JP2004071536A - 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法 - Google Patents

電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法 Download PDF

Info

Publication number
JP2004071536A
JP2004071536A JP2003125030A JP2003125030A JP2004071536A JP 2004071536 A JP2004071536 A JP 2004071536A JP 2003125030 A JP2003125030 A JP 2003125030A JP 2003125030 A JP2003125030 A JP 2003125030A JP 2004071536 A JP2004071536 A JP 2004071536A
Authority
JP
Japan
Prior art keywords
electron
layer
particles
emitting device
cathode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003125030A
Other languages
English (en)
Other versions
JP3535871B2 (ja
Inventor
Daisuke Sasakuri
笹栗 大助
Ryoji Fujiwara
藤原 良治
Takeshi Ichikawa
市川 武史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2003125030A priority Critical patent/JP3535871B2/ja
Application filed by Canon Inc filed Critical Canon Inc
Priority to KR1020047020041A priority patent/KR100702037B1/ko
Priority to EP03733424A priority patent/EP1512161A4/en
Priority to CNB038135221A priority patent/CN100433226C/zh
Priority to US10/516,545 priority patent/US7733006B2/en
Priority to PCT/JP2003/007544 priority patent/WO2003107377A1/en
Priority to AU2003238705A priority patent/AU2003238705A1/en
Publication of JP2004071536A publication Critical patent/JP2004071536A/ja
Application granted granted Critical
Publication of JP3535871B2 publication Critical patent/JP3535871B2/ja
Priority to US11/937,610 priority patent/US7811625B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/022Manufacture of electrodes or electrode systems of cold cathodes
    • H01J9/025Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • H01J1/3048Distributed particle emitters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30449Metals and metal alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30469Carbon nanotubes (CNTs)

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

【課題】電子ビーム径が小さく、電子放出面積が大きく、低電圧で高効率な電子放出が可能で、製造プロセスが容易な電界放出型の電子放出素子を提供する。
【解決手段】カソード電極5に電気的に接続された層2と、該層2を構成する材料の抵抗率よりも抵抗率の低い材料を主体とする複数の粒子3とを有し、層2内の粒子3の密度が、1×1014個/cm以上5×1018個/cm以下であることを特徴とする。
【選択図】   図1

Description

【0001】
【発明の属する技術分野】
本発明は、電子放出膜を用いた電子放出素子、該電子放出素子を多数配置してなる電子源、該電子源を用いて構成した画像表示装置に関する。
【0002】
【従来の技術】
電子放出膜を用いた電子放出素子を、蛍光体を用いた画像表示装置に適用する場合には、蛍光体を十分な輝度で発光させるのに十分な放出電流を実現することが電子放出素子には求められる。また、画像表示装置(ディスプレイ)の高精細化のためには蛍光体に照射される電子ビームの径が小さい事が要求される。さらには、装置自体が製造し易いという事が重要である。
【0003】
電子放出素子の1種である冷陰極電子源には、電界放出型(以下、「FE型」と称する)や、表面伝導型電子放出素子等がある。
【0004】
FE型ではスピントタイプが効率が高く期待されている。しかしながら、スピントタイプの電子放出素子は製造工程が複雑な上、電子ビームが発散しやすい。そのため、電子ビームの広がりを防ぐために、電子放出部上方に収束電極を配置する必要がある。
【0005】
一方、電子ビーム径がスピントタイプ程広がらない電子放出素子の例として、たとえば、特許文献1、特許文献2、特許文献3などに開示されたものがある。これらの電子放出素子は、孔内に配置した平坦な薄膜(電子放出膜)から電子放出を行なわせるものである。そのため、電子放出膜上に比較的平坦な等電位面が形成され電子ビームの広がりが小さくなると共に、比較的に簡易に製造できる。また、電子放出膜を構成する物質として低仕事関数の材料を使用することで、電子放出に必要な駆動電圧の低減を図ることができる。さらに、電子放出が面状で行われる(スピント型は点状で行われる)ために、電界の集中を緩和することができる。そのため、電子放出素子の長寿命化を図ることができる。このような平坦な電子放出膜として炭素系電子放出膜が提案されている。カーボン膜を用いた電子放出素子は、例えば、非特許文献1などに開示されている。また各種金属をカーボン膜に入れた例が非特許文献2や、非特許文献3や、非特許文献4や、非特許文献5や、特許文献4や、特許文献5などに開示されている。
【0006】
また、その他にも導電性材料と絶縁材料を用いた電子放出膜はいろいろと検討されており、例えば、非特許文献6や、非特許文献7や、特許文献6などに開示されている。さらには、特許文献7のように導電性材料を絶縁性材料の細孔中に入れるものや、特許文献8のように、セラミックスと金属とのサーメットにおいて、金属から絶縁層に電子を注入させ電子放出させるというような報告がある。
【0007】
【特許文献1】
特開平8−096703号公報
【特許文献2】
特開平8−096704号公報
【特許文献3】
特開平8−264109号公報
【特許文献4】
特開2001−6523号公報
【特許文献5】
特開2001−202870号公報
【特許文献6】
実開平4−131846号公報
【特許文献7】
特開2001−101966号公報
【特許文献8】
米国特許公報第4663559号
【非特許文献1】
「A study of electron field emission as a function of film thicknessfrom amorphous carbon films」R.D.Forrest et al., Applied Physics Letters, Volume 73, Number 25, 1998,p3784
【非特許文献2】
「Electron field emission from Ti−containing tetrahedral amorphous carbon films deposited by filtered cathodic vacuum arc」X.Z. Ding et al. Journal of applied physics Volume 88,
Number 11, 2000, p6842
【非特許文献3】
「Field emission from cobalt−containing amorphous carbon composite films heat−treated in an acetylene ambient」Y.J.Li et al. Applied Physics Letters, Volume 77, Number 13, 2000,p2021
【非特許文献4】
「Low−macroscopic−field electronemission from carbon films and other electrically nanostructured heterogeneous materials:hypothesses about emission mechanism」 Richard G.Forbes, Solid−State Electronics 45(2001)779−808
【非特許文献5】
「Field emission from metal−containing amorphous carbon composite films」S.P.Lau et al.,Diamond Related Materials, 10(2001) 1727−1731
【非特許文献6】
「Enhanced cold−cathode emissionusing composite resin−carbon coatings」S.Bajic and R.V.Latham.,J.Phys.D:Appl.Phys.21(1988)pp.200−204
【非特許文献7】
「Field emitting inks for consumer−priced broad−area flat−panel displays」A.P.Burden et al.,J.Vac.Sci.Technol.B18(2),Mar/Apr(2000)pp.900−904
【0008】
【発明が解決しようとする課題】
電子放出素子を画像表示装置として応用した例を図19に示す。ゲート電極層1002のラインとカソード電極層1004のラインがマトリクス状に基板1001上に配列され、両ラインの交差部に電子放出素子1014が配置され、情報信号に応じて、選択された交差部にある電子放出素子1014から電子が放出され、アノード1012の電圧により加速されて蛍光体1013に入射する。このような装置は、いわゆる3極デバイスである。尚、1003は絶縁層である。
【0009】
画像表示装置への応用を電界放出型電子放出素子で考えた場合には、
(1)電子ビーム径が小さいこと、
(2)電子放出面積が大きいこと、
(3)電子放出点密度(ESD(Emission site density))が多く電流密度が大きいこと、
(4)低電圧で高効率な電子放出が可能であること、
(5)製造プロセスが容易であること、
の各要件を同時に満たすことが求められる。
【0010】
しかしながら、上記した従来の電子放出膜を用いた素子では、必ずしも上記各要件を同時に満足のできる状態で実現できていない。
【0011】
そこで、本発明は上記の従来技術の課題を解決するためになされたもので、その目的とするところは、電子ビーム径が小さく、電子放出面積が大きく、低電圧で高効率な電子放出が可能で、製造プロセスが容易な電界放出型の電子放出素子、電子源、及び画像表示装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために成された本発明の構成は、以下の通りである。
【0013】
即ち、本発明は、カソード電極と、該カソード電極に電気的に接続された層と、該層を構成する材料の抵抗率よりも抵抗率の低い材料を主体とする複数の粒子とを有し、前記複数の粒子は、前記層中に配置されており、前記層内の前記粒子の密度が、1×1014個/cm以上5×1018個/cm以下であることを特徴とする電子放出素子を提供する。
【0014】
また本発明は、カソード電極と、該カソード電極に電気的に接続された層と、該層を構成する材料の抵抗率よりも抵抗率の低い材料を主体とする複数の粒子とを有し、前記複数の粒子は、前記層中に配置されており、前記層を構成する主元素に対する前記粒子を構成する主元素の濃度が、0.001atm%以上1.5atm%以下であることを特徴とする電子放出素子を提供する。
【0015】
また本発明は、カソード電極と、該カソード電極に電気的に接続された層と、該層を構成する材料の抵抗率よりも抵抗率の低い材料を主体とする複数の粒子とを有し、前記複数の粒子は、前記層中に配置されており、前記層内の前記粒子の密度が、1×1014個/cm以上5×1018個/cm以下であり、前記層を構成する主元素に対する前記粒子を構成する主元素の濃度が、0.001atm%以上1.5atm%以下であることを特徴とする電子放出素子を提供する。
【0016】
また本発明は、カソード電極と、該カソード電極上に配置されたカーボンを主体とする層と、前記層中において隣り合うように配置された、各々が金属を主体とする、少なくとも2つの粒子と、を有し、
前記隣り合う2つの粒子は、一方の粒子が他方の粒子に比べて前記カソード電極側に配置されており、前記金属は、Co、Ni、Feの中から選択された金属であることを特徴とする電子放出素子を提供する。
【0017】
また本発明は、カソード電極と、該カソード電極に接続する層と、を有する電子放出素子であって、少なくとも2つの粒子が隣り合うことで構成された粒子群が、前記層内に多数配置されており、前記粒子は、前記層を構成する材料の抵抗率よりも抵抗率の低い材料を主体としており、前記隣り合う2つの粒子が5nm以下の範囲内に配置されており、前記隣り合う2つの粒子のうちの、一方の粒子が他方の粒子に比べて前記カソード電極側に配置されており、前記多数の粒子群は、互いに、前記層の平均膜厚以上離れて配置されることを特徴とする電子放出素子を提供する。
【0018】
また本発明は、カソード電極と、該カソード電極に接続する層と、を有する電子放出素子であって、金属を主体とする少なくとも2つの粒子が隣り合うことで構成された粒子群が、前記層内に多数配置されており、前記層は、前記金属を主体とする粒子よりも抵抗率の高い材料を主体としており、前記隣り合う2つの粒子が5nm以下の範囲内に配置されており、前記隣り合う2つの粒子のうちの、一方の粒子が他方の粒子に比べて前記カソード電極側に配置されていることを特徴とする電子放出素子を提供する。
【0019】
また本発明は、カソード電極と、該カソード電極に接続するカーボンを主体とする層と、を有する電子放出素子であって、金属を主体とする少なくとも2つの粒子が隣り合うことで構成された粒子群が、前記層内に多数配置されており、前記多数の粒子群は、互いに、前記層の平均膜厚以上離れて配置されており、前記カーボン層中における前記金属の濃度が、前記カソード電極側よりも、前記カーボン層の表面側の方が低いことを特徴とする電子放出素子を提供する。
【0020】
また本発明は、カソード電極と、該カソード電極に接続するカーボンを主体とする層と、を有する電子放出素子であって、金属を主体とする少なくとも2つの粒子が隣り合うことで構成された粒子群が、前記層内に多数配置されており、前記隣り合う2つの粒子のうちの、一方の粒子が他方の粒子に比べて前記カソード電極側に配置されており、前記複数の粒子のうち、少なくとも一部の隣り合う粒子の間に、グラフェンを有することを特徴とする電子放出素子を提供する。
【0021】
また本発明は、カソード電極と、該カソード電極に電気的に接続されたカーボンを主体とする層と、該カーボンを主体とする層中に配置された導電性の複数の粒子とを有しており、前記カーボンを主体とする層が、炭素元素に対して0.1atm%以上の水素元素を含むことを特徴とする電子放出素子を提供する。
【0022】
本発明の電子放出素子においては、前記カーボンを主体とする層が、炭素元素に対して1atm%以上20atm%以下の水素元素を含むことが好ましい。
また、前記層の表面凹凸は、rmsで膜厚の1/10より小さいことが好ましい。
また、前記層は、カーボンを主体とすることが好ましい。
また、前記層内のカーボンに対する水素の平均濃度が0.1atm%以上であることが好ましい。
また、前記カーボンを主体とする層は、sp結合を有することが好ましい。
また、前記粒子は、金属を主体とすることが好ましい。
また、前記金属は、Co、Ni、Feの中から選択された金属であることが好ましい。
また、前記粒子は、単結晶の金属を主体とすることが好ましい。
また、前記粒子は、その平均粒径が、1nm以上10nm以下であることが好ましい。
また、前記層は、厚さが100nm以下であることが好ましい。
また、前記複数の粒子のうち、少なくとも2つの隣り合う粒子が5nm以下に配置されていることが好ましい。
また、前記層中の前記粒子の密度が、1×1014個/cm以上5×1018個/cm以下であることが好ましく、1×1015個/cm以上5×1017個/cm以下であることが特に好ましい。
また、前記層を構成する主元素に対する前記粒子を構成する主元素の濃度が、0.001atm%以上1.5atm%以下であることが好ましく、0.05atm%以上1atm%以下であることが特に好ましい。
また、前記複数の粒子は、隣り合う少なくとも2つの粒子で構成される粒子群として前記層内に多数分散配置されており、前記2つの隣り合う粒子は、一方の粒子が他方の粒子よりも前記カソード電極側に位置しており、前記多数の粒子群は、互いに、前記層の平均膜厚以上離れて配置されることが好ましい。
【0023】
また、本発明の電子放出素子は、さらに、前記カソード電極上に配置された第1の開口を有する絶縁膜と、該絶縁膜上に配置された第2の開口を有するゲート電極とを有しており、前記第1の開口と前記第2の開口が連通しており、前記層が前記第1の開口内に露出していることが好ましい。
【0024】
また本発明は、本発明の電子放出素子を多数配列したことを特徴とする電子源を提供する。
【0025】
さらに本発明は、本発明の電子源と電子が照射されることで発光する発光部材とを有することを特徴とする画像表示装置を提供する。
【0026】
また本発明は、電子放出素子の製造方法であって、
金属を含み、該金属よりも抵抗率の高い材料を主体とする層を形成する工程と、
水素を含む雰囲気中にて、前記層を加熱する工程と、
を有することを特徴とする電子放出素子の製造方法を提供する。
【0027】
本発明の電子放出素子の製造方法においては、前記水素を含む雰囲気は、さらに、炭化水素を含むことが好ましい。
また、前記炭化水素がアセチレンであることが好ましい。
また、前記金属がVIII族元素であることが好ましい。
また、前記金属がCo、Ni、Feのいずれかであることが好ましい。
また、前記加熱する工程における熱処理温度が450℃以上であることが好ましい。
また、前記金属よりも抵抗率の高い材料を主体とする層が、炭素を主体とする層であることが好ましい。
また、前記金属は、炭素元素に対して0.001atm%以上5atm%以下の割合で、前記加熱する工程の前の前記炭素を主体とする層内に含まれることが好ましく、0.001atm%以上1.5atm%以下が特に好ましい。
また、前記加熱する工程の前の前記炭素を主体とする膜は、sp結合を有することが好ましい。
【0028】
上記本発明によれば、放出される電流密度が高く、且つ安定であり、低電界での電子放出を得ることができると共に、高精細な電子ビームをも得ることができる。さらには、そのような電子放出素子を簡易に実現することもできる。そのため、上記本発明の電子放出素子を応用した電子源及び画像表示装置においては、高性能な電子源、画像表示装置を得ることができる。
【0029】
【発明の実施の形態】
以下に図面を参照して、この発明の好適な実施の形態を例示的に詳しく説明する。ただし、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、特に特定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。
【0030】
図1は本発明の電子放出素子の一例の一部断面模式図を示す。図1において、1は基板、2は複数の粒子3を含む層、3は粒子、5はカソード電極である。カソード電極5と層2との間には、必要に応じて、抵抗層を配置することが好ましい。
【0031】
本発明の電子放出素子を用いた電子放出装置(画像表示装置も含む)においては、例えば図17に示すように、一般にはトライオード構造を採用する。トライオード構造においては、一般に、電子放出素子(カソード電極5および電子放出膜2)が配置された基板1の表面と実質的に平行になるようにアノード電極12を配置し、さらに、アノード電極12と電子放出素子を構成する電子放出層2との間にゲート電極(電子引出し電極)8を配置して駆動される。駆動時にはゲート電極8にカソード電極5よりも高い電位を印加することで、層2から、電子が基板1の表面に対して、実質的に垂直方向に向かって放出される。尚、ここでは3極構造(トライオード構造)の電子放出素子の例を説明したが、図17におけるゲート電極8を省いて、アノード電極12に、層2から電子を引き出すための電位を与えることで、アノード電極12を電子引出し電極とすることもできる。このような構造は、所謂「ダイオード構造」と呼ばれる。
【0032】
複数の粒子3を含む層2の主体の抵抗率は、粒子3の抵抗率よりも高く設定される。そのため、基本的には、層2の主体は誘電体で構成され、粒子3の主体は導電体で構成される。粒子3の主体の抵抗率の100倍以上に層2の主体の抵抗率を設定することで、より低電界で電子放出を行うことができる。
【0033】
そして複数の粒子3を含む層2の主体となる材料は、詳しくは後述する電界集中だけを考えると誘電率が小さい材料ほど好ましい。しかし、電子放出材料として考えると、好ましくは、炭素が用いられる。また、炭素を用いる場合には、層2中にはsp結合とsp結合の双方を有することが好ましい。特にグラファイトのミクロな構造(グラフェン)と、sp結合を含有するバンド構造とを持つカーボン膜であれば、もともと電界集中が少なくても電子放出特性は良好である。そのため、上記カーボン膜を層2の主体として用い、さらに、その層2の中に粒子3を後述する構成に配置することで、さらなる電界集中の効果を付加することができ、特に好ましい電子放出特性を実現できる。ただし、前述したように、層2の抵抗は高く、実質的に絶縁体として機能することは重要である。そのため、上記カーボン膜の主体が、例えばダイアモンドライクカーボン(DLC)等のアモルファスカーボンであると、1×10〜1×1014Ωcm程度の抵抗率を得ることができ、誘電体として機能することができるので好ましい。
【0034】
一方、粒子3は、金属を主体として含むことが好ましく、具体的には、VIII族元素が好ましい。さらには層2の主体が炭素である場合には、Ni、Fe、Coの中から選択された金属であることが好ましく、特には、Coが好ましい。Ni、Fe、Coと炭素ではバンド障壁が少ないため、電子注入における障害が少ない。また、粒子3は、上記金属の単結晶を主体とすることがより大きな放出電流密度を実現する上で好ましい。また、さらにグラファイトのミクロな構造であるグラフェンが粒子3の周り(特には隣り合う粒子の間)に配置されることで一層の低電界での安定な電子放出が可能になり、さらに電子放出特性は好ましくなる。また、上記した粒子の主体としてNi、Fe、Coを用い、層2の主体として炭素を用いると、後述する「凝集」を使って本発明の電子放出素子を作成する場合には、層2を構成する元素である炭素のグラファイト化が低温の熱処理で成長させやすいため、伝導経路の形成及び前述したグラファイトのミクロな構造を容易に形成できるので好ましい。
【0035】
本発明においては、複数の粒子3は、層2中に必ずしも均一に分散しているわけではない。図1に模式的に示したように、複数の粒子3は、ある程度の集合体(粒子群)10になっており、そして、その集合体(粒子群)10が層2中において離散的に配置されている。各集合体(粒子群)10間の間隔は、層2の平均膜厚以上離れていることが好ましい。尚、層2の平均膜厚は、カソード電極5の表面もしくは基板1の表面を基準として定義される。離れる間隔(各集合体(粒子群)10間の間隔)としては、具体的には、層2の平均膜厚の1倍以上であり、好ましくは1.5倍以上1000倍以下である。これ以上の範囲になると、層2中の電子放出点密度(ESD)が、画像表示装置に要求される電子放出素子の特性を満たすことが難しくなる。
【0036】
このように、各集合体(粒子群)10が十分に離れることにより、電子放出のための閾値を下げることができる。これは、集合体(粒子群)10同士が離れることで、各々の集合体(粒子群)10への電界集中を増大させる効果があるためである。尚、本発明においては、各集合体(粒子群)10間に、集合体10を形成していない、粒子3が存在する場合もある。
【0037】
そして、各々の集合体(粒子群)10を構成する複数の粒子は、層2の膜厚方向(カソード電極5側から層2の表面側に向かう方向)に、実質的に並ぶように配置されている。このような構成により、各集合体10に電界を集中させることができる。
【0038】
本発明においては、層2の膜厚方向に並ぶ粒子3の数に制限はなく、少なくとも2個以上であればよい。例えば、層2の膜厚方向に2つの粒子が並んでいれば、この隣り合う2つの粒子の一方が他方よりもカソード電極5の表面(あるいは層2の表面)に近い位置に配置されていれば良い。しかし、電子放出のための閾値をより低くする上で、好ましくは、一方の粒子の中心位置よりもカソード電極5の表面(あるいは層2の表面)に近い位置に他方の粒子が配置され、さらには、一方の粒子と、カソード電極5の表面(あるいは層2の表面)との間の領域に他方の粒子が配置されることが好ましい。本発明においては、粒子3は、カソード電極5の表面(層2の表面)に対して垂直に並んでいることが好ましいが、必ずしもそのような配列に限定はされない。
【0039】
また、本発明においては、上記隣り合う粒子は、5nm以下の範囲内に配置されることが好ましい。この範囲を超えると、電子放出のための閾値が極端に上がり始め、十分な放出電流を得ることも難しくなる。また、各集合体(粒子群)において、隣り合う粒子3同士は接触していても良い。粒子3の平均粒径を超えて間隔があくと電界集中は起こりにくくなるため好ましくない。また、本発明のように、層2中に含まれる導電体は粒子状であるため、例え隣り合う粒子同士が接触したとしても、隣り合う粒子間の抵抗は高くなる。そのため、層2内に存在する、1つ1つの電子放出点における、放出電流の極端な上昇を抑制することができ、電子放出を安定に行えると推測される。
【0040】
また、本発明においては、粒子3は実質的に層2中に完全に埋め込まれていることが好ましいが、一部層2の表面から露出していても良い。そのため、層2の表面凹凸は、rmsで、層2の平均膜厚の1/10以下であることが好ましい。この構成であれば層2の表面粗さに起因する電子ビームの発散を極力抑えることができる。また、上記構成によれば、粒子3の表面が真空中に存在するガスの影響を受けづらいので、安定な電子放出にも寄与していると推測される。
【0041】
上記した本発明の構成の電子放出素子によれば、誘電体の層2中に、導電体の粒子3による伝導経路が部分的(離散的)に形成されていると推測される。そのため、表面が平坦なカーボン膜に対して従来必要であったコンディショニングのような前処理が不要となり、部分的破壊やダメージを受けることなく良好な電子放出を実現することができる。ただし、単なる伝導経路、すなわち層2の全体に渡って均一に粒子が分散されると、電子放出のための閾値が高くなってしまう。また、各集合体(粒子群)10の間隔が開き過ぎるとディスプレイに用いる電子放出素子として必要な電子放出電流ならびにその電子放出電流を安定に行うために必要な電子放出点密度を得ることができない。結果、安定な電子放出および安定な表示画像を得ることができなくなってしまう。このため、層2中の粒子3の密度は、1×1014個/cm以上5×1018個/cm以下であることが好ましく、さらには、1×1015個/cm以上5×1017個/cm以下であるとより低い電界での電子放出を実現することができる。また、同様の理由で、前記層を構成する主元素に対する前記粒子を構成する主元素の濃度が、0.001atm%以上1.5atm%以下の範囲が実用範囲であるが、さらには0.05atm%以上1atm%以下であるとより低い電界での電子放出を実現することができる。上記範囲を超えると、上述したように、電子放出のための閾値が高くなってしまう。また、印加する駆動電圧が高くなり、結果、放電破壊を引き起こす場合も生じてしまったり、あるいは十分な電子放出点密度が得られなくなる。そのため、画像表示装置に必要な放出電流密度を確保できなくなってしまう。
【0042】
ここで、上記数値範囲について説明する。集合体(粒子群)10が層2中に存在する数を、粒子の密度の関数として図3に示す。尚、Xは1つの集合体(粒子群)を構成する粒子数である。
【0043】
層2中の粒子3の密度をP個/cm、層2の膜厚をh、粒子の平均半径をrとすると、膜厚方向に粒子3が接続する領域(集合体10)の個数Eは2rP(8rP)(h/2r−1)/cmである。図3(A)はr=2nmの時のグラフであり、図3(B)はr=5nmの時のグラフである。尚、ここで、rは粒子3の平均粒径の半分の値を示しており、詳しくは後述するが、粒子3の平均粒径は1nm以上10nm以下が好ましい。
【0044】
粒子群10に電界集中が起こりうる密度で、かつ、Eを多く設定するのが好ましい。電界集中のために粒子3が2個以上重なり、かつその個数Eが1×10個/cm以上好ましくは1×10個/cm以上となるには、r=2nmの場合、P=1×1014個/cmを満たせば良い。また、Eが1×10個/cm以上となるには、r=5nmの場合、最低でもP=1×1014個/cmを満たせば良い。一方で、Pが5×1018個/cmを超えると、粒子3が多すぎて、層2が単なる導電体となったり、集合体10への電界集中が起こりにくくなる。そのため、ESDが少なくなり電流密度も減少し、電子放出特性には好ましくない。
【0045】
層2の膜厚や粒子3の大きさにもよるが、粒子3の大きさを数nmで制御し、層2の膜厚を数十nmとすると、おおむねPの範囲としては、1×1014個/cm≦P≦5×1018個/cmが好ましい。粒子3の平均粒径(2r)が1〜10nmであり、粒子3がCoを主体する場合、上記条件を満たす層2中のCo濃度は0.001〜1.5atm%となる。
【0046】
理想的にはPの範囲は、1×1015個/cm≦P≦5×1017個/cmが好ましい。例えば図3の例では、各集合体10が粒子が2個以上重なることで形成される場合、集合体10の個数Eは、1×10個/cm以上1×1010個/cm以下である。
【0047】
ここで、電界集中に関して図2を用いて説明する。伝導経路の高さをh、電子放出部の半径をrとすると(2+h/r)倍となる電界集中が生じ、更にその先のミクロな形状により、同様な電界集中因子βの電界集中が生じ、総合的にはその掛け算(2+h/r)βなる電界集中がおきる。従って、上述した形態を採用することにより、本発明の電子放出素子においては、より電子放出のしやすい電子放出膜を構成することができると考えられる。
【0048】
一方、放出されるビームの形状は、層2の膜厚、粒子3の大きさや形状、電界等の設計にもよるが、層2の膜厚が100nm以下の薄い膜厚の場合、非発散ビームを形成する上において重要である。さらに構造的なストレスも少なく、薄膜プロセスに適している。粒子3の大きさを大きくして同じ割合で膜厚が厚くなると、粒子群10のお互いの距離も遠くなり、単位面積あたりの電子放出点の数が少なくなってしまう。100nm以下の薄い膜厚に対する、粒子3の大きさは数nm(1nm以上10nm以下)が理想であり、カソード電極側から前記電子放出膜の表面に向けて数個の粒子が配列する形態が好ましい。
【0049】
さらに、層2の応力を緩和するには水素を混入させて、その応力を緩和するのがよい。例えばダイアモンドライクカーボン(DLC)のような炭素を主体とした層2は硬度が硬く、応力も強い。従って,熱処理を含むプロセス適合性は必ずしも良くない。電子放出膜としては良質でも電子放出素子としてさらには電子源としてはプロセス的に不安定な場合には使用できないという課題も有り、水素による応力緩和によりプロセス製造上で安定な膜が形成できる事も重要である。このため、層2の主体が炭素である場合には、炭素元素に対して、0.1atm%以上の水素元素を含ませることで応力緩和を起こすことができ、特に1atm%以上含ませた際にはこの緩和が強く、硬度およびヤング率を小さくすることができる。但し、炭素元素に対する水素元素の比率が20atm%を超えると電子放出特性が悪くなり始めるので、実質的な上限は20atm%である。
【0050】
次に、本発明の電子放出素子の製造プロセスを説明する。ただしこの構造自体は一例であり、特に限定されないことは言うまでもない。
【0051】
図4を参照して、本発明の実施の形態に係る電子放出素子の製造方法の一例を説明する。本発明はこの製造方法に限定されないことは言うまでも無い。特に、構造の違いによる堆積順序,エッチング方法に関しては限定されず、実施例においても別途説明する。
【0052】
(工程1)
まず予め、その表面を十分に洗浄した、石英ガラス、Na等の不純物含有量を減少させたガラス、青板ガラス、シリコン基板等にスパッタ法等によりSiOを積層した積層体、アルミナ等セラミックスの絶縁性基板のうち、いずれか一つを基板1として用い、基板1上にカソード電極5を積層する。
【0053】
カソード電極5は一般的に導電性を有しており、蒸着法、スパッタ法等の一般的真空成膜技術により形成される。カソード電極5の材料は、例えば、Be,Mg,Ti,Zr,Hf,V,Nb,Ta,Mo,W,Al,Cu,Ni,Cr,Au,Pt,Pd等の金属または合金材料、TiC,ZrC,HfC,TaC,SiC,WC等の炭化物、HfB,ZrB,LaB,CeB、YB,GdB等の硼化物、TiN,ZrN,HfN等の窒化物、Si,Ge等の半導体、アモルファスカーボン,グラファイト,ダイヤモンドライクカーボン,ダイヤモンドを分散した炭素及び炭素化合物等から適宜選択される。カソード電極5の厚さとしては、数十nmから数mmの範囲で設定され、好ましくは数百nmから数μmの範囲で選択される。
【0054】
(工程2)
ついで図4(a)に示すようにカソード電極5上に層2を堆積する。層2は蒸着法、スパッタ法、HFCVD(Hot Filament CVD)法等の一般的真空成膜技術で形成されるが限定されない。層(電子放出膜)2の膜厚としては、数nmから百nmの範囲で設定され、好ましくは数nmから数十nmの範囲で選択される。また、本工程は、後述する工程6の後(開口を有する絶縁層7および開口を有するゲート電極8を形成した後)に、開口9の中に露出したカソード電極5上に、層2を選択的に堆積する場合もある。
【0055】
rfスパッタ法の場合、雰囲気として例えばArを用いるが、例えばAr/Hを用いると、層2中に水素を取り入れることができる。rfパワーやガス圧等のパラメーターは適宜定めればよい。
【0056】
さらに、粒子3の主体としてコバルトを用い、層2の主体として炭素を用いる場合には、例えば、グラファイトターゲット及びコバルトターゲットを用いるマルチターゲットを用いる方法や、グラファイトとコバルトを混合した1つのターゲットを用いてコバルト含有量を制御する方法等を適宜選択することができる。
【0057】
(工程3)
そして、熱処理を行い層2中に存在するコバルトなどの粒子3の原料を凝集させる工程を入れることで、前述した粒子3を形成する。ただし、上記凝集させる工程は、後ほどの工程で行っても良く、所望の工程で凝集させる工程を行う。熱処理は例えばランプ加熱により450℃以上で行う。熱処理における雰囲気は水素を含む雰囲気中で行われるが、水素と炭化水素ガスとを含む雰囲気中で行われることがプロセスを短縮する観点においても好ましい。また、炭化水素ガスとしてはアセチレンガスやエチレンガス等が好ましい。水素とアセチレンガスの混合ガス中での熱処理においては、層2の表面の平坦性を保ったまま金属(Co)の凝集反応を加速的に促進することができる。N雰囲気中での熱処理では層2の表面の凹凸が大きくなってしまう。
【0058】
(工程4)
ついで、絶縁層7を堆積する。絶縁層7は、スパッタ法等の一般的な真空成膜法、CVD法、真空蒸着法で形成され、その厚さとしては、数nmから数μmの範囲で設定され、好ましくは数十nmから数百nmの範囲から選択される。望ましい材料としてはSiO,SiN,Al,CaF,アンドープダイヤモンドなどの高電界に絶えられる耐圧の高い材料が望ましい。
【0059】
(工程5)
更に、絶縁層7に続きゲート電極8を堆積する(図4(b))。ゲート電極8は、カソード電極5と同様に導電性を有しており、蒸着法、スパッタ法等の一般的真空成膜技術、フォトリソグラフィー技術により形成される。ゲート電極8の材料は、例えば、Be,Mg,Ti,Zr,Hf,V,Nb,Ta,Mo,W,Al,Cu,Ni,Cr,Au,Pt,Pd等の金属または合金材料、TiC,ZrC,HfC,TaC,SiC,WC等の炭化物、HfB,ZrB,LaB,CeB、YB,GdB等の硼化物、TiN,ZrN,HfN等の窒化物、Si,Ge等の半導体等から適宜選択される。ゲート電極8の厚さとしては、数nmから数μmの範囲で設定され、好ましくは数nmから数百nmの範囲で選択される。なお、電極8,5は、同一材料でも異種材料でも良く、また、同一形成方法でも異種方法でも良い。
【0060】
(工程6)
次に、図4(c)に示すように、フォトリソグラフィー技術により開口パターンのマスクを形成し、エッチング処理を行い図4(d)に示す形態の電子放出素子を形成することができる。ゲート電極及び絶縁層7のエッチング工程は平滑かつ垂直なエッチング面が望ましく、それぞれの材料に応じて、エッチング方法を選択すれば良い。ドライでもウエットでも構わない。通常、開口9の径W1は素子を構成する材料や抵抗値、電子放出素子の材料の仕事関数と駆動電圧、必要とする電子放出ビームの形状により適宜設定される。通常、W1は数百nmから数十μmの範囲から選択される。
【0061】
尚、本発明の電子放出素子は、図4や図17などに示した、基板上に配置した層2の上方に、電子を引き出すための電極(ゲート電極8など)を配置する形態に限られるものではない。本発明の電子放出素子は、図25(D)および図26に示すように、基板1の表面に電子放出層である層2と、層2から電子を引き出すための電極(ゲート電極8)とを間隙(空隙)を挟んで対向するように配置した形態であってもよい。図25(D)は、断面模式図であり、図26は、平面模式図である。図25(D)に示した形態の電子放出素子の場合においても、アノード電極を設ける場合には、図17に示すように、アノード電極を基板1の上方に配置することで3端子構造とすることができる。尚、図25、26においては、ゲート電極8上に層2が残る形態を説明したが、ゲート電極8上には、層2が残っている必要は必ずしもない。
【0062】
また、好ましくは、本発明の電子放出素子においては、層2の表面が水素で終端される。水素で終端することで、電子の放出をさらに容易にすることができる。
【0063】
次に本発明を適用した電子放出素子の応用例について以下に述べる。本発明の電子放出素子の複数個を基体上に配列し、例えば電子源、あるいは画像表示装置が構成できる。
【0064】
電子放出素子の配列については、種々のものが採用される。一例として、電子放出素子をX方向及びY方向に行列状に複数個配し、同じ行に配された複数の電子放出素子の電極の一方を、X方向の配線に共通に接続し、同じ列に配された複数の電子放出素子の電極の他方を、Y方向の配線に共通に接続した単純マトリクス配置がある。
【0065】
以下、本発明を適用可能な電子放出素子を複数配して得られる単純マトリクス配置の電子源について、図5を用いて説明する。図5において、91は電子源基体、92はX方向配線、93はY方向配線である。94は本発明の電子放出素子である。
【0066】
m本のX方向配線92は、Dx1,Dx2,…Dxmからなり、真空蒸着法、印刷法、スパッタ法等を用いて形成された導電性金属等で構成することができる。配線の材料、膜厚、幅は、適宜設計される。Y方向配線93は、Dy1,Dy2,…Dynのn本の配線よりなり、X方向配線92と同様に形成される。これらm本のX方向配線92とn本のY方向配線93との間には、不図示の層間絶縁層が設けられており、両者を電気的に分離している(m,nは、共に正の整数)。
【0067】
不図示の層間絶縁層は、真空蒸着法、印刷法、スパッタ法等を用いて形成されたSiO等で構成される。例えば、X方向配線92を形成した基体91の全面或いは一部に所望の形状で形成され、特に、X方向配線92とY方向配線93の交差部の電位差に耐え得るように、膜厚、材料、製法が適宜設定される。X方向配線92とY方向配線93は、それぞれ外部端子として引き出されている。
【0068】
電子放出素子94を構成する一対の素子電極(即ち、前述の電極5,8)は、m本のX方向配線92とn本のY方向配線93と導電性金属等からなる結線によって電気的に接続されている。
【0069】
X方向配線92とY方向配線93を構成する材料、結線を構成する材料及び一対の素子電極を構成する材料は、その構成元素の一部あるいは全部が同一であっても、またそれぞれ異なってもよい。これら材料は、例えば前述の素子電極(電極5,8)の材料より適宜選択される。素子電極を構成する材料と配線材料が同一である場合には、素子電極に接続した配線は素子電極ということもできる。
【0070】
X方向配線92には、X方向に配列した電子放出素子94の行を、選択するための走査信号を印加する不図示の走査信号印加手段が接続される。一方、Y方向配線93には、Y方向に配列した電子放出素子94の各列を入力信号に応じて、変調するための不図示の変調信号発生手段が接続される。各電子放出素子に印加される駆動電圧は、当該素子に印加される走査信号と変調信号の差電圧として供給される。
【0071】
上記構成においては、単純なマトリクス配線を用いて、個別の素子を選択し、独立に駆動可能とすることができる。このような単純マトリクス配置の電子源を用いて構成した画像表示装置について、図6を用いて説明する。図6は、画像表示装置の表示パネルの一例を示す模式図である。
【0072】
図6において、91は電子放出素子を複数配した電子源基体、101は電子源基体91を固定したリアプレート、106はガラス基体103の内面に画像形成部材である蛍光体としての蛍光膜104とメタルバック105等が形成されたフェースプレートである。102は支持枠であり、支持枠102には、リアプレート101、フェースプレート106がフリットガラス等を用いて接続されている。107は外囲器であり、例えば大気中あるいは、窒素中で、400〜500℃の温度範囲で10分以上焼成することで、封着して構成される。94は、本発明における電子放出素子に相当する。92,93は、電子放出素子の一対の電極8,5と接続されたX方向配線及びY方向配線である。
【0073】
外囲器107は、上述の如く、フェースプレート106、支持枠102、リアプレート101で構成される。リアプレート101は主に基体91の強度を補強する目的で設けられるため、基体91自体で十分な強度を持つ場合は別体のリアプレート101は不要とすることができる。即ち、基体91に直接支持枠102を封着し、フェースプレート106、支持枠102及び基体91で外囲器107を構成しても良い。一方、フェースプレート106、リアプレート101間に、スペーサーとよばれる不図示の支持体を設置することにより、大気圧に対して十分な強度をもつ外囲器107を構成することもできる。
【0074】
なお、本発明の電子放出素子を用いた画像表示装置では、放出した電子軌道を考慮して電子放出素子94上部に蛍光体(蛍光膜104)をアライメントして配置する。本発明においては、電子放出素子94の直上に電子ビームが到達するため、電子放出素子94の直上に蛍光膜104が配置されるように、位置あわせされて構成される。
【0075】
次に、封着工程を施した外囲器(パネル)を封止する真空封止工程について説明する。
【0076】
真空封止工程は、外囲器(パネル)107を加熱して、80〜250℃に保持しながら、イオンポンプ、ソープションポンプなどの排気装置により排気管(不図示)を通じて排気し、有機物質の十分少ない雰囲気にした後、排気管をバーナーで熱して溶解させて封じきる。外囲器107の封止後の圧力を維持するために、ゲッター処理を行なうこともできる。これは、外囲器107の封止を行う直前あるいは封止後に、抵抗加熱あるいは高周波加熱等を用いた加熱により、外囲器107内の所定の位置(不図示)に配置されたゲッターを加熱し、蒸着膜を形成する処理である。ゲッターは通常Ba等が主成分であり、該蒸着膜の吸着作用により、外囲器107内の雰囲気を維持するものである。
【0077】
以上の工程によって製造された単純マトリクス配置の電子源を用いて構成した画像表示装置は、各電子放出素子に、容器外端子Dox1〜Doxm、Doy1〜Doynを介して電圧を印加することにより、電子放出が生ずる。また、高圧端子113を介してメタルバック105、あるいは透明電極(不図示)に高圧Vaを印加し、電子ビームを加速する。加速された電子は、蛍光膜104に衝突し、発光が生じて画像が形成される。
【0078】
次に、単純マトリクス配置の電子源を用いて構成した表示パネルに、NTSC方式のテレビ信号に基づいたテレビジョン表示を行う為の駆動回路の構成例について、図7を用いて説明する。図7において、121は画像表示パネル、122は走査回路、123は制御回路、124はシフトレジスタである。125はラインメモリ、126は同期信号分離回路、127は変調信号発生器、VxおよびVaは直流電圧源である。
【0079】
表示パネル121は、端子Dox1乃至Doxm、端子Doy1乃至Doyn、及び高圧端子Hvを介して外部の電気回路と接続している。端子Dox1乃至Doxmには、表示パネル内に設けられている電子源、即ち、M行N列の行列状にマトリクス配線された電子放出素子群を一行(N素子)ずつ順次駆動する為の走査信号が印加される。
【0080】
端子Doy1乃至Doynには、前記走査信号により選択された一行の電子放出素子の各素子の出力電子ビームを制御する為の変調信号が印加される。高圧端子Hvには、直流電圧源Vaより、例えば10k[V]の直流電圧が供給されるが、これは電子放出素子から放出される電子ビームに蛍光体を励起するのに十分なエネルギーを付与する為の加速電圧である。
【0081】
走査回路122について説明する。同回路は、内部にM個のスイッチング素子を備えたもので(図中,S1ないしSmで模式的に示している)ある。各スイッチング素子は、直流電圧源Vxの出力電圧もしくは0[V](グランドレベル)のいずれか一方を選択し、表示パネル121の端子Dox1ないしDoxmと電気的に接続される。S1乃至Smの各スイッチング素子は、制御回路123が出力する制御信号Tscanに基づいて動作するものであり、例えばFETのようなスイッチング素子を組み合わせることにより構成することができる。
【0082】
直流電圧源Vxは、本例の場合に電子放出素子の特性(電子放出しきい値電圧)に基づき走査されていない素子に印加される駆動電圧が電子放出しきい値電圧以下となるような一定電圧を出力するよう設定されている。
【0083】
制御回路123は、外部より入力する画像信号に基づいて適切な表示が行なわれるように各部の動作を整合させる機能を有する。制御回路123は、同期信号分離回路126より送られる同期信号Tsyncに基づいて、各部に対してTscanおよびTsftおよびTmryの各制御信号を発生する。
【0084】
同期信号分離回路126は、外部から入力されるNTSC方式のテレビ信号から同期信号成分と輝度信号成分とを分離する為の回路で、一般的な周波数分離(フィルター)回路等を用いて構成できる。同期信号分離回路126により分離された同期信号は、垂直同期信号と水平同期信号より成るが、ここでは説明の便宜上Tsync信号として図示した。前記テレビ信号から分離された画像の輝度信号成分は便宜上DATA信号と表した。該DATA信号はシフトレジスタ124に入力される。
【0085】
シフトレジスタ124は、時系列的にシリアルに入力される前記DATA信号を、画像の1ライン毎にシリアル/パラレル変換するためのもので、前記制御回路123より送られる制御信号Tsftに基づいて動作する(即ち、制御信号Tsftは、シフトレジスタ124のシフトクロックであるということもできる。)。シリアル/パラレル変換された画像1ライン分(電子放出素子N素子分の駆動データに相当)のデータは、Id1乃至IdnのN個の並列信号として前記シフトレジスタ124より出力される。
【0086】
ラインメモリ125は、画像1ライン分のデータを必要時間の間だけ記憶する為の記憶装置であり、制御回路123より送られる制御信号Tmryに従って適宜Id1乃至Idnの内容を記憶する。記憶された内容は、I’d1乃至I’dnとして出力され、変調信号発生器127に入力される。
【0087】
変調信号発生器127は、画像データI’d1乃至I’dnの各々に応じて電子放出素子の各々を適切に駆動変調する為の信号源であり、その出力信号は、端子Doy1乃至Doynを通じて表示パネル121内の電子放出素子に印加される。
【0088】
本発明の電子放出素子は放出電流Ieに対して以下の基本特性を有している。即ち、電子放出には明確なしきい値電圧Vthがあり、Vth以上の電圧を印加された時のみ電子放出が生じる。電子放出しきい値以上の電圧に対しては、素子への印加電圧の変化に応じて放出電流も変化する。このことから、本素子に電圧を印加する場合、例えば電子放出閾値以下の電圧を印加しても電子放出は生じないが、電子放出閾値以上の電圧を印加する場合には電子ビームが出力される。その際、印加電圧Vfを変化させる事により出力電子ビームの強度を制御することが可能である。また、本素子にパルス電圧を印加する場合、パルスの高さPhを変化させる事により電子ビーム強度を、パルスの幅Pwを変化させることにより出力される電子ビームの電荷の総量を制御する事が可能である。
【0089】
従って、入力信号に応じて、電子放出素子を変調する方式としては、電圧変調方式、パルス幅変調方式等が採用できる。電圧変調方式を実施するに際しては、変調信号発生器127として、一定長さの電圧パルスを発生し、入力されるデータに応じて適宜パルスの波高値を変調するような電圧変調方式の回路を用いることができる。
【0090】
パルス幅変調方式を実施するに際しては、変調信号発生器127として、一定の波高値の電圧パルスを発生し、入力されるデータに応じて適宜電圧パルスの幅を変調するようなパルス幅変調方式の回路を用いることができる。
【0091】
シフトレジスタ124やラインメモリ125は、デジタル信号式のものをもアナログ信号式のものをも採用できる。画像信号のシリアル/パラレル変換や記憶が所定の速度で行なわれれば良いからである。
【0092】
デジタル信号式を用いる場合には、同期信号分離回路126の出力信号DATAをデジタル信号化する必要があるが、これには126の出力部にA/D変換器を設ければ良い。これに関連してラインメモリ125の出力信号がデジタル信号かアナログ信号かにより、変調信号発生器127に用いられる回路が若干異なったものとなる。即ち、デジタル信号を用いた電圧変調方式の場合、変調信号発生器127には、例えばD/A変換回路を用い、必要に応じて増幅回路などを付加する。パルス幅変調方式の場合、変調信号発生器127には、例えば高速の発振器および発振器の出力する波数を計数する計数器(カウンタ)及び計数器の出力値と前記メモリの出力値を比較する比較器(コンパレータ)を組み合せた回路を用いる。必要に応じて、比較器の出力するパルス幅変調された変調信号を電子放出素子の駆動電圧にまで電圧増幅するための増幅器を付加することもできる。
【0093】
アナログ信号を用いた電圧変調方式の場合、変調信号発生器127には、例えばオペアンプなどを用いた増幅回路を採用でき、必要に応じてレベルシフト回路などを付加することもできる。パルス幅変調方式の場合には、例えば、電圧制御型発振回路(VCO)を採用でき、必要に応じて電子放出素子の駆動電圧まで電圧増幅するための増幅器を付加することもできる。
【0094】
このような構成をとり得る本発明を適用可能な画像表示装置においては、各電子放出素子に、容器外端子Dox1乃至Doxm、Doy1乃至Doynを介して電圧を印加することにより、電子放出が生ずる。高圧端子Hvを介してメタルバック105、あるいは透明電極(不図示)に高圧を印加し、電子ビームを加速する。加速された電子は、蛍光膜に衝突し、発光が生じて画像が形成される。
【0095】
ここで述べた画像表示装置の構成は、本発明を適用可能な画像表示装置の一例であり、本発明の技術思想に基づいて種々の変形が可能である。入力信号については、NTSC方式を挙げたが入力信号はこれに限られるものではなく、PAL,SECAM方式など他、これよりも、多数の走査線からなるTV信号(例えば、MUSE方式をはじめとする高品位TV)方式をも採用できる。
【0096】
本発明の画像表示装置は、テレビジョン放送の表示装置、テレビ会議システムやコンピューター等の表示装置の他、感光性ドラム等を用いて構成された光プリンターとしての画像表示装置等としても用いることができる。
【0097】
【実施例】
以下、本発明の実施例を詳細に説明する。
【0098】
[実施例1]
本実施例により作製した電子放出素子の製造工程を図8を用いて詳細に説明する。
【0099】
まず、基板1に石英を用い、十分洗浄を行った後、スパッタ法によりカソード電極5として厚さ500nmのTaを成膜した(図8(a))。
【0100】
ついでスパッタ法によりニッケル濃度0.02%の炭素膜2をカソード電極5上に12nm程度堆積した(図8(b))。雰囲気ガスはArを用いた。条件を以下に示す。
rf電源 :13.56MHz
rfパワー:400W
ガス圧  :267mPa
基板温度 :300℃
ターゲット:グラファイト及びニッケルの混合ターゲット
【0101】
次に、水素雰囲気中で基板を600℃300分間ランプ加熱で熱処理を行った。すると図8(c)に示すように、ニッケルが凝集しニッケルを中心とした粒子3が多数形成された。金属粒子の集合体(粒子群)10は図8(c)のように、炭素膜2の膜厚以上離れて存在している。熱処理によって形成したニッケル粒の濃度Pは、TEM観察によりP=1×1016個/cmであった。
【0102】
このように作成した電子放出素子の電子放出特性を測定した。本実施例で作成した電子放出素子をカソードにして1mm離して電子放出素子と平行なアノード(面積は1mm)に電圧を印加した。このときの電圧電流特性を図10に示す。尚、横軸は電界強度、縦軸は放出電流密度である。
【0103】
本実施例で作成した電子放出素子は、顕著な放電もなく、即ちコンディショニングのない良好な電子放出特性が確認できた。
【0104】
[実施例2]
本実施例により作製した電子放出素子の製造工程を図9を用いて詳細に説明する。
【0105】
まず、基板1に石英を用い、十分洗浄を行った後、スパッタ法によりカソード電極5として厚さ500nmのTaを成膜した(図9(a))。
【0106】
ついでスパッタ法によりコバルト濃度0.3%、水素濃度1%の炭素膜2をカソード電極5上に12nm程度堆積した(図9(b))。雰囲気ガスはArとHガスを1:1の混合ガスを用いた。条件を以下に示す。
rf電源       :13.56MHz
グラファイトrfパワー:1kW
コバルトrfパワー  :10W
ガス圧        :267mPa
基板温度       :300℃
ターゲット      :グラファイト及びコバルト
【0107】
次に、アセチレンと水素の混合ガス雰囲気中で基板を600℃60分間ランプ加熱で熱処理を行った。実施例1で示した水素雰囲気の時よりも反応は速く、コバルトが凝集し結晶構造のコバルト粒3が形成された(図9(c))。このとき凝集したコバルト粒3以外のところではEDAX測定においてコバルトは検出限界以下であった。熱処理によって形成したコバルト粒の濃度は、TEM観察によりP=1×1017個/cmであった。
【0108】
このように作成した電子放出素子の電子放出特性を測定した。本実施例で作成した電子放出素子をカソードにして1mm離して電子放出素子と平行なアノードに電圧を印加した。その結果、顕著な放電もなく、即ちコンディショニングのない良好な電子放出特性が確認できた。さらに実施例1と比べて硬度が小さい応力の少ない電子放出膜が形成できた。
【0109】
[実施例3]
本実施例により作製した電子放出素子の製造工程を図11を用いて詳細に説明する。
【0110】
まず、図11(a)に示すように、基板1にn型Si基板を用い、スパッタ法によりカソード電極5として厚さ500nmのTaを成膜した。ついでHFCVD法により炭素膜2を30nm程度堆積した。HFCVD法の装置図を図12に示す。
【0111】
図12において、21は真空容器、22は基板、23は基板ホルダー、24は熱電子及び原料ガスを分解しイオンを発生させる熱源、25は基板に電圧を印加する基板バイアス用電極、26は熱源24から熱電子を引き出す電極、27は基板電圧と基板に流れる電流を観測するモニター機構、28は基板に電圧を印加する電源、29は基板電流をモニターする電流モニター機構、30は熱電子引き出し用電極に電圧印加する電圧印加機構、31は熱電子を引き出す電極に電圧を印加する電源、32は機構27及び30を制御する成膜プロセス制御機構、33はガス導入口、34は真空容器21を真空に排気する排気ポンプを示している。
【0112】
尚、基板ホルダー23と基板バイアス用電極25とは、セラミック板等で絶縁されている場合がある。また、熱源24には、不図示の電源により電圧が投入され、所望の温度になるように過熱される。このときの電源としては、直流でも交流でもよい。さらに、成膜プロセス制御機構32は、パソコン等で制御しても良いし、手動で制御できる構造でも良い。
【0113】
図12に示すHFCVD装置において、n型シリコン基板を基板バイアス電極25上に配置し、排気ポンプ34を用いて、真空容器21内を1×10−5Paで排気した。次に、ガス導入口33から水素ガスを10sccm導入し、1×10−1Paに保持した。その後、熱源24に14Vの交流電圧を印加し2100℃に加熱した後、電圧印加機構27を用いて基板バイアス電極25に150Vの直流電圧を印加し、電流モニター29で0.5mAの電流値が観測された。この状態を20分間保持し、基板クリーニングを行った。
【0114】
次に、水素ガスの導入を停止し、再度真空容器21内を1×10−5Paまで排気した後、メタンガスをガス導入口33から10sccm導入し、排気ポンプ34を用いて真空容器21内を1×10−1Pa保持した。次に、基板加熱機構を用いて基板22を30℃に設定した後、基板バイアス電極25に−150Vの直流電圧を印加した。次に、熱源24に15Vの交流電圧を印加し熱源24を2100℃に加熱した。次に、熱電子引出し電極26に電圧を印加し、基板22にイオンを照射した。この時、電流モニター機構29で観測される電流量が5mAになるように、熱電子引出し電極26の電圧値を90Vに設定し、この状態で10分間保持しSP結合の多いDLC(ダイアモンドライクカーボン)膜2を成膜した。
【0115】
ついでイオン注入法でコバルトを25keV,ドーズ量3×1016個/cmでDLC膜内に注入した(図11(b))。
【0116】
次に、アセチレン0.1%雰囲気中(99.9%水素)で基板を550℃300分間ランプ加熱で熱処理を行った。すると図11(c)に示すように、表面層(層2)ではコバルトが凝集し結晶構造のコバルト粒子3が部分的に形成された。そしてコバルト粒子3の集合体(粒子群)10が層2中に離散的に形成されていた。このとき凝集したコバルト粒以外のところの炭素膜ではEDAX測定においてコバルトは検出限界以下であった。一方DLC膜とSi基板の界面に近い部分(層2’)ではコバルト粒の密度が多く、殆んど導電体として機能している。断面TEM像ではDLC膜内にコバルト粒が単結晶状態で存在しているのが見える。さらに拡大するとCo粒の周辺にグラファイト層が成長していることが観察された。熱処理によって形成したコバルト粒の濃度は、TEM観察によりP=5×1016個/cmであった。水素濃度は4%であった。
【0117】
また、AFMで層2表面の凹凸を評価すると、P−V値(最大値−最小値)として4.4nm、rmsとして0.28nmという値で、平坦性が確保されていることがわかった。
【0118】
このように作成した電子放出素子の電子放出特性を測定した。本実施例で作成した電子放出素子をカソードにして1mm離して電子放出素子と平行なアノード(面積は1mm)に電圧を印加した。このときの電圧電流特性を図13に示す。尚、横軸は電界強度、縦軸は放出電流密度である。
【0119】
本実施例で作成した電子放出素子は、顕著な放電もなく、即ちコンディショニングのない良好な電子放出特性が確認できた。電子放出点密度(ESD)は1×10個/cm以上で、放出電流密度も10mA/cm以上の大きい値が得られた。
【0120】
[実施例4]
本実施例により作製した電子放出素子の製造工程を図14を用いて詳細に説明する。
【0121】
基板1にn型Si基板を用い、スパッタ法によりカソード電極5として厚さ500nmのTaを成膜した。ついでHFCVD法により実施例3と同様にしてDLC膜2を15nm程度堆積した(図14(a))。膜厚は時間を短縮することで調整した。
【0122】
ついでレジスト塗布及びパターニングし、その後イオン注入法でコバルトを25keV,ドーズ量5×1016個/cmでDLC膜内に注入した(図14(b))。レジストが配置されていない領域のみ部分的にコバルトが注入された。RPはシリコン基板内であり、実施例3のコバルトの低濃度層のみがカーボン膜内に形成された。パターニングしてイオン注入しているため、金属を含む粒子が形成される場所は決まっており、カソード電極側からDLC膜2の表面に向けて配列した領域(粒子の集合体10)が、DLC膜2内において、隣接して作成されることは無く、イオン注入濃度が多くても離散的に複数配置される。
【0123】
次に、アセチレン0.1%雰囲気中(99.9%水素)で基板を750℃60分間ランプ加熱で熱処理を行った。すると図14(c)に示すように、コバルトが凝集し結晶構造のコバルト粒子3が高濃度に形成された。さらに拡大するとCo粒の周辺にグラファイトのミクロな構造(グラフェン)4が形成されていることが観察された。
【0124】
このように作成した電子放出素子の電子放出特性を測定した。本実施例で作成した電子放出素子をカソードにして1mm離して電子放出素子と平行なアノードに電圧を印加した。その結果、顕著な放電もなく、即ちコンディショニングのない良好な電子放出特性が確認できた。
【0125】
[実施例5]
本実施例により作製した電子放出素子の製造工程を図15を用いて詳細に説明する。
【0126】
基板1にn型Si基板を用い、スパッタ法によりカソード電極5として厚さ500nmのTaを成膜した。ついでHFCVD法により実施例3と同様にしてDLC膜2を15nm程度堆積した(図15(a))。
【0127】
ついでスパッタ法でシリコン酸化膜200を25nm成膜した。その後イオン注入法でコバルトを25keV,ドーズ量5×1015個/cmでシリコン酸化膜及びDLC膜内に注入した(図15(b))。RPはシリコン酸化膜内であり、DLC膜の表面が1%と高濃度となる。
【0128】
バッファードフッ酸でシリコン酸化膜を除去した後に、アセチレン0.1%雰囲気中(99.9%水素)で基板を550℃300分間ランプ加熱で熱処理を行った。すると図15(c)に示すように、コバルトが凝集し結晶構造のコバルト粒子3が表面で2×1017個/cmと高濃度に形成された。
【0129】
このように作成した電子放出膜の電子放出特性を測定した。本実施例で作成した膜をカソードにして1mm離して電子放出膜と平行なアノードに電圧を印加した。その結果、顕著な放電もなく、即ちコンディショニングのない良好な電子放出特性が確認できた。また、実施例3と比べると電子放出のための閾値は高いが放出点は多く、ESDは1×10個/cm以上で10mA/cm以上の電流密度が得られた。
【0130】
[実施例6]
本実施例により作製した電子放出素子の製造工程を図16を用いて詳細に説明する。
【0131】
まず、基板1に石英を用い、十分洗浄を行った後、スパッタ法によりカソード電極5として厚さ500nmのTaを成膜した。
【0132】
ついでスパッタ法により炭素膜6をカソード電極5上に12nm程度堆積した。雰囲気ガスはAr/Hを用いた。条件を以下に示す。
rf電源 :13.56MHz
rfパワー:400W
ガス圧  :267mPa
基板温度 :300℃
ターゲット:グラファイト
【0133】
ついでターゲットをコバルトとグラファイトのマルチターゲットでコバルト濃度8%の炭素膜を炭素膜6上に12nm程度堆積した。雰囲気ガスはAr/Hを用いた。条件を以下に示す。
rf電源       :13.56MHz
グラファイトrfパワー:600W
コバルトrfパワー  :10W
ガス圧        :267mPa
基板温度       :300℃
ターゲット      :グラファイト及びコバルト
【0134】
尚、この工程ではグラファイトターゲット側のパワーを上昇させコバルト比率を徐々に下げていった。表面ではCo濃度は0.1%とした。
【0135】
次に、アセチレン0.1%雰囲気中(99.9%水素)で600℃300分の熱処理を行った。すると図16に示すように、コバルトが凝集し結晶構造のコバルト粒子3が形成された。Ta電極5から、アモルファスカーボンからなる高抵抗層6、Co粒子3が高濃度に配置された低抵抗Co−C層2’、Co粒子3が低濃度に配置された層2という順番の積層構造が形成された。層2内には、カソード電極5側から層2の表面に向けてコバルト粒子3が配列した領域(粒子の集合体)10が離散して形成される。このような構成では最下層の高抵抗層6は電子放出の際に電子が出過ぎないような電流制限抵抗として働き、均一な電子放出に寄与する。真ん中の低抵抗層2’ではコバルト粒の密度が高く高抵抗層6を通った電子はコバルト粒子に入り、上方へ電界で伝導する。この低抵抗層2’は誘電体というよりは導電体として作用する。表面付近はコバルト粒子の密度が少なく、電界集中をしやすい構造になり、真空に電子を放出する。
【0136】
このように作成した電子放出素子の電子放出特性を測定した。本実施例で作成した電子放出素子をカソードにして1mm離して電子放出素子と平行なアノードに電圧を印加した。その結果、顕著な放電もなく、即ちコンディショニングのない良好で、かつ均一な発光特性を示す電子放出特性が確認できた。
【0137】
[実施例7]
図17(a)に本実施例により作製した電子放出素子の断面模式図、及び図17(b)に平面模式図を示す。
【0138】
1は基板、5はカソード電極、7は絶縁層、8はゲート電極、2は電子放出膜である。また、W1はゲート電極8に設けられた孔の径である。Vgはゲート電極8とカソード電極5の間に印加される電圧、Vaはゲート電極8とアノード12間に印加される電圧、Ieは電子放出電流である。
【0139】
素子を駆動させるためにVg,Vaを印加すると、孔の中に強い電界が形成され、Vgや絶縁層7の厚さ、形状、絶縁層の誘電率等により孔内部の等電位面の形状が定められる。孔の外では主にアノード12との距離HにもよるがVaによりほぼ平行な等電位面となる。
【0140】
電子放出膜2にかかる電界がある閾値を超えると電子放出膜から電子が放出される。孔から出た電子は今度はアノード12に向かって加速され、アノード12に設けられている蛍光体(不図示)に衝突し発光する。
【0141】
以下に、本実施例の電子放出素子の製造工程を図4を用いて詳細に説明する。
【0142】
(工程1)
まず、図4(a)に示すように、基板1に石英を用い、十分洗浄を行った後スパッタ法によりカソード電極5として厚さ500nmのTaを形成した。
【0143】
(工程2)
ついでHFCVD法により炭素膜2を30nm程度堆積した。このときはDLCが成長する条件で形成した。成長条件を以下に示す。
ガス      :CH
基板バイアス  :−50V
ガス圧     :267mPa
基板温度    :室温
フィラメント  :タングステン
フィラメント温度:2100℃
裏面バイアス  :100V
【0144】
(工程3)
ついでイオン注入法でコバルトを25keV,ドーズ量3×1016個/cmでDLC膜2内に注入した。
【0145】
(工程4)
次に、アセチレン0.1%雰囲気中(99.9%水素)で基板を550℃60分間ランプ加熱で熱処理を行った。
【0146】
(工程5)
次に、図4(b)に示すように、絶縁層7として厚さ1μmのSiO、ゲート電極8として厚さ100nmのTaをこの順で堆積した。
【0147】
(工程6)
次に、図4(c)に示すように、フォトリソグラフィーで、ポジ型フォトレジスト(AZ1500/クラリアント社製)のスピンコーティング、フォトマスクパターンを露光し、現像し、マスクパターンを形成した。
【0148】
(工程7)
図4(d)に示すように、マスクパターンをマスクとして、Taのゲート電極8をCFガスを用いてドライエッチングし、ついでSiO膜7をバッファードフッ酸でエッチングして、開口9を形成した。
【0149】
(工程8)
マスクパターンを完全に除去し、本実施例の電子放出素子を完成させた。尚、膜応力は少なく、膜はがれその他のプロセス上の問題は起きなかった。
【0150】
以上のようにして作製した電子放出素子の上方に、図17のようにアノード電極12を配置して、電極5,8間に電圧を印加し駆動した。図18は上記形成により作成した電子放出素子の電圧電流特性のグラフである。本発明により低電圧で電子を放出することができた。実際の駆動電圧は、Vg=20V、Va=10kV、電子放出素子とアノード12との距離Hを1mmとして、電子源を形成することができた。
【0151】
ここでは、図17に示すように電子放出部をほぼ円形の孔で記述しているが、この電子放出部の形状は特に限定されず、例えばライン状に形成しても構わない。作成方法はパターニング形状を変えるだけで全く同様である。ラインパターンを複数並べることも可能で放出面積は大きくとることが可能となる。
【0152】
[実施例8]
本実施例により作製した電子放出素子の製造工程を図20を用いて詳細に説明する。
【0153】
まず、基板1に石英を用い、十分洗浄を行った後、スパッタ法によりカソード電極5として厚さ500nmのTaを成膜した。ついで、スパッタ法により、コバルト濃度1.0%のコバルト含有炭素ターゲットとグラファイトのターゲットを用いて、カソード電極5上に0.8%のコバルト含有炭素層211を堆積した(図20(A))。
【0154】
ついで、前記炭素層211をグラファイトターゲットのみを用いて、コバルトを含有しない炭素層212を数十nm堆積した(図20(B))。
【0155】
次に、アセチレンと水素の混合ガス雰囲気中で、基板を600℃、60分ランプ加熱で熱処理を行い、層211中にCoを主体とする微粒子213を膜厚方向に重なるように形成した(図20(C))。
【0156】
本実施例のように、コバルト含有炭素層211をコバルトを含有しない炭素層212で被覆することで、層211の表面への異物の成長を抑制しつつ、より高濃度のコバルト含有炭素膜を作製することができる。本実施例で形成した層(211および212で示される領域)中のコバルト粒の濃度は、TEM観察によりP=3×1017個/cmであった。また、本実施例で作成した電子放出素子(カソード電極5と炭素膜(211および212))に対向するようにアノード電極を配置した後に、カソード電極とアノード電極間に電圧を印加して電子放出特性を測定したところ、電子放出サイト密度を向上できた。
【0157】
[実施例9]
実施例8と同様の成膜装置を用いて、炭素膜(211、212)を形成した。ただし、本実施例では、コバルト含有炭素ターゲットのrfパワーを時間とともに100Wから700Wへと変化させ、基板1の界面付近で低コバルト濃度の領域を形成し高抵抗膜を形成した。これにより、電子放出時の揺らぎを低減でき安定した電子放出特性が得られた。
【0158】
[実施例10]
実施例8と同様の条件でカソード電極5上に炭素膜(211、212)を形成し、アセチレンと水素の混合ガス雰囲気中でランプ加熱により熱処理した。ただし本実施例では、より電子が真空中に放出されやすくするために、熱処理後、コバルトを含有しない炭素層を水素プラズマにより除去し、コバルト粒子の一部を露出させた(図21参照)。これにより、より低電界で電子放出可能な電子放出膜が形成できた。
【0159】
[実施例11]
図22、図23に、本実施例により作製した電子放出素子の模式図を示す。図22は断面模式図であり、図23は平面模式図である。
【0160】
1は基板、2は電子放出膜、5はカソード電極、7は絶縁層、8はゲート電極、201は収束電極である。収束電極201を設けることで、より高精細な電子ビームを得ることができる。
【0161】
本実施例で作成した電子放出素子の作成方法を図24(A)〜図24(D)を用いて説明する。
【0162】
まず石英基板1上にスパッタ法でTa電極を500nm堆積し、カソード電極5とした。続いて、熱フィラメントCVD法(HFCVD法)でダイアモンドライクカーボン膜(DLC膜)2を25nm成膜し、続いてスパッタ法でAlを25nm堆積し収束電極201とした。続いてシリコン酸化膜7を500nm、さらにゲート電極8としてTaを100nm堆積し、図24(A)に示す積層構造を作製した。
【0163】
次に、フォトリソグラフィーにより、φ1μmの開口領域をTa膜8、シリコン酸化膜7に形成した(図24(B))。具体的には、シリコン酸化膜までエッチングにより除去した時点で停止した。
【0164】
次に、イオン注入法でコバルトイオンを25keV,ドーズ量5×1015個/cmで積層構造体に注入した(図24(C))。本実施例では、Al層201が配置された状態でカーボン膜2にCoイオンを注入したので、カーボン膜2の表面付近で、Co濃度がもっとも高濃度になるように簡易に設定することができる。
【0165】
続いて、リン酸で、Al層201をエッチング除去した後に、アセチレンと水素の混合ガス雰囲気中でランプ加熱により炭素膜2を熱処理した(図24(D))。
【0166】
このようにして作製した電子放出素子を、真空容器内に設置し、カソード電極5から1mm離れた位置に配置されたアノード電極(蛍光体を表面に有する)に3kVの電圧を印加するとともにゲート電極8に炭素膜2から電子を引き出すための電位を印加することで、炭素膜2からアノード電極に向けて電子を放出させて駆動すると、蛍光体で発光像が観測された。この結果を実施例7で作成した電子放出素子から放出された電子ビームの発光像と比較すると、ビームサイズ(発光像)が縮小され高精細化が達成された。本実施例により、収束電極201をイオン注入用マスクと併用することで、高精細化と製造工程の簡略化がなされ低コスト化が実現できた。
【0167】
[実施例12]
本実施例では、実施例2における炭素膜2の表面を、水素によって積極的に終端した。具体的には実施例2におけるアセチレンと水素の混合ガス雰囲気中での熱処理を、全圧7kPa(メタンが70%、水素が30%)である雰囲気中で600℃で60分間の熱処理に置き換えた。その他の製造プロセスは実施例2と同様である。
【0168】
本実施例によって作成した炭素膜からの電子放出特性を、実施例2と同様に測定したところ、実施例2の炭素膜に比べて、電子放出が開始される電圧が半分になると共に、実施例2の炭素膜2に印加する電位と同じ電位を印加した際に得られる電子放出量自体も増加し、また、ESDも2桁増加した。
【0169】
尚、本実施例では、炭素膜(層)2の表面の水素終端処理として、上記した条件下での、炭化水素と水素の混合雰囲気中での熱処理を挙げたが、水素終端処理方法は、上記例に限定されるものではない。他の方法により、水素終端処理を行っても良い。
【0170】
[実施例13]
本実施例では、実施例7で作成した電子放出素子を用いて画像表示装置を作製した。
【0171】
実施例7で示した素子を100×100のマトリクス状に配置した。配線は、図5のようにX側をカソード電極5に、Y側をゲート電極8に接続した。素子は、横300μm、縦300μmのピッチで配置した。素子上部には蛍光体を配置した。この結果、マトリクス駆動が可能で高輝度で高精細な画像表示装置が形成できた。
【0172】
[実施例14]
図25、26に、本実施例により作製した電子放出素子の模式図を示す。図25は本実施例で作成した電子放出素子の作成プロセスの断面模式図であり、図26は、図25(A)〜(D)で得た電子放出素子の平面模式図である。
【0173】
本実施例で作成した電子放出素子の作成方法を図25(A)〜図25(D)を用いて説明する。
【0174】
まず絶縁性基板1上にスパッタ法でTaからなる導電性膜を100nm堆積した。続いて、熱フィラメントCVD法(HFCVD法)でカーボン膜をTaからなる導電性膜上に35nm成膜した後、カーボン膜上にシリコン酸化膜からなる絶縁層を30nm堆積した。(図25(A))
【0175】
次に、フォトリソグラフィーにより、幅Wが2μmの間隙(空隙)をシリコン酸化膜およびカーボン膜および導電性膜に形成した(図25(B))。
【0176】
次に、レジストを除去した後、イオン注入法でコバルトイオンを25keV,ドーズ量1×1015個/cmでカーボン膜とシリコン酸化膜層との積層体に注入した(図25(C))。本実施例では、シリコン酸化膜層が配置された状態でカーボン膜にCoイオンを注入したので、カーボン膜の表面付近で、Co濃度がもっとも高濃度になるように簡易に設定することができる。
【0177】
続いて、シリコン酸化膜層をエッチング除去した後に、アセチレンと水素の混合ガス雰囲気中でランプ加熱により炭素膜2を熱処理した(図25(D))。この工程により、膜厚方向に複数のCo粒子が並ぶ、層2を形成した。
【0178】
このようにして作製した電子放出素子を、真空容器内に設置し、基板1から1mm上方に離れた位置に配置されたアノード電極(蛍光体を表面に有する)に5kVの電圧を印加するとともに、カソード電極5とゲート電極8に駆動電圧を印加することで、層2から電子を放出させて駆動すると、低い駆動電圧で蛍光体からの発光像を観測することができた。
【0179】
尚、本実施例では、ゲート電極8上に層2が残る形態を説明したが、ゲート電極8上には、層2が残っている必要は必ずしもない。
【0180】
【発明の効果】
以上説明したように、本発明は、コンディショニングという工程がなく、低閾値で電子放出可能な電子放出素子を提供できる。さらに、電子ビーム径が小さい、低電圧で高効率な電子放出が可能で、製造プロセスが容易な電子放出素子を提供できる。
【0181】
また、本発明の電子放出素子を電子源や像表示装置に適用すると、性能に優れた電子源及び画像表示装置を実現できる。
【図面の簡単な説明】
【図1】本発明に係る電子放出素子の構成を示す断面模式図である。
【図2】本発明に係る実施態様の説明図である。
【図3】本発明に係る実施態様の説明図である。
【図4】本発明に係る電子放出素子の製造方法の一例を示した模式図である。
【図5】本発明に係る単純マトリクス配置の電子源を示す構成図である。
【図6】本発明に係る単純マトリクス配置の電子源を用いた画像表示装置を示す概略構成図である。
【図7】本発明に係る単純マトリクス配置の電子源を用いた画像表示装置の駆動構成図である。
【図8】本発明に係る電子放出素子の第1実施例を示す模式図である。
【図9】本発明に係る電子放出素子の第2実施例を示す模式図である。
【図10】本発明に係る電子放出素子の電圧電流特性を示す図である。
【図11】本発明に係る電子放出素子の第3実施例を示す模式図である。
【図12】本発明の第3実施例の装置図である。
【図13】本発明に係る電子放出素子の電圧電流特性を示す図である。
【図14】本発明に係る電子放出素子の第4実施例を示す模式図である。
【図15】本発明に係る電子放出素子の第5実施例を示す模式図である。
【図16】本発明に係る電子放出素子の第6実施例を示す模式図である。
【図17】本発明に係る電子放出素子を示す断面模式図及び平面模式図である。
【図18】本発明に係る電子放出素素子の電圧電流特性を示す図である。
【図19】従来の電子放出素子を用いた3極構成による画像表示装置の一例を模式的に示した図である。
【図20】本発明に係る製造方法の一例を示す断面模式図である。
【図21】本発明に係る電子放出素子の一例を示す断面模式図である。
【図22】本発明に係る電子放出素子の一例を示す断面模式図である。
【図23】本発明に係る電子放出素子の一例を示す平面模式図である。
【図24】本発明に係る製造方法の一例を示す断面模式図である。
【図25】本発明に係る製造方法の一例を示す断面模式図である。
【図26】本発明に係る電子放出素子の一例を示す平面模式図である。
【符号の説明】
1 基板
2 炭素膜
3 金属を含む粒子
4 グラフェン
5 カソード電極
6 炭素膜からなる高抵抗層
7 絶縁層
8 ゲート電極
9 開口
10 集合体(粒子群)
12 アノード
21 真空容器
22 基板
23 基板ホルダー
24 熱源
25 基板バイアス用電極
26 熱電子を引き出す電極
27 電流モニター機構
28 電源
29 電流モニター機構
30 電圧印加機構
31 電源
32 成膜プロセス制御機構
33 ガス導入口
34 排気ポンプ
91 電子源基板
92 X方向配線
93 Y方向配線
94 電子放出素子
101 リアプレート
102 支持枠
103 ガラス基体
104 蛍光膜
105 メタルバック
106 フェースプレート
107 外囲器
113 高圧端子
121 画像表示パネル
122 走査回路
123 制御回路
124 シフトレジスタ
125 ラインメモリ
126 同期信号分離回路
127 変調信号発生器
200 シリコン酸化膜
201 収束電極
211 コバルト含有炭素層
212 コバルトを含有しない炭素層
213 Coを主体とする微粒子
1001 基板
1002 ゲート電極層
1003 絶縁層
1004 カソード電極層
1012 アノード
1013 蛍光体
1014 電子放出素子

Claims (40)

  1. カソード電極と、該カソード電極に電気的に接続された層と、該層を構成する材料の抵抗率よりも抵抗率の低い材料を主体とする複数の粒子とを有し、
    前記複数の粒子は、前記層中に配置されており、
    前記層内の前記粒子の密度が、1×1014個/cm以上5×1018個/cm以下であることを特徴とする電子放出素子。
  2. カソード電極と、該カソード電極に電気的に接続された層と、該層を構成する材料の抵抗率よりも抵抗率の低い材料を主体とする複数の粒子とを有し、
    前記複数の粒子は、前記層中に配置されており、
    前記層を構成する主元素に対する前記粒子を構成する主元素の濃度が、0.001atm%以上1.5atm%以下であることを特徴とする電子放出素子。
  3. カソード電極と、該カソード電極に電気的に接続された層と、該層を構成する材料の抵抗率よりも抵抗率の低い材料を主体とする複数の粒子とを有し、
    前記複数の粒子は、前記層中に配置されており、
    前記層内の前記粒子の密度が、1×1014個/cm以上5×1018個/cm以下であり、
    前記層を構成する主元素に対する前記粒子を構成する主元素の濃度が、0.001atm%以上1.5atm%以下であることを特徴とする電子放出素子。
  4. カソード電極と、該カソード電極上に配置されたカーボンを主体とする層と、前記層中において隣り合うように配置された、各々が金属を主体とする、少なくとも2つの粒子と、を有し、
    前記隣り合う2つの粒子は、一方の粒子が他方の粒子に比べて前記カソード電極側に配置されており、
    前記金属は、Co、Ni、Feの中から選択された金属であることを特徴とする電子放出素子。
  5. カソード電極と、該カソード電極に接続する層と、を有する電子放出素子であって、
    少なくとも2つの粒子が隣り合うことで構成された粒子群が、前記層内に多数配置されており、
    前記粒子は、前記層を構成する材料の抵抗率よりも抵抗率の低い材料を主体としており、
    前記隣り合う2つの粒子が5nm以下の範囲内に配置されており、
    前記隣り合う2つの粒子のうちの、一方の粒子が他方の粒子に比べて前記カソード電極側に配置されており、
    前記多数の粒子群は、互いに、前記層の平均膜厚以上離れて配置されることを特徴とする電子放出素子。
  6. カソード電極と、該カソード電極に接続する層と、を有する電子放出素子であって、
    金属を主体とする少なくとも2つの粒子が隣り合うことで構成された粒子群が、前記層内に多数配置されており、
    前記層は、前記金属を主体とする粒子よりも抵抗率の高い材料を主体としており、
    前記隣り合う2つの粒子が5nm以下の範囲内に配置されており、
    前記隣り合う2つの粒子のうちの、一方の粒子が他方の粒子に比べて前記カソード電極側に配置されていることを特徴とする電子放出素子。
  7. カソード電極と、該カソード電極に接続するカーボンを主体とする層と、を有する電子放出素子であって、
    金属を主体とする少なくとも2つの粒子が隣り合うことで構成された粒子群が、前記層内に多数配置されており、
    前記多数の粒子群は、互いに、前記層の平均膜厚以上離れて配置されており、
    前記カーボン層中における前記金属の濃度が、前記カソード電極側よりも、前記カーボン層の表面側の方が低いことを特徴とする電子放出素子。
  8. カソード電極と、該カソード電極に接続するカーボンを主体とする層と、を有する電子放出素子であって、
    金属を主体とする少なくとも2つの粒子が隣り合うことで構成された粒子群が、前記層内に多数配置されており、
    前記隣り合う2つの粒子のうちの、一方の粒子が他方の粒子に比べて前記カソード電極側に配置されており、
    前記複数の粒子のうち、少なくとも一部の隣り合う粒子の間に、グラフェンを有することを特徴とする電子放出素子。
  9. カソード電極と、該カソード電極に電気的に接続されたカーボンを主体とする層と、該カーボンを主体とする層中に配置された導電性の複数の粒子とを有しており、
    前記カーボンを主体とする層が、炭素元素に対して0.1atm%以上の水素元素を含むことを特徴とする電子放出素子。
  10. 前記カーボンを主体とする層が、炭素元素に対して1atm%以上の水素元素を含むことを特徴とする請求項9に記載の電子放出素子。
  11. 前記カーボンを主体とする層が、炭素元素に対して20atm%以下の水素元素を含むことを特徴とする請求項10に記載の電子放出素子。
  12. 前記層の表面凹凸は、rmsで膜厚の1/10より小さいことを特徴とする請求項1〜11のいずれかに記載の電子放出素子。
  13. 前記層は、カーボンを主体とすることを特徴とする請求項1〜3、5、6のいずれかに記載の電子放出素子。
  14. 前記層内のカーボンに対する水素の平均濃度が0.1atm%以上であることを特徴とする請求項4、7、8、13のいずれかに記載の電子放出素子。
  15. 前記カーボンを主体とする層は、sp結合を有することを特徴とする請求項4、7、8、9、13のいずれかに記載の電子放出素子。
  16. 前記粒子は、金属を主体とすることを特徴とする請求項1〜3、5、9のいずれかに記載の電子放出素子。
  17. 前記金属は、Co、Ni、Feの中から選択された金属であることを特徴とする請求項6〜8、16のいずれかに記載の電子放出素子。
  18. 前記粒子は、単結晶の金属を主体とすることを特徴とする請求項1〜3、5、9のいずれかに記載の電子放出素子。
  19. 前記粒子は、その平均粒径が、1nm以上10nm以下であることを特徴とする請求項1〜9のいずれかに記載の電子放出素子。
  20. 前記層は、厚さが100nm以下であることを特徴とする請求項1〜9のいずれかに記載の電子放出素子。
  21. 前記複数の粒子のうち、少なくとも2つの隣り合う粒子が5nm以下に配置されていることを特徴とする請求項1〜4、7〜9のいずれかに記載の電子放出素子。
  22. 前記層中の前記粒子の密度が、1×1014個/cm以上5×1018個/cm以下であることを特徴とする請求項4〜9のいずれかに記載の電子放出素子。
  23. 前記層中の前記粒子の密度が、1×1015個/cm以上5×1017個/cm以下であることを特徴とする請求項1〜9のいずれかに記載の電子放出素子。
  24. 前記層を構成する主元素に対する前記粒子を構成する主元素の濃度が、0.001atm%以上1.5atm%以下である請求項4〜9のいずれかに記載の電子放出素子。
  25. 前記層を構成する主元素に対する前記粒子を構成する主元素の濃度が、0.05atm%以上1atm%以下である請求項1〜9のいずれかに記載の電子放出素子。
  26. 前記複数の粒子は、隣り合う少なくとも2つの粒子で構成される粒子群として前記層内に多数分散配置されており、
    前記2つの隣り合う粒子は、一方の粒子が他方の粒子よりも前記カソード電極側に位置しており、
    前記多数の粒子群は、互いに、前記層の平均膜厚以上離れて配置されることを特徴とする請求項1〜3、9のいずれかに記載の電子放出素子。
  27. 前記層の表面が水素で終端されてなることを特徴とする請求項1〜26のいずれかに記載の電子放出素子。
  28. 前記電子放出素子は、さらに、前記カソード電極上に配置された第1の開口を有する絶縁膜と、該絶縁膜上に配置された第2の開口を有するゲート電極とを有しており、前記第1の開口と前記第2の開口が連通しており、前記層が前記第1の開口内に露出していることを特徴とする請求項1〜27のいずれかに記載の電子放出素子。
  29. 請求項1〜28のいずれかに記載の電子放出素子を多数配列したことを特徴とする電子源。
  30. 請求項29に記載の電子源と電子が照射されることで発光する発光部材とを有することを特徴とする画像表示装置。
  31. 電子放出素子の製造方法であって、
    金属を含み、該金属よりも抵抗率の高い材料を主体とする層を形成する工程と、
    水素を含む雰囲気中にて、前記層を加熱する工程と、
    を有することを特徴とする電子放出素子の製造方法。
  32. 前記水素を含む雰囲気は、さらに、炭化水素を含むことを特徴とする請求項31に記載の電子放出素子の製造方法。
  33. 前記炭化水素がアセチレンであることを特徴とする請求項32に記載の電子放出素子の製造方法。
  34. 前記金属がVIII族元素である請求項31〜33のいずれかに記載の電子放出素子の製造方法。
  35. 前記金属がCo、Ni、Feのいずれかであることを特徴とする請求項31〜33のいずれかに記載の電子放出素子の製造方法。
  36. 前記加熱する工程における熱処理温度が450℃以上であることを特徴とする請求項31〜35のいずれかに記載の電子放出素子の製造方法。
  37. 前記金属よりも抵抗率の高い材料を主体とする層が、炭素を主体とする層であることを特徴とする請求項31〜36のいずれかに記載の電子放出素子の製造方法。
  38. 前記金属は、炭素元素に対して0.001atm%以上5atm%以下の割合で、前記加熱する工程の前の前記炭素を主体とする層内に含まれることを特徴とする請求項37に記載の電子放出素子の製造方法。
  39. 前記金属は、炭素元素に対して0.001atm%以上1.5atm%以下の割合で、前記加熱する工程の前の前記炭素を主体とする層内に含まれることを特徴とする請求項37に記載の電子放出素子の製造方法。
  40. 前記加熱する工程の前の前記炭素を主体とする膜は、sp結合を有することを特徴とする請求項37〜39のいずれかに記載の電子放出素子の製造方法。
JP2003125030A 2002-06-13 2003-04-30 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法 Expired - Fee Related JP3535871B2 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2003125030A JP3535871B2 (ja) 2002-06-13 2003-04-30 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法
EP03733424A EP1512161A4 (en) 2002-06-13 2003-06-13 ELECTRON EMITTING DEVICE AND METHOD OF MANUFACTURING THE SAME
CNB038135221A CN100433226C (zh) 2002-06-13 2003-06-13 电子发射设备及其制造方法
US10/516,545 US7733006B2 (en) 2002-06-13 2003-06-13 Electron-emitting device and manufacturing method thereof
KR1020047020041A KR100702037B1 (ko) 2002-06-13 2003-06-13 전자방출소자 및 그 제조방법
PCT/JP2003/007544 WO2003107377A1 (en) 2002-06-13 2003-06-13 Electron-emitting device and manufacturing method thereof
AU2003238705A AU2003238705A1 (en) 2002-06-13 2003-06-13 Electron-emitting device and manufacturing method thereof
US11/937,610 US7811625B2 (en) 2002-06-13 2007-11-09 Method for manufacturing electron-emitting device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-172213 2002-06-13
JP2002172213 2002-06-13
JP2003125030A JP3535871B2 (ja) 2002-06-13 2003-04-30 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法

Publications (2)

Publication Number Publication Date
JP2004071536A true JP2004071536A (ja) 2004-03-04
JP3535871B2 JP3535871B2 (ja) 2004-06-07

Family

ID=29738379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125030A Expired - Fee Related JP3535871B2 (ja) 2002-06-13 2003-04-30 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法

Country Status (7)

Country Link
US (2) US7733006B2 (ja)
EP (1) EP1512161A4 (ja)
JP (1) JP3535871B2 (ja)
KR (1) KR100702037B1 (ja)
CN (1) CN100433226C (ja)
AU (1) AU2003238705A1 (ja)
WO (1) WO2003107377A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164896A (ja) * 2004-12-10 2006-06-22 Canon Inc 電子放出素子の製造方法、および該製造方法を用いた、電子源並びに画像表示装置の製造方法
US7794298B2 (en) 2006-02-10 2010-09-14 Canon Kabushiki Kaisha Electron-emitting device and method of producing thereof
US7973463B2 (en) 2006-04-21 2011-07-05 Canon Kabushiki Kaisha Electron-emitting device, electron source, image display apparatus and method of fabricating electron-emitting device
US8080932B2 (en) 2007-05-09 2011-12-20 Canon Kabushiki Kaisha Electron-emitting device, electron source, image display apparatus and method for manufacturing electron-emitting device

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3535871B2 (ja) * 2002-06-13 2004-06-07 キヤノン株式会社 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法
JP4154356B2 (ja) 2003-06-11 2008-09-24 キヤノン株式会社 電子放出素子、電子源、画像表示装置及びテレビ
JPWO2006013898A1 (ja) * 2004-08-04 2008-05-01 松下電器産業株式会社 半導体装置の製造方法
KR100896109B1 (ko) * 2004-11-26 2009-05-07 자이단호진 고치켄산교신코센타 전계 방출 전극과 그 제조 방법 및 전자 장치
GB2441813A (en) * 2006-08-07 2008-03-19 Quantum Filament Technologies Improved field emission backplate
GB2440783A (en) * 2006-08-07 2008-02-13 Quantum Filament Technologies Improved field emission backplate
JP2008218195A (ja) * 2007-03-05 2008-09-18 Canon Inc 電子源、画像表示装置及び情報表示再生装置
JP2009032443A (ja) * 2007-07-25 2009-02-12 Canon Inc 電子放出素子、電子源および画像表示装置、並びに情報表示再生装置
JP2009104916A (ja) * 2007-10-24 2009-05-14 Canon Inc 電子放出素子、電子源、画像表示装置および電子放出素子の製造方法
JP2009110755A (ja) * 2007-10-29 2009-05-21 Canon Inc 電子放出素子、電子源、画像表示装置および電子放出素子の製造方法
JP2009117203A (ja) * 2007-11-07 2009-05-28 Canon Inc 電子放出素子の製造方法、電子源の製造方法、および、画像表示装置の製造方法
WO2009064842A1 (en) * 2007-11-13 2009-05-22 William Marsh Rice Unvirsity Vertically-stacked electronic devices having conductive carbon films
JP2009140655A (ja) * 2007-12-04 2009-06-25 Canon Inc 電子放出素子、電子源、画像表示装置および電子放出素子の製造方法
JP2009146639A (ja) * 2007-12-12 2009-07-02 Canon Inc 電子放出素子、電子源、画像表示装置、および、電子放出素子の製造方法
JP2009146751A (ja) * 2007-12-14 2009-07-02 Canon Inc 電子放出素子、電子源、および、画像表示装置
US8426309B2 (en) 2009-09-10 2013-04-23 Lockheed Martin Corporation Graphene nanoelectric device fabrication
JP2011077010A (ja) * 2009-10-02 2011-04-14 Canon Inc 電子線励起型の画像表示装置及びそれを搭載した電子機器
JP2011129305A (ja) * 2009-12-16 2011-06-30 Canon Inc 発光基板及びその製造方法、並びに発光基板を用いた電子線励起型の画像表示装置
US8559136B1 (en) * 2012-11-14 2013-10-15 HGST Netherlands B.V. Hard amorphous carbon film containing ultratrace hydrogen for magnetic recording media and magnetic heads
CN105137660A (zh) * 2015-09-25 2015-12-09 京东方科技集团股份有限公司 一种光配向膜杂质去除装置和方法

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663559A (en) 1982-09-17 1987-05-05 Christensen Alton O Field emission device
US4904895A (en) 1987-05-06 1990-02-27 Canon Kabushiki Kaisha Electron emission device
JP2654012B2 (ja) 1987-05-06 1997-09-17 キヤノン株式会社 電子放出素子およびその製造方法
JPH0731390B2 (ja) 1990-09-21 1995-04-10 中外写真薬品株式会社 ハロゲン化銀カラー写真感光材料の処理方法
JPH04131846U (ja) 1991-05-28 1992-12-04 クラリオン株式会社 微小真空素子
US5283501A (en) 1991-07-18 1994-02-01 Motorola, Inc. Electron device employing a low/negative electron affinity electron source
US5536193A (en) 1991-11-07 1996-07-16 Microelectronics And Computer Technology Corporation Method of making wide band gap field emitter
US5180951A (en) 1992-02-05 1993-01-19 Motorola, Inc. Electron device electron source including a polycrystalline diamond
JP3409468B2 (ja) 1994-09-28 2003-05-26 ソニー株式会社 粒子放出装置、電界放出型装置及びこれらの製造方法
DE69513235T2 (de) * 1994-07-01 2000-05-11 Sony Corp Fluoreszente Schirmstruktur und Feldemissionanzeigevorrichtung und Verfahren zur Herstellung derselben
JPH0896704A (ja) 1994-09-28 1996-04-12 Sony Corp 粒子放出装置、電界放出型装置及びこれらの製造方法
JP2916887B2 (ja) * 1994-11-29 1999-07-05 キヤノン株式会社 電子放出素子、電子源、画像形成装置の製造方法
JP2884477B2 (ja) * 1994-12-26 1999-04-19 キヤノン株式会社 表面伝導型電子放出素子、電子源、画像形成装置、及びこれらの製造方法
JP2932250B2 (ja) 1995-01-31 1999-08-09 キヤノン株式会社 電子放出素子、電子源、画像形成装置及びそれらの製造方法
JPH08264109A (ja) 1995-03-20 1996-10-11 Sony Corp 粒子放出装置、電界放出型装置及びこれらの製造方法
EP0736890B1 (en) * 1995-04-04 2002-07-31 Canon Kabushiki Kaisha Metal-containing compostition for forming electron-emitting device and methods of manufacturing electron-emitting device, electron source and image-forming apparatus
EP0842526B1 (en) 1995-08-04 2000-03-22 Printable Field Emitters Limited Field electron emission materials and devices
JP3580930B2 (ja) 1996-01-18 2004-10-27 住友電気工業株式会社 電子放出装置
EP0841677B1 (en) 1996-03-27 2001-01-24 Matsushita Electric Industrial Co., Ltd. Electron emitting device
JP3372848B2 (ja) * 1996-10-31 2003-02-04 キヤノン株式会社 電子放出素子及び画像表示装置及びそれらの製造方法
GB9702348D0 (en) 1997-02-05 1997-03-26 Smiths Industries Plc Electron emitter devices
US5986857A (en) * 1997-02-13 1999-11-16 Sanyo Electric Co., Ltd. Thin film magnetic head including adhesion enhancing interlayers, and upper and lower gap insulative layers having different hydrogen contents and internal stress states
WO1998045868A1 (fr) * 1997-04-09 1998-10-15 Matsushita Electric Industrial Co., Ltd. Dispositif emetteur d'electrons et procede de fabrication associe
EP1036402B1 (en) * 1997-12-04 2003-07-16 Printable Field Emitters Limited Field electron emission materials and method of manufacture
WO1999040601A1 (fr) * 1998-02-09 1999-08-12 Matsushita Electric Industrial Co., Ltd. Dispositif emetteur d'electrons, son procede de production, et son procede d'excitation; afficheur d'images comprenant ledit emetteur d'electrons et son procede de fabrication
DE69919242T2 (de) 1998-02-12 2005-08-11 Canon K.K. Verfahren zur Herstellung eines elektronenemittierenden Elementes, Elektronenquelle und Bilderzeugungsgerätes
EP1335399B1 (en) * 1998-02-16 2007-09-05 Canon Kabushiki Kaisha Methods for producing electron-emitting device, electron source, and image-forming apparatus
JP3278611B2 (ja) 1998-05-18 2002-04-30 日本電気株式会社 有機el素子の封止方法
GB9816684D0 (en) 1998-07-31 1998-09-30 Printable Field Emitters Ltd Field electron emission materials and devices
RU2149477C1 (ru) 1998-08-12 2000-05-20 Акционерное общество закрытого типа "Карбид" Полевой эмиттер электронов
JP2000311587A (ja) * 1999-02-26 2000-11-07 Canon Inc 電子放出装置及び画像形成装置
JP4104248B2 (ja) 1999-06-17 2008-06-18 本田技研工業株式会社 電子素子の製造方法および電子素子
US6861790B1 (en) * 1999-03-31 2005-03-01 Honda Giken Kogyo Kabushiki Kaisha Electronic element
FR2793602B1 (fr) 1999-05-12 2001-08-03 Univ Claude Bernard Lyon Procede et dispositif pour extraire des electrons dans le vide et cathodes d'emission pour un tel dispositif
JP3600126B2 (ja) 1999-07-29 2004-12-08 シャープ株式会社 電子源アレイ及び電子源アレイの駆動方法
GB9919737D0 (en) 1999-08-21 1999-10-20 Printable Field Emitters Limit Field emitters and devices
JP2001229808A (ja) * 1999-12-08 2001-08-24 Canon Inc 電子放出装置
JP4545864B2 (ja) 2000-01-14 2010-09-15 本田技研工業株式会社 冷陰極素子
JP3658342B2 (ja) 2000-05-30 2005-06-08 キヤノン株式会社 電子放出素子、電子源及び画像形成装置、並びにテレビジョン放送表示装置
JP3604652B2 (ja) 2000-07-12 2004-12-22 昭夫 平木 電子放出陰極およびその製造方法
JP3658346B2 (ja) * 2000-09-01 2005-06-08 キヤノン株式会社 電子放出素子、電子源および画像形成装置、並びに電子放出素子の製造方法
JP3689656B2 (ja) * 2000-09-14 2005-08-31 キヤノン株式会社 電子放出素子及び電子源及び画像形成装置
JP3969981B2 (ja) 2000-09-22 2007-09-05 キヤノン株式会社 電子源の駆動方法、駆動回路、電子源および画像形成装置
JP3969985B2 (ja) * 2000-10-04 2007-09-05 キヤノン株式会社 電子源及び画像形成装置の駆動方法、並びに画像形成装置
JP2002373569A (ja) 2001-06-15 2002-12-26 Mitsubishi Electric Corp 電子源およびその製造方法
JP2003051243A (ja) 2001-08-07 2003-02-21 Canon Inc 電子放出素子,電子源及び画像形成装置
JP2003092056A (ja) 2001-09-14 2003-03-28 Canon Inc 電子放出素子、電子源及び画像形成装置
JP4741764B2 (ja) 2001-09-26 2011-08-10 キヤノン株式会社 電子放出素子
JP3983037B2 (ja) 2001-11-22 2007-09-26 株式会社半導体エネルギー研究所 発光装置およびその作製方法
SG106651A1 (en) * 2001-11-27 2004-10-29 Univ Nanyang Field emission device and method of fabricating same
JP3535871B2 (ja) 2002-06-13 2004-06-07 キヤノン株式会社 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法
JP2004027243A (ja) * 2002-06-21 2004-01-29 Canon Inc 成膜装置、成膜方法およびそれを用いた電子放出素子、電子源、画像形成装置の製造方法
JP4154356B2 (ja) 2003-06-11 2008-09-24 キヤノン株式会社 電子放出素子、電子源、画像表示装置及びテレビ
JP3745348B2 (ja) 2003-06-16 2006-02-15 キヤノン株式会社 電子放出素子、電子源及び画像表示装置の製造方法
JP3826120B2 (ja) 2003-07-25 2006-09-27 キヤノン株式会社 電子放出素子、電子源及び画像表示装置の製造方法
JP4131846B2 (ja) 2003-10-21 2008-08-13 花王株式会社 濃色化剤組成物
JP4115410B2 (ja) 2004-03-12 2008-07-09 キヤノン株式会社 電子放出素子、電子源ならびに画像表示装置の製造方法および電子放出素子の駆動方法
JP4667031B2 (ja) 2004-12-10 2011-04-06 キヤノン株式会社 電子放出素子の製造方法、および該製造方法を用いた、電子源並びに画像表示装置の製造方法
JP2007073208A (ja) 2005-09-05 2007-03-22 Canon Inc 電子放出素子、電子源および画像形成装置の製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164896A (ja) * 2004-12-10 2006-06-22 Canon Inc 電子放出素子の製造方法、および該製造方法を用いた、電子源並びに画像表示装置の製造方法
JP4667031B2 (ja) * 2004-12-10 2011-04-06 キヤノン株式会社 電子放出素子の製造方法、および該製造方法を用いた、電子源並びに画像表示装置の製造方法
US7794298B2 (en) 2006-02-10 2010-09-14 Canon Kabushiki Kaisha Electron-emitting device and method of producing thereof
US7973463B2 (en) 2006-04-21 2011-07-05 Canon Kabushiki Kaisha Electron-emitting device, electron source, image display apparatus and method of fabricating electron-emitting device
US8080932B2 (en) 2007-05-09 2011-12-20 Canon Kabushiki Kaisha Electron-emitting device, electron source, image display apparatus and method for manufacturing electron-emitting device

Also Published As

Publication number Publication date
JP3535871B2 (ja) 2004-06-07
WO2003107377A8 (en) 2005-01-06
EP1512161A4 (en) 2007-07-18
WO2003107377A1 (en) 2003-12-24
EP1512161A1 (en) 2005-03-09
US7733006B2 (en) 2010-06-08
AU2003238705A8 (en) 2003-12-31
CN1659671A (zh) 2005-08-24
KR20050016534A (ko) 2005-02-21
AU2003238705A1 (en) 2003-12-31
CN100433226C (zh) 2008-11-12
KR100702037B1 (ko) 2007-04-27
US7811625B2 (en) 2010-10-12
US20060066199A1 (en) 2006-03-30
US20080070468A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
JP3535871B2 (ja) 電子放出素子、電子源、画像表示装置及び電子放出素子の製造方法
JP3639809B2 (ja) 電子放出素子,電子放出装置,発光装置及び画像表示装置
JP3610325B2 (ja) 電子放出素子、電子源及び画像形成装置の製造方法
JP4741764B2 (ja) 電子放出素子
JP2002150924A (ja) 電子放出素子及び電子源及び画像形成装置
JP2003160321A (ja) ファイバーの製造方法、ファイバーを用いた、電子放出素子、電子源及び画像表示装置の製造方法
EP1487004B1 (en) Electron emission device, electron source, and image display having dipole layer
JPH1040807A (ja) 電子放出素子と電子源及びそれを用いた画像形成装置及びそれらの製造方法
US7405092B2 (en) Method of manufacturing electron-emitting device and method of manufacturing image display apparatus
JP2009104916A (ja) 電子放出素子、電子源、画像表示装置および電子放出素子の製造方法
JP4810010B2 (ja) 電子放出素子
JP2003077388A (ja) 電子放出素子の製造方法及び画像形成装置
JP2000251643A (ja) 電子放出素子、電子放出素子を用いた電子源、及び電子源を用いた画像形成装置
JP4593816B2 (ja) 電子放出素子、画像形成装置及び電子放出素子の製造方法
JP2005048305A (ja) カーボンファイバーの製造方法、及びこれを用いた電子放出素子、電子源、画像表示装置の製造方法
US20090153013A1 (en) Electron-emitting device, electron source, image display apparatus, and method for manufacturing electron-emitting device
JPH1154038A (ja) 電子放出素子、電子源及び画像形成装置の製造方法
JP3300877B2 (ja) 電子放出素子、電子源及び画像形成装置の製造方法
JP3408065B2 (ja) 電子放出素子、電子源及び画像形成装置の製造方法
JP2004027243A (ja) 成膜装置、成膜方法およびそれを用いた電子放出素子、電子源、画像形成装置の製造方法
JP3880595B2 (ja) 電子放出素子の製造方法、画像表示装置の製造方法
JP2884496B2 (ja) 電子放出素子、電子源、画像形成装置及びそれらの製造方法
JP2000251625A (ja) 電子放出素子及び電子源及び画像形成装置及び電子放出素子の製造方法
JP2003051243A (ja) 電子放出素子,電子源及び画像形成装置
JP2000021292A (ja) 電子放出素子、電子源、画像形成装置及びそれらの製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040312

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110319

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees