WO2005111088A1 - Procede de production de particules polymeres gonflant dans l'eau - Google Patents

Procede de production de particules polymeres gonflant dans l'eau Download PDF

Info

Publication number
WO2005111088A1
WO2005111088A1 PCT/EP2005/005156 EP2005005156W WO2005111088A1 WO 2005111088 A1 WO2005111088 A1 WO 2005111088A1 EP 2005005156 W EP2005005156 W EP 2005005156W WO 2005111088 A1 WO2005111088 A1 WO 2005111088A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
initiator
acid
particles
monomer
Prior art date
Application number
PCT/EP2005/005156
Other languages
German (de)
English (en)
Inventor
Klaus-Dieter Hungenberg
Dennis LÖSCH
Volker Seidl
Marco KRÜGER
Hans-Ulrich Moritz
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Publication of WO2005111088A1 publication Critical patent/WO2005111088A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/10Aqueous solvent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/10Making granules by moulding the material, i.e. treating it in the molten state
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof

Definitions

  • the present invention relates to a method for producing water-swellable, polymeric particles by spray polymerization, the water-swellable, polymeric particles and their use for the absorption of liquids.
  • Water-swellable polymers so-called superabsorbents (SAP) are in particular polymers of (co) polymerized hydrophilic monomers, graft (co) polymers of one or more hydrophilic monomers on a suitable graft base, crosslinked cellulose or starch ethers, crosslinked carboxy methyl cellulose, partially cross-linked polyalkylene oxide or natural products swellable in aqueous liquids, such as guar derivatives.
  • SAP superabsorbents
  • Such polymers are used as products which absorb aqueous solutions for the production of diapers, tampons, sanitary napkins and other hygiene articles, but also as water-retaining agents in agricultural horticulture or for thickening all types of waste, in particular medical waste.
  • water-swellable polymers are usually surface or gel post-crosslinked.
  • This postcrosslinking is known per se to the person skilled in the art and is preferably carried out in the aqueous gel phase or as surface postcrosslinking of the ground and sieved polymer particles.
  • Waste in particular medical waste and any type of waste that is contaminated with toxic, contagious or hazardous to humans and the environment, must be handled and transported safely.
  • a superabsorbent can immobilize most dangerous substances by absorbing the liquid waste.
  • Medical waste especially hospital waste from operating rooms, mainly consists of blood, body fluids and physiological saline, which is used as a flushing solution.
  • the rapid solidification allows faster and safer handling of this waste, for example during transport and storage.
  • Patent application WO-A-95/17455 describes a porous superabsorbent that can float on water even when swollen. The process requires large amounts of expensive azo compounds as blowing agents.
  • the object of the present invention was to provide an improved process for the production of floatable, water-swellable polymers.
  • Patent application EP-A-0348 180 describes a process for the spray polymerization of water-absorbent resins. For this purpose, an aqueous solution of partially neutralized acrylic acid, crosslinker and initiator is sprayed into a gas stream and polymerized. The application teaches that the relative humidity in the gas stream must be at least 30%. At lower relative humidities, the water contained in the drops evaporates too quickly and in the drops separates monomer that can no longer polymerize, the monomer conversion remains incomplete.
  • Aerosols are generated from polymer solutions, solutions of prepolymerized monomers or monomer solutions and these aerosol particles are dried or polymerized at temperatures above 150 ° C.
  • the spray polymerization is carried out in such a way that monomer solutions are sprayed into a heated, essentially static atmosphere.
  • the particles obtained in the application examples had a diameter of 50 to 100 ⁇ m.
  • the water content in the polymer balls produced is significantly reduced, but the polymer particles have a rough surface.
  • smooth polymer balls are obtained.
  • the 10-hour half-life temperature of the at least one initiator c) being at most 55 ° C., preferably at most 50 ° C., particularly preferably at most 45 ° C., water-swellable polymer particles are obtained.
  • the 10-hour half-life temperature is the temperature at which half of the initiator has decomposed thermally after 10 hours.
  • the concentration of the at least one monomer a) in the monomer solution is at least 50% of the saturation concentration.
  • the reaction temperature is usually between 110 to 300 ° C, preferably 110 to 180 ° C, particularly preferably 120 to 160 ° C.
  • reaction temperature and initiator are selected such that the half-life of the initiator is, for example, less than 5 seconds, preferably less than 1 second, preferably less than 0.2 seconds.
  • the inert carrier gas is preferably nitrogen.
  • the oxygen content of the inert carrier gas is advantageously below 5% by volume, preferably below 1% by volume, particularly preferably below 0.1% by volume.
  • the inert carrier gas is preferably passed in cocurrent to the free-falling drops of the monomer solution through the reaction space.
  • Ethylenically unsaturated monomers a) bearing acid groups are, for example, ethylenically unsaturated C 3 -C 6 carboxylic acids. These compounds are, for example, acrylic acid, methacrylic acid, ethacrylic acid, ⁇ -chloroacrylic acid, crotonic acid, maleic acid, maleic anhydride, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, aconitic acid and fumaric acid and the alkali metal or ammonium salts of these acids.
  • radically polymerizable monomers a) are acrylamidopropanesulfonic acid, vinylphosphonic acid and / or alkali metal or ammonium salts of vinylsulfonic acid.
  • the other acids can also be used in the polymerization either in non-neutralized form or in partially or up to 100% neutralized form.
  • monoethylenically unsaturated sulfonic or phosphonic acids are also suitable, for example allylsulfonic acid, sulfoethyl acrylate, sulfoethyl methacrylate, sulfopropyl acrylate, sulfopropyl methacrylate, 2-hydroxy-3-acryloxypropylsulfonic acid, 2-hydroxy-3-methacryoxypropylsulfonic acid, allylololsulfonic acid, allylololsulfonic acid, allylololsulfonic acid, allylolsol acid and 2-acrylamido-2-methylpropanesulfonic acid.
  • the monomers a) can be used alone or as a mixture with one another.
  • Preferred monomers a) are acrylic acid, methacrylic acid and the alkali metal or ammonium salts of these acids or mixtures of these acids, for example mixtures of acrylic acid and methacrylic acid.
  • Preferred monomers a) are also mixtures of the abovementioned acids with their alkali metal or ammonium salts.
  • mixtures of acrylic acid and its alkali metal salts can be obtained by neutralizing acrylic acid with alkali metal hydroxides and / or alkali metal carbonates.
  • the degree of neutralization is, for example, at least 50%, preferably 65 to 100%, particularly preferably 70 to 80%.
  • a degree of neutralization of 50% means that sodium acrylate and acrylic acid are in a molar ratio of 50:50
  • a degree of neutralization of 75% means that sodium acrylate and acrylic acid are in a molar ratio of 75:25.
  • Very particularly preferred monomers a) are acrylic acid, methacrylic acid, the sodium salts of these acids and mixtures thereof, for example mixtures of acrylic acid and sodium acrylate.
  • the monomers a) can be polymerized in the presence of a crosslinker b) or a combination of different crosslinkers.
  • the polymerization in the presence of at least one crosslinker is preferred.
  • An aqueous monomer solution is usually used.
  • the concentration of the monomers a) is chosen to be as high as possible.
  • the concentration of the monomers a) is typically at least 50%, preferably at least 60%, particularly preferably at least 80%, of the saturation concentration.
  • the person skilled in the art can calculate the saturation concentration for a monomer mixture to be used on the basis of the solubility products.
  • Suitable crosslinkers b) are, for example, (meth) acrylic esters of polyhydric alcohols which can be alkoxylated with up to 100, usually up to 50, ethylene oxide and / or propylene oxide units.
  • Suitable polyhydric alcohols are, in particular, C 2 -C 10 -alkane polyols having 2 to 6 hydroxyl groups, such as ethylene glycol, glycerol, trimethylolpropane, pentaerythritol or sorbitol.
  • Preferred crosslinkers are polyethylene glycol diacrylate and polyethylene glycol dimethacrylates, which are each derived from polyethylene glycols (which can be regarded as ethoxylated ethylene glycol) with a molecular weight of 200 to 2000.
  • Further crosslinkers b) which can be used are methylene bisacrylamide, trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ethylene glycol diacrylate, propylene glycol diacrylate, butanediol diacrylate, hexanediol diacrylate, hexanediol dimethacrylate or diacrylates and dimethacrylates of block copolymers of ethylene oxide and propylene oxide.
  • crosslinkers b) are diallyl carbonate, allyl carbonates or allyl ethers of polyhydric alcohols, which can be alkoxylated with up to 100, usually up to 50, ethylene oxide and / or propylene oxide units, and allyl esters of polyhydric carboxylic acids.
  • A stands for the remainder of a polyhydric alcohol, which can be alkoxylated with 0 to 100, usually 0 to 50, ethylene oxide and / or propylene oxide units; and n stands for the valence of the alcohol, for example an integer from 2 to 10, preferably 2 to 5.
  • a particularly preferred example of such a compound is ethylene glycol di (allyl carbonate).
  • polyethylene glycol di (allyl carbonates) which are derived from polyethylene glycols with a molecular weight of 200 to 2000.
  • allyl ethers polyethylene glycol diallyl ethers which are derived from polyethylene glycols with a molecular weight of 200 to 2000; Pentraerythritol triallyl ether or trimethylol propane diallyl ether. Reaction products of ethylene glycol diglycidyl ether or polyethylene glycol glycidyl ether with 2 moles of allyl alcohol and / or pentaerythritol triallyl ether are also suitable.
  • a suitable allyl ester of a polyvalent carboxylic acid is, for example, dialyl phthalate.
  • the monomers are generally copolymerized with one another in aqueous solution in the presence of polymerization initiators c).
  • polymerization initiators c All of the compounds which break down into free radicals under the polymerization conditions can be used as polymerization initiators c), for example peroxides, hydroperoxides, hydrogen peroxide, persulfates, azo compounds and the so-called redox catalysts.
  • the use of water-soluble initiators is preferred.
  • mixtures of different polymerization initiators for example mixtures of hydrogen peroxide and sodium or potassium peroxodisulfate. Mixtures of hydrogen peroxide and sodium peroxodisulfate can be used in any ratio.
  • Suitable organic peroxides are, for example, acetylacetone peroxide, methyl ethyl ketone peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, tert-amyl perpivalate, tert-butyl perpivalate, tert-butyl perneohexanoate, tert-butyl perisobutyrate, tert-butyl per-2-ethylhexanoate, tert-butyl perisonone, tert-butyl perisonone -Butyl perbenzoate, di- (2-ethyl!
  • Preferred polymerization initiators c) are azo starters, for example 2,2'-azobis-isobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile) and 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile), in particular water-soluble azo starters, for example 2,2'-azobis ⁇ 2- [1- (2-hydroxyethyl) -2-imidazolin-2-yl] propane ⁇ dihydrochloride, 2,2'-azobis- (2-amidinopropane) dihydrochloride, 2, 2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride and 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] dihydrochloride.
  • azo starters for example 2,2'-azobis-isobutyronitrile, 2,2'-azobis (2,4-dimethylvaleronitrile) and
  • 2,2'-Azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride and 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane] are very particularly preferred. dihydrochloride.
  • the polymerization initiators c) mentioned are used in customary amounts, for example in amounts of 0.01 to 5, preferably 0.05 to 2.0% by weight, based on the monomers to be polymerized.
  • Redox catalysts are also suitable as initiators c).
  • the redox catalysts contain at least one of the above-mentioned per compounds as the oxidizing component and as reducing component, for example, ascorbic acid, glucose, sorbose, ammonium or alkali metal hydrogen sulfite, sulfite, thiosulfate, hyposulfite, pyrosulfite or sulfide, metal salts such as iron (II) ions or silver ions or sodium hydroxymethyl sulfoxylate.
  • Ascorbic acid or sodium pyrosulfite is preferably used as the reducing component of the redox catalyst.
  • Relative to the employed in the polymerization amount of monomers 10 "5 uses, for example, 1 x to 1 mol% of the reducing component of the redox catalyst.
  • the oxidizing component of the redox catalyst it is also possible to use one or more water-soluble azo initiators.
  • Table 1 Azostarter according to the invention
  • the 10-hour half-life temperatures are usually determined in a suitable solvent.
  • Water is a suitable solvent for water-soluble initiators and toluene is a suitable solvent for water-insoluble initiators.
  • the monomers used are preferably stabilized with a commercially available polymerization inhibitor, particularly preferably with a polymenation inhibitor which only works together with oxygen, for example hydroquinomonomethyl ether.
  • polymerization inhibitors which are used as storage stabilizers in the respective monomers for reasons of product safety.
  • storage stabilizers are hydroquinone, hydroquinone monomethyl ether, 2,5-di-tert-butylhydroquinone and 2,6-di-tert-butyl-4-methylphenol.
  • Ethylene-unsaturated monomers copolymerizable with the monomers a) are, for example, acrylamide, methacrylamide, crotonic acid amide, dimethylaminoethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminopropylacrylate, diethylaminopropyl acrylate, dimethylaminobutyl acrylate, dimethylaminoethyl methacrylate methacrylate, diethyl methacrylate
  • Polyvinyl alcohol, polyvinyl pyrrolidone, starch, starch derivatives, polyglycols or polyacrylic acids, preferably polyvinyl alcohol and starch can be used as water-soluble polymers e).
  • the water-soluble polymers e) can also serve as a graft base for the monomers a).
  • the reaction is preferably carried out in apparatus which are also suitable for spray drying.
  • apparatuses which are described, for example, in K. Masters, Spray Drying Handbook, 5th Edition, Longman, 1991, pages 23 to 66.
  • the reaction is preferably carried out in apparatuses in which the monomer solution can fall freely in the form of monodisperse drops. Devices are suitable for this purpose, as described, for example, in US Pat. No. 5,269,980, column 3, lines 25 to 32.
  • the droplet diameter which arises during spraying is expediently from 20 to 1400 ⁇ m, preferably from 50 to 600 ⁇ m.
  • the droplet diameter is approximately 1.9 times the orifice diameter.
  • the reaction can be carried out under positive or negative pressure.
  • An inert gas preferably nitrogen flows through the reactor.
  • the direct current mode of operation is preferred, that is to say the inert gas flows through the reactor from top to bottom.
  • the water vapor content of the inert gas is generally up to 1% by volume, preferably up to 0.5% by volume.
  • the gas velocity is preferably set such that the flow in the reactor is directed, for example there are no convection vortices opposite to the general flow direction, and is for example 0.02 to 1.5 m / s, preferably 0.05 to 0.4 m / s ,
  • the inert gas is advantageously preheated in front of the reactor to the reaction temperature of 70 to 300 ° C., preferably 90 to 180 ° C., particularly preferably 110 to 160 ° C.
  • the reaction exhaust gas can, for example, be cooled in a heat exchanger. Water and unreacted acrylic acid condense. The exhaust gas can then be at least partially reheated and returned to the reactor as circulating gas. The exhaust gas is preferably cooled such that the cooled exhaust gas has the desired proportion of water vapor for the reaction. Part of the gases can be discharged and replaced with fresh inert gas, whereby unreacted acrylic acid contained in the exhaust gas can be separated off and recycled.
  • a heat composite is particularly preferred, that is to say that part of the waste heat when the exhaust gas is cooled is used to warm up the circular gas.
  • the reactors can be heated.
  • the trace heating is set so that the wall temperature is at least 5 ° C above the inside temperature of the reactor and the condensation on the reactor walls is reliably avoided.
  • the reaction product can usually be removed from the reactor, preferably at the bottom via a screw conveyor, and optionally dried to the desired residual moisture and the desired residual monomer content.
  • the process of the invention produces water-swellable, polymeric particles with a shell structure, the ratio of shell thickness and particle diameter being from 0.05 to 0.5, preferably from 0.2 to 0.45, preferably from 0.25 to 0.35 , is obtained, the particles having at least one cavity.
  • the particle diameter is in the range from 50 to 2000 ⁇ m, preferably 150 to 850 ⁇ m.
  • the water-swellable, polymeric particles which can be produced by the process according to the invention are suitable for absorbing blood and / or body fluids, for thickening aqueous solutions and / or suspensions, in particular for thickening medical waste, and as an absorbent in hygiene articles.
  • the initiators disintegrate rapidly under reaction conditions. This quickly creates a stable outer shell that can no longer be torn apart by evaporating water inside, but can only be inflated.
  • the particle diameter of the water-swellable, polymeric particles obtainable by the process according to the invention is between 1.4 and 3 times the drop diameter. After the reaction and drying have ended, a cavity (particle type A) usually remains in the particles.
  • the hollow spheres are still soft at the end of the fall and are deformed. This creates particles that resemble folded spherical shells (particle type B). Irregular, fibrous structures (type C particles) are generally not desired to be obtained and can be avoided according to the teaching according to the invention.
  • the particles produced by the process according to the invention have a narrow particle size distribution and thus a low proportion of fine dust. Due to their hollow spherical structure, the particles have a low density and are able to float on the liquids to be absorbed and thus cover them.
  • aqueous monomer solution consisting of partially neutralized or neutralized acrylic acid and methylenebisdiacrylamide (crosslinking agent) was mixed with a 1.0% by weight aqueous solution of the initiator or initiator mixture immediately before the reactor.
  • the amount of crosslinker was 0.3% by weight, based on the monomer used.
  • the amount of initiator was 0.11 mol%, based on the monomer solution used.
  • a vertically suspended stainless steel tube with a length of 2,600 mm and a diameter of 164 mm was used as the reactor.
  • the temperature could be set using three independent heating circuits.
  • a glass tube with a diameter of 102 mm was inserted into the stainless steel tube from above.
  • a modified SBG-2000 oscillating screen aerosol generator from Palas was placed on the glass tube
  • the swing aperture had a diameter of 75 microns.
  • 0.4 l / min carrier gas and 1.0 ml / min monomer solution were metered into the reactor via the oscillating-aperture aerosol generator.
  • 10 l / min of carrier gas preheated to the reaction temperature were metered into the space between the stainless steel tube and the glass tube.
  • the gap was filled with Raschig rings and open to the bottom for the nitrogen. The Raschig rings served as flow straighteners.
  • Initiator A 2,2'-azobis- (2-amidinopropane) dihydrochloride
  • Initiator B 2,2'-azobis [2- (2-imidazolin-2-yl) propane] dihydrochloride
  • Initiator C 2,2'-azobis [2- (5-methyl-2-imidazolin-2-yl) propane ] dihydrochloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Procédé de production de particules polymères gonflant dans l'eau par polymérisation par pulvérisation, l'initiateur utilisé possédant une température maximale de 55 °C après une décomposition thermique de la moitié de l'initiateur au bout de 10 heures. La présente invention concerne également les particules polymères gonflant dans l'eau, ainsi que leur utilisation pour l'absorption de liquides, en particulier pour épaissir des déchets aqueux.
PCT/EP2005/005156 2004-05-14 2005-05-12 Procede de production de particules polymeres gonflant dans l'eau WO2005111088A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004024437.5 2004-05-14
DE102004024437A DE102004024437A1 (de) 2004-05-14 2004-05-14 Verfahren zur Herstellung wasserquellbarer, polymerer Partikel

Publications (1)

Publication Number Publication Date
WO2005111088A1 true WO2005111088A1 (fr) 2005-11-24

Family

ID=34967953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/005156 WO2005111088A1 (fr) 2004-05-14 2005-05-12 Procede de production de particules polymeres gonflant dans l'eau

Country Status (2)

Country Link
DE (1) DE102004024437A1 (fr)
WO (1) WO2005111088A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006079631A1 (fr) * 2005-01-28 2006-08-03 Basf Aktiengesellschaft Procede de production de particules polymeres hydroabsorbantes, par polymerisation en gouttes en phase gazeuse
WO2006114404A1 (fr) * 2005-04-25 2006-11-02 Basf Aktiengesellschaft Procede de fabrication de polymeres par precipitation par l'intermediaire de polymerisation par pulverisation
WO2008040715A2 (fr) * 2006-10-05 2008-04-10 Basf Se Procédé pour la préparation de particules de polymère absorbant l'eau grâce à une polymérisation de gouttes d'une solution de monomère
CN101250244B (zh) * 2008-04-03 2010-08-04 金小刚 一种聚合物空心微球及其制备方法
WO2011113728A1 (fr) * 2010-03-15 2011-09-22 Basf Se Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttelettes d'une solution de monomère
EP2460838A1 (fr) 2010-12-03 2012-06-06 Basf Se Procédé de polymérisation de lactame
US8598405B2 (en) * 2004-05-12 2013-12-03 Nippon Shokubai Co., Ltd. Waste solution solidifying agent, process for preparing the same and use of the same
US9139692B2 (en) 2010-12-03 2015-09-22 Basf Se Process for polymerizing lactam

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005002412A1 (de) 2005-01-18 2006-07-27 Basf Ag Verfahren zur Herstellung von Polymeren durch Sprühpolymerisation
WO2007093531A1 (fr) * 2006-02-17 2007-08-23 Basf Se Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttes d'une solution de monomère
MY150001A (en) 2006-07-19 2013-11-15 Basf Se Method for producing post-cured water-absorbent polymer particles with a higher absorption by polymerising droplets of a monomer solution
EP2046402B2 (fr) 2006-07-19 2019-09-11 Basf Se Procédé de fabrication de particules polymères hydroabsorbantes par polymérisation de gouttes d'une solution monomère
US8748000B2 (en) 2006-07-19 2014-06-10 Basf Se Method for producing water-absorbent polymer particles with a higher permeability by polymerizing droplets of a monomer solution
WO2008009598A1 (fr) 2006-07-19 2008-01-24 Basf Se Procédé permettant la production de particules polymères absorbant l'eau présentant une perméabilité élevée par polymérisation de goutellettes d'une solution monomère
ATE467645T1 (de) * 2006-07-19 2010-05-15 Basf Se Verfahren zur herstellung wasserabsorbierender polymerpartikel mit hoher permeabilität durch polymerisation von tropfen einer monomerlösung
EP2076547B1 (fr) 2006-10-05 2011-03-09 Basf Se Procédé de préparation de particules de polymère absorbant l'eau grâce à une polymérisation de gouttes d'une solution de monomère
JP5502488B2 (ja) * 2006-10-31 2014-05-28 ビーエーエスエフ ソシエタス・ヨーロピア 加熱された気相中での吸水性ポリマー粒子の製造法の制御
US8419971B2 (en) 2006-12-22 2013-04-16 Basf Se Method for producing mechanically stable water-absorbent polymer particles
EP2104686B2 (fr) 2006-12-22 2019-11-27 Basf Se Procédé de préparation de particules polymères mécaniquement stables qui absorbent l'eau
EP2115014B1 (fr) 2007-02-06 2019-01-16 Basf Se Procédé de production de particules polymères hydroabsorbantes par polymérisation de gouttes d'une solution monomère
US8895800B2 (en) 2008-08-06 2014-11-25 Basf Se Fluid absorbent articles
WO2010015561A1 (fr) 2008-08-06 2010-02-11 Basf Se Articles absorbant des fluides
CN102170849B (zh) 2008-08-06 2013-08-21 巴斯夫欧洲公司 流体吸收制品
US8481159B2 (en) * 2009-09-04 2013-07-09 Basf Se Water-absorbent porous polymer particles having specific sphericity and high bulk density
US8852742B2 (en) 2010-03-15 2014-10-07 Basf Se Water absorbent polymer particles formed by polymerizing droplets of a monomer solution and coated with sulfinic acid, sulfonic acid, and/or salts thereof
JP5933520B2 (ja) 2010-03-24 2016-06-08 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se モノマー溶液の液滴を重合することによる吸水ポリマー粒子の製造方法
CN102905661B (zh) 2010-03-24 2016-09-07 巴斯夫欧洲公司 超薄流体吸收芯
US9089624B2 (en) 2010-08-23 2015-07-28 Basf Se Ultrathin fluid-absorbent cores comprising adhesive and having very low dry SAP loss
WO2013045163A1 (fr) 2011-08-12 2013-04-04 Basf Se Procédé de production de particules polymères absorbant l'eau, par polymérisation de gouttelettes de solution monomère
US11931928B2 (en) 2016-12-29 2024-03-19 Evonik Superabsorber Llc Continuous strand superabsorbent polymerization

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956046A (en) * 1954-09-21 1960-10-11 Rohm & Haas Polymerization of acrylic acid salts and the like
EP0348180A2 (fr) * 1988-06-22 1989-12-27 Mitsubishi Petrochemical Company Limited Procédé de préparation d'une résine absorbant de l'eau
EP0873185B1 (fr) * 1995-06-07 2003-05-21 Clarence S. Freeman Procede et appareil de polymerisation
WO2005030810A1 (fr) * 2003-08-29 2005-04-07 Basf Aktiengesellschaft Procede de polymerisation par pulverisation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2956046A (en) * 1954-09-21 1960-10-11 Rohm & Haas Polymerization of acrylic acid salts and the like
EP0348180A2 (fr) * 1988-06-22 1989-12-27 Mitsubishi Petrochemical Company Limited Procédé de préparation d'une résine absorbant de l'eau
EP0873185B1 (fr) * 1995-06-07 2003-05-21 Clarence S. Freeman Procede et appareil de polymerisation
WO2005030810A1 (fr) * 2003-08-29 2005-04-07 Basf Aktiengesellschaft Procede de polymerisation par pulverisation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8598405B2 (en) * 2004-05-12 2013-12-03 Nippon Shokubai Co., Ltd. Waste solution solidifying agent, process for preparing the same and use of the same
WO2006079631A1 (fr) * 2005-01-28 2006-08-03 Basf Aktiengesellschaft Procede de production de particules polymeres hydroabsorbantes, par polymerisation en gouttes en phase gazeuse
US7727586B2 (en) 2005-01-28 2010-06-01 Basf Aktiengesellschaft Production of water-absorbing polymeric particles by dropletization polymerization in the gas phase
WO2006114404A1 (fr) * 2005-04-25 2006-11-02 Basf Aktiengesellschaft Procede de fabrication de polymeres par precipitation par l'intermediaire de polymerisation par pulverisation
WO2008040715A2 (fr) * 2006-10-05 2008-04-10 Basf Se Procédé pour la préparation de particules de polymère absorbant l'eau grâce à une polymérisation de gouttes d'une solution de monomère
WO2008040715A3 (fr) * 2006-10-05 2008-05-22 Basf Se Procédé pour la préparation de particules de polymère absorbant l'eau grâce à une polymérisation de gouttes d'une solution de monomère
US8013087B2 (en) 2006-10-05 2011-09-06 Basf Se Method for the production of water absorbent polymer particles by polymerizing drops of a monomer solution
CN101250244B (zh) * 2008-04-03 2010-08-04 金小刚 一种聚合物空心微球及其制备方法
WO2011113728A1 (fr) * 2010-03-15 2011-09-22 Basf Se Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttelettes d'une solution de monomère
EP2460838A1 (fr) 2010-12-03 2012-06-06 Basf Se Procédé de polymérisation de lactame
WO2012072545A1 (fr) 2010-12-03 2012-06-07 Basf Se Procédé de polymérisation de lactame
US9139692B2 (en) 2010-12-03 2015-09-22 Basf Se Process for polymerizing lactam

Also Published As

Publication number Publication date
DE102004024437A1 (de) 2005-12-08

Similar Documents

Publication Publication Date Title
WO2005111088A1 (fr) Procede de production de particules polymeres gonflant dans l'eau
EP1660540B1 (fr) Procede de polymerisation par pulverisation
EP1841797B2 (fr) Procede de production de polymeres par polymerisation par pulverisation
EP2922580B1 (fr) Procédé de préparation de super-absorbants à base de matières premières renouvelables
EP2046400B1 (fr) Procédé de production de particules polymères absorbant l'eau post-polymérisées présentant une absorption élevée grâce à la polymérisation de goutellettes d'une solution monomère
EP2046403B1 (fr) Procede de production de particules absorbant l'eau presentant une permeabilite elevee grace a la polymerisation de goutellettes d'une solution monomere
EP1926551B1 (fr) Procédé et reacteur pour produire des particules en polymers par faire goutter des liquides
EP2046839B2 (fr) Procédé permettant la production de particules polymères absorbant l'eau à perméabilité élevée grâce à la polymérisation de goutellettes d'une solution monomère
EP2411422B1 (fr) Procédé de production de particules polymères hydrophiles à post-réticulation superficielle
EP2297211B1 (fr) Procédé de production de particules polymères hydro-absorbantes, par polymérisation de gouttes d'une solution monomère
WO2006079631A1 (fr) Procede de production de particules polymeres hydroabsorbantes, par polymerisation en gouttes en phase gazeuse
EP2046401A1 (fr) Procédé permettant la production de particules polymères absorbant l'eau présentant une perméabilité élevée par polymérisation de goutellettes d'une solution monomère
WO2006024370A1 (fr) Procede de fabrication de polymeres par polymerisation par dispersion
WO2007093531A1 (fr) Procédé de production de particules polymères absorbant l'eau par polymérisation de gouttes d'une solution de monomère
EP2470222B1 (fr) Procédé de production de particules polymériques absorbant l'eau à absorption du sang améliorée par polymérisation de gouttes d'une solution de monomère
EP2504368B1 (fr) Procédé pour produire des particules polymères hydroabsorbantes présentant une stabilité de couleur améliorée
EP2046402B1 (fr) Procédé de fabrication de particules polymères hydroabsorbantes par polymérisation de gouttes d'une solution monomère
EP2300063B1 (fr) Procédé de post-réticulation de surface de particules de polymère hydrophiles
EP2121772B1 (fr) Procédé de production de particules polymères par polymérisation de gouttes de liquide dans une phase gazeuse
EP3262085A1 (fr) Procédé de production de particules polymères hydro-absorbantes par polymérisation en suspension
WO2011042404A1 (fr) Utilisation de condensat de vapeur de chauffage pour la production de particules polymères qui absorbent l'eau
WO2016050397A1 (fr) Procédé de production de particules de polymère absorbant l'eau
JP2006036970A (ja) 親水性樹脂およびその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase