WO2012014572A1 - 薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法 - Google Patents

薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法 Download PDF

Info

Publication number
WO2012014572A1
WO2012014572A1 PCT/JP2011/063054 JP2011063054W WO2012014572A1 WO 2012014572 A1 WO2012014572 A1 WO 2012014572A1 JP 2011063054 W JP2011063054 W JP 2011063054W WO 2012014572 A1 WO2012014572 A1 WO 2012014572A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
solar cell
film solar
substrate
thin film
Prior art date
Application number
PCT/JP2011/063054
Other languages
English (en)
French (fr)
Inventor
裕子 多和田
崇 藤林
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2012526361A priority Critical patent/JP5719846B2/ja
Priority to EP11812165.6A priority patent/EP2600410B1/en
Priority to US13/812,460 priority patent/US9166080B2/en
Publication of WO2012014572A1 publication Critical patent/WO2012014572A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a transparent electrode for a thin-film solar cell with improved reliability during long-term use, a substrate with a transparent electrode for a thin-film solar cell using the same, and a thin-film solar cell.
  • the surface of the transparent conductive film in contact with the light incident side of the photoelectric conversion unit is made uneven (textured), and the light scattered at the interface enters the photoelectric conversion unit.
  • optical confinement that extends the optical path length has been put into practical use.
  • An example of the transparent conductive film having an uneven surface is a tin oxide (SnO 2 ) film deposited by a thermochemical vapor deposition method (also referred to as “thermal CVD method”).
  • zinc oxide (ZnO) is less expensive than SnO 2 and indium tin oxide (ITO) and has high plasma resistance, and is therefore suitable as a transparent electrode material for thin film solar cells.
  • a base layer is formed on a light-transmitting insulating substrate such as glass, and is formed thereon by a low pressure thermal CVD method (also called LPCVD method or MOCVD method) at a low temperature of 150 ° C. to 200 ° C. It has been proposed to deposit a ZnO film having irregularities on the surface.
  • a dopant gas such as boron is included in the ZnO film by supplying a dopant gas when depositing the ZnO film by the low pressure thermal CVD method.
  • a dopant such as boron in the ZnO film, the carrier concentration in the film increases and a low-resistance zinc oxide film can be obtained.
  • the carrier concentration in the film exceeds a certain range, no further reduction in resistance occurs, but the light transmittance of the ZnO film decreases due to light absorption by the carriers, so that the solar cell The current density tends to decrease. Therefore, in order to obtain a solar cell excellent in conversion efficiency, it is preferable that the carrier concentration in the zinc oxide film, which is a transparent electrode material, is as low as possible within a range where low resistance can be realized.
  • Non-Patent Document 1 reports that in a boron (B) -doped ZnO thin film deposited by a low-pressure thermal CVD method, the moisture resistance decreases when the carrier concentration in the film is low.
  • the conductivity decreases to 1/10 or less, that is, the resistance is 10 times or more high.
  • the present inventors formed a transparent electrode mainly composed of ZnO on a glass substrate by the method described in the example of Patent Document 1, and exposed this to an environment of 85 ° C. and humidity of 85%.
  • the ZnO film was improved in transmittance and the resistance of the ZnO film was increased due to the decrease in carrier concentration.
  • the improvement in the transmittance of the ZnO film is mainly observed in a long wavelength region of 800 nm or more, and a photoelectric conversion layer having absorption in the long wavelength region (for example, crystalline silicon photoelectric conversion such as thin film polycrystalline silicon or microcrystalline silicon)
  • a photoelectric conversion layer having absorption in the long wavelength region for example, crystalline silicon photoelectric conversion such as thin film polycrystalline silicon or microcrystalline silicon
  • Jsc short-circuit current density
  • a solar cell comprising a layer, a germanium photoelectric conversion layer, and a compound semiconductor (CdTe, CIS, CIGS, etc.) photoelectric conversion layer.
  • the reduction in FF accompanying the increase in series resistance is significant, resulting in a decrease in conversion efficiency.
  • the present invention achieves both improvement in initial conversion efficiency and suppression of reduction in conversion efficiency during long-term use in a thin film solar cell to which a ZnO transparent conductive film is applied as a transparent electrode on the light incident side. With the goal.
  • the present inventors diligently studied the formation of a transparent conductive film having surface irregularities and transmittance suitable for a thin film solar cell and having improved moisture resistance. As a result, the present inventors have found that the crystal structure and crystallite size of the ZnO film have a correlation with the transparent electrode moisture resistance. Then, by applying a ZnO film having a specific orientation and crystallite size as a transparent electrode, a thin film solar cell having excellent moisture resistance can be obtained even when the initial carrier concentration is small, and the present invention is completed. It came.
  • the present invention relates to a transparent electrode for a thin film solar cell including a transparent conductive film mainly composed of zinc oxide.
  • the transparent conductive film preferably has the following characteristics. It has surface irregularities.
  • the carrier concentration is 9 ⁇ 10 19 cm ⁇ 3 or less.
  • the crystal has a preferred orientation of (110).
  • a ratio I (110) / I (002) of (110) peak intensity to (002) peak intensity by X-ray diffraction is 50 or more.
  • the size of the crystallite having the (110) orientation is 23 nm or more and 50 nm or less in the plane direction parallel to the substrate, and 30 nm or more and 60 nm or less in the plane direction perpendicular to the substrate.
  • the present invention also relates to a substrate with a transparent electrode for a thin-film solar cell in which the transparent electrode is formed on a translucent insulating substrate.
  • the haze ratio of the substrate with electrodes is preferably 20 to 50%.
  • the present invention relates to a thin film solar cell including the transparent electrode or the electrode-attached substrate on the light incident side of at least one photoelectric conversion unit.
  • the thin film solar cell of the present invention includes a crystalline photoelectric conversion unit as the photoelectric conversion unit.
  • the transparent electrode of the present invention has a zinc oxide film mainly composed of ZnO and having surface irregularities, a high light confinement effect can be obtained when used as a light incident side electrode of a thin film solar cell. Furthermore, since the transparent electrode of the present invention has a low carrier concentration, light absorption by the transparent electrode is small. Furthermore, since the zinc oxide film has predetermined crystal characteristics, high resistance due to the influence of humidity and the like is suppressed despite the low carrier concentration. Therefore, the thin-film solar cell using the transparent electrode of the present invention as the light incident side electrode has high initial characteristics and suppresses performance degradation due to the influence of humidity during long-term use.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of a thin film solar cell according to an embodiment of the present invention.
  • the thin-film solar cell in FIG. 1 includes a transparent electrode 2, a photoelectric conversion unit 11, and a back electrode 3 in this order on a translucent insulating substrate 1.
  • This thin film solar cell is a so-called “super straight type” thin film solar cell into which sunlight (h ⁇ ) used for photoelectric conversion is incident from the translucent insulating substrate 1 side.
  • the photoelectric conversion unit 11 includes a one-conductivity-type layer 111 on the light incident side of the photoelectric conversion layer 112, and a reverse-conductivity-type layer 113 on the opposite side to the light incident side.
  • the thin film solar cell of the present invention is a crystalline silicon thin film solar cell in which the photoelectric conversion layer 112 is a crystalline silicon photoelectric conversion layer.
  • the terms “crystalline” and “microcrystal” include those partially containing amorphous.
  • the translucent insulating substrate 1 is positioned closer to the light incident side than the photoelectric conversion unit 11 when a super straight type thin film solar cell is formed. Therefore, the translucent insulating substrate is preferably as transparent as possible in order to cause the photoelectric conversion unit to absorb more sunlight.
  • the translucent insulating substrate a glass plate, a translucent plastic film or the like is preferably used.
  • the light incident surface of the translucent insulating substrate is provided with a non-reflective coating so as to reduce the light reflection loss on the light incident surface.
  • the surface on the transparent electrode 2 side of the translucent insulating substrate 1 may have fine surface irregularities in order to improve the adhesion with the transparent electrode 2.
  • the transparent electrode 2 is located closer to the light incident side than the photoelectric conversion unit 11 and includes a transparent conductive film (hereinafter sometimes simply referred to as “zinc oxide film” or “ZnO film”) mainly made of zinc oxide. .
  • This zinc oxide film has an uneven surface shape.
  • the size of the surface unevenness of the zinc oxide film is appropriately set according to the type of the photoelectric conversion layer and the like.
  • a substrate with a transparent electrode in which a transparent electrode 2 including a zinc oxide film is formed on a translucent insulating substrate 1 is used. It is preferable to have a haze ratio of 10% or more.
  • the substrate with a transparent electrode preferably has a haze ratio of about 20 to 50%, and more preferably has a haze ratio of about 20 to 40%. preferable.
  • the haze ratio is mainly used as an evaluation index of surface irregularities that affects the light confinement effect of the transparent electrode for thin film solar cells.
  • the haze ratio is expressed by (diffuse transmittance / total light transmittance) ⁇ 100 [%] (JIS K7136).
  • the haze ratio is evaluated in a state including the translucent insulating substrate.
  • the surface unevenness of the zinc oxide film has a grain size (pitch) of the roughness of about 50 to 500 nm and a height of the roughness of about 20 to 200 nm. If the surface roughness of the zinc oxide film is too large, an electrical short circuit may occur in the thin film solar cell. Therefore, the height of the unevenness is more preferably 40 to 150 nm, and further preferably 50 to 120 nm.
  • the carrier concentration in the zinc oxide film is preferably 9 ⁇ 10 19 cm ⁇ 3 or less, and more preferably 5 ⁇ 10 19 cm ⁇ 3 or less.
  • the carrier concentration in the zinc oxide film is increased, the transmittance in the long wavelength region is decreased. Therefore, in particular, in a solar cell including a photoelectric conversion layer having light absorption in a long wavelength region having a wavelength of 800 nm or more, initial characteristics (especially short circuit) Current density) tends to decrease. Therefore, it is preferable that the carrier concentration in the zinc oxide film is as small as possible in order to increase the efficiency of the thin film solar cell.
  • the carrier concentration in the ZnO film is preferably 8 ⁇ 10 18 cm ⁇ 3 or more, and more preferably 1 ⁇ 10 19 cm ⁇ 3 or more.
  • the carrier concentration in the ZnO film can be analyzed by hole measurement, spectroscopic ellipsometry, SIMS analysis, or the like. In this specification, the carrier concentration by hole measurement is used.
  • the zinc oxide film constituting the transparent electrode 2 preferably has a (110) preferential orientation plane parallel to the substrate surface.
  • the polycrystalline zinc oxide film has crystal lattice planes of (100), (002), (101), and (110).
  • the (110) peak with respect to the (002) peak intensity of the zinc oxide film is used.
  • the intensity ratio I (110) / I (002) is preferably 50 or more, and more preferably 70 or more. As the (110) peak intensity ratio of the zinc oxide film increases, the moisture resistance of the zinc oxide film tends to improve, and a zinc oxide film having excellent moisture resistance can be obtained even if the carrier concentration is small. If I (110) / I (002) is smaller than the above value, the resistance value of the zinc oxide film tends to increase when the zinc oxide film is exposed to a high humidity environment.
  • the crystallite having a (110) orientation in the zinc oxide film preferably has a size in the plane direction parallel to the substrate surface of 23 nm or more, and preferably 25 nm or more. If the size of the crystallite having a (110) orientation in the plane direction parallel to the substrate surface is in the above range, the moisture resistance of the ZnO film tends to be improved.
  • the upper limit of the size of the crystallite having a (110) orientation in the plane direction parallel to the substrate surface is not particularly limited, but the upper limit generally achievable is about 50 nm, preferably 40 nm or less.
  • the crystallite having a (110) orientation in the zinc oxide film preferably has a size in the plane direction perpendicular to the substrate surface of 30 nm or more, and more preferably 35 nm or more. As the crystallite size in the plane direction perpendicular to the substrate surface increases, the mobility of electrons in the direction parallel to the substrate surface increases. Since a zinc oxide film used as a transparent electrode of a thin film solar cell needs to pass electricity in a direction parallel to the substrate surface, if the crystallite size in the plane direction perpendicular to the substrate surface is large as described above, the zinc oxide film Even when the carrier concentration is as small as 9 ⁇ 10 19 cm ⁇ 3 or less, for example, a thin film solar cell having a high fill factor can be obtained.
  • the upper limit of the size in the plane direction perpendicular to the substrate surface of the crystallite having the (110) orientation is not particularly limited, but the upper limit generally achievable is about 60 nm, preferably 50 nm or less.
  • the crystal orientation and crystallite size of the ZnO film can be calculated and evaluated from the diffraction pattern obtained by the X-ray diffraction method (XRD method), the peak intensity of each surface, and the half width of each surface. This analysis is performed by measuring the ZnO film formed on the glass substrate.
  • the crystal lattice plane parallel to the substrate surface can be measured by 2 ⁇ / ⁇ measurement, which is a general measurement method (one of measurements also called out-of-plane measurement from the X-ray diffraction axis operation method).
  • the crystallite size is greatly different between the a-axis direction and the c-axis direction.
  • the substrate surface and the c-axis direction of the crystal structure are parallel to each other. Therefore, when measuring the crystallite size in the direction perpendicular to the substrate surface, it is necessary to use the XRD method called in-plane measurement. According to this measurement, the crystallite size in the plane direction perpendicular to the substrate surface of the crystallite having a (110) preferential orientation plane parallel to the substrate surface, that is, the (002) preferential orientation direction crystallite size can be measured.
  • the crystallite size is calculated by the Scherrer method based on the XRD peak intensity and the half-value width of the peak in both out-plane measurement and in-plane measurement.
  • the method for forming the transparent electrode of the present invention is not necessarily limited, but the zinc oxide film constituting the transparent electrode is preferably deposited by a low pressure thermal CVD method.
  • a method for forming a zinc oxide film a sputtering method or the like is generally widely used in addition to a low pressure thermal CVD method.
  • a zinc oxide film formed by a sputtering method is generally (002) preferred orientation.
  • the surface unevenness is difficult to be formed.
  • the low pressure thermal CVD method a zinc oxide film having surface irregularities capable of exhibiting a light confinement effect and having a (110) orientation is easily formed even at a low substrate temperature of 200 ° C. or lower.
  • the zinc oxide film contained in the transparent electrode is formed by a low-pressure thermal CVD method under the conditions that the substrate temperature is 150 ° C. or higher, more preferably 160 ° C. or higher, and the pressure is 5 Pa to 1000 Pa. Further, it is preferable to form a film by supplying an oxidizing agent, a dopant gas and a dilution gas into the film forming chamber.
  • the substrate temperature here means the temperature of the surface where the substrate is in contact with the heating part of the film forming apparatus.
  • alkyl zinc such as diethyl zinc (DEZ) or dimethyl zinc
  • water is most preferably used as the oxidizing agent. It is preferable to supply a raw material that is liquid at room temperature and normal pressure, such as DEZ or water, after being vaporized by a method such as heat evaporation, bubbling, or spraying.
  • the dilution gas for example, a rare gas (He, Ar, Xe, Kr, Rn), nitrogen, hydrogen, or the like is used. Among these, hydrogen gas is preferably used from the viewpoint of thermal conductivity.
  • a gas containing a group III element such as diborane (B 2 H 6 ) or alkylborane such as trimethylborane, alkylaluminum, or alkylgallium is preferably used. Among these, a dopant gas containing boron is preferable, and diborane is most preferable.
  • the dopant gas is preferably introduced into the film forming chamber after being diluted with a diluent gas such as hydrogen.
  • the source gas is supplied so that the zinc source and the oxidizing agent have a zinc: oxygen stoichiometric ratio of 1: 2 to 1: 5.
  • the ratio of DEZ: water is preferably 1: 2 to 1: 5.
  • the ratio of zinc and oxygen may be stoichiometrically 1: 1, but by relatively increasing the supply amount of water as an oxidizing agent, the zinc oxide ( 110) The orientation tends to improve and the crystallite size tends to increase.
  • the supply ratio (water / DEZ) of the zinc source (DEZ) and the oxidizing agent (water) is preferably 2.7 or more, and more preferably 2.9 or more.
  • the relative supply amount of water as the oxidizing agent increases, the (110) orientation of zinc oxide tends to improve and the crystallite size tends to increase.
  • the supply amount of the oxidizing agent with respect to the zinc source is excessively large, it may be difficult to form a uniform film.
  • the supply amount of the dopant gas is appropriately set so that the carrier concentration in the zinc oxide film falls within the above range.
  • the flow rate of B 2 H 6 is preferably 0.05% to 0.5% with respect to DEZ.
  • the substrate temperature during deposition of the zinc oxide film is preferably 150 ° C. or higher, more preferably 160 ° C. or higher. Increasing the substrate temperature tends to improve the (110) orientation of zinc oxide, but if the substrate temperature is excessively high, the (110) orientation tends to decrease. Therefore, it is preferable that the substrate temperature at the time of depositing the zinc oxide film by low pressure thermal CVD is 200 ° C. or less. Moreover, in order to obtain the zinc oxide film having the above-mentioned orientation and crystallite size by low-pressure thermal CVD, it is preferable that the pressure during deposition is small. Specifically, the pressure during deposition is preferably 50 Pa or less, and more preferably 30 Pa or less.
  • the deposition conditions of the zinc oxide film are adjusted as described above, and after depositing the transparent electrode including the zinc oxide film, hydrogen gas or It is also effective to heat-treat the zinc oxide film at a temperature of 200 ° C. or higher in a non-oxidizing gas atmosphere such as argon.
  • the heat treatment conditions are preferably a temperature of about 200 ° C. to 250 ° C. and a pressure of about 50 Pa to 500 Pa, for example.
  • the heat treatment time is preferably about 10 minutes to 120 minutes.
  • the average thickness of the zinc oxide film is preferably 300 to 3000 nm, and more preferably 500 to 2200 nm. If the zinc oxide film is too thin, it may be difficult to provide the surface of the zinc oxide film with unevenness that effectively contributes to the light confinement effect, or it may be difficult to obtain the conductivity necessary for the transparent electrode. By increasing the thickness of the zinc oxide film, a zinc oxide film having surface irregularities with a large pitch and height difference is obtained, and the (110) orientation of the crystal is enhanced, and the crystallite size tends to increase. On the other hand, if the thickness of the zinc oxide film is too large, light absorption by the zinc oxide film itself increases, so that the amount of light reaching the photoelectric conversion unit decreases and conversion efficiency tends to decrease. Moreover, when the zinc oxide film is too thick, the film forming cost tends to increase due to an increase in the film forming time.
  • a photoelectric conversion unit 11 is formed on the transparent electrode 2.
  • the photoelectric conversion unit 11 in the present invention preferably includes, as the photoelectric conversion layer 112, a semiconductor layer having absorption in the main wavelength range (400 to 1200 nm) of sunlight.
  • the transparent electrode 2 disposed on the light incident side of the photoelectric conversion unit 11 has a low carrier concentration and a high transmittance in the long wavelength region. It is more preferable to include a semiconductor layer having absorption at 800 nm or more.
  • semiconductor layers include semiconductor layers other than amorphous silicon, for example, crystalline silicon semiconductor layers such as thin-film polycrystalline silicon and microcrystalline silicon, germanium semiconductor layers, and compound (CdTe, CIS, CIGS, etc.) layers. Illustrated. Note that “silicon-based” materials include silicon alloy semiconductor materials containing silicon, such as silicon carbide and silicon germanium, in addition to silicon.
  • the photoelectric conversion unit 11 has a one conductivity type layer 111 and a reverse conductivity type layer 113 on the light incident side and the back surface side of the photoelectric conversion layer 112, respectively.
  • a crystalline silicon photoelectric conversion unit using an intrinsic crystalline silicon thin film as the photoelectric conversion layer 112 has a p-type layer as the one-conductivity type layer 111 on the light incident side and an n-type layer as the reverse-conductivity type layer 113. It is preferable that light is incident from the p-type layer side.
  • the crystalline photoelectric conversion unit is formed, for example, by depositing a p-type layer, an i-type layer (photoelectric conversion layer), and an n-type layer in this order by plasma CVD.
  • a p-type microcrystalline silicon-based layer doped with 0.01 atomic% or more of boron which is a conductivity-determining impurity atom
  • an intrinsic crystalline silicon layer serving as a photoelectric conversion layer and a conductivity-determining impurity atom.
  • An example is a photoelectric conversion unit in which n-type microcrystalline silicon-based layers doped with 0.01 atomic% or more of phosphorus are deposited in this order.
  • the p-type layer, i-type layer, and n-type layer constituting the photoelectric conversion unit are not limited to the above.
  • an amorphous silicon-based film may be used as the p-type layer.
  • an alloy material such as amorphous or microcrystalline silicon carbide or silicon germanium may be used for the p-type layer.
  • the film thickness of the conductive layer (p-type layer and n-type layer) is preferably 3 nm to 100 nm, more preferably 5 nm to 50 nm.
  • the intrinsic crystalline silicon layer as the photoelectric conversion layer 112 is preferably deposited at a substrate temperature of 300 ° C. or less by a plasma CVD method. By depositing the crystalline silicon layer at a low temperature, a large amount of hydrogen atoms can be contained in the film. Hydrogen atoms have a function of terminating and inactivating defects (dangling bonds) in crystal grain boundaries and crystal grains. Specifically, the hydrogen content of the photoelectric conversion layer 112 is preferably in the range of 1 to 30 atomic%.
  • This layer is preferably formed as a thin film which is a substantially intrinsic semiconductor having a conductivity type determining impurity atom density of 1 ⁇ 10 18 atoms / cm 3 or less.
  • the crystal grains contained in the intrinsic crystalline silicon layer are grown in a columnar shape from the transparent electrode 2 side, and preferably have a (110) preferential orientation plane with respect to the film surface.
  • the film thickness of the intrinsic crystalline silicon layer is preferably 1 ⁇ m or more from the viewpoint of light absorption, and is preferably 10 ⁇ m or less from the viewpoint of suppressing peeling due to internal stress of the crystalline thin film.
  • a crystalline silicon carbide layer that is an alloy material for example, a crystalline material containing 10 atomic% or less of carbon in the photoelectric conversion layer
  • a crystalline silicon carbide layer made of silicon) or a crystalline silicon germanium layer for example, a crystalline silicon germanium layer made of crystalline silicon containing 30 atomic% or less of germanium in the photoelectric conversion layer.
  • the thin-film solar cell of the present invention may have one photoelectric conversion unit as shown in FIG. 1 or may be a laminate of a plurality of photoelectric conversion units.
  • a back electrode 3 is formed on the photoelectric conversion unit 11.
  • the back electrode for example, at least one metal layer 32 made of at least one material selected from Al, Ag, Au, Cu, Pt and Cr is preferably formed by sputtering or vapor deposition.
  • a conductive oxide layer 31 such as ITO, SnO 2 , or ZnO is preferably formed between the photoelectric conversion unit 11 and the metal layer 32.
  • the conductive oxide layer 31 has a function of improving the adhesion between the photoelectric conversion unit 11 and the metal layer 32, increasing the light reflectance of the back electrode 3, and further preventing chemical change of the photoelectric conversion unit. Have.
  • this invention has a back electrode, a photoelectric conversion unit, and a zinc oxide film
  • the present invention can also be applied to a structure (also referred to as a substrate type) in which transparent electrodes are sequentially deposited. Even in the substrate type configuration, the transparent electrode including the zinc oxide film has high transmittance and improved moisture resistance, so it has excellent initial characteristics and suppresses deterioration of conversion efficiency during long-term use. obtain.
  • the X-ray diffraction peak intensity ratio and crystallite size are analyzed based on X-ray diffraction data measured by an X-ray diffraction measurement device (Rigaku “SmartLab”) equipped with Cu ⁇ K ⁇ rays as an X-ray source. "PDXL software”).
  • X-ray diffraction measurement device Radar “SmartLab” equipped with Cu ⁇ K ⁇ rays as an X-ray source. "PDXL software”
  • the 2 ⁇ / ⁇ mode is selected, the X-ray intensity is 45 kV ⁇ 200 mA, the angle region 2 ⁇ is 25 to 80 °, and the scanning speed is 0.12.
  • Example 1 As Example 1, a transparent electrode was formed on a glass substrate, and a substrate with a transparent electrode for a thin film solar cell for producing the thin film solar cell shown in FIG. 1 was produced.
  • a glass substrate having a thickness of 5 mm and a 125 mm square was used as the translucent insulating substrate 1, and B-doped ZnO was deposited thereon as a transparent electrode 2 with a thickness of 2.0 ⁇ m by low-pressure thermal CVD.
  • the transparent electrode 2 is supplied with diethylzinc (DEZ) and water as raw material gases directly into the reaction chamber at a substrate temperature of 160 ° C., and diborane gas diluted to 0.5% with hydrogen as a dopant gas. And formed by the CVD method under reduced pressure.
  • Example 2 Also in Example 2, a substrate with a transparent electrode for a thin film solar cell was produced in the same manner as in Example 1. However, the substrate temperature at the time of ZnO film deposition was changed to 165 ° C., and the flow ratio of water / DEZ was This example was different from Example 1 in that it was changed to 3.
  • Example 3 Also in Example 3, a substrate with a transparent electrode for a thin-film solar cell was produced in the same manner as in Example 1. However, it was different from Example 1 in that a ZnO film was deposited with a film thickness of 2.2 ⁇ m.
  • Example 4 a substrate with a transparent electrode for a thin film solar cell was produced in the same manner as in Example 1. Thereafter, Ar gas was introduced into a vacuum chamber at 250 ° C., and the substrate with a transparent electrode was heat-treated at a pressure of 100 Pa for 1 hour.
  • Comparative Example 1 a substrate with a transparent electrode for a thin-film solar cell was produced in the same manner as in Example 1. However, the substrate temperature during deposition of the ZnO film was changed to 150 ° C., and the flow rate ratio of water / DEZ was 1. .7 was different from Example 1 in that it was changed to .7.
  • Comparative Example 2 In Comparative Example 2, a substrate with a transparent electrode for a thin-film solar cell was produced as in Example 1, but the flow rate ratio of diborane to DEZ during deposition of the ZnO film was 0.7% (DEZ: diborane after hydrogen dilution) The feed amount was changed to 1: 1.4), which was different from Example 1.
  • Table 1 shows the deposition conditions and evaluation results of the zinc oxide films in Examples 1 to 4 and Comparative Examples 1 and 2, respectively.
  • the substrate with the ZnO film obtained in Comparative Example 1 had a significantly increased sheet resistance after being exposed to an environment of 85 ° C. and 85% humidity for 24 hours.
  • the behavior of this resistance change was close to the characteristics shown in Non-Patent Document 1. From the results of Example 1 and Comparative Example 1, it can be seen that the resistance change in the humidity environment of the transparent electrode of Example 1 is suppressed as compared with Comparative Example 1.
  • the substrate with the ZnO film obtained in Comparative Example 2 has a high carrier concentration in the ZnO film, even when the crystallite size in the ZnO film is small, the resistance change when exposed to a high humidity environment is suppressed. It had been.
  • the substrate with a ZnO film of Comparative Example 2 has a high carrier concentration, and when used as a transparent electrode of a thin film solar cell, there is a concern that the conversion efficiency may be reduced due to light absorption by the carrier.
  • membrane obtained by the comparative example 2 has a small haze rate, and it is difficult to make compatible the haze rate and transmittance
  • the ZnO films of Examples 1 to 4 were deposited by the low pressure thermal CVD method as in Comparative Example 1, but the resistance change in a high humidity environment compared to the ZnO film of Comparative Example 1 Is suppressed.
  • the ZnO films of Examples 1 to 4 have lower carrier concentration and larger surface irregularities than the ZnO film of Comparative Example 2, and thus can be said to be suitable for increasing the efficiency of the thin film solar cell.
  • Comparing Comparative Example 1, Example 1, and Example 2 (110) orientation and crystallites were increased by increasing the substrate temperature and the amount of water supplied to DEZ when depositing the ZnO film by low pressure thermal CVD. It can be seen that the size can be increased. Further, from the comparison between Example 1 and Example 3 and Example 4, it is possible to increase the (110) orientation and crystallite size by increasing the deposition thickness of the ZnO film and also by heat treatment after the deposition. I understand.
  • Example 5 As Example 5, using the transparent electrode formed under the conditions of Example 1, a crystalline silicon-based thin film solar cell as shown in FIG. 1 was produced. That is, on the transparent electrode 2 of the substrate with a transparent electrode for a thin film solar cell obtained in Example 1, a p-type microcrystalline silicon layer 111 having a thickness of 15 nm and an intrinsic crystalline silicon having a thickness of 1.8 ⁇ m are obtained. A conversion layer 112 and an n-type microcrystalline silicon layer 113 having a thickness of 15 nm were sequentially deposited by a plasma CVD method. Thereafter, an Al-doped ZnO conductive oxide layer 31 with a thickness of 90 nm and an Ag metal layer 32 with a thickness of 300 nm were sequentially deposited as a back electrode 3 by sputtering.
  • Example 6 Also in Example 6, a crystalline silicon-based thin film solar cell was produced in the same manner as in Example 5. However, the difference from Example 5 is that the transparent electrode 2 described in Example 2 was applied.
  • Example 7 Also in Example 7, a crystalline silicon-based thin film solar cell was produced in the same manner as in Example 5. However, the difference from Example 5 is that the transparent electrode 2 described in Example 3 was applied.
  • Example 8 In Example 8 as well, a crystalline silicon-based thin film solar cell was produced as in Example 5. However, the difference from Example 5 is that the transparent electrode 2 described in Example 4 was applied.
  • Comparative Example 3 In Comparative Example 3 as well, a crystalline silicon-based thin film solar cell was produced as in Example 5. However, the difference from Example 5 is that the transparent electrode 2 described in Comparative Example 1 was applied.
  • the thin-film solar cell using the transparent electrode of the present invention has high initial performance and suppresses deterioration of characteristics during long-term use.
  • These transparent electrodes are suitably used not only for crystalline silicon thin film solar cells but also for other silicon thin film solar cells, thin film compound solar cells, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 本発明は、初期特性と長期使用時の耐湿性とが両立された酸化亜鉛膜を含む透明電極、および当該電極を備える薄膜太陽電池に関する。本発明の透明電極は、主として酸化亜鉛からなる透明導電膜を含む。前記透明導電膜は、下記の特性を有することが好ましい。表面凹凸を有する;キャリア濃度が9×1019cm-3以下である;結晶が(110)の優先配向を有する;X線回折による(002)ピーク強度に対する(110)ピーク強度の比I(110)/I(002)が50以上である;(110)配向を有する結晶子のサイズが、基板に平行な面方向で23nm以上50nm以下であり、かつ基板に垂直な面方向で30nm以上60nm以下である。

Description

薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法
 本発明は、長期使用時の信頼性が向上された薄膜太陽電池用の透明電極、ならびにそれを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池に関する。
 近年、環境汚染問題や地球温暖化問題への対策として、太陽電池の研究開発が活発化し、クリーンエネルギーの一つとして導入が進んでいる。中でも、薄膜太陽電池は、低コスト化と高効率化を両立可能な太陽電池として注目されている。特に、ガラス等の安価な基板上に低温プロセスを用いて良質の半導体層を形成する方法が、低コストを実現可能な方法として期待されている。
 薄膜太陽電池の光電変換効率を向上する目的で、光電変換ユニットの光入射側に接する透明導電膜の表面を凹凸化(テクスチャ化)し、その界面で散乱された光を光電変換ユニット内へ入射させて光路長を延長させる「光閉じ込め」が実用化されている。表面が凹凸化された透明導電膜としては、例えば、熱化学的気相成長法(「熱CVD法」とも称される)により堆積された酸化錫(SnO)膜が挙げられる。しかし、SnO膜は、約550~650℃の高温プロセスで堆積する必要があるため、プラスチックフィルムや固体化後のガラス等の安価な基板が使用できず、製造コストが高くなる等の問題がある。
 一方、酸化亜鉛(ZnO)は、SnOや酸化インジウム錫(ITO)よりも安価であり、耐プラズマ性が高いため、薄膜太陽電池用の透明電極材料として好適である。例えば、特許文献1では、ガラス等の透光性絶縁基板上に下地層を形成し、その上に150℃~200℃の低温条件下で低圧熱CVD法(LPCVD法あるいはMOCVD法とも呼ばれる)によって表面に凹凸を有するZnO膜を堆積することが提案されている。
 低圧熱CVD法によってZnO膜を堆積する際にドーパントガスを供給することにより、ZnO膜中にホウ素等のドーパントを含有させることが広く行われている。ZnO膜中にホウ素等のドーパントを有することで、膜中のキャリア濃度が増大し、低抵抗の酸化亜鉛膜が得られる。しかしながら、膜中のキャリア濃度がある程度の範囲を超えると、それ以上の低抵抗化は生じない一方で、キャリアによる光吸収に起因してZnO膜の光線透過率が低下するために、太陽電池の電流密度が低下する傾向がある。そのため、変換効率に優れる太陽電池を得るためには、低抵抗化を実現し得る範囲で、透明電極材料である酸化亜鉛膜中のキャリア濃度が可能な限り小さいことが好ましい。
 一方、非特許文献1には、低圧熱CVD法により堆積されたホウ素(B)ドープZnO薄膜において、膜中のキャリア濃度が低い場合に、耐湿性が低下することが報告されている。非特許文献1では、キャリア濃度が8×1019cm-3、膜厚2μmのZnO薄膜が加湿環境に曝されると、導電率が1/10以下に低下する、すなわち10倍以上に高抵抗化することが報告されている。薄膜太陽電池の透明電極としてのZnO薄膜がこのように高抵抗化すると、太陽電池のシリーズ抵抗(直列抵抗)が増加し、太陽電池の特性、特に曲線因子(FF)が低下するために、変換効率(Eff)が低下してしまう問題がある。
特開2005-311292号公報
J.Steinhauser et.al,Technical Digest of the International PVSEC-17,Fukuoka,Japan 2007,p166
 上記のように、透明電極として酸化亜鉛膜を用いた薄膜太陽電池では、酸化亜鉛膜中のキャリア濃度が大きいと、過剰なキャリアによる光吸収に起因して、薄膜太陽電池の初期特性(特に短絡電流密度)が低くなるという問題がある。一方、酸化亜鉛膜中のキャリア濃度を小さくすれば、酸化亜鉛膜の透過率上昇に伴って電流密度が増大し、初期特性に優れる太陽電池が得られるが、酸化亜鉛膜の耐湿性が低いために、長期使用時に曲線因子(FF)の低下による特性低下が生じ易いとの問題があり、初期特性と長時間使用時の耐久性にはトレードオフの関係がある。
 実際に、本発明者らが、特許文献1の実施例に記載の方法で、ガラス基板上に主にZnOからなる透明電極を形成し、これを85℃、湿度85%の環境下に曝したところ、非特許文献1で報告されているのと同様に、キャリア濃度低減に由来すると推定されるZnO膜の透過率向上およびZnO膜高抵抗化が確認された。ZnO膜の透過率向上は、主に800nm以上の長波長領域に見られ、当該長波長領域に吸収を有する光電変換層(例えば、薄膜多結晶シリコンや微結晶シリコンのような結晶質シリコン光電変換層、ゲルマニウム光電変換層、化合物半導体(CdTe、CIS、CIGS等)光電変換層)を備える太陽電池の短絡電流密度(Jsc)の向上には好ましい。しかしながら、シリーズ抵抗の増大に伴うFFの低下が著しく、結果として、変換効率が低下することが判明した。
 上記に鑑み、本発明は、光入射側の透明電極としてZnO透明導電膜が適用された薄膜太陽電池における、初期変換効率の向上と、長期使用時による変換効率の低下の抑制とを両立することを目的とする。
 本発明者らは、薄膜太陽電池に適した表面凹凸と透過率を有し、かつ耐湿性が改善された透明導電膜の形成について鋭意検討した。その結果、ZnO膜の結晶構造および結晶子サイズが,透明電極耐湿性と相関を有していることを見出した。そして、特定の配向および結晶子サイズを有するZnO膜を透明電極として適用することによって、初期のキャリア濃度が小さくとも耐湿性に優れた薄膜太陽電池が得られることを見出し、本発明を完成するに至った。
 本発明は、主として酸化亜鉛からなる透明導電膜を含む薄膜太陽電池用透明電極に関する。前記透明導電膜は、下記の特性を有することが好ましい。
 表面凹凸を有する。
 キャリア濃度が9×1019cm-3以下である。
 結晶が(110)の優先配向を有する。
X線回折による(002)ピーク強度に対する(110)ピーク強度の比I(110)/I(002)が50以上である。
(110)配向を有する結晶子のサイズが、基板に平行な面方向で23nm以上50nm以下であり、かつ基板に垂直な面方向で30nm以上60nm以下である。
 また、本発明は、透光性絶縁基板上に前記透明電極が形成された薄膜太陽電池用透明電極付き基板に関する。前記電極付き基板のヘイズ率は、20~50%であることが好ましい。
 さらに、本発明は、少なくとも1つの光電変換ユニットの光入射側に前記透明電極、または前記電極付き基板を備える薄膜太陽電池に関する。一実施形態において、本発明の薄膜太陽電池は、前記光電変換ユニットとして、結晶質光電変換ユニットを含む。
 本発明の透明電極は、主にZnOからなり表面凹凸を有する酸化亜鉛膜を有するために、薄膜太陽電池の光入射側電極として用いた場合に、高い光閉じ込め効果が得られる。さらに、本発明の透明電極は、キャリア濃度が小さいために、透明電極による光吸収が小さい。さらには、酸化亜鉛膜が所定の結晶特性を有しているために、キャリア濃度が小さいにも関わらず、湿度等の影響による高抵抗化が抑制される。そのため、本発明の透明電極を光入射側の電極として用いた薄膜太陽電池は、高い初期特性を有するとともに、長期使用時の湿度の影響による性能低下が抑制される。
本発明の一実施形態による薄膜太陽電池の断面図である。
 図1は本発明の一実施形態にかかる薄膜太陽電池の構成を示す模式的な断面図である。図1の薄膜太陽電池は、透光性絶縁基板1上に、透明電極2、光電変換ユニット11、および裏面電極3をこの順に備える。この薄膜太陽電池は、透光性絶縁基板1側から光電変換に供される太陽光(hν)が入射される、いわゆる「スーパーストレート型」の薄膜太陽電池である。前記光電変換ユニット11は、光電変換層112よりも光入射側に一導電型層111を備え、光入射側と反対側に逆導電型層113を備える。一実施形態において、本発明の薄膜太陽電池は、光電変換層112が結晶質シリコン系光電変換層である結晶質シリコン系薄膜太陽電池である。なお、本明細書における、「結晶質」、「微結晶」の用語は、部分的に非晶質を含んでいるものも包含する。
 前記透光性絶縁基板1は、スーパーストレート型の薄膜太陽電池を構成した際に、光電変換ユニット11よりも光入射側に位置する。そのため、透光性絶縁基板は、より多くの太陽光を光電変換ユニットに吸収させるために、できるだけ透明であることが好ましい。透光性絶縁基板としては、ガラス板、透光性プラスチックフィルム等が好ましく用いられる。同様の意図から、光入射面における光反射ロスを低減させるように、透光性絶縁基板の光入射面には、無反射コーティングが施されていることが望ましい。透光性絶縁基板1の透明電極2側の表面は、透明電極2との付着力を向上させるために、微細な表面凹凸を有していてもよい。
 前記透明電極2は、光電変換ユニット11よりも光入射側に位置し、主として酸化亜鉛からなる透明導電膜(以下、単に「酸化亜鉛膜」、あるいは「ZnO膜」と称する場合がある)を含む。この酸化亜鉛膜は、表面凹凸形状を有する。本発明において、酸化亜鉛膜の表面凹凸の大きさは、光電変換層の種類などに応じて適宜設定される。例えば、結晶質シリコン光電変換層を備える薄膜太陽電池に適した光閉じ込め効果を得るためには、透光性絶縁基板1上に酸化亜鉛膜を含む透明電極2が形成された透明電極付き基板が、10%以上のヘイズ率を有することが好ましい。特に、薄膜太陽電池の光電変換特性を向上させるためには、前記透明電極付き基板が、20~50%程度のヘイズ率を有することが好ましく、20~40%程度のヘイズ率を有することがさらに好ましい。
 なお、本明細書では、薄膜太陽電池用透明電極の光閉じ込め効果に影響する表面凹凸の評価指標として、主にヘイズ率を用いている。ヘイズ率とは、(拡散透過率/全光線透過率)×100[%]で表されるものである(JIS K7136)。ガラス等の透光性絶縁基板1上に透明電極2が形成されている透明電極付き基板では、透光性絶縁基板を含んだ状態でヘイズ率が評価される。
 酸化亜鉛膜の表面凹凸が小さすぎると、十分な光閉じ込め効果を得られない場合がある。逆に、表面凹凸が大きすぎると、薄膜太陽電池に電気的あるいは機械的な短絡を生じさせる原因ともなり、薄膜太陽電池の特性低下を引き起こす場合がある。光閉じ込め効果を得るためには、酸化亜鉛膜の表面凹凸は、凹凸の粒径(ピッチ)が概ね50~500nmで、かつ凹凸の高さが概ね20~200nmであることが好ましい。酸化亜鉛膜の表面凹凸が大きすぎると、薄膜太陽電池に電気的な短絡が生じる場合があるため、凹凸の高さは40~150nmがより好ましく、50~120nmがさらに好ましい。
 酸化亜鉛膜中のキャリア濃度は9×1019cm-3以下が好ましく、5×1019cm-3以下がより好ましい。酸化亜鉛膜中のキャリア濃度が増加すると、長波長領域における透過率が低下するため、特に、波長800nm以上の長波長領域に光吸収を有する光電変換層を備える太陽電池において、初期特性(特に短絡電流密度)が低下する傾向がある。そのため、薄膜太陽電池の高効率化のためには、酸化亜鉛膜中のキャリア濃度は極力小さいことが好ましい。一方、キャリア濃度が過度に小さいと、酸化亜鉛膜が高抵抗となり、太陽電池のシリーズ抵抗増大に伴い初期特性(特に曲線因子)が低下する傾向がある。そのため、ZnO膜中のキャリア濃度は、8×1018cm-3以上であることが好ましく、1×1019cm-3以上であることがさらに好ましい。ZnO膜中のキャリア濃度は、ホール測定や分光エリプソメトリー法、SIMS分析等で分析できるが、本明細書では、ホール測定によるキャリア濃度が用いられる。
 本発明において、透明電極2を構成する酸化亜鉛膜は、基板面に平行な(110)優先配向面を有することが好ましい。多結晶の酸化亜鉛膜は、(100)、(002)、(101)、(110)の結晶格子面を有するが、本発明においては、酸化亜鉛膜の(002)ピーク強度に対する(110)ピーク強度の比I(110)/I(002)が、50以上であることが好ましく、70以上であることがより好ましい。酸化亜鉛膜の(110)ピーク強度比が大きいほど、酸化亜鉛膜の耐湿性が向上する傾向があり、キャリア濃度が小さくとも耐湿性に優れる酸化亜鉛膜が得られる。I(110)/I(002)が上記値より小さいと、酸化亜鉛膜が高湿環境に曝された場合に、酸化亜鉛膜の抵抗値が増大し易くなる傾向がある。
 酸化亜鉛膜中の(110)配向を有する結晶子は、基板面に平行な面方向のサイズが、23nm以上であることが好ましく、25nm以上であることが好ましい。(110)配向を有する結晶子の基板面に平行な面方向のサイズが前記範囲であれば、ZnO膜の耐湿性が高められる傾向がある。(110)配向を有する結晶子の基板面に平行な面方向のサイズの上限は特に制限されないが、一般的に達成可能な上限は50nm程度であり、好ましくは40nm以下である。
 酸化亜鉛膜中の(110)配向を有する結晶子は、基板面に垂直な面方向のサイズが、30nm以上であることが好ましく、35nm以上であることがより好ましい。基板面に垂直な面方向の結晶子サイズが大きくなると、基板面と平行な方向の電子の移動度が増加する。薄膜太陽電池の透明電極として用いられる酸化亜鉛膜は基板面に平行な方向へ電気を流す必要があるため、基板面に垂直な面方向の結晶子サイズが上記のように大きければ、酸化亜鉛膜のキャリア濃度が、例えば9×1019cm-3以下と小さい場合であっても、高い曲線因子を有する薄膜太陽電池が得られうる。また、高湿度環境下では、大気中の水分由来の酸素が酸化亜鉛の結晶子間に浸透し、移動度を低下させていると考えられている。そのため、基板面に垂直な面方向の結晶子サイズを大きくすることは、キャリア濃度が小さい酸化亜鉛膜の耐湿性向上においても重要であると考えられる。(110)配向を有する結晶子の基板面に垂直な面方向のサイズの上限は特に制限されないが、一般的に達成可能な上限は60nm程度であり、好ましくは50nm以下である。
 ZnO膜の結晶配向および結晶子サイズは、X線回折法(XRD法)で得られる回折パターンおよび各面のピーク強度、さらには各面の半値幅から算出・評価できる。この分析は、ガラス基板上に形成されたZnO膜を測定することにより行われる。基板面と平行な結晶格子面は、一般的な測定方法である2θ/θ測定(X線回折の軸の操作方法からアウト・オブ・プレーン測定とも呼ばれる測定の一つ)により測定できる。
 ZnO膜は六方晶系ウルツ鉱型の結晶構造を有するため、結晶子サイズはa軸方向とc軸方向で大きく異なる。上記のように、酸化亜鉛膜が基板面と平行な(110)優先配向面を有する場合は、基板面と結晶構造のc軸方向とが平行となっている。従って、基板面に垂直な方向の結晶子サイズを測定する場合は、イン・プレーン測定と呼ばれるXRD法を用いる必要がある。この測定によれば、基板面と平行な(110)優先配向面を有する結晶子の基板面に垂直な面方向、すなわち(002)優先配向方向の結晶子サイズを測定することができる。なお、結晶子サイズは、アウト・プレーン測定、イン・プレーン測定のいずれにおいても、XRDピーク強度およびピークの半値幅に基づいて、Scherrer法により算出される。
 本発明の透明電極の形成方法は必ずしも制限されるものではないが、透明電極を構成する酸化亜鉛膜は低圧熱CVD法によって堆積されることが好ましい。酸化亜鉛膜の製膜法としては、一般には、低圧熱CVD法の他にスパッタ法等も広く用いられているが、スパッタ法により製膜された酸化亜鉛膜は、一般に(002)優先配向性を有しており、表面凹凸が形成され難い。一方、低圧熱CVD法によれば、基体温度200℃以下の低温でも、光閉じ込め効果を発揮し得る表面凹凸を有し、かつ(110)配向性を有する酸化亜鉛膜が形成されやすい。
 透明電極に含まれる酸化亜鉛膜は、具体的には、低圧熱CVD法により、基体温度が150℃以上、より好ましくは160℃以上、圧力5Pa~1000Paの条件下で、原料ガスとしての亜鉛源および酸化剤、ドーパントガスならびに希釈ガスを製膜室内に供給することにより製膜されることが好ましい。なお、ここでいう基体温度とは、基体が製膜装置の加熱部と接している面の温度のことをいう。
 亜鉛源の原料ガスとしては、例えば、ジエチル亜鉛(DEZ)やジメチル亜鉛等のアルキル亜鉛が好適に用いられる。酸化剤の原料ガスとしては、例えば、水、酸素、二酸化炭素、一酸化炭素、酸化二窒素、二酸化窒素、二酸化硫黄、五酸化二窒素、アルコール類(R(OH))、ケトン類(R(CO)R’)、エーテル類(ROR’)、アルデヒド類(R(COH))、アミド類((RCO)(NH3-x)、x=1,2,3)、スルホキシド類(R(SO)R’)(ただし、RおよびR’はアルキル基)を用いることもできる。中でも、酸化剤としては水が最も好適に用いられる。DEZや水のように常温常圧で液体の原料は、加熱蒸発、バブリング、噴霧などの方法で気化させてから供給することが好ましい。
 希釈ガスとしては、例えば、希ガス(He、Ar、Xe、Kr、Rn)、窒素、水素などが用いられる。中でも、熱伝導性の観点から、水素ガスが好適に用いられる。ドーパントガスとしては、例えば、ジボラン(B)、トリメチルボラン等のアルキルボラン、アルキルアルミ、アルキルガリウム等のIII族元素を含むものが好適に用いられる。中でも、ホウ素を含むドーパントガスが好ましく、ジボランが最も好ましい。ドーパントガスは、水素等の希釈ガスにより希釈されてから、製膜室内に導入されることが好ましい。
 酸化亜鉛膜の製膜において、前記の亜鉛源と酸化剤とは、亜鉛:酸素の化学量論比が、1:2~1:5となるように、原料ガスが供給されることが好ましい。例えば、亜鉛源としてDEZが用いられ、酸化剤として水が用いられる場合、DEZ:水の比は1:2~1:5が好ましい。酸化亜鉛を製膜するに際して、亜鉛と酸素の比は化学量論的には1:1であればよいが、酸化剤である水の供給量を相対的に多くすることによって、酸化亜鉛の(110)配向性が向上するとともに、結晶子のサイズが大きくなる傾向がある。低圧熱CVD法での酸化亜鉛膜の堆積における、亜鉛源(DEZ)と酸化剤(水)の供給比(水/DEZ)は、2.7以上が好ましく、2.9以上がより好ましい。酸化剤である水の相対的な供給量が多くなるほど、酸化亜鉛の(110)配向性が向上するとともに、結晶子のサイズが大きくなる傾向がある。一方、亜鉛源に対する酸化剤の供給量が過度に大きいと、均一な膜を製膜することが困難となる場合がある。
 ドーパントガスの供給量は、酸化亜鉛膜中のキャリア濃度が前記範囲となるように適宜に設定される。例えば、ドーパントガスとしてBが用いられる場合、Bの流量は、DEZに対して、0.05%~0.5%であることが好ましい。ドーパントガスの供給量を小さくすることにより、酸化亜鉛膜中のキャリア濃度が小さくなるとともに、酸化亜鉛膜の(110)配向性が向上し、さらには、結晶子のサイズが大きくなる傾向がある。ドーパントガスの供給量が過度に大きいと、酸化亜鉛膜のキャリア濃度の上昇により透過率が低下するとともに、酸化亜鉛膜表面に光閉じ込めに十分な凹凸が形成され難くなる傾向がある。
 酸化亜鉛膜堆積時の基体温度は、前述のごとく150℃以上が好ましく、160℃以上がより好ましい。基体温度を高くすると、酸化亜鉛の(110)配向性が向上する傾向があるが、基体温度が過度に高いと、逆に(110)配向性が低下する傾向がある。そのため、低圧熱CVDによる酸化亜鉛膜堆積時の基体温度は200℃以下であることが好ましい。また、低圧熱CVDにより、前記の配向性および結晶子サイズを有する酸化亜鉛膜を得るためには、堆積時の圧力は小さい方が好ましい。具体的には堆積時の圧力は、50Pa以下が好ましく、30Pa以下がより好ましい。
 前記の配向性および結晶子サイズを有する酸化亜鉛膜を得るために、酸化亜鉛膜の堆積条件を前述のように調整することの他、酸化亜鉛膜を含む透明電極を堆積後に、引き続き水素ガスやアルゴン等の非酸化性のガス雰囲気下にて、酸化亜鉛膜を200℃以上の温度で加熱処理することも効果的である。この加熱処理の条件は、例えば温度200℃~250℃程度、圧力50Pa~500Pa程度とすることが好ましい。加熱処理時間は、10分~120分程度が好ましい。
 酸化亜鉛膜の平均膜厚は、300~3000nmであることが好ましく、500~2200nmであることがより好ましい。酸化亜鉛膜が薄すぎると、酸化亜鉛膜の表面に、光閉じ込め効果に有効に寄与する凹凸を付与することが困難となったり、透明電極として必要な導電性が得られ難くなる場合がある。酸化亜鉛膜の厚みを大きくすることで、ピッチおよび高低差の大きい表面凹凸を有する酸化亜鉛膜が得られるとともに、結晶の(110)配向性が高められ、結晶子サイズが大きくなる傾向がある。一方、酸化亜鉛膜の厚みが大き厚すぎると、酸化亜鉛膜自体による光吸収が大きくなるために、光電変換ユニットへ到達する光量が減少し、変換効率が低下する傾向がある。また、酸化亜鉛膜が厚すぎる場合は、製膜時間の増大によりその製膜コストが増大する傾向がある。
 透明電極2上には、光電変換ユニット11が形成される。本発明における光電変換ユニット11は、光電変換層112として、太陽光の主波長域(400~1200nm)に吸収を有する半導体層を含むことが好ましい。特に、本発明の薄膜太陽電池においては、光電変換ユニット11の光入射側に配置される透明電極2のキャリア濃度が低く、長波長領域における透過率が高いために、光電変換層112は、波長800nm以上に吸収を有する半導体層を含むことがより好ましい。このような半導体層としては、非晶質シリコン以外の半導体層、例えば薄膜多結晶シリコンや微結晶シリコンのような結晶質シリコン半導体層、ゲルマニウム半導体層、化合物(CdTe、CIS、CIGS等)層が例示される。なお、「シリコン系」の材料には、シリコンに加え、シリコンカーバイドやシリコンゲルマニウムなど、シリコンを含むシリコン合金半導体材料も含まれる。
 光電変換ユニット11は、光電変換層112の光入射側および裏面側に、それぞれ一導電型層111および逆導電型層113を有する。例えば、真性結晶質シリコン系薄膜を光電変換層112とした結晶質シリコン系光電変換ユニットでは、光入射側の一導電型層111としてp型層、逆導電型層113としてn型層を有し、p型層側から光が入射されることが好ましい。
 結晶質光電変換ユニットは、例えば、プラズマCVD法により、p型層、i型層(光電変換層)、およびn型層を順に堆積することにより形成される。具体例としては、導電型決定不純物原子であるボロンが0.01原子%以上ドープされたp型微結晶シリコン系層、光電変換層となる真性結晶質シリコン層、および導電型決定不純物原子であるリンが0.01原子%以上ドープされたn型微結晶シリコン系層がこの順に堆積された光電変換ユニットが挙げられる。光電変換ユニットを構成するp型層、i型層およびn型層の各層は上記に限定されず、例えばp型層として非晶質シリコン系膜を用いてもよい。またp型層として、非晶質または微結晶のシリコンカーバイド、シリコンゲルマニウムなどの合金材料を用いてもよい。導電型層(p型層およびn型層)の膜厚は3nm以上100nm以下が好ましく、5nm以上50nm以下がさらに好ましい。
 光電変換層112としての真性結晶質シリコン層は、プラズマCVD法によって基体温度300℃以下で堆積されることが好ましい。結晶質シリコン層が低温で堆積されることにより、膜中に水素原子を多く含ませることができる。水素原子は、結晶粒界や結晶粒内における欠陥(ダングリングボンド)を終端させて不活性化させる作用を有する。具体的には、光電変換層112の水素含有量は1~30原子%の範囲内にあるのが好ましい。この層は、導電型決定不純物原子の密度が1×1018atms/cm以下である実質的に真性の半導体である薄膜として形成されることが好ましい。さらに、真性結晶質シリコン層に含まれる結晶粒の多くは、透明電極2側から柱状に延びて成長しており、その膜面に対して(110)の優先配向面を有することが好ましい。真性結晶質シリコン層の膜厚は、光吸収の観点から1μm以上が好ましく、結晶質薄膜の内部応力による剥離を抑える観点から10μm以下が好ましい。
 結晶質光電変換ユニットは、上記の真性結晶質シリコン層に代えて、光電変換層として、合金材料である結晶質シリコンカーバイド層(例えば光電変換層中に10原子%以下の炭素を含有する結晶質シリコンからなる結晶質シリコンカーバイド層)や、結晶質シリコンゲルマニウム層(例えば光電変換層中に30原子%以下のゲルマニウムを含有する結晶質シリコンからなる結晶質シリコンゲルマニウム層)を有していてもよい。
 なお、本発明の薄膜太陽電池は、図1に示したように1つの光電変換ユニットを有するものであってもよく、複数の光電変換ユニットが積層されたものであってもよい。
 光電変換ユニット11上には、裏面電極3が形成される。裏面電極としては、例えば、Al、Ag、Au、Cu、PtおよびCrから選ばれる少なくとも一つの材料からなる少なくとも一層の金属層32がスパッタ法または蒸着法などにより形成されることが好ましい。また、光電変換ユニット11と金属層32との間に、例えばITO、SnO、ZnO等の導電性酸化物層31が形成されることが好ましい。この導電性酸化物層31は、光電変換ユニット11と金属層32との間の密着性を高めるとともに、裏面電極3の光反射率を高め、さらに、光電変換ユニットの化学変化を防止する機能を有する。
 なお、図1では透光性絶縁基板1側から光が入射されるスーパーストレート型薄膜太陽電池を用いて説明したが、本発明は基板上に、裏面電極、光電変換ユニット、および酸化亜鉛膜を含む透明電極が順に堆積された構成(サブストレート型ともいう)にも適用できる。サブストレート型の構成においても、酸化亜鉛膜を含む透明電極が高い透過率を有するとともに、耐湿性が向上されているために、初期特性に優れ、かつ長期使用時の変換効率の低下が抑止され得る。
 以下、本発明を実施例に基づいて詳細に説明するが、本発明はその趣旨を超えない限り以下の実施例に限定されるものではない。
[測定方法]
 各実施例および比較例における評価は、下記の方法によりおこなった。
(シート抵抗)
 四探針プローブを備えたシート抵抗測定装置(三菱油化製 型番「MCP-T250」)を用いて測定した。
(ヘイズ率)
 D65光源を用いたヘイズメータ(日本電色工業製 型番「NDH-5000W」を用い、JIS K7136に準拠して測定した。
(キャリア濃度)
 Van Der Pauw法の原理を用いたホール効果測定装置(Nanometrics製 型番「HL5500PC」)により、0.503テスラのDC磁場のもと、ターゲット電圧20mVでホール測定を行い、キャリア濃度を算出した。キャリア濃度の算出に際しては、触針式段差計にて測定したZnO膜の膜厚を用いた。
(X線回折ピーク強度比および結晶子サイズ)
 X線回折ピーク強度比および結晶子サイズは、X線源としてCu・Kα線を備えるX線回折測定装置(リガク製「SmartLab」)により測定したX線回折データを基に、解析ソフト(リガク製「PDXL software」)にて算出した。
 基板面に平行な面方向の結晶配向性および結晶子サイズを評価する際は、2θ/ωモードを選択し、X線強度45kV・200mA、角度域2θ=25~80°、走査速度0.12°/秒、サンプリング間隔0.02°の条件で、ZnO膜面の約5mm角を測定した。基板面に垂直な面方向を評価する際は、イン・プレーン測定(2θχ)モードを選択し、走査速度を0.48°/秒、サンプリング間隔を0.04°に変更して測定を行った。
 得られたX線回折パターンの解析に際しては、Kα2除去およびスムージング処理を行った。結晶子サイズの算出には、Scherrer法を用い、Scherrer定数を0.94とし、半値幅を適用した。
[実施例1]
 実施例1として、ガラス基板上に透明電極が形成され、図1に示される薄膜太陽電池を作製するための薄膜太陽電池用透明電極付き基板が作製された。
 透光性絶縁基板1として厚み5mm、125mm角のガラス基板を用いられ、その上に透明電極2として低圧熱CVD法によりBドープZnOが2.0μmの厚みで堆積された。この透明電極2は、基体温度160℃で、原料ガスとしてジエチル亜鉛(DEZ)および水を直接気化方式で反応室内に供給し、ドーパントガスとして、水素により0.5%に希釈されたジボランガスを供給し、減圧条件下CVD法にて形成した。水とDEZの流量比は2.8、ジボランとDEZの流量比は0.25%(DEZ:水素希釈後のジボラン=2:1)であった。
[実施例2]
 実施例2においても、実施例1と同様に薄膜太陽電池用透明電極付き基板が作製されたが、ZnO膜堆積時の基体温度が165℃に変更された点、および水/DEZの流量比が3に変更された点において、実施例1と異なっていた。
[実施例3]
 実施例3においても、実施例1と同様に薄膜太陽電池用透明電極付き基板が作製されたが、ZnO膜が膜厚2.2μmで堆積された点において、実施例1と異なっていた。
[実施例4]
 実施例4では、実施例1と同様に薄膜太陽電池用透明電極付き基板が作製された。その後、引き続いて250℃の真空チャンバーにArガスが導入され、100Paの圧力下で1時間、透明電極付き基板の熱処理が行われた。
[比較例1]
 比較例1では、実施例1と同様に薄膜太陽電池用透明電極付き基板が作製されたが、ZnO膜堆積時の基体温度が150℃に変更された点、および水/DEZの流量比が1.7に変更された点において、実施例1と異なっていた。
[比較例2]
 比較例2においても、実施例1と同様に薄膜太陽電池用透明電極付き基板が作製されたが、ZnO膜堆積時のジボランとDEZの流量比が0.7%(DEZ:水素希釈後のジボランの供給量=1:1.4)に変更された点において、実施例1と異なっていた。
 上記実施例1~4および比較例1,2のそれぞれにおける酸化亜鉛膜の堆積条件および評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 比較例1で得られたZnO膜付き基板は、85℃85%湿度環境下に24時間曝された後、シート抵抗が大幅に上昇していた。この抵抗変化の挙動は、非特許文献1に示されている特性に近いものであった。実施例1と比較例1の結果から、実施例1の透明電極は、比較例1に比べて、湿度環境下における抵抗変化が抑制されていることが分かる。
 一方、比較例2で得られたZnO膜付き基板は、ZnO膜のキャリア濃度が高いために、ZnO膜中の結晶子サイズが小さくても、高湿度環境に曝された際の抵抗変化が抑制されていた。しかしながら、比較例2のZnO膜付き基板は、キャリア濃度が高く、薄膜太陽電池の透明電極として用いた場合には、キャリアによる光吸収に起因する変換効率の低下が懸念される。また、比較例2で得られたZnO膜は、ヘイズ率が小さく、薄膜太陽電池の高効率化に適したヘイズ率と透過率の両立が困難であることがわかる。
 これに対して、実施例1~4のZnO膜は、比較例1と同様に低圧熱CVD法により堆積されているが、比較例1のZnO膜に比して、高湿度環境下における抵抗変化が抑制されている。また、実施例1~4のZnO膜は、比較例2のZnO膜に比して、キャリア濃度が小さく、かつ表面凹凸が大きいため、薄膜太陽電池の高効率化に適しているといえる。
 比較例1、実施例1、および実施例2を対比すると、低圧熱CVDによってZnO膜を堆積する際の基体温度やDEZに対する水の供給量を増加させることによって、(110)配向性や結晶子サイズを増大させ得ることが分かる。また、実施例1と実施例3および実施例4との対比から、ZnO膜の堆積厚みを大きくすることや、堆積後の熱処理によっても、(110)配向性や結晶子サイズを増大させ得ることが分かる。
[実施例5]
 実施例5として、実施例1の条件にて製膜された透明電極を用いて、図1に示されるような結晶質シリコン系薄膜太陽電池が作製された。すなわち、実施例1で得られた薄膜太陽電池用透明電極付き基板の透明電極2上に、厚さ15nmのp型微結晶シリコン層111、厚さ1.8μmの真性結晶質シリコンの結晶質光電変換層112、及び厚さ15nmのn型微結晶シリコン層113が、プラズマCVD法により順次堆積された。その後、裏面電極3として厚さ90nmのAlドープされたZnOの導電性酸化物層31と、厚さ300nmのAgの金属層32とがスパッタ法にて順次堆積された。
[実施例6]
 実施例6においても、実施例5と同様に結晶質シリコン系薄膜太陽電池が作製された。ただし、実施例5と異なるのは、透明電極2として実施例2に記載のものが適用された点である。
[実施例7]
 実施例7においても、実施例5と同様に結晶質シリコン系薄膜太陽電池が作製された。ただし、実施例5と異なるのは、透明電極2として実施例3に記載のものが適用された点である。
[実施例8]
 実施例8においても、実施例5と同様に結晶質シリコン系薄膜太陽電池が作製された。ただし、実施例5と異なるのは、透明電極2として実施例4に記載のものが適用された点である。
[比較例3]
 比較例3においても、実施例5と同様に結晶質シリコン系薄膜太陽電池が作製され。ただし、実施例5と異なるのは、透明電極2として比較例1に記載のものが適用された点である。
 上記実施例5~8および比較例3で作製された結晶質シリコン系薄膜太陽電池にAM1.5の光を100mW/cmの光量で照射して、開放電圧(Voc)、短絡電流密度(Jsc)、曲線因子(F.F.)および変換効率(Eff)を測定した。また、各結晶質シリコン系薄膜太陽電池を、温度85℃湿度85%の環境下に24時間曝した後、再度、薄膜太陽電池の変換効率(Eff’)を測定し、変換効率の低下量ΔEff=Eff-Eff’を求めた。なお、実使用に供される太陽電池は、樹脂とフィルムにて封止されているのに対して、上記実施例および比較例の太陽電池は封止がなされていないため、上記の加湿試験による評価は、過酷条件下での加速試験である。実施例および比較例の太陽電池の出力特性の測定結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1と表2とを対比すると、加湿試験前後の透明電極の抵抗上昇と太陽電池の変換効率の低下との間に相関があることがわかる。実施例5の太陽電池の加湿試験後の出力特性は、開放電圧(Voc)が0.53V、短絡電流密度(Jsc)が28.4mA/cm、曲線因子(FF)が0.67であり、加湿試験前に比して、主にFFが低下していた。このことから、加湿による透明電極の抵抗上昇により、FFが低下することが、変換効率に影響していると考えられる。すなわち、本発明の透明電極を備える薄膜太陽電池は、加湿環境に曝されても、透明電極の抵抗上昇が抑制されているために、変換効率の低下が小さいと考えられる。
 以上のように、本発明の透明電極を用いた薄膜太陽電池は、初期性能が高く、長期使用時の特性の低下が抑制されている。これらの透明電極は、結晶質シリコン系薄膜太陽電池に限らず、その他のシリコン系薄膜太陽電池や薄膜化合物太陽電池等にも好適に用いられる。
 1   透光性絶縁基板
 2   透明電極
 11   光電変換ユニット
 111  一導電型層
 112 光電変換層
 113  逆導電型層
 3  裏面電極
 31 導電性酸化物層
 32 金属層

Claims (9)

  1.  主として酸化亜鉛からなる透明導電膜を含み、前記透明導電膜が下記の特性を有する、薄膜太陽電池用透明電極:
     表面凹凸を有する;
     キャリア濃度が9×1019cm-3以下である;
     結晶が(110)の優先配向を有する;
    X線回折による(002)ピーク強度に対する(110)ピーク強度の比I(110)/I(002)が50以上である;
    (110)配向を有する結晶子のサイズが、基板に平行な面方向で23nm以上50nm以下であり、かつ基板に垂直な面方向で30nm以上60nm以下である。
  2.  透光性絶縁基板上に、請求項1に記載の透明電極が形成された、薄膜太陽電池用透明電極付き基板。
  3.  ヘイズ率が20~50%である、請求項2に記載の透明電極付き基板。
  4.  請求項2または3に記載の透明電極付き基板と、少なくとも一つの光電変換ユニットを有し、前記透明電極付き基板が前記少なくとも一つの光電変換ユニットよりも光入射側に配置されている、薄膜太陽電池。
  5.  請求項1に記載の透明電極と、少なくとも一つの光電変換ユニットを有し、前記透明電極が前記少なくとも一つの光電変換ユニットよりも光入射側に配置されている、薄膜太陽電池。
  6.  前記少なくとも少なくとも一つの光電変換ユニットとして、結晶質光電変換ユニットを含む、請求項4または5に記載の薄膜太陽電池。
  7.  請求項1または2に記載の薄膜太陽電池用透明電極の製造方法であって、前記透明導電膜が低圧熱CVD法によって堆積される、透明電極の製造方法。
  8.  前記透明導電膜の堆積において、ジエチル亜鉛と水が原料として用いられ、水の供給量が、ジエチル亜鉛の供給量に対して2倍以上である、請求項7に記載の透明電極の製造方法。
  9.  低圧熱CVD法によって前記透明導電膜が堆積された後、引き続き非酸化性ガス雰囲気下で酸化亜鉛膜が加熱される工程を有する、請求項7または8に記載の透明電極の製造方法。
PCT/JP2011/063054 2010-07-28 2011-06-07 薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法 WO2012014572A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012526361A JP5719846B2 (ja) 2010-07-28 2011-06-07 薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法
EP11812165.6A EP2600410B1 (en) 2010-07-28 2011-06-07 Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell
US13/812,460 US9166080B2 (en) 2010-07-28 2011-06-07 Transparent electrode for thin film solar cell, substrate having transparent electrode for thin film solar cell and thin film solar cell using same, and production method for transparent electrode for thin film solar cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-169142 2010-07-28
JP2010169142 2010-07-28

Publications (1)

Publication Number Publication Date
WO2012014572A1 true WO2012014572A1 (ja) 2012-02-02

Family

ID=45529792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/063054 WO2012014572A1 (ja) 2010-07-28 2011-06-07 薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法

Country Status (4)

Country Link
US (1) US9166080B2 (ja)
EP (1) EP2600410B1 (ja)
JP (1) JP5719846B2 (ja)
WO (1) WO2012014572A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140102535A1 (en) * 2012-04-02 2014-04-17 Panasonic Corporation Solar cell element and method for manufacturing same
US20140124032A1 (en) * 2012-06-06 2014-05-08 Panasonic Corporation Solar cell element
WO2021020457A1 (ja) * 2019-07-31 2021-02-04 Agc株式会社 光学層、太陽電池モジュール、建築用外壁材及び建造物
CN112752977A (zh) * 2018-10-12 2021-05-04 爱德万测试株式会社 解析装置、解析方法及解析程序

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106298811B (zh) * 2016-09-28 2018-06-01 京东方科技集团股份有限公司 阵列基板及其制备方法、显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179891A (ja) * 1997-07-09 1999-03-23 Canon Inc 酸化亜鉛薄膜、その製造方法、光電変換素子及びその製造方法
JP2000276943A (ja) * 1999-03-26 2000-10-06 Tohoku Ricoh Co Ltd 透明導電膜
JP2004311704A (ja) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置
JP2005311292A (ja) 2004-03-25 2005-11-04 Kaneka Corp 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242080B1 (en) 1997-07-09 2001-06-05 Canon Kabushiki Kaisha Zinc oxide thin film and process for producing the film
US6936188B1 (en) * 2000-03-27 2005-08-30 Tohoku Techno Arch Co., Ltd. Zinc oxide semiconductor material
NL1024437C2 (nl) * 2003-10-02 2005-04-05 Tno Coating welke is aangebracht op een substraat, een zonnecel, en werkwijze voor het aanbrengen van de coating op het substraat.
WO2005093854A1 (ja) 2004-03-25 2005-10-06 Kaneka Corporation 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池
US20090293954A1 (en) * 2008-05-30 2009-12-03 Semiconductor Energy Laboratory Co., Ltd. Photoelectric Conversion Device And Method For Manufacturing The Same
JP5127925B2 (ja) * 2008-07-07 2013-01-23 三菱電機株式会社 薄膜太陽電池およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1179891A (ja) * 1997-07-09 1999-03-23 Canon Inc 酸化亜鉛薄膜、その製造方法、光電変換素子及びその製造方法
JP2000276943A (ja) * 1999-03-26 2000-10-06 Tohoku Ricoh Co Ltd 透明導電膜
JP2004311704A (ja) * 2003-04-07 2004-11-04 Kanegafuchi Chem Ind Co Ltd 薄膜光電変換装置用基板及びそれを用いた薄膜光電変換装置
JP2005311292A (ja) 2004-03-25 2005-11-04 Kaneka Corp 薄膜太陽電池用基板、及びその製造方法、並びにそれを用いた薄膜太陽電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. STEINHAUSER, TECHNICAL DIGEST OF THE INTERNATIONAL PVSEC-17, 2007, pages 166

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140102535A1 (en) * 2012-04-02 2014-04-17 Panasonic Corporation Solar cell element and method for manufacturing same
US9059342B2 (en) * 2012-04-02 2015-06-16 Panasonic Intellectual Property Management Co., Ltd. Solar cell element and method for manufacturing same
US20140124032A1 (en) * 2012-06-06 2014-05-08 Panasonic Corporation Solar cell element
US9583647B2 (en) * 2012-06-06 2017-02-28 Panasonic Intellectual Property Management Co., Ltd. Solar cell element
CN112752977A (zh) * 2018-10-12 2021-05-04 爱德万测试株式会社 解析装置、解析方法及解析程序
JP2022028084A (ja) * 2018-10-12 2022-02-15 株式会社アドバンテスト 解析装置、解析方法および解析プログラム
JP7181753B2 (ja) 2018-10-12 2022-12-01 株式会社アドバンテスト 解析装置、解析方法および解析プログラム
CN112752977B (zh) * 2018-10-12 2024-05-03 爱德万测试株式会社 解析装置、解析方法及解析程序
WO2021020457A1 (ja) * 2019-07-31 2021-02-04 Agc株式会社 光学層、太陽電池モジュール、建築用外壁材及び建造物

Also Published As

Publication number Publication date
JP5719846B2 (ja) 2015-05-20
EP2600410B1 (en) 2020-09-30
EP2600410A1 (en) 2013-06-05
JPWO2012014572A1 (ja) 2013-09-12
US20130118580A1 (en) 2013-05-16
EP2600410A4 (en) 2017-05-03
US9166080B2 (en) 2015-10-20

Similar Documents

Publication Publication Date Title
Kim et al. Fabrication of rough Al doped ZnO films deposited by low pressure chemical vapor deposition for high efficiency thin film solar cells
JP5156641B2 (ja) 光電変換装置用透明導電膜付基板及び光電変換装置の製造方法
US8546685B2 (en) Crystalline silicon based solar cell and method for manufacturing thereof
JP4928337B2 (ja) 光電変換装置の製造方法
TW201222843A (en) Transparent electrically conductive substrate carrying thereon a surface electrode, a manufacturing method therefor, a thin-film solar cell and a manufacturing method therefor
JP5719846B2 (ja) 薄膜太陽電池用透明電極、それを用いた薄膜太陽電池用透明電極付き基板および薄膜太陽電池、ならびに薄膜太陽電池用透明電極の製造方法
Hussein et al. Enhancements of p-Si/CdO thin films solar cells with doping (Sb, Sn, Se)
JP2007288043A (ja) 光電変換装置用透明導電膜とその製造方法
JP4904311B2 (ja) 薄膜光電変換装置用透明導電膜付き基板の製造方法
JP5291633B2 (ja) シリコン系薄膜光電変換装置およびその製造方法
Zhou et al. Innovative wide-spectrum Mg and Ga-codoped ZnO transparent conductive films grown via reactive plasma deposition for Si heterojunction solar cells
Li et al. Hydrogen annealed ZnO: B film grown by LPCVD technique as TCO for enhancing conversion efficiency of a-Si: H/μc-Si: H tandem solar cells
JP5533448B2 (ja) 透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法
JP5270889B2 (ja) 薄膜光電変換装置の製造方法
CN218602440U (zh) 新型异质结电池
Gupta et al. 14% CdS/CdTe thin film cells with ZnO: Al TCO
JP5827224B2 (ja) 薄膜太陽電池およびその製造方法
Li et al. Influence of boron doping amount on properties of ZnO: B films grown by LPCVD technique and its correlation to a-Si: H/μc-Si: H tandem solar cells
JP5469298B2 (ja) 光電変換装置用透明導電膜、及びその製造方法
JP5559620B2 (ja) 透明導電膜付基板
JP2011171384A (ja) 薄膜光電変換装置
Huang et al. Zr-doped indium oxide films for silicon heterojunction solar cells
Fuhs ZnO window layers for solar cells
Yadav et al. Study of electrical and optical properties of Zr-doped ZnO thin films prepared by dc reactive magnetron sputtering
JP5613296B2 (ja) 光電変換装置用透明導電膜、光電変換装置、およびそれらの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11812165

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012526361

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13812460

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011812165

Country of ref document: EP