EP2345431A2 - Procédé de fabrication d'esters de polyalcools - Google Patents

Procédé de fabrication d'esters de polyalcools Download PDF

Info

Publication number
EP2345431A2
EP2345431A2 EP10177026A EP10177026A EP2345431A2 EP 2345431 A2 EP2345431 A2 EP 2345431A2 EP 10177026 A EP10177026 A EP 10177026A EP 10177026 A EP10177026 A EP 10177026A EP 2345431 A2 EP2345431 A2 EP 2345431A2
Authority
EP
European Patent Office
Prior art keywords
acid
weight
parts
reaction mixture
optionally
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10177026A
Other languages
German (de)
English (en)
Other versions
EP2345431A3 (fr
Inventor
Thomas Jaworek
Thomas Daniel
Lothar Wolf
Rainer Königer
Reinhold Schwalm
Gabriele Hartmann
Stefan Wickel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=29718967&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2345431(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by BASF SE filed Critical BASF SE
Publication of EP2345431A2 publication Critical patent/EP2345431A2/fr
Publication of EP2345431A3 publication Critical patent/EP2345431A3/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/331Polymers modified by chemical after-treatment with organic compounds containing oxygen
    • C08G65/332Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof
    • C08G65/3322Polymers modified by chemical after-treatment with organic compounds containing oxygen containing carboxyl groups, or halides, or esters thereof acyclic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds

Definitions

  • the present invention relates to a simplified process for the esterification of unsaturated acids with polyalcohols and use of the reaction mixtures obtainable in this way.
  • SAP superabsorbent polymers
  • SAP superabsorbent polymers
  • These are networks of flexible hydrophilic polymers, which may be both ionic and nonionic in nature. These are capable of absorbing and binding aqueous fluids to form a hydrogel, and are therefore preferred for the manufacture of tampons, diapers, sanitary napkins, incontinence articles, children's exercise underwear, shoe inserts, and other hygiene articles used in the absorption of body fluids.
  • Superabsorbents are also used in other fields of technology in which liquids, in particular water or aqueous solutions are absorbed.
  • These areas are eg storage, packaging, transport (packaging material of water-sensitive articles, such as flower transport, shock protection); Food sector (transport of fish, fresh meat, absorption of water, blood in fresh fish / meat packaging); Medicine (wound plaster, water-absorbing material for burn dressings or for other weeping wounds), cosmetics (carrier material for pharmaceutical chemicals and medicaments, rheumatism plaster, ultrasound gel, cooling gel, cosmetic thickener, sunscreen); Thickener for oil / water or water / oil emulsions; Textile (gloves, sportswear, moisture regulation in textiles, shoe inserts); chemical process industry.
  • transport packaging material of water-sensitive articles, such as flower transport, shock protection
  • Food sector transport of fish, fresh meat, absorption of water, blood in fresh fish / meat packaging
  • Medicine wound plaster, water-absorbing material for burn dressings or for other weeping wounds
  • cosmetics carrier material for pharmaceutical chemicals and medicaments, rheumatism plaster, ultrasound gel, cooling gel, cosmetic thickener, sunscreen
  • the superabsorbent are usually in the so-called.
  • Absorbent core which includes other materials such as fibers (cellulose fibers), which buffer as a kind of liquid reservoir, the spontaneously charged amounts of liquid and a good sewerage of body fluids in the absorbent core towards the superabsorbent to ensure.
  • the polymer Due to the higher loading of the hygiene article (polymer per unit area), the polymer must not form a barrier layer for the subsequent liquid in the swollen state. If the product has good transport properties, optimum utilization of the entire hygiene article can be guaranteed. The phenomenon of gel blocking is thus prevented, which leads in extreme cases to the escape of the liquid, the so-called leakage of the hygiene article. Fluid transfer and distribution is therefore crucial in the initial absorption of body fluids.
  • Hydrogels which have a high gel strength in the swollen state have good transport properties. Gels with only low gel strength are deformable under an applied pressure (body pressure), clog pores in the superabsorbent / cellulose fiber absorbent and thereby prevent further fluid absorption. An increased gel strength is usually achieved by a higher cross-linking, whereby, however, the retention of the product is reduced.
  • An elegant method for increasing the gel strength is the surface postcrosslinking. In this process, dried superabsorbers with average crosslinking density are subjected to additional crosslinking. Surface postcrosslinking increases the crosslink density in the shell of the superabsorbent particles, raising the absorption under pressure to a higher level.
  • the core of the superabsorbent particles has an improved absorption capacity compared to the shell due to the presence of mobile polymer chains, so that the shell construction ensures improved fluid transfer without the gel blocking effect occurring. It is quite desirable that the total capacity of the superabsorbent is not exploited spontaneously but with a time delay. Since the hygiene product is usually applied several times with urine, the absorption capacity of the superabsorbent has reasonably not be exhausted after the first disposition.
  • Hydrophilic, highly swellable hydrogels are in particular polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers, crosslinked carboxymethylcellulose, partially crosslinked polyalkylene oxide or natural products swellable in aqueous liquids, such as guar derivatives.
  • Such hydrogels are used as aqueous solution-absorbing products for making diapers, tampons, sanitary napkins and other sanitary articles, but also as water-retaining agents in agricultural horticulture.
  • hydrophilic, highly swellable hydrogels are generally surface or gel postcrosslinked. This postcrosslinking is known per se to the person skilled in the art and is preferably carried out in aqueous gel phase or as surface postcrosslinking of the ground and screened polymer particles.
  • (meth) acrylates of alkoxylated polyvalent C 2 -C 10 -hydrocarbons are known as crosslinkers. These can be used as mixtures with by-products from the manufacturing process.
  • a disadvantage of these compounds is that for at least partial separation of starting materials and by-products - the crosslinkers used in the mentioned document have a content of acrylic acid of less than 0.1% by weight - complex purification operations are required.
  • a disadvantage of this process is that the reaction times are up to 35 hours due to the low reaction temperature and the excess acid in the reaction mixture is removed by neutralization with subsequent phase separation.
  • WO 2001/14438 (Derwent abstract no. 2001-191644 / 19) and WO 2001/10920 (Chemical Abstracts 134: 163502) describe processes for the esterification of (meth) acrylic acid with Polyalkylenglykolmonoalkylethern in the ratio 3: 1-50: 1 in the presence of acids and polymerization inhibitors and, after deactivation of the acidic catalyst, copolymerization of the residue from (meth) acrylic acid ester and (Meth) acrylic acid at pH 1.5-3.5, and its use as a cement additive.
  • a disadvantage of this method is that it is limited to Polyalkylenglykolmonoalkylether that the catalyst must be deactivated and that such copolymers can not be used as crosslinkers for hydrogels, since they have only one functionality.
  • the object was to simplify the production process for substances that can be used as radical crosslinkers for superabsorbents.
  • the molar excess of B to A is (depending on the hydroxy group to be esterified in the polyhydric alcohol A) at least 1.05: 1, preferably at least 1.1: 1, more preferably at least 1.25: 1, most preferably at least 1.5: 1 and in particular at least 2.5: 1.
  • B is in an excess of, for example, greater than 5: 1, preferably greater than 10: 1, more preferably greater than 20: 1, even more preferably greater than 50: 1, in particular greater than 75: 1 and especially greater than 100 : 1 inserted.
  • esterification products thus obtainable can be used as radical crosslinkers in hydrogels essentially without further purification, especially without substantial separation of the excess of carboxylic acid B and the content of esterification catalyst C.
  • Crosslinking in this document is understood as meaning radical crosslinking (gel crosslinking, internal crosslinking, cross-linking of linear or slightly crosslinked polymer) unless otherwise stated.
  • This crosslinking can take place via free-radical or cationic polymerization mechanisms or other, for example Michael addition, esterification or transesterification mechanisms, preferably by free radical polymerization.
  • Hydrogel-forming polymers which absorb aqueous liquids are preferably those having an absorption of distilled water of at least their own weight, preferably 10 times their own weight, and this absorption is preferably also achieved under a pressure of 0.7 psi.
  • Polyalcohols A which can be used according to the invention are compounds which have at least two hydroxyl functions (-OH), preferably at least three, particularly preferably three to ten, very particularly preferably three to six and in particular three to four.
  • the polyalcohols may be aliphatic, cycloaliphatic or aromatic, preferably aliphatic or cycloaliphatic and very particularly preferably aliphatic, straight-chain or branched and optionally substituted with functional groups.
  • the polyalcohols have from 2 to 50 carbon atoms, and preferably from 3 to 40.
  • the molecular weight of the polyhydric alcohols used is generally below 5000 g / mol, preferably below 2500 g / mol, more preferably below 1500 g / mol, very preferably below 1000 g / mol and in particular below 800 g / mol.
  • Preferred polyalcohols A are polyols, functionalized polyols, alkoxylated polyols, sugar alcohols, partially alkoxylated sugar alcohols, polyetherols, polyesterols, at least partially alkoxylated polyesterols and at least partially saponified, alkoxylated polyesterols.
  • polyols examples include trimethylolbutane, trimethylolpropane, trimethylolethane, neopentyl glycol, neopentyl glycol hydroxypivalate, pentaerythritol, glycerol, 1,2-ethylene glycol, 1,2-propylene glycol, 2-ethyl-1,3-propanediol, 2-methyl-1,3-propanediol, Hydroquinone, bisphenol A, bisphenol F, bisphenol B, 2,2-bis (4-hydroxycyclohexyl) propane, 1,1-, 1,2-, 1,3- and 1,4-cyclohexanedimethanol, 1,2-, 1 , 3- or 1,4-cyclohexanediol, but-2-ene-1,4-diol and but-2-yne-1,4-diol.
  • the polyols can also carry additional functionalities such as ether functions (-O-), carboxyl functions (-COOH) or C 1 -C 4 -alkyloxycarbonyl (ester groups), where C 1 -C 4 alkyl in this specification methyl, ethyl, iso Propyl, n-propyl, n-butyl, iso -butyl, sec -butyl or tert -butyl.
  • ether functions -O-
  • carboxyl functions -COOH
  • C 1 -C 4 -alkyloxycarbonyl ester groups
  • polystyrene resin examples include ditrimethylolpropane, dipentaerythritol, dimethylolpropionic acid, dimethylolbutyric acid, trimethylolacetic acid, hydroxypivalic acid and the 2-hydroxyethyl or C 1 -C 4 -alkyl esters of these acids.
  • Preferred polyols are those of the formula (I):
  • the alkyl radicals may each be straight-chain or branched.
  • R 1 and R 2 are hydrogen, methyl, ethyl, iso -propyl, n-propyl, n-butyl, iso -butyl, sec- butyl, tert- butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-decyl, hydroxymethyl, carboxyl, methoxycarbonyl, ethoxycarbonyl or n-butoxycarbonyl, preferably hydrogen, hydroxymethyl, methyl and ethyl, more preferably hydroxymethyl, methyl and ethyl.
  • polyhydric alcohols of the formula (I) are trimethylolbutane, trimethylolpropane, trimethylolethane, neopentyl glycol, pentaerythritol, 2-ethyl-1,3-propanediol, 2-methyl-1,3-propanediol, 1,3-propanediol, dimethylolpropionic acid, dimethylolpropionic acid methyl ester, Dimethylolpropionic acid ethyl ester, dimethylolbutyric acid, dimethylolbutyric acid methyl ester or dimethylolbutyric acid ethyl ester, preference is given to neopentyl glycol, trimethylolpropane, pentaerythritol and dimethylolpropionic acid, very particular preference to neopentyl glycol, trimethylolpropane and pentaerythritol and in particular trimethylol
  • sugar alcohols examples include sorbitol, mannitol, maltitol, isomalt, diglycerol, threitol, erythritol, adonite (ribite), arabitol (lyxite), xylitol and dulcitol (galactitol).
  • polyetherols are poly-THF having a molecular weight between 162 and 2000, preferably between 162 and 1458, more preferably between 162 and 1098, very particularly preferably between 162 and 738 and in particular between 162 and 378, poly-1,3-propanediol and Poly-1,2-propanediol having a molecular weight between 134 and 1178, preferably between 134 and 888, more preferably between 134 and 598 and most preferably between 134 and 308, polyethylene glycol having a molecular weight between 106 and 898, preferably between 106 and 458 , more preferably from 106 to 400, most preferably between 106 and 235 and especially diethylene glycol, triethylene glycol and tetraethylene glycol.
  • polyesterols are e.g. those into consideration, such as can be prepared by esterification of polycarboxylic acids, preferably dicarboxylic acids, with the abovementioned polyols.
  • polyesterols are known to the person skilled in the art.
  • Preferred polycarboxylic acids include oxalic acid, maleic acid, fumaric acid, succinic acid, glutaric acid, adipic acid, sebacic acid, dodecanedioic acid, o-phthalic acid, isophthalic acid, terephthalic acid, trimellitic acid, azelaic acid, 1,4-cyclohexanedicarboxylic acid or tetrahydrophthalic acid, their isomers and hydrogenation products and also esterifiable derivatives such as anhydrides or dialkyl esters, for example C 1 -C 4 -alkyl esters, preferably methyl, ethyl or n-butyl esters, of the acids mentioned are used.
  • hydroxyl-bearing carboxylic acids or lactones are 4-hydroxybenzoic acid, 6-hydroxy-2-naphthoic acid, pivalolactone or ⁇ -caprolactone into consideration.
  • Suitable polyols are the abovementioned polyfunctional alcohols, preferably neopentyl glycol, Trimethylolpropane, trimethylolethane, pentaerythritol, dimethylolpropionic acid or dimethylol butyric acid into consideration.
  • Examples of Y are a single bond, methylene, 1,2-ethylene, 1,3-propylene, 1,4-butylene, 1,6-hexylene, 1,7-heptylene, 1,8-octylene, cis-1,2 -Ethenylene, trans-1,2-ethenylene, 1,2-, 1,3- or 1,4-phenylene, 1,2-cyclohex-1-enylene, 1,2-, 1,3- or 1,4 Cyclohexylene, 4-carboxy-1,2-phenylene, 2-carboxy-1,4-phenylene or 1-carboxy-2,4-phenylene.
  • Preferred groups Y are 1,2-ethylene, 1,4-butylene and 1,2-, 1,3- or 1,4-phenylene.
  • reaction mixtures of at least partially saponified polyesterols are used as polyalcohols A for the preparation of the ester F.
  • the e.g. polyesterols described above with a suitable base at least partially saponified and then, optionally after separation of remaining in the reaction mixture basic constituents, esterified with the carboxylic acid B.
  • Suitable bases are, for example, NaOH, KOH, Ca (OH) 2 , lime milk, Na 2 CO 3 or K 2 CO 3 , for example as a solid, solution or suspension, preferably in the form of a 10-50% by weight solution, more preferably in the form a 20-40% by weight aqueous solution.
  • the saponification i. the cleavage of the ester groups contained in the polyesterol, for example, at least 10% based on the ester groups in the starting compound, preferably at least 25%, more preferably at least 50%, most preferably at least 75% and in particular at least 90%.
  • the basic ingredients e.g. the basic salt of the carboxylic acid to be removed from the reaction mixture may be, for example, via ion exchangers, e.g. Acid or strong acid ion exchangers take place.
  • reaction mixture is then acidified and esterified with the carboxylic acid B as described.
  • Polyester (meth) acrylates can be used in several stages or in one stage, such as in EP-A 279 303 described, be prepared from (meth) acrylic acid, polycarboxylic acid and polyol.
  • alkoxylated polyols and polyester olev which are obtainable by reacting a polyol or polyesterol with at least one alkylene oxide.
  • the underlying alcohol to be esterified has the formula VIIa, R 8 - (O (CH (R 10 ) CH (R 10 ) O) y H) x (VIIa), wherein R 8 , R 10 , x and y are as defined above.
  • the compounds of formula (VII) are generally from 2 to 10 carbon polyhydric alcohols VIIa which are alkoxylated with between 2 and 8 alkylene oxide units per hydroxy group and whose terminal hydroxy group of each alkylene oxide chain is esterified with a 2 to 10 carbon unsaturated carboxylic acid or esters thereof is.
  • the starting alcohol is preferably a polyhydric alcohol having 3 to 6 carbon atoms, which preferably carries 2 to 4 hydroxyl groups.
  • the starting alcohol is particularly preferably trimethylolpropane, glycerol, pentaerythritol, 1,3-propanediol, propylene glycol, 1,4-butanediol or butylene glycol. Very particular preference is given to trimethylolpropane, glycerol and pentaerythritol as starting alcohol.
  • Suitable alkylene oxides are, for example, ethylene oxide, propylene oxide, isobutylene oxide, vinyl oxirane and / or styrene oxide.
  • the alkylene oxide chain may preferably be composed of ethylene oxide, propylene oxide and / or butylene oxide units. Such a chain may be composed of a species of an alkylene oxide or a mixture of alkylene oxides. When a mixture is used, the different alkylene oxide units may be random or block or blocks of individual species.
  • Preferred as the alkylene oxide is ethylene oxide, propylene oxide or a mixture thereof, more preferably it is ethylene oxide or propylene oxide and most preferably ethylene oxide.
  • one radical R 10 per alkylene oxide unit is preferably hydrogen and the other is methyl or hydrogen, particularly preferably both radicals R 10 are hydrogen.
  • the preferred number of alkylene oxide units in each chain depends on the number of chains.
  • the esterifying agent is a straight chain or branched chain ethylenically unsaturated carboxylic acid having 2 to 10 carbon atoms or its esters, preferably having 2 to 4 and more preferably having 2 to 3 carbon atoms ethylenically unsaturated carboxylic acid, most preferably acrylic acid, methacrylic acid or their esters, especially acrylic acid.
  • the compounds of formula VII are present as a mixture of compounds described by this formula and by-products of the preparation process.
  • compounds VII particular preference is given to the hydroxy group of up to six times, more preferably up to four times and very particularly preferably the tetra-ethoxylated compounds, referred to below as compounds VIIb. These have an increased hydrolytic stability.
  • mixtures of the compounds VIIb and VIIc are advantageous, for example those having a weight ratio VIIb: VIIc of 10:90 to 90:10, preferably 20:80 to 80:20, particularly preferably 30:70 to 70:30 and very particularly preferably from 40:60 to 60:40.
  • Equally preferred is one to 20 times, preferably one to ten times, more preferably two to ten times, very preferably two to five times, especially three to five times and especially three to four times alkoxylated, preferably ethoxylated, propoxylated or mixed-ethoxylated-propoxylated and particularly preferred ethoxylated glycerol (here exceptionally calculated in moles of alkoxy groups per mole of glycerol).
  • the indicated degrees of alkoxylation in each case relate to the average degree of alkoxylation.
  • the number average molecular weight M n of the alkoxylated polyols is preferably not more than 1000 g / mol, particularly preferably not more than 800 g / mol and very particularly preferably not more than 550 g / mol.
  • the figures for the number-average and weight-average molecular weight M n and M w here relate to gel permeation chromatographic measurements using polystyrene as standard and tetrahydrofuran as eluent. The method is in the analyst paperback vol. 4, pages 433 to 442, Berlin 1984 described.
  • Preferred alkoxylated sugar alcohols are those in which at least one hydroxy group of the sugar alcohol is not alkoxylated.
  • the different alkoxy groups contained therein may be in a molar ratio of, for example, 0.05- 20: 1, preferably 0.1-10: 1 and more preferably 0.2-5: 1.
  • polyhydric or polyhydric polyhydric alcohols are used in the esterification, it may be expedient for their use according to the invention as radical crosslinkers to partially esterify the polyhydric alcohols. This means that in an n-valent polyalcohol only at least 2 of the n-hydroxy groups are esterified with the carboxylic acid B.
  • the stoichiometric excess of carboxylic acid B to be used is calculated to the desired degree of esterification, ie, for example, is 2 / n times the molar excesses indicated above.
  • the esterification may also be, e.g. by cooling or dilution, are discontinued when the desired degree of esterification is reached.
  • Ethylenically unsaturated carboxylic acids B which can be used according to the invention are those compounds which have at least one carboxyl group (-COOH), preferably one, and at least one, preferably one, ethylenically unsaturated group.
  • the carboxylic acids which can be used according to the invention can be aliphatic, cycloaliphatic or aromatic, preferably aliphatic or cycloaliphatic and very particularly preferably aliphatic, straight-chain or branched and optionally substituted by functional groups.
  • the carboxylic acids have from three to ten carbon atoms, preferably from three to five and more preferably from three to four.
  • ethylenically unsaturated carboxylic acids B are acrylic acid, methacrylic acid, ethacrylic acid, maleic acid including its anhydride, fumaric acid, itaconic acid, citraconic acid, mesaconic acid, vinylacetic acid, allylacetic acid or crotonic acid.
  • Preferred carboxylic acids B are ⁇ , ⁇ - unsaturated carboxylic acids.
  • methacrylic acid and acrylic acid in this document (meth) called acrylic acid, very particularly preferred is acrylic acid.
  • Esterification catalysts C which can be used according to the invention are sulfuric acid, aryl or alkylsulfonic acids or mixtures thereof.
  • arylsulfonic acids are benzenesulfonic acid, para-toluenesulfonic acid or dodecylbenzenesulfonic acid
  • alkylsulfonic acids are methanesulfonic acid, ethanesulfonic acid or trifluoromethanesulfonic acid.
  • Strongly acidic ion exchangers or zeolites can also be used as esterification catalysts. Preference is given to sulfuric acid and ion exchangers.
  • Polymerization inhibitors D which can be used according to the invention are, for example, phenols, such as alkylphenols, for example o-, m- or p-cresol (methylphenol), 2-tert-butyl-4-methylphenol, 6-tert-butyl-2,4-dimethylphenol, 2,6-di-tert-butyl-4-methylphenol, 2-tert-butylphenol, 4-tert-butylphenol, 2,4-di-tert-butylphenol, 2-methyl-4-tert-butylphenol , 4-tert-butyl-2,6-dimethylphenol, or 2,2'-methylenebis (6-tert-butyl-4-methylphenol), 4,4'-oxydiphenyl, 3,4-methylenedioxydiphenol ( Sesamol), 3,4-dimethylphenol, hydroquinone, catechol (1,2-dihydroxybenzene), 2- (1'-methylcyclohex-1'-yl) -4,6-dimethylphenol, 2-
  • hydroquinone monomethyl ether particularly preferred are hydroquinone monomethyl ether, hydroquinone, and alkylphenols, optionally in combination with Tripehnylphosphit and / or hypophosphorous acid.
  • an oxygen-containing gas preferably air or a mixture of air and nitrogen (lean air) may be present.
  • stabilizers preferred are those which are aerobic, i. those which require the presence of oxygen to develop their full inhibitory effect.
  • Solvents E which can be used according to the invention are especially those which are suitable for the azeotropic removal of the water of reaction, if desired, in particular aliphatic, cycloaliphatic and aromatic hydrocarbons or mixtures thereof.
  • n-pentane n-hexane, n-heptane, cyclohexane, methylcyclohexane, benzene, toluene or xylene.
  • Particularly preferred are cyclohexane, methylcyclohexane and toluene.
  • esterification can be carried out as follows:
  • the esterification apparatus consists of a stirred reactor, preferably a reactor with circulation evaporator and an attached distillation unit with condenser and phase separation vessel.
  • the reactor may be, for example, a reactor with double wall heating and / or internal heating coils.
  • a reactor with external heat exchanger and natural or forced circulation i. using a pump, particularly preferably natural circulation, in which the circulation stream is accomplished without mechanical aids.
  • reaction can also be carried out in several reaction zones, for example a reactor cascade of two to four, preferably two to three reactors.
  • Suitable circulating evaporators are known in the art and described for example in R. Billet, Evaporation Technology, HTB-Verlag, bibliographisches Institut Mannheim, 1965, 53 , Examples of circulation evaporators are tube bundle heat exchangers, plate heat exchangers, etc.
  • the distillation unit is of a type known per se. It may be a simple distillation, which is optionally equipped with a splash guard, or a rectification column. In principle, all conventional installations are suitable as column internals, for example trays, packings and / or fillings. Of the soils, bubble-cap trays, sieve trays, valve trays, Thormann trays and / or dual-flow trays are preferred; of the trays, those with rings, spirals, saddles or braids are preferred.
  • the condenser and the separation vessel are of conventional design.
  • Carboxylic acid B and polyhydric alcohol A are generally used in the esterification a) in a molar excess as stated above relative to the hydroxyl groups of the alcohol.
  • the excess used can be up to about 1000: 1, if desired.
  • esterification catalysts C As esterification catalysts C, the above-mentioned in question.
  • They are generally used in an amount of from 0.1 to 5% by weight, based on the esterification mixture, preferably from 0.5 to 5, more preferably from 1 to 4 and very particularly preferably from 2 to 4% by weight.
  • the esterification catalyst can be removed from the reaction mixture by means of an ion exchanger.
  • the ion exchanger can be added directly to the reaction mixture and then filtered off or the reaction mixture can be passed through a Ionenor physicallyung.
  • the esterification catalyst is left in the reaction mixture.
  • the catalyst is an ion exchanger, it is preferably removed, for example by filtration.
  • an oxygen-containing gas preferably air or a mixture of air and nitrogen (lean air) may be present.
  • This oxygen-containing gas is preferably metered into the bottom region of a column and / or into a circulation evaporator and / or passed through the reaction mixture and / or via this.
  • the polymerization inhibitor (mixture) D (as stated above) is used in a total amount of 0.01-1% by weight, based on the esterification mixture, preferably 0.02-0.8, particularly preferably 0.05-0.5,% by weight %.
  • the above-mentioned compounds are suitable.
  • the amount of solvent used is 10 to 200% by weight, preferably 20 to 100% by weight, particularly preferably 30 to 100% by weight, based on the sum of polyhydric alcohol and carboxylic acid B.
  • the water contained in the reaction mixture is not removed via an azeotroping solvent, it is possible to remove it by stripping with an inert gas, preferably an oxygen-containing gas, more preferably air or lean air, for example as in US Pat DE-A 38 43 843 described.
  • an inert gas preferably an oxygen-containing gas, more preferably air or lean air, for example as in US Pat DE-A 38 43 843 described.
  • the reaction temperature of the esterification a) is generally 40-160 ° C, preferably 60-140 ° C and particularly preferably 80-120 ° C.
  • the temperature can remain constant or increase in the course of the reaction, preferably it is raised in the course of the reaction.
  • the final esterification temperature is 5 - 30 ° C higher as the initial temperature.
  • the temperature of the esterification can be determined and controlled by varying the solvent concentration in the reaction mixture, as in DE-A 199 41 136 and the German application with the file number 100 63 175.4 described.
  • a solvent If a solvent is used, it can be distilled off from the reaction mixture via the distillation unit attached to the reactor.
  • the distillate may optionally be removed or, after condensation, passed into a phase separation apparatus.
  • the aqueous phase thus obtained is usually discharged, the organic phase can be fed as reflux into the distillation unit and / or passed directly into the reaction zone and / or be passed into a circulation evaporator, as in German Patent Application No. 100 63 175.4 described.
  • the organic phase As in the DE-A 199 41 136 described, used to control the temperature in the esterification.
  • the esterification a) can be carried out without pressure but also at overpressure or underpressure, preferably working at normal pressure.
  • the reaction time is usually 2 to 20 hours, preferably 4 to 15 and particularly preferably 7 to 12 hours.
  • reaction components are not essential according to the invention. All components can be mixed and then heated or one or more components can not be initially or only partially charged and added after heating.
  • the usable carboxylic acid B is not limited in its composition and in the case of crude (meth) acrylic acid, for example, the following components: (Meth) acrylic acid 90-99.9% by weight acetic acid 0.05-3% by weight propionic 0.01-1% by weight diacrylate 0.01-5% by weight water 0.05-5% by weight carbonyl 0.01-0.3% by weight inhibitors 0.01-0.1% by weight Maleic acid (anhydride) 0.001-0.5% by weight
  • the crude (meth) acrylic acid used is generally stabilized with 200-600 ppm of phenothiazine or other stabilizers in amounts that allow comparable stabilization.
  • carbonyl-containing for example, acetone and lower aldehydes, e.g. Formaldehyde, acetaldehyde, crotonaldehyde, acrolein, 2- and 3-furfural and benzaldehyde, understood.
  • crude (meth) acrylic acid is meant here the (meth) acrylic acid-containing mixture obtained after absorption of the reaction gases of propane / propene / acrolein or isobutane / isobutene / methacrolein oxidation in an absorbent and subsequent separation of the absorbent or by fractionating Condensation of the reaction gases is obtained.
  • pure (meth) acrylic acid can be used with, for example, the following purity: (Meth) acrylic acid 99.7 - 99.99% by weight acetic acid 50-1000 ppm by weight propionic 10 - 500 ppm by weight diacrylate 10 - 500 ppm by weight water 50-1000 ppm by weight carbonyl 1 - 500 ppm by weight inhibitors 1 - 300 ppm by weight Maleic acid (anhydride) 1 - 200 ppm by weight
  • the pure (meth) acrylic acid used is generally stabilized with 100-300 ppm of hydroquinone monomethyl ether or other storage stabilizers in amounts which allow comparable stabilization.
  • Purified or prepurified (meth) acrylic acid is generally understood to mean (meth) acrylic acid whose purity is at least 99.5% by weight and which is essentially free of the aldehydic, other carbonyl-containing and high-boiling components.
  • an inert gas preferably an oxygen-containing gas, more preferably air or a mixture of air and nitrogen (lean air) may be circulated through or over the reaction mixture, for example in amounts of 0.1-1, preferably 0.2-0.8 and more preferably 0.3-0.7 m3 / m3h, based on the volume of the reaction mixture.
  • the course of the esterification a) can be followed by monitoring the amount of water discharged and / or the decrease of the carboxylic acid concentration in the reactor.
  • the reaction can be terminated, for example, as soon as 90% of the theoretically expected amount of water has been discharged through the solvent, preferably at least 95% and particularly preferably at least 98%.
  • the end of the reaction can be determined, for example, by essentially removing no further water of reaction via the entraining agent. If carboxylic acid B is discharged together with the water of reaction, its proportion can be determined, for example, by back-titration of an aliquot of the aqueous phase.
  • the reaction can be stopped with a suitable diluent G and reduced to a concentration of, for example, 10 to 90% by weight, preferably 20 to 80%, particularly preferably 20 to 60%, very particularly preferably 30 to 50% and in particular approx. 40% diluted, for example, to reduce the viscosity.
  • the diluent G is selected from the group consisting of water, a mixture of water with one or more water-soluble organic solvents, or a mixture of water with one or more simple or polyfunctional alcohols, e.g. Methanol and glycerin.
  • the alcohols preferably carry 1, 2 or 3 hydroxyl groups and preferably have from 1 to 10, in particular up to 4 carbon atoms. Preference is given to primary and secondary alcohols.
  • the decolorization of the reaction mixture can be carried out at any point in the work-up procedure, for example at the stage of the crude reaction mixture or after any pre-wash, neutralization, washing or solvent removal.
  • the reaction mixture may further be subjected to a pre-wash e) and / or a neutralization f) and / or a post-wash g), preferably only a neutralization f).
  • neutralization f) and prewash e) can also be reversed in the order.
  • carboxylic acid B for example (meth) acrylic acid and / or catalyst C can be at least partially recovered by acidification and extraction with a solvent and used again.
  • the reaction mixture is in a washing machine with a washing liquid, for example water or a 5 to 30% by weight, preferably 5 to 20, particularly preferably 5 to 15% by weight sodium chloride, potassium chloride , Ammonium chloride, sodium sulfate or ammonium sulfate solution, preferably water or saline.
  • a washing liquid for example water or a 5 to 30% by weight, preferably 5 to 20, particularly preferably 5 to 15% by weight sodium chloride, potassium chloride , Ammonium chloride, sodium sulfate or ammonium sulfate solution, preferably water or saline.
  • the quantitative ratio of reaction mixture: washing liquid is generally 1: 0.1-1, preferably 1: 0.2-0.8, particularly preferably 1: 0.3-0.7.
  • the laundry or neutralization may be carried out, for example, in a stirred tank or in other conventional equipment, e.g. in a column or mixer-settler apparatus.
  • Sieve bottom or packed or packed columns, stirred tanks or mixer-settler apparatuses, as well as pulsed columns or those with rotating internals are preferably used.
  • Prewash e is preferably used when metal salts, preferably copper or copper salts, are used as inhibitors (with).
  • a post-wash g) may be advantageous for the removal of base or salt traces from the reaction mixture neutralized in f).
  • the optionally prewashed reaction mixture which may still contain small amounts of catalyst and the majority of excess carboxylic acid, for example (meth) acrylic acid, having a 5-25, preferably 5-20, more preferably 5-15% by weight aqueous solution of a base, such as alkali or alkaline earth metal oxides, hydroxides, carbonates or bicarbonates, preferably sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, potassium bicarbonate, calcium hydroxide, milk of lime, ammonia, ammonia or potassium carbonate, optionally 5 to 15% by weight of sodium chloride , Potassium chloride, ammonium chloride or ammonium sulfate may be added, particularly preferably with sodium hydroxide solution or sodium hydroxide solution, are neutralized.
  • a base such as alkali or alkaline earth metal oxides, hydroxides, carbonates or bicarbonates, preferably sodium hydroxide, potassium hydroxide, sodium bicarbonate, sodium carbonate, potassium bicarbonate, calcium hydroxide
  • the degree of neutralization is preferably 10 to 80 mol%, preferably 20 to 80 mol%, particularly preferably 40 to 80 mol%, based on the monomers containing acid groups. This neutralization can take place before and / or during the polymerization, preferably before the polymerization.
  • the addition of the base takes place in such a way that the temperature in the apparatus does not rise above 60 ° C, preferably between 20 and 35 ° C and the pH is 4-13.
  • the removal of the heat of neutralization is preferably carried out by cooling the container by means of internal cooling coils or via a double wall cooling.
  • the quantitative ratio of reaction mixture: neutralizing liquid is generally 1: 0.1-1, preferably 1: 0.2-0.8, particularly preferably 1: 0.3-0.7.
  • the reaction mixture is treated with such an amount of storage stabilizer, preferably hydroquinone monomethyl ether, that after removal of the solvent 100-500, preferably 200-500 and more preferably 200-400 ppm thereof are contained in the target ester (residue).
  • storage stabilizer preferably hydroquinone monomethyl ether
  • the distillative removal of the main amount of solvent is carried out, for example, in a stirred tank with double wall heating and / or internal heating coils under reduced pressure, for example at 20-700 mbar, preferably 30-500 and more preferably 50-150 mbar and a temperature of 40-80.degree ,
  • the distillation can also take place in a falling film or thin film evaporator.
  • the reaction mixture preferably several times in the circulation, under reduced pressure, for example at 20-700 mbar, preferably 30 to 500 and more preferably 50 to 150 mbar and a temperature of 40 to 80 ° C passed through the apparatus.
  • an inert gas preferably an oxygen-containing gas, more preferably air or a mixture of air and nitrogen (lean air) can be introduced into the distillation apparatus, for example 0.1-1, preferably 0.2-0.8 and particularly preferably 0, 3 - 0.7 m3 / m3h, based on the volume of the reaction mixture.
  • the residual solvent content in the residue after distillation is generally below 5% by weight, preferably 0.5-5% and particularly preferably 1 to 3% by weight.
  • the separated solvent is condensed and preferably reused.
  • solvent stripping i) may be carried out in addition to or instead of distillation.
  • the target ester which still contains small amounts of solvent, heated to 50 - 90 ° C, preferably 80 - 90 ° C and removed the remaining amounts of solvent with a suitable gas in a suitable apparatus. If necessary, a vacuum can also be applied to assist.
  • Suitable apparatuses are, for example, columns of a type known per se which contain the usual internals, e.g. Bodenv, beds or directed packings, preferably have beds.
  • all standard installations are suitable as column internals, for example trays, packings and / or random packings.
  • trays bell bottoms, sieve trays, valve trays, Thormann trays and / or dual-flow trays are preferred; of the trays are those with rings, coils, calipers, Raschig, Intos or Pall rings, Barrel or Intalox saddles, Top-Pak etc. or braids, preferred.
  • a falling film, thin film or wiped film evaporator such as e.g. a Luwa, Rotafilm or Sambay evaporator, which can be equipped as a splash guard, for example, with a demister.
  • Suitable gases are inert gases under the stripping conditions, preferably oxygen-containing gases, more preferably air or mixtures of air and nitrogen (lean air) or water vapor, in particular those which are heated to 50 to 100 ° C.
  • the Strippgasmenge is for example 5 - 20, especially. preferably 10 to 20 and most preferably 10 to 15 m3 / m3h, based on the volume of the reaction mixture.
  • the ester may be subjected to filtration j) to remove precipitated traces of salts and any decolorizing agent which may be present.
  • the esterification a) of the polyhydric alcohol A with the carboxylic acid B is carried out in a molar excess of at least 5: 1 in the presence of at least one esterification catalyst C and at least one polymerization inhibitor D without a water azeotrope-forming solvent.
  • the carboxylic acid B used in excess is essentially not separated in a preferred embodiment, ie only the proportion of carboxylic acid B is removed from the reaction mixture, which is determined by the volatility at the applied temperature and there are moreover no measures for the separation of the carboxylic acid such as, for example, distillative, rectificative, extractive, ie. washes, absorptive, such as passing over activated carbon or ion exchangers, and / or chemical steps, such as trapping the carboxylic acid with epoxides.
  • the carboxylic acid B contained in the reaction mixture is preferably not more than 75% by weight, more preferably not more than 50% by weight, very preferably not more than 25% by weight, in particular not more than 10% by weight and especially not more separated from the reaction mixture as 5% by weight, based on the carboxylic acid B present in the reaction mixture after the end of the reaction.
  • step b) can be dispensed with, so that only the proportion of water of reaction and carboxylic acid B is removed from the reaction mixture, which is determined by the volatility at the applied temperature. This can preferably be prevented by substantially complete condensation.
  • esterification catalyst C used remains essentially in the reaction mixture.
  • the reaction mixture thus obtained preferably has an acid number gem.
  • a filtration step j) may be useful.
  • the reaction mixture can be diluted in step c), in which case it is preferably reacted within 6 hours, more preferably within 3 hours to the hydrogel. Preferably, it can be neutralized in a step f).
  • the mixture of substances may optionally be neutralized and have a pH, as listed above under f).
  • Examples of (C 1 -C 4 ) -alkyl alcohol are methanol, ethanol, n-propanol or n-butanol.
  • Particularly preferred hydrophilic monomers are acrylic acid and methacrylic acid.
  • additional monoethylenically unsaturated compounds N which carry no acid groups, but are copolymerizable with the acid group-carrying monomers.
  • these include, for example, the amides and nitriles of monoethylenically unsaturated carboxylic acid, eg. Acrylamide, methacrylamide and N-vinylformamide, N-vinylacetamide, N-methyl-vinylacetamide, acrylonitrile and methacrylonitrile.
  • suitable compounds are, for example, vinyl esters of saturated C 1 - to C 4 -carboxylic acids such as vinyl formate, vinyl acetate or vinyl propionate, alkyl vinyl ethers having at least 2 C atoms in the alkyl group, such as.
  • vinyl esters of saturated C 1 - to C 4 -carboxylic acids such as vinyl formate, vinyl acetate or vinyl propionate
  • alkyl vinyl ethers having at least 2 C atoms in the alkyl group, such as.
  • ethyl vinyl ether or butyl vinyl ether esters of monoethylenically unsaturated C 3 - to C 6 carboxylic acids, eg. B. esters of monohydric C 1 - to C 18 alcohols and acrylic acid, methacrylic acid or maleic acid, half esters of maleic acid, eg.
  • Example maleic monoester, N-vinyl lactams such as N-vinylpyrrolidone or N-vinylcaprolactam, acrylic acid and methacrylic acid esters of alkoxylated monohydric, saturated alcohols, eg. Example, of alcohols having 10 to 25 carbon atoms, which have been reacted with 2 to 200 moles of ethylene oxide and / or propylene oxide per mole of alcohol, and monoacrylic and Monomethacrylklareester of polyethylene glycol or polypropylene glycol, wherein the molecular weights (M n ) of the polyalkylene glycols, for example bis to 2000 may be.
  • Further suitable monomers are styrene and alkyl-substituted styrenes such as ethylstyrene or tert-butylstyrene.
  • acid group-carrying monomers can also be used in mixture with other monomers, for. B. mixtures of vinyl acetate and 2-hydroxyethyl in any ratio. These are not acid group-carrying monomers the reaction mixture in amounts between 0 and 50 wt .-%, preferably less than 20 wt .-% added.
  • the crosslinked (co) polymers consist of acid groups-carrying monoethylenically unsaturated monomers which are optionally converted before or after the polymerization in their alkali metal or ammonium salts, and from 0 to 40 wt .-% based on their total weight no acid group-carrying monoethylenically unsaturated monomers.
  • hydrogels which are obtained by crosslinking polymerization or copolymerization of acid-group-carrying monoethylenically unsaturated monomers M or salts thereof.
  • the starting polymer is treated with a postcrosslinker and preferably postcrosslinked during or after treatment by increasing the temperature and dried, the crosslinker preferably being contained in an inert solvent.
  • inert solvents are meant those which essentially do not react with the starting polymer or with the postcrosslinker in the reaction. Preference is given to those solvents which do not react chemically with the starting polymer or postcrosslinker to more than 90%, preferably more than 95%, particularly preferably more than 99%, in particular more than 99.5%.
  • Preference for postcrosslinking 1) and drying m) is in this case the temperature range between 30 and 250 ° C., in particular 50-200 ° C., very particularly preferably the range between 100 and 180 ° C.
  • the application of the surface postcrosslinking solution is preferably carried out by spraying onto the polymer in suitable spray mixers. Following the spraying, the polymer powder is thermally dried, whereby the crosslinking reaction can take place both before and during drying.
  • fluidized bed dryers can also be used.
  • the drying can take place in the mixer itself, by heating the jacket or blowing hot air. Also suitable is a downstream dryer such as e.g. a rack dryer, a rotary kiln, or a heated screw. But it can also be e.g. an azeotropic distillation can be used as the drying process.
  • the preferred residence time at this temperature in the reaction mixer or dryer is less than 60 minutes, more preferably less than 30 minutes.
  • the starting polymer is a polymeric acrylic acid or a polyacrylate, in particular a polymeric acrylic acid or a polyacrylate, which have been obtained via radical polymerization and in which a polyfunctional ethylenically unsaturated radical crosslinker has been used.
  • radical crosslinker is used in a dosage of from 0.01 to 5.0% by weight, preferably 0.02 to 3.0% by weight, very particularly preferably 0.03 to 2.5% by weight, in particular 0.05-1.0 and especially 0.1-0.75% by weight based on the starting polymer.
  • the invention also relates to polymers prepared by one of the abovementioned processes and their use in hygiene articles, packaging materials and in nonwovens, and to the use of a mixture of substances mentioned above for the preparation of crosslinked or heat-crosslinkable polymers, in particular in paints and inks.
  • hydrophilic, highly swellable hydrogels (starting polymers) to be used in this case are in particular polymers of (co) polymerized hydrophilic monomers M, graft (co) polymers of one or more hydrophilic monomers M onto a suitable graft base L, crosslinked cellulose or starch ethers or swellable in aqueous liquids Natural products, such as guar derivatives.
  • These hydrogels are known to the person skilled in the art and are described, for example, in US Pat U.S. 4,286,082 . DE-C-27 06 135 . U.S. 4,340,706 . DE-C-37 13 601 . DE-C-28 40 010 . DE-A-43 44 548 .
  • DE-A-40 20 780 EP-A-0 20 5674 .
  • Suitable grafting bases L for hydrophilic hydrogels obtainable by graft copolymerization of olefinically unsaturated acids can be of natural or synthetic origin. Examples are starch, cellulose or cellulose derivatives and other polysaccharides and oligosaccharides, polyalkylene oxides, in particular polyethylene oxides and polypropylene oxides, and also hydrophilic polyesters.
  • the water-absorbing polymer can be obtained via radical graft copolymerization of acrylic acid or acrylate onto a water-soluble polymer matrix.
  • Suitable water-soluble polymer matrices include, but are not limited to, alginates, polyvinyl alcohol, and polysaccharides such as starch.
  • a polyfunctional ethylenically unsaturated radical crosslinker is used.
  • the water-absorbing polymer may be an organic-inorganic hybrid polymer of a polymeric acrylic acid or a polyacrylate on the one hand and a silicate, aluminate, or aluminosilicate on the other hand.
  • a polymeric acrylic acid or polyacrylate obtained via free-radical polymerization in which a polyfunctional ethylenically unsaturated radical crosslinker was used and in the preparation of which a water-soluble silicate or soluble aluminate or mixtures of both were used.
  • Preferred hydrogels are, in particular, polyacrylates, polymethacrylates and those disclosed in US Pat U.S. 4,931,497 .
  • U.S. 5,011,892 and U.S. 5,041,496 described graft polymers.
  • Very particularly preferred hydrogels are those in WO 01/38402 described kneader polymers and in DE 198 545 75 described hybrid organic-inorganic hydrogels based on polyacrylates.
  • radical crosslinkers in hydrogels according to the invention can be used alone or in combination with other crosslinkers, for example internal or surface crosslinkers, for example the following:
  • Suitable crosslinkers are in particular Methylenbisacryl- or - methacrylamide, esters of unsaturated mono- or polycarboxylic acids of polyols, such as diacrylate or triacrylate, z.
  • polyols such as diacrylate or triacrylate
  • allyl compounds such as allyl (meth) acrylate, triallyl cyanurate, Maleinklarediallylester, polyallylester, tetraallyloxyethane, triallylamine, tetraallylethylenediamine, allyl esters of phosphoric acid and vinylphosphonic, as described for example in EP-A-0 343 427 are described.
  • hydrogels which are prepared using polyallyl ethers as crosslinkers and by acidic homopolymerization of acrylic acid are particularly preferred in the process according to the invention.
  • Suitable crosslinkers are pentaerythritol tri- and tetraallyl ethers, polyethylene glycol diallyl ether, monoethylene glycol diallyl ether, glycerol di- and triallyl ethers, polyallyl ethers based on sorbitol, and ethoxylated variants thereof.
  • crosslinkers are the polyethylene glycol diacrylates, ethoxylated derivatives of trimethylolpropane triacrylate, for example Sartomer SR 9035, and ethoxylated derivatives of glycerol diacrylate and glycerol triacrylate.
  • polyethylene glycol diacrylates ethoxylated derivatives of trimethylolpropane triacrylate
  • Sartomer SR 9035 ethoxylated derivatives of glycerol diacrylate and glycerol triacrylate.
  • mixtures of the above crosslinkers can be used.
  • the water-absorbing polymer is preferably a polymeric acrylic acid or a polyacrylate.
  • the preparation of this water-absorbing polymer can be carried out by a method known from the literature. Preference is given to polymers which contain crosslinking comonomers (0.001-10 mol%), but very particular preference is given to polymers which have been obtained by free-radical polymerization and in which a polyfunctional ethylenically unsaturated radical crosslinker has been used.
  • the hydrophilic, highly swellable hydrogels can be prepared by polymerization methods known per se.
  • the polymerization in aqueous solution by the method of so-called gel polymerization.
  • dilute, preferably aqueous, more preferably 15 to 50% by weight aqueous solutions of one or more hydrophilic monomers and optionally a suitable graft base L in are used Presence of a free-radical initiator preferably without mechanical mixing using the Trommsdorff-Norrish effect (Makromol Chem 1, 169 (1947)), polymerized.
  • the polymerization reaction can be carried out in the temperature range between 0 ° C and 150 ° C, preferably between 10 ° C and 100 ° C, both at atmospheric pressure and under elevated or reduced pressure.
  • the polymerization can also be carried out in a protective gas atmosphere, preferably under nitrogen.
  • high-energy electromagnetic radiation or the usual chemical polymerization initiators K can be used, for.
  • organic peroxides such as benzoyl peroxide, tert-butyl hydroperoxide, methyl ethyl ketone peroxide, cumene hydroperoxide, azo compounds such as azobisisobutyronitrile and inorganic peroxo compounds such as (NH 4 ) 2 S 2 O 8 , K 2 S 2 O 8 or H 2 O 2 .
  • reducing agents such as ascorbic acid, sodium bisulfite, and iron (11) sulfate or redox systems containing as reducing component an aliphatic and aromatic sulfinic acid, such as benzenesulfinic acid and toluenesulfinic acid or derivatives of these acids, such as.
  • reducing agents such as ascorbic acid, sodium bisulfite, and iron (11) sulfate or redox systems containing as reducing component an aliphatic and aromatic sulfinic acid, such as benzenesulfinic acid and toluenesulfinic acid or derivatives of these acids, such as.
  • B. Mannich adducts of sulfinic acids, aldehydes and amino compounds, as described in the DE-C-1 301 566 described are used. After several hours of reheating the polymer gels in the temperature range 50 ° to 130 ° C, preferably 70 ° to 100 ° C, the quality properties of the polymers can
  • the gels obtained are neutralized to 0-100 mol%, preferably to 25-100 mol%, and particularly preferably to 50-85 mol%, based on the monomer used, it being possible to use the customary neutralizing agents, preferably alkali metal hydroxides, alkali metal oxides or the corresponding alkali metal carbonates, but more preferably sodium hydroxide, sodium carbonate and sodium bicarbonate.
  • the customary neutralizing agents preferably alkali metal hydroxides, alkali metal oxides or the corresponding alkali metal carbonates, but more preferably sodium hydroxide, sodium carbonate and sodium bicarbonate.
  • the neutralization is achieved by mixing the neutralizing agent as an aqueous solution or preferably as a solid.
  • the gel is mechanically comminuted, for example by means of a meat grinder, and the neutralizing agent is sprayed, sprinkled or poured over, and then thoroughly mixed.
  • the gel mass obtained can be further gewolfft for homogenization.
  • the neutralized gel mass is then dried with a belt or roller dryer until the residual moisture content is preferably below 10% by weight, in particular below 5% by weight.
  • the polymerization per se can also be carried out by any other method described in the literature.
  • the neutralization of the acrylic acid can also be carried out before the polymerization, as described above in step f).
  • the polymerization can then be carried out continuously or else batchwise in a belt reactor known per se or in a kneading reactor.
  • the initiation by means of electromagnetic radiation preferably by means of UV radiation, or alternatively the initiation with a redox initiator system is particularly preferred.
  • the dried hydrogel can then be ground and sieved, with mill mills usually being equipped with roller mills, pin mills or vibratory mills.
  • the preferred particle size of the sieved hydrogel is preferably in the range 45-1000 ⁇ m, preferably 45-850 ⁇ m, more preferably 200-850 ⁇ m, and most preferably 300-850 ⁇ m. In these ranges are preferably 80 wt .-% of the particles, in particular 90 wt .-% of the particles.
  • the size distribution can be determined with established laser methods.
  • the present invention furthermore relates to crosslinked hydrogels which contain at least one hydrophilic monomer M in copolymerized form and are crosslinked with an ester F of a polyhydric alcohol A with at least one ethylenically unsaturated carboxylic acid B.
  • the ester can be prepared according to the invention or in a manner known in the art are prepared, preferably in the inventive manner.
  • ester F such compounds can be used as described above.
  • Polyalcohols A and ethylenically unsaturated carboxylic acids B are also those as described above.
  • esters in which the polyhydric alcohol A is selected from the list of polyol which has at least one ether, carboxyl or C 1 -C 4 -alkyloxycarbonyl function as additional functionality, sugar alcohols, partially alkoxylated sugar alcohols, polyesterols, at least partially alkoxylated polyesterols and at least partially saponified, alkoxylated polyesterols, as described above in each case.
  • esters F in which the polyhydric alcohol A is selected from the list of ditrimethylolpropane, dipentaerythritol, dimethylolpropionic acid and dimethylolbutyric acid.
  • the polyalcohols A in esters F described by formula VII which are used as crosslinking agents in the abovementioned hydrogels, can each be ethoxylated, propoxylated or mixed ethoxylated and propoxylated and in particular exclusively ethoxylated, ie R 10 in formula VII can, for example, independently of one another Hydrogen and / or methyl and especially exclusively hydrogen.
  • esters F of the formula VII are those esters F of a polyhydric alcohol A containing at least one ethylenically unsaturated carboxylic acid B, where the polyhydric alcohol A is glycerol three to four times ethoxylated per glycerol or trimethylolpropane or pentaerythritol quadruply ethoxylated per hydroxyl group ,
  • the CRC value [g / g] of the hydrogel-forming polymers according to the invention can be measured by the methods given in the description and is preferably greater than 15, in particular 16, 18, 20, 22, 24 or higher, particularly preferably 25 at 26, 27, 28, 29, more preferably at 30, 31, 32, 33, 34, 35, 36, 37 or higher.
  • the AUL 0.7 psi value [g / g] of the hydrogel-forming polymers according to the invention can be measured by the methods given in the description and is preferably greater than 8, in particular 9, 10, 11, 12, 13, 14 or higher, particularly preferred at 15 in particular at 16, 17, 18, 19, or higher, especially preferably greater than 20, in particular 21, 22, 23, 24, 25, 26, 27, 28, or higher.
  • the AUL 0.5 psi value [g / g] of the hydrogel-forming polymers according to the invention can be measured by the methods given in the description and is preferably greater than 8, in particular 9, 10, 11, 12, 13, 14 or higher, particularly preferably at 15, in particular at 16, 17, 18, 19, or higher, particularly preferably greater than 20, in particular 21, 22, 23, 24, 25, 26, 27, 28, or higher.
  • the percentages are to be understood as meaning that at 10-100% by weight, 11, 12, 13, 14, 15, 16, 17, 18, 19 up to 100% by weight of hydrogel-forming polymer according to the invention and all intervening% -Inve (eg 12.2%) are possible and corresponding hydrophilic fiber material from 0 to 89, 88, 87, 86, 85, 83, 82, 81 wt .-% and intervening percentages (eg 87.8%) possible are. If there are other materials in the core, the percentage of polymer and fiber decreases accordingly.
  • the analogue applies to the preferred ranges, e.g.
  • hydrogel-forming polymer according to the invention in the preferred range 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 to 100% by weight of hydrogel-forming polymer according to the invention, in the more preferred range 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 to 100% by weight of hydrogel-forming polymer according to the invention, more preferably 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 to 100% by weight.
  • % of hydrogel-forming polymer according to the invention in the more preferred range 50, 51, 52, 53, 54, 55, 56, 57, 58, 59 to 100% by weight of hydrogel-forming polymer according to the invention, in the particularly preferred range 60, 61, 62, 63, 64, 65, 66, 67, 68, 69 to 100% by weight of hydrogel-forming polymer according to the invention, in the especially preferred range 70, 71, 71, 72, 73, 74, 75, 76, 77, 78 , 79 to 100% by weight of hydrogel-forming polymer according to the invention and in the most preferred range 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 or 100% by weight of hydrogel-forming polymer according to the invention ,
  • Hygiene articles include incontinence pads and incontinence pants for adults as well as diapers for babies.
  • the liquid pervious cover (P) is the layer that has direct skin contact.
  • the material for this consists of conventional synthetic or semi-synthetic fibers or films of polyester, polyolefins, rayon or natural fibers such as cotton.
  • the fibers are usually to be connected by binders such as polyacrylates.
  • Preferred materials are polyester, rayon and their blends, polyethylene and polypropylene. Examples of liquid-permeable layers are described in WO 99/57355 A1 . EP 102 388 3 A2 ,
  • the liquid-impermeable layer (Q) is usually made of a film of polyethylene or polypropylene.
  • the core (R) contains hydrophilic fiber material in addition to the hydrogel-forming polymer according to the invention.
  • Hydrophilic is understood to mean that aqueous liquids spread quickly over the fiber.
  • the fibrous material is cellulose, modified cellulose, rayon, polyesters such as polyethylene terephthalate. Particularly preferred are cellulose fibers such as pulp.
  • the fibers generally have a diameter of 1 to 200 .mu.m, preferably 10 to 100 .mu.m. In addition, the fibers have a minimum length of 1 mm.
  • diapers The structure and shape of diapers is well known and, for example, in WO 95/26 209 p. 66 line 34 to p. 69 line 11, DE 196 04 601 A1 . EP-A-0 316 518 and EP-A-0 202 127 described. Generally, diapers and other toiletries are also in WO 00/65084 especially on pages 6-15, WO 00/65348 especially on pages 4 - 17, WO 00/35502 , especially pages 3-9, DE 19737434 . WO 98/8439 described. Hygiene articles for feminine hygiene are described in the following references. The aqueous fluids absorbent hydrogel-forming polymers according to the invention can be used there.
  • Literature Feminine Hygiene WO 95/24173 : Absorption Article for Controlling Odor, WO 91/11977 : Body Fluid Odor Control, EP 389023 : Absorbent Sanitary Articles, WO 94/25077 : Odor Control Material, WO 97/01317 : Absorbent Hygienic Article, WO 99/18905 . EP 834297 . US 5,762,644 . US 5,895,381 . WO 98/57609 . WO 2000/065083 . WO 2000/069485 . WO 2000/069484 . WO 2000/069481 . US 6,123,693 . EP 1104666 . WO 2001/024755 .
  • WO 2001/24729 Incontinence articles are described in the following documents: Disposable Absorbent Article for Incontinent Individuals: EP 311344 Description pp. 3 - 9; Disposable Absorbent Article: EP 850623 ; Absorbent Article: WO 95/26207 ; Absorbent Article: EP 894502 ; Dry Laid Fibrous Structure: EP 850 616 ; WO 98/22063 ; WO 97/49365 ; EP 903134 ; EP 887060 ; EP 887059 ; EP 887058 ; EP 887057 ; EP 887056 ; EP 931530 ; WO 99/25284 ; WO 98/48753 , Feminine hygiene and incontinence products are described in the following documents: Catamenial Device: WO 93/22998 Description pp.
  • hydrogel-forming polymers according to the invention are outstandingly suitable as absorbents for water and aqueous liquids, so that they can be used advantageously as a water-retaining agent in agricultural horticulture, as a filtration aid and especially as an absorbent component in hygiene articles such as diapers, tampons or sanitary napkins.
  • the absorbent composition of the present invention has compositions containing or fixed to the high swellable hydrogels.
  • Any composition is suitable that can accommodate the high swellable hydrogels and which can also be integrated into the absorption layer.
  • a variety of such compositions are already known and described in detail in the literature.
  • a composition for incorporation of highly swellable hydrogels may, for. Example, a fiber matrix, which consists of a cellulose fiber mixture (air-laid web, wet laid web) or of synthetic polymer fibers (meltblown web, spunbonded web), or from a mixed fiber plant of cellulose fibers and synthetic fibers. Possible fiber materials are described in detail in the following chapter. For example, the process of an air-laid web is described in WO 98/28 478 , Furthermore, open-cell foams or the like can serve for the incorporation of high-swellable hydrogels.
  • such a composition may be formed by fusing two monolayers to form one or more of a plurality of chambers containing the high swellable hydrogels.
  • a chamber system is described in detail in EP 0 615 736 A1 P. 7 line 26 ff.
  • At least one of the two layers should be water permeable.
  • the second layer can either be water-permeable or impermeable to water.
  • Tissues or other fabric, closed or open-cell foams, perforated films, elastomers or fabrics of fibrous material can be used as the layer material.
  • the layer material should have a pore structure whose pore dimensions are small enough to retain the high swellable hydrogel particles.
  • the above examples of composition of the absorbent composition also include laminates of at least two layers, between which the high swellable hydrogels are incorporated and fixed.
  • Dry and wet Integrity is the ability to incorporate highly swellable hydrogels into the absorbent composition so that they will withstand external forces in both the wet and dry states and will not displace or leak high swellable polymer. Force effects are to be understood primarily as mechanical loads, as they occur in the course of movement when the hygiene article is worn, or else the weight load under which the hygiene article stands, especially in the case of incontinence.
  • fixation by heat treatment addition of adhesives, thermoplastics, binder materials are listed in WO 95/26209 P. 37 line 36 to p. 41 line 14. Said passage is thus part of this invention. Methods for increasing the wet strength can also be found in WO 2000/36216 A1 ,
  • the absorbent composition of a carrier material such as Example, consist of a polymer film on which the sharkquellschreiben hydrogel particles are fixed. The fixation can be made both on one side and on both sides.
  • the carrier material may be water-permeable or impermeable to water.
  • compositions of the absorbent composition are the high swellable hydrogels in a weight fraction of 10 to 100 wt%, preferably 20 to 100 wt .-%, more preferably 30 to 100 wt .-%, even more preferably 40 to 100 wt .-%, more preferably 50-100% by weight, more preferably 60-100% by weight, especially preferably 70-100% by weight, most preferably 80-100% by weight and most preferably 90-100% by weight based on the Total weight of the composition and the highly swellable hydrogels installed.
  • Fiber materials of the absorbent composition are Fiber materials of the absorbent composition
  • the structure of the present absorbent composition according to the invention is based on a variety of fiber materials which are used as a fiber network or matrices. Included in the present invention are both fibers of natural origin (modified or unmodified) and synthetic fibers.
  • cellulosic fibers include those commonly used in absorbent products, such as fluff pulp and cotton type pulp.
  • the materials (coniferous or hardwoods), production methods such as chemical pulp, semi-chemical pulp, chemothermic mechanical pulp (CTMP) and bleaching method are not particularly limited.
  • CMP chemothermic mechanical pulp
  • natural cellulose fibers such as cotton, flax, silk, wool, jute, ethyl cellulose and cellulose acetate are used.
  • Suitable synthetic fibers are made from polyvinyl chloride, polyvinyl fluoride, polytetrafluoroethylene, polyvinylidene chloride, polyacrylics such as ORLON ®, polyvinyl acetate, polyethylvinyl acetate, polyvinyl alcohol soluble or insoluble.
  • thermoplastic polyolefin such as polyethylene fibers (PULPEX ®), polypropylene fibers and polyethylene-polypropylene bicomponent fibers
  • polyester fibers such as polyethylene terephthalate (DACRON ® or KO-DEL ®), copolyesters, polyvinyl acetate, polyethylvinyl acetate, polyvinyl chloride, polyvinylidene chloride, polyacrylics, polyamides , Copolyamides, polystyrene and copolymers of the above-mentioned polymers, and polyethylene terephthalate polyethylene-isophthalate copolymer bicomponent fibers, polyethylvinyl acetate / polypropylene, polyethylene / polyester, polypropylene / polyester, copolyester / polyester, polyamide fibers (nylon), polyurethane fibers, polystyrene fibers, and polyacrylonitrile fibers.
  • thermoset two-component fibers of sheath-core-type polyolefin and side-by-side type because of their excellent dimensional stability after liquid absorption.
  • thermoplastic fibers are preferably used in combination with thermoplastic fibers.
  • thermoplastic fibers During the heat treatment, the latter partly migrate into the matrix of the existing fiber material and thus form connecting points and renewed stiffening elements on cooling.
  • thermoplastic fibers means an extension of the pore dimensions present after heat treatment. In this way it is possible, by continuously adding thermoplastic fibers during the formation of the absorption layer, to continuously increase the proportion of thermoplastic fibers to the cover sheet, resulting in a likewise continuous increase in pore sizes.
  • Thermoplastic fibers can be formed from a variety of thermoplastic polymers having a melting point of less than 190 ° C, preferably between 75 ° C and 175 ° C. At these temperatures, no damage to the cellulose fibers is to be expected.
  • Lengths and diameters of the above-described synthetic fibers are not particularly limited, and generally, any fiber having a length of 1 to 200 mm and a diameter of 0.1 to 100 denier (gram per 9000 meters) may be preferably used.
  • Preferred thermoplastic fibers have a length of 3 to 50 mm, more preferably a length of 6 to 12 mm.
  • the preferred diameter of the thermoplastic fiber is between 1.4 and 10 decitex, more preferably between 1.7 and 3.3 decitex (grams per 10,000 meters).
  • the shape is not particularly limited, and examples include cloth-like, narrow cylinder-like, cut / split-yarn-type, staple-type and endless-fiber-like ones.
  • the fibers in the absorbent composition of the invention may be hydrophilic, hydrophobic or a combination of both.
  • a fiber is said to be hydrophilic if the contact angle between the liquid and the fiber (or its surface) is less than 90, or if the liquid tends to spontaneously spread on the same surface. Both processes are usually coexistent.
  • a fiber is said to be hydrophobic if a contact angle of greater than 90 ° is formed and no spreading is observed. Preference is given to using hydrophilic fiber material.
  • Fiber material is particularly preferably used which is weakly hydrophilic toward the body side and most hydrophilic in the region around the highly swellable hydrogels.
  • the use of layers of different hydrophilicity produces a gradient which channels the impinging liquid to the hydrogel, where finally the absorption takes place.
  • Suitable hydrophilic fibers for use in the absorbent composition according to the invention are, for example, cellulose fibers, modified cellulose fibers, rayon, polyester fibers, such as e.g. As polyethylene terephthalate (DACRON ®), and hydrophilic nylon (HYDROFIL ®).
  • Suitable hydrophilic fibers can also be obtained by hydrophilizing hydrophobic fibers, such as the treatment of thermoplastic fibers obtained from polyolefins (such as polyethylene or polypropylene, polyamides, polystyrenes, polyurethanes, etc.) with surfactants or silica.
  • polyolefins such as polyethylene or polypropylene, polyamides, polystyrenes, polyurethanes, etc.
  • surfactants or silica for reasons of cost and availability, however, cellulose fibers are preferred.
  • the highly swellable hydrogel particles are embedded in the described fiber material. This can be done in many ways by z. B. with the hydrogel material and the fibers together builds up an absorption layer in the form of a matrix, or by incorporation harnesslCher hydrogels in layers of fiber mixture, where they are finally fixed, either by adhesive or lamination of the layers.
  • the liquid-receiving and -istrating fiber matrix may consist of synthetic fiber or cellulose fiber or a mixture of synthetic fiber and cellulose fiber, wherein the mixing ratio of (100 to 0) synthetic fiber: (0 to 100) cellulose fiber may vary.
  • the cellulose fibers used can additionally be chemically stiffened to increase the dimensional stability of the hygiene article.
  • a fiber stiffening can be achieved by adding suitable coatings to the fiber material.
  • suitable coatings include, for example, polyamide-epichlorohydrin coatings (Kymene ® 557 H, Hercoles, Inc. Wilmington, Delaware, USA), polyacrylamide coatings (as described in U.S. Patent 3,556,932 or as a commercial product from Parez ® 631 NC trademark, American Cyanamid Co., Stamford, CT, USA), melamine-formaldehyde coatings and polyethyleneimine coatings with one.
  • the chemical stiffening of cellulose fibers can also be done by chemical reaction. So z.
  • suitable crosslinker substances can cause crosslinking that occurs within the fiber.
  • Suitable crosslinker substances are typical substances which are used for crosslinking monomers. Included, but not limited to, are C 2 -C 8 dialdehydes, C 2 -C B monoaldehydes with acidic functionality, and especially C 2 -C 9 polycarboxylic acids. Specific substances from this series are, for example, glutaraldehyde, glyoxal, glyoxylic acid, formaldehyde and citric acid.
  • Chemically crosslinked cellulose fibers are known and known in WO 91/11162 .
  • the chemical crosslinking causes a stiffening of the fiber material, which is ultimately reflected in an improved dimensional stability of the entire hygiene article.
  • the individual layers are known by those skilled methods, such.
  • the absorbent composition is comprised of compositions containing high swellable hydrogels and the high swellable hydrogels that are present in or attached to said compositions.
  • Examples of methods of obtaining an absorbent composition consisting of, for example, a support material to which one or both sides highly swellable hydrogels are fixed are known and included in, but not limited to, the invention.
  • Examples of methods of obtaining an absorbent composition consisting of, for example, highly swellable hydrogels (c) embedded in a fiber material mixture of synthetic fibers (a) and cellulose fibers (b), wherein the mixing ratio of (100 to 0) is synthetic fiber : (0 to 100) cellulose fiber can vary, (1) a process in which (a), (b) and (c) are mixed simultaneously, (2) a process in which a mixture of (a) and ( b) in (c), (3) a process in which a mixture of (b) and (c) is mixed with (a), (4) a process in which a mixture of (a) and ( c) in (b), (5) a process in which (b) and (c) are mixed and (a) continuously metered in, (6) a process in which (a) and (c) are mixed and (b) is metered in continuously, and (7) a method in which (b) and (c) are separately mixed in (a).
  • methods (1) and (5) are preferred.
  • the suitably produced absorbent composition may optionally be subjected to a heat treatment so as to result in an absorbent layer excellent in wet-state dimensional stability.
  • the method of heat treatment is not particularly limited. Examples include heat treatment by supplying hot air or infrared radiation.
  • the temperature in the heat treatment is in the range 60 ° C to 230 ° C, preferably between 100 ° C and 200 ° C, more preferably between 100 ° C and 180 ° C.
  • the duration of the heat treatment depends on the type of synthetic fiber, its quantity and the speed of production of the hygiene article. Generally, the duration of the heat treatment is between 0.5 second to 3 minutes, preferably 1 second to 1 minute.
  • the absorbent composition is generally provided, for example, with a liquid permeable cover layer and a liquid impermeable backsheet. Wieterhin leg cuffs and adhesive tapes are attached and finished so the toiletries.
  • the materials and types of the permeable topsheet and impermeable backsheet, as well as the leg seals and tapes are well known to those skilled in the art and not particularly limited. Examples of this can be found in WO 95/26209 ,
  • esters F which can be used as crosslinkers do not have to be purified after their preparation, especially that the carboxylic acid B, for example acrylic acid, does not have to be separated off, since this usually constitutes a monomer for preparing the hydrogels.
  • the production of the superabsorbent crosslinking agents takes place in the examples by esterification of polyetherols with acrylic acid, wherein the separation of the water takes place in an azeotropic distillation.
  • Esterification catalyst is sulfuric acid in the examples.
  • the reactants are presented together with a stabilizer mixture consisting of hydroquinone monomethyl ether, triphenyl phosphite and hypophosphorous acid in the examples in methylcyclohexane as entraining agent.
  • the reaction mixture is then heated to about 98 ° C until the azeotropic distillation begins. During azeotropic distillation, the temperature in the reaction mixture increases. The amount of water removed is determined. The distillation is stopped when at least the theoretical amount of water has been separated off. Subsequently, the entrainer is removed in a vacuum distillation.
  • the product is cooled and used as a crosslinker in superabsorbent production.
  • Example 7 (about 3 times per glycerol molecule ethoxylated glycerol triacrylate)
  • Example 8 (about 5 times per glycerol molecule ethoxylated glycerol triacrylate)
  • Example 9 (about 9 times per glycerol molecule ethoxylated glycerol triacrylate)
  • Example 10 (about 5 times per molecule of pentaerythritol ethoxylated pentaerytritol tetraacrylate)
  • 382 parts of approximately 5-fold ethoxylated pentaerythritol are esterified with 348 parts of acrylic acid and 5 parts of sulfuric acid in 180 parts of methylcyclohexane.
  • As auxiliaries 3 parts of hydroquinone monomethyl ether, 1.5 parts of triphenyl phosphite and 1.5 Part of hypophosphorous acid added.
  • the product is cleaned via K300 filter.
  • the acid number is 35 mg KOH / g.
  • the viscosity of the dark colored product is 280 mPas.
  • Example 11 (approximately 13 times per molecule of ethoxylated dipentaerythritol)
  • Example 12 (about 4 times per molecule of ethoxylated sorbitol acrylate)
  • Example 13 (about 6 times per molecule of ethoxylated sorbitol acrylate)
  • 601 parts of approximately 6-fold ethoxylated sorbitol are esterified with 444 parts of acrylic acid and 5 parts of sulfuric acid in 448 parts of cyclohexane.
  • As auxiliaries 3 parts of hydroquinone monomethyl ether, 1.5 parts of triphenyl phosphite and 1.5 parts of hypophosphorous acid are added.
  • the acid number is 45 mg KOH / g.
  • the viscosity of the dark colored product is 700 mPas.
  • Example 14 (about 8 times per molecule of ethoxylated sorbitol acrylate)
  • Example 15 (about 10 times per molecule of ethoxylated sorbitol acrylate)
  • Example 16 (about 13 times per molecule of ethoxylated sorbitol hexaacrylate)
  • the dried hydrogel can be investigated by the following test methods.
  • the free swellability of the hydrogel is determined in a tea bag.
  • a tea bag For the determination of the CRC, 0.2000 ⁇ 0.0050 g of dried hydrogel (particle fraction 106-850 ⁇ m) are weighed into a 60 ⁇ 85 mm tea bag, which is subsequently welded. The teabag is placed in an excess of 0.9% by weight saline for 30 minutes (at least 0.83 liter of saline solution / 1 g of polymer powder). The teabag is then centrifuged for 3 minutes at 250 g. The determination of the amount of liquid is done by weighing the centrifuged teabag.
  • the measuring cell for the determination of the AUL 0.7 psi represents a Plexiglas cylinder with an inner diameter of 60 mm and a height of 50 mm, which has on the underside a glued stainless steel sieve bottom with a mesh size of 36 ⁇ m.
  • the measuring cell also includes a plastic plate with a diameter of 59 mm and a weight, which can be placed together with the plastic plate in the measuring cell. The weight of the plastic plate and the weight together amount to 1345g.
  • the weight of the empty Plexiglas cylinder and the plastic plate is determined and recorded as Where.
  • a round filter paper with a diameter of 90 mm and a pore size ⁇ 20 ⁇ m (S & S 589 Schwarzband from Schleicher & Schüll) is placed on the ceramic plate.
  • the hydrogel-forming polymer-containing Plexiglas cylinder is now placed with plastic plate and weight on the filter paper and left there for 60 minutes. After this time, remove the complete unit from the Petri dish from the filter paper and then remove the weight from the Plexiglas cylinder.
  • the swollen hydrogel Plexiglas cylinder is weighed together with the plastic plate and the weight recorded as W b.
  • crosslinkers the types indicated in Table 1 were added in the amounts indicated there, in each case based on acrylic acid used. Thereafter, 0.28% by weight of sodium persulfate and 0.0056% by weight of ascorbic acid, based in each case on the acrylic acid monomer used, were added as the polymerization initiator.
  • the reaction started, and the temperature of the kneader shell was readjusted so that the heat of reaction was not dissipated through the jacket. This results in an almost adiabatic heating of the reaction mixture, where the polymerization takes place with stirring. At the end of the reaction, the temperature is maintained for about an hour. Afterwards, a fine-crumb gel was emptied.
  • the gel was dried for 3 h at 160 C in a convection oven, ground with a laboratory roller mill, and sieved at 100-850 microns. This is the normal base polymer of Table 1.
  • the gel was first annealed for 6 hours at 90 ° C. in the sealed plastic bag, and only then was it dried for 3 hours at 160 ° C. in a circulating air oven, ground with a laboratory roller mill, and finally screened at 100-850 microns.
  • This is the hydrolyzed base polymer of Table 1.
  • the dry normal base polymer powder was combined with a solution of 0.06 wt.% Ethylene glycol diglycidyl ether (Nagase, Japan), 3.43 wt.% Water and 1.47 wt.% Propane-1,2-diol, based on the polymer used Stirring homogeneously sprayed.
  • the wet powder was then tempered in the oven at 150 C for 60 min. It was then sieved again at 850 microns to remove agglomerates.
  • Table 1 example crosslinkers amount used solubility base polymer Postcrosslinked polymer CRC Extract. 16h CRC AUL 0.7 psi Extract.
EP10177026A 2002-06-11 2003-06-06 Procédé de fabrication d'esters de polyalcools Withdrawn EP2345431A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10225943A DE10225943A1 (de) 2002-06-11 2002-06-11 Verfahren zur Herstellung von Estern von Polyalkoholen
EP03757035A EP1516010B1 (fr) 2002-06-11 2003-06-06 Procédé de préparation d'un hydrogel réticulé.

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP03757035.5 Division 2003-06-06
EP03757035 Previously-Filed-Application 2003-06-06

Publications (2)

Publication Number Publication Date
EP2345431A2 true EP2345431A2 (fr) 2011-07-20
EP2345431A3 EP2345431A3 (fr) 2012-07-25

Family

ID=29718967

Family Applications (3)

Application Number Title Priority Date Filing Date
EP03757035A Revoked EP1516010B1 (fr) 2002-06-11 2003-06-06 Procédé de préparation d'un hydrogel réticulé.
EP10177026A Withdrawn EP2345431A3 (fr) 2002-06-11 2003-06-06 Procédé de fabrication d'esters de polyalcools
EP10177066A Withdrawn EP2345432A3 (fr) 2002-06-11 2003-06-06 Procédé de fabrication d'esters de polyalcools

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03757035A Revoked EP1516010B1 (fr) 2002-06-11 2003-06-06 Procédé de préparation d'un hydrogel réticulé.

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10177066A Withdrawn EP2345432A3 (fr) 2002-06-11 2003-06-06 Procédé de fabrication d'esters de polyalcools

Country Status (10)

Country Link
US (1) US7250481B2 (fr)
EP (3) EP1516010B1 (fr)
JP (2) JP2005533875A (fr)
CN (1) CN1659212A (fr)
AU (1) AU2003242636A1 (fr)
BR (1) BR0311500B1 (fr)
DE (1) DE10225943A1 (fr)
MX (1) MXPA04012091A (fr)
WO (1) WO2003104299A1 (fr)
ZA (1) ZA200500188B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819337A (zh) * 2013-09-29 2014-05-28 安庆飞凯高分子材料有限公司 一种三官能团季戊四醇丙烯酸酯制备方法

Families Citing this family (256)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1447066B1 (fr) 2003-02-12 2008-10-01 The Procter & Gamble Company Couche-coulotte confortable
EP1913913A3 (fr) 2003-02-12 2008-05-28 The Procter and Gamble Company Partie centrale absorbante pour un article absorbant
WO2004087790A2 (fr) * 2003-04-03 2004-10-14 Basf Aktiengesellschaft Melanges d'esters (meth)acryliques de trimethylolpropane polyalkoxyle
DE10331450A1 (de) * 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
WO2005014064A1 (fr) 2003-08-06 2005-02-17 Basf Aktiengesselschaft Materiau gonflable dans l'eau comprenant des polymeres gonflables dans l'eau, revetus
DE602004032349D1 (de) * 2003-08-06 2011-06-01 Procter & Gamble Verfahren zur herstellung eines wasserquellbaren materials mit beschichteten wasserquellbaren polymeren
JP2007501315A (ja) * 2003-08-06 2007-01-25 ザ プロクター アンド ギャンブル カンパニー コーティングされた水膨潤性材料
EP1518567B1 (fr) 2003-09-25 2017-06-28 The Procter & Gamble Company Articles absorbants comprenant des zones d'acquisition et des particules revêtues et superabsorbantes
WO2005082828A1 (fr) * 2004-02-20 2005-09-09 Basf Aktiengesellschaft Procede de production d'esters de l'acide (meth)acrylique
DE102004051242A1 (de) 2004-10-20 2006-05-04 Basf Ag Feinteilige wasserabsorbierende Polymerpartikel mit hoher Flüssigkeitstransport- und Absorptionsleistung
ATE487500T1 (de) 2005-02-04 2010-11-15 Procter & Gamble Absorbierende struktur mit verbessertem wasserabsorbierendem material
DE102005014291A1 (de) 2005-03-24 2006-09-28 Basf Ag Verfahren zur Herstellung wasserabsorbierender Polymere
TWI353360B (en) * 2005-04-07 2011-12-01 Nippon Catalytic Chem Ind Production process of polyacrylic acid (salt) wate
US20060264861A1 (en) 2005-05-20 2006-11-23 Lavon Gary D Disposable absorbent article having breathable side flaps
CN101242891B (zh) * 2005-08-24 2011-05-11 巴斯夫欧洲公司 生产吸水性聚合物颗粒的方法
DE102005042604A1 (de) 2005-09-07 2007-03-08 Basf Ag Neutralisationsverfahren
TWI394789B (zh) 2005-12-22 2013-05-01 Nippon Catalytic Chem Ind 吸水性樹脂組成物及其製造方法、吸收性物品
JP2009522387A (ja) * 2005-12-28 2009-06-11 ビーエーエスエフ ソシエタス・ヨーロピア 吸水物質の製法
CN101400588B (zh) * 2006-03-14 2014-04-16 巴斯夫欧洲公司 吸水性聚合物颗粒的气动输送方法
EP1837348B9 (fr) 2006-03-24 2020-01-08 Nippon Shokubai Co.,Ltd. Résine absorbant l'eau et son procédé de fabrication
EP2042521A1 (fr) 2006-03-29 2009-04-01 Nippon Shokubai Co., Ltd. Procédé de production de résine hygroscopique à acide (sel) polyacrylique
ES2382750T3 (es) * 2007-01-12 2012-06-13 The Procter & Gamble Company Núcleo absorbente que tiene una estructura mejorada
DE102008000237A1 (de) 2007-02-06 2008-08-07 Basf Se Phenol-Imidazolderivate zur Stabilisierung von polymerisationsfähigen Verbindungen
CA2692236C (fr) 2007-06-18 2012-08-14 The Procter & Gamble Company Article absorbant jetable forme d'un materiau polymerique particulaire absorbant distribue de maniere sensiblement continue et procede associe
WO2008155722A2 (fr) 2007-06-18 2008-12-24 The Procter & Gamble Company Article absorbant jetable à noyau absorbant scellé contenant un matériau polymérique particulaire absorbant distribué de manière sensiblement continue
WO2009134780A1 (fr) 2008-04-29 2009-11-05 The Procter & Gamble Company Procédé de fabrication d'une partie centrale absorbante avec un revêtement central résistant à la déformation
US20090318884A1 (en) * 2008-06-20 2009-12-24 Axel Meyer Absorbent structures with immobilized absorbent material
EP2163266A1 (fr) 2008-09-12 2010-03-17 The Procter & Gamble Article absorbant comprenant un matériau absorbant l'eau
JP5496227B2 (ja) 2009-02-18 2014-05-21 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子の製造方法
US20100247916A1 (en) 2009-03-24 2010-09-30 Basf Se Process for Producing Surface Postcrosslinked Water-Absorbing Polymer Particles
EP2411443B2 (fr) * 2009-03-25 2018-08-01 DSM IP Assets B.V. Procédé de préparation de polyesters insaturés
EP2424900B1 (fr) 2009-04-30 2013-04-03 Basf Se Procédé de séparation d'impuretés métalliques
EP2609939B1 (fr) 2009-05-20 2014-10-29 Basf Se Couches de rétention hydroabsorbantes
US8502012B2 (en) * 2009-06-16 2013-08-06 The Procter & Gamble Company Absorbent structures including coated absorbent material
WO2010149735A1 (fr) 2009-06-26 2010-12-29 Basf Se Procédé de fabrication de particules polymères absorbant l’eau ayant une faible tendance à l’agglomération et une absorption élevée sous pression
EP2277558B1 (fr) 2009-07-20 2014-07-02 The Procter and Gamble Company Particules polymères superabsorbantes et procédés correspondants
EP2277557B1 (fr) 2009-07-20 2014-06-25 The Procter and Gamble Company Particules polymères superabsorbantes enrobées et procédés correspondants
WO2011023536A1 (fr) 2009-08-25 2011-03-03 Basf Se Polymères superabsorbants souples sous forme de particules et leur utilisation
JP5661769B2 (ja) 2009-08-25 2015-01-28 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se モノマー溶液の液滴の重合によって改善された血液吸収を有する、吸水性ポリマー粒子の製造方法
JP5615364B2 (ja) 2009-08-26 2014-10-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 臭気を抑制する組成物
JP5615365B2 (ja) 2009-08-28 2014-10-29 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se トリクロサン被覆超吸収材の製造方法
US8481159B2 (en) 2009-09-04 2013-07-09 Basf Se Water-absorbent porous polymer particles having specific sphericity and high bulk density
BR112012005901A2 (pt) 2009-09-16 2019-09-24 Basf Se superabsorvente, processo para produzir um superabsorvente, artigo para absorver fluidos, e, processo para produzir artigos para absorver fluidos
US8815770B2 (en) 2009-09-17 2014-08-26 Basf Se Color-stable superabsorber
JP5818797B2 (ja) 2009-09-18 2015-11-18 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 超吸収体を備えた連続気泡フォーム
US8952116B2 (en) 2009-09-29 2015-02-10 Nippon Shokubai Co., Ltd. Particulate water absorbent and process for production thereof
CN102666670B (zh) 2009-10-09 2014-02-19 巴斯夫欧洲公司 再润湿表面后交联的吸水性聚合物颗粒的方法
WO2011042468A2 (fr) 2009-10-09 2011-04-14 Basf Se Procédé de réhumidification de particules polymères réticulées en surface, absorbant l'eau
EP2485773B1 (fr) 2009-10-09 2013-12-11 Basf Se Utilisation de condensat de vapeur de chauffage pour la production de particules polymères qui absorbent l'eau
WO2011042362A1 (fr) 2009-10-09 2011-04-14 Basf Se Procédé de production en continu de particules polymères qui absorbent l'eau
WO2011054784A1 (fr) 2009-11-06 2011-05-12 Basf Se Textiles contenant des superabsorbants améliorés
JP2013511610A (ja) 2009-11-23 2013-04-04 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー発泡体の製造方法
WO2011061125A2 (fr) 2009-11-23 2011-05-26 Basf Se Procédé pour produire des particules polymères hydroabsorbantes présentant une stabilité de couleur améliorée
CN102665771A (zh) 2009-11-23 2012-09-12 巴斯夫欧洲公司 制备吸水性起泡聚合物颗粒的方法
EP2329803B1 (fr) 2009-12-02 2019-06-19 The Procter & Gamble Company Appareil et procédé pour le transfert d'un matériau à particules
DE102009060865A1 (de) * 2009-12-30 2011-07-07 Emery Oleochemicals GmbH, 40589 Ester aus festen Polyolen und ungesättigten Carbonsäuren
DE102009060881A1 (de) * 2009-12-30 2011-07-07 Emery Oleochemicals GmbH, 40589 Wärmetauscher in Verfahren und Vorrichtung zur Herstellung eines Esters
JP5554074B2 (ja) * 2010-01-13 2014-07-23 三洋化成工業株式会社 インクジェット印刷インク用重合性化合物及びインク組成物
EP2528630B1 (fr) 2010-01-27 2016-03-30 Basf Se Matières composites absorbant l'eau et inhibant les odeurs
JP2013520539A (ja) 2010-02-24 2013-06-06 ビーエーエスエフ ソシエタス・ヨーロピア 吸水性ポリマー粒子の製造法
CN102762616B (zh) 2010-02-24 2014-07-16 巴斯夫欧洲公司 制备吸水性聚合物颗粒的方法
WO2011113728A1 (fr) 2010-03-15 2011-09-22 Basf Se Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttelettes d'une solution de monomère
US8703876B2 (en) 2010-03-15 2014-04-22 Basf Se Process for producing water absorbing polymer particles with improved color stability
WO2011117187A1 (fr) 2010-03-24 2011-09-29 Basf Se Noyaux ultrafins absorbant les liquides
CN102906124B (zh) 2010-03-24 2014-12-17 巴斯夫欧洲公司 从吸水性聚合物颗粒中移除残余单体的方法
JP5933520B2 (ja) 2010-03-24 2016-06-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se モノマー溶液の液滴を重合することによる吸水ポリマー粒子の製造方法
WO2011117245A1 (fr) 2010-03-25 2011-09-29 Basf Se Procédé de production de particules polymères absorbant l'eau
WO2011131526A1 (fr) 2010-04-19 2011-10-27 Basf Se Procédé de préparation de particules polymères absorbant l'eau
JP5766283B2 (ja) 2010-06-14 2015-08-19 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 改善された色安定性を有する吸水性ポリマー粒子
US9962459B2 (en) 2010-07-02 2018-05-08 Basf Se Ultrathin fluid-absorbent cores
CN101912599A (zh) * 2010-07-30 2010-12-15 北京凯因科技股份有限公司 重组人白介素15在治疗恶性腹水瘤药物中的应用
US9089624B2 (en) 2010-08-23 2015-07-28 Basf Se Ultrathin fluid-absorbent cores comprising adhesive and having very low dry SAP loss
EP2625207A1 (fr) 2010-10-06 2013-08-14 Basf Se Procédé de production de particules polymère hydro-absorbantes, à post-réticulation superficielle thermique
WO2012054661A1 (fr) 2010-10-21 2012-04-26 The Procter & Gamble Company Structures absorbantes comprenant des particules absorbant l'eau post-réticulées
US20130207037A1 (en) 2010-10-21 2013-08-15 Basf Se Water-Absorbing Polymeric Particles and Method for the Production Thereof
EP2447286A1 (fr) 2010-11-01 2012-05-02 The Procter & Gamble Company Procédé utilisant un milieu supercritique pour produire des polymères
US8753513B2 (en) 2010-11-09 2014-06-17 International Business Machines Corporation Ammonia-peroxide wastewater treatment system
EP2476714A1 (fr) 2011-01-13 2012-07-18 Basf Se Mousses en polyuréthane intégraux dotés d'une dureté de surface améliorée
EP2673011B2 (fr) 2011-02-07 2019-01-16 Basf Se Procede pour la préparation des particules polymères absorbant de l'eau ayant une haute vitesse de gonflement
WO2012107344A1 (fr) 2011-02-07 2012-08-16 Basf Se Procédé de préparation de particules polymères hygroscopiques
DE102011003877A1 (de) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Zusammensetzung zum Löschen und/oder Hemmen von Fluor- und/oder Phosphor-haltigen Bränden
DE102011003882A1 (de) 2011-02-09 2012-08-09 Sb Limotive Company Ltd. Zusammensetzung zum Löschen und/oder Hemmen von Fluor- und/oder Phosphor-haltigen Bränden
CN103415553B (zh) 2011-03-08 2015-07-08 巴斯夫欧洲公司 用于制备具有改进渗透性的吸水性聚合物颗粒的方法
CN102230941B (zh) * 2011-04-07 2012-11-14 仁普(苏州)药业有限公司 自动酯化反应装置和血液中ω-3多不饱和脂肪酸的检测方法
WO2012152647A1 (fr) 2011-05-06 2012-11-15 Basf Se Procédé de production de particules de polymère absorbant l'eau
WO2012156242A2 (fr) 2011-05-18 2012-11-22 Basf Se Production d'une mousse superabsorbante de taux de gonflement élevé
WO2012156386A1 (fr) 2011-05-18 2012-11-22 Basf Se Utilisation de particules polymères absorbant l'eau pour sécher des matières fécales
WO2012156346A1 (fr) 2011-05-18 2012-11-22 Basf Se Utilisation de particules polymères absorbant l'eau pour absorber le sang et/ou le liquide menstruel
US20120296297A1 (en) 2011-05-18 2012-11-22 Achille Di Cintio Feminine hygiene absorbent articles comprising water-absorbing polymeric foams
US9265855B2 (en) 2011-05-18 2016-02-23 The Procter & Gamble Company Feminine hygiene absorbent article comprising a superabsorbent foam of high swell rate
US8987545B2 (en) 2011-05-18 2015-03-24 The Procter & Gamble Company Feminine hygiene absorbent articles comprising water-absorbing polymer particles
JP6124875B2 (ja) 2011-05-18 2017-05-10 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性複合材料
US9149556B2 (en) 2011-05-18 2015-10-06 The Procter & Gamble Company Feminine hygiene absorbent articles comprising water-absorbing composites
JP6253575B2 (ja) 2011-05-26 2017-12-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造法
CN103561781B (zh) 2011-05-26 2016-06-29 巴斯夫欧洲公司 连续制备吸水性聚合物颗粒的方法
US8664151B2 (en) 2011-06-01 2014-03-04 The Procter & Gamble Company Articles comprising reinforced polyurethane coating agent
US8999884B2 (en) 2011-06-01 2015-04-07 The Procter & Gamble Company Absorbent structures with coated water-absorbing material
DE112012002289A5 (de) 2011-06-01 2014-03-13 Basf Se Geruchsinhibierende Mischungen für Inkontinenzartikel
EP2714755B1 (fr) 2011-06-03 2017-04-26 Basf Se Procédé de préparation continue de particules polymères hydroabsorbantes
CN103582654A (zh) 2011-06-03 2014-02-12 巴斯夫欧洲公司 连续制备吸水聚合物颗粒的方法
PL2532328T3 (pl) 2011-06-10 2014-07-31 Procter & Gamble Sposób i urządzenie do wytworzenia struktur chłonnych z materiałem chłonnym
CN105816277A (zh) 2011-06-10 2016-08-03 宝洁公司 一次性尿布
SG194985A1 (en) 2011-06-10 2013-12-30 Procter & Gamble Absorbent structure for absorbent articles
EP2717822B1 (fr) 2011-06-10 2019-06-05 The Procter and Gamble Company Partie centrale absorbante pour articles absorbants jetables
ES2484695T5 (es) 2011-06-10 2018-02-13 The Procter & Gamble Company Pañal desechable que tiene una unión reducida entre el núcleo absorbente y la lámina de respaldo
EP2532334B1 (fr) 2011-06-10 2016-10-12 The Procter and Gamble Company Noyau absorbant pour article absorbant jetable
EP2532329B1 (fr) 2011-06-10 2018-09-19 The Procter and Gamble Company Procédé et appareil pour la fabrication de structures absorbantes à partir d'un matériau absorbant
SG194984A1 (en) 2011-06-10 2013-12-30 Procter & Gamble Absorbent structure for absorbent articles
WO2013003686A1 (fr) 2011-06-30 2013-01-03 The Procter & Gamble Company Structure absorbante comprenant un composant éliminateur d'huile
CN103649130B (zh) 2011-07-14 2016-03-02 巴斯夫欧洲公司 制备具有高溶胀速度的吸水性聚合物颗粒的方法
WO2013045163A1 (fr) 2011-08-12 2013-04-04 Basf Se Procédé de production de particules polymères absorbant l'eau, par polymérisation de gouttelettes de solution monomère
WO2013056978A2 (fr) 2011-10-18 2013-04-25 Basf Se Article absorbant les liquides
EP2586412A1 (fr) 2011-10-24 2013-05-01 Bostik SA Nouvel article absorbant et son procédé de fabrication
EP2586410A1 (fr) 2011-10-24 2013-05-01 Bostik SA Nouveau procédé pour préparer un article absorbant
EP2586409A1 (fr) 2011-10-24 2013-05-01 Bostik SA Nouvel article absorbant et son procédé de fabrication
DE102011117127A1 (de) 2011-10-28 2013-05-02 Basf Se Flüssigkeiten aufnehmende und Flüssigkeiten speichernde Polymere, insbesondere Pfropfpolymere, Verfahren zu deren Herstellung sowie deren Verwendung
US9126186B2 (en) 2011-11-18 2015-09-08 Basf Se Process for producing thermally surface postcrosslinked water-absorbing polymer particles
WO2013076031A1 (fr) 2011-11-22 2013-05-30 Basf Se Superabsorbants dotés d'un oxyde d'aluminium pyrogéné
CN102527438B (zh) * 2011-12-29 2013-12-11 大连工业大学 一种用于多元醇酯化反应的复合催化剂
WO2013117496A1 (fr) 2012-02-06 2013-08-15 Basf Se Procédé de fabrication d'articles en polymère absorbant l'eau
EP2814854B1 (fr) 2012-02-15 2019-01-23 Basf Se Particules polymères hydrophiles présentant une vitesse de gonflement et une perméabilité élevées
EP2831153A1 (fr) 2012-03-30 2015-02-04 Basf Se Procédé de post-réticulation thermique superficielle dans un échangeur thermique à tambour à vis hélicoïdale contrarotative
WO2013144026A1 (fr) 2012-03-30 2013-10-03 Basf Se Superabsorbant résistant à la décoloration
KR20140142740A (ko) 2012-03-30 2014-12-12 바스프 에스이 색 안정적 초흡수체
WO2013156330A1 (fr) 2012-04-17 2013-10-24 Basf Se Procédé de production de particules de polymère absorbant l'eau à surface postréticulée
JP2015514841A (ja) 2012-04-17 2015-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 表面後架橋された吸水性ポリマー粒子の製造法
EP2671554B1 (fr) 2012-06-08 2016-04-27 The Procter & Gamble Company Noyau absorbant pour articles absorbants
EP2859039A2 (fr) 2012-06-08 2015-04-15 Basf Se Superabsorbant limitant les odeurs
CN104364269B (zh) 2012-06-13 2016-10-12 巴斯夫欧洲公司 在装有至少两个轴向平行旋转轴的聚合反应器中制备吸水性聚合物颗粒的方法
JP6226969B2 (ja) 2012-06-19 2017-11-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造法
EP2679209B1 (fr) 2012-06-28 2015-03-04 The Procter & Gamble Company Articles absorbant avec noyau amélioré
EP2679208B1 (fr) 2012-06-28 2015-01-28 The Procter & Gamble Company Noyau absorbent pour utilisation dans articles absorbents
EP2679210B1 (fr) 2012-06-28 2015-01-28 The Procter & Gamble Company Articles absorbants avec noyau amélioré
US9840598B2 (en) 2012-07-03 2017-12-12 Basf Se Method for producing water-absorbent polymer particles with improved properties
WO2014019813A1 (fr) 2012-07-30 2014-02-06 Basf Se Mélanges anti-odeurs destinés à des articles pour incontinence
JP6344744B2 (ja) 2012-08-27 2018-06-20 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 吸水性ポリマー粒子の製造方法
US9382393B2 (en) 2012-09-19 2016-07-05 Basf Se Process for producing water-absorbing polymer particles
EP2730596A1 (fr) 2012-11-13 2014-05-14 Basf Se Mousses souples en polyuréthane contenant des graines de plantes
GB2510665C (en) 2012-11-13 2017-01-25 Procter & Gamble Absorbent articles with channels and signals
EP3381956B1 (fr) 2012-11-21 2021-05-05 Basf Se Particules de polymères absorbant l'eau post-réticulées en surface
EP2922580B1 (fr) 2012-11-26 2016-11-16 Basf Se Procédé de préparation de super-absorbants à base de matières premières renouvelables
HUE044699T2 (hu) 2012-12-10 2019-11-28 Procter & Gamble Folyadékgyûjtõ-eloszlató rendszerrel kiegészített nedvszívó termék
DE202012013571U1 (de) 2012-12-10 2017-12-06 The Procter & Gamble Company Absorptionspartikel mit hohem Absorptionsmaterialgehalt
US8979815B2 (en) 2012-12-10 2015-03-17 The Procter & Gamble Company Absorbent articles with channels
EP2740450A1 (fr) 2012-12-10 2014-06-11 The Procter & Gamble Company C'ur absorbant à haute teneur en matériau superabsorbant
DE202012013572U1 (de) 2012-12-10 2017-12-05 The Procter & Gamble Company Absorptionsartikel mit hohem Absorptionsmaterialgehalt
US9216118B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels and/or pockets
EP2740449B1 (fr) 2012-12-10 2019-01-23 The Procter & Gamble Company Article absorbant à haute teneur en matériau absorbant
US10639215B2 (en) 2012-12-10 2020-05-05 The Procter & Gamble Company Absorbent articles with channels and/or pockets
PL2740452T3 (pl) 2012-12-10 2022-01-31 The Procter & Gamble Company Wyrób chłonny o wysokiej zawartości materiału chłonnego
US9216116B2 (en) 2012-12-10 2015-12-22 The Procter & Gamble Company Absorbent articles with channels
CN104936989B (zh) 2013-01-29 2019-04-16 巴斯夫欧洲公司 制备具有高自由溶胀率、高离心保留容量和高溶胀凝胶床渗透性的吸水性聚合物颗粒的方法
WO2014118025A1 (fr) 2013-01-30 2014-08-07 Basf Se Procédé d'élimination de monomères résiduels présents dans des particules polymères hydroabsorbantes
US9820894B2 (en) 2013-03-22 2017-11-21 The Procter & Gamble Company Disposable absorbent articles
MX2015014163A (es) 2013-04-08 2015-12-16 Procter & Gamble Articulo absorbente con dobleces de barrera para pierna.
EP3284450B1 (fr) 2013-06-14 2020-11-25 The Procter & Gamble Company Article absorbant et noyau absorbant formant des canaux lorsqu'il est humide
US20160206772A1 (en) 2013-08-26 2016-07-21 Basf Se Fluid-Absorbent Article
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
CN110013386B (zh) 2013-08-27 2021-10-01 宝洁公司 具有通道的吸收制品
WO2015036273A1 (fr) 2013-09-12 2015-03-19 Basf Se Procédé de production d'acide acrylique
US10292875B2 (en) 2013-09-16 2019-05-21 The Procter & Gamble Company Absorbent articles with channels and signals
US11207220B2 (en) 2013-09-16 2021-12-28 The Procter & Gamble Company Absorbent articles with channels and signals
EP3351225B1 (fr) 2013-09-19 2021-12-29 The Procter & Gamble Company Noyaux absorbants ayant des zones exemptes de matériau
CN105916897B (zh) 2013-10-30 2018-10-09 巴斯夫欧洲公司 通过悬浮聚合制备吸水性聚合物颗粒的方法
EP3071911B1 (fr) 2013-11-22 2021-03-03 Basf Se Procédé de production de particules polymères hydroabsorbantes, convoyeur et méthode d'utilisation de ce convoyeur
US9789009B2 (en) 2013-12-19 2017-10-17 The Procter & Gamble Company Absorbent articles having channel-forming areas and wetness indicator
ES2606320T3 (es) 2013-12-19 2017-03-23 The Procter & Gamble Company Núcleos absorbentes que tienen áreas formadoras de canal y juntas de envoltura en c
EP2905001B1 (fr) 2014-02-11 2017-01-04 The Procter and Gamble Company Procédé et appareil de fabrication d'une structure absorbante comprenant des canaux
EP2949301B1 (fr) 2014-05-27 2018-04-18 The Procter and Gamble Company Noyau absorbant avec des zones de matériau absorbant incurvées et droites
EP2949300B1 (fr) 2014-05-27 2017-08-02 The Procter and Gamble Company Âme absorbante pourvue d'un motif de matériau absorbant
EP2949302B1 (fr) 2014-05-27 2018-04-18 The Procter and Gamble Company Noyau absorbant avec des zones formant un canal incurvé
PL2949299T3 (pl) 2014-05-27 2018-01-31 Procter & Gamble Wkład chłonny z układem rozmieszczenia materiału chłonnego
EP2995322B1 (fr) 2014-09-15 2017-03-01 Evonik Degussa GmbH Adsorbant d'odeur
EP2995323B1 (fr) 2014-09-15 2019-02-27 Evonik Degussa GmbH Acides aminés polycarboxyliques comme agents auxilaires de traitement dans la préparation de substances superabsorbantes
WO2016050397A1 (fr) 2014-09-30 2016-04-07 Basf Se Procédé de production de particules de polymère absorbant l'eau
EP3009474B1 (fr) 2014-10-16 2017-09-13 Evonik Degussa GmbH Procédé de fabrication pour polymères solubles dans l'eau
CN104399111B (zh) * 2014-12-04 2016-04-20 长春工业大学 一种三聚氰胺交联聚乙烯醇水凝胶敷料、制备方法及其应用
WO2016135020A1 (fr) 2015-02-24 2016-09-01 Basf Se Procédé de déshydratation continue d'acide 3-hydroxypropionique pour former de l'acide acrylique
US10322040B2 (en) 2015-03-16 2019-06-18 The Procter & Gamble Company Absorbent articles with improved cores
RU2017133027A (ru) 2015-03-16 2019-04-16 Дзе Проктер Энд Гэмбл Компани Абсорбирующие изделия повышенной прочности
EP3280743B1 (fr) 2015-04-07 2022-03-09 Basf Se Procédé d'agglomération de particules superabsorbantes
WO2016162238A1 (fr) 2015-04-07 2016-10-13 Basf Se Procédé de production de particules superabsorbantes
WO2016162175A1 (fr) 2015-04-07 2016-10-13 Basf Se Procédé de déshydratation de l'acide 3-hydroxypropionique en acide acrylique
CN104828903A (zh) * 2015-04-20 2015-08-12 南京工业大学 一种新型复合破乳除油剂的制备方法
WO2016180597A1 (fr) 2015-05-08 2016-11-17 Basf Se Procédé de production de particules polymères hydro-absorbantes et sécheur à bande
EP3294248B1 (fr) 2015-05-12 2020-12-30 The Procter and Gamble Company Article absorbant avec adhésif c ur-feuille de support amélioré
JP6555185B2 (ja) 2015-05-13 2019-08-07 信越化学工業株式会社 被覆物品の製造方法、塗料及び積層体
US10543129B2 (en) 2015-05-29 2020-01-28 The Procter & Gamble Company Absorbent articles having channels and wetness indicator
CN104910014A (zh) * 2015-05-31 2015-09-16 湖南省金海科技有限公司 一种三官能度丙烯酸酯活性稀释剂的清洁生产方法
WO2016207444A1 (fr) 2015-06-26 2016-12-29 Bostik Inc. Nouvel article absorbant comportant une couche d'acquisition/de distribution et son procédé de fabrication
JP6733411B2 (ja) * 2015-08-21 2020-07-29 東亞合成株式会社 賦型材料用硬化型組成物
EP3167859B1 (fr) 2015-11-16 2020-05-06 The Procter and Gamble Company Noyaux absorbants ayant des zones exemptes de matériau
EP3175832B1 (fr) 2015-12-02 2020-10-28 Paul Hartmann AG Article absorbant à âme améliorée
KR102548930B1 (ko) * 2016-01-14 2023-06-29 에스케이이노베이션 주식회사 무수당 알코올 제조용 탈수중합 부반응 억제제
EP3205318A1 (fr) 2016-02-11 2017-08-16 The Procter and Gamble Company Article absorbant à forte capacité absorbante
US10881555B2 (en) 2016-03-30 2021-01-05 Basf Se Fluid-absorbent article
US20170281425A1 (en) 2016-03-30 2017-10-05 Basf Se Fluid-absorbent article
US10806640B2 (en) 2016-03-30 2020-10-20 Basf Se Ultrathin fluid-absorbent article
EP3238676B1 (fr) 2016-04-29 2019-01-02 The Procter and Gamble Company Noyau absorbant avec profil de distribution de matériau absorbant
EP3238678B1 (fr) 2016-04-29 2019-02-27 The Procter and Gamble Company Noyau absorbant avec des lignes de pliage transversales
EP3464427B1 (fr) 2016-05-31 2021-01-06 Basf Se Procédé de fabrication de superabsorbants
EP3251648A1 (fr) 2016-05-31 2017-12-06 The Procter and Gamble Company Article absorbant avec distribution de fluide améliorée
EP3278782A1 (fr) 2016-08-02 2018-02-07 The Procter and Gamble Company Article absorbant avec stockage de fluide amélioré
EP3497141B1 (fr) 2016-08-10 2020-11-25 Basf Se Procédé de production de superabsorbant
WO2018077639A1 (fr) 2016-10-26 2018-05-03 Basf Se Procédé d'évacuation de particules superabsorbantes d'un silo et leur remplissage dans des conteneurs en vrac
US10828208B2 (en) 2016-11-21 2020-11-10 The Procte & Gamble Company Low-bulk, close-fitting, high-capacity disposable absorbent pant
WO2018141677A1 (fr) 2017-02-06 2018-08-09 Basf Se Articles absorbants les fluides
WO2018149783A1 (fr) 2017-02-17 2018-08-23 Basf Se Article absorbant les fluides
US10767029B2 (en) 2017-04-19 2020-09-08 The Procter & Gamble Company Agglomerated superabsorbent polymer particles comprising clay platelets with edge modification and/or surface modification
EP3391963B1 (fr) 2017-04-19 2021-04-14 The Procter & Gamble Company Procédé de preparation de particules de polymère super-absorbant agglomérées comprenant des plaquettes d'argile avec modification de bord et/ou modification de surface
EP3391960B1 (fr) 2017-04-19 2023-11-22 The Procter & Gamble Company Particules de polymère super-absorbant comprenant une ou plusieurs zones présentant des plaquettes d'argile et au moins deux zones distinctes, non adjacentes, sans plaquettes d'argile
EP3391959A1 (fr) 2017-04-19 2018-10-24 The Procter & Gamble Company Procédé de fabrication de particules polymères absorbant l'eau présentant des zones avec des particules solides inorganiques et des zones sensiblement exemptes de particules solides inorganiques
EP3391961A1 (fr) 2017-04-19 2018-10-24 The Procter & Gamble Company Particules de polymère super-absorbant agglomérées ayant un rapport de taille spécifique
US11053370B2 (en) 2017-04-19 2021-07-06 The Procter & Gamble Company Agglomerated superabsorbent polymer particles having a specific size ratio
US10875985B2 (en) 2017-04-19 2020-12-29 The Procter & Gamble Company Superabsorbent polymer particles comprising one or more than one area(s) with clay platelets and at least two distinct areas substantially free of clay platelets
EP3391958B1 (fr) 2017-04-19 2020-08-12 The Procter & Gamble Company Procédé de fabrication de particules polymères absorbant l'eau à surface enduite dans un dispositif microfluidique
EP3391962A1 (fr) 2017-04-19 2018-10-24 The Procter & Gamble Company Procédé de fabrication de particules polymères absorbant l'eau
US20180333310A1 (en) 2017-05-18 2018-11-22 The Procter & Gamble Company Incontinence pant with low-profile unelasticized zones
WO2019011793A1 (fr) 2017-07-12 2019-01-17 Basf Se Procédé de production de particules polymères superabsorbantes
CN107200840B (zh) * 2017-07-14 2023-04-28 河北三楷深发科技股份有限公司 一种用于实验室合成聚羧酸系酯类减水剂酯化大单体的制备系统
JP7287946B2 (ja) 2017-07-31 2023-06-06 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収性ポリマー粒子の分級方法
KR102621946B1 (ko) 2017-10-18 2024-01-05 바스프 에스이 초흡수제의 제조 방법
DE202017005496U1 (de) 2017-10-24 2017-12-19 The Procter & Gamble Company Einwegwindel
JP7254793B2 (ja) 2017-11-10 2023-04-10 ビーエーエスエフ ソシエタス・ヨーロピア 高吸収体
DE202017006014U1 (de) 2017-11-21 2018-01-14 The Procter & Gamble Company Absorptionsartikel mit Taschen
DE202017006016U1 (de) 2017-11-21 2017-12-01 The Procter & Gamble Company Absorptionsartikel mit Kanälen
US11491463B2 (en) 2018-01-09 2022-11-08 Basf Se Superabsorber mixtures
EP3749376B1 (fr) 2018-02-06 2022-04-20 Basf Se Procédé pour assurer le transport pneumatique de particules de superabsorbants
EP3755730A1 (fr) 2018-02-22 2020-12-30 Basf Se Procédé de production de particules superabsorbantes
US20210016247A1 (en) 2018-04-10 2021-01-21 Basf Se Permeable Superabsorbent and Process for Production Thereof
WO2019201668A1 (fr) 2018-04-20 2019-10-24 Basf Se Papier absorbant à cœur absorbant les fluides mince
JP7374175B2 (ja) 2018-07-24 2023-11-06 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収体の製造の方法
JP2021532868A (ja) 2018-08-01 2021-12-02 ビーエイエスエフ・ソシエタス・エウロパエアBasf Se 生理用吸収性物品
EP3829511B1 (fr) 2018-08-01 2024-02-14 Basf Se Noyau absorbant les fluides
KR20210036368A (ko) 2018-08-20 2021-04-02 바스프 에스이 고흡수제의 제조 방법
US20210338882A1 (en) 2018-09-28 2021-11-04 Basf Se Method for the production of superabsorbents
CN113166430A (zh) 2018-10-29 2021-07-23 巴斯夫欧洲公司 制备长期颜色稳定的超吸收性聚合物颗粒的方法
DE102019216910A1 (de) 2018-11-12 2020-05-14 Basf Se Verfahren zur Oberflächennachvernetzung von Superabsorbern
US20220016596A1 (en) 2018-11-14 2022-01-20 Basf Se Process for Producing Superabsorbents
CN112969528A (zh) 2018-11-14 2021-06-15 巴斯夫欧洲公司 制备超吸收剂的方法
EP3880354A1 (fr) 2018-11-14 2021-09-22 Basf Se Processus de production de superabsorbants
JP7446659B2 (ja) 2018-11-29 2024-03-11 ベーアーエスエフ・エスエー 超吸収性ポリマーの物理的性質の予測
WO2020151972A1 (fr) 2019-01-23 2020-07-30 Basf Se Procédé de production de particules superabsorbantes
WO2020151969A1 (fr) 2019-01-23 2020-07-30 Basf Se Procédé de production de particules superabsorbantes
WO2020151971A1 (fr) 2019-01-23 2020-07-30 Basf Se Procédé de production de particules superabsorbantes
EP3914400A1 (fr) 2019-01-23 2021-12-01 Basf Se Procédé de production de particules superabsorbantes
EP3914628A1 (fr) 2019-01-24 2021-12-01 Basf Se Procédé de production de particules superabsorbantes
JP2022523396A (ja) 2019-03-01 2022-04-22 ビーエーエスエフ ソシエタス・ヨーロピア 超吸収性ポリマー粒子を製造する方法
US20220288559A1 (en) 2019-07-24 2022-09-15 Basf Se Permeable superabsorbent and process for production thereof
WO2022058190A1 (fr) 2020-09-17 2022-03-24 Basf Se Procédé de production de particules polymères superabsorbantes
WO2022093672A1 (fr) 2020-10-28 2022-05-05 The Procter & Gamble Company Compositions cimentaires comprenant un polymère superabsorbant recyclé
JP2024503203A (ja) 2020-12-16 2024-01-25 ベーアーエスエフ・エスエー 超吸収体粒子を生成するためのプロセス
JP7090359B1 (ja) 2021-04-05 2022-06-24 株式会社フタミ ウォータージェットノズル及びそれを用いた表面処理装置
WO2023046583A1 (fr) 2021-09-27 2023-03-30 Basf Se Procédé de production de particules superabsorbantes
WO2023168616A1 (fr) 2022-03-09 2023-09-14 The Procter & Gamble Company Article absorbant à polymère superabsorbant à perméabilité élevée
US20240091073A1 (en) 2022-09-08 2024-03-21 The Procter & Gamble Company Disposable absorbent pants with elasticized waist panel structure and obscuring print patterns

Citations (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3224926A (en) 1962-06-22 1965-12-21 Kimberly Clark Co Method of forming cross-linked cellulosic fibers and product thereof
US3440135A (en) 1965-12-13 1969-04-22 Kimberly Clark Co Process for crosslinking cellulosic fibers during gas suspension of fibers
DE1301566B (de) 1966-11-30 1969-08-21 Continental Gummi Werke Ag Verfahren zur Herstellung von hydrolysebestaendigen Polyurethanelastomeren
US3556932A (en) 1965-07-12 1971-01-19 American Cyanamid Co Water-soluble,ionic,glyoxylated,vinylamide,wet-strength resin and paper made therewith
US3932209A (en) 1969-02-24 1976-01-13 Personal Products Company Low hemicellulose, dry crosslinked cellulosic absorbent materials
DE2612846A1 (de) 1975-03-27 1976-10-07 Sanyo Chemical Ind Ltd Verfahren zur herstellung eines wasserabsorbierenden harzes
US4035147A (en) 1973-04-05 1977-07-12 Centre Technique De L'industrie Des Papiers, Cartons Et Celluloses Cellulosic materials capable of absorbing water of aqueous solutions, and their production
US4057521A (en) 1974-08-05 1977-11-08 The Dow Chemical Company Absorbent articles made from carboxylic synthetic polyelectrolytes having copolymerized N-substituted acrylamide crosslinker
US4062817A (en) 1977-04-04 1977-12-13 The B.F. Goodrich Company Water absorbent polymers comprising unsaturated carboxylic acid, acrylic ester containing alkyl group 10-30 carbon atoms, and another acrylic ester containing alkyl group 2-8 carbon atoms
US4187383A (en) 1976-12-28 1980-02-05 Union Carbide Corporation Process for producing low color residue acrylate esters
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4295987A (en) 1979-12-26 1981-10-20 The Procter & Gamble Company Cross-linked sodium polyacrylate absorbent
DE3028043A1 (de) 1980-07-24 1982-02-18 Vdo Adolf Schindling Ag, 6000 Frankfurt Getriebe
DE2840010C3 (de) 1977-12-15 1982-05-13 National Starch and Chemical Corp., 08807 Bridgewater, N.J. Pfropfmischpolymerisate
US4340706A (en) 1980-03-19 1982-07-20 Seitetsu Kagaku Co., Ltd. Alkali metal acrylate or ammonium acrylate polymer excellent in salt solution-absorbency and process for producing same
DE2706135C2 (de) 1977-02-14 1982-10-28 Chemische Fabrik Stockhausen GmbH, 4150 Krefeld Verdickungsmittel für ausgeschiedenen Darminhalt und Harn
DE3118172A1 (de) 1981-05-08 1982-11-25 Philips Kommunikations Industrie AG, 8500 Nürnberg Laengswasserdichtes optisches nachrichtenkabel
EP0105373A1 (fr) 1981-10-29 1984-04-18 Honda Giken Kogyo Kabushiki Kaisha Dispositif de distribution d'huile pour la fourchette de commande des vitesses d'une transmission
US4525527A (en) 1982-01-25 1985-06-25 American Colloid Company Production process for highly water absorbable polymer
DE3503458A1 (de) 1984-02-04 1985-08-08 Arakawa Kagaku Kogyo K.K., Osaka Verfahren zur herstellung verbesserter wasser absorbierender harze
DE3533337A1 (de) 1984-09-19 1986-04-24 Arakawa Kagaku Kogyo K.K., Osaka Verfahren zur herstellung von hochgradig wasserabsorbierendem harz
DE3511086A1 (de) 1985-03-27 1986-10-09 Belzer-Dowidat Gmbh Werkzeug-Union, 5600 Wuppertal Zange
EP0202127A2 (fr) 1985-05-15 1986-11-20 The Procter & Gamble Company Articles absorbants jetables
EP0205674A1 (fr) 1985-06-18 1986-12-30 The Procter & Gamble Company Composition polymère formant un hydrogel, utilisée dans des structures absorbantes
EP0205874A2 (fr) 1985-05-22 1986-12-30 International Business Machines Corporation Dispositif de pulvérisation
EP0306262A1 (fr) 1987-09-01 1989-03-08 The Procter & Gamble Company Structures absorbantes composites et articles absorbants contenant de telles structures
US4822453A (en) 1986-06-27 1989-04-18 The Procter & Gamble Cellulose Company Absorbent structure containing individualized, crosslinked fibers
EP0312952A2 (fr) 1987-10-22 1989-04-26 The Dow Chemical Company Procédé de préparation de polymères absorbants
EP0316518A2 (fr) 1987-11-13 1989-05-24 Vp - Schickedanz Ag Article hygiénique en cellulose
DE3713601C2 (fr) 1987-04-23 1989-07-13 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0331845A2 (fr) 1988-03-07 1989-09-13 Hoechst Celanese Corporation Préparation accélérée d'esters acryliques
EP0343427A2 (fr) 1988-05-21 1989-11-29 Hoechst Aktiengesellschaft Hydrogels préparés en utilisant des esters d'acides alcényl-phosphoniques ou phosphiniques comme reticulants.
US4888093A (en) 1986-06-27 1989-12-19 The Procter & Gamble Cellulose Company Individualized crosslinked fibers and process for making said fibers
US4898642A (en) 1986-06-27 1990-02-06 The Procter & Gamble Cellulose Company Twisted, chemically stiffened cellulosic fibers and absorbent structures made therefrom
DE3831261A1 (de) 1988-08-29 1990-03-15 Lentia Gmbh Verfahren zur herstellung von fluessigkeitsabsorbierenden acrylharzen
US4931497A (en) 1987-11-13 1990-06-05 Cassella Aktiengesellschaft Hydrophilic swellable graft polymers from maleic anhydride-alkylene substrate
DE3843854A1 (de) 1988-12-24 1990-06-28 Henkel Kgaa Verfahren zur verbesserten herstellung von (meth)acrylsaeureestern mehrwertiger alkohole (i)
DE3843843A1 (de) 1988-12-24 1990-07-05 Henkel Kgaa Verfahren zur verbesserten herstellung von (meth)acrylsaeureestern mehrwertiger alkohole (iv)
EP0389023A2 (fr) 1989-03-20 1990-09-26 The Procter & Gamble Company Structures absorbantes avec moyens de contrôle de l'odeur
DE3917846A1 (de) 1989-06-01 1990-12-06 Hilti Ag Traegerstreifen fuer pulverkraftbetriebene setzgeraete
US5011892A (en) 1989-04-07 1991-04-30 Cassella Ag Hydrophilic swellable graft copolymers, their preparation and use
WO1991011162A1 (fr) 1990-01-23 1991-08-08 The Procter & Gamble Company Structures absorbantes contenant une couche de fibres raidies thermoliees ainsi qu'une couche de matiere superabsorbante
US5041496A (en) 1989-04-01 1991-08-20 Cassella Ag Hydrophilic, swellable graft copolymers, their preparation and use
WO1991011977A1 (fr) 1990-02-12 1991-08-22 The Procter & Gamble Company Compositions et articles a limitation des odeurs
DE4020780C1 (fr) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0455985A1 (fr) 1990-04-06 1991-11-13 Summagraphics Corporation Convertisseur digital avec bandes conductrices sinueuses disposées suivant un pas répétitif non uniforme
DE4015085A1 (de) 1990-05-11 1991-12-12 Stockhausen Chem Fab Gmbh Vernetztes, wasserabsorbierendes polymer und verwendung zur herstellung von hygieneartikeln, zur bodenverbesserung und in kabelummantelungen
DE4021847A1 (de) 1990-07-09 1992-01-16 Stockhausen Chem Fab Gmbh Verfahren zur herstellung wasserquellbarer produkte unter verwendung von feinstanteilen wasserquellbarer polymerer
EP0467073A1 (fr) 1990-07-17 1992-01-22 Sanyo Chemical Industries Ltd. Procédé de préparation de résines absorbants de l'eau
US5137537A (en) 1989-11-07 1992-08-11 The Procter & Gamble Cellulose Company Absorbent structure containing individualized, polycarboxylic acid crosslinked wood pulp cellulose fibers
EP0499774A1 (fr) 1991-02-19 1992-08-26 Starchem Gmbh Procédé de préparation de petites particules de polysaccharide greffé, gonflables par l'eau
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
EP0530438A1 (fr) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Polymère superabsorbant à propriétés de pouvoir absorbant perfectionné
EP0554651A1 (fr) 1991-12-20 1993-08-11 Reichhold Chemie Ges. M.B.H. Agent et procédé pour l'enlèvement des résidus d'acides à partir de mélanges de réaction contenant des produits de (poly)estérification
WO1993021237A1 (fr) 1992-04-16 1993-10-28 The Dow Chemical Company Resines hydrophiles reticulees et procede de preparation
WO1993022998A1 (fr) 1992-05-15 1993-11-25 The Procter & Gamble Company Dispositif catamenial
DE4219607A1 (de) 1992-06-16 1993-12-23 Kabelmetal Electro Gmbh Verfahren zur Herstellung eines längswasserdichten Kabelelementes
DE4244548A1 (de) 1992-12-30 1994-07-07 Stockhausen Chem Fab Gmbh Pulverförmige, unter Belastung wäßrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung in textilen Konstruktionen für die Körperhygiene
EP0615736A1 (fr) 1993-02-24 1994-09-21 Kimberly-Clark Corporation Composite adsorbant pour vêtement adsorbant à jeter
WO1994025077A1 (fr) 1993-04-23 1994-11-10 Centro Ricerche Fater P & G S.P.A. Materiau desodorisant
EP0670073A1 (fr) 1993-03-18 1995-09-06 Authentication Tech Inc Dispositif de verification capacitif pour un fil de securite integre dans un billet de banque.
WO1995024173A2 (fr) 1994-03-10 1995-09-14 The Procter & Gamble Company Articles absorbants contenant, dans leur couche superieure, des agents antibacteriens servant a lutter contre les odeurs
WO1995026207A1 (fr) 1994-03-25 1995-10-05 Centro Ricerche Fater P & G S.P.A. Desodorisant
WO1995026209A1 (fr) 1994-03-29 1995-10-05 The Procter & Gamble Company Articles absorbants pour fluides corporels presentant une bonne integrite au mouillage et renfermant des concentrations relativement elevees d'un polymere absorbant formant un hydrogel
DE4418881A1 (de) 1994-05-30 1995-12-07 Rexroth Mannesmann Gmbh Hubwerkregelsystem mit Regelventil
DE19604601A1 (de) 1995-02-08 1996-08-14 Sanyo Chemical Ind Ltd Absorptionsprodukt
WO1997001317A1 (fr) 1995-06-27 1997-01-16 The Procter & Gamble Company Dispositif d'elimination de mauvaises odeurs
WO1997009022A1 (fr) 1995-09-05 1997-03-13 The Procter & Gamble Company Tampon anatomique a moulage interne
EP0801483A2 (fr) 1996-03-30 1997-10-15 International Computers Limited Communication entre processeurs
WO1997049365A1 (fr) 1996-06-27 1997-12-31 The Procter & Gamble Company Article absorbant pourvu de barrieres laterales elastiques resistant a la flexion
WO1998008439A1 (fr) 1996-08-25 1998-03-05 Sensar, Inc. Appareil de prise d'images d'iris
EP0834297A1 (fr) 1996-10-02 1998-04-08 The Procter & Gamble Company Aricle absorbant jetable avec une structure absorbante ayant la capacité de changer la forme pendant l'utilisation en fonction d'un profil prédéterminé
WO1998020916A1 (fr) 1996-11-14 1998-05-22 The Procter & Gamble Company Polymeres absorbants enduits d'agents antimicrobiens et permettant d'obtenir des hydrogels
WO1998022063A1 (fr) 1996-11-18 1998-05-28 The Procter & Gamble Company Article absorbant presentant un element pompant les liquides
US5762644A (en) 1996-08-30 1998-06-09 The Procter & Gamble Company Toilet-disposable absorbent interlabial device
EP0850616A1 (fr) 1996-12-20 1998-07-01 The Procter & Gamble Company Structure étendue à sec avec matériau désodorisant
WO1998028478A1 (fr) 1996-12-20 1998-07-02 The Procter & Gamble Company Structure obtenue a sec comprenant des moyens neutralisant les mauvaises odeurs
WO1998041179A1 (fr) 1997-03-17 1998-09-24 The Procter & Gamble Company Tampon et procede de realisation
WO1998046181A1 (fr) 1997-04-14 1998-10-22 Tambrands, Inc. Tampon annulaire
WO1998046182A1 (fr) 1997-04-14 1998-10-22 Tambrands, Inc. Tampon
WO1998048753A1 (fr) 1997-04-28 1998-11-05 The Procter & Gamble Company Article absorbant pour homme
WO1998057609A1 (fr) 1997-06-16 1998-12-23 The Procter & Gamble Company Dispositif interlabial conçu pour absorber les divers constituants des menstrues
EP0887058A1 (fr) 1997-06-25 1998-12-30 The Procter & Gamble Company Article absorbant jetable comportant une feuille arrière perméable à l'art se touchant comme tissu
EP0887056A1 (fr) 1997-06-25 1998-12-30 The Procter & Gamble Company Article absorbant jetable comportant un contennu d'humidité peu élevé
EP0887059A1 (fr) 1997-06-25 1998-12-30 The Procter & Gamble Company Article absorbant jetable comportant un séchage et une aération de peau perfectionné
EP0887057A1 (fr) 1997-06-25 1998-12-30 The Procter & Gamble Company Article absorbant jetable comportant une tendance de bouchage reduite
EP0887060A1 (fr) 1997-06-25 1998-12-30 The Procter & Gamble Company Insert de noyau absorbant à deux couches avec des propriétés de traitement des fluides améliorés
EP0894502A1 (fr) 1997-07-30 1999-02-03 The Procter & Gamble Company Matériau désodorisant pour articles absorbants contenant de la cyclodextrine
DE19737434A1 (de) 1997-08-21 1999-02-25 Klaus Koch Absorbtionsschuheinlage (ASE)
EP0903134A1 (fr) 1997-09-20 1999-03-24 The Procter & Gamble Company Concentration d'absorption de liquide au centre d'un article absorbant
US5895381A (en) 1997-01-03 1999-04-20 The Procter & Gamble Company Absorbent interlabial device with flexible extensions
WO1999018905A1 (fr) 1997-10-10 1999-04-22 The Procter & Gamble Company Dispositif interlabial absorbant dote d'un complexe d'acquisition/de transfert de fluide
WO1999025284A1 (fr) 1997-11-13 1999-05-27 The Procter & Gamble Company Article absorbant comportant des moyens permettant de donner ou maintenir une configuration convexe-concave
EP0931530A1 (fr) 1998-01-23 1999-07-28 The Procter & Gamble Company Système de fixation pour les couches d'incontinence
WO1999045973A1 (fr) 1998-03-12 1999-09-16 The Procter & Gamble Company Article absorbant jetable avec composition de soin de la peau renfermant un inhibiteur enzymatique
WO1999057355A1 (fr) 1998-05-01 1999-11-11 The Dow Chemical Company Procede de fabrication d'un non tisse de fusion-soufflage respirant presentant des proprietes barriere
DE19854575A1 (de) 1998-11-26 2000-05-31 Basf Ag Vernetzte quellfähige Polymere
WO2000036216A1 (fr) 1998-12-11 2000-06-22 Sca Hygiene Products Ab Procede d'augmentation de la resistance a l'etat humide d'une matiere d'ouate
WO2000035502A1 (fr) 1998-12-16 2000-06-22 Sca Hygiene Products Ab Articles absorbants
EP1023883A2 (fr) 1999-01-22 2000-08-02 SCA Hygiene Products AB Article absorbant avec barrières d'arrêt de liquides
WO2000061052A1 (fr) 1999-04-08 2000-10-19 The Procter & Gamble Company Tampon avec protection amelioree contre les fuites
WO2000065083A2 (fr) 1999-04-26 2000-11-02 The Procter & Gamble Company Protections periodiques feminines jetables pourvues d'un moyen de detection du sang, en tant que capteur
WO2000069484A1 (fr) 1999-05-19 2000-11-23 The Procter & Gamble Company Article absorbant contenant une composition pour le soin de la peau
WO2000069485A1 (fr) 1999-05-19 2000-11-23 The Procter & Gamble Company Article absorbant contenant une composition de soin de la peau
WO2000069481A1 (fr) 1999-05-19 2000-11-23 The Procter & Gamble Company Article absorbant enduit d'une composition dermatologique
DE19929258A1 (de) 1999-06-25 2000-12-28 Basf Ag Verfahren zur Herstellung von (Meth)acrylsäureestern
WO2001000115A2 (fr) 1999-06-29 2001-01-04 Ent, L.L.C. Dispositif absorbant
WO2001001906A1 (fr) 1999-06-30 2001-01-11 Mcneil-Ppc, Inc. Film ouvert a couches multiples pour article absorbant
WO2001001908A1 (fr) 1999-06-30 2001-01-11 Johnson & Johnson Gmbh Tampon hygienique, procede et appareil de production associes
WO2001001909A1 (fr) 1999-06-30 2001-01-11 Mcneil-Ppc, Inc. Tampon bombe presentant une pellicule revetue d'un tensioactif
WO2001001910A1 (fr) 1999-06-30 2001-01-11 Johnson & Johnson Gmbh Tampon comportant une couverture de film pourvue de trous thermoliee a une structure absorbante fibreuse
WO2001001905A1 (fr) 1999-06-30 2001-01-11 Mcneil-Ppc, Inc. Tampon hygienique recouvert d'une pellicule comprenant un tensioactif non ionique
EP1074233A2 (fr) 1994-06-30 2001-02-07 McNEIL-PPC, INC. Structures absorbantes multicouches
DE19937911A1 (de) 1999-08-11 2001-02-15 Cognis Deutschland Gmbh Verfahren zum Herstellen von Estern aus ungesättigten Carbonsäuren und mehrwertigen Alkoholen
WO2001010920A1 (fr) 1999-08-06 2001-02-15 Kao Corporation Fabrication de polymere d'acide (meth)acrylique
WO2001014438A1 (fr) 1999-08-23 2001-03-01 Kao Corporation Procede de production de polymeres (meth)acryliques
DE19941136A1 (de) 1999-08-30 2001-03-01 Basf Ag Verfahren zur Herstellung von (Meth)acrylsäureestern
WO2001024729A2 (fr) 1999-10-07 2001-04-12 Playtex Products, Inc. Petite compresse pour tampon hygienique a expansion rapide
WO2001024755A1 (fr) 1999-10-01 2001-04-12 Kimberly-Clark Worldwide, Inc. Article absorbant a absorption centrale comprenant une barriere de tissu meche et un element d"elevation central
WO2001033962A1 (fr) 1999-11-10 2001-05-17 Tolland Development Company, Llc Tampon
WO2001038402A1 (fr) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Procede de preparation continue de polymerisats geliformes reticules a fines particules
EP1104666A1 (fr) 1999-12-03 2001-06-06 The Procter & Gamble Company Receptacle collecteur du flux menstruel
DE20020662U1 (de) 2000-12-06 2001-06-07 Moerlein Dieter Tampon für Frauen
WO2001041692A1 (fr) 1999-12-13 2001-06-14 Sca Hygiene Products Ab Serviette hygienique presentant une decoupe sur la feuille detachable
EP1108408A1 (fr) 1999-12-14 2001-06-20 The Procter & Gamble Company Tampon avec un nombre impair de nervures
WO2001043680A1 (fr) 1999-12-14 2001-06-21 The Procter & Gamble Company Tampon a configuration ovale apres expansion et son procede de fabrication
DE10063175A1 (de) 2000-12-18 2002-06-20 Basf Ag Verfahren zur Herstellung von höheren (Meth)acrylsäureestern

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380831A (en) * 1964-05-26 1968-04-30 Du Pont Photopolymerizable compositions and elements
JPS6024807B2 (ja) * 1979-02-19 1985-06-14 昭和電工株式会社 高吸水性ヒドロゲルの製造方法
JPS59161420A (ja) * 1983-03-07 1984-09-12 Toray Ind Inc ヒドロゲル
DE3704098A1 (de) 1987-02-11 1988-08-25 Basf Ag Strahlungshaertbare acrylate
US4842593A (en) 1987-10-09 1989-06-27 The Procter & Gamble Company Disposable absorbent articles for incontinent individuals
DE3843930A1 (de) * 1988-12-24 1990-06-28 Henkel Kgaa Verfahren zur verbesserten herstellung von (meth)acrylsaeureestern mehrwertiger alkohole (iii)
DE3843938A1 (de) * 1988-12-24 1990-06-28 Henkel Kgaa Verfahren zur verbesserten herstellung von (meth)acrylsaeureestern mehrwertiger alkohole (ii)
FR2660660B1 (fr) * 1990-04-09 1993-05-21 Norsolor Sa Perfectionnement au procede de fabrication de polymeres radicalaires de l'ethylene utilisables pour l'enduction d'un metal.
US5356754A (en) * 1992-09-25 1994-10-18 Mitsubishi Rayon Co., Ltd. Crosslinking curable resin composition
DE69412547T2 (de) * 1993-06-18 1999-04-22 Nippon Catalytic Chem Ind Verfahren zur Herstellung eines absorbierenden Harzes
JP3380292B2 (ja) * 1993-06-18 2003-02-24 株式会社日本触媒 吸水性樹脂の製造方法、衛生材料
JP3350193B2 (ja) * 1993-12-28 2002-11-25 株式会社日本触媒 架橋剤、該架橋剤を用いた吸水性樹脂、およびその製造方法
DE4326772A1 (de) * 1993-08-10 1995-02-16 Basf Ag Reaktionsprodukte aus olefinisch ungesättigten Carbonsäuren und Polyetherolen sowie ihre Verwendung als Demulgatoren für Rohölemulsionen
US6107429A (en) * 1994-10-24 2000-08-22 Amcol International Corporation Process for producing an oil and water adsorbent polymer capable of entrapping solid particles and liquids and the product thereof
DE19646484C2 (de) * 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368C2 (de) * 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19543464A1 (de) * 1995-11-22 1997-05-28 Basf Ag Verfahren zur Herstellung von (Meth)acrylsäureestern
US6194531B1 (en) 1996-06-05 2001-02-27 Nippon Shokubai Co., Ltd. Method for production of cross-linked polymer
EP0850623A1 (fr) 1996-12-23 1998-07-01 The Procter & Gamble Company Article absorbant jetable pourvu d'un adhésive pour la fixation d'article sur la peau avec matériau pour le contrÔle des odeurs
DE19716657A1 (de) * 1997-04-21 1998-10-22 Stockhausen Chem Fab Gmbh Superabsorber mit kontrollierter Absorptionsgeschwindigkeit
DE19716686A1 (de) * 1997-04-21 1998-10-22 Basf Ag Verfahren zur Herstellung von Estern mit geringem Restsäuregehalt aus alpha,beta-ethylenisch ungesättigten Carbonsäuren und Hydroxylgruppen-haltigen Polymerisaten
US6579958B2 (en) * 1999-12-07 2003-06-17 The Dow Chemical Company Superabsorbent polymers having a slow rate of absorption
US6417425B1 (en) * 2000-02-01 2002-07-09 Basf Corporation Absorbent article and process for preparing an absorbent article
CN1254489C (zh) * 2000-10-19 2006-05-03 巴斯福股份公司 交联的水溶胀性聚合物及其制备方法

Patent Citations (132)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3224926A (en) 1962-06-22 1965-12-21 Kimberly Clark Co Method of forming cross-linked cellulosic fibers and product thereof
US3556932A (en) 1965-07-12 1971-01-19 American Cyanamid Co Water-soluble,ionic,glyoxylated,vinylamide,wet-strength resin and paper made therewith
US3440135A (en) 1965-12-13 1969-04-22 Kimberly Clark Co Process for crosslinking cellulosic fibers during gas suspension of fibers
DE1301566B (de) 1966-11-30 1969-08-21 Continental Gummi Werke Ag Verfahren zur Herstellung von hydrolysebestaendigen Polyurethanelastomeren
US3932209A (en) 1969-02-24 1976-01-13 Personal Products Company Low hemicellulose, dry crosslinked cellulosic absorbent materials
US4035147A (en) 1973-04-05 1977-07-12 Centre Technique De L'industrie Des Papiers, Cartons Et Celluloses Cellulosic materials capable of absorbing water of aqueous solutions, and their production
US4057521A (en) 1974-08-05 1977-11-08 The Dow Chemical Company Absorbent articles made from carboxylic synthetic polyelectrolytes having copolymerized N-substituted acrylamide crosslinker
DE2612846A1 (de) 1975-03-27 1976-10-07 Sanyo Chemical Ind Ltd Verfahren zur herstellung eines wasserabsorbierenden harzes
US4076663A (en) 1975-03-27 1978-02-28 Sanyo Chemical Industries, Ltd. Water absorbing starch resins
US4187383A (en) 1976-12-28 1980-02-05 Union Carbide Corporation Process for producing low color residue acrylate esters
DE2706135C2 (de) 1977-02-14 1982-10-28 Chemische Fabrik Stockhausen GmbH, 4150 Krefeld Verdickungsmittel für ausgeschiedenen Darminhalt und Harn
US4062817A (en) 1977-04-04 1977-12-13 The B.F. Goodrich Company Water absorbent polymers comprising unsaturated carboxylic acid, acrylic ester containing alkyl group 10-30 carbon atoms, and another acrylic ester containing alkyl group 2-8 carbon atoms
DE2840010C3 (de) 1977-12-15 1982-05-13 National Starch and Chemical Corp., 08807 Bridgewater, N.J. Pfropfmischpolymerisate
US4286082A (en) 1979-04-06 1981-08-25 Nippon Shokubai Kagaku Kogyo & Co., Ltd. Absorbent resin composition and process for producing same
US4295987A (en) 1979-12-26 1981-10-20 The Procter & Gamble Company Cross-linked sodium polyacrylate absorbent
US4340706A (en) 1980-03-19 1982-07-20 Seitetsu Kagaku Co., Ltd. Alkali metal acrylate or ammonium acrylate polymer excellent in salt solution-absorbency and process for producing same
DE3028043A1 (de) 1980-07-24 1982-02-18 Vdo Adolf Schindling Ag, 6000 Frankfurt Getriebe
DE3118172A1 (de) 1981-05-08 1982-11-25 Philips Kommunikations Industrie AG, 8500 Nürnberg Laengswasserdichtes optisches nachrichtenkabel
EP0105373A1 (fr) 1981-10-29 1984-04-18 Honda Giken Kogyo Kabushiki Kaisha Dispositif de distribution d'huile pour la fourchette de commande des vitesses d'une transmission
US4525527A (en) 1982-01-25 1985-06-25 American Colloid Company Production process for highly water absorbable polymer
DE3503458A1 (de) 1984-02-04 1985-08-08 Arakawa Kagaku Kogyo K.K., Osaka Verfahren zur herstellung verbesserter wasser absorbierender harze
DE3533337A1 (de) 1984-09-19 1986-04-24 Arakawa Kagaku Kogyo K.K., Osaka Verfahren zur herstellung von hochgradig wasserabsorbierendem harz
DE3511086A1 (de) 1985-03-27 1986-10-09 Belzer-Dowidat Gmbh Werkzeug-Union, 5600 Wuppertal Zange
EP0202127A2 (fr) 1985-05-15 1986-11-20 The Procter & Gamble Company Articles absorbants jetables
EP0205874A2 (fr) 1985-05-22 1986-12-30 International Business Machines Corporation Dispositif de pulvérisation
EP0205674A1 (fr) 1985-06-18 1986-12-30 The Procter & Gamble Company Composition polymère formant un hydrogel, utilisée dans des structures absorbantes
US4822453A (en) 1986-06-27 1989-04-18 The Procter & Gamble Cellulose Company Absorbent structure containing individualized, crosslinked fibers
US4898642A (en) 1986-06-27 1990-02-06 The Procter & Gamble Cellulose Company Twisted, chemically stiffened cellulosic fibers and absorbent structures made therefrom
US4888093A (en) 1986-06-27 1989-12-19 The Procter & Gamble Cellulose Company Individualized crosslinked fibers and process for making said fibers
DE3713601C2 (fr) 1987-04-23 1989-07-13 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0306262A1 (fr) 1987-09-01 1989-03-08 The Procter & Gamble Company Structures absorbantes composites et articles absorbants contenant de telles structures
EP0312952A2 (fr) 1987-10-22 1989-04-26 The Dow Chemical Company Procédé de préparation de polymères absorbants
EP0316518A2 (fr) 1987-11-13 1989-05-24 Vp - Schickedanz Ag Article hygiénique en cellulose
US4931497A (en) 1987-11-13 1990-06-05 Cassella Aktiengesellschaft Hydrophilic swellable graft polymers from maleic anhydride-alkylene substrate
EP0331845A2 (fr) 1988-03-07 1989-09-13 Hoechst Celanese Corporation Préparation accélérée d'esters acryliques
EP0343427A2 (fr) 1988-05-21 1989-11-29 Hoechst Aktiengesellschaft Hydrogels préparés en utilisant des esters d'acides alcényl-phosphoniques ou phosphiniques comme reticulants.
DE3831261A1 (de) 1988-08-29 1990-03-15 Lentia Gmbh Verfahren zur herstellung von fluessigkeitsabsorbierenden acrylharzen
DE3843854A1 (de) 1988-12-24 1990-06-28 Henkel Kgaa Verfahren zur verbesserten herstellung von (meth)acrylsaeureestern mehrwertiger alkohole (i)
DE3843843A1 (de) 1988-12-24 1990-07-05 Henkel Kgaa Verfahren zur verbesserten herstellung von (meth)acrylsaeureestern mehrwertiger alkohole (iv)
EP0389023A2 (fr) 1989-03-20 1990-09-26 The Procter & Gamble Company Structures absorbantes avec moyens de contrôle de l'odeur
US5041496A (en) 1989-04-01 1991-08-20 Cassella Ag Hydrophilic, swellable graft copolymers, their preparation and use
US5011892A (en) 1989-04-07 1991-04-30 Cassella Ag Hydrophilic swellable graft copolymers, their preparation and use
DE3917846A1 (de) 1989-06-01 1990-12-06 Hilti Ag Traegerstreifen fuer pulverkraftbetriebene setzgeraete
US5145906A (en) 1989-09-28 1992-09-08 Hoechst Celanese Corporation Super-absorbent polymer having improved absorbency properties
US5137537A (en) 1989-11-07 1992-08-11 The Procter & Gamble Cellulose Company Absorbent structure containing individualized, polycarboxylic acid crosslinked wood pulp cellulose fibers
WO1991011162A1 (fr) 1990-01-23 1991-08-08 The Procter & Gamble Company Structures absorbantes contenant une couche de fibres raidies thermoliees ainsi qu'une couche de matiere superabsorbante
WO1991011977A1 (fr) 1990-02-12 1991-08-22 The Procter & Gamble Company Compositions et articles a limitation des odeurs
EP0455985A1 (fr) 1990-04-06 1991-11-13 Summagraphics Corporation Convertisseur digital avec bandes conductrices sinueuses disposées suivant un pas répétitif non uniforme
DE4015085A1 (de) 1990-05-11 1991-12-12 Stockhausen Chem Fab Gmbh Vernetztes, wasserabsorbierendes polymer und verwendung zur herstellung von hygieneartikeln, zur bodenverbesserung und in kabelummantelungen
DE4020780C1 (fr) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
DE4021847A1 (de) 1990-07-09 1992-01-16 Stockhausen Chem Fab Gmbh Verfahren zur herstellung wasserquellbarer produkte unter verwendung von feinstanteilen wasserquellbarer polymerer
EP0467073A1 (fr) 1990-07-17 1992-01-22 Sanyo Chemical Industries Ltd. Procédé de préparation de résines absorbants de l'eau
EP0499774A1 (fr) 1991-02-19 1992-08-26 Starchem Gmbh Procédé de préparation de petites particules de polysaccharide greffé, gonflables par l'eau
EP0530438A1 (fr) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Polymère superabsorbant à propriétés de pouvoir absorbant perfectionné
EP0554651A1 (fr) 1991-12-20 1993-08-11 Reichhold Chemie Ges. M.B.H. Agent et procédé pour l'enlèvement des résidus d'acides à partir de mélanges de réaction contenant des produits de (poly)estérification
WO1993021237A1 (fr) 1992-04-16 1993-10-28 The Dow Chemical Company Resines hydrophiles reticulees et procede de preparation
WO1993022998A1 (fr) 1992-05-15 1993-11-25 The Procter & Gamble Company Dispositif catamenial
DE4219607A1 (de) 1992-06-16 1993-12-23 Kabelmetal Electro Gmbh Verfahren zur Herstellung eines längswasserdichten Kabelelementes
DE4244548A1 (de) 1992-12-30 1994-07-07 Stockhausen Chem Fab Gmbh Pulverförmige, unter Belastung wäßrige Flüssigkeiten sowie Blut absorbierende Polymere, Verfahren zu ihrer Herstellung und ihre Verwendung in textilen Konstruktionen für die Körperhygiene
EP0615736A1 (fr) 1993-02-24 1994-09-21 Kimberly-Clark Corporation Composite adsorbant pour vêtement adsorbant à jeter
EP0670073A1 (fr) 1993-03-18 1995-09-06 Authentication Tech Inc Dispositif de verification capacitif pour un fil de securite integre dans un billet de banque.
WO1994025077A1 (fr) 1993-04-23 1994-11-10 Centro Ricerche Fater P & G S.P.A. Materiau desodorisant
WO1995024173A2 (fr) 1994-03-10 1995-09-14 The Procter & Gamble Company Articles absorbants contenant, dans leur couche superieure, des agents antibacteriens servant a lutter contre les odeurs
WO1995026207A1 (fr) 1994-03-25 1995-10-05 Centro Ricerche Fater P & G S.P.A. Desodorisant
WO1995026209A1 (fr) 1994-03-29 1995-10-05 The Procter & Gamble Company Articles absorbants pour fluides corporels presentant une bonne integrite au mouillage et renfermant des concentrations relativement elevees d'un polymere absorbant formant un hydrogel
DE4418881A1 (de) 1994-05-30 1995-12-07 Rexroth Mannesmann Gmbh Hubwerkregelsystem mit Regelventil
EP1074233A2 (fr) 1994-06-30 2001-02-07 McNEIL-PPC, INC. Structures absorbantes multicouches
DE19604601A1 (de) 1995-02-08 1996-08-14 Sanyo Chemical Ind Ltd Absorptionsprodukt
WO1997001317A1 (fr) 1995-06-27 1997-01-16 The Procter & Gamble Company Dispositif d'elimination de mauvaises odeurs
WO1997009022A1 (fr) 1995-09-05 1997-03-13 The Procter & Gamble Company Tampon anatomique a moulage interne
EP0801483A2 (fr) 1996-03-30 1997-10-15 International Computers Limited Communication entre processeurs
WO1997049365A1 (fr) 1996-06-27 1997-12-31 The Procter & Gamble Company Article absorbant pourvu de barrieres laterales elastiques resistant a la flexion
WO1998008439A1 (fr) 1996-08-25 1998-03-05 Sensar, Inc. Appareil de prise d'images d'iris
US5762644A (en) 1996-08-30 1998-06-09 The Procter & Gamble Company Toilet-disposable absorbent interlabial device
EP0834297A1 (fr) 1996-10-02 1998-04-08 The Procter & Gamble Company Aricle absorbant jetable avec une structure absorbante ayant la capacité de changer la forme pendant l'utilisation en fonction d'un profil prédéterminé
WO1998020916A1 (fr) 1996-11-14 1998-05-22 The Procter & Gamble Company Polymeres absorbants enduits d'agents antimicrobiens et permettant d'obtenir des hydrogels
WO1998022063A1 (fr) 1996-11-18 1998-05-28 The Procter & Gamble Company Article absorbant presentant un element pompant les liquides
EP0850616A1 (fr) 1996-12-20 1998-07-01 The Procter & Gamble Company Structure étendue à sec avec matériau désodorisant
WO1998028478A1 (fr) 1996-12-20 1998-07-02 The Procter & Gamble Company Structure obtenue a sec comprenant des moyens neutralisant les mauvaises odeurs
US6123693A (en) 1997-01-03 2000-09-26 The Procter & Gamble Company Absorbent interlabial device with flexible extensions
US5895381A (en) 1997-01-03 1999-04-20 The Procter & Gamble Company Absorbent interlabial device with flexible extensions
WO1998041179A1 (fr) 1997-03-17 1998-09-24 The Procter & Gamble Company Tampon et procede de realisation
WO1998046181A1 (fr) 1997-04-14 1998-10-22 Tambrands, Inc. Tampon annulaire
WO1998046182A1 (fr) 1997-04-14 1998-10-22 Tambrands, Inc. Tampon
WO1998048753A1 (fr) 1997-04-28 1998-11-05 The Procter & Gamble Company Article absorbant pour homme
WO1998057609A1 (fr) 1997-06-16 1998-12-23 The Procter & Gamble Company Dispositif interlabial conçu pour absorber les divers constituants des menstrues
EP0887056A1 (fr) 1997-06-25 1998-12-30 The Procter & Gamble Company Article absorbant jetable comportant un contennu d'humidité peu élevé
EP0887059A1 (fr) 1997-06-25 1998-12-30 The Procter & Gamble Company Article absorbant jetable comportant un séchage et une aération de peau perfectionné
EP0887057A1 (fr) 1997-06-25 1998-12-30 The Procter & Gamble Company Article absorbant jetable comportant une tendance de bouchage reduite
EP0887060A1 (fr) 1997-06-25 1998-12-30 The Procter & Gamble Company Insert de noyau absorbant à deux couches avec des propriétés de traitement des fluides améliorés
EP0887058A1 (fr) 1997-06-25 1998-12-30 The Procter & Gamble Company Article absorbant jetable comportant une feuille arrière perméable à l'art se touchant comme tissu
EP0894502A1 (fr) 1997-07-30 1999-02-03 The Procter & Gamble Company Matériau désodorisant pour articles absorbants contenant de la cyclodextrine
DE19737434A1 (de) 1997-08-21 1999-02-25 Klaus Koch Absorbtionsschuheinlage (ASE)
EP0903134A1 (fr) 1997-09-20 1999-03-24 The Procter & Gamble Company Concentration d'absorption de liquide au centre d'un article absorbant
WO1999018905A1 (fr) 1997-10-10 1999-04-22 The Procter & Gamble Company Dispositif interlabial absorbant dote d'un complexe d'acquisition/de transfert de fluide
WO1999025284A1 (fr) 1997-11-13 1999-05-27 The Procter & Gamble Company Article absorbant comportant des moyens permettant de donner ou maintenir une configuration convexe-concave
EP0931530A1 (fr) 1998-01-23 1999-07-28 The Procter & Gamble Company Système de fixation pour les couches d'incontinence
WO1999045973A1 (fr) 1998-03-12 1999-09-16 The Procter & Gamble Company Article absorbant jetable avec composition de soin de la peau renfermant un inhibiteur enzymatique
WO1999057355A1 (fr) 1998-05-01 1999-11-11 The Dow Chemical Company Procede de fabrication d'un non tisse de fusion-soufflage respirant presentant des proprietes barriere
DE19854575A1 (de) 1998-11-26 2000-05-31 Basf Ag Vernetzte quellfähige Polymere
WO2000036216A1 (fr) 1998-12-11 2000-06-22 Sca Hygiene Products Ab Procede d'augmentation de la resistance a l'etat humide d'une matiere d'ouate
WO2000035502A1 (fr) 1998-12-16 2000-06-22 Sca Hygiene Products Ab Articles absorbants
EP1023883A2 (fr) 1999-01-22 2000-08-02 SCA Hygiene Products AB Article absorbant avec barrières d'arrêt de liquides
WO2000061052A1 (fr) 1999-04-08 2000-10-19 The Procter & Gamble Company Tampon avec protection amelioree contre les fuites
WO2000065083A2 (fr) 1999-04-26 2000-11-02 The Procter & Gamble Company Protections periodiques feminines jetables pourvues d'un moyen de detection du sang, en tant que capteur
WO2000065084A2 (fr) 1999-04-26 2000-11-02 The Procter & Gamble Company Composition pour detection de sang
WO2000065348A2 (fr) 1999-04-26 2000-11-02 The Procter & Gamble Company Articles jetables et analogues comprenant un dispositif de detection
WO2000069484A1 (fr) 1999-05-19 2000-11-23 The Procter & Gamble Company Article absorbant contenant une composition pour le soin de la peau
WO2000069485A1 (fr) 1999-05-19 2000-11-23 The Procter & Gamble Company Article absorbant contenant une composition de soin de la peau
WO2000069481A1 (fr) 1999-05-19 2000-11-23 The Procter & Gamble Company Article absorbant enduit d'une composition dermatologique
DE19929258A1 (de) 1999-06-25 2000-12-28 Basf Ag Verfahren zur Herstellung von (Meth)acrylsäureestern
WO2001000115A2 (fr) 1999-06-29 2001-01-04 Ent, L.L.C. Dispositif absorbant
WO2001001908A1 (fr) 1999-06-30 2001-01-11 Johnson & Johnson Gmbh Tampon hygienique, procede et appareil de production associes
WO2001001909A1 (fr) 1999-06-30 2001-01-11 Mcneil-Ppc, Inc. Tampon bombe presentant une pellicule revetue d'un tensioactif
WO2001001910A1 (fr) 1999-06-30 2001-01-11 Johnson & Johnson Gmbh Tampon comportant une couverture de film pourvue de trous thermoliee a une structure absorbante fibreuse
WO2001001905A1 (fr) 1999-06-30 2001-01-11 Mcneil-Ppc, Inc. Tampon hygienique recouvert d'une pellicule comprenant un tensioactif non ionique
WO2001001906A1 (fr) 1999-06-30 2001-01-11 Mcneil-Ppc, Inc. Film ouvert a couches multiples pour article absorbant
WO2001010920A1 (fr) 1999-08-06 2001-02-15 Kao Corporation Fabrication de polymere d'acide (meth)acrylique
DE19937911A1 (de) 1999-08-11 2001-02-15 Cognis Deutschland Gmbh Verfahren zum Herstellen von Estern aus ungesättigten Carbonsäuren und mehrwertigen Alkoholen
WO2001014438A1 (fr) 1999-08-23 2001-03-01 Kao Corporation Procede de production de polymeres (meth)acryliques
DE19941136A1 (de) 1999-08-30 2001-03-01 Basf Ag Verfahren zur Herstellung von (Meth)acrylsäureestern
WO2001024755A1 (fr) 1999-10-01 2001-04-12 Kimberly-Clark Worldwide, Inc. Article absorbant a absorption centrale comprenant une barriere de tissu meche et un element d"elevation central
WO2001024729A2 (fr) 1999-10-07 2001-04-12 Playtex Products, Inc. Petite compresse pour tampon hygienique a expansion rapide
WO2001033962A1 (fr) 1999-11-10 2001-05-17 Tolland Development Company, Llc Tampon
WO2001038402A1 (fr) 1999-11-20 2001-05-31 Basf Aktiengesellschaft Procede de preparation continue de polymerisats geliformes reticules a fines particules
EP1104666A1 (fr) 1999-12-03 2001-06-06 The Procter & Gamble Company Receptacle collecteur du flux menstruel
WO2001041692A1 (fr) 1999-12-13 2001-06-14 Sca Hygiene Products Ab Serviette hygienique presentant une decoupe sur la feuille detachable
EP1108408A1 (fr) 1999-12-14 2001-06-20 The Procter & Gamble Company Tampon avec un nombre impair de nervures
WO2001043680A1 (fr) 1999-12-14 2001-06-21 The Procter & Gamble Company Tampon a configuration ovale apres expansion et son procede de fabrication
WO2001043679A1 (fr) 1999-12-14 2001-06-21 The Procter & Gamble Company Tampon sans applicateur comportant un nombre impair de cotes
DE20020662U1 (de) 2000-12-06 2001-06-07 Moerlein Dieter Tampon für Frauen
DE10063175A1 (de) 2000-12-18 2002-06-20 Basf Ag Verfahren zur Herstellung von höheren (Meth)acrylsäureestern

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"Liquid - Liquid Extraction - Apparatus", 1999, article "Ullmann's Encyclopedia of Industrial Chemistry"
"Methode ist im Analytiker Taschenbuch", vol. 4, 1984, pages: 433 - 442
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 134:163502
DATABASE WPI Derwent World Patents Index; AN 2001-191644, "Derwent-Abstract"
F.L. BUCHHOLZ; A.T. GRAHAM: "Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH
HOUBEN-WEYL: "Methoden der Organischen Chemie", vol. 6/LA, 1979, THIEME VERLAG, pages: 373 - 385
MAKROMOL. CHEM., vol. 1, 1947, pages 169
ROBERT F. GOULD: "Kontaktwinkel, Benetzbarkeit und Adhäsion", 1964, AMERICAN CHEMICAL SOCIETY

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103819337A (zh) * 2013-09-29 2014-05-28 安庆飞凯高分子材料有限公司 一种三官能团季戊四醇丙烯酸酯制备方法
CN103819337B (zh) * 2013-09-29 2016-01-20 安庆飞凯高分子材料有限公司 一种三官能团季戊四醇丙烯酸酯制备方法

Also Published As

Publication number Publication date
EP1516010B1 (fr) 2013-01-02
JP2005533875A (ja) 2005-11-10
US7250481B2 (en) 2007-07-31
WO2003104299A1 (fr) 2003-12-18
BR0311500A (pt) 2005-03-08
US20050176910A1 (en) 2005-08-11
EP2345432A3 (fr) 2012-07-25
ZA200500188B (en) 2006-07-26
EP2345432A2 (fr) 2011-07-20
EP1516010A1 (fr) 2005-03-23
DE10225943A1 (de) 2004-01-08
EP2345431A3 (fr) 2012-07-25
JP2013082941A (ja) 2013-05-09
CN1659212A (zh) 2005-08-24
MXPA04012091A (es) 2005-04-19
JP5781100B2 (ja) 2015-09-16
AU2003242636A1 (en) 2003-12-22
BR0311500B1 (pt) 2013-02-05

Similar Documents

Publication Publication Date Title
EP1516010B1 (fr) Procédé de préparation d'un hydrogel réticulé.
EP1517942B1 (fr) (meth)acrylesters de glycerine polyalcoxy
EP1646673B1 (fr) (meth)acrylates de polyols monoalcoxyles et leur production
US7199211B2 (en) (Meth)acrylic esters of polyalkoxylated trimethylolpropane
EP1646671B1 (fr) (meth)acrylates de polyol-ethers insatures alcoxyles et leur production
US7420013B2 (en) Mixtures of compounds comprising at least two double bonds and use thereof
US7405321B2 (en) (Meth)acrylic ester of alkenylene glycols and the use thereof
US7259212B2 (en) (Meth)acrylic esters of polyalkoxylated trimethylolpropane
WO2004087790A2 (fr) Melanges d'esters (meth)acryliques de trimethylolpropane polyalkoxyle
WO2004108795A1 (fr) Esters (meth)acryliques de glycols alkylene-ylene et leur utilisation
EP1613583B1 (fr) Melanges de composes ayant au moins deux liaisons doubles et leur utilisation
EP1613685B1 (fr) Melanges d'esters (meth)acryliques de trimethylolpropane polyalkoxyle
DE10358369A1 (de) (Meth)acrylester von Alkylenylenglycolen und deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1516010

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: C07C 69/54 20060101ALI20120618BHEP

Ipc: C08G 65/332 20060101AFI20120618BHEP

Ipc: A61L 15/60 20060101ALI20120618BHEP

Ipc: C07C 67/08 20060101ALI20120618BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20130126