EP3430006A1 - Verbindungen mit spirobifluoren-strukturen - Google Patents

Verbindungen mit spirobifluoren-strukturen

Info

Publication number
EP3430006A1
EP3430006A1 EP17710010.4A EP17710010A EP3430006A1 EP 3430006 A1 EP3430006 A1 EP 3430006A1 EP 17710010 A EP17710010 A EP 17710010A EP 3430006 A1 EP3430006 A1 EP 3430006A1
Authority
EP
European Patent Office
Prior art keywords
formula
group
structures
aromatic
radicals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP17710010.4A
Other languages
German (de)
English (en)
French (fr)
Inventor
Margarita Wucherer-Plietker
Amir Parham
Sebastian Meyer
Tobias Grossmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP3430006A1 publication Critical patent/EP3430006A1/de
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention describes spirobifluorene derivatives substituted with pyridine and / or pyrimidine groups, especially for use in electronic devices.
  • the invention further relates to a process for the preparation of the compounds according to the invention and electronic devices containing these compounds.
  • OLEDs organic electroluminescent devices
  • organometallic complexes which exhibit phosphorescence.
  • organometallic compounds which exhibit phosphorescence emitters.
  • OLEDs organic electroluminescent devices
  • the other materials used in particular such as host and matrix materials, hole blocking materials, electron transport materials, hole transport materials and electron or exciton blocking materials are of particular importance. Improvements to these materials can lead to significant improvements in electroluminescent
  • heteroaromatic compounds for example triazine derivatives or benzimidazole derivatives
  • matrix materials for example, phosphorescent compounds and electron transport materials.
  • spirobifluorene derivatives which are in the 2-position with this function are known
  • Triazine groups are substituted, as in WO 2010/015306 and WO
  • 2010/072300 discloses. Further, in US 2004/147742 and WO 2005/053055 describes spirobifluorene derivatives which are substituted in the 2-position by pyrimidine groups. However, the pyrimidine residues are attached directly to the spirobifluorene group. Furthermore, EP 2468731 discloses heterocyclic compounds which have fluorene structures. Similar compounds are further known from WO 2013/191429 and EP 2108689.
  • the object of the present invention is therefore to provide compounds which are suitable for use in an organic electronic device, in particular in an organic electroluminescent device, and which, when used in this device, lead to good device properties and the provision of the corresponding electronic device.
  • the object of the present invention to provide compounds which lead to a long service life, good efficiency and low operating voltage. Especially the properties of the matrix materials have a significant influence on the life and the efficiency of the organic electroluminescent device.
  • Another object of the present invention can be seen to provide compounds which are suitable for use in a phosphorescent or fluorescent OLED, in particular as a matrix material.
  • the compounds should be as easy as possible to process, in particular show a good solubility and film formation.
  • the compounds should show increased oxidation stability and improved glass transition temperature.
  • the electronic devices should be used or adapted for many purposes.
  • the performance of the electronic devices should be maintained over a wide temperature range.
  • Devices in particular of organic electroluminescent devices, in particular with regard to the lifetime, the efficiency and the operating voltage.
  • Electronic devices in particular organic electroluminescent devices, which include such
  • Embodiments are therefore the subject of the present invention.
  • each substituted by one or more radicals R 2 may be an aryloxy or heteroaryl oxy group having 5 to 60 aromatic ring atoms, which may be substituted by one or more radicals R 2 , or an aralkyl group having 5 to 60 aromatic ring atoms, each having one or more radicals R 2 may be substituted or one
  • Heteroaryloxy devis having 5 to 60 aromatic ring atoms, which may be substituted by one or more radicals R 3 , or an aralkyl group having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more radicals R 2 or a combination of these systems; optionally two or more adjacent substituents R 2 may form a mono- or polycyclic, aliphatic or aromatic ring system which may be substituted with one or more R 3 radicals; is identical or different at each occurrence H, D, F or an aliphatic hydrocarbon radical having 1 to 20 C atoms, in which one or more H atoms may be replaced by D or F, or an aromatic and / or heteroaromatic ring system with 5 to 30 carbon atoms in which one or more H atoms may be replaced by D or F; optionally two or more adjacent substituents R 3 can form a mono- or polycyclic, aliphatic or aromatic ring system. Adjacent carbon atoms in the context of the present invention are
  • the two radicals are linked to one another by a chemical bond with the formal cleavage of two hydrogen atoms, with the formulation that two or more radicals can form a ring with one another. This is illustrated by the following scheme.
  • a condensed aryl group, a fused aromatic ring system or a fused heteroaromatic ring system in the context of the present invention is a group in which two or more
  • aromatic groups are fused together, ie fused, via a common edge, so that, for example, two carbon atoms belong to the at least two aromatic or heteroaromatic rings, as for example in naphthalene.
  • fluorene for example, is not a condensed aryl group in the sense of the present invention Invention, since in fluorene, the two aromatic groups have no common edge.
  • heteroaryl groups as well as to fused ring systems, which also
  • Heteroatoms may contain, but need not.
  • An aryl group for the purposes of this invention contains 6 to 40 carbon atoms;
  • a heteroaryl group contains 2 to 40 C atoms and at least one heteroatom, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
  • the heteroatoms are preferably selected from N, O and / or S.
  • an aryl group or heteroaryl group is either a simpler aromatic
  • Cyclus ie benzene, or a simple heteroaromatic cycle, for example pyridine, pyrimidine, thiophene, etc., or a fused aryl or heteroaryl group, for example naphthalene, anthracene,
  • An aromatic ring system in the sense of this invention contains 6 to 40 carbon atoms in the ring system.
  • a heteroaromatic ring system in the sense of this invention contains 1 to 40 C atoms and at least one heteroatom in the ring system, with the proviso that the sum of C atoms and heteroatoms gives at least 5.
  • the heteroatoms are preferably selected from N, O and / or S.
  • An aromatic or heteroaromatic ring system in the sense of this invention is to be understood as meaning a system which does not necessarily contain only aryl or heteroaryl groups but in which also more aryl or heteroaryl groups are present. groups by a non-aromatic unit (preferably less than 10% of the atoms other than H), such as.
  • N or O atom or a carbonyl group may be interrupted.
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ethers, stilbene, etc. are to be understood as aromatic ring systems in the context of this invention, and also systems in which two or more aryl groups, for example by a linear or cyclic alkyl group or interrupted by a silyl group.
  • systems in which two or more aryl or heteroaryl groups are bound directly to each other, such.
  • biphenyl, terphenyl, Quaterphenyl or bipyridine also be understood as an aromatic or heteroaromatic ring system.
  • a cyclic alkyl, alkoxy or thioalkoxy group is understood as meaning a monocyclic, a bicyclic or a polycyclic group.
  • a C 1 - to C 20 -alkyl group in which individual H atoms or CH groups can also be substituted by the abovementioned groups, for example the radicals methyl, ethyl, n-propyl, i-propyl, Cyclopropyl, n-butyl, i-butyl, s-butyl, t-butyl, cyclobutyl, 2-methylbutyl, n-pentyl, s-pentyl, t-pentyl, 2-pentyl, neo-pentyl, cyclopentyl, n-hexyl, s-hexyl, t -hexyl, 2-hexyl, 3-hexyl, neo-hexyl, cyclohexyl, 1-methylcyclopentyl, 2-methylpentyl, n-heptyl, 2-heptyl, 3-h
  • alkenyl group is understood as meaning, for example, ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl, cyclooctenyl or cyclooctadienyl.
  • alkynyl groups include ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl or
  • Octinyl understood. Under a C 1 to C 4 -alkoxy group such as methoxy, trifluoromethoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy or 2-methylbutoxy be understood.
  • aromatic or heteroaromatic ring system having 5-40 aromatic ring atoms, which may be substituted in each case with the abovementioned radicals and which may be linked via any position on the aromatic or heteroaromatic, are understood, for example, groups which are derived from benzene, naphthalene , Anthracene, benzanthracene, phenanthrene, benzophenanthrene, pyrene,
  • the symbols X, L 1 and Q have the meaning given above, in particular for formula (I).
  • compounds having structures of the formulas (Ia), (Ib) and / or (Ic) are preferred, with compounds having structures of the formula (Ia) being particularly preferred.
  • the compounds of the invention may comprise structures according to formulas (II), preferably (IIa), (IIb), (IIc) and / or (Id)
  • Ringystems with possible substituents R 2 , R 3 which may be bonded to the radicals R 1 . It can preferably be provided that the radicals R 1 of the groups X in the formulas (I), (Ia), (Ib), (Ic), (Id) (II), (IIa), (IIb), (IIc) and / or (lld) with the ring atoms of the spirobifluorene structure no
  • Form ring system This includes the formation of a ring system with possible substituents R 2 , R 3 , which may be bonded to the radicals R 1 .
  • the compounds according to the invention may preferably comprise structures according to formulas (III), preferably (IIIa), (IIIb), (Never) and / or (IIId)
  • compounds having structures of the formulas (IIIa), (IIb) and / or (Never) are preferred, with compounds having structures of the formula (IIIa) being particularly preferred.
  • the compounds of the invention may comprise structures according to formulas (IV), preferably (IVa), (IVb), (IVc) and / or (IVd)
  • Formula (IVd) wherein the symbols R 1 , L 1 and Q have the meaning given above, in particular for formula (I), m is 0, 1, 2, 3 or 4, preferably 0, 1 or 2, and n is 0, 1, 2 or 3 , preferably 0, 1 or 2.
  • compounds having structures of the formulas (IVa), (IVb) and / or (IVc) are preferred, with compounds having structures of the formula (IVa) being particularly preferred.
  • heteroaromatic ring system preferably no condensed
  • Form ring system This includes the formation of a condensed
  • Ringystems with possible substituents R 2 , R 3 which may be bonded to the radicals R 1 . It can preferably be provided that the
  • Ring atoms of the spirobifluorene structure do not form a ring system. This includes the formation of a ring system with possible substituents R 2 , R 3 , which may be bonded to the radicals R 1 . Furthermore, it can be provided that the sum of the indices m and n in the structures of the formulas (III), (IIIa), (IIIb), (Never), (IIId), (IV), (IVa), (IVb), (IVc) and / or (IVd) in each case at most 3, preferably at most 2 and particularly preferably at most 1 According to a preferred embodiment, compounds comprising structures of the formula (I), (Ia), (Ib), (Ic), ( Id) (II), (IIa), (IIb), (IIc), (Illd), (III), (IIIa), (IIIb), (Never), (Illd), (IV), (IVa), (IVb), (IVc) and / or (IVd), by structures of the formula (I),
  • compounds comprising structures of the formula Formula (I), (Ia), (Ib), (Ic), (Id) (II), (IIa), (IIb), (IIc), (Illd), (III), (IIIa), (IIIb ), (IIIc), (IIId), (IV), (IVa), (IVb), (IVc) and / or (IVd), a molecular weight of less than or equal to 5000 g / mol, preferably less than or equal to 4000 g / mol, more preferably less than or equal to 3000 g / mol, especially preferably less than or equal to 2000 g / mol and very particularly preferably less than or equal to 1200 g / mol.
  • preferred compounds of the invention are characterized in that they are sublimable. These compounds generally have a molecular weight of less than about 1200 g / mol.
  • the group Q is a pyrimidine or pyridine group, which may each be substituted by one or more radicals R 1 .
  • a pyrimidine or pyridine group comprises at least one heteroaromatic ring having 6 ring atoms and one or two nitrogen atoms. Triazine groups do not represent a pyrimidine or pyridine group since these include three nitrogen atoms in the heteroaromatic ring.
  • Formula (Q-9) Formula (Q-10) wherein the symbol R 1 has the meaning previously given inter alia for formula (I), the dashed bond marks the attachment position and m is 0, 1, 2, 3 or 4, preferably 0 , 1 or 2 and n is 0, 1, 2 or 3, preferably 0, 1 or 2, with the structures of formulas (Q-8), (Q-9) and (Q-10) being preferred.
  • Formula (Q-13) Formula (Q-14) wherein the symbol R 1 has the meaning previously given, inter alia, for formula (I) and the dotted bond marks the attachment position, the structures of formulas (Q-13) and (Q -14) are preferred.
  • heteroaromatic ring system preferably no condensed
  • Form ring system This includes the formation of a condensed
  • Ringystems with possible substituents R 2 , R 3 which may be bonded to the radicals R 1 .
  • R 1 which may be bonded to the pyridine or pyrimidine group, at most 2 nitrogen atoms, preferably at most 1 nitrogen atom, more preferably at most 2 heteroatoms, more preferably have no heteroatom.
  • Ar 1 the same or different each occurrence, represents an aryl or heteroaryl group having 5 to 24, preferably 5 to 12, aromatic ring atoms, each of which may be substituted with one or more R 2 , but is preferably unsubstituted.
  • Suitable groups Ar 1 are selected from the group consisting of phenyl, ortho-, meta- or para-biphenyl, terphenyl, in particular branched terphenyl, quaterphenyl, in particular branched quaterphenyl, 1-, 2-, 3- or 4-fluorenyl, 1-, 2-, 3- or 4- spirobifluorenyl, pyridyl, pyrimidinyl, 1-, 2-, 3- or 4-dibenzofuranyl, 1-, 2-, 3- or 4-dibenzothienyl and 1-, 2-, 3 - or 4-carbazolyl, which may each be substituted by one or more radicals R 2 , but are preferably unsubstituted.
  • substituents R 1 are particularly preferably selected from the group consisting of H, D, F, CN, N (Ar 1 ) 2, a straight-chain alkyl group having 1 to 8 C atoms, preferably 1, 2, 3 or 4 C atoms, or a branched or cyclic alkyl group having 3 to 8 carbon atoms, preferably having 3 or 4 carbon atoms, or an alkenyl group having 2 to 8 carbon atoms, preferably having 2, 3 or 4 carbon atoms, the each may be substituted with one or more radicals R 2 , but is preferably unsubstituted, or an aromatic or heteroaromatic ring system with 6 to 24 aromatic ring atoms, preferably having 6 to 18 aromatic ring atoms, more preferably having 6 to 13 aromatic ring atoms, each of which may be substituted by one or more non-aromatic radicals R 1 , but is preferably unsubstituted;
  • the substituents R 1 are selected from the group consisting of H or an aromatic or heteroaromatic ring system having 6 to 18 aromatic ring atoms, preferably having 6 to 13 aromatic ring atoms, each substituted with one or more non-aromatic radicals R 2 can, but is preferably unsubstituted.
  • substituents R 1 are selected from the group consisting of phenyl, ortho-, meta- or para-biphenyl, terphenyl, in particular branched terphenyl, quaterphenyl, in particular branched quaterphenyl, 1-, 2-, 3- or 4-fluorenyl, 1-, 2-, 3- or 4-spirobifluorenyl, pyridyl, pyrimidinyl, 1-, 2-, 3- or 4-dibenzofuranyl, 1-, 2-, 3- or 4-dibenzothienyl and 1-, 2-, 3 - or 4-carbazolyl, which may each be substituted by one or more radicals R 2 , but are preferably unsubstituted.
  • Group is selected from the formulas (R 1 -1) to (R 1 - 80)
  • Y is O, S or NR 2 , preferably O or S;
  • h is independently 0, 1, 2, 3 or 4 at each occurrence
  • g is independently 0, 1, 2, 3, 4 or 5 at each occurrence
  • R 2 may be that mentioned above, in particular for formula (I)
  • the sum of the indices i, j, h and g in the structures of the formula (R 1 -1) to (R 1 -80) is at most 3, preferably at most 2 and particularly preferably at most 1.
  • the radicals R 2 in the formulas (R 1 -1) to (R 1 -80) with the ring atoms of the aryl group or heteroaryl group to which the radicals R 2 are bonded preferably form no condensed aromatic or heteroaromatic ring system, preferably no condensed ring system , This includes the formation of a fused ring system with possible substituents R 3 which may be bonded to the R 2 radicals.
  • the group L 1 may preferably have the group Q and the aromatic or heteroaromatic radical of the spirobifluorene group to which the group L 1 according to formula (I), (Ia), (Ib), (Ic), (Id) (II), (IIa), (IIb), (IIc), (Illd), (III), (IIIa), (IIIb), (Never), (Illd), (IV), (IVa), (IVb), (IVc ) and / or (IVd) form a continuous conjugation. Consistent conjugation of the aromatic or heteroaromatic systems is formed as soon as there are direct bonds between
  • Spirobifluoren Concept be formed a continuous conjugation, if the connection between the group Q and the aromatic or heteroaromatic radical of spirobifluorene of the formula (I), (Ia), (Ib), (Ic), (Id) (II), (IIa) , (IIb), (IIc), (Illd), (III), (IIIa), (IIIb), (IIIc), (IIId), (IV), (IVa), (IVb), (IVc) and / or (IVd) via the same phenyl group of
  • L 1 is an aromatic or heteroaromatic ring system having 5 to 14 aromatic or heteroaromatic ring atoms, preferably an aromatic ring system having 6 to 12 carbon atoms, which may be substituted by one or more radicals R 1 , but preferably unsubstituted where R 1 may have the meaning given above, in particular for formula (I).
  • L 1 particularly preferably represents an aromatic ring system having 6 to 10 aromatic ring atoms or a heteroaromatic ring system having 6 to 13 heteroaromatic
  • Ring atoms which may each be substituted by one or more radicals R 2 , but is preferably unsubstituted, where R 2 is the previously
  • Heteroaryl radical having 5 to 24 ring atoms, preferably 6 to 13 ring atoms, particularly preferably 6 to 10 ring atoms, so that an aromatic or heteroaromatic group of an aromatic or heteroaromatic group heteroaromatic ring systems directly, ie via an atom of
  • aromatic or heteroaromatic group to which the respective atom of the further group is bonded.
  • L 1 is an aromatic Ring system having at most two fused aromatic and / or heteroaromatic rings, preferably does not comprise a fused aromatic or heteroaromatic ring system. Accordingly, naphthyl structures are preferred over antracene structures.
  • fluorenyl, spirobifluorenyl, dibenzofuranyl and / or dibenzothienyl structures are preferred over naphthyl structures.
  • Particular preference is given to structures which have no condensation, such as, for example, phenyl, biphenyl, terphenyl and / or quaterphenyl structures.
  • Suitable aromatic or heteroaromatic ring systems L 1 are selected from the group consisting of ortho-, meta- or para-phenylene, ortho-, meta- or para-biphenylene, terphenylene, in particular branched terphenylene, quaterphenylene, in particular branched quaterphenylene, fluorenylene, Spirobifluorenylen, Dibenzo- furanylene, dibenzothienylene and carbazolylene, which may each be substituted by one or more radicals R 2 , but are preferably unsubstituted.
  • Formula (L 1 -106) Formula (L 1 -107) Formula (U-108) wherein the dashed bonds each mark the attachment positions, the index k is 0 or 1, the index I is 0, 1 or 2, the subscript j each occurrence is independently 0, 1, 2 or 3; the index h for each occurrence is independently 0, 1, 2, 3 or 4, the index g is 0, 1, 2, 3, 4 or 5; the symbol is YO, S or NR 2 , preferably O or S; and the Symbol R 2 has the meaning previously mentioned, in particular for formula (I).
  • the sum of the indices k, I, g, h and j in the structures of the formula (L 1 -108) is at most 3, preferably at most 2 and particularly preferably at most 1 ,
  • Preferred compounds according to the invention comprise a group L 1 which is selected from one of the formulas (L 1 -1) to (L 1 -78) and / or (L 1 -92) to (U-108), preferably of the formula (L 1 -1) to (U-54) and / or (U-92) to (L 1 -108), particularly preferably of the formula (L 1 -1) to (U-29) and / or (L 1 -92 ) to (L 1 -103).
  • the sum of the indices k, I, g, h and j in the structures of the formulas (L 1 -1) to (L 1 -78) and / or (L 1 -92) to (L 1 -108) , preferably of the formula (L 1 -1) to (L 1 -54) and / or (L 1 -92) to (L 1 -108), especially preferably of the formula (L 1 -1) to (L 1 -29 ) and / or (L 1 -92) to (L 1 - 103) are each at most 3, preferably at most 2 and more preferably at most 1.
  • L 1 is selected from the groups of the formulas (L 1 -17) to (L 1 -108), more preferably from the groups of the formulas (L 1 -30) to (L 1 -108), completely particularly preferably from the groups of the formulas (L 1 - 30) to (L 1 -52), (U-55) to (L 1 -60), (U-73) to (U-91) and (U-103 ) to (L 1 - 108), and more preferably from the groups of the formulas (L 1 -30) to (U-52) and (L 1 -103) to (L 1 -108).
  • the radicals R 2 in the formulas (L 1 -1) to (L 1 -108) with the ring atoms of the aryl group or heteroaryl group to which the radicals R 2 are bonded preferably form no fused aromatic or heteroaromatic ring system, preferably no fused ring system , This includes the formation of a fused ring system with possible substituents R3, which may be bonded to the radicals R 2 .
  • group L 1 in the structures of the formula (I), (Ia), (Ib), (Ic), (Id) (II), (IIa), (IIb), (IIc) , (lld), (III), (IIIa), (IIIb), (Never), (IIId), (IV), (IVa), (IVb), (IVc) and / or (IVd) at most one pyridine Group is bound.
  • the group L 1 in the structures of the formula (I), (Ia), (Ib), (Ic), (Id) (II), (IIa), (IIb), (IIc) , (lld), (III), (IIIa), (IIIb), (IIIc), (IIId), (IV), (IVa), (IVb), (IVc) and / or (IVd) no pyridine group and exactly one pyrimidine group bound.
  • a compound comprising at least one structure of the formula (I), (Ia), (Ib), (Ic), (Id) (II), (IIa), (IIb), (IIc), (Ild), (III) , (IIIa), (IIIb), (IIIc), (IIId), (IV), (IVa), (IVb), (IVc) and / or (IVd) comprises no carbazole and / or triarylamine group.
  • a compound according to the invention does not comprise a hole-transporting group. Hole transporting groups are known in the art, these groups often carbazole, indenocarbazole, indolocarbazole, arylamine or a
  • a compound of the invention comprising at least one structure of the formula ((I), (Ia), (Ib), (Ic), (Id) (II), (IIa), (IIb) , (IIc), (Idl), (III), (IIIa), (IIIb), (IIIc), (Illd), (IV), (IVa), (IVb), (IVc) and / or (IVd)
  • a indenocarbazole, indolocarbazole, arylamine or a diarylamine group may be provided as a hole-transporting group
  • R 2 is at least one hole-transporting group, preferably a carbazole and / or triarylamine group
  • R 2 is at least one hole-transporting group, preferably a carbazole and / or triarylamine group
  • Alkyl groups each having 1 to 4 carbon atoms may be substituted, but is preferably unsubstituted.
  • R 3 is , for example, a structure according to formula (I) and preferred embodiments of this structure or the structures in which reference is taken on these formulas, identically or differently selected on each occurrence from the group consisting of H, D, F, CN, an aliphatic hydrocarbon radical having 1 to 10 C atoms, preferably having 1, 2, 3 or 4 C atoms, or an aromatic or heteroaromatic ring system having 5 to 30 aromatic ring atoms, preferably having 5 to 24 aromatic ring atoms, particularly preferably having 5 to 13 aromatic ring atoms, which is replaced by one or more
  • Alkyl groups each having 1 to 4 carbon atoms may be substituted, but is preferably unsubstituted.
  • R 1 or R 2 it is preferred that they have no aryl or heteroaryl groups with more than two aromatic six-membered rings fused directly to one another.
  • the substituents have no aryl or heteroaryl groups with directly condensed six-membered rings. This preference is with the low triplet energy such
  • Condensed aryl groups with more than two directly condensed aromatic six-membered rings which are nevertheless also suitable according to the invention, are phenanthrene and triphenylene, since these also have a high triplet level.
  • the compound having the structures of the formula (I), (Ia), (Ib), (Ic), (Id) (II), (IIa), (IIb), (IIc), (IIId), (III ), (IIIa), (IIIb), (IIIc), (IIId), (IV), (IVa), (IVb), (IVc) and / or (IVd) comprise at most exactly one pyrimidine group.
  • the compound having the structures of the formula (I), (Ia), (Ib), (Ic), (Id) (II), (IIa), (IIb), (IIc), (lld ), (III), (IIIa), (IIIb), (IIIc), (IIId), (IV), (IVa), (IVb), (IVc) and / or (IVd) is not a pyridine group and exactly one Pyrimidine group.
  • the compound having the structures of the formula (I), (Ia), (Ib), (Ic), (Id) (II), (IIa), (IIb), (IIc), (lld ), (III), (IIIa), (IIIb), (IIIc), (IIId), (IV), (IVa), (IVb), (IVc) and / or (IVd) has at most one nitrogen-containing heteroaromatic group , This means that the compound in addition to the exactly one pyridine group or pyrimidine group contains no further nitrogen-containing, heteroaromatic group.
  • Particular advantages include compounds of the formula (Ia), preferably (IIa), particularly preferably (IIIa) and especially preferably (IVa), in which the group L 1 is selected from a structure of the formula (L 1 -93) and the group Q is selected from a structure according to formula (Q-9), preferably (Q-14) and the group Q has two radicals R 1 , which are each independently selected from (R 1 -1) to (R 1 -80), preferably R 1 -1, R 1 -2, R 1 -3, R 1 -4, R 1 -5, R 1 -6, R 1 -7, (R 1 -8), (R 1 -9), (R 1 -10), (R 1 -1 1), (R 1 -12), (R 1 -13), (R 1 -14), (R 1 -15), (R 1 -16), (R 1 -17), (R 1 -18), (R 1 -19), (R 1 - 20), (R 1 -21), (R 1 -22), (R 1 -23), (R 1 -24), (R 1
  • Particular advantages include compounds of the formula (Ia), preferably (IIa), particularly preferably (IIIa) and especially preferably (IVa), in which the group L 1 is selected from a structure of the formula (L 1 -93) and the group Q is selected from a structure according to formula (Q-8), preferably (Q-13) and the group Q has two radicals R 1 , which are each independently selected from (R 1 -1) to (R 1 -80), preferably R 1 -1, R 1 -2, R 1 -3, R 1 -4, R 1 -5, R 1 -6, R 1 -7, (R 1 -8), (R 1 -9), (R 1 -10), (R 1 -1 1), (R 1 -12), (R 1 -13), (R 1 -14), (R 1 -15), (R 1 -16), (R 1 -17), (R 1 -18), (R 1 -19), (R 1 -20), (R 1 -21), ( R 1 -22), (R 1 -23), (R 1 -24), (R 1
  • Particular advantages include compounds of the formula (Ia), preferably (IIa), particularly preferably (IIIa) and especially preferably (IVa), in which the group L 1 is selected from a structure of the formula (L 1 -93) and the group Q is selected from a structure according to formula (Q-10), preferably (Q-14) and the group Q has two radicals R 1 , which are each independently selected from (R 1 -1) to (R 1 -80), preferably (R 1 -1), (R 1 -2), (R 1 -3), (R 1 -4), (R 1 -5), (R 1 -6), (R 1 -7), (R 1 -8), (R 1 -9), (R 1 -10), (R 1 -1 1), (R 1 -12), (R 1 -13), (R 1 -14), (R 1 -15), (R 1 -16), (R 1 -17), (R 1 -18), (R 1 -19), (R 1 -20), (R 1 -21), (R 1 -22), (R 1 -23), (R 1
  • Particular advantages are compounds of the formula (Ia), preferably (IIa), particularly preferably (IIIa) and especially preferably (IVa), in which the group L 1 is selected from a structure of the formula (L 1 -92) and the group Q is selected from a structure according to formula (Q-9), preferably (Q-14) and the group Q has two radicals R 1 , which are each independently selected from (R 1 -1) to (R 1 -80), preferably (R 1 -1), (R 1 -2), (R 1 -3), (R 1 -4), (R 1 -5), (R 1 -6), (R 1 -7), ( R 1 -8), (R 1 -9), (R 1 -10), (R 1 -1 1), (R 1 -12), (R 1 -13), (R 1 -14), ( R 1 -15), (R 1 -16), (R 1 -17), (R 1 -18), (R 1 -19), (R 1 -20), (R 1 -21), (R 1 -22), (R 1 -23), (R
  • Radicals according to the formulas (R 1 -1) to (R 1 -80) in each case preferably at most four, preferably at most three, particularly preferably at most two, in particular at most one and especially preferably no group R 2 .
  • Particular advantages are compounds of the formula (Ia), preferably (IIa), particularly preferably (IIIa) and especially preferably (IVa), in which the group L 1 is selected from a structure of the formula (L 1 -92) and the group Q is selected from a structure according to formula (Q-8), preferably (Q-13) and the group Q has two radicals R 1 , which are each independently selected from (R 1 -1) to (R 1 -80), preferably R 1 -1, R 1 -2, R 1 -3, R 1 -4, R 1 -5, R 1 -6, R 1 -7, (R 1 -8), (R 1 -9), (R 1 -10), (R 1 -1 1), (R 1 -12), (R 1 -13), (R 1 -14), (R 1
  • the radicals according to the formulas (R 1 -1) to (R 1 -80) in each case preferably at most four, preferably at most three, more preferably at most two, in particular at most one and especially preferably no group R 2 .
  • Particular advantages are compounds of the formula (Ia), preferably (IIa), particularly preferably (IIIa) and especially preferably (IVa), in which the group L 1 is selected from a structure of the formula (L 1 -92) and the group Q is selected from a structure according to formula (Q-10), preferably (Q-14) and the group Q has two radicals R 1 , which are each independently selected from (R 1 -1) to (R 1 -80), preferably R 1 -1, R 1 -2, R 1 -3, R 1 -4, R 1 -5, R 1 -6, R 1 -7, (R 1 -8), (R 1 -9), (R 1 -10), (R 1 -1 1), (R 1 -12), (R 1 -13), (R 1 -14), (R 1
  • Embodiments can be combined with each other as desired. In a particularly preferred embodiment of the invention, the abovementioned preferred embodiments apply simultaneously.
  • the compounds according to the invention can in principle be prepared by various methods. However, they have the following
  • another object of the present invention is a process for the preparation of the compounds comprising structures according to formula (I), wherein in a coupling reaction a compound comprising at least one pyridine and / or pyrimidine group, with a compound comprising at least one Spirobifluorene residue is reacted.
  • Suitable compounds having a pyridine and / or pyrimidine group can in many cases be obtained commercially, the starting compounds set forth in the examples being obtainable by known processes, so that reference is hereby made. These compounds can be reacted by known coupling reactions with other aryl compounds, the necessary conditions for this purpose are known in the art and support detailed information in the examples to those skilled in performing these reactions.
  • Particularly suitable and preferred coupling reactions are those according to BUCHWALD, SUZUKI, YAMAMOTO, SILENT, HECK, NEGISHI,
  • the compounds of the invention comprising structures of formula (I) in high purity, preferably more than 99% (determined by means of 1 H-NMR and / or HPLC).
  • the compounds of the invention may also be suitable
  • substituents for example by longer alkyl groups (about 4 to 20 carbon atoms), in particular branched alkyl groups, or
  • aryl groups for example xylyl, mesityl or branched terphenyl or quaterphenyl groups containing a
  • Solubility in common organic solvents cause, such as toluene or xylene at room temperature in sufficient
  • Concentration soluble to process the compounds from solution are particularly suitable for processing from solution, for example by printing processes. It should also be noted that the compounds according to the invention comprising at least one structure of the formula (I) already have an increased solubility in these solvents.
  • the compounds of the invention may also be mixed with a polymer. It is also possible to incorporate these compounds covalently into a polymer. This is particularly possible with compounds which are substituted with reactive leaving groups, such as bromine, iodine, chlorine, boronic acid or boronic acid esters, or with reactive, polymerizable groups, such as olefins or oxetanes. These can be used as monomers for the production of corresponding oligomers, dendrimers or polymers. The oligomerization or polymerization is preferably carried out via the halogen functionality or the boronic acid functionality or via the polymerizable group. It is also possible to crosslink the polymers via such groups. The compounds of the invention and polymers can be used as a crosslinked or uncrosslinked layer.
  • reactive leaving groups such as bromine, iodine, chlorine, boronic acid or boronic acid esters
  • reactive, polymerizable groups such as olefins or oxetanes.
  • Structures of the formula (I) or compounds according to the invention wherein one or more bonds of the compounds according to the invention or of the structures of the formula (I) to the polymer, oligomer or dendrimer are present. Depending on the linkage of the structures of the formula (I) or of the compounds, these therefore form a side chain of the oligomer or polymer or are linked in the main chain.
  • the polymers, oligomers or dendrimers may be conjugated, partially conjugated or non-conjugated.
  • the oligomers or polymers may be linear, branched or dendritic.
  • the repeat units of the compounds according to the invention in oligomers, dendrimers and polymers have the same preferences as described above.
  • the monomers according to the invention are homopolymerized or copolymerized with further monomers.
  • Suitable and preferred comonomers which form the polymer backbone are selected from fluorenes (eg according to EP 842208 or WO 2000/022026), spirobifluorenes (eg according to EP 707020, EP 894107 or WO
  • phenanthrenes eg according to WO 2005/104264 or WO 2007/017066
  • the polymers, oligomers and dendrimers may also contain further units, for example hole transport units, in particular those based on triarylamines, and / or electron transport units.
  • Compounds according to the invention comprising structures of the general formula (I) or the preferred embodiments described above and which have a glass transition temperature of at least 70 ° C, more preferably of at least 1 10 ° C, most preferably of at least 125 ° C and particularly preferred of at least 150 ° C, determined according to DIN 51005 (version 2005-08).
  • a glass transition temperature of at least 70 ° C, more preferably of at least 1 10 ° C, most preferably of at least 125 ° C and particularly preferred of at least 150 ° C, determined according to DIN 51005 (version 2005-08).
  • formulations of the compounds according to the invention are required. These formulations may be, for example, solutions, dispersions or emulsions. It may be preferable to use mixtures of two or more solvents for this purpose. Suitable and preferred
  • Solvents are, for example, toluene, anisole, o-, m- or p-xylene, methyl benzoate, mesitylene, tetralin, veratrole, THF, methyl THF, THP, chlorobenzene, dioxane, phenoxytoluene, in particular 3-phenoxytoluene, (-) - Fenchone, 1, 2,3,5-tetramethylbenzene, 1, 2,4,5-tetrannethylbenzene, 1-methylnaphthalene, 2-methylbenzothiazole, 2-phenoxyethanol, 2-pyrrolidinone, 3-methylanisole, 4-methylanisole, 3,4- Dimethylanisole, 3,5-dimethylanisole, acetophenone, ⁇ -terpineol, benzothiazole, butylbenzoate, cumene, cyclohexanol, cyclohexanone, cyclohexylbenzene, decalin, dode
  • a further subject of the present invention is therefore a formulation containing a compound according to the invention and at least one further compound.
  • the further compound may be for example a solvent, in particular one of the abovementioned solvents or a mixture of these solvents.
  • the further compound can also be at least one further organic or inorganic compound which is likewise used in the electronic device, for example an emitting compound, in particular a phosphorescent dopant, and / or a further matrix material.
  • Compound may also be polymeric.
  • Yet another object of the present invention is therefore a composition
  • a composition comprising a compound of the invention and at least one other organically functional material.
  • Functional materials are generally the organic or inorganic materials incorporated between the anode and cathode.
  • the organically functional material is selected from the group consisting of fluorescent emitters, phosphorescent emitters, host materials, matrix materials, electron transport materials, electron injection materials, hole conductor materials, hole injection materials, electron blocking materials, hole blocking materials, wide band gap materials and n-dopants.
  • the present invention therefore also relates to a composition comprising at least one compound comprising structures of the formula (I) or the preferred embodiments described above and below and at least one further matrix material.
  • the further matrix material has hole-transporting properties.
  • a further subject matter of the present invention is a composition comprising at least one compound comprising at least one structure according to formula (I) or the preferred embodiments described above and below as well as at least one wide band gap material, whereby, under wide band Gap material is a material as understood in the disclosure of US 7,294,849.
  • the additional compound may have a band gap of 2.5 eV or more, preferably 3.0 eV or more, more preferably 3.5 eV or more.
  • the band gap can be calculated among other things by the energy levels of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO).
  • Molecular orbitals in particular also the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), whose energy levels as well as the energy of the lowest triplet state Ti or of the lowest excited singlet state Si become the materials determined by quantum chemical calculations.
  • HOMO highest occupied molecular orbital
  • LUMO lowest unoccupied molecular orbital
  • HOMO (eV) ((HEh * 27.212) -0.9899) / 1 .1206
  • the lowest triplet state Ti is defined as the energy of the triplet state with the lowest energy, which results from the described quantum chemical calculation.
  • the lowest excited singlet state Si is defined as the energy of the excited singlet state with the lowest energy which results from the described quantum chemical calculation.
  • the method described here is independent of the software package used and always gives the same results. Examples of frequently used programs for this purpose are "Gaussian09W” (Gaussian Inc.) and Q-Chem 4.1 (Q-Chem, Inc.).
  • the present invention also relates to a composition comprising at least one compound comprising structures of the formula (I) or the preferred embodiments described above and below and at least one phosphorescent emitter, the term phosphorescent emitters also being understood to mean phosphorescent dopants.
  • a dopant in a system comprising a matrix material and a dopant, is understood to mean the component whose proportion in the mixture is the smaller.
  • a matrix material in a system containing a matrix material and a dopant is understood to mean the component whose proportion in the mixture is the larger.
  • Preferred phosphorescent dopants for use in matrix systems are the preferred phosphorescent dopants specified below.
  • phosphorescent dopants are typically
  • Suitable phosphorescent compounds are in particular compounds which emit light, preferably in the visible range, with suitable excitation, and also at least one atom of atomic number greater than 20, preferably greater than 38 and less than 84, particularly preferably greater than 56 and less than 80 contain, in particular a metal with this atomic number.
  • Preferred phosphorescence emitters are compounds comprising copper, molybdenum, tungsten, rhenium,
  • phosphorescent complexes as used in the prior art for phosphorescent OLEDs and as those skilled in the art of organic electroluminescence known, and the skilled artisan can use other phosphorescent complexes without inventive step.
  • the above-described compound comprising structures of the formula (I) or the above-mentioned preferred embodiments may preferably be used as an active component in an electronic device.
  • An electronic device is understood as meaning a device which contains anode, cathode and at least one layer lying between the anode and the cathode, this layer containing at least one organic or organometallic compound.
  • the electronic device according to the invention thus contains anode, cathode and at least one intermediate layer which comprises at least one compound comprising structures of the formula (I), contains.
  • preferred electronic devices are selected from the group consisting of organic electroluminescent devices (OLEDs, PLEDs), organic integrated circuits (O-ICs), organic field-effect transistors (O-FETs), organic
  • O-TFTs Thin-film transistors (O-TFTs), organic light-emitting
  • O-LETs organic solar cells
  • O-SCs organic solar cells
  • O-FQDs organic field quench devices
  • organic electrical sensors light-emitting electrochemical cells
  • LECs organic laser diodes
  • O- Laser organic laser diodes
  • organic plasmon emitting devices Koller DM et al., Nature Photonics 2008, 1 -4
  • OLEDs organic electroluminescent devices
  • PLEDs organic electroluminescent devices
  • phosphorescent OLEDs containing at least one in at least one layer
  • organic electroluminescent devices are organic electroluminescent devices.
  • Active components are generally the organic or inorganic materials interposed between the anode and cathode, for example charge injection, charge transport or charge blocking materials,
  • a preferred embodiment of the invention are organic electroluminescent devices.
  • the organic electroluminescent device includes cathode, anode and at least one emitting layer. In addition to these layers, they may also contain further layers, for example in each case one or more hole injection layers, hole transport layers, hole blocking layers, electron transport layers,
  • Metal oxides such as M0O3 or WO3 or with (per) fluorinated low-electron aromatics, and / or that one or more electron-transport layers are n-doped.
  • Interlayers be introduced, which for example a
  • the organic electroluminescent device can be any organic electroluminescent device.
  • the organic electroluminescent device can be any organic electroluminescent device.
  • Used compounds that can fluoresce or phosphoresce are particularly preferred.
  • the three layers exhibiting blue, green and orange or red emission (for the basic structure see, for example, WO 2005/01 1013) or systems having more than three emitting layers. It may also be a hybrid system wherein one or more layers fluoresce and one or more other layers phosphoresce.
  • the organic electroluminescent device contains the compound according to the invention comprising structures of the formula (I) or the above-mentioned preferred embodiments as matrix material, preferably as electron-conducting matrix material in one or more emitting layers, preferably in combination with another matrix material, preferably a hole-conducting matrix material.
  • the further matrix material is an electron-transporting compound.
  • the further matrix material is a
  • An emitting layer comprises at least one emitting compound.
  • Suitable matrix materials which can be used in combination with the compounds of the formula (I) or according to the preferred embodiments are aromatic ketones, aromatic phosphine oxides or aromatic sulfoxides or sulfones, eg. B. according to WO 2004/013080, WO 2004/093207, WO 2006/005627 or WO 2010/006680, triarylamines, in particular monoamines, z. B. according to WO 2014/015935, carbazole derivatives, z. B. CBP ( ⁇ , ⁇ -biscarbazolylbiphenyl) or in
  • WO 2005/039246, US 2005/0069729, JP 2004/288381, EP 1205527 or WO 2008/086851 disclosed carbazole derivatives, indolocarbazole derivatives, for. B. according to WO 2007/063754 or WO 2008/056746, indenocarbazole derivatives, z. B. according to WO 2010/136109 and WO 201 1/000455, azabarbazole derivatives, z. B. according to EP 1617710, EP 161771 1, EP 1731584, JP 2005/347160, bipolar matrix materials, for. B. according to
  • Phosphorescent emitter which emits shorter wavelength than the actual emitter, be present as a co-host in the mixture.
  • Preferred co-host materials are triarylenanine derivatives, especially monoamines, indenocarbazole derivatives, 4-spirocarbazole derivatives, lactams and carbazole derivatives.
  • Preferred triarylamine derivatives which are used as co-host materials together with the compounds according to the invention are selected from the compounds of the following formula (TA-1), 1 /
  • Formula (TA-1) wherein Ar 1, identical or different at each occurrence, an aromatic or heteroaromatic ring system having 6 to 40 carbon atoms, each of which may be substituted by one or more R 2 , an aryloxy group having 5 to 60 aromatic Ring atoms, which may be substituted by one or more radicals R 2 , or an aralkyl group having 5 to 60 aromatic ring atoms, each of which may be substituted by one or more radicals R 2 , wherein optionally two or more adjacent substituents R 2 is a mono or polycyclic aliphatic ring system which may be substituted by one or more radicals R 3 , where the symbol R 2 has the meaning given above, in particular for formula (I).
  • Ar 1 the same or different each occurrence, represents an aryl or heteroaryl group having 5 to 24, preferably 5 to 12, aromatic ring atoms, each of which may be substituted with one or more R 2 , but is preferably unsubstituted.
  • Suitable groups Ar 1 are selected from the group consisting of phenyl, ortho-, meta- or para-biphenyl, terphenyl, in particular branched terphenyl, quaterphenyl, in particular branched quaterphenyl, 1-, 2-, 3- or 4-fluorenyl, 1-, 2-, 3- or 4- spirobifluorenyl, pyridyl, pyrimidinyl, 1-, 2-, 3- or 4-dibenzofuranyl, 1-, 2-, 3- or 4-dibenzothienyl and 1-, 2-, 3 - or 4-carbazolyl, which may each be substituted by one or more radicals R 2 , but are preferably unsubstituted.
  • the groups Ar 1 are the same or different at each
  • Occurs selected from the abovementioned groups R 1 -1 to R 1 -80, particularly preferably R 1 -1 to R 1 -51.
  • at least one group Ar 1 is selected from a biphenyl group, which may be an ortho, meta or para biphenyl group.
  • At least one group Ar 1 is selected from a fluorene group or spirobifluorene group, where these groups can each be bonded to the nitrogen atom in 1, 2, 3 or 4 position
  • at least one group Ar 1 is selected from a phenylene or biphenyl group which is an ortho, meta or para linked group containing a dibenzofuran group , a dibenzothiophene group or a carbazole group, in particular a dibenzofurangone group, wherein the dibenzofuran or dibenzothiophene group is linked to the phenylene or biphenyl group via the 1, 2, 3 or 4 position and the carbazole group is attached via the 1 - j 2-, 3- or 4-position or via the nitrogen atom is linked to the phenylene or biphenyl group.
  • a group Ar 1 is selected from a fluorene or spirobifluorene group, in particular a 4-fluorene or 4-spirobifluorene group
  • a group Ar 1 is selected from a group Biphenyl group, in particular a para-biphenyl group, or a fluorene group, in particular a 2-fluorene group
  • the third group Ar 1 is selected from a para-phenylene group or a para-biphenyl group with a Dibenzofuranoli, in particular a 4-Dibenzofuranoli, or a Carbazole group, in particular an N-carbazole group or a 3-carbazole group, is substituted.
  • a preferred embodiment of the compounds of the formula (TA-2) are the compounds of the following formula (TA-2a),
  • the two groups R 1 which are bonded to the indenocarbon atom are preferably identical or different for an alkyl group having 1 to 4 C atoms, in particular for methyl groups, or for an aromatic ring system having 6 to 12 C atoms, in particular phenyl groups , Particularly preferably, the two groups R 1 , which are bonded to the indenocarbon atom, are methyl groups.
  • the substituent R 1 which is bound in the formula (TA-2a) to the Indenocarbazolgroundkorper, for H or for a carbazole group, via the 1 -, 2-, 3- or 4-position or via the N-atom may be bound to the Indenocarbazolgroundkorper, in particular via the 3-position.
  • Preferred 4-spirocarbazole derivatives which are used as co-host materials together with the compounds according to the invention are selected from the compounds of the following formula (TA-3),
  • Ar 1 and R 1 have the meanings listed above, in particular for formulas (I), (II) and / or (Q-1).
  • Preferred embodiments of the group Ar 1 are the abovementioned structures R 1 -1 to R 1 -80, particularly preferably R 1 -1 to R 1 -51.
  • a preferred embodiment of the compounds of the formula (TA-3) are the compounds of the following formula (TA-3a),
  • Ar 1 and R 1 have the meanings listed above, in particular for formulas (I), (II) and / or (Q-1).
  • Preferred embodiments of the group Ar 1 are the abovementioned structures R 1 -1 to R 1 -80, particularly preferably R 1 -1 to R 1 -51.
  • lactams which are used as co-host materials together with the compounds according to the invention are selected from the compounds of the following formula (LAC-1),
  • a preferred embodiment of the compounds of the formula (LAC-1) are the compounds of the following formula (LAC-1 a),
  • R 1 has the meaning given above, in particular for formula (I).
  • R 1 is preferably identical or different at each occurrence for H or an aromatic or heteroaromatic
  • Ring system having 5 to 40 aromatic ring atoms, which may be substituted by one or more radicals R 2 , where R 2 is the previously
  • the substituents R 1 are selected from the group consisting of H or an aromatic or heteroaromatic ring system having 6 to 18 aromatic ring atoms, preferably having 6 to 13 aromatic ring atoms, each substituted with one or more non-aromatic radicals R 2 can, but is preferably unsubstituted.
  • Suitable substituents R 1 are selected from the group consisting of phenyl, ortho-, meta- or para-biphenyl, terphenyl, in particular branched terphenyl, quaterphenyl, in particular branched quaterphenyl, 1-, 2-, 3- or 4-fluorenyl, 1-, 2-, 3- or 4-spirobifluorenyl, pyridyl, pyrimidinyl, 1-, 2-, 3- or 4-dibenzofuranyl, 1-, 2-, 3- or 4-dibenzothienyl and 1-, 2-, 3 - or 4-carbazolyl, which may each be substituted by one or more radicals R 2 , but are preferably unsubstituted.
  • Suitable structures R 1 are the same structures as previously depicted for R-1 to R-79, more preferably R 1 -1 to R 1 -51.
  • a plurality of different matrix materials as a mixture, in particular at least one electron-conducting matrix material and at least one hole-conducting matrix material. Also preferred is the use of a mixture of one
  • charge-transporting matrix material and an electrically inert matrix material which does not or not to a significant extent on
  • Charge transport is involved, such. As described in WO 2010/108579. Furthermore, it is preferable to use a mixture of two or more triplet
  • a compound of the invention comprising structures according to formula (I) can be used as matrix material in an emission layer of an organic electronic device, in particular in an organic electroluminescent device, for example in an OLED or OLEC.
  • the proportion of the matrix material in the emitting layer is in this case between 50.0 and 99.9% by volume, preferably between 80.0 and 99.5% by volume and particularly preferred for fluorescent emitting layers between 92.0 and 99.5% by volume and for phosphorescent emitting layers between 85.0 and 97.0 vol.%.
  • the proportion of the dopant is between 0.1 and
  • An emitting layer of an organic electroluminescent device may also contain systems comprising a plurality of matrix materials (mixed-matrix systems) and / or multiple dopants. Also in this case, the dopants are generally those materials whose proportion in the system is smaller and the matrix materials are those materials whose proportion in the system is larger.
  • the dopants are generally those materials whose proportion in the system is smaller and the matrix materials are those materials whose proportion in the system is larger.
  • the proportion of a single matrix material in the system may be smaller than the proportion of a single dopant.
  • the compound comprising structures according to formula (I) or the preferred embodiments described above and below are used as a component of mixed-matrix systems.
  • the mixed-matrix Systems preferably comprise two or three different ones
  • Matrix materials more preferably two different ones
  • Matrix materials Preferably, one of the two materials constitutes a material with hole-transporting properties and the other material a material with electron-transporting properties.
  • the desired electron-transporting and hole-transporting properties of the mixed-matrix components can also be mainly or completely combined in a single mixed-matrix component be, with the other and the other mixed-matrix components fulfill other functions.
  • the two different matrix materials may be present in a ratio of 1:50 to 1: 1, preferably 1:20 to 1: 1, more preferably 1:10 to 1: 1 and most preferably 1: 4 to 1: 1.
  • Preference is given to using mixed-matrix systems in phosphorescent organic electroluminescent devices. More detailed information on mixed-matrix systems is contained inter alia in the application WO 2010/108579.
  • an electronic device preferably an organic electroluminescent device, is the subject of the present invention, which comprises one or more compounds according to the invention and / or at least one oligomer, polymer or dendrimer according to the invention in one or more electron-conducting layers
  • low work function metals, metal alloys or multilayer structures of various metals are preferable, such as alkaline earth metals, alkali metals, main group metals or lanthanides (eg, Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.).
  • alkaline earth metals alkali metals
  • main group metals or lanthanides eg, Ca, Ba, Mg, Al, In, Mg, Yb, Sm, etc.
  • alloys of an alkali or alkaline earth metal and silver for example an alloy of magnesium and silver.
  • more can also be added in addition to the metals mentioned
  • Metals which have a relatively high work function, such as. B. Ag, which then usually combinations of metals, such as Mg / Ag, Ca / Ag or Ba / Ag are used. It may also be preferred between a metallic cathode and the
  • organic semiconductor with a thin intermediate layer of a material to introduce a high dielectric constant.
  • Suitable examples of these are alkali metal or alkaline earth metal fluorides, but also the corresponding oxides or carbonates (eg LiF, L 12 O, BaF 2, MgO, NaF, CsF, CS 2 CO 3, etc.).
  • organic alkali metal complexes for.
  • the layer thickness of this layer is preferably between 0.5 and 5 nm.
  • the anode high workfunction materials are preferred.
  • the anode has a work function greater than 4.5 eV. Vacuum up.
  • metals with a high redox potential are suitable for this purpose, such as, for example, Ag, Pt or Au.
  • electrodes z. B. AI / Ni / NiO, AI / PtO x
  • metal / metal oxide may be preferred, metal / metal oxide.
  • at least one of the electrodes must be transparent or partially transparent to allow either the irradiation of the organic material (O-SC) or the outcoupling of light (OLED / PLED, O-LASER).
  • Preferred anode materials here are conductive mixed metal oxides.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • conductive, doped organic materials in particular conductive doped polymers, for. B. PEDOT, PANI or derivatives of these polymers.
  • a p-doped hole transport material is applied to the anode as a hole injection layer, wherein suitable p-dopants are metal oxides, for example M0O3 or WO3, or (per) fluorinated electron-poor aromatics.
  • suitable p-dopants are HAT-CN (hexacyano-hexaazatriphenylene) or the compound NPD9 from Novaled. Such a layer simplifies the hole injection in materials with a low HOMO, ie a HOMO of large magnitude.
  • the device is structured accordingly (depending on the application), contacted and finally hermetically sealed, as the life such devices drastically shortened in the presence of water and / or air.
  • an electronic device in particular an organic electroluminescent device, which thereby
  • Sublimation method to be coated In this case, 6 mbar, the materials in vacuum sublimation at an initial pressure of usually less than 10 "5 mbar, preferably less than 10" evaporated. It is also possible that the initial pressure is even lower or even higher, for example less than 10 "7 mbar.
  • an electronic device in particular an organic electroluminescent device, which is characterized
  • OVPD Organic Vapor Phase Deposition
  • Carrier gas sublimation are coated.
  • the materials are applied at a pressure between 10 "applied 5 mbar and 1 bar.
  • a special case of this method is the OVJP (organic vapor jet printing) method in which the materials are applied directly through a nozzle and patterned (eg. BMS Arnold ei a /., Appl. Phys. Lett. 2008, 92, 053301).
  • an electronic device in particular an organic electroluminescent device, which thereby
  • soluble compounds are necessary, which are obtained for example by suitable substitution.
  • the electronic device in particular the organic compound
  • Electroluminescent device can also be made as a hybrid system by applying one or more layers of solution and one or more other layers are evaporated.
  • an emissive layer comprising a compound according to the invention comprising structures according to formula (I) and a matrix material from solution and then apply one
  • the electronic devices according to the invention are distinguished by one or more of the following surprising advantages over the prior art:
  • Electroluminescent devices containing compounds
  • Embodiments in particular as electron-conducting materials, have a very good service life.
  • Electroluminescent devices containing compounds
  • Embodiments as electron-conducting materials, electron-injecting materials and / or electron-blocking materials have excellent efficiency. In particular, the efficiency is significantly higher over analogous compounds that do not
  • the compounds according to the invention, oligomers, polymers or dendrimers having structures of the formula (I) or the preferred embodiments described above and below exhibit very high stability and lead to compounds having a very long service life.
  • Electroluminescent devices the formation of optical signals
  • Loss channels are avoided. As a result, these devices are distinguished by a high PL and thus high EL efficiency of emitters or an excellent energy transfer of the matrices to dopants.
  • Layers of electronic devices in particular organic electroluminescent devices, leads to a high mobility of the electron conductor structures.
  • an electronic device is understood to mean a device which
  • the component contains at least one layer containing at least one organic compound.
  • the component may also contain inorganic materials or even layers which are completely composed of inorganic materials.
  • Another object of the present invention is therefore the use of the compounds of the invention or mixtures in an electronic device, in particular in an organic Elektrolumi- nzenzzenzvorraum.
  • a still further object of the present invention is the use of a compound of the invention and / or an oligomer, polymer or dendrimer according to the invention in an electronic device as Lochblockiermaterial, electron injection material and / or electron transport material.
  • Yet another object of the present invention is an electronic device containing at least one of the compounds or mixtures of the invention outlined above.
  • the preferences given above for the compound also apply to the electronic devices.
  • electronic device selected from the group consisting of organic electroluminescent devices (OLEDs, PLEDs), organic integrated circuits (O-ICs), organic field effect transistors (O-FETs), organic thin film transistors (O-TFTs), organic light - emitting transistors (O-LETs), organic solar cells (O-SCs), organic optical detectors, organic photoreceptors, organic field quench devices (O-FQDs), organic electrical sensors, light-emitting electrochemical cells (LECs),
  • organic laser diodes O-lasers
  • organic plasmon emitting devices D.M. Koller et al., Nature Photonics 2008, 1-4
  • OLEDs organic electroluminescent devices
  • PLEDs organic electroluminescent devices
  • the organic electroluminescent device according to the invention does not contain a separate hole injection layer and / or hole transport layer and / or hole blocking layer and / or electron transport layer, ie. H. the emissive layer directly adjoins the hole injection layer or the anode, and / or the emissive layer directly adjoins the electron transport layer or the electron injection layer or the cathode, as described, for example, in WO 2005/053051.
  • a metal complex which is the same or similar to the metal complex in the emitting layer, directly adjacent to the emitting layer as a hole-transporting or hole-injection material, such as.
  • WO 2010/053051 a metal complex, which is the same or similar to the metal complex in the emitting layer, directly adjacent to the emitting layer as a hole-transporting or hole-injection material, such as.
  • the compounds according to the invention in a hole-blocking or electron-transport layer. This applies in particular to compounds according to the invention which have no carbazole structure. These may preferably also be substituted by one or more further electron-transporting groups, for example benzimidazole groups.
  • the compounds according to the invention When used in organic electroluminescent devices, the compounds according to the invention generally have very good properties. In particular, when using the compounds of the invention in organic electroluminescent devices, the
  • the starting materials can be obtained from ALDRICH (potassium fluoride (spray-dried), tri-tert-butylphosphine, palladium (II) acetate).
  • Spiro-9,9'-bifluorene-2,7-bis (boronic acid glycol ester) is prepared analogously to WO 2002/077060.
  • the educt of a4 can be obtained according to the following reaction:
  • the THF phase is again mixed with 500ml_ deionized water.
  • the aqueous phase is separated off.
  • the org.THF phase is concentrated in vacuo.
  • the aqueous phases are extracted 3x with ethyl acetate.
  • the flask residue of the THF phases is dissolved in 2 L of ethyl acetate, washed 3 times with 750 ml of demineralized water. All united org. Phases with
  • Pretreatment for Examples V1-E10 Glass slides coated with structured 50 ⁇ m thick ITO (indium tin oxide) are coated with 20 nm PEDOTPSS (poly (3,4-ethylenedioxythiophene) poly (styrenesulfonates) for improved processing CLEVIOS TM P VP AI 4083 from Heraeus Precious Metals GmbH
  • the OLEDs have in principle the following layer structure: substrate / hole transport layer (HTL) / optional interlayer (IL) / electron blocking layer (EBL) / emission layer (EML) / optional hole blocking layer (HBL) / electron transport layer (ETL) / optional electron injection layer (EIL) and finally a cathode.
  • the cathode is formed by a 100 nm thick aluminum layer.
  • Table 1 The exact structure of the OLEDs is shown in Table 1.
  • the materials needed to make the OLEDs are shown in Table 3. All materials are thermally evaporated in a vacuum chamber.
  • the emission layer always consists of at least one matrix material (host material, host material) and an emitting dopant (dopant, emitter), which is admixed to the matrix material or the matrix materials by co-evaporation in a specific volume fraction.
  • the electron transport layer may consist of a mixture of two materials, wherein the information also represents volume fractions.
  • the OLEDs are characterized by default. For this, the electroluminescence spectra, the current efficiency (measured in cd / A), the power efficiency (measured in Im / W) and the external quantum efficiency (EQE, measured in percent) as a function of the luminance, calculated from current-voltage-luminance characteristics ( IUL characteristics) assuming a Lambertian radiation characteristic.
  • Electroluminescence spectra are determined at a luminance of 1000 cd / m 2 and from this the CIE 1931 x and y color coordinates are calculated.
  • the indication U1000 in Table 2 indicates the voltage that is used for a
  • Luminance of 1000 cd / m 2 is needed.
  • EQE1000 refers to external quantum efficiency at an operating luminance of 1000 cd / m 2 .
  • Examples V1-V6 are comparative examples according to the prior art, examples E1-E10 show data of inventive OLEDs.
  • HBL Hole blocking layer
  • the comparison of E10 and V6 shows in particular the preference of the phenyl linker compared to the triazine linker, which here leads to an increase in the
  • Quantum efficiency (EQE, measured in percent) as a function of
  • Luminance and voltage which is required for a luminance of 1000 cd / m 2 , sometimes significantly improved by the measures according to the invention.
  • V1 SpA1 HATC SpMA1 M2 SEB SdT1 ST2: LiQ

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP17710010.4A 2016-03-17 2017-03-15 Verbindungen mit spirobifluoren-strukturen Pending EP3430006A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP16160960 2016-03-17
PCT/EP2017/056064 WO2017157983A1 (de) 2016-03-17 2017-03-15 Verbindungen mit spirobifluoren-strukturen

Publications (1)

Publication Number Publication Date
EP3430006A1 true EP3430006A1 (de) 2019-01-23

Family

ID=55696909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17710010.4A Pending EP3430006A1 (de) 2016-03-17 2017-03-15 Verbindungen mit spirobifluoren-strukturen

Country Status (7)

Country Link
US (1) US20190106391A1 (ja)
EP (1) EP3430006A1 (ja)
JP (2) JP7073267B2 (ja)
KR (1) KR102402723B1 (ja)
CN (1) CN108779103B (ja)
TW (2) TWI745361B (ja)
WO (1) WO2017157983A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI745361B (zh) * 2016-03-17 2021-11-11 德商麥克專利有限公司 具有螺聯茀結構之化合物
JP2019521995A (ja) 2016-06-22 2019-08-08 出光興産株式会社 有機発光ダイオード用の特定位置が置換されたベンゾフロ−又はベンゾチエノキノリン
KR102032955B1 (ko) * 2017-06-07 2019-10-16 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
KR20190009994A (ko) * 2017-07-20 2019-01-30 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
CN107394051B (zh) * 2017-08-14 2019-12-27 上海天马有机发光显示技术有限公司 一种发光器件及显示装置
CN110746412A (zh) * 2018-07-24 2020-02-04 昱镭光电科技股份有限公司 经9,9-螺二芴取代的二苯基嘧啶化合物及其有机电激发光组件
WO2020050585A1 (ko) * 2018-09-03 2020-03-12 주식회사 엘지화학 유기 발광 소자
TWI692471B (zh) * 2018-10-23 2020-05-01 昱鐳光電科技股份有限公司 苯基聯苯嘧啶類化合物及其有機電激發光元件
US11917906B2 (en) * 2018-11-05 2024-02-27 Merck Patent Gmbh Compounds that can be used in an organic electronic device
CN111217715B (zh) * 2018-11-26 2021-09-14 常州强力电子新材料股份有限公司 二芳基胺取代的螺二芴类化合物及其在oled器件中的应用
KR20210062314A (ko) * 2019-11-21 2021-05-31 솔루스첨단소재 주식회사 유기 화합물 및 이를 이용한 유기 전계 발광 소자
KR102618174B1 (ko) * 2020-01-30 2023-12-28 도레이 카부시키가이샤 화합물, 유기 박막 발광 소자, 표시 장치 및 조명 장치
JP7249470B2 (ja) 2021-02-25 2023-03-30 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
CN113292488B (zh) * 2021-04-13 2023-02-24 浙江虹舞科技有限公司 一种氰基氮杂苯类化合物及其应用、以及包含该化合物的有机电致发光器件

Family Cites Families (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539507A (en) 1983-03-25 1985-09-03 Eastman Kodak Company Organic electroluminescent devices having improved power conversion efficiencies
US5111172A (en) 1989-08-17 1992-05-05 General Electric Company Demountable coil form for epoxy-impregnated coils
DE4111878A1 (de) 1991-04-11 1992-10-15 Wacker Chemie Gmbh Leiterpolymere mit konjugierten doppelbindungen
US5151629A (en) 1991-08-01 1992-09-29 Eastman Kodak Company Blue emitting internal junction organic electroluminescent device (I)
JPH07133483A (ja) 1993-11-09 1995-05-23 Shinko Electric Ind Co Ltd El素子用有機発光材料及びel素子
EP0676461B1 (de) 1994-04-07 2002-08-14 Covion Organic Semiconductors GmbH Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
DE4436773A1 (de) 1994-10-14 1996-04-18 Hoechst Ag Konjugierte Polymere mit Spirozentren und ihre Verwendung als Elektrolumineszenzmaterialien
JP3865406B2 (ja) 1995-07-28 2007-01-10 住友化学株式会社 2,7−アリール−9−置換フルオレン及び9−置換フルオレンオリゴマー及びポリマー
DE19614971A1 (de) 1996-04-17 1997-10-23 Hoechst Ag Polymere mit Spiroatomen und ihre Verwendung als Elektrolumineszenzmaterialien
DE19652261A1 (de) 1996-12-16 1998-06-18 Hoechst Ag Arylsubstituierte Poly(p-arylenvinylene), Verfahren zur Herstellung und deren Verwendung in Elektroluminszenzbauelementen
DE19846766A1 (de) 1998-10-10 2000-04-20 Aventis Res & Tech Gmbh & Co Konjugierte Polymere, enthaltend spezielle Fluorenbausteine mit verbesserten Eigenschaften
US6166172A (en) 1999-02-10 2000-12-26 Carnegie Mellon University Method of forming poly-(3-substituted) thiophenes
KR100934420B1 (ko) 1999-05-13 2009-12-29 더 트러스티즈 오브 프린스턴 유니버시티 전계인광에 기초한 고 효율의 유기 발광장치
AU1807201A (en) 1999-12-01 2001-06-12 Trustees Of Princeton University, The Complexes of form L2MX as phosphorescent dopants for organic leds
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
CN100505375C (zh) 2000-08-11 2009-06-24 普林斯顿大学理事会 有机金属化合物和发射转换有机电致磷光
JP4154138B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子、表示装置及び金属配位化合物
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
JP5265840B2 (ja) 2001-03-14 2013-08-14 ザ、トラスティーズ オブ プリンストン ユニバーシティ 有機発光ダイオード類に基づく青色リン光用の材料および素子
WO2002077060A1 (de) 2001-03-24 2002-10-03 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend spirobifluoren-einheiten und fluoren-einheiten und deren verwendung
AU2003238177A1 (en) * 2002-06-04 2003-12-19 H.C. Starck Gmbh Phosphorescent and luminescent conjugated polymers and their use in electroluminescent assemblies
ITRM20020411A1 (it) 2002-08-01 2004-02-02 Univ Roma La Sapienza Derivati dello spirobifluorene, loro preparazione e loro uso.
GB0226010D0 (en) 2002-11-08 2002-12-18 Cambridge Display Tech Ltd Polymers for use in organic electroluminescent devices
TWI278503B (en) 2003-01-21 2007-04-11 Univ Nat Taiwan Pyrimidine containing di-fluorene oligomer for OLED
DE10304819A1 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte Polymere und Blends, deren Darstellung und Verwendung
JP4411851B2 (ja) 2003-03-19 2010-02-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子
EP2281861A3 (de) 2003-04-15 2012-03-28 Merck Patent GmbH Mischungen von organischen zur Emission befähigten Halbleitern und Matrixmaterialien, deren Verwendung und Elektronikbauteile enthaltend diese Mischungen
EP1617711B1 (en) 2003-04-23 2016-08-17 Konica Minolta Holdings, Inc. Organic electroluminescent device and display
EP1491568A1 (en) 2003-06-23 2004-12-29 Covion Organic Semiconductors GmbH Semiconductive Polymers
DE10328627A1 (de) 2003-06-26 2005-02-17 Covion Organic Semiconductors Gmbh Neue Materialien für die Elektrolumineszenz
DE10333232A1 (de) 2003-07-21 2007-10-11 Merck Patent Gmbh Organisches Elektrolumineszenzelement
DE10337346A1 (de) 2003-08-12 2005-03-31 Covion Organic Semiconductors Gmbh Konjugierte Polymere enthaltend Dihydrophenanthren-Einheiten und deren Verwendung
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
DE10345572A1 (de) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh Metallkomplexe
US7795801B2 (en) 2003-09-30 2010-09-14 Konica Minolta Holdings, Inc. Organic electroluminescent element, illuminator, display and compound
EP2366752B1 (de) 2003-10-22 2016-07-20 Merck Patent GmbH Neue materialien für die elektrolumineszenz und deren verwendung
CN100536190C (zh) 2003-11-25 2009-09-02 默克专利有限公司 有机电致发光元件
DE10356099A1 (de) 2003-11-27 2005-07-07 Covion Organic Semiconductors Gmbh Organisches Elektrolumineszenzelement
KR20070030759A (ko) * 2004-03-08 2007-03-16 이데미쓰 고산 가부시키가이샤 유기 전기 발광 소자용 재료 및 이를 이용한 유기 전기발광 소자
JPWO2005085387A1 (ja) * 2004-03-08 2007-12-13 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを利用した有機エレクトロルミネッセンス素子
US7790890B2 (en) 2004-03-31 2010-09-07 Konica Minolta Holdings, Inc. Organic electroluminescence element material, organic electroluminescence element, display device and illumination device
DE102004020298A1 (de) 2004-04-26 2005-11-10 Covion Organic Semiconductors Gmbh Elektrolumineszierende Polymere und deren Verwendung
US7598388B2 (en) 2004-05-18 2009-10-06 The University Of Southern California Carbene containing metal complexes as OLEDs
JP4862248B2 (ja) 2004-06-04 2012-01-25 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
ITRM20040352A1 (it) 2004-07-15 2004-10-15 Univ Roma La Sapienza Derivati oligomerici dello spirobifluorene, loro preparazione e loro uso.
EP1669386A1 (de) 2004-12-06 2006-06-14 Covion Organic Semiconductors GmbH Teilkonjugierte Polymere, deren Darstellung und Verwendung
EP1858906A4 (en) * 2005-03-01 2009-04-15 Agency Science Tech & Res SOLUTION-PROCESSED METAL-ORGANIC COMPLEXES AND THEIR USE IN ELECTROLUMINESCENT APPLIANCES
KR101289923B1 (ko) 2005-05-03 2013-07-25 메르크 파텐트 게엠베하 유기 전계발광 장치 및 그에 사용되는 붕산 및 보린산유도체
DE102005037734B4 (de) 2005-08-10 2018-02-08 Merck Patent Gmbh Elektrolumineszierende Polymere, ihre Verwendung und bifunktionelle monomere Verbindungen
CN101321755B (zh) 2005-12-01 2012-04-18 新日铁化学株式会社 有机电致发光元件用化合物及有机电致发光元件
DE102006025777A1 (de) 2006-05-31 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
CN101511834B (zh) 2006-11-09 2013-03-27 新日铁化学株式会社 有机场致发光元件用化合物及有机场致发光元件
KR101118808B1 (ko) 2006-12-28 2012-03-22 유니버셜 디스플레이 코포레이션 긴 수명의 인광 유기 발광 소자(oled) 구조체
DE102007002714A1 (de) 2007-01-18 2008-07-31 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP5119778B2 (ja) 2007-07-20 2013-01-16 Jnc株式会社 フルオレン化合物、該化合物を用いた発光素子用材料及び有機電界発光素子
DE102007053771A1 (de) 2007-11-12 2009-05-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
US7862908B2 (en) 2007-11-26 2011-01-04 National Tsing Hua University Conjugated compounds containing hydroindoloacridine structural elements, and their use
US8314101B2 (en) * 2007-11-30 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, and electronic device using quinoxaline derivative
KR100910150B1 (ko) 2008-04-02 2009-08-03 (주)그라쎌 신규한 유기 발광 화합물 및 이를 발광재료로서 채용하고있는 유기 발광 소자
DE102008027005A1 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Organische elektronische Vorrichtung enthaltend Metallkomplexe
DE102008033943A1 (de) 2008-07-18 2010-01-21 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102008036247A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische Vorrichtungen enthaltend Metallkomplexe
DE102008036982A1 (de) 2008-08-08 2010-02-11 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102008048336A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Einkernige neutrale Kupfer(I)-Komplexe und deren Verwendung zur Herstellung von optoelektronischen Bauelementen
KR101506919B1 (ko) 2008-10-31 2015-03-30 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전자 소자
DE102008056688A1 (de) 2008-11-11 2010-05-12 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
KR20110097612A (ko) 2008-11-11 2011-08-31 메르크 파텐트 게엠베하 유기 전계발광 소자
DE102008057050B4 (de) 2008-11-13 2021-06-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102008057051B4 (de) 2008-11-13 2021-06-17 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102008064200A1 (de) 2008-12-22 2010-07-01 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
DE102009011223A1 (de) 2009-03-02 2010-09-23 Merck Patent Gmbh Metallkomplexe
DE102009013041A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
JP5509634B2 (ja) * 2009-03-16 2014-06-04 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置、照明装置及び有機エレクトロルミネッセンス素子材料
DE102009014513A1 (de) 2009-03-23 2010-09-30 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102009023155A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009031021A1 (de) 2009-06-30 2011-01-05 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
JP4474493B1 (ja) 2009-07-31 2010-06-02 富士フイルム株式会社 有機電界発光素子
TWI482758B (zh) 2009-08-21 2015-05-01 Tosoh Corp 環狀氮雜衍生物及其製造方法和以該環狀氮雜苯衍生物為構成成分之有機電致發光元件
DE102009041414A1 (de) 2009-09-16 2011-03-17 Merck Patent Gmbh Metallkomplexe
DE102009048791A1 (de) 2009-10-08 2011-04-14 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009057167A1 (de) 2009-12-05 2011-06-09 Merck Patent Gmbh Elektronische Vorrichtung enthaltend Metallkomplexe
DE102010005697A1 (de) 2010-01-25 2011-07-28 Merck Patent GmbH, 64293 Verbindungen für elektronische Vorrichtungen
DE102010012738A1 (de) 2010-03-25 2011-09-29 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102010019306B4 (de) 2010-05-04 2021-05-20 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
KR20130087499A (ko) 2010-06-15 2013-08-06 메르크 파텐트 게엠베하 금속 착물
DE102010027317A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010045369A1 (de) 2010-09-14 2012-03-15 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102010048608A1 (de) 2010-10-15 2012-04-19 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
KR20120044523A (ko) * 2010-10-28 2012-05-08 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
EP2699571B1 (de) 2011-04-18 2018-09-05 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2013064206A1 (de) 2011-11-01 2013-05-10 Merck Patent Gmbh Organische elektrolumineszenzvorrichtung
KR101497134B1 (ko) * 2011-12-29 2015-03-02 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR101580357B1 (ko) 2012-06-18 2015-12-24 주식회사 엘지화학 함질소 헤테로환 화합물 및 이를 포함한 유기 전자소자
EP2872590B1 (de) 2012-07-13 2018-11-14 Merck Patent GmbH Metallkomplexe
KR102268222B1 (ko) 2012-07-23 2021-06-22 메르크 파텐트 게엠베하 플루오렌 및 이를 함유하는 전자 소자
WO2014023377A2 (de) 2012-08-07 2014-02-13 Merck Patent Gmbh Metallkomplexe
KR101693127B1 (ko) * 2012-08-10 2017-01-04 메르크 파텐트 게엠베하 유기 전계발광 소자용 물질
EP2935276B1 (de) 2012-12-21 2017-11-01 Merck Patent GmbH Materialien für organische elektrolumineszenzvorrichtungen
WO2014094961A1 (de) 2012-12-21 2014-06-26 Merck Patent Gmbh Metallkomplexe
CN104870458B (zh) 2012-12-21 2019-02-15 默克专利有限公司 金属络合物
KR101429035B1 (ko) * 2013-05-16 2014-08-12 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN103265946B (zh) 2013-05-27 2015-02-25 烟台万润精细化工股份有限公司 一种新型oled材料及其应用
US10651389B2 (en) * 2013-07-02 2020-05-12 Merck Patent Gmbh Materials for electronic devices
KR20240005158A (ko) 2013-12-19 2024-01-11 메르크 파텐트 게엠베하 헤테로시클릭 스피로 화합물
KR101785436B1 (ko) * 2014-04-30 2017-10-16 제일모직 주식회사 화합물, 이를 포함하는 유기 광전자 소자 및 표시장치
KR102436175B1 (ko) * 2014-05-09 2022-08-26 에스에프씨주식회사 신규한 방향족 유기발광 화합물 및 이를 포함하는 유기 발광 소자
KR102164031B1 (ko) * 2014-05-22 2020-10-13 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
JP6501771B2 (ja) 2014-06-11 2019-04-17 保土谷化学工業株式会社 ピリミジン誘導体および有機エレクトロルミネッセンス素子
KR102611317B1 (ko) * 2014-12-24 2023-12-07 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2016105141A2 (ko) 2014-12-24 2016-06-30 주식회사 두산 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
CN107635966B (zh) * 2015-12-23 2021-04-09 株式会社Lg化学 化合物及包含其的有机电子器件
TWI745361B (zh) * 2016-03-17 2021-11-11 德商麥克專利有限公司 具有螺聯茀結構之化合物

Also Published As

Publication number Publication date
KR102402723B1 (ko) 2022-05-27
JP7073267B2 (ja) 2022-05-23
TW201808917A (zh) 2018-03-16
JP2022078024A (ja) 2022-05-24
CN108779103B (zh) 2021-12-28
TWI821807B (zh) 2023-11-11
CN108779103A (zh) 2018-11-09
KR20180127639A (ko) 2018-11-29
TWI745361B (zh) 2021-11-11
TW202212326A (zh) 2022-04-01
US20190106391A1 (en) 2019-04-11
JP2019513133A (ja) 2019-05-23
WO2017157983A1 (de) 2017-09-21

Similar Documents

Publication Publication Date Title
EP3519417B1 (de) Verbindungen mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
EP3519415B1 (de) Carbazole mit diazadibenzofuran- oder diazadibenzothiophen-strukturen
EP3221294B1 (de) Heterocyclische verbindungen zur verwendung in elektronischen vorrichtungen
EP3237387B1 (de) Heterocyclische verbindungen mit dibenzazapin-strukturen
EP3442968A1 (de) Heterocyclische verbindungen mit dibenzofuran- und/oder dibenzothiophen-strukturen
EP3430006A1 (de) Verbindungen mit spirobifluoren-strukturen
EP3237409B1 (de) Carbazole mit zwei dibenzofuran- oder dibenzothiophensubstituenten
EP3548467B1 (de) Verbindungen mit valerolaktam-strukturen
EP3083880A2 (de) Heterocyclische spiroverbindungen
EP3573973A1 (de) Carbazolderivate
EP3328850B1 (de) Verbindungen mit fluoren-strukturen
EP3596065A1 (de) Verbindungen mit arylamin-strukturen
EP3197887B1 (de) Heterocyclische verbindungen mit benzo[c]coumarin-strukturen
EP3856868A1 (de) Verbindungen, die in einer organischen elektronischen vorrichtung als aktive verbindungen einsetzbar sind
WO2018050583A1 (de) Verbindungen mit carbazol-strukturen
EP3856717A2 (de) Verfahren zur herstellung von sterisch gehinderten stickstoffhaltigen heteroaromatischen verbindungen
EP3512841B1 (de) Verbindungen mit spirobifluoren-strukturen
EP3548481B1 (de) Heterocyclische verbindungen zur verwendung in elektronischen vorrichtungen
EP3877369A1 (de) In einer organischen elektronischen vorrichtung einsetzbare verbindungen
EP3630764A1 (de) Hexazyklische heteroaromatische verbindungen für elektronische vorrichtungen

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201125

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MERCK PATENT GMBH

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519