating substrate located on the light incident side. And an electrode layer.
  • One photoelectric conversion unit includes an i-type layer sandwiched between a p-type layer and an n-type layer.
  • p-type and n-type conductive layers play a role of generating a diffusion potential in the photoelectric conversion unit, and the magnitude of this diffusion potential is one of the important characteristics of thin-film solar cells. The value of the end voltage is affected.
  • these conductive layers are inactive layers that do not contribute to photoelectric conversion, and light absorbed by impurities doped in the conductive layer does not contribute to power generation and is lost. Therefore, it is preferable that the thicknesses of the p-type and n-type conductive layers be as thin as possible within a range that generates a sufficient diffusion potential.
  • the photoelectric conversion unit described above has an amorphous i-type photoelectric conversion layer, regardless of whether the p-type and n-type conductivity layers included therein are amorphous or crystalline. It is called a photoelectric conversion unit, and a crystal whose i-type layer is crystalline is called a crystalline photoelectric conversion unit.
  • crystalline in the present application is generally used in the technical field of thin film photoelectric conversion devices, Those including a partially amorphous state are also included.
  • an amorphous thin film silicon solar cell using amorphous silicon for an i-type photoelectric conversion layer can be given.
  • An example of a thin film solar cell including a crystalline photoelectric conversion unit is a crystalline thin film silicon solar cell using microcrystalline silicon or polycrystalline silicon for an i-type photoelectric conversion layer.
  • a method for improving the conversion efficiency of a thin film solar cell there is a method of stacking two or more semiconductor thin film photoelectric conversion units into a tandem type.
  • a photoelectric conversion unit with a large band gap of the photoelectric conversion layer is arranged on the light incident side of the thin film solar cell, and a photoelectric conversion unit with a small band gap of the photoelectric conversion layer is arranged behind the photoelectric conversion unit.
  • photoelectric conversion can be performed over a wide wavelength range of incident light, thereby improving the conversion efficiency of the entire solar cell.
  • tandem-type thin film solar cells those including both an amorphous photoelectric conversion unit and a crystalline photoelectric conversion unit are sometimes referred to as hybrid thin film solar cells.
  • an amorphous silicon photoelectric conversion unit using i-type amorphous silicon with a wide band gap for the photoelectric conversion layer and a crystal using i-type crystalline silicon with a narrow band gap for the photoelectric conversion layer.
  • the wavelength of light that can be photoelectrically converted by i-type amorphous silicon is up to about 800 nm on the long wavelength side, whereas i-type crystals Since quality silicon can photoelectrically convert light up to about l lOOnm longer than that, it is possible to effectively photoelectrically convert a wider range of incident light.
  • a highly reflective electrode layer made of a metal material having a high light reflectance is formed in order to more effectively use light incident on the photoelectric conversion unit. Light that is transmitted without being absorbed by the photoelectric conversion unit is reflected by the highly reflective electrode layer and re-enters the photoelectric conversion unit for photoelectric conversion, thereby improving the conversion efficiency of the thin film photoelectric conversion device.
  • a transparent electrode layer is provided between the photoelectric conversion unit and the highly reflective electrode layer to improve the adhesion between the photoelectric conversion unit and the highly reflective electrode layer, and the metal material of the highly reflective electrode layer is photoelectric. It is prevented from diffusing and mixing into the conversion unit.
  • Patent Document 1 As a problem, "Provide a photoelectric conversion device that realizes high photoelectric conversion efficiency using a transparent electrode or a transparent conductive film in which the relationship between resistivity and transmittance is optimized".
  • a first transparent electrode and a microcrystalline silicon layer having a pin structure or a nip structure composed of a p-type silicon layer, an n-type silicon layer, and an i-type silicon layer on a transparent insulating substrate In the photoelectric conversion device in which the second transparent electrode and the back electrode are sequentially laminated, at least one of the first transparent electrode and the second transparent electrode is a ZnO layer to which Ga is added. , Ga is characterized by being 15 atomic% or less with respect to Zn ”.
  • Patent Document 2 has a problem that "a back surface transparent electrode layer capable of stabilizing the film quality and obtaining a good ohmic junction is formed at a high throughput, thereby forming a large-area thin film.
  • the aim is to provide a thin film solar cell capable of improving the output characteristics, and further improving the photoelectric conversion efficiency even for solar cells, and a method for manufacturing the same.
  • a thin film solar cell in which a transparent electrode layer, a semiconductor photoelectric conversion layer, a back surface transparent electrode layer, and a back surface reflective metal layer are sequentially laminated on a substrate, wherein the back surface transparent electrode is formed on the semiconductor photoelectric conversion layer, ZnO:
  • a thin film solar cell having a two-layer structure in which a Ga layer and a ZnO: A1 layer are formed in this order is disclosed.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-197608.
  • Patent Document 1 discloses an example using ZnO in which Ga is added at 15 atomic% or less to Zn, that is, zinc oxide.
  • sputtering is used as a method for forming ZnO, atoms sputtered from the sputtering material collide at high speed during sputtering. For this reason, the photoelectric conversion unit as a base is damaged when forming the transparent electrode layer, and the junction interface characteristics between the photoelectric conversion unit and the transparent electrode layer are deteriorated, so that the conversion efficiency of the thin film photoelectric conversion device is lowered.
  • the first electrode layer provides a photoelectric conversion device characterized in that the film thickness is 50 angstroms or more and 1000 angstroms or less.
  • the second electrode layer is made of zinc oxide formed by sputtering, and the photoelectric conversion unit provides a photoelectric conversion device mainly composed of silicon.
  • the present invention also provides
  • a method for manufacturing a photoelectric conversion device is provided.
  • zinc oxide is formed by a chemical vapor deposition method as the first electrode layer of the transparent electrode layer on the photoelectric conversion unit.
  • the chemical vapor deposition method means a method of forming a film on a substrate by supplying a raw material containing a desired film component in a gas phase and forming a film on a substrate by a chemical reaction in the gas phase. In this case, damage to the substrate can be reduced.
  • zinc oxide formed by the chemical vapor deposition method is formed as the first electrode layer, there is little damage to the photoelectric conversion unit when the first electrode layer is formed. A bonding interface can be formed, and the conversion efficiency of the photoelectric conversion device can be improved.
  • the zinc oxide forming the first electrode layer is formed from a gas that contains organozinc vapor and does not contain a doping raw material, so that the transmittance of the transparent electrode layer is high and the i-type layer contributes to photoelectric conversion.
  • the first electrode layer preferably has a thickness of 50 angstroms or more and 1000 angstroms or less. When the film thickness is less than 50 angstroms, damage to the photoelectric conversion unit cannot be sufficiently prevented when the second electrode layer is formed by sputtering. On the other hand, when the film thickness is larger than 1000 angstroms, the resistance of the first electrode layer and thus the transparent electrode layer is increased, and the curvature factor of the solar cell characteristics is decreased, so that the effect of the present invention cannot be sufficiently obtained.
  • a transparent conductive film 2 is formed on the translucent insulating substrate 1.
  • the transparent conductive film 2 is made of a metal oxide such as tin oxide or zinc oxide, and is formed using a method such as CVD, sputtering, or vapor deposition.
  • the transparent conductive film 2 has the effect of increasing the scattering of incident light by producing fine irregularities on the surface by devising the formation conditions.
  • the height difference of the unevenness is about 0.03-0.3 m
  • the haze ratio is about 5-30%
  • the sheet resistance is The resistance is set to about 5 to 20 ⁇ / mouth.
  • a transparent electrode layer 4 having a two-layer structure of a first electrode layer 4a and a second electrode layer 4b is formed on the n-type silicon layer 3n.
  • the hydrogen content in the film measured by secondary ion mass spectrometry in the first electrode layer 4a is 5 atomic% to 50 atomic%, preferably 10 atomic% to 40 atomic%, It becomes possible to form a transparent electrode layer having a sufficiently high transmittance.
  • the hydrogen content in the film in the first electrode layer 4a is less than 5 atomic%, high transmittance cannot be obtained, and a photoelectric conversion device with high conversion efficiency cannot be obtained.
  • Zinc oxide forming the first electrode layer 4a is heated on the substrate heated in the range of 50 ° C to 300 ° C, preferably in the range of 100 ° C to 200 ° C. It is formed by introducing organic zinc and water as starting materials.
  • the organic zinc and water are liquids at normal temperature and normal pressure, but when they are introduced into the film forming chamber, they are vaporized and introduced in the state of organic zinc vapor and water vapor.
  • organic zinc and water may be heated and vaporized to be introduced in a gaseous state.
  • carrier gas may be introduced into a container containing raw materials and publishing to vaporize organic zinc and water and introduce them into the film forming chamber.
  • the carrier gas rare gases such as Ar (argon), He (helium), Ne (neon), nitrogen, hydrogen, and the like are typically used. The same applies to inert gases.
  • the pressure in the deposition chamber it is preferable to control the pressure in the deposition chamber to be lower than atmospheric pressure! This is because by controlling the pressure in the film forming chamber, the characteristic distribution such as the film thickness and resistivity of the first electrode layer 4a formed on the substrate becomes small.
  • the pressure in the film forming chamber is adjusted by adjusting the exhaust valve connected to the film forming chamber and adjusting the flow rate of the carrier gas.
  • the first electrode layer 4a of the transparent electrode layer 4 of the present invention By forming zinc oxide, which is preferable as the first electrode layer 4a of the transparent electrode layer 4 of the present invention, using a gas not containing a doping raw material, a film having a high transmittance suitable for the transparent electrode layer 4 is obtained. That power S.
  • the thickness of the first electrode layer 4a is 50 angstroms or more and 1000 angstroms. By setting the thickness to not more than stroms, preferably not less than 200 angstroms and not more than 900 angstroms, a film having high transmittance and resistance suitable for the transparent electrode layer 4 can be obtained. When the thickness of the first electrode layer 4a is less than 50 angstroms, the amorphous silicon photoelectric conversion unit 3 is damaged when the second electrode layer 4b is formed.
  • the thickness of the first electrode layer 4a is larger than 1000 angstroms, the resistance of the transparent electrode layer 4 is increased due to the first electrode layer 4a formed without using a gas containing a doping raw material, The curvature factor of solar cell characteristics is reduced.
  • the second electrode layer 4b of the transparent electrode layer 4 of the present invention zinc oxide formed by sputtering is preferably used.
  • Sputtering gas is usually a force S in which Ar is used, but is not limited to this, and O gas may be added.
  • As the sputtering target zinc oxide to which Group III elements such as B, Al, Ga, In, and Y are appropriately added is used. Since the first electrode layer 4a made of zinc oxide by chemical vapor deposition is formed before the second electrode layer 4b, the amorphous silicon photoelectric conversion unit is formed even if the second electrode layer 4b is formed by sputtering. No damage to 3 The second electrode layer 4b is also effective in ensuring sufficient adhesion between the photoelectric conversion unit 3 and the highly reflective electrode layer 5.
  • the translucent insulating substrate 1 on which the transparent conductive film 2 is formed is introduced into a high-frequency plasma CVD apparatus, and a non-reflective film having a thickness of 150 A is introduced.
  • a crystalline p-type silicon force-bide (p-type a — SiC) layer 3p was formed.
  • SiH, hydrogen, hydrogen diluted BH, and CH are used as reaction gases, and p-type a—S

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

Cette invention concerne un dispositif de conversion photoélectrique en film mince pourvu d'un taux de rendement de conversion élevé et comprenant un film électroconducteur transparent, une unité de conversion photoélectrique, une couche d'électrode transparente et une couche d'électrode à haut facteur de réflexion. Le dispositif de conversion photoélectrique en film mince comporte un substrat isolant transparent à la lumière situé sur un côté d'incidence de la lumière et les éléments suivants empilés sur le substrat isolant transparent à la lumière dans l'ordre suivant à partir du côté d'incidence de la lumière : un film électroconducteur transparent, au moins une unité de conversion photoélectrique, une couche d'électrode transparente et une couche d'électrode à haut facteur de réflexion. Le dispositif de conversion photoélectrique en film mince est caractérisé en ce que la couche d'électrode transparente présente une structure à deux couches ; la teneur en hydrogène de la première couche d'électrode empilée sur l'unité de conversion photoélectrique est supérieure à 5 % atomique et inférieure à 50 % atomique ; la teneur en hydrogène de la seconde couche d'électrode empilée sur la première couche d'électrode est supérieure à 0 % atomique et inférieure à 5 % atomique. Le dispositif de conversion photoélectrique à film mince est en outre caractérisé en ce que la première couche d'électrode est formée d'oxyde de zinc fourni par dépôt chimique en phase vapeur.
PCT/JP2007/072070 2006-11-17 2007-11-14 Dispositif de conversion photoélectrique en film mince WO2008059857A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-311652 2006-11-17
JP2006311652 2006-11-17

Publications (1)

Publication Number Publication Date
WO2008059857A1 true WO2008059857A1 (fr) 2008-05-22

Family

ID=39401663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072070 WO2008059857A1 (fr) 2006-11-17 2007-11-14 Dispositif de conversion photoélectrique en film mince

Country Status (1)

Country Link
WO (1) WO2008059857A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116580A1 (fr) * 2008-03-19 2009-09-24 三洋電機株式会社 Cellule solaire et son procédé de fabrication
JP2011074452A (ja) * 2009-09-30 2011-04-14 Kaneka Corp 薄膜の製造方法、並びに、太陽電池
CN102270670A (zh) * 2011-07-15 2011-12-07 河北汉盛光电科技有限公司 一种硅基薄膜太阳能电池
WO2012063908A1 (fr) * 2010-11-12 2012-05-18 三菱マテリアル株式会社 Composition de pellicule réfléchissante pour élément électroluminescent, élément électroluminescent, et procédé de production d'un élément électroluminescent
EP2738819A1 (fr) * 2011-07-27 2014-06-04 Sanyo Electric Co., Ltd Cellule solaire
CN110690310A (zh) * 2019-10-28 2020-01-14 成都晔凡科技有限公司 异质结太阳能电池片、叠瓦组件及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627123A (ja) * 1985-06-04 1987-01-14 シーメンス ソーラー インダストリーズ,エル.ピー. 酸化亜鉛膜の蒸着方法
JPS628578A (ja) * 1985-06-04 1987-01-16 シーメンス ソーラー インダストリーズ,エル.ピー. 薄膜太陽電池モジュール
JPH11284211A (ja) * 1998-03-27 1999-10-15 Showa Shell Sekiyu Kk 薄膜太陽電池のZnO系透明導電膜の製造方法
JP2000150934A (ja) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2000261011A (ja) * 1999-03-05 2000-09-22 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2003264307A (ja) * 2002-03-11 2003-09-19 Sharp Corp 薄膜太陽電池及びその製造方法
JP2005197608A (ja) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd 光電変換装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627123A (ja) * 1985-06-04 1987-01-14 シーメンス ソーラー インダストリーズ,エル.ピー. 酸化亜鉛膜の蒸着方法
JPS628578A (ja) * 1985-06-04 1987-01-16 シーメンス ソーラー インダストリーズ,エル.ピー. 薄膜太陽電池モジュール
JPH11284211A (ja) * 1998-03-27 1999-10-15 Showa Shell Sekiyu Kk 薄膜太陽電池のZnO系透明導電膜の製造方法
JP2000150934A (ja) * 1998-11-16 2000-05-30 Sanyo Electric Co Ltd 光起電力素子及びその製造方法
JP2000261011A (ja) * 1999-03-05 2000-09-22 Kanegafuchi Chem Ind Co Ltd シリコン系薄膜光電変換装置
JP2003264307A (ja) * 2002-03-11 2003-09-19 Sharp Corp 薄膜太陽電池及びその製造方法
JP2005197608A (ja) * 2004-01-09 2005-07-21 Mitsubishi Heavy Ind Ltd 光電変換装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116580A1 (fr) * 2008-03-19 2009-09-24 三洋電機株式会社 Cellule solaire et son procédé de fabrication
JP5279814B2 (ja) * 2008-03-19 2013-09-04 三洋電機株式会社 太陽電池及びその製造方法
JP2011074452A (ja) * 2009-09-30 2011-04-14 Kaneka Corp 薄膜の製造方法、並びに、太陽電池
WO2012063908A1 (fr) * 2010-11-12 2012-05-18 三菱マテリアル株式会社 Composition de pellicule réfléchissante pour élément électroluminescent, élément électroluminescent, et procédé de production d'un élément électroluminescent
JP5998481B2 (ja) * 2010-11-12 2016-09-28 三菱マテリアル株式会社 発光素子の製造方法
US9647185B2 (en) 2010-11-12 2017-05-09 Mitsubishi Materials Corporation Composition for reflection film for light emitting element, light emitting element, and method of producing light emitting element
CN102270670A (zh) * 2011-07-15 2011-12-07 河北汉盛光电科技有限公司 一种硅基薄膜太阳能电池
EP2738819A1 (fr) * 2011-07-27 2014-06-04 Sanyo Electric Co., Ltd Cellule solaire
EP2738819A4 (fr) * 2011-07-27 2015-04-08 Sanyo Electric Co Cellule solaire
CN110690310A (zh) * 2019-10-28 2020-01-14 成都晔凡科技有限公司 异质结太阳能电池片、叠瓦组件及其制造方法

Similar Documents

Publication Publication Date Title
EP1939947B1 (fr) Convertisseur photoelectrique a film mince a base de silicium et procede de fabrication de celui-ci
JP2001267611A (ja) 薄膜太陽電池及びその製造方法
WO2011074523A1 (fr) Dispositif de conversion photoélectrique et son procédé de production
JP2008277387A (ja) 光電変換装置の製造方法
WO2013167282A1 (fr) Cellules solaires au silicium avec résistance améliorée à la détérioration induite par la lumière
JP2010283161A (ja) 太陽電池及びその製造方法
WO2008059857A1 (fr) Dispositif de conversion photoélectrique en film mince
JP2004260014A (ja) 多層型薄膜光電変換装置
JP5291633B2 (ja) シリコン系薄膜光電変換装置およびその製造方法
WO2005109526A1 (fr) Convertisseur photoélectrique en pellicule mince
JP2009117463A (ja) 薄膜光電変換装置
JP2009290115A (ja) シリコン系薄膜太陽電池
JP4864077B2 (ja) 光電変換装置およびその製造方法
JP2003282902A (ja) 薄膜太陽電池
JP4215697B2 (ja) 光電変換装置およびその製造方法
JP5770294B2 (ja) 光電変換装置およびその製造方法
JP2011014618A (ja) 太陽電池及びその製造方法
TWI483405B (zh) 光伏打電池及製造光伏打電池之方法
JP2010267885A (ja) シリコン系薄膜光電変換装置とその製造方法
WO2011105166A1 (fr) Module de conversion photoélectrique et son procédé de fabrication
JP2010283162A (ja) 太陽電池及びその製造方法
JP4215694B2 (ja) 光電変換装置およびその製造方法
KR101100109B1 (ko) 광기전력 장치의 제조 방법
TWI466306B (zh) 具有高透光率之可撓式太陽能電池結構及其製備方法
JP2011018884A (ja) 光起電力装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP