ES2685702T3 - Obtención de perfil de expresión génica en tejidos tumorales biopsiados - Google Patents
Obtención de perfil de expresión génica en tejidos tumorales biopsiados Download PDFInfo
- Publication number
- ES2685702T3 ES2685702T3 ES16181799.4T ES16181799T ES2685702T3 ES 2685702 T3 ES2685702 T3 ES 2685702T3 ES 16181799 T ES16181799 T ES 16181799T ES 2685702 T3 ES2685702 T3 ES 2685702T3
- Authority
- ES
- Spain
- Prior art keywords
- expression
- breast cancer
- gene
- rna
- dna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57484—Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6876—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
- C12Q1/6883—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
- C12Q1/6886—Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57415—Specifically defined cancers of breast
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/106—Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/118—Prognosis of disease development
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/158—Expression markers
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2600/00—Oligonucleotides characterized by their use
- C12Q2600/16—Primer sets for multiplex assays
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Physics & Mathematics (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Cell Biology (AREA)
- Oncology (AREA)
- Hospice & Palliative Care (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Un método para predecir la probabilidad de supervivencia a largo plazo de un paciente con cáncer de mama sin recidiva de cáncer de mama, después de la escisión quirúrgica del tumor primario, que comprende: determinar el nivel del transcrito de ARN de GSTM1 en una muestra de tejido de cáncer de mama obtenida del paciente, normalizada frente al nivel de expresión de todos los transcritos de ARN ensayados en la muestra, o frente a un conjunto de referencia de transcritos de ARN, en el que el nivel normalizado aumentado del transcrito de ARN de GSTM1 comparado con el nivel normalizado del transcrito de ARN de GSTM1 en un conjunto de referencia de tejido de cáncer de mama indica una mayor probabilidad de supervivencia a largo plazo sin recidiva de cáncer de mama.
Description
referencia; y
(b) predecir la resistencia o la sensibilidad reducida si el nivel de expresión normalizado de ERCC1 está en el percentil 10º superior.
5 La divulgación se refiere adicionalmente a un método para predecir la respuesta de una paciente diagnosticada con cáncer de mama a un ErbB2 o antagonista EGFR, que comprende las etapas de:
(a) someter el ARN extraído de un tejido de cáncer de mama obtenido de la paciente a un análisis de la expresión génica, en el que los niveles de expresión génicos se normalizan contra un gen o genes de
10 control, y en comparación con la cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia; y
(b) predecir la respuesta del paciente en base a los niveles de expresión normalizados de al menos uno de Grb7, IGF1R, IGF1 e IGF2.
15 En una realización particular, se predice una respuesta positiva si el nivel de expresión normalizado de Grb7 está en el percentil 10º superior, y la expresión de IGF1R, IGF1 e IGF2 no se eleva por encima del percentil 90º.
En una realización particular adicional, se predice una disminución de la capacidad de respuesta si se eleva el nivel de expresión de al menos uno de IGF1R, IGF1 e IGF2.
20 En otro aspecto, la divulgación se refiere a un método para predecir la respuesta de una paciente diagnosticada con cáncer de mama a un fármaco de bis-fosfonato, que comprende las etapas de:
(a) someter el ARN extraído de un tejido de cáncer de mama obtenido de la paciente a un análisis de la
25 expresión génica, en el que los niveles de expresión génicos se normalizan contra un gen o genes de control, y en comparación con la cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia; y
(b) predecir una respuesta positiva si el tejido de cáncer de mama obtenido del paciente expresa Ha-Ras
mutante y expresa adicionalmente farnesil pirofosfato sintetasa o geranil pirofosfona sintetasa a un nivel de 30 expresión normalizado en o por encima del percentil 90º.
En otro aspecto más, la divulgación se refiere a un método para predecir la respuesta de una paciente diagnosticada con cáncer de mama a un tratamiento con un inhibidor de ciclooxigenasa 2, que comprende las etapas de:
35 (a) someter el ARN extraído de un tejido de cáncer de mama obtenido de la paciente a un análisis de la expresión génica, en el que los niveles de expresión génicos se normalizan contra un gen o genes de control, y en comparación con la cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia; y
(b) predecir una respuesta positiva si el nivel de expresión normalizado de COX2 en el tejido de cáncer de 40 mama obtenido del paciente está en o por encima del percentil 90º.
La divulgación se refiere adicionalmente a un método para predecir la respuesta de una paciente diagnosticada con cáncer de mama a un antagonista del receptor EGF (EGFR), que comprende las etapas de:
45 (a) someter el ARN extraído de un tejido de cáncer de mama obtenido de la paciente a un análisis de la expresión génica, en el que los niveles de expresión génicos se normalizan contra un gen o genes de control, y en comparación con la cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia; y
(b) predecir una respuesta positiva a un antagonista de EGFR, si (i) el nivel de expresión normalizado de
50 EGFR está en o por encima del percentil 10º, y (ii) el nivel de expresión normalizado de al menos uno de epirregulina, TGF-α, anfirregulina, ErbB3, BRK, CD9, MMP9, CD82, y Lot1 está por encima del percentil 90º.
En otro aspecto, la divulgación se refiere a un método para controlar la respuesta de una paciente diagnosticada con
55 cáncer de mama a un tratamiento con un antagonista de EGFR, que comprende controlar el nivel de expresión de un gen seleccionado del grupo que consiste en epirregulina, TGF-α, anfirregulina, ErbB3, BRK, CD9, MMP9, CD82, y Lot1 en el paciente durante el tratamiento, en el que la reducción en el nivel de expresión es indicativa de la respuesta positiva a dicho tratamiento.
60 En otro aspecto más, la divulgación se refiere a un método para predecir la respuesta de una paciente diagnosticada con cáncer de mama a un fármaco dirigido a tirosina cinasa seleccionado del grupo que consiste en abl, c-kit,
9
del paciente.
La divulgación proporciona adicionalmente un método para predecir la probabilidad de recidiva del cáncer de mama en un paciente diagnosticado con cáncer de mama, que comprende determinar la relación de p53:p21 de la
5 expresión de ARNm o p53:mdm2 de la expresión de ARNm en un tejido de cáncer de mama obtenido del paciente, normalizada contra un gen o genes de control, y en comparación con la cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia, en el que una relación normal anterior es indicativa de un riesgo mayor de recidiva. Típicamente, un mayor riesgo de recidiva se indica si la relación está en el percentil 10º superior.
10 En otro aspecto más, la divulgación se refiere a un método para predecir la probabilidad de recidiva del cáncer de mama en una paciente de cáncer de mama tras la cirugía, que comprende determinar el nivel de expresión de ciclina D1 en un tejido de cáncer de mama obtenido del paciente, normalizado contra un gen o genes de control, y en comparación con la cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia, en el que un nivel de expresión en el percentil 10º superior indica un aumento del riesgo de recidiva tras la cirugía. En una
15 realización particular de este método, el paciente se somete a quimioterapia adyuvante, si el nivel de expresión está en el percentil 10º superior.
Otro aspecto de la divulgación es un método para predecir la probabilidad de recidiva del cáncer de mama en una paciente de cáncer de mama tras la cirugía, que comprende determinar el nivel de expresión de APC o E-cadherina
20 en un tejido de cáncer de mama obtenido del paciente, normalizado contra un gen o genes de control, y en comparación con la cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia, en el que un nivel de expresión en el percentil 5º superior indica un alto riesgo de recidiva tras la cirugía, y un mayor riesgo de acortar la supervivencia.
25 Un aspecto adicional de la divulgación es un método para predecir la respuesta de una paciente diagnosticada con cáncer de mama a un tratamiento con un fármaco proapoptótico que comprende determinar los niveles de expresión de BC12 y c-MYC en un tejido de cáncer de mama obtenido del paciente, normalizados contra un gen o genes de control, y en comparación con la cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia, en el que (i) un nivel de expresión de BC12 en el percentil 10º superior en ausencia de la elevada
30 expresión de c-MYC indica una buena respuesta, y (ii) no se indica una buena respuesta si el nivel de expresión c-MYC se eleva, independientemente del nivel de expresión de BC12.
Aún un aspecto adicional de la divulgación es un método para predecir el desenlace del tratamiento para un paciente diagnosticado con cáncer de mama, que comprende las etapas de:
35
(a) someter el ARN extraído de un tejido de cáncer de mama obtenido de la paciente a un análisis de la expresión génica, en el que los niveles de expresión génicos se normalizan contra un gen o genes de control, y en comparación con la cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia; y
40 (b) determinar los niveles de expresión normalizados de NFkB y al menos un gen seleccionado del grupo que consiste en cIAP1, cIAP2, XIAP y Survivina,
en el que se indica un mal pronóstico si los niveles de expresión para NFkB y al menos uno de los genes seleccionados del grupo que consiste en cIAP1, cIAP2, XIAP, y Survivina están en el percentil 5º superior.
45 La divulgación se refiere adicionalmente a un método para predecir el desenlace del tratamiento para un paciente diagnosticado con cáncer de mama, que comprende determinar los niveles de expresión de p53BP1 y p53BP2 en un tejido de cáncer de mama obtenido del paciente, normalizados contra un gen o genes de control, y en comparación con la cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia, en el que se predice un
50 mal desenlace si el nivel de expresión de p53BP1 o p53BP2 está en el percentil 10º inferior.
La divulgación se refiere adicionalmente a un método para predecir el desenlace del tratamiento para un paciente diagnosticado con cáncer de mama, que comprende determinar los niveles de expresión de uPA y PAI1 en un tejido de cáncer de mama obtenido del paciente, normalizados contra un gen o genes de control, y en comparación con la 55 cantidad que se encuentra en un conjunto de tejido de cáncer de mama de referencia, en el que (i) se predice un mal desenlace si los niveles de expresión de uPA y PAI1 están en el percentil 20º superior, y (ii) se predice una disminución del riesgo de recidiva si los niveles de expresión de uPA y PAI1 no se elevan por encima de la media observada en el conjunto de referencia de cáncer de mama. En una realización particular, el mal desenlace se mide en cuanto a acortar la supervivencia o aumentar el riesgo de recidiva del cáncer tras la cirugía. En otra realización
60 particular, se expresan uPA y PAI1 a niveles normales, y el paciente se somete a quimioterapia adyuvante tras la cirugía.
11
Otro aspecto de la divulgación es un panel de dos o más cebadores específicos de genes seleccionados del grupo que consiste en los cebadores directos e inversos enumerados en la Tabla 2.
Otro aspecto más de la divulgación es un método para la transcripción inversa de una población de ARN
5 fragmentado en la amplificación por RT-PCR, que comprende usar una multiplicidad de cebadores específicos de genes como los cebadores inversos en la reacción de amplificación. En una realización particular, el método usa entre dos y aproximadamente 40.000 cebadores específicos de genes en la misma reacción de amplificación. En otra realización, los cebadores específicos de genes son de aproximadamente 18 a 24 bases, tal como de aproximadamente 20 bases de longitud. En otra realización, la Tm de los cebadores es aproximadamente 58-60 ºC.
10 Los cebadores pueden seleccionarse, por ejemplo, del grupo que consiste en los cebadores directos e inversos enumerados en la Tabla 2.
La divulgación también se refiere a un método de transcriptasa inversa impulsado por la síntesis de ADNc de primera cadena, que comprende usar un cebador específico de genes de aproximadamente 18 a 24 bases de 15 longitud y que tiene una Tm óptima entre aproximadamente 58 ºC y aproximadamente 60 ºC. En una realización particular, la síntesis de ADNc de la primera cadena se sigue por la amplificación de ADN por PCR, y el cebador sirve como el cebador inverso que impulsa la amplificación por PCR. En otra realización, el método usa una pluralidad de cebadores específicos de genes en la misma mezcla de reacción de la síntesis de ADNc de primera cadena. El número de los cebadores específicos de genes puede ser, por ejemplo, entre 2 y aproximadamente
20 40.000.
En un aspecto diferente, la invención se refiere a un método de predicción de la probabilidad de supervivencia a largo plazo de un paciente de cáncer de mama sin la recidiva del cáncer de mama, tras la eliminación quirúrgica del tumor primario, que comprende determinar el nivel de expresión de un transcrito de ARN de pronóstico en una
25 muestra de tejido de cáncer de mama obtenida de dicho paciente, normalizado contra el nivel de expresión de un conjunto de referencia de transcritos de ARN, en el que el transcrito de pronóstico es GSTM1, en el que la sobreexpresión de GSTM3 indica un aumento de la probabilidad de supervivencia a largo plazo sin recidiva de cáncer de mama.
30 En una realización particular de este método, se determina el nivel de expresión de al menos 2, preferiblemente al menos 5, más preferiblemente al menos 10, mucho más preferiblemente al menos 15 transcritos de pronóstico o sus productos de expresión.
Cuando el cáncer de mama es carcinoma de mama invasivo, incluyendo tanto tumores que sobreexpresan el
35 receptor de estrógenos (RE) (positivos para RE) como negativos para RE, el análisis incluye la determinación de los niveles de expresión de los transcritos de al menos dos de los siguientes genes, o sus productos de expresión: FOXM1, PRAME, Bcl2, STK15, CEGP1, Ki-67, GSTM1, PR, BBC3, NME1, SURV, GATA3, TFRC, YB-1, DPYD, Src, CA9, Contig51037, RPS6K1 y Her2.
40 Cuando el cáncer de mama es carcinoma de mama invasivo positivo para RE positive, el análisis incluye la determinación de los niveles de expresión de los transcritos de al menos dos de los siguientes genes, o sus productos de expresión: PRAME, Bcl2, FOXM1, DIABLO, EPHX1, HIF1A, VEGFC, Ki-67, IGF1R, VDR, NME1, GSTM3, Contig51037, CDC25B, CTSB, p27, CDH1, e IGFBP3.
45 Al igual que anteriormente, se prefiere determinar los niveles de expresión de al menos 5, más preferiblemente al menos 10, mucho más preferiblemente al menos 15 genes, o sus respectivos productos de expresión.
En una realización particular, se determina el nivel de expresión de uno o más transcritos de ARN de pronóstico, donde el ARN puede obtenerse, por ejemplo, a partir de un espécimen de tejido de cáncer de mama incluido en cera
50 fijado del paciente. El aislamiento de ARN puede realizarse, por ejemplo, siguiendo cualquiera de los procedimientos que se han descrito anteriormente o a lo largo de toda la solicitud, o mediante cualquier otro método conocido en la técnica.
En otro aspecto más, la divulgación se refiere a una matriz que comprende polinucleótidos que hibridan en los
55 siguientes genes: FOXM1, PRAME, Bcl2, STK15, CEGP1, Ki-67, GSTM1, PR, BBC3, NME1, SURV, GATA3, TFRC, YB-1, DPYD, CA9, Contig51037, RPS6K1 y Her2, inmovilizados sobre una superficie sólida.
En una realización particular, la matriz comprende polinucleótidos que hibridan en los siguientes genes: FOXM1, PRAME, Bcl2, STK15, CEGP1, Ki-67, GSTM1, CA9, PR, BBC3, NME1, SURV, GATA3, TFRC, YB-1, DPYD, 60 GSTM3, RPS6 KB1, Src, Chk1, ID2, EstR1, p27, CCNB1, XIAP, Chk2, CDC25B, IGF1R, AK055699, P13KC2A, TGFB3, BAGI1, CYP3A4, EpCAM, VEGFC, pS2, hENT1, WISP1, HNF3A, NFKBp65, BRCA2, EGFR, TK1, VDR,
13
En todos los aspectos, los polinucleótidos pueden ser ADNc ("matrices de ADNc") que son típicamente de aproximadamente 500 a 5000 bases de longitud, aunque también se pueden usar ADNc más cortos o más largos y están dentro del alcance de esta invención. Como alternativa, los polinucleótidos pueden ser oligonucleótidos
5 (micromatrices de ADN), que son típicamente de aproximadamente 20 a 80 bases de longitud, aunque también son adecuados los oligonucleótidos más cortos y más largos y están dentro del alcance de la invención. La superficie sólida puede ser, por ejemplo, vidrio o nylon, o cualquier otra superficie sólida usada típicamente en la preparación de matrices, tales como micromatrices, y es típicamente vidrio.
10 Breve descripción de los dibujos
La figura 1 es un gráfico que ilustra el flujo de trabajo del proceso de la invención para la medición de la expresión génica. En la figura, FPET significa “tejido incluido en parafina fijado” y “RT-PCR” significa “PCR de transcriptasa inversa”. Se determina la concentración de ARN usando el protocolo y reactivo de
15 cuantificación de ARN RiboGreen™ comercial. La figura 2 es un diagrama de flujo que muestra las etapas de un método de extracción de ARN según la invención junto a un diagrama de flujo de un método comercial representativo. La figura 3 es un esquema que ilustra las etapas de un método mejorado para preparar ARNm fragmentado para el análisis de obtención del perfil de expresión.
20 La figura 4 ilustra métodos para la amplificación de ARN antes de la RT-PCR. La figura 5 ilustra un esquema alternativo para la reparación y amplificación de ARNm fragmentado. La figura 6 muestra la medición de los niveles de ARNm del receptor de estrógenos en 40 muestras de cáncer de mama FPE mediante RT-PCR. Se usaron tres secciones de 10 micrómetros para cada medición. Cada punto de datos representa el promedio de mediciones por triplicado.
25 La figura 7 muestra los resultados de la medición de los niveles de ARNm del receptor de progesterona en 40 muestras de cáncer de mama FPE mediante RT-PCR realizada tal como se describe en la leyenda de la figura 6 anterior. La figura 8 muestra resultados de un experimento de IVT/RT-PCR. La figura 9 es una representación de la expresión de 92 genes a través de 70 muestras de cáncer de mama
30 FPE. El eje y muestra la expresión como tiempos de ciclo umbral. Estos genes son un subconjunto de los genes enumerados en la tabla 1. La tabla 1 muestra una lista de genes del cáncer de mama. La tabla 2 expone las secuencias de cebadores y amplicones usadas para la amplificación de ARNm fragmentado.
35 La tabla 3 muestra los números de registro y las SEQ ID NO de los genes del cáncer de mama examinados.
Descripción detallada de la realización preferida
40 A. Definiciones
A menos que se defina otra cosa, los términos técnicos y científicos usados en el presente documento tienen el mismo significado que se entiende comúnmente por un experto habitual en la técnica a la que esta invención pertenece. Singleton y col., Dictionary of Microbiology and Molecular Biology 2ª ed., J. Wiley & Sons (Nueva York,
45 NY 1994), y March, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4ª ed., John Wiley & Sons (Nueva York, NY 1992), proporcionan al experto en la técnica una guía general para muchos de los términos usados en la presente solicitud.
Un experto en la técnica reconocerá muchos métodos y materiales similares o equivalentes a los descritos en el
50 presente documento, que podrían usarse en la práctica de la presente invención. De hecho, la presente invención no se limita de ningún modo a los métodos y materiales descritos. Para los fines de la presente invención, los siguientes términos se definen a continuación.
El término “micromatriz” se refiere a una disposición ordenada de elementos de alineamiento hibridables, 55 preferiblemente sondas de polinucleótido, sobre un sustrato.
El término “polinucleótido”, cuando se usa en singular o plural, se refiere generalmente a cualquier polirribonucleótido o polidesoxirribonucleótido, que puede ser ADN o ARN no modificado o ADN o ARN modificado. Por tanto, por ejemplo, los polinucleótidos tal como se definen en el presente documento incluyen, sin limitación, 60 ADN mono y bicatenario, ADN que incluye regiones mono y bicatenarias, ARN mono y bicatenario, y ARN que incluye regiones mono y bicatenarias, moléculas híbridas que comprenden ADN y ARN que puede ser
16
monocatenario o, más normalmente, bicatenario o incluyen regiones mono y bicatenarias. Además, el término “polinucleótido” como se usa en el presente documento, se refiere a regiones tricatenarias que comprenden ARN o ADN o tanto ARN como ADN. Las cadenas en tales regiones pueden ser de la misma molécula o de moléculas diferentes. Las regiones pueden incluir todas de una o más de las moléculas, pero más normalmente implican sólo 5 una región de algunas de las moléculas. Una de las moléculas de una región de triple hélice es a menudo un oligonucleótido. El término “polinucleótido” incluye específicamente ADN y ARN que contienen una o más bases modificadas. Por lo tanto, ADN o ARN con estructuras principales modificadas para lograr estabilidad o por otros motivos son “polinucleótidos” tal como está previsto el término en el presente documento. Además, ADN o ARN que comprenden bases poco comunes, tales como inosina, o bases modificadas, tales como bases tritiadas, se incluyen
10 dentro del término “polinucleótidos” tal como se define en el presente documento. En general, el término “polinucleótido” abarca todas las formas química, enzimática y/o metabólicamente modificadas de polinucleótidos no modificados, así como las formas químicas de ADN y ARN características de virus y células, incluyendo células sencillas y complejas.
15 El término “oligonucleótido” se refiere a un polinucleótido relativamente corto, incluyendo, sin limitación, desoxirribonucleótidos monocatenarios, ribonucleótidos mono o bicatenarios, híbridos de ARN:ADN y ADN bicatenarios. Los oligonucleótidos, tales como oligonucleótidos de sonda de ADN monocatenario, se sintetizan a menudo por métodos químicos, por ejemplo usando sintetizadores de oligonucleótidos automatizados que están comercialmente disponibles. Sin embargo, pueden prepararse oligonucleótidos mediante una variedad de otros
20 métodos, incluyendo técnicas mediadas por ADN recombinante in vitro y mediante la expresión de ADN en células y organismos.
Las expresiones “gen expresado de manera diferencial”, “expresión génica diferencial” y sus sinónimos, que se usan de manera intercambiable, se refieren a un gen cuya expresión se activa a un nivel superior o inferior en un sujeto 25 que padece una enfermedad, específicamente cáncer, tal como cáncer de mama, con respecto a su expresión en un sujeto normal o control. Las expresiones también incluyen genes cuya expresión se activa a un nivel superior o inferior en diferentes estadios de la misma enfermedad. Se entiende también que un gen expresado de manera diferencial puede o bien activarse o inhibirse al nivel de ácido nucleico o nivel de proteína, o bien puede someterse a corte y empalme alternativo para dar como resultado un producto de polipéptido diferente. Tales diferencias pueden 30 evidenciarse mediante un cambio en los niveles de ARNm, expresión superficial, secreción u otro reparto de un polipéptido, por ejemplo. La expresión génica diferencial puede incluir una comparación de la expresión entre dos o más genes, o una comparación de las razones de la expresión entre dos o más genes, o incluso una comparación de dos productos procesados de manera diferente del mismo gen, que difieren entre sujetos normales y sujetos que padecen una enfermedad, específicamente cáncer, o entre diversos estadios de la misma enfermedad. La expresión 35 diferencial incluye tanto diferencias cuantitativas, así como cualitativas, en el patrón de expresión celular o temporal en un gen o sus productos de expresión entre, por ejemplo, células enfermas y normales, o entre células que han experimentado diferentes acontecimientos de enfermedad o estadios de enfermedad. Para el fin de esta invención, se considera que está presente “expresión génica diferencial” cuando existe una diferencia de al menos aproximadamente dos veces, preferiblemente al menos aproximadamente cuatro veces, más preferiblemente al
40 menos aproximadamente seis veces, lo más preferiblemente al menos aproximadamente diez veces entre la expresión de un gen dado en sujetos normales y enfermos, o en diversos estadios del desarrollo de la enfermedad en un sujeto enfermo.
La expresión “amplificación génica” se refiere a un procedimiento mediante el cual se forman múltiples copias de un
45 gen o fragmento de gen en una línea celular o célula particular. La región duplicada (un tramo de ADN amplificado) a menudo se denomina “amplicón”. Habitualmente, la cantidad del ARN mensajero (ARNm) producido, es decir, el nivel de expresión génica, también aumenta en la proporción del número de copias producidas del gen expresado particular.
50 El término “pronóstico” se usa en el presente documento para referirse a la predicción de la probabilidad de progresión o muerte atribuible al cáncer, incluyendo recidiva, propagación metastásica y resistencia a fármacos, de una enfermedad neoplásica, tal como cáncer de mama. El término “predicción” se usa en el presente documento para referirse a la probabilidad de que un paciente responda o bien favorable o bien desfavorablemente a un fármaco o conjunto de fármacos, y también el grado de estas respuestas. Los métodos predictivos de la presente
55 invención pueden usarse clínicamente para tomar decisiones de tratamiento eligiendo las modalidades de tratamiento más apropiadas para cualquier paciente particular. Los métodos predictivos de la presente invención son herramientas valiosas en la predicción si es probable que un paciente responda favorablemente a un régimen de tratamiento, tal como intervención quirúrgica, quimioterapia con un fármaco dado o combinación de fármacos, y/o radioterapia.
60 La expresión “aumento de resistencia” a un fármaco particular u opción de tratamiento, cuando se usa según la
17
presente invención, significa reducción de la respuesta con respecto a una dosis convencional del fármaco o a un protocolo de tratamiento convencional.
La expresión “reducción de la sensibilidad” a un fármaco particular u opción de tratamiento, cuando se usa según la
5 presente invención, significa reducción de la respuesta con respecto a una dosis convencional del fármaco o a un protocolo de tratamiento convencional, cuando la respuesta reducida puede compensarse (al menos parcialmente) aumentando la dosis del fármaco o la intensidad de tratamiento.
Puede evaluarse la “respuesta del paciente” usando cualquier criterio de evaluación que indique un beneficio al
10 paciente, incluyendo, sin limitación, (1) inhibición, en algún grado, del crecimiento tumoral, incluyendo ralentización y detención completa del crecimiento; (2) reducción del número de células tumorales; (3) reducción del tamaño del tumor; (4) inhibición (es decir, reducción, ralentización o detención completa) de la infiltración de células tumorales en tejidos y/u órganos periféricos adyacentes; (5) inhibición (es decir, reducción, ralentización o detención completa) de la metástasis; (6) potenciación de la respuesta inmunitaria antitumoral, que puede, pero no tiene que, dar como
15 resultado la regresión o el rechazo del tumor; (7) alivio, en algún grado, de uno o más síntomas asociados con el tumor; (8) aumento en la duración de la supervivencia tras el tratamiento; y/o (9) reducción de la mortalidad en un punto de tiempo dado tras el tratamiento.
El término “tratamiento” se refiere tanto a tratamiento terapéutico como profiláctico o medidas preventivas, en el que
20 el objeto es prevenir o ralentizar (disminuir) el trastorno o estado patológico seleccionado como diana. Los que necesitan tratamiento incluyen los que ya tienen el trastorno así como los propensos a tener el trastorno o aquellos en los que va a prevenirse el trastorno. En el tratamiento del tumor (por ejemplo, cáncer), un agente terapéutico puede reducir directamente la patología de células tumorales, o hacer que las células tumorales sean más susceptible al tratamiento mediante otros agentes terapéuticos, por ejemplo, radiación y/o quimioterapia.
25 El término “tumor”, tal como se usa en el presente documento, se refiere a toda proliferación y crecimiento de células neoplásicas, ya sean malignas o benignas, y todos los tejidos y células cancerosas y precancerosas.
Los términos “cáncer” y “canceroso” se refieren a o describen el estado fisiológico en mamíferos que se caracteriza
30 normalmente por crecimiento de células no regulado. Los ejemplos de cáncer incluyen, pero sin limitación, cáncer de mama, cáncer de colon, cáncer de pulmón, cáncer de próstata, cáncer hepatocelular, cáncer gástrico, cáncer pancreático, cáncer cervical, cáncer de ovarios, cáncer de hígado, cáncer de vejiga, cáncer de las vías urinarias, cáncer de tiroides, cáncer renal, carcinoma, melanoma y cáncer de cerebro.
35 La “patología” del cáncer incluye todos los fenómenos que comprometen el bienestar del paciente. Esto incluye, sin limitación, crecimiento de células anómalo o no controlado, metástasis, interferencia con el funcionamiento normal de células vecinas, liberación de citocinas u otros productos secretores a niveles anómalos, supresión o agravamiento de la respuesta inflamatoria o inmunológica, neoplasia, premalignidad, malignidad, invasión de órganos o tejidos distantes o circundantes, tales como ganglios linfáticos, etc.
40 La “rigurosidad” de las reacciones de hibridación puede determinarse fácilmente por un experto habitual en la técnica, y generalmente es un cálculo empírico dependiente de la longitud de la sonda, temperatura de lavado y concentración de sales. En general, sondas más largas requieren temperaturas superiores para un apareamiento apropiado, mientras que sondas más cortas necesitan temperaturas inferiores. La hibridación depende generalmente
45 de la capacidad del ADN desnaturalizado para hibridarse de nuevo cuando están presentes cadenas complementarias en un entorno por debajo de su temperatura de fusión. Cuanto mayor es el grado de homología deseada entre la sonda y la secuencia hibridable, mayor es la temperatura relativa que puede usarse. Como resultado, se deduce que temperaturas relativas superiores tenderían a hacer las condiciones de reacción más rigurosas, mientras que temperaturas inferiores las harían menos rigurosas. Para detalles adicionales y explicación
50 de la rigurosidad de reacciones de hibridación, véase Ausubel y col., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
“Condiciones rigurosas” o “condiciones de alta rigurosidad”, como se definen en el presente documento, normalmente: (1) emplean fuerza iónica baja y temperatura elevada para el lavado, por ejemplo cloruro de sodio 55 0,015 M/citrato de sodio 0,0015 M/dodecilsulfato de sodio al 0,1 % a 50 ºC; (2) emplean durante la hibridación un agente de desnaturalización, tal como formamida, por ejemplo, formamida al 50 % (v/v) en albúmina sérica bovina al 0,1 %/Ficoll al 0,1 %/polivinilpirrolidona al 0,1 %/tampón fosfato de sodio 50 mM a pH 6,5 con cloruro de sodio 750 mM, citrato de sodio 75 mM a 42 ºC; o (3) emplean formamida al 50 %, 5 x SSC (NaCl 0,75 M, citrato de sodio 0,075 M) , fosfato de sodio 50 mM (pH 6,8), pirofosfato de sodio al 0,1 %, 5 x disolución de Denhardt, ADN de 60 esperma de salmón sonicado (50 μg/ml), SDS al 0,1 % y sulfato de dextrano al 10 % a 42 ºC, con lavados a 42 ºC en 0,2 x SSC (cloruro de sodio/citrato de sodio) y formamida al 50 % a 55 ºC seguido de un lavado de alta
18
rigurosidad que consiste en 0,1 x SSC que contiene EDTA a 55 ºC.
“Condiciones moderadamente rigurosas” pueden identificarse tal como se describe por Sambrook y col., Molecular Cloning: A Laborator y Manual, Nueva York: Cold Spring Harbor Press, 1989, e incluyen el uso de disolución de 5 lavado y condiciones de hibridación (por ejemplo, temperatura, fuerza iónica y % de SDS) menos rigurosas que las descritas anteriormente. Un ejemplo de condiciones moderadamente rigurosas es la incubación durante la noche a 37 ºC en una disolución que comprende: formamida al 20 %, 5 x SSC (NaCl 150 mM, citrato de trisodio 15 mM), fosfato de sodio 50 mM (pH 7,6), 5 x disolución de Denhardt, sulfato de dextrano al 10 % y 20 mg/ml de ADN de esperma de salmón fragmentado desnaturalizado, seguido de lavado de los filtros en 1 x SSC a aproximadamente
10 37-50 ºC. El experto reconocerá cómo ajustar la temperatura, fuerza iónica, etc. según sea necesario para adaptar factores tales como la longitud de la sonda y similares.
En el contexto de la presente invención, la referencia a “al menos uno”, “al menos dos”, “al menos cinco”, etc. de los genes enumerados en cualquier conjunto de genes particular significa una cualquiera o cualquiera y todas las
15 combinaciones de los genes enumerados.
Las expresiones “corte y empalme” y “corte y empalme de ARN” se usan de manera intercambiable y se refieren al procesamiento del ARN que elimina intrones y une exones para producir ARNm maduro con secuencia codificante continua que se traslada al citoplasma de una célula eucariota.
20 En teoría, el término “exón” se refiere a cualquier segmento de un gen interrumpido que está representado en el producto de ARN maduro (B. Lewin. Genes IV Cell Press, Cambridge Mass. 1990). En teoría, el término “intrón” se refiere a cualquier segmento de ADN que se transcribe pero se elimina del transcrito cortando y empalmando juntos los exones en cualquier lado del mismo. Operativamente, se producen secuencias de exón en la secuencia de
25 ARNm de un gen tal como se define por los números de Ref. Seq ID. Operativamente, las secuencias de intrón son las secuencias intermedias dentro del ADN genómico de un gen, entremedias de las secuencias de exón y que tienen secuencias consenso de corte y empalme GT y AG en sus extremos 5' y 3'.
B. Descripción detallada
30 La practica de la presente invención empleará, a menos que se indique otra cosa, técnicas convencionales de biología molecular (incluyendo técnicas recombinantes), microbiología, biología celular y bioquímica, que están dentro del conocimiento de la técnica. Tales técnicas se explican completamente en la bibliografía, tal como, "Molecular Cloning: A Laboratory Manual", 2ª edición (Sambrook y col., 1989); "Oligonucleotide Synthesis" (M.J.
35 Gait, ed., 1984); "Animal Cell Culture" (R.I. Freshney, ed., 1987); "Methods in Enzymology" (Academic Press, Inc.); "Handbook of Experimental Immunology", 4ª edición (D.M. Weir & C.C. Blackwell, eds., Blackwell Science Inc., 1987); "Gene Transfer Vectors for Mammalian Cells" (J.M. Miller & M.P. Calos, eds., 1987); "Current Protocols in Molecular Biology" (F.M. Ausubel y col., eds., 1987); y "PCR: The Polymerase Chain Reaction", (Mullis y col., eds., 1994).
40
1. Obtención del perfil de expresión génica
En general, los métodos de obtención del perfil de expresión génica pueden dividirse en dos grandes grupos: métodos basados en análisis de hibridación de polinucleótidos y métodos basados en la secuenciación de
45 polinucleótidos. La mayoría de los métodos comúnmente usados conocidos en la técnica para la cuantificación de la expresión de ARNm en una muestra incluyen transferencia de tipo Northern e hibridación in situ (Parker & Barnes, Methods in Molecular Biology 106: 247-283 (1999)); ensayos de protección de ARNasa (Hod, Biotechniques 13: 852854 (1992)); y reacción en cadena de la polimerasa con transcripción inversa (RT-PCR) (Weis y col., Trends in Genetics 8: 263-264 (1992)). Como alternativa, pueden emplearse los anticuerpos que pueden reconocer dúplex
50 específicos, incluyendo dúplex de ADN, dúplex de ARN y dúplex híbridos de ADN-ARN o dúplex de proteína-ADN. Los métodos representativos para el análisis de la expresión génica basado en secuenciación incluyen análisis en serie de la expresión génica (SAGE), y análisis de la expresión génica mediante secuenciación de firma masiva en paralelo (MPSS).
55 2. PCR de transcriptasa inversa (RT PCR)
De las técnicas enumeradas anteriormente, el método cuantitativo más sensible y más flexible es RT-PCR, que puede usarse para comparar los niveles de ARNm en diferentes poblaciones de muestra, en tejidos normales y tumorales, con o sin tratamiento con fármacos, para caracterizar patrones de expresión génica, para discriminar
60 entre ARNm estrechamente relacionados y analizar la estructura del ARN.
19
un patrón interno. Se expresa el patrón interno ideal a un nivel constante entre diferentes tejidos, y no se ve afectado por el tratamiento experimental. Los ARN más frecuentemente usados para normalizar los patrones de expresión génica son ARNm para los genes de mantenimiento gliceraldehído-3-fosfato-deshidrogenasa (GAPDH) y β-actina.
5 Una variación más reciente de la técnica de RT-PCR es la PCR cuantitativa en tiempo real, que mide la acumulación de producto de PCR a través de una sonda fluorigénica doblemente marcada (es decir, sonda TaqMan®). La PCR en tiempo real es compatible tanto con la PCR competitiva cuantitativa, en la que se usa un competidor interno para cada secuencia diana para la normalización, como con la PCR comparativa cuantitativa usando un gen de normalización contenido dentro de la muestra, o un gen de mantenimiento para RT-PCR. Para detalles adicionales
10 véase, por ejemplo, Held y col., Genome Research 6: 986-994 (1996).
3. Micromatrices
También puede identificarse la expresión génica diferencial, o confirmarse, usando la técnica de micromatrices. Por
15 lo tanto, puede medirse el perfil de expresión de genes asociados con cáncer de mama en tejido de tumor o bien incluido en parafina o bien reciente, usando tecnología de micromatrices. En este método, se siembran en placas las secuencias de polinucleótido de interés, o se alinean, en un sustrato de microchip. Entonces se hibridan las secuencias alineadas con sondas de ADN específicas de células o tejidos de interés. Justo como en el método de RT-PCR, la fuente de ARNm normalmente es ARN total aislado de tumores humanos o líneas celulares tumorales, y
20 las correspondientes líneas celulares o tejidos normales. Por tanto, puede aislarse ARN a partir de una variedad de tumores primarios o líneas celulares tumorales. Si la fuente de ARNm es un tumor primario, puede extraerse el ARNm, por ejemplo, de muestras de tejido congelado o incluido en parafina archivado y fijado (por ejemplo fijado con formalina), que se preparan de manera rutinaria y se conservan en la práctica clínica diaria.
25 En una realización específica de la técnica de micromatrices, se aplican insertos amplificados por PCR de clones de ADNc a un sustrato en un alineamiento denso. Preferiblemente, se aplican al menos 10.000 secuencias de nucleótidos al sustrato. Los genes microalineados, inmovilizados en el microchip a 10.000 elementos cada uno, son adecuados para la hibridación en condiciones rigurosas. Pueden generarse sondas de ADNc marcadas de manera fluorescente pueden generarse a través de la incorporación de nucleótidos fluorescentes mediante transcripción
30 inversa de ARN extraído de tejidos de interés. Las sondas de ADNc marcadas aplicadas al chip se hibridan con especificidad a cada punto de ADN en el alineamiento. Tras el lavado riguroso para eliminar sondas no unidas específicamente, se explora el chip mediante microscopía láser confocal o mediante otro método de detección, tal como una cámara CCD. La cuantificación de la hibridación de cada elemento alineado permite la evaluación de la correspondiente abundancia de ARNm. Con la fluorescencia de doble color, se hibridan por parejas sondas de ADNc
35 marcadas por separado generadas a partir de dos fuentes de ARN en el alineamiento. Por lo tanto, se determina simultáneamente la abundancia relativa de los transcritos a partir de las dos fuentes correspondientes a cada gen especificado. La escala miniaturizada de la hibridación permite una evaluación rápida y conveniente del patrón de expresión para grandes números de genes. Se ha mostrado que tales métodos tienen la sensibilidad requerida para detectar transcriptos raros, que se expresan a unas pocas copias por célula, y para detectar de manera reproducible
40 diferencias de al menos aproximadamente dos veces en los niveles de expresión (Schena y col., Proc, Natl. Acad. Sci. USA 93(2): 106-149 (1996)). El análisis de micromatrices puede realizarse mediante equipo comercialmente disponible, siguiendo los protocolos del fabricante, tal como usando la tecnología Affymetrix GenChip, o la tecnología de micromatrices de Incyte.
45 El desarrollo de métodos de micromatrices para análisis a gran escala de la expresión génica hace posible buscar sistemáticamente marcadores moleculares de la clasificación del cáncer y la predicción del desenlace en una variedad de tipos tumorales.
4. Análisis en serie de la expresión génica (SAGE)
50 El análisis en serie de la expresión génica (SAGE) es un método que permite el análisis cuantitativo y simultáneo de un gran número de transcritos de genes, sin la necesidad de proporcionar una sonda de hibridación individual para cada transcrito. En primer lugar, se genera una etiqueta de secuencia corta (aproximadamente 10-14 pb) que contiene información suficiente para identificar de manera única un transcrito, siempre que se obtenga el marcador a
55 partir de una posición única dentro de cada transcrito. Entonces, muchos transcritos se unen entre sí para formar moléculas en serie largas, que pueden secuenciarse, revelando la identidad de las múltiples etiquetas simultáneamente. El patrón de expresión de cualquier población de transcritos puede evaluarse cuantitativamente determinando la abundancia de marcadores individuales e identificando el gen correspondiente a cada etiqueta. Para más detalles véanse, por ejemplo, Velculescu y col., Science 270: 484-487 (1995); y Velculescu y col., Cell 88:
21
el uso de ningún disolvente orgánico, eliminando así la necesidad de múltiples manipulaciones asociadas con la eliminación del disolvente orgánico, y reduciendo sustancialmente el tiempo total en el protocolo. Según la invención, la cera, por ejemplo parafina se elimina de las muestras de tejido incorporado en cera mediante incubación a 6575 ºC en un tampón de lisis que solubiliza el tejido e hidroliza la proteína, tras el enfriamiento para solidificar la cera.
5 La figura 2 muestra un diagrama de flujo de un protocolo de extracción de ARN de la presente invención en comparación con un método comercial representativo, usando xileno para eliminar la cera. Se muestran en el diagrama los tiempos requeridos para las etapas individuales en los procedimientos y para los procedimientos globales. Tal como se muestra, el proceso comercial requiere aproximadamente el 50 % más tiempo que el
10 procedimiento de la invención.
El tampón de lisis puede ser cualquier tampón conocido para la lisis celular. Sin embargo, se prefiere que no se usen métodos basados en oligo-dT de purificación selectiva de ARNm poliadenilado para aislar el ARN para la presente invención, ya que se espera que la masa de las moléculas de ARNm esté fragmentada y por tanto no tendrán una
15 cola poliadenilada intacta, y no se recuperarán o estarán disponibles para ensayos analíticos posteriores. De otra manera, puede usarse cualquier número de esquemas de purificación de ácido nucleico convencionales. Estos incluyen extracciones con disolvente orgánico y caótropo, extracción usando perlas de vidrio o filtros, métodos basados en precipitación y precipitación con sales, o cualquiera de los métodos de purificación conocidos en la técnica para recuperar el ARN total o ácido nucleicos totales a partir de una fuente biológica.
20 Están disponibles en el mercado tampones de lisis, tal como, por ejemplo, de Qiagen, Epicentre o Ambion. Un grupo preferido de tampones de lisis normalmente contiene urea, y proteinasa K u otra proteasa. La proteinasa K es muy útil en el aislamiento de ADN o ARN no dañado, de alta calidad, puesto que la mayoría de las ADNasas y ARNasas de mamíferos se inactivan rápidamente por esta enzima, especialmente en presencia de dodecilsulfato de sodio al 0,
25 5 -1 % (SDS). Esto es particularmente importante en el caso de ARN, que es más susceptible a la degradación que el ADN. Mientras que las ADNasas requieren iones de metal para la actividad, y por tanto pueden inactivarse fácilmente mediante agentes quelantes, tales como EDTA, no existe ningún requisito de cofactor similar para ARNasas.
30 El enfriamiento y la solidificación resultante de la cera permite una fácil separación de la cera del ácido nucleico total, que puede precipitarse convenientemente, por ejemplo mediante isopropanol. El procesamiento adicional depende del fin pretendido. Si el método propuesto del análisis de ARN se ve sometido a un sesgo por ADN contaminante en un extracto, puede tratarse adicionalmente el extracto de ARN, por ejemplo mediante ADNasa, tras la purificación para eliminar específicamente el ADN mientras que se conserva el ARN. Por ejemplo, si el objetivo es aislar ARN de
35 alta calidad para posterior amplificación por RT-PCR, a la precipitación del ácido nucleico le sigue la eliminación de ADN, habitualmente mediante tratamiento con ADNasa. Sin embargo, puede eliminarse el ADN en diversas fases del aislamiento del ácido nucleico, mediante ADNasa u otras técnicas bien conocidas en la técnica.
Aunque las ventajas del protocolo de extracción de ácidos nucleicos de la invención son lo más evidentes para el
40 aislamiento de ARN de muestras de tejido incorporado en parafina, archivado, la etapa de eliminación de la cera de la presente invención, que no implica el uso de un disolvente orgánico, también puede incluirse en cualquier protocolo convencional para la extracción de ácido nucleico total (ARN y ADN) o ADN sólo. Todos estos aspectos están específicamente dentro del alcance de la invención.
45 Usando calor seguido de enfriamiento para eliminar la parafina; el procedimiento de la presente invención ahorra tiempo de procesamiento valioso, y elimina una serie de manipulaciones, aumentando así potencialmente el rendimiento de ácido nucleico. De hecho, las pruebas experimentales presentadas en los ejemplos a continuación demuestran que el método de la presente invención no compromete el rendimiento de ARN.
50 8. Cebado específico de gen multiplexado en 5' de la transcripción inversa
La RT-PCR requiere la transcripción inversa de la población de ARN de prueba como primera etapa. El cebador más comúnmente usado para la transcripción inversa es oligo-dT, que funciona bien cuando el ARN está intacto. Sin embargo, este cebador no será eficaz cuando el ARN esté sumamente fragmentado como es el caso en los tejidos
La presente invención incluye el uso de cebadores específicos de gen, que tienen aproximadamente 20 bases de longitud con una Tm óptima entre aproximadamente 58 ºC y 60 ºC. Estos cebadores también servirán como cebadores inversos que dirige la amplificación de ADN por PCR.
60 Otro aspecto de la invención es la inclusión de múltiples cebadores específicos de gen en la misma mezcla de
23
múltiples copias de ARNc, que luego se usa en una reacción TaqMan® convencional.
Aunque se ilustra este procedimiento usando amplificación de ARN basada en T7, un experto en la técnica entenderá que también pueden usarse otros promotores de ARN polimerasa que no requieren un cebador, tal como 5 T3 o Sp6, y están dentro del alcance de la invención.
11. Método de elongación de ARN fragmentado y posterior amplificación
Este método, que combina y modifica las invenciones descritas en las secciones 9 y 10 anteriores, se ilustra en la
10 figura 5. El procedimiento comienza con la elongación de ARNm fragmentado. Esto se produce tal como se describió anteriormente excepto porque los ADN de armazón se etiquetan con la secuencia promotora de ARN polimerasa de T7 en sus extremos 5', conduciendo a ADN bicatenario extendido a partir de fragmentos de ARN. Las secuencias de molde necesitan eliminarse tras la transcripción in vitro. Estos moldes pueden incluir nucleótidos de dUTP o rNTP, que permiten la eliminación enzimática de los moldes tal como se describe en la sección 9, o los moldes pueden
15 eliminarse mediante tratamiento con ADNasa I.
El ADN de molde puede ser una población que representa diferentes ARNm de cualquier número. Puede generarse una fuente de moldes de ADN (armazones) de alta complejidad de secuencia agrupando ARN de una variedad de células o tejidos. En una realización, estos ARN se convierten en ADN bicatenario y se clonan en fagémidos.
20 Entonces puede rescatarse el ADN monocatenario mediante crecimiento de fagémidos y aislamiento de ADN monocatenario a partir de fagémidos purificados.
Esta invención es útil porque aumenta las señales del perfil de expresión génica de dos modos diferentes: tanto aumentando la longitud de la secuencia de polinucleótido del ARNm de prueba como mediante amplificación por
25 transcripción in vitro. Una ventaja adicional es que elimina la necesidad de llevar a cabo optimización de la transcripción inversa con cebadores específicos de gen etiquetados con la secuencia promotora de ARN polimerasa de T7 y, por lo tanto, es comparativamente rápida y económica.
Esta invención puede usarse con una variedad de diferentes métodos para obtener el perfil de expresión génica, por
30 ejemplo RT-PCR o una variedad de métodos de alineamiento de ADN. Justo como en el protocolo anterior, este enfoque se ilustra usando un promotor de T7 pero la invención no se limita de ese modo. Un experto en la técnica apreciará, sin embargo, que pueden usarse también otros promotores de ARN polimerasa, tales como T3 o Sp6.
12. Conjunto de genes de cáncer de mama, subsecuencias génicas sometidas a ensayo y aplicación clínica de los 35 datos de expresión génica
Un importante aspecto de la presente invención es usar la expresión medida de ciertos genes por tejido de cáncer de mama para asignar pacientes a los mejores fármacos o combinaciones de fármacos, y para proporcionar información de pronóstico. Para este fin es necesario corregir (normalizar) tanto las diferencias en la cantidad de 40 ARN sometido a ensayo como la variabilidad en la calidad del ARN usado. Por tanto, el ensayo mide e incorpora la expresión de ciertos genes de normalización, incluyendo genes de mantenimiento bien conocidos, tales como GAPDH y Cyp1. Como alternativa, la normalización puede basarse en la media o mediana de la señal (Ct) de todos los genes sometidos a ensayo o un gran subconjunto de los mismos (enfoque de normalización global). En una base de gen a gen, se compara la cantidad normalizada medida de un ARNm de tumor del paciente con la cantidad 45 encontrada en un conjunto de referencia de tejido de cáncer de mama. El número (N) de tejidos de cáncer de mama en este conjunto de referencia debe ser suficientemente alto para garantizar que diferentes conjuntos de referencia (como un todo) se comporten esencialmente del mismo modo. Si se cumple esta condición, la identidad de los tejidos de cáncer de mama individuales presentes en un conjunto particular no tendrá ningún impacto significativo sobre las cantidades relativas de los genes sometidos a ensayo. Habitualmente, el conjunto de referencia de tejido 50 de cáncer de mama consiste en al menos aproximadamente 30, preferiblemente al menos aproximadamente 40 diferentes muestras de tejido de cáncer de mama FPE. A menos que se indique otra cosa, los niveles de expresión normalizada para cada ARNm/tumor sometido a prueba/paciente se expresarán como un porcentaje del nivel de expresión medido en el conjunto de referencia. Más específicamente, el conjunto de referencia de un número suficientemente alto (por ejemplo 40) los tumores produce una distribución de niveles normalizados de cada especie
55 de ARNm. El nivel medido en una muestra de tumor particular que va a analizarse se encuentra en algún percentil dentro de este intervalo, lo que puede determinarse mediante métodos bien conocidos en la técnica. A continuación, a menos que se indique lo contrario, la referencia a niveles de expresión de un gen supone expresión normalizada en relación con el conjunto de referencia aunque esto no siempre se establece de manera explícita.
60 El conjunto de genes de cáncer de mama se muestra en la tabla 1. Los números de registro de los genes, y las SEQ ID NO para el cebador directo, cebador inverso y secuencias de amplicón que pueden usarse para la amplificación
26
disminuye la sensibilidad a taxanos.
La expresión de ARNm de ERCC1 en el 10 % superior indica riesgo significativo de resistencia a cisplatino o análogos.
5 Un ensayo de RT-PCR de la expresión de ARNm de Her2 predice la sobreexpresión de Her2 tal como se mide mediante una prueba de diagnóstico convencional, con alto grado de concordancia (datos no mostrados). Los pacientes cuyos tumores expresan Her2 (normalizado a cyp.1) en el 10 % superior tienen un aumento de la probabilidad de respuesta beneficiosa al tratamiento con Herceptin u otros antagonistas de ErbB2. La medición de la
10 expresión de ARNm de Grb7 sirve como prueba para la amplificación génica de HER2, porque el gen de Grb7 está estrechamente vinculado a Her2. Cuando la expresión de Her2 es alta tal como se definió anteriormente en este párrafo, Grb7 elevado de manera similar indica amplificación génica de Her2. La sobreexpresión de IGF1R y o IGF1
o IGF2 disminuye la probabilidad de respuesta beneficiosa a Herceptin y también a antagonistas de EGFR.
15 Los pacientes cuyos tumores expresan Ha-Ras mutante, y también expresan ARNm de farnesil pirofosfato sintetasa
o geranil pirofosfonato sintetasa a niveles por encima del décimo percentil comprenden un grupo que es especialmente probable que presente una respuesta beneficiosa a fármacos de bisfosfonato.
Cox2 es una enzima de control clave en la síntesis de prostaglandinas. Se expresa frecuentemente a niveles
20 elevados en subconjuntos de diversos tipos de carcinomas incluyendo carcinoma de la mama. La expresión de este gen se controla al nivel de la transcripción, de modo que la RT-PCR sirve como un indicador válido de la actividad enzimática celular. La investigación no clínica ha mostrado que cox2 promueve la angiogénesis tumoral, lo que sugiere que esta enzima es una diana farmacológica prometedora en tumores sólidos. Varios antagonistas de Cox2 son productos comercializados para su uso en estados antiinflamatorios. El tratamiento de pacientes con poliposis
25 adenomatosa familiar con el inhibidor de cox2 Celebrex disminuyó significativamente el número y tamaño de pólipos neoplásicos. Ningún inhibidor de cox2 se ha aprobado aún para el tratamiento del cáncer de mama, pero generalmente esta clase de fármacos es segura y podría prescribirse de manera no indicada en cánceres de mama en los que se sobreexpresa cox2. Los tumores que expresan COX2 a niveles en el percentil diez superior tienen un aumento de la posibilidad de respuesta beneficiosa a Celebrex u otros inhibidores de ciclooxigenasa 2.
30 Las tirosina cinasas ErbB1 [EGFR], ErbB3 y ErbB4 [Her4]; también los ligandos TGFalfa, anfiregulina, factor de 55 crecimiento similar a EGF de unión a heparina y epirregulina; también BRK, una cinasa no receptora. Varios fármacos en desarrollo clínico bloquean el receptor de EGF. ErbB2-4, los ligandos indicados y BRK también aumentan la actividad de la ruta de EGFR. Pacientes con cáncer de mama cuyos tumores expresan altos niveles de
35 EGFR o EGFR y niveles anómalamente altos de los otros activadores indicados de la ruta de EGFR son candidatos potenciales para el tratamiento con un antagonista de EGFR.
Pacientes cuyos tumores expresan menos del 10 % del nivel promedio de ARNm de EGFR observado en el panel de referencia es relativamente menos probable que respondan a antagonistas de EGFR [tales como Iressa, o
40 ImClone 225]. En casos en los que el EGFR está por encima de este bajo intervalo, la presencia adicional de epirregulina, TGFα, anfiregulina, o ErbB3, o BRK, CD9, MMP9, o Lot1 a niveles por encima del 90º percentil predispone a la 65 respuesta a antagonistas de EGFR. La expresión génica de epirregulina, en particular, es un buen marcador sustituto para la activación de EGFR, y puede usarse no sólo para predecir la respuesta a antagonistas de EGFR, sino también para monitorizar la respuesta a antagonistas de EGFR [tomando biopsias con
45 agujas finas para proporcionar tejido tumoral durante el tratamiento]. Niveles de CD82 por encima del 90º percentil sugieren peor eficacia de los antagonistas de EGFR. Las tirosina cinasas abl, c-kit, PDGFRalfa, PDGFbeta y ARG; también, los ligandos que transmiten la señal ligando c-kit, PDGFA, B, C y D. Las tirosina cinasas enumeradas son todas dianas del fármaco Gleevec™ (imatinib mesilato, Novartis), y los ligandos enumerados estimulan una o más de las tirosina cinasas enumeradas. En las dos
50 indicaciones para las que está aprobado Gleevec™, las dianas de tirosina cinasa (bcr-abl y ckit) se sobreexpresan y también contienen mutaciones activantes. Un hallazgo de que una de las dianas de tirosina cinasa diana de Gleevec™ se expresa en tejido de cáncer de mama dará lugar a una segunda fase de análisis en la que el gen se secuenciará para determinar si está mutado. Que una mutación encontrada es una mutación activante puede demostrarse mediante métodos conocidos en la técnica, tales como, por ejemplo, midiendo la actividad enzimática
55 cinasa o midiendo el estado de fosforilación de la cinasa particular, en relación con la cinasa de tipo natural correspondiente. Pacientes con cáncer de mama cuyos tumores expresan altos niveles de ARNm que codifican para tirosina cinasas dianas de Gleevec™, específicamente, en el percentil diez superior, o ARNm para tirosina cinasas dianas de Gleevec™ en el intervalo promedio y ARNm para sus ligandos estimulantes del crecimiento relacionados en el percentil diez superior, son candidatos particularmente buenos para el tratamiento con Gleevec™.
60 VEGF es un factor angiogénico potente y patológicamente importante. (Véase a continuación en Indicadores de
28
Tabla 4
- Gen/SEQ ID NO:
- CT promedio Vivos CT promedio Muertos Valor de t Grados de libertad P
- FOXM1
- 33,66 32,52 3,92 144 0,0001
- PRAME
- 35,45 33,84 3,71 144 0,0003
- Bcl2
- 28,52 29,32 -3,53 144 0,0006
- STK15
- 30,82 30,10 3,49 144 0,0006
- CEGP1
- 29,12 30,86 -3,39 144 0,0009
- Ki-67
- 30,57 29,62 3,34 144 0,0011
- GSTM1
- 30,62 31,63 -3,27 144 0,0014
- CA9
- 34,96 33,54 3,18 144 0,0018
- PR
- 29,56 31,22 -3,16 144 0,0019
- BBC3
- 31,54 32,10 -3,10 144 0,0023
- NME1
- 27,31 26,68 3,04 144 0,0028
- SURV
- 31,64 30,68 2,92 144 0,0041
- GATA3
- 26,06 26,99 -2,91 144 0,0042
- TFRC
- 28,96 28,48 2,87 144 0,0047
- YB-1
- 26,72 26,41 2,79 144 0,0060
- DPYD
- 28,51 28,84 -2,67 144 0,0084
- GSTM3
- 28,21 29,03 -2,63 144 0,0095
- RPS6KB1
- 31,18 30,61 2,61 144 0,0099
- Src
- 27,97 27,69 2,59 144 0,0105
- Chk1
- 32,63 31,99 2,57 144 0,0113
- ID1
- 28,73 29,13 -2,48 144 0,0141
- EstR1
- 24,22 25,40 -2,44 144 0,0160
- p27
- 27,15 27,51 -2,41 144 0,0174
- CCNB1
- 31,63 30,87 2,40 144 0,0176
- XIAP
- 30,27 30,51 -2,40 144 0,0178
- Chk2
- 31,48 31,11 2,39 144 0,0179
- CDC25B
- 29,75 29,39 2,37 144 0,0193
- IGFIR
- 28,85 29,44 -2,34 144 0,0209
- AK055699
- 33,23 34,11 -2,28 144 0,0242
- PI3KC2A
- 31,07 31,42 -2,25 144 0,0257
- TGFB3
- 28,42 28,85 -2,25 144 0,0258
- BAGI1
- 28,40 28,75 -2,24 144 0,0269
- CYP3A4
- 35,70 35,32 2,17 144 0,0317
- EpCAM
- 28,73 28,34 2,16 144 0,0321
- VEGFC
- 32,28 31,82 2,16 144 0,0326
- pS2
- 28,96 30,60 -2,14 144 0,0341
- hENT1
- 27,19 26,91 2,12 144 0,0357
- WISP1
- 31,20 31,64 -2,10 144 0,0377
- HNF3A
- 27,89 28,64 -2,09 144 0,0384
- NFKBp65
- 33,22 33,80 -2,08 144 0,0396
- BRCA2
- 33,06 32,62 2,08 144 0,0397
- EGFR
- 30,68 30,13 2,06 144 0,0414
- TK1
- 32,27 31,72 2,02 144 0,0453
- VDR
- 30,08 29,73 1,99 144 0,0488
En la tabla 4 anterior, los valores de t inferiores (negativos) indican expresión superior (o CT inferiores), asociada con mejores desenlaces y, a la inversa, valores de t superiores (positivos) indican expresión superior (CT inferiores)
5 asociada a peores desenlaces. Por lo tanto, por ejemplo, la expresión elevada del gen FOXM1 (valor de t = 3,92, CT medio vivos > CT medio muertos) indica una probabilidad reducida de supervivencia libre de enfermedad. De manera similar, la expresión elevada del gen CEGP 1 (valor de t = -3, 39; CT medio vivos < CT medio muertos) indica un aumento de la probabilidad de supervivencia libre de enfermedad.
10 En base a los datos expuestos en la Tabla 4, la sobreexpresión de cualquiera de los siguientes genes en cáncer de mama indica una probabilidad reducida de supervivencia sin recidiva de cáncer tras la cirugía: FOXM1; PRAME; SKT15, Ki-67; CA9; NME1; SURV; TFRC; YB-1; RPS6KB1; Src; Chk1; CCNB1; Chk2; CDC25B; CYP3A4; EpCAM;
37
umbral tienen riesgo superior, y todos los pacientes con valores de expresión por debajo del umbral tienen riesgo inferior, o viceversa, dependiendo de si el gen es un indicador de buen (RR>1,01) o mal (RR<1,01) pronóstico. Por tanto, cualquier valor umbral definirá subgrupos de pacientes con respectivamente aumento o disminución del riesgo. Los resultados se resumen en las siguientes tablas 6 y 7
Tabla 6 Resultados del modelo de Cox para 146 pacientes con cáncer de mama invasivo
- Gen
- Riesgo relativo (RR) Riesgo relativo SE valor de p
- FOXM1
- 0,58 0,15 0,0002
- STK15
- 0,51 0,20 0,0006
- PRAME
- 0,78 0,07 0,0007
- Bcl2
- 1,66 0,15 0,0009
- CEGP1
- 1,25 0,07 0,0014
- GSTM1
- 1,40 0,11 0,0014
- Ki67
- 0,62 0,15 0,0016
- PR
- 1,23 0,07 0,0017
- Conrig51037
- 0,81 0,07 0,0022
- NME1
- 0,64 0,15 0,0023
- YB-1
- 0,39 0,32 0,0033
- TFRC
- 0,53 0,21 0,0035
- BBC3
- 1,72 0,19 0,0036
- GATA3
- 1,32 0,10 0,0039
- CA9
- 0,81 0,07 0,0049
- SURV
- 0,69 0,13 0,0049
- DPYD
- 2,58 0,34 0,0052
- RPS6KB1
- 0,60 0,18 0,0055
- GSTM3
- 1,36 0,12 0,0078
- Src.2
- 0,39 0,36 0,0094
- TGFB3
- 1,61 0,19 0,0109
- CDC25B
- 0,54 0,25 0,0122
- XIAP
- 3,20 0,47 0,0126
- CCNB1
- 0,68 0,16 0,0151
- IGF1R
- 1,42 0,15 0,0153
- Chk1
- 0,68 0,16 0,0155
- ID1
- 1,80 0,25 0,0164
- p27
- 1,69 0,22 0,0168
- Chk2
- 0,52 0,27 0,0175
- EstR1
- 1,17 0,07 0,0196
- HNF3A
- 1,21 0,08 0,206
- pS2
- 1,12 0,05 0,0230
- BAGI1
- 1,88 0,29 0,0266
- AK055699
- 1,24 0,10 0,0276
- pENT1
- 0,51 0,31 0,0293
- EpCAM
- 0,62 0,22 0,0310
- WISP1
- 1,39 0,16 0,0338
- VEGFC
- 0,62 0,23 0,0364
- TK1
- 0,73 0,15 0,0382
- NFKBp65
- 1,32 0,14 0,0384
- BRCA2
- 0,66 0,20 0,0404
- CYP3A4
- 0,60 0,25 0,0417
- EGFR
- 0,72 0,16 0,0436
39
- GEN
- N.º DE REGISTRO SEQ ID NO:
- EstR1
- NM_000125 303
- FOXM1
- NM_021953 304
- GATA3
- NM_002051 305
- GSTM1
- NM_000561 306
- GSTM3
- NM_000849 307
- hENT1
- NM_004955 308
- HIF1A
- NM_001530 309
- HNF3A
- NM_004496 310
- ID1
- NM_002165 311
- IGF1R
- NM_000875 312
- Ki-67
- NM_002417 313
- NFKBp65
- NM_021975 314
- NME1
- NM_000269 315
- p27
- NM_004064 316
- PI3KC2A
- NM_002645 317
- PR
- NM_000926 318
- PRAME
- NM_006115 319
- pS2
- NM_003225 320
- RPS6KB1
- NM_003161 321
- Src
- NM_004383 322
- STK15
- NM_003600 323
- SURV
- NM_001168 324
- TFRC
- NM_003234 325
- TGFB3
- NM_003239 326
- TK1
- NM_003258 327
- VDR
- NM_000376 328
- VEGFC
- NM_005429 329
- WISP1
- NM_003882 330
- XIAP
- NM_001167 331
- YB-1
- NM_004559 332
- ITGA7
- NM_002206 333
- PDGFB
- NM_002608 334
- Upa
- NM_002658 335
- TBP
- NM_003194 336
- PDGFRs
- NM_006206 337
- Pin1
- NM_006221 338
- CYP
- NM_006347 339
- RBP4
- NM_006744 340
- BRCA1
- NM_007296 341
- APC
- NM_000038 342
- GUS
- NM_000181 343
- CD18
- NM_000211 344
- PTEN
- NM_000314 345
- P53
- NM_000546 346
- ALDH1A3
- NM_000693 347
- GSTp
- NM_000852 348
- TCP2B
- NM_001058 349
- TS
- MM_001071 350
- Bcix
- NM_001191 351
- AREG
- NM_001667 352
- TP
- NM_001953 353
- EIF4E
- NM_001968 354
- ErbB3
- NM_001982 355
- EREG
- NM_001432 356
- GGLC
- NM_001498 357
46
Claims (1)
-
imagen1
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36489002P | 2002-03-13 | 2002-03-13 | |
US364890P | 2002-03-13 | ||
US41204902P | 2002-09-18 | 2002-09-18 | |
US412049P | 2002-09-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
ES2685702T3 true ES2685702T3 (es) | 2018-10-10 |
Family
ID=28045456
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES10158652.7T Expired - Lifetime ES2486265T3 (es) | 2002-03-13 | 2003-03-12 | Obtención de perfil de expresión génica en tejidos tumorales biopsiados |
ES07024457T Expired - Lifetime ES2374311T3 (es) | 2002-03-13 | 2003-03-12 | Obtención de perfil de expresión génica en tejidos tumorales biopsiados. |
ES16181799.4T Expired - Lifetime ES2685702T3 (es) | 2002-03-13 | 2003-03-12 | Obtención de perfil de expresión génica en tejidos tumorales biopsiados |
ES10158642T Expired - Lifetime ES2433992T3 (es) | 2002-03-13 | 2003-03-12 | Obtención de perfil de expresión génica en tejidos tumorales biopsiados |
ES14163244.8T Expired - Lifetime ES2616800T3 (es) | 2002-03-13 | 2003-03-12 | Obtención de perfil de expresión génica en tejidos tumorales biopsiados |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES10158652.7T Expired - Lifetime ES2486265T3 (es) | 2002-03-13 | 2003-03-12 | Obtención de perfil de expresión génica en tejidos tumorales biopsiados |
ES07024457T Expired - Lifetime ES2374311T3 (es) | 2002-03-13 | 2003-03-12 | Obtención de perfil de expresión génica en tejidos tumorales biopsiados. |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
ES10158642T Expired - Lifetime ES2433992T3 (es) | 2002-03-13 | 2003-03-12 | Obtención de perfil de expresión génica en tejidos tumorales biopsiados |
ES14163244.8T Expired - Lifetime ES2616800T3 (es) | 2002-03-13 | 2003-03-12 | Obtención de perfil de expresión génica en tejidos tumorales biopsiados |
Country Status (10)
Country | Link |
---|---|
US (9) | US7081340B2 (es) |
EP (9) | EP2799555B1 (es) |
JP (6) | JP2005519624A (es) |
AT (1) | ATE529535T1 (es) |
AU (1) | AU2003253986A1 (es) |
CA (2) | CA2478850C (es) |
DK (5) | DK3115470T3 (es) |
ES (5) | ES2486265T3 (es) |
HK (4) | HK1148034A1 (es) |
WO (1) | WO2003078662A1 (es) |
Families Citing this family (222)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7125677B2 (en) * | 1995-11-13 | 2006-10-24 | The Salk Institute For Biological Studies | NIMA interacting proteins |
US5972697A (en) * | 1995-11-13 | 1999-10-26 | The Salk Institute For Biological Studies | NIMA interacting proteins |
US6277566B1 (en) * | 1998-02-13 | 2001-08-21 | Phillip A. Beachy | Method for identifying a hedgehog-mediated phosphorylation state dependent transcription factor |
US20070298423A1 (en) * | 2000-03-24 | 2007-12-27 | Eppendorf Array Technologies Sa (Eat) | Identification of multiple biological (micro) organisms by specific amplification and detection of their nucleotide sequences on arrays |
US20080085515A1 (en) * | 2000-03-24 | 2008-04-10 | Eppendorf Array Technologies Sa (Eat) | Identification of multiple biological (micro) organisms by detection of their nucleotide sequences on arrays |
US8044259B2 (en) * | 2000-08-03 | 2011-10-25 | The Regents Of The University Of Michigan | Determining the capability of a test compound to affect solid tumor stem cells |
US6984522B2 (en) | 2000-08-03 | 2006-01-10 | Regents Of The University Of Michigan | Isolation and use of solid tumor stem cells |
US7640484B2 (en) | 2001-12-28 | 2009-12-29 | Netapp, Inc. | Triple parity technique for enabling efficient recovery from triple failures in a storage array |
EP2799555B1 (en) * | 2002-03-13 | 2017-02-22 | Genomic Health, Inc. | Gene expression profiling in biopsied tumor tissues |
US7364846B2 (en) * | 2002-10-11 | 2008-04-29 | Molecular Devices Corporation | Gene expression profiling from FFPE samples |
JP4606879B2 (ja) * | 2002-11-15 | 2011-01-05 | ジェノミック ヘルス, インコーポレイテッド | Egfr陽性癌の遺伝子発現プロファイリング |
US20040231909A1 (en) | 2003-01-15 | 2004-11-25 | Tai-Yang Luh | Motorized vehicle having forward and backward differential structure |
WO2004070062A2 (en) * | 2003-02-04 | 2004-08-19 | Wyeth | Compositions and methods for diagnosing and treating cancers |
US20060078893A1 (en) | 2004-10-12 | 2006-04-13 | Medical Research Council | Compartmentalised combinatorial chemistry by microfluidic control |
GB0307428D0 (en) | 2003-03-31 | 2003-05-07 | Medical Res Council | Compartmentalised combinatorial chemistry |
GB0307403D0 (en) | 2003-03-31 | 2003-05-07 | Medical Res Council | Selection by compartmentalised screening |
JP2007507222A (ja) * | 2003-05-28 | 2007-03-29 | ゲノミック ヘルス, インコーポレイテッド | 化学療法に対する応答を予測するための遺伝子発現マーカー |
US20050059054A1 (en) † | 2003-07-25 | 2005-03-17 | Richard Conrad | Methods and compositions for preparing RNA from a fixed sample |
DE10344799A1 (de) * | 2003-09-26 | 2005-04-14 | Ganymed Pharmaceuticals Ag | Identifizierung von Oberflächen-assoziierten Antigenen für die Tumordiagnose und -therapie |
FR2861744A1 (fr) * | 2003-11-05 | 2005-05-06 | Biomerieux Sa | Procede pour le pronostic du cancer du sein |
ATE498022T1 (de) * | 2003-12-23 | 2011-02-15 | Genomic Health Inc | Universelle vervielfältigung von fragmentierter rns |
WO2005067667A2 (en) * | 2004-01-07 | 2005-07-28 | Bristol-Myers Squibb Company | Biomarkers and methods for determining sensitivity to epidermal growth factor receptor modulators |
US20050221398A1 (en) * | 2004-01-16 | 2005-10-06 | Ipsogen, Sas, A Corporation Of France | Protein expression profiling and breast cancer prognosis |
EP1723259A2 (en) * | 2004-03-12 | 2006-11-22 | The Queens University of Belfast | Cancer treatment and assays for determiming resistance to platinum-based chemotherapeutic agent |
US20050221339A1 (en) | 2004-03-31 | 2005-10-06 | Medical Research Council Harvard University | Compartmentalised screening by microfluidic control |
WO2005100606A2 (en) * | 2004-04-09 | 2005-10-27 | Genomic Health, Inc. | Gene expression markers for predicting response to chemotherapy |
KR20070057761A (ko) * | 2004-06-04 | 2007-06-07 | 아비아라디엑스, 인코포레이티드 | 종양의 확인방법 |
US20120258442A1 (en) * | 2011-04-09 | 2012-10-11 | bio Theranostics, Inc. | Determining tumor origin |
AU2005271960B2 (en) * | 2004-07-09 | 2011-12-08 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Identification of markers in lung and breast cancer |
DE102004042822A1 (de) * | 2004-08-31 | 2006-03-16 | Technische Universität Dresden | Verbindungen und Methoden zur Behandlung, Diagnose und Prognose bei Pankreaserkrankungen |
US7968287B2 (en) | 2004-10-08 | 2011-06-28 | Medical Research Council Harvard University | In vitro evolution in microfluidic systems |
EP1815021A2 (en) * | 2004-11-03 | 2007-08-08 | Almac Diagnostics Limited | Transcriptome microarray technology and methods of using the same |
AU2005304878B2 (en) * | 2004-11-05 | 2010-07-08 | Genomic Health, Inc. | Molecular indicators of breast cancer prognosis and prediction of treatment response |
WO2006052862A1 (en) | 2004-11-05 | 2006-05-18 | Genomic Health, Inc. | Predicting response to chemotherapy using gene expression markers |
US8535914B2 (en) * | 2005-01-21 | 2013-09-17 | Canon Kabushiki Kaisha | Probe, probe set and information acquisition method using the same |
US8383357B2 (en) | 2005-03-16 | 2013-02-26 | OSI Pharmaceuticals, LLC | Biological markers predictive of anti-cancer response to epidermal growth factor receptor kinase inhibitors |
DE602006016085D1 (de) * | 2005-03-16 | 2010-09-23 | Genentech Inc | Biologische marker prediktiv für das ansprechen von krebs auf inhibitoren der kinase des rezeptors für epidermalen wachstumsfaktor |
US20080193938A1 (en) * | 2005-04-01 | 2008-08-14 | Yu Kun | Materials And Methods Relating To Breast Cancer Classification |
US20060246492A1 (en) * | 2005-04-05 | 2006-11-02 | The General Hospital Corporation | Method for predicting responsiveness to drugs |
WO2006113747A2 (en) * | 2005-04-19 | 2006-10-26 | Prediction Sciences Llc | Diagnostic markers of breast cancer treatment and progression and methods of use thereof |
EP1899484B1 (en) | 2005-06-03 | 2015-08-12 | bioTheranostics, Inc. | Identification of tumors and tissues |
US20070099209A1 (en) * | 2005-06-13 | 2007-05-03 | The Regents Of The University Of Michigan | Compositions and methods for treating and diagnosing cancer |
US8921102B2 (en) * | 2005-07-29 | 2014-12-30 | Gpb Scientific, Llc | Devices and methods for enrichment and alteration of circulating tumor cells and other particles |
US7700299B2 (en) * | 2005-08-12 | 2010-04-20 | Hoffmann-La Roche Inc. | Method for predicting the response to a treatment |
US8129114B2 (en) * | 2005-08-24 | 2012-03-06 | Bristol-Myers Squibb Company | Biomarkers and methods for determining sensitivity to epidermal growth factor receptor modulators |
US20070134688A1 (en) * | 2005-09-09 | 2007-06-14 | The Board Of Regents Of The University Of Texas System | Calculated index of genomic expression of estrogen receptor (er) and er-related genes |
WO2007035842A2 (en) * | 2005-09-21 | 2007-03-29 | Ccc Diagnostics, Llc | Comprehensive diagnostic testing procedures for personalized anticancer chemotherapy (pac) |
JP5129149B2 (ja) | 2005-10-31 | 2013-01-23 | ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン | 癌を処置および診断するための組成物および方法 |
US20070128636A1 (en) * | 2005-12-05 | 2007-06-07 | Baker Joffre B | Predictors Of Patient Response To Treatment With EGFR Inhibitors |
EP2479285B1 (en) * | 2006-01-05 | 2014-05-14 | The Ohio State University Research Foundation | MicroRNA-based methods and compositions for the diagnosis and treatment of solid cancers |
EP1984738A2 (en) | 2006-01-11 | 2008-10-29 | Raindance Technologies, Inc. | Microfluidic devices and methods of use in the formation and control of nanoreactors |
NZ570008A (en) | 2006-02-09 | 2011-10-28 | Univ South Florida | Detection of ovarian cancer by elevated levels of Bcl-2 in urine |
WO2007123772A2 (en) | 2006-03-31 | 2007-11-01 | Genomic Health, Inc. | Genes involved in estrogen metabolism |
CN101240331A (zh) * | 2006-04-07 | 2008-08-13 | 甄二真 | 基于mEPHX基因多态性的皮肤美容保健方法 |
WO2007127458A2 (en) * | 2006-04-28 | 2007-11-08 | Nsabp Foundation, Inc. | Methods of whole genome or microarray expression profiling using nucleic acids |
US9562837B2 (en) | 2006-05-11 | 2017-02-07 | Raindance Technologies, Inc. | Systems for handling microfludic droplets |
EP2481815B1 (en) | 2006-05-11 | 2016-01-27 | Raindance Technologies, Inc. | Microfluidic devices |
IL282783B2 (en) | 2006-05-18 | 2023-09-01 | Caris Mpi Inc | A system and method for determining a personalized medical intervention for a disease stage |
US8768629B2 (en) | 2009-02-11 | 2014-07-01 | Caris Mpi, Inc. | Molecular profiling of tumors |
US8137912B2 (en) | 2006-06-14 | 2012-03-20 | The General Hospital Corporation | Methods for the diagnosis of fetal abnormalities |
US20080050739A1 (en) * | 2006-06-14 | 2008-02-28 | Roland Stoughton | Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats |
WO2007147074A2 (en) | 2006-06-14 | 2007-12-21 | Living Microsystems, Inc. | Use of highly parallel snp genotyping for fetal diagnosis |
US8372584B2 (en) | 2006-06-14 | 2013-02-12 | The General Hospital Corporation | Rare cell analysis using sample splitting and DNA tags |
WO2008008284A2 (en) * | 2006-07-14 | 2008-01-17 | The Regents Of The University Of California | Cancer biomarkers and methods of use threof |
EP3536396B1 (en) | 2006-08-07 | 2022-03-30 | The President and Fellows of Harvard College | Fluorocarbon emulsion stabilizing surfactants |
US20080118576A1 (en) * | 2006-08-28 | 2008-05-22 | Dan Theodorescu | Prediction of an agent's or agents' activity across different cells and tissue types |
US20080096208A1 (en) * | 2006-09-06 | 2008-04-24 | Connors Richard W | Biomarkers for assessing response to c-met treatment |
WO2008031041A2 (en) * | 2006-09-07 | 2008-03-13 | H. Lee Moffitt Cancer Center And Research Institute, Inc. | Melanoma gene signature |
WO2008073177A2 (en) * | 2006-09-21 | 2008-06-19 | Nuclea Biomarkers, Llc | Expression profiles associated with irinotecan treatment |
JP5041580B2 (ja) * | 2006-10-17 | 2012-10-03 | 一般財団法人化学及血清療法研究所 | 仲介ポリヌクレオチド |
US20080125358A1 (en) * | 2006-10-26 | 2008-05-29 | University Of Massachusetts Medical School | Methods for Chk2 inhibitor patient selection |
KR100862972B1 (ko) | 2006-10-30 | 2008-10-13 | 한국과학기술연구원 | 휘발성 유기 화합물 검색용 바이오마커 및 이를 이용한유해성을 나타내는 휘발성 유기 화합물 검색 방법 |
WO2008063521A2 (en) * | 2006-11-13 | 2008-05-29 | The General Hospital Corporation | Gene-based clinical scoring system |
KR100886670B1 (ko) | 2007-01-11 | 2009-03-04 | 김현기 | 유두갑상선암의 새로운 진단마커 및 진단방법 |
EP2106439B1 (en) | 2007-01-24 | 2014-11-12 | The Regents of the University of Michigan | Compositions and methods for treating and diagnosing pancreatic cancer |
US8772046B2 (en) | 2007-02-06 | 2014-07-08 | Brandeis University | Manipulation of fluids and reactions in microfluidic systems |
EP2527467A3 (en) * | 2007-04-13 | 2013-03-20 | Bristol-Myers Squibb Company | Biomarkers and methods for determining sensitivity to vascular endothelial growth factor receptor-2 modulators |
JP5240739B2 (ja) | 2007-04-13 | 2013-07-17 | オーエスアイ・フアーマシユーテイカルズ・エル・エル・シー | キナーゼ阻害剤に対する抗癌応答を予測する生物学的マーカー |
US8592221B2 (en) | 2007-04-19 | 2013-11-26 | Brandeis University | Manipulation of fluids, fluid components and reactions in microfluidic systems |
WO2008150937A2 (en) * | 2007-05-29 | 2008-12-11 | Aivaradx, Inc. | Real-time pcr |
AU2008260075A1 (en) | 2007-05-31 | 2008-12-11 | California Pacific Medical Center | Method to predict or diagnose a gastrointestinal disorder or disease |
EP2171090B1 (en) | 2007-06-08 | 2013-04-03 | Genentech, Inc. | Gene expression markers of tumor resistance to her2 inhibitor treatment |
US9551033B2 (en) | 2007-06-08 | 2017-01-24 | Genentech, Inc. | Gene expression markers of tumor resistance to HER2 inhibitor treatment |
CN101918424A (zh) | 2007-06-15 | 2010-12-15 | 俄亥俄州立大学研究基金会 | 用于靶向由Drosha介导的微小RNA加工的致癌ALL-1融合蛋白 |
US8883440B2 (en) | 2007-07-26 | 2014-11-11 | Nancy M. Lee | Method to predict or diagnose a gastrointestinal disorder or disease |
EP2653561B1 (en) | 2007-08-03 | 2016-03-02 | The Ohio State University Research Foundation | Ultraconserved regions encoding ncRNAs |
US20090125247A1 (en) * | 2007-08-16 | 2009-05-14 | Joffre Baker | Gene expression markers of recurrence risk in cancer patients after chemotherapy |
EP2028600B1 (en) | 2007-08-24 | 2016-10-26 | Sysmex Corporation | Diagnosis support system for cancer, diagnosis support for information providing method for cancer, and computer program product |
US9388457B2 (en) | 2007-09-14 | 2016-07-12 | Affymetrix, Inc. | Locus specific amplification using array probes |
US8716190B2 (en) | 2007-09-14 | 2014-05-06 | Affymetrix, Inc. | Amplification and analysis of selected targets on solid supports |
AU2008298560A1 (en) * | 2007-09-14 | 2009-03-19 | Ventana Medical Systems, Inc. | Prostate cancer biomarkers |
AU2008307579A1 (en) | 2007-10-03 | 2009-04-09 | Osi Pharmaceuticals, Inc. | Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors |
AU2008307634A1 (en) | 2007-10-03 | 2009-04-09 | Osi Pharmaceuticals, Inc. | Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors |
US20100297639A1 (en) * | 2007-10-09 | 2010-11-25 | University Of Washington Through Its Center For Commercialization | Quantitative/semi-quantitative measurement of epor on cancer cells |
EP2201138B1 (en) * | 2007-10-16 | 2015-03-18 | Ventana Medical Systems, Inc. | Grading, staging, and prognosing cancer using osteopontin-c |
WO2009055559A1 (en) * | 2007-10-23 | 2009-04-30 | University Of South Florida | Method of predicting chemotherapeutic responsiveness of cancer |
WO2009055773A2 (en) | 2007-10-26 | 2009-04-30 | The Ohio State University Research Foundation | Methods for identifying fragile histidine triad (fhit) interaction and uses thereof |
EP2065473A1 (en) * | 2007-11-28 | 2009-06-03 | Siemens Healthcare Diagnostics GmbH | A method to assess prognosis and to predict therapeutic success in gynecologic cancer |
EP2215251A2 (en) | 2007-11-30 | 2010-08-11 | Siemens Healthcare Diagnostics GmbH | Method for predicting therapy responsiveness in basal like tumors |
US8476420B2 (en) * | 2007-12-05 | 2013-07-02 | The Wistar Institute Of Anatomy And Biology | Method for diagnosing lung cancers using gene expression profiles in peripheral blood mononuclear cells |
CA2711843C (en) | 2007-12-20 | 2018-11-13 | Laboratory Corporation Of America Holdings | Her-2 diagnostic methods |
EP2641977B1 (en) | 2008-05-12 | 2014-09-03 | Genomic Health, Inc. | Tests to predict responsiveness of cancer patients to chemotherapy treatment options |
NZ589143A (en) * | 2008-05-14 | 2012-02-24 | Genomic Health Inc | Colorectal cancer response prediction based on AREG EREG DUSP6 and SLC26A3 expression levels |
WO2009154669A1 (en) * | 2008-05-28 | 2009-12-23 | Albert Einstein College Of Medicine Of Yeshiva University | Prediction of chemotherapeutic response via single-cell profiling of transcription site activation |
EP2307028B1 (en) | 2008-06-11 | 2013-10-02 | The Government of the United States of America as represented by The Secretary of the Department of Health and Human Services | Use of mir-26 family as a predictive marker of hepatocellular carcinoma and responsiveness to therapy |
BRPI0812682A2 (pt) | 2008-06-16 | 2010-06-22 | Genentech Inc | tratamento de cáncer de mama metastático |
EP4047367A1 (en) | 2008-07-18 | 2022-08-24 | Bio-Rad Laboratories, Inc. | Method for detecting target analytes with droplet libraries |
US12038438B2 (en) | 2008-07-18 | 2024-07-16 | Bio-Rad Laboratories, Inc. | Enzyme quantification |
GB2467691A (en) | 2008-09-05 | 2010-08-11 | Aueon Inc | Methods for stratifying and annotating cancer drug treatment options |
US10359425B2 (en) * | 2008-09-09 | 2019-07-23 | Somalogic, Inc. | Lung cancer biomarkers and uses thereof |
LT2562268T (lt) | 2008-09-20 | 2017-04-25 | The Board Of Trustees Of The Leland Stanford Junior University | Neinvazinis fetalinės aneuploidijos diagnozavimas sekvenavimu |
US9332973B2 (en) | 2008-10-01 | 2016-05-10 | Covidien Lp | Needle biopsy device with exchangeable needle and integrated needle protection |
US9186128B2 (en) | 2008-10-01 | 2015-11-17 | Covidien Lp | Needle biopsy device |
US11298113B2 (en) | 2008-10-01 | 2022-04-12 | Covidien Lp | Device for needle biopsy with integrated needle protection |
US9782565B2 (en) | 2008-10-01 | 2017-10-10 | Covidien Lp | Endoscopic ultrasound-guided biliary access system |
US8968210B2 (en) | 2008-10-01 | 2015-03-03 | Covidien LLP | Device for needle biopsy with integrated needle protection |
US20100221752A2 (en) * | 2008-10-06 | 2010-09-02 | Somalogic, Inc. | Ovarian Cancer Biomarkers and Uses Thereof |
EP3075864A1 (en) * | 2008-10-14 | 2016-10-05 | Caris MPI, Inc. | Gene and gene expressed protein targets depicting biomarker patterns and signature sets by tumor type |
US20110263442A1 (en) * | 2008-10-29 | 2011-10-27 | Jan Akervall | Method of using biomarkers |
GB2463401B (en) | 2008-11-12 | 2014-01-29 | Caris Life Sciences Luxembourg Holdings S A R L | Characterizing prostate disorders by analysis of microvesicles |
SG177252A1 (en) | 2008-12-01 | 2012-03-29 | Lab Corp America Holdings | METHODS AND ASSAYS FOR MEASURING p95 AND/OR p95 IN A SAMPLE AND ANTIBODIES SPECIFIC FOR p95 |
US20120041274A1 (en) | 2010-01-07 | 2012-02-16 | Myriad Genetics, Incorporated | Cancer biomarkers |
CA2749846C (en) | 2009-01-15 | 2018-08-07 | Laboratory Corporation Of America Holdings | Methods of determining patient response by measurement of her-3 |
EP2387717B1 (en) * | 2009-01-15 | 2014-12-10 | Laboratory Corporation of America Holdings | Methods of determining patient response by measurement of her-2 expression |
EP2400990A2 (en) * | 2009-02-26 | 2012-01-04 | OSI Pharmaceuticals, LLC | In situ methods for monitoring the emt status of tumor cells in vivo |
US8528589B2 (en) | 2009-03-23 | 2013-09-10 | Raindance Technologies, Inc. | Manipulation of microfluidic droplets |
WO2010127338A1 (en) * | 2009-05-01 | 2010-11-04 | Nuvera Biosciences, Inc. | Index of genomic expression of estrogen receptor (er) and er-related genes |
WO2010135411A2 (en) * | 2009-05-19 | 2010-11-25 | The Regents Of The University Of Colorado | Aurora-a copy number and sensitivity to inhibitors |
EP2278026A1 (en) * | 2009-07-23 | 2011-01-26 | Université de la Méditerranée | A method for predicting clinical outcome of patients with breast carcinoma |
WO2011031877A1 (en) | 2009-09-09 | 2011-03-17 | The General Hospital Corporation | Use of microvesicles in analyzing nucleic acid profiles |
WO2011038063A1 (en) | 2009-09-28 | 2011-03-31 | The Trustees Of The University Of Pennsylvania | Method of diagnosing and treating interstitial cystitis |
WO2011042564A1 (en) | 2009-10-09 | 2011-04-14 | Universite De Strasbourg | Labelled silica-based nanomaterial with enhanced properties and uses thereof |
US7736861B1 (en) * | 2009-10-19 | 2010-06-15 | Aveo Pharmaceuticals, Inc. | Tivozanib response prediction |
ES2735993T3 (es) * | 2009-11-23 | 2019-12-23 | Genomic Health Inc | Métodos para predecir el resultado clínico del cáncer |
CN102803511A (zh) | 2009-11-23 | 2012-11-28 | 俄亥俄州立大学 | 用于影响肿瘤细胞生长、迁移和侵袭的材料和方法 |
JP2013511999A (ja) * | 2009-12-01 | 2013-04-11 | プレシジョン セラピューティクス,インコーポレイテッド | 乳癌細胞についての多剤応答マーカー |
WO2011079176A2 (en) | 2009-12-23 | 2011-06-30 | Raindance Technologies, Inc. | Microfluidic systems and methods for reducing the exchange of molecules between droplets |
NZ617003A (en) | 2010-01-11 | 2015-04-24 | Genomic Health Inc | Method to use gene expression to determine likelihood of clinical outcome of renal cancer |
US20130011393A1 (en) * | 2010-01-12 | 2013-01-10 | Johnathan Mark Lancaster | Bad pathway gene signature |
US9399797B2 (en) | 2010-02-12 | 2016-07-26 | Raindance Technologies, Inc. | Digital analyte analysis |
WO2011100604A2 (en) | 2010-02-12 | 2011-08-18 | Raindance Technologies, Inc. | Digital analyte analysis |
US10351905B2 (en) | 2010-02-12 | 2019-07-16 | Bio-Rad Laboratories, Inc. | Digital analyte analysis |
US9366632B2 (en) | 2010-02-12 | 2016-06-14 | Raindance Technologies, Inc. | Digital analyte analysis |
WO2011107819A1 (en) * | 2010-03-01 | 2011-09-09 | Adelbio | Methods for predicting outcome of breast cancer, and/or risk of relapse, response or survival of a patient suffering therefrom |
KR20130056855A (ko) | 2010-03-01 | 2013-05-30 | 카리스 라이프 사이언스 룩셈부르크 홀딩스 | 치료진단용 생물학적 지표들 |
US20110217297A1 (en) * | 2010-03-03 | 2011-09-08 | Koo Foundation Sun Yat-Sen Cancer Center | Methods for classifying and treating breast cancers |
WO2011109584A2 (en) * | 2010-03-03 | 2011-09-09 | OSI Pharmaceuticals, LLC | Biological markers predictive of anti-cancer response to insulin-like growth factor-1 receptor kinase inhibitors |
KR101346955B1 (ko) * | 2010-03-30 | 2014-01-02 | 서울대학교산학협력단 | 뇌종양의 재발 가능성 및 생존 예후 예측용 조성물 및 이를 포함하는 키트 |
JP5553661B2 (ja) | 2010-03-30 | 2014-07-16 | シスメックス株式会社 | 癌の再発リスク判定方法 |
US8597203B2 (en) | 2010-03-30 | 2013-12-03 | Siteselect Medical Technologies, Inc. | Tissue excision device with a reduced diameter cannula |
AU2011237669B2 (en) | 2010-04-06 | 2016-09-08 | Caris Life Sciences Switzerland Holdings Gmbh | Circulating biomarkers for disease |
US20120003639A1 (en) * | 2010-04-27 | 2012-01-05 | Prelude, Inc. | Cancer biomarkers and methods of use thereof |
WO2011150245A2 (en) * | 2010-05-26 | 2011-12-01 | Expression Pathology, Inc. | Urokinase-type plasminogen activator protein/plasminogen activator inhibitor type-1 protein-selected reaction monitoring assay |
US20120053253A1 (en) | 2010-07-07 | 2012-03-01 | Myriad Genetics, Incorporated | Gene signatures for cancer prognosis |
MX355020B (es) | 2010-07-09 | 2018-04-02 | Somalogic Inc | Biomarcadores de cancer de pulmon y usos de los mismos. |
DE102010033575B4 (de) * | 2010-08-02 | 2016-01-14 | Eberhard-Karls-Universität Tübingen Universitätsklinikum | ASPP2-Splicevariante |
BR112013003391B8 (pt) | 2010-08-13 | 2022-10-25 | Somalogic Inc | Método para diagnosticar câncer pancreático em um indivíduo |
WO2012030840A2 (en) | 2010-08-30 | 2012-03-08 | Myriad Genetics, Inc. | Gene signatures for cancer diagnosis and prognosis |
WO2012045012A2 (en) | 2010-09-30 | 2012-04-05 | Raindance Technologies, Inc. | Sandwich assays in droplets |
JP5931897B2 (ja) | 2010-11-12 | 2016-06-08 | ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイションThe Ohio State University Research Foundation | マイクロrna−21、ミスマッチ修復および結腸直腸癌に関連する物質および方法 |
US10758619B2 (en) | 2010-11-15 | 2020-09-01 | The Ohio State University | Controlled release mucoadhesive systems |
WO2012090073A2 (en) * | 2010-12-30 | 2012-07-05 | The Netherlands Cancer Institute | Methods and compositions for predicting chemotherapy sensitivity |
WO2012097368A2 (en) * | 2011-01-14 | 2012-07-19 | Response Genetics, Inc. | Her3 and her4 primers and probes for detecting her3 and her4 mrna expression |
WO2012109233A2 (en) * | 2011-02-07 | 2012-08-16 | Board Of Regents, The University Of Texas System | Methods for predicting recurrence risk in breast cancer patients |
WO2012109600A2 (en) | 2011-02-11 | 2012-08-16 | Raindance Technologies, Inc. | Methods for forming mixed droplets |
WO2012112804A1 (en) | 2011-02-18 | 2012-08-23 | Raindance Technoligies, Inc. | Compositions and methods for molecular labeling |
US8664192B2 (en) | 2011-03-07 | 2014-03-04 | The Ohio State University | Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer |
US9896730B2 (en) | 2011-04-25 | 2018-02-20 | OSI Pharmaceuticals, LLC | Use of EMT gene signatures in cancer drug discovery, diagnostics, and treatment |
US8841071B2 (en) | 2011-06-02 | 2014-09-23 | Raindance Technologies, Inc. | Sample multiplexing |
EP3709018A1 (en) | 2011-06-02 | 2020-09-16 | Bio-Rad Laboratories, Inc. | Microfluidic apparatus for identifying components of a chemical reaction |
US20140147855A1 (en) * | 2011-07-01 | 2014-05-29 | Pinpoint Genomics, Inc. | Method for Extracting RNA from Fixed Embedded Tissue |
EP2744916A4 (en) | 2011-07-13 | 2015-06-17 | Primeradx Inc | MULTIMODAL METHODS FOR SIMULTANEOUS DETECTION AND QUANTIFICATION OF MULTIPLE NUCLEIC ACIDS IN A SAMPLE |
US8658430B2 (en) | 2011-07-20 | 2014-02-25 | Raindance Technologies, Inc. | Manipulating droplet size |
GB201114919D0 (en) * | 2011-08-30 | 2011-10-12 | Glaxosmithkline Biolog Sa | Method |
CN102533740B (zh) * | 2011-09-07 | 2013-07-24 | 杭州艾迪康医学检验中心有限公司 | 人白血病融合基因bcr-abl的rt-pcr引物及其使用方法 |
AU2012323924A1 (en) | 2011-10-14 | 2014-05-29 | The Ohio State University | Methods and materials related to ovarian cancer |
MX357402B (es) * | 2011-11-08 | 2018-07-09 | Genomic Health Inc | Metodo para predecir el pronostico de cancer de mama. |
CN103145845A (zh) * | 2011-12-06 | 2013-06-12 | 吉林圣元科技有限责任公司 | Tat与人野生型P53融合蛋白在毕赤酵母中的表达 |
WO2013090556A1 (en) | 2011-12-13 | 2013-06-20 | The Ohio State University | Methods and compositions related to mir-21 and mir-29a, exosome inhibition, and cancer metastasis |
WO2013110053A1 (en) | 2012-01-20 | 2013-07-25 | The Ohio State University | Breast cancer biomarker signatures for invasiveness and prognosis |
WO2013120089A1 (en) | 2012-02-10 | 2013-08-15 | Raindance Technologies, Inc. | Molecular diagnostic screening assay |
EP3524693A1 (en) | 2012-04-30 | 2019-08-14 | Raindance Technologies, Inc. | Digital analyte analysis |
EP2867375B1 (en) | 2012-06-27 | 2019-02-27 | Berg LLC | Use of markers in the diagnosis and treatment of prostate cancer |
EP2920322B1 (en) | 2012-11-16 | 2023-01-11 | Myriad Genetics, Inc. | Gene signatures for cancer prognosis |
US20140186468A1 (en) * | 2012-12-07 | 2014-07-03 | Susana Gonzalo | Diagnosing subsets of triple-negative breast cancer |
WO2014113641A1 (en) | 2013-01-18 | 2014-07-24 | Kline Ellis | Selective glycosidase regimen for immune programming and treatment of cancer |
WO2014124454A1 (en) | 2013-02-11 | 2014-08-14 | Katerina Gurova | Use of facilitates chromatin transcription complex (fact) in cancer |
EP2986762B1 (en) | 2013-04-19 | 2019-11-06 | Bio-Rad Laboratories, Inc. | Digital analyte analysis |
US9637798B2 (en) | 2013-05-21 | 2017-05-02 | Dignity Health | Genetic signature of vulnerability to inhibitors of base excision repair (BER) in cancer |
EP3004392B1 (en) | 2013-05-30 | 2020-09-30 | Genomic Health, Inc. | Gene expression profile algorithm for calculating a recurrence score for a patient with kidney cancer |
WO2015048098A1 (en) | 2013-09-24 | 2015-04-02 | Washington University | Diagnostic methods for infectious disease using endogenous gene expression |
US11901041B2 (en) | 2013-10-04 | 2024-02-13 | Bio-Rad Laboratories, Inc. | Digital analysis of nucleic acid modification |
US9944977B2 (en) | 2013-12-12 | 2018-04-17 | Raindance Technologies, Inc. | Distinguishing rare variations in a nucleic acid sequence from a sample |
EP3090063B1 (en) | 2013-12-31 | 2019-11-06 | Bio-Rad Laboratories, Inc. | Method for detection of latent retrovirus |
CA2947624A1 (en) | 2014-05-13 | 2015-11-19 | Myriad Genetics, Inc. | Gene signatures for cancer prognosis |
WO2015187612A1 (en) | 2014-06-02 | 2015-12-10 | Valley Health System | Method and systems for lung cancer diagnosis |
US9994912B2 (en) | 2014-07-03 | 2018-06-12 | Abbott Molecular Inc. | Materials and methods for assessing progression of prostate cancer |
EP3207370B1 (en) * | 2014-10-17 | 2019-04-17 | Assistance Publique-Hôpitaux de Paris | Methods for the monitoring and prognosis of a bladder cancer |
CN108064380A (zh) | 2014-10-24 | 2018-05-22 | 皇家飞利浦有限公司 | 使用多种细胞信号传导途径活性的医学预后和治疗反应的预测 |
JP7065609B6 (ja) | 2014-10-24 | 2022-06-06 | コーニンクレッカ フィリップス エヌ ヴェ | 複数の細胞シグナル伝達経路活性を用いる治療応答の医学的予後及び予測 |
WO2016062891A1 (en) | 2014-10-24 | 2016-04-28 | Koninklijke Philips N.V. | ASSESSMENT OF TGF-β CELLULAR SIGNALING PATHWAY ACTIVITY USING MATHEMATICAL MODELLING OF TARGET GENE EXPRESSION |
WO2016090323A1 (en) | 2014-12-05 | 2016-06-09 | Prelude, Inc. | Dcis recurrence and invasive breast cancer |
KR102657306B1 (ko) | 2014-12-08 | 2024-04-12 | 버그 엘엘씨 | 전립선암의 진단 및 치료에서 필라민을 포함하는 마커의 용도 |
AU2016302344A1 (en) | 2015-08-06 | 2018-03-08 | The Wistar Institute Of Anatomy And Biology | Combination therapies targeting mitochondrial biogenesis for cancer therapy |
EP3334837B1 (en) | 2015-08-14 | 2020-12-16 | Koninklijke Philips N.V. | Assessment of nfkb cellular signaling pathway activity using mathematical modelling of target gene expression |
US10647981B1 (en) | 2015-09-08 | 2020-05-12 | Bio-Rad Laboratories, Inc. | Nucleic acid library generation methods and compositions |
AU2017281099A1 (en) | 2016-06-21 | 2019-01-03 | The Wistar Institute Of Anatomy And Biology | Compositions and methods for diagnosing lung cancers using gene expression profiles |
US10487365B2 (en) | 2016-09-20 | 2019-11-26 | The United States Of America, As Represented By The Secretary, Department Of Health And Human Services | Methods for detecting expression of lnc-FANCI-2 in cervical cells |
US11229662B2 (en) | 2016-11-15 | 2022-01-25 | The Schepens Eye Research Institute, Inc. | Compositions and methods for the treatment of aberrant angiogenesis |
KR101950717B1 (ko) * | 2016-11-23 | 2019-02-21 | 주식회사 젠큐릭스 | 유방암 환자의 화학치료 유용성 예측 방법 |
US10636512B2 (en) | 2017-07-14 | 2020-04-28 | Cofactor Genomics, Inc. | Immuno-oncology applications using next generation sequencing |
US10998178B2 (en) | 2017-08-28 | 2021-05-04 | Purdue Research Foundation | Systems and methods for sample analysis using swabs |
EP3461915A1 (en) | 2017-10-02 | 2019-04-03 | Koninklijke Philips N.V. | Assessment of jak-stat1/2 cellular signaling pathway activity using mathematical modelling of target gene expression |
US11739326B2 (en) | 2017-11-14 | 2023-08-29 | Massachusetts Eye And Ear Infirmary | RUNX1 inhibition for treatment of proliferative vitreoretinopathy and conditions associated with epithelial to mesenchymal transition |
EP3502279A1 (en) | 2017-12-20 | 2019-06-26 | Koninklijke Philips N.V. | Assessment of mapk-ap 1 cellular signaling pathway activity using mathematical modelling of target gene expression |
CN110045120A (zh) * | 2018-01-15 | 2019-07-23 | 长庚医疗财团法人基隆长庚纪念医院 | 检测生物样品中wisp1的浓度在制备用于乳癌筛检及侦测复发的检测试剂盒及其应用 |
WO2020056162A1 (en) * | 2018-09-12 | 2020-03-19 | Oregon Health & Science University | Detecting and/or subtyping circulating hybrid cells that correlate with stage and survival |
JP2022500504A (ja) | 2018-09-14 | 2022-01-04 | プレリュード コーポレーションPrelude Corporation | 浸潤性乳癌のリスクを有する対象の治療の選択方法 |
WO2020178399A1 (en) | 2019-03-05 | 2020-09-10 | Norwegian University Of Science And Technology (Ntnu) | Breast cancer signature genes |
US20230070840A1 (en) * | 2020-01-30 | 2023-03-09 | Arocell Ab | Predicting patient survival |
US20240218453A1 (en) * | 2021-04-21 | 2024-07-04 | Apollomics Inc. | Diagnostic and treatment of cancer using c-met inhibitor |
EP4253567A1 (en) * | 2022-03-31 | 2023-10-04 | OncoAssure Limited | A method of predicting risk of an aggressive or recurrent cancer |
Family Cites Families (85)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US788019A (en) * | 1904-06-29 | 1905-04-25 | Charlie B Cady | Hay fork and hook. |
USRE35491E (en) | 1982-11-04 | 1997-04-08 | The Regents Of The University Of California | Methods and compositions for detecting human tumors |
CA1252046A (en) | 1982-11-04 | 1989-04-04 | Martin J. Cline | Methods for oncogenic detection |
US4699877A (en) * | 1982-11-04 | 1987-10-13 | The Regents Of The University Of California | Methods and compositions for detecting human tumors |
US7838216B1 (en) | 1986-03-05 | 2010-11-23 | The United States Of America, As Represented By The Department Of Health And Human Services | Human gene related to but distinct from EGF receptor gene |
US5015568A (en) | 1986-07-09 | 1991-05-14 | The Wistar Institute | Diagnostic methods for detecting lymphomas in humans |
US5831066A (en) | 1988-12-22 | 1998-11-03 | The Trustees Of The University Of Pennsylvania | Regulation of bcl-2 gene expression |
US6316208B1 (en) * | 1994-01-07 | 2001-11-13 | Memorial Sloan-Kettering Cancer Center | Methods for determining isolated p27 protein levels and uses thereof |
US5563035A (en) * | 1994-06-16 | 1996-10-08 | The Board Of Trustees Of The Leland Stanford Junior University | Estrogen receptor regulation and its uses |
US7625697B2 (en) * | 1994-06-17 | 2009-12-01 | The Board Of Trustees Of The Leland Stanford Junior University | Methods for constructing subarrays and subarrays made thereby |
US5858678A (en) | 1994-08-02 | 1999-01-12 | St. Louis University | Apoptosis-regulating proteins |
CA2262403C (en) | 1995-07-31 | 2011-09-20 | Urocor, Inc. | Biomarkers and targets for diagnosis, prognosis and management of prostate disease |
US5821082A (en) | 1996-05-23 | 1998-10-13 | St. Louis University Health Sciences Center | Anti-proliferation domain of a human Bcl-2 and DNA encoding the same |
US5846723A (en) * | 1996-12-20 | 1998-12-08 | Geron Corporation | Methods for detecting the RNA component of telomerase |
AU724107B2 (en) * | 1997-01-31 | 2000-09-14 | Fred Hutchinson Cancer Research Center | Prognosis of cancer patients by determining expression of cell cycle regulators p27 and cyclin E |
US6180333B1 (en) * | 1997-05-15 | 2001-01-30 | Thomas Jefferson University | Determination of cyclin-dependent kinase inhibitor P27 levels as a prognostic factor in cancer patients |
WO1999002714A1 (en) | 1997-07-07 | 1999-01-21 | Abbott Laboratories | Reagents and methods useful for detecting diseases of the breast |
JP2003528564A (ja) | 1998-06-06 | 2003-09-30 | ジェノスティック ファーマ リミテッド | 遺伝的プロファイリングに使用するプローブ |
EP1115737A4 (en) * | 1998-09-23 | 2004-11-24 | Cleveland Clinic Foundation | NEW GENES STIMULATED OR REPRESSED BY INTERFERON |
US6579973B1 (en) | 1998-12-28 | 2003-06-17 | Corixa Corporation | Compositions for the treatment and diagnosis of breast cancer and methods for their use |
AU3246200A (en) | 1999-02-25 | 2000-09-14 | Boris Bilynsky | Nucleic acid molecules associated with melanoma and thyroid tumors |
AU3395900A (en) | 1999-03-12 | 2000-10-04 | Human Genome Sciences, Inc. | Human lung cancer associated gene sequences and polypeptides |
EP1159619A2 (en) * | 1999-03-15 | 2001-12-05 | EOS Biotechnology, Inc. | Methods of diagnosing and treating breast cancer |
US6647341B1 (en) * | 1999-04-09 | 2003-11-11 | Whitehead Institute For Biomedical Research | Methods for classifying samples and ascertaining previously unknown classes |
US6960439B2 (en) | 1999-06-28 | 2005-11-01 | Source Precision Medicine, Inc. | Identification, monitoring and treatment of disease and characterization of biological condition using gene expression profiles |
EP1200618A2 (en) * | 1999-07-09 | 2002-05-02 | The Burnham Institute | A method for determining the prognosis of cancer patients by measuring levels of bag expression |
US6326148B1 (en) | 1999-07-12 | 2001-12-04 | The Regents Of The University Of California | Detection of copy number changes in colon cancer |
US6271002B1 (en) | 1999-10-04 | 2001-08-07 | Rosetta Inpharmatics, Inc. | RNA amplification method |
CA2391805A1 (en) | 1999-10-06 | 2001-04-12 | The Regents Of The University Of California | Differentially expressed genes associated with her-2/neu overexpression |
US6703202B2 (en) * | 1999-11-30 | 2004-03-09 | Oxo Chemie Ag | Evaluating and predicting clinical outcomes by gene expression analysis |
CA2490909A1 (en) | 1999-12-01 | 2001-06-07 | Genentech, Inc. | Secreted and transmembrane polypeptides and nucleic acids encoding the same |
US6750013B2 (en) | 1999-12-02 | 2004-06-15 | Protein Design Labs, Inc. | Methods for detection and diagnosing of breast cancer |
US6248535B1 (en) * | 1999-12-20 | 2001-06-19 | University Of Southern California | Method for isolation of RNA from formalin-fixed paraffin-embedded tissue specimens |
JP2003519491A (ja) * | 2000-01-13 | 2003-06-24 | ジェネンテック・インコーポレーテッド | 新規なstra6ポリペプチド |
WO2001051661A2 (en) | 2000-01-13 | 2001-07-19 | Amsterdam Support Diagnostics B.V. | A universal nucleic acid amplification system for nucleic acids in a sample |
US6322986B1 (en) | 2000-01-18 | 2001-11-27 | Albany Medical College | Method for colorectal cancer prognosis and treatment selection |
US6618679B2 (en) | 2000-01-28 | 2003-09-09 | Althea Technologies, Inc. | Methods for analysis of gene expression |
WO2001055208A1 (en) | 2000-01-31 | 2001-08-02 | Human Genome Sciences, Inc. | Nucleic acids, proteins, and antibodies |
WO2001070979A2 (en) | 2000-03-21 | 2001-09-27 | Millennium Pharmaceuticals, Inc. | Genes, compositions, kits, and method for identification, assessment, prevention and therapy of ovarian cancer |
WO2001075162A2 (en) | 2000-03-31 | 2001-10-11 | University Of Louisville Research Foundation, Inc. | Microarrays to screen regulatory genes |
WO2002000677A1 (en) | 2000-06-07 | 2002-01-03 | Human Genome Sciences, Inc. | Nucleic acids, proteins, and antibodies |
WO2002008461A2 (en) * | 2000-07-21 | 2002-01-31 | Global Genomics Ab | A METHOD AND AN ALGORITHM FOR mRNA EXPRESSION ANALYSIS |
WO2002008282A2 (en) | 2000-07-26 | 2002-01-31 | Stanford University | Bstp-ras/rerg protein and related reagents and methods of use thereof |
US6388073B1 (en) | 2000-07-26 | 2002-05-14 | Shire Us Inc. | Method for the manufacture of anagrelide |
WO2002008260A2 (en) | 2000-07-26 | 2002-01-31 | Stanford University | Bstp-ecg1 protein and related reagents and methods of use thereof |
AU2001277172A1 (en) | 2000-07-26 | 2002-02-05 | Applied Genomics, Inc. | Bstp-trans protein and related reagents and methods of use thereof |
WO2002010436A2 (en) * | 2000-07-28 | 2002-02-07 | The Brigham And Women's Hospital, Inc. | Prognostic classification of breast cancer |
US7795232B1 (en) | 2000-08-25 | 2010-09-14 | Genta Incorporated | Methods of treatment of a bcl-2 disorder using bcl-2 antisense oligomers |
AR035541A1 (es) * | 2000-11-13 | 2004-06-16 | Pharmacia Ab | Un metodo de tratamiento para pacientes que sufren de glaucoma severo o necesitan una reduccion de la presion intraocular (pio) y el uso de una combinacion de agentes reductores de la pio |
US6602670B2 (en) * | 2000-12-01 | 2003-08-05 | Response Genetics, Inc. | Method of determining a chemotherapeutic regimen based on ERCC1 expression |
US6582919B2 (en) | 2001-06-11 | 2003-06-24 | Response Genetics, Inc. | Method of determining epidermal growth factor receptor and HER2-neu gene expression and correlation of levels thereof with survival rates |
AU2002234799A1 (en) * | 2000-12-08 | 2002-06-18 | Ipsogen | Gene expression profiling of primary breast carcinomas using arrays of candidate genes |
AU2002255478A1 (en) | 2001-01-10 | 2002-09-12 | Pe Corporation (Ny) | Kits, such as nucleic acid arrays, comprising a majority of human exons or transcripts, for detecting expression and other uses thereof |
WO2002059377A2 (en) | 2001-01-24 | 2002-08-01 | Protein Design Labs | Methods of diagnosis of breast cancer, compositions and methods of screening for modulators of breast cancer |
US20070015148A1 (en) * | 2001-01-25 | 2007-01-18 | Orr Michael S | Gene expression profiles in breast tissue |
CN1554025A (zh) * | 2001-03-12 | 2004-12-08 | Īŵ���ɷ�����˾ | 患病状态的细胞为基础的检测和鉴别 |
WO2002084560A1 (en) * | 2001-04-06 | 2002-10-24 | Florence Comite | System and method for delivering integrated health care |
EP1399593A2 (en) * | 2001-05-16 | 2004-03-24 | Novartis AG | Genes expressed in breast cancer as prognostic and therapeutic targets |
US7514209B2 (en) | 2001-06-18 | 2009-04-07 | Rosetta Inpharmatics Llc | Diagnosis and prognosis of breast cancer patients |
US7705120B2 (en) * | 2001-06-21 | 2010-04-27 | Millennium Pharmaceuticals, Inc. | Compositions, kits, and methods for identification, assessment, prevention, and therapy of breast cancer |
US7125680B2 (en) | 2001-07-27 | 2006-10-24 | The Regents Of The University Of California | Methods and materials for characterizing and modulating interaction between heregulin and HER3 |
AU2002343443A1 (en) * | 2001-09-28 | 2003-04-14 | Whitehead Institute For Biomedical Research | Classification of lung carcinomas using gene expression analysis |
EP2799555B1 (en) | 2002-03-13 | 2017-02-22 | Genomic Health, Inc. | Gene expression profiling in biopsied tumor tissues |
AU2003215460A1 (en) | 2002-03-28 | 2003-10-13 | Qlt Inc. | Cancer associated protein kinases and their uses |
EP1900827A3 (en) | 2002-05-21 | 2008-04-16 | Bayer HealthCare AG | Methods and compositions for the prediction, diagnosis, prognosis, prevention and treatment of malignant neoplasia |
AU2003235470A1 (en) | 2002-06-19 | 2004-01-06 | Smithkline Beecham Corporation | Predictive markers in cancer therapy |
US20040231909A1 (en) * | 2003-01-15 | 2004-11-25 | Tai-Yang Luh | Motorized vehicle having forward and backward differential structure |
ATE412779T1 (de) * | 2003-02-20 | 2008-11-15 | Genomic Health Inc | Benutzung von intronischen rna sequenzen zur quantifizierung der genexpression |
JP2007507222A (ja) * | 2003-05-28 | 2007-03-29 | ゲノミック ヘルス, インコーポレイテッド | 化学療法に対する応答を予測するための遺伝子発現マーカー |
ES2609234T3 (es) * | 2003-06-24 | 2017-04-19 | Genomic Health, Inc. | Predicción de la probabilidad de recidiva de cáncer |
CA2531967C (en) * | 2003-07-10 | 2013-07-16 | Genomic Health, Inc. | Expression profile algorithm and test for cancer prognosis |
US20050221398A1 (en) * | 2004-01-16 | 2005-10-06 | Ipsogen, Sas, A Corporation Of France | Protein expression profiling and breast cancer prognosis |
WO2005100606A2 (en) * | 2004-04-09 | 2005-10-27 | Genomic Health, Inc. | Gene expression markers for predicting response to chemotherapy |
JP2006040014A (ja) | 2004-07-28 | 2006-02-09 | Matsushita Electric Ind Co Ltd | 情報通信端末 |
AU2005267756A1 (en) * | 2004-07-30 | 2006-02-09 | Rosetta Inpharmatics Llc | Prognosis of breast cancer patients |
WO2006052862A1 (en) * | 2004-11-05 | 2006-05-18 | Genomic Health, Inc. | Predicting response to chemotherapy using gene expression markers |
AU2005304878B2 (en) * | 2004-11-05 | 2010-07-08 | Genomic Health, Inc. | Molecular indicators of breast cancer prognosis and prediction of treatment response |
CA2613290A1 (en) * | 2005-05-27 | 2007-05-24 | Aurelium Biopharma Inc. | Focused microarray and methods of diagnosing chemotherapeutic drug resistance in a cancer cell |
EP1907858A4 (en) * | 2005-06-13 | 2009-04-08 | Univ Michigan | COMPOSITIONS AND METHODS OF TREATMENT AND DIAGNOSIS OF CANCER |
JP4369419B2 (ja) * | 2005-12-09 | 2009-11-18 | 株式会社小松製作所 | 無人車両の誘導走行制御装置 |
WO2007123772A2 (en) * | 2006-03-31 | 2007-11-01 | Genomic Health, Inc. | Genes involved in estrogen metabolism |
CA2649089C (en) * | 2006-04-11 | 2014-07-22 | Sensortran, Inc. | Methods and apparatus for calibrating distributed fiber temperature sensing system |
US7569645B2 (en) * | 2007-06-27 | 2009-08-04 | Momentive Performance Materials Inc. | Curable silyl-containing polymer composition containing paint adhesion additive |
US20090125247A1 (en) * | 2007-08-16 | 2009-05-14 | Joffre Baker | Gene expression markers of recurrence risk in cancer patients after chemotherapy |
EP2641977B1 (en) * | 2008-05-12 | 2014-09-03 | Genomic Health, Inc. | Tests to predict responsiveness of cancer patients to chemotherapy treatment options |
-
2003
- 2003-03-12 EP EP14163244.8A patent/EP2799555B1/en not_active Expired - Lifetime
- 2003-03-12 ES ES10158652.7T patent/ES2486265T3/es not_active Expired - Lifetime
- 2003-03-12 AT AT07024457T patent/ATE529535T1/de active
- 2003-03-12 EP EP10158652.7A patent/EP2261369B1/en not_active Expired - Lifetime
- 2003-03-12 CA CA2478850A patent/CA2478850C/en not_active Expired - Lifetime
- 2003-03-12 AU AU2003253986A patent/AU2003253986A1/en not_active Abandoned
- 2003-03-12 ES ES07024457T patent/ES2374311T3/es not_active Expired - Lifetime
- 2003-03-12 EP EP10158657A patent/EP2258873A3/en not_active Ceased
- 2003-03-12 EP EP10158642.8A patent/EP2258872B1/en not_active Expired - Lifetime
- 2003-03-12 EP EP03744665A patent/EP1488007A4/en not_active Withdrawn
- 2003-03-12 WO PCT/US2003/007713 patent/WO2003078662A1/en active Application Filing
- 2003-03-12 EP EP10158616A patent/EP2241636A1/en not_active Ceased
- 2003-03-12 DK DK16181799.4T patent/DK3115470T3/en active
- 2003-03-12 US US10/388,360 patent/US7081340B2/en not_active Expired - Lifetime
- 2003-03-12 EP EP07024457A patent/EP1918386B9/en not_active Expired - Lifetime
- 2003-03-12 ES ES16181799.4T patent/ES2685702T3/es not_active Expired - Lifetime
- 2003-03-12 ES ES10158642T patent/ES2433992T3/es not_active Expired - Lifetime
- 2003-03-12 EP EP16181799.4A patent/EP3115470B1/en not_active Expired - Lifetime
- 2003-03-12 EP EP10158646A patent/EP2261368A1/en not_active Ceased
- 2003-03-12 ES ES14163244.8T patent/ES2616800T3/es not_active Expired - Lifetime
- 2003-03-12 DK DK10158652.7T patent/DK2261369T3/da active
- 2003-03-12 DK DK07024457.9T patent/DK1918386T3/da active
- 2003-03-12 DK DK10158642.8T patent/DK2258872T3/da active
- 2003-03-12 JP JP2003576654A patent/JP2005519624A/ja active Pending
- 2003-03-12 CA CA2992643A patent/CA2992643C/en not_active Expired - Lifetime
- 2003-03-12 DK DK14163244.8T patent/DK2799555T3/en active
-
2006
- 2006-02-16 JP JP2006040014A patent/JP4753741B2/ja not_active Expired - Lifetime
- 2006-06-09 US US11/450,896 patent/US10241114B2/en not_active Expired - Lifetime
- 2006-06-09 US US11/450,964 patent/US8071286B2/en not_active Expired - Fee Related
- 2006-06-09 US US11/450,961 patent/US20070141588A1/en not_active Abandoned
- 2006-06-09 US US11/450,962 patent/US7838224B2/en not_active Expired - Lifetime
- 2006-06-09 US US11/450,963 patent/US20070141589A1/en not_active Abandoned
- 2006-06-09 US US11/450,973 patent/US7858304B2/en not_active Expired - Lifetime
-
2007
- 2007-10-31 US US11/931,441 patent/US20080182255A1/en not_active Abandoned
-
2008
- 2008-11-07 HK HK11102091.1A patent/HK1148034A1/xx not_active IP Right Cessation
- 2008-11-07 HK HK11102089.5A patent/HK1148032A1/xx not_active IP Right Cessation
- 2008-11-07 HK HK08112262.8A patent/HK1120567A1/xx not_active IP Right Cessation
-
2009
- 2009-11-10 US US12/616,039 patent/US20100209920A1/en not_active Abandoned
-
2011
- 2011-09-22 JP JP2011206850A patent/JP5373019B2/ja not_active Expired - Lifetime
-
2013
- 2013-05-07 JP JP2013097280A patent/JP5461729B2/ja not_active Expired - Lifetime
- 2013-05-07 JP JP2013097282A patent/JP5792765B2/ja not_active Expired - Lifetime
- 2013-05-07 JP JP2013097281A patent/JP5461730B2/ja not_active Expired - Lifetime
-
2015
- 2015-05-04 HK HK15104243.0A patent/HK1203568A1/xx not_active IP Right Cessation
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2685702T3 (es) | Obtención de perfil de expresión génica en tejidos tumorales biopsiados | |
ES2550614T3 (es) | Marcadores de expresión génica para predecir la respuesta a la quimioterapia | |
ES2488845T5 (es) | Predicción de la probabilidad de recidiva de cáncer | |
US20040157255A1 (en) | Gene expression markers for response to EGFR inhibitor drugs | |
US20050164218A1 (en) | Gene expression markers for response to EGFR inhibitor drugs | |
JP2006521793A5 (es) | ||
SG192108A1 (en) | Colon cancer gene expression signatures and methods of use |