WO2011113728A1 - Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttelettes d'une solution de monomère - Google Patents

Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttelettes d'une solution de monomère Download PDF

Info

Publication number
WO2011113728A1
WO2011113728A1 PCT/EP2011/053498 EP2011053498W WO2011113728A1 WO 2011113728 A1 WO2011113728 A1 WO 2011113728A1 EP 2011053498 W EP2011053498 W EP 2011053498W WO 2011113728 A1 WO2011113728 A1 WO 2011113728A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer particles
water
absorbent polymer
weight
gas
Prior art date
Application number
PCT/EP2011/053498
Other languages
English (en)
Inventor
Norbert Herfert
Thomas Daniel
Rainer Dobrawa
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to JP2012557484A priority Critical patent/JP2013522403A/ja
Priority to RU2012143697/04A priority patent/RU2012143697A/ru
Priority to BR112012023050A priority patent/BR112012023050A2/pt
Priority to CN2011800143902A priority patent/CN102803302A/zh
Priority to EP11706846A priority patent/EP2547703A1/fr
Publication of WO2011113728A1 publication Critical patent/WO2011113728A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/34Polymerisation in gaseous state
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530569Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the particle size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • A61F2013/530481Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials
    • A61F2013/530583Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the form
    • A61F2013/530591Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium having superabsorbent materials, i.e. highly absorbent polymer gel materials characterized by the form in granules or particles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2420/00Materials or methods for coatings medical devices
    • A61L2420/02Methods for coating medical devices

Definitions

  • the present invention relates to a process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution in a surrounding gas phase under specific conditions, which comprises coating the water-absorbing polymer particles with at least one sulfinic acid, sulfonic acid and/or salts thereof.
  • water-absorbent polymer particles are prepared in the monograph "Modern Superabsorbent Polymer Technology", F.L. Buchholz and AT. Graham, Wiley-VCH, 1998, on pages 71 to 103. Being products which absorb aqueous solutions, water-absorbent polymer particles are used to produce diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in market gardening. Water-absorbent polymer particles are also referred to as "superabsorbent polymers" or "superabsorbents”.
  • WO 2008/009598 A1 WO 2008/009599 A1
  • WO 2008/009612 A1 WO 2008/040715 A2
  • WO 2008/052971 WO 2008/086976 A1 .
  • mSPHT mean sphericity
  • the mean sphericity is a measure of the roundness of the polymer particles and can be determined, for example, with the Camsizer ® image analysis system (Retsch Technology GmbH; Haan; Germany).
  • the water-absorbent polymer particles obtained by dropletization polymerization are typically hollow spheres. It was an object of the present invention to provide water-absorbent polymer particles having improved properties, i.e. comprising water-absorbent polymer particles having a superior mechanical stability and high gel stability.
  • a further object of the present invention was providing water-absorbent polymer parti- cles having a high bulk density and a narrow particle diameter distribution.
  • the object is achieved by a process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution in a in a surrounding heated gas phase and flowing the gas cocurrent through the polymerization chamber, wherein the temperature of the gas leaving the polymerization chamber is from 90 to 150°C and the gas velocity inside the polymerization chamber is from 0.1 to 2.5 m/s, which comprises coating the water-absorbing polymer particles with at least one sulfinic acid, sulfonic acid and/or salts thereof.
  • the present invention is based on the finding that the coating with at least one sulfinic acid, sulfonic acid and/or salts thereof, especially hydroxy sulfonic acids and/or salts thereof, increases the gel stability of the swollen water-absorbent polymer particles.
  • the present invention further provides water-absorbent polymer particles obtainable by the process according to the present invention, which have a mean sphericity (mSPHT) from 0.86 to 0.99 and a bulk density of at least 0.58 g/cm 3 , and an average particle diameter from 250 to 550 ⁇ , and a ratio of particles having one cavity to particles having more than one cavity of less than 1 .0, wherein the water-absorbing polymer particles are coated with at least one sulfinic acid, sulfonic acid and/or salts thereof.
  • mSPHT mean sphericity
  • the present invention further provides fluid-absorbent articles which comprise the in- ventive water-absorbent polymer particles.
  • the water-absorbent polymer particles are prepared by polymerizing droplets of a monomer solution comprising a) at least one ethylenically unsaturated monomer which bears acid groups and may be at least partly neutralized,
  • the water-absorbent polymer particles are typically insoluble but swellable in water.
  • the monomers a) are preferably water-soluble, i.e. the solubility in water at 23°C is typically at least 1 g/100 g of water, preferably at least 5 g/100 g of water, more preferably at least 25 g/100 g of water, most preferably at least 35 g/100 g of water.
  • Suitable monomers a) are, for example, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, and itaconic acid.
  • Particularly preferred monomers are acrylic acid and methacrylic acid. Very particular preference is given to acrylic acid.
  • Suitable monomers a) are, for example, ethylenically unsaturated sulfonic acids such as vinylsulfonic acid, styrenesulfonic acid and 2-acrylamido-2-methylpropane- sulfonic acid (AMPS).
  • ethylenically unsaturated sulfonic acids such as vinylsulfonic acid, styrenesulfonic acid and 2-acrylamido-2-methylpropane- sulfonic acid (AMPS).
  • Impurities may have a strong impact on the polymerization. Preference is given to es- pecially purified monomers a). Useful purification methods are disclosed in
  • a suitable monomer a) is according to WO 2004/035514 A1 purified acrylic acid having 99.8460% by weight of acrylic acid, 0.0950% by weight of acetic acid, 0.0332% by weight of water, 0.0203 by weight of propionic acid, 0.0001 % by weight of furfurals, 0.0001 % by weight of maleic anhydride, 0.0003% by weight of diacrylic acid and 0.0050% by weight of hydroquinone monomethyl ether.
  • the content of acrylic acid and/or salts thereof in the total amount of monomers a) is preferably at least 50 mol%, more preferably at least 90 mol%, most preferably at least 95 mol%.
  • the acid groups of the monomers a) are typically partly neutralized, preferably to an extent of from 25 to 85 mol%, preferentially to an extent of from 50 to 80 mol%, more preferably from 60 to 75 mol%, for which the customary neutralizing agents can be used, preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogen carbonates, and mixtures thereof.
  • the customary neutralizing agents preferably alkali metal hydroxides, alkali metal oxides, alkali metal carbonates or alkali metal hydrogen carbonates, and mixtures thereof.
  • alkali metal salts it is also possible to use ammonia or organic amines, for example, triethanolamine.
  • oxides, carbonates, hydrogencarbonates and hydroxides of magnesium, calcium, strontium, zinc or aluminum as powders, slurries or solutions and mixtures of any of the above neutralization agents.
  • Examples for a mixture is a solution of sodiumaluminate.
  • Sodium and potassium are particularly preferred as alkali metals, but very particular preference is given to sodium hydroxide, sodium carbonate or sodium hydrogen carbonate, and mixtures thereof.
  • the neutralization is achieved by mixing in the neutralizing agent as an aqueous solution, as a melt or pref- erably also as a solid.
  • sodium hydroxide with water content significantly below 50% by weight may be present as a waxy material having a melting point above 23°C. In this case, metered addition as piece material or melt at elevated temperature is possible.
  • chelating agents for masking metal ions, for example iron, for the purpose of stabilization.
  • Suitable chelating agents are, for example, alkali metal citrates, citric acid, alkali metal tatrates, alkali metal lactates and glycolates, pentasodium triphosphate, ethylenediamine tetraacetate, nitrilotriacetic acid, and all chelating agents known under the Trilon® name, for example Trilon® C (pentasodium diethylenetriaminepen- taacetate), Trilon® D (trisodium (hydroxyethyl)-ethylenediaminetriacetate), and Trilon® M (methylglycinediacetic acid).
  • the monomers a) comprise typically polymerization inhibitors, preferably hydroquinone monoethers, as inhibitor for storage.
  • the monomer solution comprises preferably up to 250 ppm by weight, more preferably not more than 130 ppm by weight, most preferably not more than 70 ppm by weight, preferably not less than 10 ppm by weight, more preferably not less than 30 ppm by weight and especially about 50 ppm by weight of hydroquinone monoether, based in each case on acrylic acid, with acrylic acid salts being counted as acrylic acid.
  • the monomer solution can be prepared using acrylic acid having appropriate hydroquinone monoether content.
  • the hydroquinone monoethers may, however, also be removed from the monomer solution by absorption, for example on activated carbon.
  • hydroquinone monoethers are hydroquinone monomethyl ether (MEHQ) and/or alpha-tocopherol (vitamin E).
  • Suitable crosslinkers b) are compounds having at least two groups suitable for cross- linking. Such groups are, for example, ethylenically unsaturated groups which can be polymerized by a free-radical mechanism into the polymer chain and functional groups which can form covalent bonds with the acid groups of monomer a). In addition, polyvalent metal ions which can form coordinate bond with at least two acid groups of monomer a) are also suitable crosslinkers b).
  • the crosslinkers b) are preferably compounds having at least two free-radically poly- merizable groups which can be polymerized by a free-radical mechanism into the polymer network.
  • Suitable crosslinkers b) are, for example, ethylene glycol dimethacry- late, diethylene glycol diacrylate, polyethylene glycol diacrylate, allyl methacrylate, trimethylolpropane triacrylate, triallylamine, tetraallylammonium chloride, tetraallyloxy- ethane, as described in EP 0 530 438 A1 , di- and triacrylates, as described in
  • Suitable crosslinkers b) are in particular pentaerythritol triallyl ether, tetraallyloxy- ethane, N,N'-methylenebisacrylamide, 15-tuply ethoxylated trimethylolpropane, polyethylene glycol diacrylate, trimethylolpropane triacrylate and triallylamine.
  • Very particularly preferred crosslinkers b) are the polyethoxylated and/or -propoxylated glycerols which have been esterified with acrylic acid or methacrylic acid to give di- or triacrylates, as described, for example in WO 2003/104301 A1 .
  • Di- and/or triacrylates of 3- to 10-tuply ethoxylated glycerol are particularly advantageous.
  • Very particular preference is given to di- or triacrylates of 1 - to 5-tuply ethoxylated and/or propoxylated glycerol.
  • Most preferred are the triacrylates of 3- to 5-tuply ethoxylated and/or propoxylated glycerol and especially the triacrylate of 3-tuply ethoxylated glycerol.
  • the amount of crosslinker b) is preferably from 0.05 to 1 .5% by weight, more preferably from 0.1 to 1 % by weight, most preferably from 0.3 to 0.6% by weight, based in each case on monomer a).
  • the initiators c) used may be all compounds which disintegrate into free radicals under the polymerization conditions, for example peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds and redox initiators. Preference is given to the use of water-soluble initiators. In some cases, it is advantageous to use mixtures of various initiators, for example mixtures of hydrogen peroxide and sodium or potassium peroxo- disulfate. Mixtures of hydrogen peroxide and sodium peroxodisulfate can be used in any proportion.
  • Particularly preferred initiators c) are azo initiators such as 2,2 ' -azobis[2-(2-imidazolin- 2-yl)propane] dihydrochloride and 2,2 ' -azobis[2-(5-methyl-2-imidazolin-2-yl)propane] dihydrochloride, and photoinitiators such as 2-hydroxy-2-methylpropiophenone and 1 - [4-(2-hydroxyethoxy)phenyl]-2-hydroxy-2-methyl-1-propan-1 -one, redox initiators such as sodium persulfate/hydroxymethylsulfinic acid, ammonium peroxodisulfate/hydroxyl- methylsulfinic acid, hydrogen peroxide/hydroxymethylsulfinic acid, sodium persul- fate/ascorbic acid, ammonium peroxodisulfate/ascorbic acid and hydrogen perox- ide/ascorbic acid, photoinitiators such as 1 -[4-(2-hydroxyeth
  • the reducing component used is, however, preferably a mixture of the disodium salt of 2-hydroxy-2-sulfinatoacetic acid, the disodium salt of 2-hydroxy-2-sulfonatoacetic acid and sodium bisulfite.
  • Such mixtures are obtainable as Bruggolite® FF6 and Bruggolite® FF7 (Bruggemann Chemicals; Heilbronn; Germany).
  • the initiators are used in customary amounts, for example in amounts of from 0.001 to 5% by weight, preferably from 0.01 to 2% by weight, based on the monomers a).
  • Examples of ethylenically unsaturated monomers c) which are copolymerizable with the monomers a) are acrylamide, methacrylamide, hydroxyethyl acrylate, hydroxyethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate, dimethyl- aminopropyl acrylate and diethylaminopropyl methacrylate.
  • Useful water-soluble polymers d) include polyvinyl alcohol, polyvinylpyrrolidone, starch, starch derivatives, modified cellulose such as methylcellulose or hydroxyethylcellulose, gelatin, polyglycols or polyacrylic acids, polyesters and polyamides, polylactic acid, polyvinylamine, preferably starch, starch derivatives and modified cellulose.
  • the preferred polymerization inhibitors require dissolved oxygen. Therefore, the monomer solution can be freed of dissolved oxygen before the polym- erization by inertization, i.e. flowing through with an inert gas, preferably nitrogen. It is also possible to reduce the concentration of dissolved oxygen by adding a reducing agent.
  • the oxygen content of the monomer solution is preferably lowered before the polymerization to less than 1 ppm by weight, more preferably to less than 0.5 ppm by weight.
  • the water content of the monomer solution is preferably less than 65% by weight, preferentially less than 62% by weight, more preferably less than 60% by weight, most preferably less than 58% by weight.
  • the monomer solution has, at 20°C, a dynamic viscosity of preferably from 0.002 to 0.02 Pa s, more preferably from 0.004 to 0.015 Pa s, most preferably from 0.005 to 0.01 Pa s.
  • the mean droplet diameter in the droplet generation rises with rising dynamic viscosity.
  • the monomer solution has, at 20°C, a density of preferably from 1 to 1 .3 g/cm 3 , more preferably from 1 .05 to 1 .25 g/cm 3 , most preferably from 1.1 to 1 .2 g/cm 3 .
  • the monomer solution has, at 20°C, a surface tension of from 0.02 to 0.06 N/m, more preferably from 0.03 to 0.05 N/m, most preferably from 0.035 to 0.045 N/m.
  • the mean droplet diameter in the droplet generation rises with rising surface tension.
  • the monomer solution is metered into the gas phase to form droplets, i.e. using a system described in WO 2008/069639 A1 and WO 2008/086976 A1 .
  • the droplets are preferably generated by means of a droplet plate.
  • a droplet plate is a plate having a multitude of bores, the liquid entering the bores from the top.
  • the droplet plate or the liquid can be oscillated, which generates a chain of ideally monodisperse droplets at each bore on the underside of the droplet plate.
  • the droplet plate is not agitated.
  • the number and size of the bores are selected according to the desired capacity and droplet size.
  • the droplet diameter is typically 1 .9 times the diameter of the bore. What is important here is that the liquid to be dropletized does not pass through the bore too rapidly and the pressure drop over the bore is not too great. Otherwise, the liquid is not dropletized, but rather the liquid jet is broken up (sprayed) owing to the high kinetic energy.
  • the Reynolds number based on the throughput per bore and the bore diameter is preferably less than 2000, preferentially less than 1600, more preferably less than 1400 and most preferably less than 1200.
  • the underside of the droplet plate has at least in part a contact angle preferably of at least 60°, more preferably at least 75° and most preferably at least 90° with regard to water.
  • the contact angle is a measure of the wetting behavior of a liquid, in particular water, with regard to a surface, and can be determined using conventional methods, for example in accordance with ASTM D 5725. A low contact angle denotes good wetting, and a high contact angle denotes poor wetting. It is also possible for the droplet plate to consist of a material having a lower contact angle with regard to water, for example a steel having the German construction material code number of 1 .4571 , and be coated with a material having a larger contact angle with regard to water.
  • Useful coatings include for example fluorous polymers, such as perfluoroalkoxyethyl- ene, polytetrafluoroethylene, ethylene-chlorotrifluoroethylene copolymers, ethylene- tetrafluoroethylene copolymers and fluorinated polyethylene.
  • fluorous polymers such as perfluoroalkoxyethyl- ene, polytetrafluoroethylene, ethylene-chlorotrifluoroethylene copolymers, ethylene- tetrafluoroethylene copolymers and fluorinated polyethylene.
  • the coatings can be applied to the substrate as a dispersion, in which case the solvent is subsequently evaporated off and the coating is heat treated.
  • the solvent is subsequently evaporated off and the coating is heat treated.
  • Further coating processes are to found under the headword “Thin Films” in the electronic version of "Ullmann's Encyclopedia of Industrial Chemistry” (Updated Sixth Edition, 2000 Electronic Release).
  • the coatings can further be incorporated in a nickel layer in the course of a chemical nickelization.
  • the droplet plate has preferably at least 5, more preferably at least 25, most preferably at least 50 and preferably up to 750, more preferably up to 500 bores, most preferably up to 250.
  • the diameter of the bores is adjusted to the desired droplet size.
  • the separation of the bores is preferably from 10 to 50 mm, more preferably from 14 to 35 mm, most preferably from 15 to 30 mm. Smaller separations of the bores cause agglomeration of the polymerizing droplets.
  • the diameter of the bores is preferably from 50 to 500 ⁇ , more preferably from 100 to 300 ⁇ , most preferably from 150 to 250 ⁇ .
  • the temperature of the monomer solution as it passes through the bore is preferably from 5 to 80°C, more preferably from 10 to 70°C, most preferably from 30 to 60°C.
  • a gas flows through the reaction chamber.
  • the carrier gas is conducted through the reaction chamber in cocurrent to the free-falling droplets of the monomer solution, i.e. from the top downward.
  • the gas is preferably recycled at least partly, preferably to an extent of at least 50%, more preferably to an extent of at least 75%, into the reaction chamber as cycle gas.
  • a portion of the carrier gas is dis- charged after each pass, preferably up to 10%, more preferably up to 3% and most preferably up to 1 %.
  • the oxygen content of the carrier gas is preferably from 0.5 to 15% by volume, more preferably from 1 to 10% by volume, most preferably from 2 to 7% by weight.
  • the carrier gas preferably comprises nitrogen.
  • the nitrogen content of the gas is preferably at least 80% by volume, more preferably at least 90% by volume, most preferably at least 95% by volume.
  • Other possible carrier gases may be selected from carbondioxide, argon, xenon, krypton, neon, helium. Any mixture of car- rier gases may be used.
  • the carrier gas may also become loaded with water and/or acrylic acid vapors.
  • the gas velocity is preferably adjusted such that the flow in the reaction chamber is directed, for example no convection currents opposed to the general flow direction are present, and is from 0.1 to 2.5 m/s, preferably from 0.3 to 1 .5 m/s, more preferably from 0.5 to 1 .2 m/s, even more preferably from 0.6 to 1 .0 m/s, most preferably from 0.7 to 0.9 m/s.
  • the gas entrance temperature is controlled in such a way that the gas exit temperature, i.e. the temperature with which the gas leaves the reaction chamber, is from 90 to 150°C, preferably from 100 to 140°C, more preferably from 105 to 135°C, even more preferably from 1 10 to 130°C, most preferably from 1 15 to 125°C.
  • the water-absorbent polymer particles can be divided into three categories: water- absorbent polymer particles of Type 1 are particles with one cavity, water-absorbent polymer particles of Type 2 are particles with more than one cavity, and water- absorbent polymer particles of Type 3 are solid particles with no visible cavity.
  • the morphology of the water-absorbent polymer particles can be controlled by the reaction conditions during polymerization.
  • Water-absorbent polymer particles having a high amount of particles with one cavity (Type 1 ) can be prepared by using low gas velocities and high gas exit temperatures.
  • Water-absorbent polymer particles having a high amount of particles with more than one cavity (Type 2) can be prepared by using high gas velocities and low gas exit temperatures.
  • Water-absorbent polymer particles having more than one cavity show an im- proved mechanical stability.
  • the reaction can be carried out under elevated pressure or under reduced pressure; preference is given to a reduced pressure of up to 100 mbar relative to ambient pressure.
  • the reaction off-gas i.e. the gas leaving the reaction chamber, may be, for example, cooled in a heat exchanger. This condenses water and unconverted monomer a).
  • the reaction off-gas can then be reheated at least partly and recycled into the reaction chamber as cycle gas. A portion of the reaction off-gas can be discharged and re- placed by fresh gas, in which case water and unconverted monomers a) present in the reaction off-gas can be removed and recycled.
  • thermally integrated system i.e. a portion of the waste heat in the cooling of the off-gas is used to heat the cycle gas.
  • the reactors can be trace-heated. In this case, the trace heating is adjusted such that the wall temperature is at least 5°C above the internal reactor temperature and condensation on the reactor walls is reliably prevented.
  • the residual monomers in the water-absorbent polymer particles obtained by dropleti- zation polymerization can be removed by a thermal posttreatment in the presence of a gas stream.
  • the residual monomers can be removed better at relatively high tempera- tures and relatively long residence times. What is important here is that the water- absorbent polymer particles are not too dry. In the case of excessively dry particles, the residual monomers decrease only insignificantly. Too high a water content increases the caking tendency of the water-absorbent polymer particles.
  • the gas flowing in shall already comprise steam.
  • the thermal posttreatment can be done in an internal and/or an external fluidized bed.
  • An internal fluidized bed means that the product of the dropletization polymerization is accumulated in a fluidized bed at the bottom of the reaction chamber.
  • the kinetic energy of the polymer particles is greater than the cohesion or adhesion potential between the polymer particles.
  • the fluidized state can be achieved by a fluidized bed.
  • a fluidized bed In this bed, there is upward flow toward the water-absorbing polymer particles, so that the particles form a fluidized bed.
  • the height of the fluidized bed is adjusted by gas rate and gas velocity, i.e. via the pressure drop of the fluidized bed (kinetic energy of the gas).
  • the velocity of the gas stream in the fluidized bed is preferably from 0.5 to 2.5 m/s, more preferably from 0.6 to 1 .5 m/s, most preferably from 0.7 to 1.0 m/s.
  • the thermal posttreatment is done in an external mixer with moving mixing tools, preferably horizontal mixers, such as screw mixers, disk mixers, screw belt mixers and paddle mixers.
  • Suitable mixers are, for example, Becker shovel mixers (Gebr. Lodige Maschinenbau GmbH; Pader- born; Germany), Nara paddle mixers (NARA Machinery Europe; Frechen; Germany), Pflugschar® plowshare mixers (Gebr.
  • the moisture content of the water-absorbent polymer particles during the thermal post- treatment is preferably from 3 to 50% by weight, more preferably from 6 to 30% by weight, most preferably from 8 to 20% by weight.
  • the temperature of the water-absorbent polymer particles during the thermal post- treatment is preferably from 60 to 140°C, more preferably from 70 to 125°C, very particularly from 80 to 1 10°C.
  • the average residence time in the mixer used for the thermal posttreatment is pref- erably from 10 to 120 minutes, more preferably from 15 to 90 minutes, most preferably from 20 to 60 minutes.
  • the steam content of the gas is preferably from 0.01 to 1 kg per kg of dry gas, more preferably from 0.05 to 0.5 kg per kg of dry gas, most preferably from 0.1 to 0.25 kg per kg of dry gas.
  • the thermal posttreatment can be done in a discontinuous external mixer or a continuous external mixer.
  • the amont of gas to be used in the discontinuoius external mixer is preferably from 0.01 to 5 Nm 3 /h, more preferably from 0.05 to 2 Nm 3 /h, most preferably from 0.1 to 0.5 Nm 3 /h, based in each case on kg water-absorbent polymer particles.
  • the amount of gas to be used in the continuous external mixer is preferably from 0.01 to 5 Nm 3 /h, more preferably from 0.05 to 2 Nm 3 /h, most preferably from 0.1 to 0.5 Nm 3 /h, based in each case on kg/h throughput of water-absorbent polymer particles.
  • the other constituents of the gas are preferably nitrogen, carbondioxide, argon, xenon, krypton, neon, helium, air or air/nitrogen mixtures, more preferably nitrogen or air/nitrogen mixtures comprising less than 10% by volume of oxygen. Oxygen may cause discoloration.
  • the polymer particles can be postcrosslinked for further improvement of the properties.
  • Postcrosslinkers are compounds which comprise groups which can form at least two covalent bonds with the carboxylate groups of the polymer particles. Suitable compounds are, for example, polyfunctional amines, polyfunctional amidoamines, polyfunc- tional epoxides, as described in EP 0 083 022 A2, EP 0 543 303 A1 and EP 0 937 736 A2, di- or polyfunctional alcohols as described in DE 33 14 019 A1 , DE 35 23 617 A1 and EP 0 450 922 A2, or ⁇ -hydroxyalkylamides, as described in DE 102 04 938 A1 and US 6,239,230.
  • Polyvinylamine, polyamidoamines and polyvinylalcohole are examples of multifunc- tional polymeric postcrosslinkers.
  • DE 40 20 780 C1 describes cyclic carbonates
  • DE 198 07 502 A1 describes 2-oxazolidone and its derivatives such as 2-hydroxyethyl-2-oxazolidone
  • DE 198 07 992 C1 describes bis- and poly-2-oxazolidinones
  • DE 198 54 573 A1 de-scribes 2-oxotetrahydro-1 ,3-oxazine and its derivatives
  • DE 198 54 574 A1 describes N-acyl-2-oxazolidones
  • DE 102 04 937 A1 describes cyclic ureas
  • DE 103 34 584 A1 describes bicyclic amide acetals
  • EP 1 199 327 A2 describes oxetanes and cyclic ureas
  • WO 2003/31482 A1 describes morpholine-2,3-dione and its derivatives, as suitable postcrosslinkers.
  • Particularly preferred postcrosslinkers are ethylene carbonate, mixtures of propylene glycol and 1 ,4-butanediol, 1 ,3-propandiole, mixtures of 1 ,3-propandiole and 1 ,4-butan- ediole, ethylene glycol diglycidyl ether and reaction products of polyamides and epichlorohydrin.
  • Very particularly preferred postcrosslinkers are 2-hydroxyethyl-2-oxazolidone,
  • postcrosslinkers which comprise additional poly- merizable ethylenically unsaturated groups, as described in DE 37 13 601 A1 .
  • the amount of postcrosslinker is preferably from 0.001 to 2% by weight, more preferably from 0.02 to 1 % by weight, most preferably from 0.05 to 0.2% by weight, based in each case on the polymer.
  • polyvalent cations are applied to the particle surface in addition to the postcrosslinkers before, during or after the post- crosslinking.
  • the polyvalent cations usable in the process according to the invention are, for example, divalent cations such as the cations of zinc, magnesium, calcium, iron and strontium, trivalent cations such as the cations of aluminum, iron, chromium, rare earths and manganese, tetravalent cations such as the cations of titanium and zirconium, and mixtures thereof.
  • Possible counterions are chloride, bromide, sulfate, hydrogensulfate, carbonate, hydrogencarbonate, nitrate, hydroxide, phosphate, hydrogenphosphate, dihydrogenphosphate and carboxylate, such as acetate, glycolate, tartrate, formiate, propionate, and lactate, and mixtures thereof.
  • Aluminum sulfate, aluminum acetate, and aluminum lactate are preferred.
  • polyamines and/or polymeric amines as polyvalent cations.
  • a single metal salt can be used as well as any mixture of the metal salts and/or the polyamines above.
  • the amount of polyvalent cation used is, for example, from 0.001 to 1 .5% by weight, preferably from 0.005 to 1 % by weight, more preferably from 0.02 to 0.8% by weight, based in each case on the polymer.
  • the postcrosslinking is typically performed in such a way that a solution of the post- crosslinker is sprayed onto the hydrogel or the dry polymer particles. After the spraying, the polymer particles coated with the postcrosslinker are dried thermally and cooled, and the postcrosslinking reaction can take place either before or during the drying.
  • the spraying of a solution of the postcrosslinker is preferably performed in mixers with moving mixing tools, such as screw mixers, disk mixers and paddle mixers.
  • Suitable mixers are, for example, horizontal Pflugschar® plowshare mixers (Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany), Vrieco-Nauta Continuous Mixers (Hoso- kawa Micron BV; Doetinchem; the Netherlands), Processall Mixmill Mixers (Processall Incorporated; Cincinnati; US) and Ruberg continuous flow mixers (Gebruder Ruberg GmbH & Co KG, Nieheim, Germany). Ruberg continuous flow mixers and horizontal Pflugschar® plowshare mixers are preferred.
  • the postcrosslinker solution can also be sprayed into a fluidized bed.
  • the solution of the postcrosslinker can also be sprayed into the external mixer or the external fluidized bed.
  • the postcrosslinkers are typically used as an aqueous solution.
  • the addition of nonaqueous solvent can be used to adjust the penetration depth of the postcrosslinker into the polymer particles.
  • the thermal drying is preferably carried out in contact dryers, more preferably paddle dryers, most preferably disk dryers.
  • Suitable driers are, for example, Hosokawa
  • Nara paddle driers and, in the case of using polyfunctional epoxides, Holo-Flite® dryers are preferred. Moreover, it is also possible to use fluidized bed dryers.
  • the drying can be effected in the mixer itself, by heating the jacket or blowing in warm air.
  • a downstream dryer for example a shelf dryer, a rotary tube oven or a heatable screw. It is particularly advantageous to mix and dry in a fluidized bed dryer.
  • Preferred drying temperatures are in the range from 50 to 220°C, preferably from 100 to 180°C, more preferably from 120 to 160°C, most preferably from 130 to 150°C.
  • the preferred residence time at this temperature in the reaction mixer or dryer is preferably at least 10 minutes, more preferably at least 20 minutes, most preferably at least 30 minutes, and typically at most 60 minutes. It is preferable to cool the polymer particles after thermal drying. The cooling is preferably carried out in contact coolers, more preferably paddle coolers, most preferably disk coolers.
  • Suitable coolers are, for example, Hosokawa Bepex® horizontal paddle coolers (Hosokawa Micron GmbH; Leingart; Germany), Hosokawa Bepex® disk coolers (Hosokawa Micron GmbH; Leingart; Germany), Holo-Flite® coolers (Metso Minerals Industries Inc.; Danville; U.S.A.) and Nara paddle coolers (NARA Machinery Europe; Frechen; Germany). Moreover, it is also possible to use fluidized bed coolers.
  • the polymer particles are cooled to temperatures of in the range from 20 to 150°C, preferably from 40 to 120°C, more preferably from 60 to 100°C, most pref- erably from 70 to 90°C. Cooling using warm water is preferred, especially when contact coolers are used.
  • the water-absorbent polymer particles are coated with at least one sulfinic acid, sulfonic acid and/or salts thereof.
  • Preferred sulfinic acids, sulfonic acids and/or salts thereof are compounds of the general formula I and/or of the general formula II
  • M is hydrogen, an ammonium ion, a monovalent metal ion or an equivalent of a divalent metal ion of the groups la, lla, lib, IVa or Vlllb of the Periodic Table of the Elements;
  • R 1 is OH or NR 4 R 5 , where R 4 and R 5 independently of one another are hydrogen or d-Ce-alkyl;
  • R 2 is hydrogen or an alkyl, alkenyl, cycloalkyl or aryl group, it being possible for these groups to have 1 , 2 or 3 substituents from OH, Ci-C6-alkyl, 0-Ci-C6-alkyl, halogen or CF3; and
  • R 3 is COOM, SO3M, COR 4 , CONR 4 R 5 or COOR 4 , where M, R 4 and R 5 are defined above, or, if R 2 is aryl, which may be unsubstituted or substituted as defined above, R 3 is also hydrogen, and the salts thereof.
  • hydroxy sulfinic acids More preferred are hydroxy sulfinic acids, hydroxy sulfonic acids and/or salts thereof.
  • the amount of sulfinic acid, sulfonic acid and/or salts thereof used, based on the water- absorbent polymer particles, is preferably from 0.01 to 5% by weight, more preferably from 0.05 to 2% by weight, most preferably from 0.1 to 1 % by weight.
  • the internal fluidized bed, the external fluidized bed and/or the external mixer used for the thermal posttreatment and/or a separate coater (mixer) can be used for coating of the water-absorbent polymer particles. Further, the cooler and/or a separate coater (mixer) can be used for coating of the postcrosslinked water-absorbent polymer parti- cles.
  • the water-absorbent polymer particles can be further coated and/or optionally moistened.
  • Suitable coatings for controlling the acquisition behavior and improving the permeability are, for example, inorganic inert sub- stances, such as water-insoluble metal salts, organic polymers, cationic polymers and polyvalent metal cations.
  • Suitable coatings for improving the color stability are, for example reducing agents and anti-oxidants.
  • Suitable coatings for dust binding are, for example, polyols.
  • Suitable coatings against the undesired caking tendency of the polymer particles are, for example, fumed silica, such as Aerosil® 200, and surfactants, such as Span® 20.
  • Preferred coatings are aluminium monoacetate, aluminium sulfate, aluminium lactate and Span® 20.
  • Suitable inorganic inert substances are silicates such as montmorillonite, kaolinite and talc, zeolites, activated carbons, polysilicic acids, magnesium carbonate, calcium carbonate, calcium phosphate, barium sulfate, aluminum oxide, titanium dioxide and iron(ll) oxide. Preference is given to using polysilicic acids, which are divided between precipitated silicas and fumed silicas according to their mode of preparation. The two variants are commercially available under the names Silica FK, Sipernat®, Wessalon® (precipitated silicas) and Aerosil® (fumed silicas) respectively.
  • the inorganic inert substances may be used as dispersion in an aqueous or water-miscible dispersant or in substance.
  • the amount of inorganic inert substances used, based on the water-absorbent polymer particles is preferably from 0.05 to 5% by weight, more preferably from 0.1 to 1 .5% by weight, most preferably from 0.3 to 1 % by weight.
  • Suitable organic polymers are polyalkyl methacrylates or thermoplastics such as polyvinyl chloride, waxes based on polyethylene or polypropylene or polyamides or polytetrafluoro-ethylene.
  • Other examples are styrene-isoprene-styrene block-copoly- mers or styrene-butadiene-styrene block-copolymers.
  • Suitable cationic polymers are polyalkylenepolyamines, cationic derivatives of polyacrylamides, polyethyleneimines and polyquaternary amines.
  • Polyquaternary amines are, for example, condensation products of hexamethylenedia- mine, dimethylamine and epichlorohydnn, condensation products of dimethylamine and epichlorohydnn, copolymers of hydroxyethylcellulose and diallyldimethylammonium chloride, copolymers of acrylamide and a-methacryloyloxyethyltrimethylammonium chloride, condensation products of hydroxyethylcellulose, epichlorohydnn and tri- methylamine, homopolymers of diallyldimethylammonium chloride and addition products of epichlorohydnn to amidoamines.
  • polyquaternary amines can be obtained by reacting dimethyl sulfate with polymers such as polyethyleneimines, copolymers of vinylpyrrolidone and dimethylaminoethyl methacrylate or copolymers of ethyl methacrylate and diethylaminoethyl methacrylate.
  • polymers such as polyethyleneimines, copolymers of vinylpyrrolidone and dimethylaminoethyl methacrylate or copolymers of ethyl methacrylate and diethylaminoethyl methacrylate.
  • the polyquaternary amines are available within a wide molecular weight range.
  • the cationic polymers on the particle surface can be generated, either through reagents which can form a network with themselves, such as addition products of epichlorohydnn to polyamidoamines, or through the application of cationic polymers which can react with an added crosslinker, such as polyamines or polyimines in combination with polyepoxides, polyfunctional esters, polyfunctional acids or poly- functional (meth)acrylates. It is possible to use all polyfunctional amines having primary or secondary amino groups, such as polyethyleneimine, polyallylamine and polylysine.
  • the liquid sprayed by the process according to the invention preferably comprises at least one polyamine, for example polyvinylamine or a partially hydrolysed polyvinylformamide.
  • the cationic polymers may be used as a solution in an aqueous or water-miscible solvent, as dispersion in an aqueous or water-miscible dispersant or in substance.
  • the use amount of cationic polymer based on the water-absorbent polymer particles is usually not less than 0.001 % by weight, typically not less than 0.01 % by weight, preferably from 0.1 to 15% by weight, more preferably from 0.5 to 10% by weight, most preferably from 1 to 5% by weight.
  • Suitable polyvalent metal cations are Mg 2+ , Ca 2+ , Al 3+ , Sc 3+ , Ti 4+ , Mn 2+ , Fe 2+/3+ , Co 2+ , Ni 2+ , Cu +/2+ , Zn 2+ , Y 3+ , Zi-4 + , Ag + , La 3+ , Ce 4+ , Hf 4+ and Au +/3+ ; preferred metal cations are Mg 2+ , Ca 2+ , Al 3+ , Ti 4+ , Zr 4 * and La 3+ ; particularly preferred metal cations are Al 3+ , Ti 4+ and Zr 4 *.
  • the metal cations may be used either alone or in a mixture with one another.
  • Suitable metal salts of the metal cations mentioned are all of those which have a sufficient solubility in the solvent to be used.
  • Particularly suitable metal salts have weakly complexing anions, such as chloride, hydroxide, carbonate, nitrate and sulfate.
  • the metal salts are preferably used as a solution or as a stable aqueous colloidal dispersion.
  • the solvents used for the metal salts may be water, alcohols, dimethylfor- mamide, dimethyl sulfoxide and mixtures thereof.
  • water and water/alcohol mixtures such as water/methanol, water/isopropanol, water/1 ,3-propanediole, water/1 ,2-propandiole/1 ,4-butanediole or water/propylene glycol.
  • the amount of polyvalent metal cation used, based on the water-absorbent polymer particles is preferably from 0.05 to 5% by weight, more preferably from 0.1 to 1.5% by weight, most preferably from 0.3 to 1 % by weight.
  • Suitable reducing agents are, for example, sodium sulfite, sodium hydrogensulfite (so- dium bisulfite), sodium dithionite, ascorbic acid, sodium hypophosphite, sodium phosphite, and phosphinic acids and salts thereof. Preference is given, however, to salts of hypophosphorous acid, for example sodium hypophosphite.
  • the reducing agents are typically used in the form of a solution in a suitable solvent, preferably water.
  • the reducing agent may be used as a pure substance or any mixture of the above reducing agents may be used.
  • the amount of reducing agent used, based on the water-absorbent polymer particles is preferably from 0.01 to 5% by weight, more preferably from 0.05 to 2% by weight, most preferably from 0.1 to 1 % by weight.
  • Suitable polyols are polyethylene glycols having a molecular weight of from 400 to 20000 g/mol, polyglycerol, 3- to 100-tuply ethoxylated polyols, such as trimethylolpro- pane, glycerol, sorbitol and neopentyl glycol.
  • Particularly suitable polyols are 7- to 20-tuply ethoxylated glycerol or trimethylolpropane, for example Polyol TP 70®
  • the polyols are preferably used as a solution in aqueous or water-miscible solvents.
  • the use amount of polyol, based on the water-absorbent polymer particles is preferably from 0.005 to 2% by weight, more preferably from 0.01 to 1 % by weight, most preferably from 0.05 to 0.5% by weight.
  • the coating is preferably performed in mixers with moving mixing tools, such as screw mixers, disk mixers, paddle mixers and drum coater.
  • Suitable mixers are, for example, horizontal Pflugschar® plowshare mixers (Gebr. Lodige Maschinenbau GmbH; Pader- born; Germany), Vrieco-Nauta Continuous Mixers (Hosokawa Micron BV; Doetinchem; the Netherlands), Processall Mixmill Mixers (Processall Incorporated; Cincinnati; US) and Ruberg continuous flow mixers (Gebruder Ruberg GmbH & Co KG, Nieheim, Germany). Moreover, it is also possible to use a fluidized bed for mixing.
  • the water-absorbent polymer particles can further selectivily be agglomerated.
  • the agglomeration can take place after the polymerization, the thermal postreatment, the postcrosslinking or the coating.
  • Useful agglomeration assistants include water and water-miscible organic solvents, such as alcohols, tetrahydrofuran and acetone; water-soluble polymers can be used in addition.
  • a solution comprising the agglomeration assistant is sprayed onto the water-absorbing polymeric particles.
  • the spraying with the solution can, for exam- pie, be carried out in mixers having moving mixing implements, such as screw mixers, paddle mixers, disk mixers, plowshare mixers and shovel mixers.
  • Useful mixers include for example Lodige® mixers, Bepex® mixers, Nauta® mixers, Processall® mixers and Schugi® mixers.
  • Vertical mixers are preferred. Fluidized bed apparatuses are particularly preferred.
  • the steps of thermal posttreatment and postcrosslinking are combined in one process step.
  • Such combination allows the use of very reactive postcrosslinkers without having any risk of any residual postcross- linker in the finished product. It also allows the use of low cost equipment and more- over the process can be run at low temperatures which is cost-efficient and avoids discoloration and loss of performance properties of the finished product by thermal degradation.
  • Postcrosslinkers in this particular preferred embodiment are selected from epoxides, aziridines, polyfuntional epoxides, and polyfunctional aziridines.
  • Examples are ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, polyglycerol polyglycidyl ether, glycerol polyglycidyl ether, sorbitol polyglycidyl ether, pentaerythritol polyglycidyl ether.
  • Denacol® Nagase ChemteX Corporation, Osaka, Japan.
  • the mixer may be selected from any of the equipment options cited in the thermal post- treatment section. Ruberg continuous flow mixers, Becker shovel mixers and
  • the postcrosslinking solution is sprayed onto the water-absorbent polymer particles under agitation.
  • the temperature of the water- absorbent polymer particles inside the mixer is at least 60°C, preferably at least 80°C, more preferably at least 90°C, most preferably at least 100°C, and preferably not more than 160°C, more preferably not more than 140°C, most preferably not more than 1 15°C.
  • Thermal posttreatment and postcrosslinking are performed in the presence of a gas stream having a moisture content cited in the thermal posttreatment section. Following the thermal posttreatment/postcrosslinking the water-absorbent polymer particles are dried to the desired moisture level and for this step any dryer cited in the postcrosslinking section may be selected.
  • a heated screw dryer for example a Holo-Flite® dryer (Metso Minerals Industries Inc.; Danville; U.S.A.).
  • a fluidized bed may be used.
  • torus disc dryers or paddle dryers for example a Nara paddle dryer (NARA Machinery Europe; Frechen; Germany), but designed for and operated with low pressure steam or heating liquid as the product temperature during drying does not need to exceed 160°C, preferably does not need to exceed 150°C, more preferably does not need to exceed 140°C, most preferably from 90 to 135°C.
  • polyvalent cations cited in the post- crosslinking section are applied to the particle surface before, during or after addition of the postcrosslinker by using different addition points along the axis of a horizontal mixer.
  • the steps of thermal post-treatment, postcrosslinking, and coating are combined in one process step.
  • Suitable coatings are cationic polymers, surfactants, and inorganic inert substances that are cited in the coating section.
  • the coating agent can be applied to the particle surface before, during or after addition of the postcrosslinker also by using different addition points along the axis of a horizontal mixer.
  • the polyvalent cations and/or the cationic polymers can act as additional scavengers for residual postcrosslinkers.
  • the postcrosslinkers are added prior to the polyvalent cations and/or the cationic polymers to allow the postcrosslinker to react first.
  • the surfactants and/or the inorganic inert substances can be used to avoid sticking or caking during this process step under humid atmospheric conditions.
  • a preferred surfactant is Span® 20.
  • Preferred inorganic inert substances are precipitated silicas and fumed silcas in form of powder or dispersion.
  • the amount of total liquid used for preparing the solutions/dispersions is typically from 0.01 % to 25% by weight, preferably from 0.5% to 12% by weight, more preferably from 2% to 7% by weight, most preferably from 3% to 6% by weight, in respect to the weight amount of water-absorbent polymer particles to be processed.
  • Fig. 1 Process scheme (with external fluidized bed)
  • Fig. 2 Process scheme (without external fluidized bed)
  • Fig. 3 Arrangement of the T_outlet measurement
  • Fig. 4 Arrangement of the dropletizer units
  • Fig. 5 Dropletizer unit (longitudinal cut)
  • Fig. 6 Dropletizer unit (cross sectional view)
  • Fig. 7 Process scheme (external thermal posttreatment and postcrosslinking)
  • Fig. 8 Process scheme (external thermal posttreatment, postcrosslinking and coating)
  • the drying gas is feed via a gas distributor (3) at the top of the spray dryer as shown in Fig. 1 .
  • the drying gas is partly recycled (drying gas loop) via a baghouse filter (9) and £ condenser column (12).
  • the pressure inside the spray dryer is below ambient pres-
  • the spray dryer outlet temperature is preferably measured at three points around the circumference at the end of the cylindrical part as shown in Fig. 3.
  • the single measurements (47) are used to calculate the average cylindrical spray dryer outlet temperature.
  • Conditioned internal fluid- ized bed gas is fed to the internal fluidized bed (27) via line (25).
  • the relative humidity of the internal fluidized bed gas is preferably controlled by adding steam via line (23).
  • the spray dryer offgas is filtered in baghouse filter (9) and sent to a condenser column (12) for quenching/cooling.
  • a recuperation heat exchanger system for preheating the gas after the condenser column (12) can be used.
  • Excess water is pumped out of the condenser column (12) by controlling the (constant) filling level inside the condenser column (12).
  • the water inside the condenser column (12) is cooled by a heat exchanger (13) and pumped counter-current to the gas via quench nozzles (1 1 ) so that the temperature inside the condenser column (12) is preferably from 20 to 100°C, more preferably from 30 to 80°C, most preferably from 40 to 75°C.
  • the water inside the condenser column (12) is set to an alkaline pH by dosing a neutralizing agent to wash out vapors of monomer a).
  • Aqueous solution from the condenser column (12) can be sent back for preparation of the monomer solution.
  • the condenser column offgas is split to the drying gas inlet pipe (1 ) and the conditioned internal fluidized bed gas (25).
  • the gas temperatures are controlled via heat exchangers (20) and (22).
  • the hot drying gas is fed to the cocurrent spray dryer via gas distributor (3).
  • the gas distributor (3) consists preferably of a set of plates providing a pressure drop of preferably 1 to l OOmbar, more preferably 2 to 30mbar, most preferably 4 to 20mbar, depending on the drying gas amount. Turbulences and/or a centrifugal velocity can also be introduced into the drying gas if desired by using gas nozzles or baffle plates.
  • the product is discharged from the internal fluidized bed (27) via rotary valve (28) into external fluidized bed (29).
  • Conditioned external fluidized bed gas is fed to the external fluidized bed (29) via line (40).
  • the relative humidity of the external fluidized bed gas is preferably controlled by adding steam via line (38).
  • the product holdup in the internal fluidized bed (27) can be controlled via weir height or rotational speed of the rotary valve (28).
  • the product is discharged from the external fluidized bed (29) via rotary valve (32) into sieve (33).
  • the product holdup in the external fluidized bed (28) can be controlled via weir height or rotational speed of the rotary valve (32).
  • the sieve (33) is used for sieving off overs/lumps.
  • the monomer solution is preferably prepared by mixing first monomer a) with a neu- tralization agent and secondly with crosslinker b).
  • the temperature during neutralization is controlled to preferably from 5 to 60°C, more preferably from 8 to 40°C, most preferably from 10 to 30°C, by using a heat exchanger and pumping in a loop.
  • a filter unit is preferably used in the loop after the pump.
  • the initiators are metered into the monomer solution upstream of the dropletizer by means of static mixers (41 ) and (42) via lines (43) and (44) as shown in Fig. 1.
  • Each initiator is preferably pumped in a loop and dosed via control valves to each dropletizer unit.
  • a second filter unit is preferably used after the static mixer (42).
  • the mean residence time of the monomer solution admixed with the full initiator package in the piping before the droplet plates (57) is preferably less than 60s, more preferably less than 30s, most preferably less than 10s.
  • For dosing the monomer solution into the top of the spray dryer preferably three dropletizer units are used as shown in Fig. 4.
  • a dropletizer unit consists of an outer pipe (51 ) having an opening for the dropletizer cassette (53) as shown in Fig. 5.
  • the dropletizer cassette (53) is connected with an inner pipe (52).
  • the inner pipe (53) having a PTFE block (54) at the end as sealing can be pushed in and out of the outer pipe (51 ) during operation of the process for maintenance purposes.
  • the temperature of the dropletizer cassette (61 ) is controlled to preferably 5 to 80°C, more preferably 10 to 70°C, most preferably 30 to 60°C, by water in flow channels (59) as shown in Fig. 6.
  • the dropletizer cassette has preferably from 10 to 1500, more preferably from 50 to 1000, most preferably from 100 to 500, bores having a diameter of preferably from 50 to 500 ⁇ , more preferably from 100 to 300 ⁇ , most preferably from 150 to 250 ⁇ .
  • the bores can be of circular, rectangular, triangular or any other shape. Circular bores are preferred.
  • the ratio of bore length to bore diameter is preferably from 0.5 to 10, more preferably from 0.8 to 5, most preferably from 1 to 3.
  • the droplet plate (57) can have a greater thickness than the bore length when using an inlet bore channel.
  • the droplet plate (57) is preferably long and narrow as disclosed in WO 2008/086976 A1 .
  • the dropletizer cassette (61 ) consists of a flow channel (60) having essential no stagnant volume for homogeneous distribution of the premixed monomer and initiator solutions and two droplet plates (57).
  • the droplet plates (57) have an angled configuration with an angle of preferably from 1 to 90°, more preferably from 3 to 45°, most prefera- bly from 5 to 20°.
  • Each droplet plate (57) is preferably made of stainless steel or fluor- ous polymers, such as perfluoroalkoxyethylene, polytetrafluoroethylene, ethylene- chlorotrifluoroethylene copolymers, ethylene-tetrafluoroethylene copolymers and fluori- nated polyethylene.
  • Coated droplet plates as disclosed in WO 2007/031441 A1 can also be used.
  • the choice of material for the droplet plate is not limited except that drop- let formation must work and it is preferable to use materials which do not catalyse the start of polymerization on its surface.
  • the throughput of monomer including initiator solutions per dropletizer unit is preferably from 150 to 2500kg/h, more preferably from 200 to 1000kg/h, most preferably from 300 to 600kg/h.
  • the throughput per bore is preferably from 0.5 to 10kg/h, more preferably from 0.8 to 5kg/h, most preferably from 1 to 3kg/h.
  • Water-absorbent polymer particles having more than one cavity wherein the cavities have an inside diameter from preferably 1 to 50 ⁇ , more preferably 2 to 30 ⁇ , even more preferably 5 to 20 ⁇ , most preferably 7 to 15 ⁇ , while the remaining particles have no visible cavities inside. Cavities with less than 1 ⁇ diameter are considered as not visible cavities.
  • the present invention further provides water-absorbent polymer particles obtainable by the process according to the invention, wherein the polymer particles have a mean sphericity from 0.86 to 0.99, a bulk density of at least 0.58 g/cm 3 , and a average particle diameter from 250 to 550 ⁇ , and a ratio of particles having one cavity to particles having more than one cavity of less than 1 .0, wherein the water-absorbing polymer particles are coated with at least one sulfinic acid, sulfonic acid and/or salts thereof.
  • the water-absorbent polymer particles obtainable by the process according to the invention have a mean sphericity of from 0.86 to 0.99, preferably from 0.87 to 0.97, more preferably from 0.88 to 0.95, most preferably from 0.89 to 0.93.
  • SPHT sphericity
  • U 2 where A is the cross-sectional area and U is the cross-sectional circumference of the polymer particles.
  • the mean sphericity is the volume-average sphericity.
  • the mean sphericity can be determined, for example, with the Camsizer® image analysis system (Retsch Technolgy GmbH; Haan; Germany):
  • the product is introduced through a funnel and conveyed to the falling shaft with a metering channel. While the particles fall past a light wall, they are recorded selectively by a camera. The images recorded are evaluated by the software in accordance with the parameters selected.
  • the parameters designated as sphericity in the program are employed.
  • the parameters reported are the mean volume-weighted sphericities, the volume of the particles being determined via the equivalent diameter xcmin.
  • the equivalent diameter xc m in To de- termine the equivalent diameter xc m in, the longest chord diameter for a total of 32 different spatial directions is measured in each case.
  • the equivalent diameter xc m in is the shortest of these 32 chord diameters.
  • CCD-zoom camera CAM-Z
  • a surface coverage fraction in the detection window of the camera (transmission) of 0.5% is predefined.
  • Water-absorbent polymer particles with relatively low sphericity are obtained by reverse suspension polymerization when the polymer beads are agglomerated during or after the polymerization.
  • the water-absorbent polymer particles prepared by customary solution polymerization (gel polymerization) are ground and classified after drying to obtain irregular polymer particles.
  • the mean sphericity of these polymer particles is between approx. 0.72 and approx. 0.78.
  • the inventive water-absorbent polymer particles have a content of hydrophobic solvent of preferably less than 0.005% by weight, more preferably less than 0.002% by weight and most preferably less than 0.001 % by weight.
  • the content of hydrophobic solvent can be determined by gas chromatography, for example by means of the headspace technique.
  • Water-absorbent polymer particles which have been obtained by reverse suspension polymerization still comprise typically approx. 0.01 % by weight of the hydrophobic solvent used as the reaction medium.
  • the inventive water-absorbent polymer particles have a dispersant content of typically less than 1 % by weight, preferably less than 0.5% by weight, more preferably less than 0.1 % by weight and most preferably less than 0.05% by weight.
  • Water-absorbent polymer particles which have been obtained by reverse suspension polymerization still comprise typically at least 1 % by weight of the dispersant, i.e. ethyl- cellulose, used to stabilize the suspension.
  • the water-absorbent polymer particles obtainable by the process according to the invention have a bulk density preferably at least 0.6 g/cm 3 , more preferably at least 0.65 g/cm 3 , most preferably at least 0.7 g/cm 3 , and typically less than 1 g/cm 3 .
  • the average particle diameter of the inventive water-absorbent particles is preferably from 320 to 500 ⁇ , more preferably from 370 to 470 ⁇ , most preferably from 400 to 450 ⁇ .
  • the particle diameter distribution is preferably less than 0.65, more preferably less than 0.62, more preferably less than 0.6.
  • Type 1 are particles with one cavity having diameters typically from 0.4 to 2.5 mm
  • Type 2 are particles with more than one cavity having di- ameters typically from 0.001 to 0.3 mm
  • Type 3 are solid particles with no visible cavity.
  • the ratio of particles having one cavity (Type 1 ) to particles having more than one cavity (Type 2) is preferably less than 0.7, more preferably less than 0.5, most preferably less than 0.4. Lower ratios correlated with higher bulk densities.
  • the water-absorbent polymer particles obtainable by the process according to the invention have a moisture content of preferably from 0.5 to 15% by weight, more preferably from 3 to 12% by weight, most preferably from 5 to 10% by weight.
  • the residual content of unreacted monomer in the water-absorbent polymer particles is reduced by thermal post-treatment with water vapor at elevated temperature.
  • This thermal post-treatment may take place after the water-absorbent polymer particles have left the reaction chamber.
  • the water absorbent particles may also be optionally stored in a buffer silo prior or after thermal post-treatment.
  • Particularly preferred water-absorbent polymer particles have residual monomer contents of not more than 2000 ppm, typically not more than 1000 ppm, preferably less than 700 ppm, more preferably between 0 to 500 ppm, most preferably between 50 to 400 ppm.
  • the water-absorbent polymer particles obtainable by the process according to the invention have a centrifuge retention capacity (CRC) of typically at least 20 g/g, preferably at least 25 g/g, preferentially at least 28 g/g, more preferably at least 30 g/g, most preferably at least 32 g/g.
  • CRC centrifuge retention capacity
  • the centrifuge retention capacity (CRC) of the water- absorbent polymer particles is typically less than 60 g/g.
  • the water-absorbent polymer particles obtainable by the process according to the invention have an absorbency under a load of 49.2 g/cm 2 (AUHL) of typically at least 15 g/g, preferably at least 16 g/g, preferentially at least 20 g/g, more preferably at least 23 g/g, most preferably at least 25 g/g, and typically not more than 50 g/g.
  • AUHL g/cm 2
  • the water-absorbent polymer particles obtainable by the process according to the invention have a saline flow conductivity (SFC) of typically at least 10x10 "7 cm 3 s/g, usually at least 20x10 " 7 cm 3 s/g, preferably at least 50x10 "7 cm 3 s/g, preferentially at least 80x10 "7 cm 3 s/g, more preferably at least 120x10 "7 cm 3 s/g, most preferably at least 150x10 "7 cm 3 s/g, and typically not more than 300x10 "7 cm 3 s/g.
  • SFC saline flow conductivity
  • the water-absorbent polymer particles obtainable by the process according to the invention have a free swell gel bed permeability (GBP) of typically at least 5 Darcies, usually at least 10 Darcies, preferably at least 20 Darcies, preferentially at least 30 Darcies, more preferably at least 40 Darcies, most preferably at least 50 Darcies, and typically not more than 250 Darcies.
  • GBP free swell gel bed permeability
  • inventive water-absorbent polymer particles have an improved mechanical stability and a small particle size distribution. Also, the inventive water-absorbent polymer particles have an improved processibility, a reduced tendency of segregation, a smaller particle size dependent performance deviation, and a reduced dust formation caused by abrasion.
  • inventive water-absorbent polymer particles can be mixed with other water- absorbent polymer particles prepared by other processes, i.e. solution polymerization.
  • the present invention further provides fluid-absorbent articles.
  • the fluid-absorbent articles comprise of
  • Fluid-absorbent articles are understood to mean, for example, incontinence pads and incontinence briefs for adults or diapers for babies.
  • Suitable fluid-absorbent articles including fluid-absorbent compositions comprising fibrous materials and optionally water-absorbent polymer particles to form fibrous webs or matrices for the substrates, layers, sheets and/or the fluid-absorbent core.
  • Suitable fluid-absorbent articles are composed of several layers whose individual elements must show preferably definite functional parameter such as dryness for the upper liquid-pervious layer, vapor permeability without wetting through for the lower liquid- impervious layer, a flexible, vapor permeable and thin fluid-absorbent core, showing fast absorption rates and being able to retain highest quantities of body fluids, and an acquisition-distribution layer between the upper layer and the core, acting as transport and distribution layer of the discharged body fluids.
  • These individual elements are combined such that the resultant fluid-absorbent article meets overall criteria such as flexibility, water vapor breathability, dryness, wearing comfort and protection on the one side, and concerning liquid retention, rewet and prevention of wet through on the other side.
  • the specific combination of these layers provides a fluid-absorbent article delivering both high protection levels as well as high comfort to the consumer.
  • the water-absorbent polymer particles and the fluid-absorbent articles are tested by means of the test methods described below
  • the measurements should, unless stated otherwise, be carried out at an ambient temperature of 23 ⁇ 2°C and a relative atmospheric humidity of 50 ⁇ 10%.
  • the water- absorbent polymers are mixed thoroughly before the measurement.
  • the saline flow conductivity is, as described in EP 0 640 330 A1 , determined as the gel layer permeability of a swollen gel layer of water-absorbent polymer particles, although the apparatus described on page 19 and in figure 8 in the aforementioned patent application was modified to the effect that the glass frit (40) is no longer used, the plunger (39) consists of the same polymer material as the cylinder (37) and now comprises 21 bores having a diameter of 9.65mm each distributed uniformly over the entire contact surface. The procedure and the evaluation of the measurement remains unchanged from EP 0 640 330 A1. The flow rate is recorded automatically.
  • SFC saline flow conductivity
  • Morphology Particle morphologies of the water-absorbent polymer particles were investigated in the swollen state by microscope analysis. Approximately 100mg of the water-absorbent polymer particles were placed on a glass microscope slide. With a syringe, 0.9 % aqueous NaCI solution was placed on the water-absorbent polymer particles to swell them. Solution was constantly refilled as it was absorbed by the particles. Care has to be taken that the water-absorbent polymer particles do not run dry.
  • Type 1 are particles with one cavity having diameters from 0.4 to 2.5 mm
  • Type 2 are particles with more than one cavity having diameters from 0.001 to 0.3 mm
  • Type 3 are solid particles with no visible cavity.
  • Fig. 9 shows a swollen particle of type 1 with a cavity having a diameter of 0.94 mm and Fig. 10 shows a swollen particle of type 2 with more than 15 cavities having diameters from less than 0.03 to 0.13 mm.
  • the photograph is analyzed and the numbers of each category is recorded. Undefined or agglomerated particles are omitted from further evaluation. The individual results of the three photographs of each sample are averaged. Free Swell Gel Bed Permeability (GBP)
  • the particle size distribution of the water-absorbent polymer particles is determined with the Camziser® image analysis sytem (Retsch Technology GmbH; Haan; Ger- many).
  • the proportions of the particle fractions by volume are plotted in cumulated form and the average particle diameter is determined graphically.
  • the average particle diameter (APD) here is the value of the mesh size which gives rise to a cumulative 50% by weight.
  • the particle diameter distribution (PDD) is calculated as follows:
  • APD wherein xi is the value of the mesh size which gives rise to a cumulative 90% by weight and X2 is the value of the mesh size which gives rise to a cumulative 10% by weight.
  • the mean sphericity is determined with the Camziser® image analysis system (Retsch Technology GmbH; Haan; Germany) using the particle diameter fraction from 100 to 1 ,000 ⁇ .
  • Moisture Content The moisture content of the water-absorbent polymer particles is determined by the EDANA recommended test method No. WSP 230.2-05 "Moisture Content".
  • the centrifuge retention capacity of the water-absorbent polymer particles is determined by the EDANA recommended test method No. WSP 241 .2-05 "Centrifuge Re- tention Capacity", wherein for higher values of the centrifuge retention capacity lager tea bags have to be used.
  • the absorbency under high load of the water-absorbent polymer particles is determined analogously to the EDANA recommended test method No. WSP 242.2-05 "Absorption Under Pressure", except using a weight of 49.2 g/cm 2 instead of a weight of 21 .0 g/cm 2 .
  • the bulk density of the water-absorbent polymer particles is determined by the EDANA recommended test method No. WSP 260.2-05 "Density".
  • rriB is the mass, expressed in grams, of cylinder group after suction
  • ms is the mass, expressed in grams, of swollen gel particles test portion
  • GSI (Absorbency under load of swollen gel)/(Absorbency under load)
  • the EDANA test methods are obtainable, for example, from the EDANA, Avenue Eugene Plasky 157, B-1030 Brussels, Belgium.
  • the process was performed in a cocurrent spray drying plant with an integrated fluidized bed (27) and an external fluidized bed (29) as shown in Fig. 1 .
  • the cylindrical part of the spray dryer (5) had a height of 22m and a diameter of 3.4m.
  • the internal fluidized bed (IFB) had a diameter of 2.0m and a weir height of 0.4m.
  • the external fluidized bed (EFB) had a length of 3.0m, a width of 0.65m and a weir height of 0.5m.
  • the drying gas was feed via a gas distributor (3) at the top of the spray dryer.
  • the dry- ing gas was partly recycled (drying gas loop) via a baghouse filter (9) and a condenser column (12).
  • the drying gas was nitrogen that comprises from 1 % to 5% by volume of residual oxygen. Before start of polymerization the drying gas loop was filled with nitrogen until the residual oxygen was below 5% by volume.
  • the gas velocity of the drying gas in the cylindrical part of the spray dryer (5) was 0.73m/s.
  • the pressure inside the spray dryer was 4mbar below ambient pressure.
  • the spray dryer outlet temperature was measured at three points around the circumference at the end of the cylindrical part as shown in Fig. 3. Three single measurements (47) were used to calculate the average cylindrical spray dryer outlet tempera- ture.
  • the drying gas loop was heated up and the dosage of monomer solution is started up. From this time the spray dryer outlet temperature was controlled to 125°C by adjusting the gas inlet temperature via the heat exchanger (20).
  • the product accumulated in the internal fluidized bed (27) until the weir height was reached.
  • Conditioned internal fluidized bed gas having a temperature of 96°C and a relative humidity of 45% was fed to the internal fluidized bed (27) via line (25).
  • the relative humidity was controlled by adding steam via line (23).
  • the gas velocity of the internal fluidized bed gas in the internal fluidized bed (27) was 0.8m/s.
  • the residence time of the product was 35min.
  • the spray dryer offgas was filtered in baghouse filter (9) and sent to a condenser column (12) for quenching/cooling. Excess water was pumped out of the condenser col- umn (12) by controlling the (constant) filling level inside the condenser column (12). The water inside the condenser column (12) was cooled by a heat exchanger (13) and pumped counter-current to the gas via quench nozzles (1 1 ) so that the temperature inside the condenser column (12) was 45°C. The water inside the condenser column (12) was set to an alkaline pH by dosing sodium hydroxide solution to wash out acrylic acid vapors.
  • the condenser column offgas was split to the drying gas inlet pipe (1 ) and the conditioned internal fluidized bed gas (25).
  • the gas temperatures were controlled via heat exchangers (20) and (22).
  • the hot drying gas was fed to the cocurrent spray dryer via gas distributor (3).
  • the gas distributor (3) consists of a set of plates providing a pressure drop of 5 to 10mbar depending on the drying gas amount.
  • the product was discharged from the internal fluidized bed (27) via rotary valve (28) into external fluidized bed (29).
  • Conditioned external fluidized bed gas having a temperature of 55°C was fed to the external fluidized bed (29) via line (40).
  • the external fluidized bed gas was air.
  • the gas velocity of the external fluidized bed gas in the external fluidized bed (29) was 0.8m/s.
  • the residence time of the product was 1 1 min.
  • the product was discharged from the external fluidized bed (29) via rotary valve (32) into sieve (33).
  • the sieve (33) was used for sieving off overs/lumps having a particle diameter of more than 850 ⁇ .
  • the monomer solution was prepared by mixing first acrylic acid with 3-tuply ethoxylated glycerol triacrylate (internal crosslinker) and secondly with 37.3% by weight sodium acrylate solution.
  • the temperature of the resulting monomer solution was controlled to 10°C by using a heat exchanger and pumping in a loop.
  • a filter unit having a mesh size of 250 ⁇ was used in the loop after the pump.
  • the initiators were metered into the monomer solution upstream of the dropletizer by means of static mixers (41 ) and (42) via lines (43) and (44) as shown in Fig. 1 .
  • a dropletizer unit consisted of an outer pipe (51 ) having an opening for the dropletizer cassette (53) as shown in Fig. 5.
  • the dropletizer cassette (53) was connected with an inner pipe (52).
  • the inner pipe (53) having a PTFE block (54) at the end as sealing can be pushed in and out of the outer pipe (51 ) during operation of the process for maintenance purposes.
  • the temperature of the dropletizer cassette (61 ) was controlled to 25°C by water in flow channels (59) as shown in Fig. 6.
  • the dropletizer cassette had 250 bores having a diameter of 200 ⁇ and a bore separation of 15mm.
  • the dropletizer cassette (61 ) consisted of a flow channel (60) having essential no stagnant volume for homogeneous distribution of the premixed monomer and initiator solutions and two droplet plates (57).
  • the droplet plates (57) had an angled configuration with an angle of 10°.
  • Each droplet plate (57) was made of stainless steel and had a length of 500mm, a width of 25mm, and a thickness of 1 mm.
  • the feed to the spray dryer consisted of 10.25% by weight of acrylic acid 32.75% by weigh of sodium acrylate, 0.074% by weight of 3-tuply ethoxylated glycerol triacrylate (approx.
  • the resulting polymer particles had a bulk density of 70.4g/100ml, an average particle diameter of 424 ⁇ , a particle diameter distribution of 0.57, a mean sphericity of 0.91 , a moisture content of 6.0 wt.-%, a centrifuge retention capacity (CRC) of 33.0 g/g, an absorption under load (AUL) of 28.1 g/g, a saline flow conductivity (SFC) of 12 x 10 " 7 cm 3 s/g, and free swell gel bed permeability (GBP) of 6 Darcies.
  • CRC centrifuge retention capacity
  • AUL absorption under load
  • SFC saline flow conductivity
  • GFP free swell gel bed permeability
  • the ratio of type 1 to type 2 was 0.19.
  • Example 6 800g of the water-absorbent polymer particles obtained in example 5 were fed into a ploughshare mixer (model M5; manufactured by Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany). 16.0g of an aqueous solution (7.5 wt.-% strength) of Bruggolit ® FF6M (mixture consisting of the disodium salt of 2-hydroxy-2-sulfinato acetic acid, disodium salt of 2-hydroxy-2-sulfonato acetic acid, and sodium sulfite; available from L. Bruggemann KG; Heilbronn; Germany) was sprayed onto the polymer particles at room temperature at a rotation speed of the mixer shaft of 450 rpm within 4 minutes. The rotation speed of the mixer shaft was reduced to 60 rpm and mixing was continued for another 5 minutes. The coated polymer particles were discharged from the mixer and sifted at 850 ⁇ to remove any agglomerates.
  • a ploughshare mixer model M5; manufactured by Gebr
  • Example 10 1000g of the water-absorbent polymer particles obtained in example 1 were warmed up in a laboratory drying oven to 50°C and fed into a ploughshare mixer (model M5; manufactured by Gebr. Lodige Maschinenbau GmbH; Paderborn; Germany). 40. Og of an aqueous solution of the disodium salt of 2-hydroxy-2-sulfonato acetic acid (5 wt.-% strength) and 30g of an aqueous solution of aluminum dihydroxy acetate (17 wt.-% strength; stabilized with boric acid) were sprayed onto the polymer particles separately by simultaneously by two spray nozzles at a rotation speed of the mixer shaft of 450 rpm within 4 minutes.
  • the rotation speed of the mixer shaft was reduced to 60 rpm and mixing was continued for another 5 minutes.
  • the coated polymer particles were discharged and dried in a laboratory drying oven at 105°C for 60 minutes.
  • the polymer particles were cooled to room and sifted at 850 ⁇ to remove any agglomerates.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Hematology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Absorbent Articles And Supports Therefor (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Cette invention concerne un procédé de production de particules polymères absorbant l'eau par polymérisation de gouttelettes d'une solution de monomère dans une atmosphère de phase gazeuse chauffée et injection du gaz co-courant dans la chambre de polymérisation, ledit procédé comprenant le revêtement des particules polymères absorbant l'eau avec au moins un acide sulfinique, un acide sulfonique et/ou des sels de ceux-ci.
PCT/EP2011/053498 2010-03-15 2011-03-09 Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttelettes d'une solution de monomère WO2011113728A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012557484A JP2013522403A (ja) 2010-03-15 2011-03-09 モノマー溶液の液滴の重合による水吸収ポリマー粒子の製造方法
RU2012143697/04A RU2012143697A (ru) 2010-03-15 2011-03-09 Способ получения водопоглощающих полимерных частиц путем полимеризации капель раствора мономеров
BR112012023050A BR112012023050A2 (pt) 2010-03-15 2011-03-09 processo para produzir partículas de polímero que absorvem água, partículas de polímero que absorvem água, e, artigo que absorve fluido
CN2011800143902A CN102803302A (zh) 2010-03-15 2011-03-09 通过聚合单体溶液的液滴生产吸水性聚合物颗粒的方法
EP11706846A EP2547703A1 (fr) 2010-03-15 2011-03-09 Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttelettes d'une solution de monomère

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP10156483 2010-03-15
EP10156483.9 2010-03-15
EP10157563.7 2010-03-24
EP10157563 2010-03-24

Publications (1)

Publication Number Publication Date
WO2011113728A1 true WO2011113728A1 (fr) 2011-09-22

Family

ID=43983304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/053498 WO2011113728A1 (fr) 2010-03-15 2011-03-09 Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttelettes d'une solution de monomère

Country Status (6)

Country Link
EP (1) EP2547703A1 (fr)
JP (1) JP2013522403A (fr)
CN (1) CN102803302A (fr)
BR (1) BR112012023050A2 (fr)
RU (1) RU2012143697A (fr)
WO (1) WO2011113728A1 (fr)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012156346A1 (fr) * 2011-05-18 2012-11-22 Basf Se Utilisation de particules polymères absorbant l'eau pour absorber le sang et/ou le liquide menstruel
WO2014032909A1 (fr) * 2012-08-29 2014-03-06 Basf Se Procédé de production de particules polymères absorbant l'eau
WO2014079710A1 (fr) * 2012-11-21 2014-05-30 Basf Se Procédé de production de particules de polymères absorbant l'eau, par polymérisation de gouttelettes d'une solution de monomère
EP2826807A2 (fr) 2012-04-25 2015-01-21 LG Chem, Ltd. Polymère superabsorbant et son procédé de production
US9662246B2 (en) 2012-08-01 2017-05-30 Smith & Nephew Plc Wound dressing and method of treatment
US9877872B2 (en) 2011-07-14 2018-01-30 Smith & Nephew Plc Wound dressing and method of treatment
US10076449B2 (en) 2012-08-01 2018-09-18 Smith & Nephew Plc Wound dressing and method of treatment
US10201644B2 (en) 2005-09-07 2019-02-12 Smith & Nephew, Inc. Self contained wound dressing with micropump
US10507141B2 (en) 2012-05-23 2019-12-17 Smith & Nephew Plc Apparatuses and methods for negative pressure wound therapy
US10610414B2 (en) 2014-06-18 2020-04-07 Smith & Nephew Plc Wound dressing and method of treatment
US11142614B2 (en) 2012-11-21 2021-10-12 Basf Se Process for producing surface-postcrosslinked water-absorbent polymer particles
US11434332B2 (en) 2016-12-13 2022-09-06 Lg Chem, Ltd. Super absorbent polymer and method for producing same
US11559437B2 (en) 2016-10-28 2023-01-24 Smith & Nephew Plc Multi-layered wound dressing and method of manufacture

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703876B2 (en) * 2010-03-15 2014-04-22 Basf Se Process for producing water absorbing polymer particles with improved color stability
EP3039044B1 (fr) * 2013-08-26 2020-02-12 Basf Se Article absorbant les fluides

Citations (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243321A (en) 1962-11-02 1966-03-29 Atlas Copco Ab Method of teflon coating of metals
US3544499A (en) * 1961-05-25 1970-12-01 Dow Chemical Co Sulfonium modified water soluble surface coatings
EP0083022A2 (fr) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Résine absorbant l'eau ayant une capacité d'absorption et un effet de dispersion dans l'eau améliorés et procédé de préparation
DE3314019A1 (de) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Absorbierender gegenstand
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
DE3713601A1 (de) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats
EP0348180A2 (fr) 1988-06-22 1989-12-27 Mitsubishi Petrochemical Company Limited Procédé de préparation d'une résine absorbant de l'eau
WO1990015830A1 (fr) 1989-06-12 1990-12-27 Weyerhaeuser Company Polymere hydrocolloidal
DE4020780C1 (fr) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
EP0450922A2 (fr) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Procédé de préparation d'un agrégat stable à la fluidité
EP0530438A1 (fr) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Polymère superabsorbant à propriétés de pouvoir absorbant perfectionné
EP0543303A1 (fr) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrogels hydrophiles à forte capacité de gonflement
EP0547847A1 (fr) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Procédé de préparation d'une résine absorbant l'eau
EP0559476A1 (fr) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Méthode de préparation d'une résine absorbante
WO1993021237A1 (fr) 1992-04-16 1993-10-28 The Dow Chemical Company Resines hydrophiles reticulees et procede de preparation
US5269980A (en) 1991-08-05 1993-12-14 Northeastern University Production of polymer particles in powder form using an atomization technique
EP0632068A1 (fr) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Procédé de préparation d'une résine absorbante
EP0640330A1 (fr) 1993-06-30 1995-03-01 The Procter & Gamble Company Produits absorbants hygiéniques
US5447982A (en) * 1988-05-13 1995-09-05 Asahi Glass Company Ltd. Process for preparing an aqueous dispersion, aqueous dispersion and aqueous coating composition
WO1996040427A1 (fr) 1995-06-07 1996-12-19 Freeman Clarence S Procede et appareil de polymerisation et polymere
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19807992C1 (de) 1998-02-26 1999-07-15 Clariant Gmbh Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen
EP0937736A2 (fr) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Réticulation d'un agent absorbant l'eau
DE19807502A1 (de) 1998-02-21 1999-09-16 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
EP1199327A2 (fr) 2000-10-20 2002-04-24 Nippon Shokubai Co., Ltd. Agent absorbant l'eau et son procédé de préparation
WO2002032962A2 (fr) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Procedes et compositions des proteines humaines 80090, 52874, 52880, 63497, et 33425 et leurs utilisations
WO2002055469A1 (fr) 2001-01-12 2002-07-18 Degussa Ag Procede continu pour la production et la purification d'acide (meth)acrylique
WO2003031482A1 (fr) 2001-10-05 2003-04-17 Basf Aktiengesellschaft Procede de reticulation d'hydrogels contenant des morpholine-2,3-diones
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
WO2003078378A1 (fr) 2002-03-15 2003-09-25 Stockhausen Gmbh Cristal d'acide (meth)acrylique et procede pour produire et purifier de l'acide (meth)acrylique aqueux
WO2003104300A1 (fr) 2002-06-01 2003-12-18 Basf Aktiengesellschaft Esters (meth)acryliques de trimethylolpropane polyalcoxyle
WO2003104299A1 (fr) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Procede de production d'esters de polyalcools
WO2003104301A1 (fr) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylesters de glycerine polyalcoxy
WO2004035514A1 (fr) 2002-10-10 2004-04-29 Basf Aktiengesellschaft Procede de production d'acide acrylique
DE10314466A1 (de) 2003-03-28 2004-10-14 Basf Ag Verfahren zur Herstellung von kondensierten Harzen in Pulverform
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
DE10340253A1 (de) 2003-08-29 2005-03-24 Basf Ag Sprühpolymerisationsverfahren
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
US20050256757A1 (en) 2004-04-30 2005-11-17 Sierra Alisa K Method of manufacturing and method of marketing gender-specific absorbent articles having liquid-handling properties tailored to each gender
WO2005111088A1 (fr) * 2004-05-14 2005-11-24 Basf Aktiengesellschaft Procede de production de particules polymeres gonflant dans l'eau
DE102005002412A1 (de) 2005-01-18 2006-07-27 Basf Ag Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
WO2007031441A2 (fr) 2005-09-14 2007-03-22 Basf Se Procédé pour faire goutter des liquides
WO2008009580A1 (fr) 2006-07-19 2008-01-24 Basf Se Procédé de production de particules polymères absorbant l'eau post-polymérisées présentant une absorption élevée grâce à la polymérisation de goutellettes d'une solution monomère
WO2008009598A1 (fr) 2006-07-19 2008-01-24 Basf Se Procédé permettant la production de particules polymères absorbant l'eau présentant une perméabilité élevée par polymérisation de goutellettes d'une solution monomère
WO2008009599A1 (fr) 2006-07-19 2008-01-24 Basf Se Procédé permettant la production de particules polymères absorbant l'eau à perméabilité élevée grâce à la polymérisation de goutellettes d'une solution monomère
WO2008009612A1 (fr) 2006-07-19 2008-01-24 Basf Se Procédé de production de particules absorbant l'eau présentant une perméabilité élevée grâce à la polymérisation de goutellettes d'une solution monomère
WO2008040715A2 (fr) 2006-10-05 2008-04-10 Basf Se Procédé pour la préparation de particules de polymère absorbant l'eau grâce à une polymérisation de gouttes d'une solution de monomère
WO2008052971A1 (fr) 2006-10-31 2008-05-08 Basf Se Contrôle d'un procédé de fabrication de particules polymères absorbant l'eau dans une phase gazeuse chauffée
WO2008069639A1 (fr) 2006-12-07 2008-06-12 Friesland Brands B.V. Procédé et appareil de séchage par pulvérisation et poudre produite en utilisant ledit procédé
WO2008086976A1 (fr) 2007-01-16 2008-07-24 Basf Se Procédé de fabrication de particules polymères par polymérisation de gouttes de liquide dans une phase gazeuse
WO2010004020A1 (fr) * 2008-07-11 2010-01-14 Basf Se Procédé de post-réticulation de surface de particules de polymère hydrophiles
WO2010012762A2 (fr) * 2008-07-31 2010-02-04 Basf Se Superabsorbants à stabilité de couleur
WO2011026876A1 (fr) * 2009-09-04 2011-03-10 Basf Se Particules de polymère absorbant l'eau

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1844080B1 (fr) * 2005-01-28 2014-10-29 Basf Se Procede de production de particules polymeres hydroabsorbantes, par polymerisation en gouttes en phase gazeuse
EP2104686B2 (fr) * 2006-12-22 2019-11-27 Basf Se Procédé de préparation de particules polymères mécaniquement stables qui absorbent l'eau

Patent Citations (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3544499A (en) * 1961-05-25 1970-12-01 Dow Chemical Co Sulfonium modified water soluble surface coatings
US3243321A (en) 1962-11-02 1966-03-29 Atlas Copco Ab Method of teflon coating of metals
EP0083022A2 (fr) 1981-12-30 1983-07-06 Seitetsu Kagaku Co., Ltd. Résine absorbant l'eau ayant une capacité d'absorption et un effet de dispersion dans l'eau améliorés et procédé de préparation
DE3314019A1 (de) 1982-04-19 1984-01-12 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Absorbierender gegenstand
DE3523617A1 (de) 1984-07-02 1986-01-23 Nippon Shokubai Kagaku Kogyo Co. Ltd., Osaka Wasserabsorbierendes mittel
DE3713601A1 (de) 1987-04-23 1988-11-10 Stockhausen Chem Fab Gmbh Verfahren zur herstellung eines stark wasserabsorbierenden polymerisats
US5447982A (en) * 1988-05-13 1995-09-05 Asahi Glass Company Ltd. Process for preparing an aqueous dispersion, aqueous dispersion and aqueous coating composition
EP0348180A2 (fr) 1988-06-22 1989-12-27 Mitsubishi Petrochemical Company Limited Procédé de préparation d'une résine absorbant de l'eau
WO1990015830A1 (fr) 1989-06-12 1990-12-27 Weyerhaeuser Company Polymere hydrocolloidal
EP0450922A2 (fr) 1990-04-02 1991-10-09 Nippon Shokubai Kagaku Kogyo Co. Ltd. Procédé de préparation d'un agrégat stable à la fluidité
DE4020780C1 (fr) 1990-06-29 1991-08-29 Chemische Fabrik Stockhausen Gmbh, 4150 Krefeld, De
US5269980A (en) 1991-08-05 1993-12-14 Northeastern University Production of polymer particles in powder form using an atomization technique
EP0530438A1 (fr) 1991-09-03 1993-03-10 Hoechst Celanese Corporation Polymère superabsorbant à propriétés de pouvoir absorbant perfectionné
EP0543303A1 (fr) 1991-11-22 1993-05-26 Hoechst Aktiengesellschaft Hydrogels hydrophiles à forte capacité de gonflement
EP0547847A1 (fr) 1991-12-18 1993-06-23 Nippon Shokubai Co., Ltd. Procédé de préparation d'une résine absorbant l'eau
EP0559476A1 (fr) 1992-03-05 1993-09-08 Nippon Shokubai Co., Ltd. Méthode de préparation d'une résine absorbante
WO1993021237A1 (fr) 1992-04-16 1993-10-28 The Dow Chemical Company Resines hydrophiles reticulees et procede de preparation
EP0632068A1 (fr) 1993-06-18 1995-01-04 Nippon Shokubai Co., Ltd. Procédé de préparation d'une résine absorbante
EP0640330A1 (fr) 1993-06-30 1995-03-01 The Procter & Gamble Company Produits absorbants hygiéniques
WO1996040427A1 (fr) 1995-06-07 1996-12-19 Freeman Clarence S Procede et appareil de polymerisation et polymere
DE19646484A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Flüssigkeitsabsorbierende Polymere, Verfahren zu deren Herstellung und deren Verwendung
DE19543368A1 (de) 1995-11-21 1997-05-22 Stockhausen Chem Fab Gmbh Wasserabsorbierende Polymere mit verbesserten Eigenschaften, Verfahren zu deren Herstellung und deren Verwendung
DE19807502A1 (de) 1998-02-21 1999-09-16 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxazolidinonen
EP0937736A2 (fr) 1998-02-24 1999-08-25 Nippon Shokubai Co., Ltd. Réticulation d'un agent absorbant l'eau
DE19807992C1 (de) 1998-02-26 1999-07-15 Clariant Gmbh Verfahren zur Vernetzung von Hydrogelen mit Bis- und Poly-2-oxazolidinonen
DE19854573A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit 2-Oxo-tetrahydro-1,3-oxazinen
DE19854574A1 (de) 1998-11-26 2000-05-31 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit N-Acyl-2-Oxazolidinonen
US6239230B1 (en) 1999-09-07 2001-05-29 Bask Aktiengesellschaft Surface-treated superabsorbent polymer particles
EP1199327A2 (fr) 2000-10-20 2002-04-24 Nippon Shokubai Co., Ltd. Agent absorbant l'eau et son procédé de préparation
WO2002032962A2 (fr) 2000-10-20 2002-04-25 Millennium Pharmaceuticals, Inc. Procedes et compositions des proteines humaines 80090, 52874, 52880, 63497, et 33425 et leurs utilisations
WO2002055469A1 (fr) 2001-01-12 2002-07-18 Degussa Ag Procede continu pour la production et la purification d'acide (meth)acrylique
WO2003031482A1 (fr) 2001-10-05 2003-04-17 Basf Aktiengesellschaft Procede de reticulation d'hydrogels contenant des morpholine-2,3-diones
DE10204938A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit beta-Hydroxyalkylamiden
DE10204937A1 (de) 2002-02-07 2003-08-21 Stockhausen Chem Fab Gmbh Verfahren zur Nachvernetzung im Bereich der Oberfläche von wasserabsorbierenden Polymeren mit Harnstoffderivaten
WO2003078378A1 (fr) 2002-03-15 2003-09-25 Stockhausen Gmbh Cristal d'acide (meth)acrylique et procede pour produire et purifier de l'acide (meth)acrylique aqueux
WO2003104300A1 (fr) 2002-06-01 2003-12-18 Basf Aktiengesellschaft Esters (meth)acryliques de trimethylolpropane polyalcoxyle
WO2003104299A1 (fr) 2002-06-11 2003-12-18 Basf Aktiengesellschaft Procede de production d'esters de polyalcools
WO2003104301A1 (fr) 2002-06-11 2003-12-18 Basf Aktiengesellschaft (meth)acrylesters de glycerine polyalcoxy
WO2004035514A1 (fr) 2002-10-10 2004-04-29 Basf Aktiengesellschaft Procede de production d'acide acrylique
DE10314466A1 (de) 2003-03-28 2004-10-14 Basf Ag Verfahren zur Herstellung von kondensierten Harzen in Pulverform
DE10331450A1 (de) 2003-07-10 2005-01-27 Basf Ag (Meth)acrylsäureester monoalkoxilierter Polyole und deren Herstellung
DE10331456A1 (de) 2003-07-10 2005-02-24 Basf Ag (Meth)acrylsäureester alkoxilierter ungesättigter Polyolether und deren Herstellung
DE10334584A1 (de) 2003-07-28 2005-02-24 Basf Ag Verfahren zur Nachvernetzung von Hydrogelen mit bicyclischen Amidacetalen
DE10340253A1 (de) 2003-08-29 2005-03-24 Basf Ag Sprühpolymerisationsverfahren
DE10355401A1 (de) 2003-11-25 2005-06-30 Basf Ag (Meth)acrylsäureester ungesättigter Aminoalkohole und deren Herstellung
US20050256757A1 (en) 2004-04-30 2005-11-17 Sierra Alisa K Method of manufacturing and method of marketing gender-specific absorbent articles having liquid-handling properties tailored to each gender
WO2005111088A1 (fr) * 2004-05-14 2005-11-24 Basf Aktiengesellschaft Procede de production de particules polymeres gonflant dans l'eau
DE102004024437A1 (de) 2004-05-14 2005-12-08 Basf Ag Verfahren zur Herstellung wasserquellbarer, polymerer Partikel
DE102005002412A1 (de) 2005-01-18 2006-07-27 Basf Ag Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
WO2007031441A2 (fr) 2005-09-14 2007-03-22 Basf Se Procédé pour faire goutter des liquides
WO2008009580A1 (fr) 2006-07-19 2008-01-24 Basf Se Procédé de production de particules polymères absorbant l'eau post-polymérisées présentant une absorption élevée grâce à la polymérisation de goutellettes d'une solution monomère
WO2008009598A1 (fr) 2006-07-19 2008-01-24 Basf Se Procédé permettant la production de particules polymères absorbant l'eau présentant une perméabilité élevée par polymérisation de goutellettes d'une solution monomère
WO2008009599A1 (fr) 2006-07-19 2008-01-24 Basf Se Procédé permettant la production de particules polymères absorbant l'eau à perméabilité élevée grâce à la polymérisation de goutellettes d'une solution monomère
WO2008009612A1 (fr) 2006-07-19 2008-01-24 Basf Se Procédé de production de particules absorbant l'eau présentant une perméabilité élevée grâce à la polymérisation de goutellettes d'une solution monomère
WO2008040715A2 (fr) 2006-10-05 2008-04-10 Basf Se Procédé pour la préparation de particules de polymère absorbant l'eau grâce à une polymérisation de gouttes d'une solution de monomère
WO2008052971A1 (fr) 2006-10-31 2008-05-08 Basf Se Contrôle d'un procédé de fabrication de particules polymères absorbant l'eau dans une phase gazeuse chauffée
WO2008069639A1 (fr) 2006-12-07 2008-06-12 Friesland Brands B.V. Procédé et appareil de séchage par pulvérisation et poudre produite en utilisant ledit procédé
WO2008086976A1 (fr) 2007-01-16 2008-07-24 Basf Se Procédé de fabrication de particules polymères par polymérisation de gouttes de liquide dans une phase gazeuse
US20090315204A1 (en) * 2007-01-16 2009-12-24 Basf Se A German Corporation Method for Producing Polymer Particles by the Polymerization of Fluid Drops in a Gas Phase
WO2010004020A1 (fr) * 2008-07-11 2010-01-14 Basf Se Procédé de post-réticulation de surface de particules de polymère hydrophiles
WO2010012762A2 (fr) * 2008-07-31 2010-02-04 Basf Se Superabsorbants à stabilité de couleur
WO2011026876A1 (fr) * 2009-09-04 2011-03-10 Basf Se Particules de polymère absorbant l'eau

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Ullmann's Encyclopedia of Industrial Chemistry", 2000
F.L. BUCHHOLZ; A.T. GRAHAM: "Modern Superabsorbent Polymer Technology", 1998, WILEY-VCH, pages: 71 - 103

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11737925B2 (en) 2005-09-07 2023-08-29 Smith & Nephew, Inc. Self contained wound dressing with micropump
US11278658B2 (en) 2005-09-07 2022-03-22 Smith & Nephew, Inc. Self contained wound dressing with micropump
US10201644B2 (en) 2005-09-07 2019-02-12 Smith & Nephew, Inc. Self contained wound dressing with micropump
US10231874B2 (en) 2010-11-08 2019-03-19 Smith & Nephew Plc Wound dressing and method of treatment
WO2012156346A1 (fr) * 2011-05-18 2012-11-22 Basf Se Utilisation de particules polymères absorbant l'eau pour absorber le sang et/ou le liquide menstruel
US9877872B2 (en) 2011-07-14 2018-01-30 Smith & Nephew Plc Wound dressing and method of treatment
US10130519B2 (en) 2011-07-14 2018-11-20 Smith & Nephew Plc Wound dressing and method of treatment
US11510819B2 (en) 2011-07-14 2022-11-29 Smith & Nephew Plc Wound dressing and method of treatment
USRE48535E1 (en) 2011-07-14 2021-04-27 Smith & Nephew Plc Wound dressing and method of treatment
US10039673B2 (en) 2011-07-14 2018-08-07 Smith & Nephew Plc Wound dressing and method of treatment
US9517446B2 (en) 2012-04-25 2016-12-13 Lg Chem, Ltd. Super absorbent polymer and a preparation method thereof
EP2826807A2 (fr) 2012-04-25 2015-01-21 LG Chem, Ltd. Polymère superabsorbant et son procédé de production
US10507141B2 (en) 2012-05-23 2019-12-17 Smith & Nephew Plc Apparatuses and methods for negative pressure wound therapy
US11590029B2 (en) 2012-05-23 2023-02-28 Smith & Nephew Plc Apparatuses and methods for negative pressure wound therapy
US9662246B2 (en) 2012-08-01 2017-05-30 Smith & Nephew Plc Wound dressing and method of treatment
US10076449B2 (en) 2012-08-01 2018-09-18 Smith & Nephew Plc Wound dressing and method of treatment
US11864981B2 (en) 2012-08-01 2024-01-09 Smith & Nephew Plc Wound dressing and method of treatment
US10667955B2 (en) 2012-08-01 2020-06-02 Smith & Nephew Plc Wound dressing and method of treatment
USD914887S1 (en) 2012-08-01 2021-03-30 Smith & Nephew Plc Wound dressing
US11801338B2 (en) 2012-08-01 2023-10-31 Smith & Nephew Plc Wound dressing and method of treatment
US8883961B2 (en) 2012-08-29 2014-11-11 Basf Se Process for producing water-absorbing polymer particles
WO2014032909A1 (fr) * 2012-08-29 2014-03-06 Basf Se Procédé de production de particules polymères absorbant l'eau
US9790304B2 (en) 2012-11-21 2017-10-17 Basf Se Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
CN105073792B (zh) * 2012-11-21 2017-08-11 巴斯夫欧洲公司 一种通过聚合单体溶液的液滴制备吸水性聚合物颗粒的方法
US11142614B2 (en) 2012-11-21 2021-10-12 Basf Se Process for producing surface-postcrosslinked water-absorbent polymer particles
CN105073792A (zh) * 2012-11-21 2015-11-18 巴斯夫欧洲公司 一种通过聚合单体溶液的液滴制备吸水性聚合物颗粒的方法
WO2014079710A1 (fr) * 2012-11-21 2014-05-30 Basf Se Procédé de production de particules de polymères absorbant l'eau, par polymérisation de gouttelettes d'une solution de monomère
US11596552B2 (en) 2014-06-18 2023-03-07 Smith & Nephew Plc Wound dressing and method of treatment
US10610414B2 (en) 2014-06-18 2020-04-07 Smith & Nephew Plc Wound dressing and method of treatment
US11559437B2 (en) 2016-10-28 2023-01-24 Smith & Nephew Plc Multi-layered wound dressing and method of manufacture
US11434332B2 (en) 2016-12-13 2022-09-06 Lg Chem, Ltd. Super absorbent polymer and method for producing same

Also Published As

Publication number Publication date
CN102803302A (zh) 2012-11-28
BR112012023050A2 (pt) 2016-05-17
JP2013522403A (ja) 2013-06-13
RU2012143697A (ru) 2014-04-20
EP2547703A1 (fr) 2013-01-23

Similar Documents

Publication Publication Date Title
US8450428B2 (en) Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US11142614B2 (en) Process for producing surface-postcrosslinked water-absorbent polymer particles
US8852742B2 (en) Water absorbent polymer particles formed by polymerizing droplets of a monomer solution and coated with sulfinic acid, sulfonic acid, and/or salts thereof
US9944739B2 (en) Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
EP2547703A1 (fr) Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttelettes d'une solution de monomère
US9914112B2 (en) Process for producing water-absorbent polymer particles by polymerizing droplets of a monomer solution
US9029485B2 (en) Method for producing water-absorbing polymer particles by polymerizing droplets of a monomer solution
EP3262089B1 (fr) Procédé de production de particules de polymère absorbant l'eau post-réticulées en surface par la polymérisation de gouttelettes d'une solution de monomères
US8299207B2 (en) Process for removing residual monomers from water-absorbing polymer particles
US20180043052A1 (en) A Process for Producing Surface-Postcrosslinked Water-Absorbent Polymer Particles by Polymerizing Droplets of a Monomer Solution
WO2013045163A1 (fr) Procédé de production de particules polymères absorbant l'eau, par polymérisation de gouttelettes de solution monomère

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180014390.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11706846

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012557484

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011706846

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012143697

Country of ref document: RU

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012023050

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112012023050

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120912